• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/fs/fcntl.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/syscalls.h>
8 #include <linux/init.h>
9 #include <linux/mm.h>
10 #include <linux/fs.h>
11 #include <linux/file.h>
12 #include <linux/fdtable.h>
13 #include <linux/capability.h>
14 #include <linux/dnotify.h>
15 #include <linux/slab.h>
16 #include <linux/module.h>
17 #include <linux/pipe_fs_i.h>
18 #include <linux/security.h>
19 #include <linux/ptrace.h>
20 #include <linux/signal.h>
21 #include <linux/rcupdate.h>
22 #include <linux/pid_namespace.h>
23 #include <linux/user_namespace.h>
24 #include <linux/shmem_fs.h>
25 
26 #include <asm/poll.h>
27 #include <asm/siginfo.h>
28 #include <asm/uaccess.h>
29 
30 #define SETFL_MASK (O_APPEND | O_NONBLOCK | O_NDELAY | O_DIRECT | O_NOATIME)
31 
setfl(int fd,struct file * filp,unsigned long arg)32 static int setfl(int fd, struct file * filp, unsigned long arg)
33 {
34 	struct inode * inode = file_inode(filp);
35 	int error = 0;
36 
37 	/*
38 	 * O_APPEND cannot be cleared if the file is marked as append-only
39 	 * and the file is open for write.
40 	 */
41 	if (((arg ^ filp->f_flags) & O_APPEND) && IS_APPEND(inode))
42 		return -EPERM;
43 
44 	/* O_NOATIME can only be set by the owner or superuser */
45 	if ((arg & O_NOATIME) && !(filp->f_flags & O_NOATIME))
46 		if (!inode_owner_or_capable(inode))
47 			return -EPERM;
48 
49 	/* required for strict SunOS emulation */
50 	if (O_NONBLOCK != O_NDELAY)
51 	       if (arg & O_NDELAY)
52 		   arg |= O_NONBLOCK;
53 
54 	/* Pipe packetized mode is controlled by O_DIRECT flag */
55 	if (!S_ISFIFO(filp->f_inode->i_mode) && (arg & O_DIRECT)) {
56 		if (!filp->f_mapping || !filp->f_mapping->a_ops ||
57 			!filp->f_mapping->a_ops->direct_IO)
58 				return -EINVAL;
59 	}
60 
61 	if (filp->f_op->check_flags)
62 		error = filp->f_op->check_flags(arg);
63 	if (error)
64 		return error;
65 
66 	/*
67 	 * ->fasync() is responsible for setting the FASYNC bit.
68 	 */
69 	if (((arg ^ filp->f_flags) & FASYNC) && filp->f_op->fasync) {
70 		error = filp->f_op->fasync(fd, filp, (arg & FASYNC) != 0);
71 		if (error < 0)
72 			goto out;
73 		if (error > 0)
74 			error = 0;
75 	}
76 	spin_lock(&filp->f_lock);
77 	filp->f_flags = (arg & SETFL_MASK) | (filp->f_flags & ~SETFL_MASK);
78 	spin_unlock(&filp->f_lock);
79 
80  out:
81 	return error;
82 }
83 
f_modown(struct file * filp,struct pid * pid,enum pid_type type,int force)84 static void f_modown(struct file *filp, struct pid *pid, enum pid_type type,
85                      int force)
86 {
87 	write_lock_irq(&filp->f_owner.lock);
88 	if (force || !filp->f_owner.pid) {
89 		put_pid(filp->f_owner.pid);
90 		filp->f_owner.pid = get_pid(pid);
91 		filp->f_owner.pid_type = type;
92 
93 		if (pid) {
94 			const struct cred *cred = current_cred();
95 			filp->f_owner.uid = cred->uid;
96 			filp->f_owner.euid = cred->euid;
97 		}
98 	}
99 	write_unlock_irq(&filp->f_owner.lock);
100 }
101 
__f_setown(struct file * filp,struct pid * pid,enum pid_type type,int force)102 void __f_setown(struct file *filp, struct pid *pid, enum pid_type type,
103 		int force)
