• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
3  * Copyright 2004-2011 Red Hat, Inc.
4  *
5  * This copyrighted material is made available to anyone wishing to use,
6  * modify, copy, or redistribute it subject to the terms and conditions
7  * of the GNU General Public License version 2.
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/fs.h>
13 #include <linux/dlm.h>
14 #include <linux/slab.h>
15 #include <linux/types.h>
16 #include <linux/delay.h>
17 #include <linux/gfs2_ondisk.h>
18 
19 #include "incore.h"
20 #include "glock.h"
21 #include "util.h"
22 #include "sys.h"
23 #include "trace_gfs2.h"
24 
25 extern struct workqueue_struct *gfs2_control_wq;
26 
27 /**
28  * gfs2_update_stats - Update time based stats
29  * @mv: Pointer to mean/variance structure to update
30  * @sample: New data to include
31  *
32  * @delta is the difference between the current rtt sample and the
33  * running average srtt. We add 1/8 of that to the srtt in order to
34  * update the current srtt estimate. The variance estimate is a bit
35  * more complicated. We subtract the abs value of the @delta from
36  * the current variance estimate and add 1/4 of that to the running
37  * total.
38  *
39  * Note that the index points at the array entry containing the smoothed
40  * mean value, and the variance is always in the following entry
41  *
42  * Reference: TCP/IP Illustrated, vol 2, p. 831,832
43  * All times are in units of integer nanoseconds. Unlike the TCP/IP case,
44  * they are not scaled fixed point.
45  */
46 
gfs2_update_stats(struct gfs2_lkstats * s,unsigned index,s64 sample)47 static inline void gfs2_update_stats(struct gfs2_lkstats *s, unsigned index,
48 				     s64 sample)
49 {
50 	s64 delta = sample - s->stats[index];
51 	s->stats[index] += (delta >> 3);
52 	index++;
53 	s->stats[index] += ((abs(delta) - s->stats[index]) >> 2);
54 }
55 
56 /**
57  * gfs2_update_reply_times - Update locking statistics
58  * @gl: The glock to update
59  *
60  * This assumes that gl->gl_dstamp has been set earlier.
61  *
62  * The rtt (lock round trip time) is an estimate of the time
63  * taken to perform a dlm lock request. We update it on each
64  * reply from the dlm.
65  *
66  * The blocking flag is set on the glock for all dlm requests
67  * which may potentially block due to lock requests from other nodes.
68  * DLM requests where the current lock state is exclusive, the
69  * requested state is null (or unlocked) or where the TRY or
70  * TRY_1CB flags are set are classified as non-blocking. All
71  * other DLM requests are counted as (potentially) blocking.
72  */
gfs2_update_reply_times(struct gfs2_glock * gl)73 static inline void gfs2_update_reply_times(struct gfs2_glock *gl)
74 {
75 	struct gfs2_pcpu_lkstats *lks;
76 	const unsigned gltype = gl->gl_name.ln_type;
77 	unsigned index = test_bit(GLF_BLOCKING, &gl->gl_flags) ?
78 			 GFS2_LKS_SRTTB : GFS2_LKS_SRTT;
79 	s64 rtt;
80 
81 	preempt_disable();
82 	rtt = ktime_to_ns(ktime_sub(ktime_get_real(), gl->gl_dstamp));
83 	lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats);
84 	gfs2_update_stats(&gl->gl_stats, index, rtt);		/* Local */
85 	gfs2_update_stats(&lks->lkstats[gltype], index, rtt);	/* Global */
86 	preempt_enable();
87 
88 	trace_gfs2_glock_lock_time(gl, rtt);
89 }
90 
91 /**
92  * gfs2_update_request_times - Update locking statistics
93  * @gl: The glock to update
94  *
95  * The irt (lock inter-request times) measures the average time
96  * between requests to the dlm. It is updated immediately before
97  * each dlm call.