104 {
105 	security_file_set_fowner(filp);
106 	f_modown(filp, pid, type, force);
107 }
108 EXPORT_SYMBOL(__f_setown);
109 
f_setown(struct file * filp,unsigned long arg,int force)110 void f_setown(struct file *filp, unsigned long arg, int force)
111 {
112 	enum pid_type type;
113 	struct pid *pid;
114 	int who = arg;
115 	type = PIDTYPE_PID;
116 	if (who < 0) {
117 		/* avoid overflow below */
118 		if (who == INT_MIN)
119 			return;
120 
121 		type = PIDTYPE_PGID;
122 		who = -who;
123 	}
124 	rcu_read_lock();
125 	pid = find_vpid(who);
126 	__f_setown(filp, pid, type, force);
127 	rcu_read_unlock();
128 }
129 EXPORT_SYMBOL(f_setown);
130 
f_delown(struct file * filp)131 void f_delown(struct file *filp)
132 {
133 	f_modown(filp, NULL, PIDTYPE_PID, 1);
134 }
135 
f_getown(struct file * filp)136 pid_t f_getown(struct file *filp)
137 {
138 	pid_t pid;
139 	read_lock(&filp->f_owner.lock);
140 	pid = pid_vnr(filp->f_owner.pid);
141 	if (filp->f_owner.pid_type == PIDTYPE_PGID)
142 		pid = -pid;
143 	read_unlock(&filp->f_owner.lock);
144 	return pid;
145 }
146 
f_setown_ex(struct file * filp,unsigned long arg)147 static int f_setown_ex(struct file *filp, unsigned long arg)
148 {
149 	struct f_owner_ex __user *owner_p = (void __user *)arg;
150 	struct f_owner_ex owner;
151 	struct pid *pid;
152 	int type;
153 	int ret;
154 
155 	ret = copy_from_user(&owner, owner_p, sizeof(owner));
156 	if (ret)
157 		return -EFAULT;
158 
159 	switch (owner.type) {
160 	case F_OWNER_TID:
161 		type = PIDTYPE_MAX;
162 		break;
163 
164 	case F_OWNER_PID:
165 		type = PIDTYPE_PID;
166 		break;
167 
168 	case F_OWNER_PGRP:
169 		type = PIDTYPE_PGID;
170 		break;
171 
172 	default:
173 		return -EINVAL;
174 	}
175 
176 	rcu_read_lock();
177 	pid = find_vpid(owner.pid);
178 	if (owner.pid && !pid)
179 		ret = -ESRCH;
180 	else
181 		 __f_setown(filp, pid, type, 1);
182 	rcu_read_unlock();
183 
184 	return ret;
185 }
186 
f_getown_ex(struct file * filp,unsigned long arg)187 static int f_getown_ex(struct file *filp, unsigned long arg)
188 {
189 	struct f_owner_ex __user *owner_p = (void __user *)arg;
190 	struct f_owner_ex owner;
191 	int ret = 0;
192 
193 	read_lock(&filp->f_owner.lock);
194 	owner.pid = pid_vnr(filp->f_owner.pid);
195 	switch (filp->f_owner.pid_type) {
196 	case PIDTYPE_MAX:
197 		owner.type = F_OWNER_TID;
198 		break;
199 
200 	case PIDTYPE_PID:
201 		owner.type = F_OWNER_PID;
202 		break;
203 
204 	case PIDTYPE_PGID:
205 		owner.type = F_OWNER_PGRP;
206 		break;
207 
208 	default:
209 		WARN_ON(1);
210 		ret = -EINVAL;
211 		break;
212 	}
213 	read_unlock(&filp->f_owner.lock);
214 
215 	if (!ret) {
216 		ret = copy_to_user(owner_p, &owner, sizeof(owner));
217 		if (ret)
218 			ret = -EFAULT;
219 	}
220 	return ret;
221 }
222 
223 #ifdef CONFIG_CHECKPOINT_RESTORE
f_getowner_uids(struct file * filp,unsigned long arg)224 static int f_getowner_uids(struct file *filp, unsigned long arg)
225 {
226 	struct user_namespace *user_ns = current_user_ns();
227 	uid_t __user *dst = (void __user *)arg;
228 	uid_t src[2];
229 	int err;
230 
231 	read_lock(&filp->f_owner.lock);
232 	src[0] = from_kuid(user_ns, filp->f_owner.uid);
233 	src[1] = from_kuid(user_ns, filp->f_owner.euid);
234 	read_unlock(&filp->f_owner.lock);
235 
236 	err  = put_user(src[0], &dst[0]);
237 	err |= put_user(src[1], &dst[1]);
238 
239 	return err;
240 }
241 #else
f_getowner_uids(struct file * filp,unsigned long arg)242 static int f_getowner_uids(struct file *filp, unsigned long arg)
243 {
244 	return -EINVAL;
245 }
246 #endif
247 
do_fcntl(int fd,unsigned int cmd,unsigned long arg,struct file * filp)248 static long do_fcntl(int fd, unsigned int cmd, unsigned long arg,
249 		struct file *filp)
250 {
251 	long err = -EINVAL;
252 
253 	switch (cmd) {
254 	case F_DUPFD:
255 		err = f_dupfd(arg, filp, 0);
256 		break;
257 	case F_DUPFD_CLOEXEC:
258 		err = f_dupfd(arg, filp, O_CLOEXEC);
259 		break;
260 	case F_GETFD:
261 		err = get_close_on_exec(fd) ? FD_CLOEXEC : 0;
262 		break;
263 	case F_SETFD:
264 		err = 0;
265 		set_close_on_exec(fd, arg & FD_CLOEXEC);
266 		break;
267 	case F_GETFL:
268 		err = filp->f_flags;
269 		break;
270 	case F_SETFL:
271 		err = setfl(fd, filp, arg);
272 		break;
273 #if BITS_PER_LONG != 32
274 	/* 32-bit arches must use fcntl64() */
275 	case F_OFD_GETLK:
276 #endif
277 	case F_GETLK:
278 		err = fcntl_getlk(filp, cmd, (struct flock __user *) arg);
279 		break;
280 #if BITS_PER_LONG != 32
281 	/* 32-bit arches must use fcntl64() */
282 	case F_OFD_SETLK:
283 	case F_OFD_SETLKW:
284 #endif
285 		/* Fallthrough */
286 	case F_SETLK:
287 	case F_SETLKW:
288 		err = fcntl_setlk(fd, filp, cmd, (struct flock __user *) arg);
289 		break;
290 	case F_GETOWN:
291 		/*
292 		 * XXX If f_owner is a process group, the
293 		 * negative return value will get converted
294 		 * into an error.  Oops.  If we keep the
295 		 * current syscall conventions, the only way
296 		 * to fix this will be in libc.
297 		 */
298 		err = f_getown(filp);
299 		force_successful_syscall_return();
300 		break;
301 	case F_SETOWN:
302 		f_setown(filp, arg, 1);
303 		err = 0;
304 		break;
305 	case F_GETOWN_EX:
306 		err = f_getown_ex(filp, arg);
307 		break;
308 	case F_SETOWN_EX:
309 		err = f_setown_ex(filp, arg);
310 		break;
311 	case F_GETOWNER_UIDS:
312 		err = f_getowner_uids(filp, arg);
313 		break;
314 	case F_GETSIG:
315 		err = filp->f_owner.signum;
316 		break;
317 	case F_SETSIG:
318 		/* arg == 0 restores default behaviour. */
319 		if (!valid_signal(arg)) {
320 			break;
321 		}
322 		err = 0;
323 		filp->f_owner.signum = arg;
324 		break;
325 	case F_GETLEASE:
326 		err = fcntl_getlease(filp);
327 		break;
328 	case F_SETLEASE:
329 		err = fcntl_setlease(fd, filp, arg);
330 		break;
331 	case F_NOTIFY:
332 		err = fcntl_dirnotify(fd, filp, arg);
333 		break;
334 	case F_SETPIPE_SZ:
335 	case F_GETPIPE_SZ:
336 		err = pipe_fcntl(filp, cmd, arg);
337 		break;
338 	case F_ADD_SEALS:
339 	case F_GET_SEALS:
340 		err = shmem_fcntl(filp, cmd, arg);
341 		break;
342 	default:
343 		break;
344 	}
345 	return err;
346 }
347 
check_fcntl_cmd(unsigned cmd)348 static int check_fcntl_cmd(unsigned cmd)
349 {