98  */
99 
gfs2_update_request_times(struct gfs2_glock * gl)100 static inline void gfs2_update_request_times(struct gfs2_glock *gl)
101 {
102 	struct gfs2_pcpu_lkstats *lks;
103 	const unsigned gltype = gl->gl_name.ln_type;
104 	ktime_t dstamp;
105 	s64 irt;
106 
107 	preempt_disable();
108 	dstamp = gl->gl_dstamp;
109 	gl->gl_dstamp = ktime_get_real();
110 	irt = ktime_to_ns(ktime_sub(gl->gl_dstamp, dstamp));
111 	lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats);
112 	gfs2_update_stats(&gl->gl_stats, GFS2_LKS_SIRT, irt);		/* Local */
113 	gfs2_update_stats(&lks->lkstats[gltype], GFS2_LKS_SIRT, irt);	/* Global */
114 	preempt_enable();
115 }
116 
gdlm_ast(void * arg)117 static void gdlm_ast(void *arg)
118 {
119 	struct gfs2_glock *gl = arg;
120 	unsigned ret = gl->gl_state;
121 
122 	gfs2_update_reply_times(gl);
123 	BUG_ON(gl->gl_lksb.sb_flags & DLM_SBF_DEMOTED);
124 
125 	if ((gl->gl_lksb.sb_flags & DLM_SBF_VALNOTVALID) && gl->gl_lksb.sb_lvbptr)
126 		memset(gl->gl_lksb.sb_lvbptr, 0, GDLM_LVB_SIZE);
127 
128 	switch (gl->gl_lksb.sb_status) {
129 	case -DLM_EUNLOCK: /* Unlocked, so glock can be freed */
130 		gfs2_glock_free(gl);
131 		return;
132 	case -DLM_ECANCEL: /* Cancel while getting lock */
133 		ret |= LM_OUT_CANCELED;
134 		goto out;
135 	case -EAGAIN: /* Try lock fails */
136 	case -EDEADLK: /* Deadlock detected */
137 		goto out;
138 	case -ETIMEDOUT: /* Canceled due to timeout */
139 		ret |= LM_OUT_ERROR;
140 		goto out;
141 	case 0: /* Success */
142 		break;
143 	default: /* Something unexpected */
144 		BUG();
145 	}
146 
147 	ret = gl->gl_req;
148 	if (gl->gl_lksb.sb_flags & DLM_SBF_ALTMODE) {
149 		if (gl->gl_req == LM_ST_SHARED)
150 			ret = LM_ST_DEFERRED;
151 		else if (gl->gl_req == LM_ST_DEFERRED)
152 			ret = LM_ST_SHARED;
153 		else
154 			BUG();
155 	}
156 
157 	set_bit(GLF_INITIAL, &gl->gl_flags);
158 	gfs2_glock_complete(gl, ret);
159 	return;
160 out:
161 	if (!test_bit(GLF_INITIAL, &gl->gl_flags))
162 		gl->gl_lksb.sb_lkid = 0;
163 	gfs2_glock_complete(gl, ret);
164 }
165 
gdlm_bast(void * arg,int mode)166 static void gdlm_bast(void *arg, int mode)
167 {
168 	struct gfs2_glock *gl = arg;
169 
170 	switch (mode) {
171 	case DLM_LOCK_EX:
172 		gfs2_glock_cb(gl, LM_ST_UNLOCKED);
173 		break;
174 	case DLM_LOCK_CW:
175 		gfs2_glock_cb(gl, LM_ST_DEFERRED);
176 		break;
177 	case DLM_LOCK_PR:
178 		gfs2_glock_cb(gl, LM_ST_SHARED);
179 		break;
180 	default:
181 		pr_err("unknown bast mode %d\n", mode);
182 		BUG();
183 	}
184 }
185 
186 /* convert gfs lock-state to dlm lock-mode */
187 
make_mode(const unsigned int lmstate)188 static int make_mode(const unsigned int lmstate)
189 {
190 	switch (lmstate) {
191 	case LM_ST_UNLOCKED:
192 		return DLM_LOCK_NL;
193 	case LM_ST_EXCLUSIVE:
194 		return DLM_LOCK_EX;
195 	case LM_ST_DEFERRED:
196 		return DLM_LOCK_CW;
197 	case LM_ST_SHARED:
198 		return DLM_LOCK_PR;
199 	}
200 	pr_err("unknown LM state %d\n", lmstate);
201 	BUG();
202 	return -1;
203 }
204 
make_flags(struct gfs2_glock * gl,const unsigned int gfs_flags,const int req)205 static u32 make_flags(struct gfs2_glock *gl, const unsigned int gfs_flags,
206 		      const int req)
207 {
208 	u32 lkf = 0;
209 
210 	if (gl->gl_lksb.sb_lvbptr)
211 		lkf |= DLM_LKF_VALBLK;
212 
213 	if (gfs_flags & LM_FLAG_TRY)
214 		lkf |= DLM_LKF_NOQUEUE;
215 
216 	if (gfs_flags & LM_FLAG_TRY_1CB) {
217 		lkf |= DLM_LKF_NOQUEUE;
218 		lkf |= DLM_LKF_NOQUEUEBAST;
219 	}
220 
221 	if (gfs_flags & LM_FLAG_PRIORITY) {
222 		lkf |= DLM_LKF_NOORDER;
223 		lkf |= DLM_LKF_HEADQUE;
224 	}
225 
226 	if (gfs_flags & LM_FLAG_ANY) {
227 		if (req == DLM_LOCK_PR)
228 			lkf |= DLM_LKF_ALTCW;
229 		else if (req == DLM_LOCK_CW)
230 			lkf |= DLM_LKF_ALTPR;
231 		else
232 			BUG();
233 	}
234 
235 	if (gl->gl_lksb.sb_lkid != 0) {
236 		lkf |= DLM_LKF_CONVERT;
237 		if (test_bit(GLF_BLOCKING, &gl->gl_flags))
238 			lkf |= DLM_LKF_QUECVT;
239 	}
240 
241 	return lkf;
242 }
243 
gfs2_reverse_hex(char * c,u64 value)244 static void gfs2_reverse_hex(char *c, u64 value)
245 {
246 	*c = '0';
247 	while (value) {
248 		*c-- = hex_asc[value & 0x0f];