350 	switch (cmd) {
351 	case F_DUPFD:
352 	case F_DUPFD_CLOEXEC:
353 	case F_GETFD:
354 	case F_SETFD:
355 	case F_GETFL:
356 		return 1;
357 	}
358 	return 0;
359 }
360 
SYSCALL_DEFINE3(fcntl,unsigned int,fd,unsigned int,cmd,unsigned long,arg)361 SYSCALL_DEFINE3(fcntl, unsigned int, fd, unsigned int, cmd, unsigned long, arg)
362 {
363 	struct fd f = fdget_raw(fd);
364 	long err = -EBADF;
365 
366 	if (!f.file)
367 		goto out;
368 
369 	if (unlikely(f.file->f_mode & FMODE_PATH)) {
370 		if (!check_fcntl_cmd(cmd))
371 			goto out1;
372 	}
373 
374 	err = security_file_fcntl(f.file, cmd, arg);
375 	if (!err)
376 		err = do_fcntl(fd, cmd, arg, f.file);
377 
378 out1:
379  	fdput(f);
380 out:
381 	return err;
382 }
383 
384 #if BITS_PER_LONG == 32
SYSCALL_DEFINE3(fcntl64,unsigned int,fd,unsigned int,cmd,unsigned long,arg)385 SYSCALL_DEFINE3(fcntl64, unsigned int, fd, unsigned int, cmd,
386 		unsigned long, arg)
387 {
388 	struct fd f = fdget_raw(fd);
389 	long err = -EBADF;
390 
391 	if (!f.file)
392 		goto out;
393 
394 	if (unlikely(f.file->f_mode & FMODE_PATH)) {
395 		if (!check_fcntl_cmd(cmd))
396 			goto out1;
397 	}
398 
399 	err = security_file_fcntl(f.file, cmd, arg);
400 	if (err)
401 		goto out1;
402 
403 	switch (cmd) {
404 	case F_GETLK64:
405 	case F_OFD_GETLK:
406 		err = fcntl_getlk64(f.file, cmd, (struct flock64 __user *) arg);
407 		break;
408 	case F_SETLK64:
409 	case F_SETLKW64:
410 	case F_OFD_SETLK:
411 	case F_OFD_SETLKW:
412 		err = fcntl_setlk64(fd, f.file, cmd,
413 				(struct flock64 __user *) arg);
414 		break;
415 	default:
416 		err = do_fcntl(fd, cmd, arg, f.file);
417 		break;
418 	}
419 out1:
420 	fdput(f);
421 out:
422 	return err;
423 }
424 #endif
425 
426 /* Table to convert sigio signal codes into poll band bitmaps */
427 
428 static const long band_table[NSIGPOLL] = {
429 	POLLIN | POLLRDNORM,			/* POLL_IN */
430 	POLLOUT | POLLWRNORM | POLLWRBAND,	/* POLL_OUT */
431 	POLLIN | POLLRDNORM | POLLMSG,		/* POLL_MSG */
432 	POLLERR,				/* POLL_ERR */
433 	POLLPRI | POLLRDBAND,			/* POLL_PRI */
434 	POLLHUP | POLLERR			/* POLL_HUP */
435 };
436 
sigio_perm(struct task_struct * p,struct fown_struct * fown,int sig)437 static inline int sigio_perm(struct task_struct *p,
438                              struct fown_struct *fown, int sig)
439 {
440 	const struct cred *cred;
441 	int ret;
442 
443 	rcu_read_lock();
444 	cred = __task_cred(p);
445 	ret = ((uid_eq(fown->euid, GLOBAL_ROOT_UID) ||
446 		uid_eq(fown->euid, cred->suid) || uid_eq(fown->euid, cred->uid) ||
447 		uid_eq(fown->uid,  cred->suid) || uid_eq(fown->uid,  cred->uid)) &&
448 	       !security_file_send_sigiotask(p, fown, sig));
449 	rcu_read_unlock();
450 	return ret;
451 }
452 
send_sigio_to_task(struct task_struct * p,struct fown_struct * fown,int fd,int reason,int group)453 static void send_sigio_to_task(struct task_struct *p,
454 			       struct fown_struct *fown,
455 			       int fd, int reason, int group)
456 {
457 	/*
458 	 * F_SETSIG can change ->signum lockless in parallel, make
459 	 * sure we read it once and use the same value throughout.
460 	 */
461 	int signum = ACCESS_ONCE(fown->signum);
462 
463 	if (!sigio_perm(p, fown, signum))
464 		return;
465 
466 	switch (signum) {
467 		siginfo_t si;
468 		default:
469 			/* Queue a rt signal with the appropriate fd as its
470 			   value.  We use SI_SIGIO as the source, not
471 			   SI_KERNEL, since kernel signals always get
472 			   delivered even if we can't queue.  Failure to
473 			   queue in this case _should_ be reported; we fall
474 			   back to SIGIO in that case. --sct */
475 			si.si_signo = signum;
476 			si.si_errno = 0;
477 		        si.si_code  = reason;
478 			/* Make sure we are called with one of the POLL_*
479 			   reasons, otherwise we could leak kernel stack into
480 			   userspace.  */
481 			BUG_ON((reason & __SI_MASK) != __SI_POLL);
482 			if (reason - POLL_IN >= NSIGPOLL)
483 				si.si_band  = ~0L;
484 			else
485 				si.si_band = band_table[reason - POLL_IN];
486 			si.si_fd    = fd;
487 			if (!do_send_sig_info(signum, &si, p, group))
488 				break;
489 		/* fall-through: fall back on the old plain SIGIO signal */
490 		case 0:
491 			do_send_sig_info(SIGIO, SEND_SIG_PRIV, p, group);
492 	}
493 }
494 
send_sigio(struct fown_struct * fown,int fd,int band)495 void send_sigio(struct fown_struct *fown, int fd, int band)
496 {
497 	struct task_struct *p;
498 	enum pid_type type;
499 	struct pid *pid;
500 	int group = 1;
501 
502 	read_lock(&fown->lock);
503 
504 	type = fown->pid_type;
505 	if (type == PIDTYPE_MAX) {
506 		group = 0;
507 		type = PIDTYPE_PID;
508 	}
509 
510 	pid = fown->pid;
511 	if (!pid)
512 		goto out_unlock_fown;
513 
514 	read_lock(&tasklist_lock);
515 	do_each_pid_task(pid, type, p) {
516 		send_sigio_to_task(p, fown, fd, band, group);
517 	} while_each_pid_task(pid, type, p);
518 	read_unlock(&tasklist_lock);
519  out_unlock_fown:
520 	read_unlock(&fown->lock);
521 }
522 
send_sigurg_to_task(struct task_struct * p,struct fown_struct * fown,int group)523 static void send_sigurg_to_task(struct task_struct *p,
524 				struct fown_struct *fown, int group)
525 {
526 	if (sigio_perm(p, fown, SIGURG))
527 		do_send_sig_info(SIGURG, SEND_SIG_PRIV, p, group);
528 }
529 
send_sigurg(struct fown_struct * fown)530 int send_sigurg(struct fown_struct *fown)
531 {
532 	struct task_struct *p;
533 	enum pid_type type;
534 	struct pid *pid;
535 	int group = 1;
536 	int ret = 0;
537 
538 	read_lock(&fown->lock);
539 
540 	type = fown->pid_type;
541 	if (type == PIDTYPE_MAX) {
542 		group = 0;
543 		type = PIDTYPE_PID;
544 	}
545 
546 	pid = fown->pid;
547 	if (!pid)
548 		goto out_unlock_fown;
549 
550 	ret = 1;
551 
552 	read_lock(&tasklist_lock);
553 	do_each_pid_task(pid, type, p) {
554 		send_sigurg_to_task(p, fown, group);
555 	} while_each_pid_task(pid, type, p);
556 	read_unlock(&tasklist_lock);
557  out_unlock_fown:
558 	read_unlock(&fown->lock);
559 	return ret;
560 }
561 
562 static DEFINE_SPINLOCK(fasync_lock);
563 static struct kmem_cache *fasync_cache __read_mostly;
564 
fasync_free_rcu(struct rcu_head * head)565 static void fasync_free_rcu(struct rcu_head *head)
566 {
567 	kmem_cache_free(fasync_cache,
568 			container_of(head, struct fasync_struct, fa_rcu));
569 }
570 
571 /*
572  * Remove a fasync entry. If successfully removed, return
573  * positive and clear the FASYNC flag. If no entry exists,
574  * do nothing and return 0.