249 		value >>= 4;
250 	}
251 }
252 
gdlm_lock(struct gfs2_glock * gl,unsigned int req_state,unsigned int flags)253 static int gdlm_lock(struct gfs2_glock *gl, unsigned int req_state,
254 		     unsigned int flags)
255 {
256 	struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct;
257 	int req;
258 	u32 lkf;
259 	char strname[GDLM_STRNAME_BYTES] = "";
260 
261 	req = make_mode(req_state);
262 	lkf = make_flags(gl, flags, req);
263 	gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
264 	gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
265 	if (gl->gl_lksb.sb_lkid) {
266 		gfs2_update_request_times(gl);
267 	} else {
268 		memset(strname, ' ', GDLM_STRNAME_BYTES - 1);
269 		strname[GDLM_STRNAME_BYTES - 1] = '\0';
270 		gfs2_reverse_hex(strname + 7, gl->gl_name.ln_type);
271 		gfs2_reverse_hex(strname + 23, gl->gl_name.ln_number);
272 		gl->gl_dstamp = ktime_get_real();
273 	}
274 	/*
275 	 * Submit the actual lock request.
276 	 */
277 
278 	return dlm_lock(ls->ls_dlm, req, &gl->gl_lksb, lkf, strname,
279 			GDLM_STRNAME_BYTES - 1, 0, gdlm_ast, gl, gdlm_bast);
280 }
281 
gdlm_put_lock(struct gfs2_glock * gl)282 static void gdlm_put_lock(struct gfs2_glock *gl)
283 {
284 	struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
285 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
286 	int lvb_needs_unlock = 0;
287 	int error;
288 
289 	if (gl->gl_lksb.sb_lkid == 0) {
290 		gfs2_glock_free(gl);
291 		return;
292 	}
293 
294 	clear_bit(GLF_BLOCKING, &gl->gl_flags);
295 	gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
296 	gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
297 	gfs2_update_request_times(gl);
298 
299 	/* don't want to skip dlm_unlock writing the lvb when lock is ex */
300 
301 	if (gl->gl_lksb.sb_lvbptr && (gl->gl_state == LM_ST_EXCLUSIVE))
302 		lvb_needs_unlock = 1;
303 
304 	if (test_bit(SDF_SKIP_DLM_UNLOCK, &sdp->sd_flags) &&
305 	    !lvb_needs_unlock) {
306 		gfs2_glock_free(gl);
307 		return;
308 	}
309 
310 	error = dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_VALBLK,
311 			   NULL, gl);
312 	if (error) {
313 		pr_err("gdlm_unlock %x,%llx err=%d\n",
314 		       gl->gl_name.ln_type,
315 		       (unsigned long long)gl->gl_name.ln_number, error);
316 		return;
317 	}
318 }
319 
gdlm_cancel(struct gfs2_glock * gl)320 static void gdlm_cancel(struct gfs2_glock *gl)
321 {
322 	struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct;
323 	dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_CANCEL, NULL, gl);
324 }
325 
326 /*
327  * dlm/gfs2 recovery coordination using dlm_recover callbacks
328  *
329  *  1. dlm_controld sees lockspace members change
330  *  2. dlm_controld blocks dlm-kernel locking activity
331  *  3. dlm_controld within dlm-kernel notifies gfs2 (recover_prep)
332  *  4. dlm_controld starts and finishes its own user level recovery
333  *  5. dlm_controld starts dlm-kernel dlm_recoverd to do kernel recovery
334  *  6. dlm_recoverd notifies gfs2 of failed nodes (recover_slot)
335  *  7. dlm_recoverd does its own lock recovery
336  *  8. dlm_recoverd unblocks dlm-kernel locking activity
337  *  9. dlm_recoverd notifies gfs2 when done (recover_done with new generation)
338  * 10. gfs2_control updates control_lock lvb with new generation and jid bits
339  * 11. gfs2_control enqueues journals for gfs2_recover to recover (maybe none)
340  * 12. gfs2_recover dequeues and recovers journals of failed nodes
341  * 13. gfs2_recover provides recovery results to gfs2_control (recovery_result)
342  * 14. gfs2_control updates control_lock lvb jid bits for recovered journals
343  * 15. gfs2_control unblocks normal locking when all journals are recovered
344  *
345  * - failures during recovery
346  *
347  * recover_prep() may set BLOCK_LOCKS (step 3) again before gfs2_control
348  * clears BLOCK_LOCKS (step 15), e.g. another node fails while still
349  * recovering for a prior failure.  gfs2_control needs a way to detect
350  * this so it can leave BLOCK_LOCKS set in step 15.  This is managed using
351  * the recover_block and recover_start values.