575  *
576  * NOTE! It is very important that the FASYNC flag always
577  * match the state "is the filp on a fasync list".
578  *
579  */
fasync_remove_entry(struct file * filp,struct fasync_struct ** fapp)580 int fasync_remove_entry(struct file *filp, struct fasync_struct **fapp)
581 {
582 	struct fasync_struct *fa, **fp;
583 	int result = 0;
584 
585 	spin_lock(&filp->f_lock);
586 	spin_lock(&fasync_lock);
587 	for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) {
588 		if (fa->fa_file != filp)
589 			continue;
590 
591 		spin_lock_irq(&fa->fa_lock);
592 		fa->fa_file = NULL;
593 		spin_unlock_irq(&fa->fa_lock);
594 
595 		*fp = fa->fa_next;
596 		call_rcu(&fa->fa_rcu, fasync_free_rcu);
597 		filp->f_flags &= ~FASYNC;
598 		result = 1;
599 		break;
600 	}
601 	spin_unlock(&fasync_lock);
602 	spin_unlock(&filp->f_lock);
603 	return result;
604 }
605 
fasync_alloc(void)606 struct fasync_struct *fasync_alloc(void)
607 {
608 	return kmem_cache_alloc(fasync_cache, GFP_KERNEL);
609 }
610 
611 /*
612  * NOTE! This can be used only for unused fasync entries:
613  * entries that actually got inserted on the fasync list
614  * need to be released by rcu - see fasync_remove_entry.
615  */
fasync_free(struct fasync_struct * new)616 void fasync_free(struct fasync_struct *new)
617 {
618 	kmem_cache_free(fasync_cache, new);
619 }
620 
621 /*
622  * Insert a new entry into the fasync list.  Return the pointer to the
623  * old one if we didn't use the new one.
624  *
625  * NOTE! It is very important that the FASYNC flag always
626  * match the state "is the filp on a fasync list".
627  */
fasync_insert_entry(int fd,struct file * filp,struct fasync_struct ** fapp,struct fasync_struct * new)628 struct fasync_struct *fasync_insert_entry(int fd, struct file *filp, struct fasync_struct **fapp, struct fasync_struct *new)
629 {
630         struct fasync_struct *fa, **fp;
631 
632 	spin_lock(&filp->f_lock);
633 	spin_lock(&fasync_lock);
634 	for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) {
635 		if (fa->fa_file != filp)
636 			continue;
637 
638 		spin_lock_irq(&fa->fa_lock);
639 		fa->fa_fd = fd;
640 		spin_unlock_irq(&fa->fa_lock);
641 		goto out;
642 	}
643 
644 	spin_lock_init(&new->fa_lock);
645 	new->magic = FASYNC_MAGIC;
646 	new->fa_file = filp;
647 	new->fa_fd = fd;
648 	new->fa_next = *fapp;
649 	rcu_assign_pointer(*fapp, new);
650 	filp->f_flags |= FASYNC;
651 
652 out:
653 	spin_unlock(&fasync_lock);
654 	spin_unlock(&filp->f_lock);
655 	return fa;
656 }
657 
658 /*
659  * Add a fasync entry. Return negative on error, positive if
660  * added, and zero if did nothing but change an existing one.
661  */
fasync_add_entry(int fd,struct file * filp,struct fasync_struct ** fapp)662 static int fasync_add_entry(int fd, struct file *filp, struct fasync_struct **fapp)
663 {
664 	struct fasync_struct *new;
665 
666 	new = fasync_alloc();
667 	if (!new)
668 		return -ENOMEM;
669 
670 	/*
671 	 * fasync_insert_entry() returns the old (update) entry if
672 	 * it existed.
673 	 *
674 	 * So free the (unused) new entry and return 0 to let the
675 	 * caller know that we didn't add any new fasync entries.
676 	 */
677 	if (fasync_insert_entry(fd, filp, fapp, new)) {
678 		fasync_free(new);
679 		return 0;
680 	}
681 
682 	return 1;
683 }
684 
685 /*
686  * fasync_helper() is used by almost all character device drivers
687  * to set up the fasync queue, and for regular files by the file
688  * lease code. It returns negative on error, 0 if it did no changes
689  * and positive if it added/deleted the entry.
690  */
fasync_helper(int fd,struct file * filp,int on,struct fasync_struct ** fapp)691 int fasync_helper(int fd, struct file * filp, int on, struct fasync_struct **fapp)
692 {
693 	if (!on)
694 		return fasync_remove_entry(filp, fapp);
695 	return fasync_add_entry(fd, filp, fapp);
696 }
697 
698 EXPORT_SYMBOL(fasync_helper);
699 
700 /*
701  * rcu_read_lock() is held
702  */
kill_fasync_rcu(struct fasync_struct * fa,int sig,int band)703 static void kill_fasync_rcu(struct fasync_struct *fa, int sig, int band)
704 {
705 	while (fa) {
706 		struct fown_struct *fown;
707 		unsigned long flags;
708 
709 		if (fa->magic != FASYNC_MAGIC) {
710 			printk(KERN_ERR "kill_fasync: bad magic number in "
711 			       "fasync_struct!\n");
712 			return;
713 		}
714 		spin_lock_irqsave(&fa->fa_lock, flags);
715 		if (fa->fa_file) {
716 			fown = &fa->fa_file->f_owner;
717 			/* Don't send SIGURG to processes which have not set a
718 			   queued signum: SIGURG has its own default signalling
719 			   mechanism. */
720 			if (!(sig == SIGURG && fown->signum == 0))
721 				send_sigio(fown, fa->fa_fd, band);
722 		}
723 		spin_unlock_irqrestore(&fa->fa_lock, flags);
724 		fa = rcu_dereference(fa->fa_next);
725 	}
726 }
727 
kill_fasync(struct fasync_struct ** fp,int sig,int band)728 void kill_fasync(struct fasync_struct **fp, int sig, int band)
729 {
730 	/* First a quick test without locking: usually
731 	 * the list is empty.
732 	 */
733 	if (*fp) {
734 		rcu_read_lock();
735 		kill_fasync_rcu(rcu_dereference(*fp), sig, band);
736 		rcu_read_unlock();
737 	}
738 }
739 EXPORT_SYMBOL(kill_fasync);
740 
fcntl_init(void)741 static int __init fcntl_init(void)
742 {
743 	/*
744 	 * Please add new bits here to ensure allocation uniqueness.
745 	 * Exceptions: O_NONBLOCK is a two bit define on parisc; O_NDELAY
746 	 * is defined as O_NONBLOCK on some platforms and not on others.
747 	 */
748 	BUILD_BUG_ON(21 - 1 /* for O_RDONLY being 0 */ !=
749 		HWEIGHT32(
750 			(VALID_OPEN_FLAGS & ~(O_NONBLOCK | O_NDELAY)) |
751 			__FMODE_EXEC | __FMODE_NONOTIFY));
752 
753 	fasync_cache = kmem_cache_create("fasync_cache",
754 		sizeof(struct fasync_struct), 0, SLAB_PANIC, NULL);
755 	return 0;
756 }
757 
758 module_init(fcntl_init)
759