352  *
353  * recover_done() provides a new lockspace generation number each time it
354  * is called (step 9).  This generation number is saved as recover_start.
355  * When recover_prep() is called, it sets BLOCK_LOCKS and sets
356  * recover_block = recover_start.  So, while recover_block is equal to
357  * recover_start, BLOCK_LOCKS should remain set.  (recover_spin must
358  * be held around the BLOCK_LOCKS/recover_block/recover_start logic.)
359  *
360  * - more specific gfs2 steps in sequence above
361  *
362  *  3. recover_prep sets BLOCK_LOCKS and sets recover_block = recover_start
363  *  6. recover_slot records any failed jids (maybe none)
364  *  9. recover_done sets recover_start = new generation number
365  * 10. gfs2_control sets control_lock lvb = new gen + bits for failed jids
366  * 12. gfs2_recover does journal recoveries for failed jids identified above
367  * 14. gfs2_control clears control_lock lvb bits for recovered jids
368  * 15. gfs2_control checks if recover_block == recover_start (step 3 occured
369  *     again) then do nothing, otherwise if recover_start > recover_block
370  *     then clear BLOCK_LOCKS.
371  *
372  * - parallel recovery steps across all nodes
373  *
374  * All nodes attempt to update the control_lock lvb with the new generation
375  * number and jid bits, but only the first to get the control_lock EX will
376  * do so; others will see that it's already done (lvb already contains new
377  * generation number.)
378  *
379  * . All nodes get the same recover_prep/recover_slot/recover_done callbacks
380  * . All nodes attempt to set control_lock lvb gen + bits for the new gen
381  * . One node gets control_lock first and writes the lvb, others see it's done
382  * . All nodes attempt to recover jids for which they see control_lock bits set
383  * . One node succeeds for a jid, and that one clears the jid bit in the lvb
384  * . All nodes will eventually see all lvb bits clear and unblock locks
385  *
386  * - is there a problem with clearing an lvb bit that should be set
387  *   and missing a journal recovery?
388  *
389  * 1. jid fails
390  * 2. lvb bit set for step 1
391  * 3. jid recovered for step 1
392  * 4. jid taken again (new mount)
393  * 5. jid fails (for step 4)
394  * 6. lvb bit set for step 5 (will already be set)
395  * 7. lvb bit cleared for step 3
396  *
397  * This is not a problem because the failure in step 5 does not
398  * require recovery, because the mount in step 4 could not have
399  * progressed far enough to unblock locks and access the fs.  The
400  * control_mount() function waits for all recoveries to be complete
401  * for the latest lockspace generation before ever unblocking locks
402  * and returning.  The mount in step 4 waits until the recovery in
403  * step 1 is done.
404  *
405  * - special case of first mounter: first node to mount the fs
406  *
407  * The first node to mount a gfs2 fs needs to check all the journals
408  * and recover any that need recovery before other nodes are allowed
409  * to mount the fs.  (Others may begin mounting, but they must wait
410  * for the first mounter to be done before taking locks on the fs
411  * or accessing the fs.)  This has two parts:
412  *
413  * 1. The mounted_lock tells a node it's the first to mount the fs.
414  * Each node holds the mounted_lock in PR while it's mounted.
415  * Each node tries to acquire the mounted_lock in EX when it mounts.
416  * If a node is granted the mounted_lock EX it means there are no
417  * other mounted nodes (no PR locks exist), and it is the first mounter.
418  * The mounted_lock is demoted to PR when first recovery is done, so
419  * others will fail to get an EX lock, but will get a PR lock.
420  *
421  * 2. The control_lock blocks others in control_mount() while the first
422  * mounter is doing first mount recovery of all journals.
423  * A mounting node needs to acquire control_lock in EX mode before
424  * it can proceed.  The first mounter holds control_lock in EX while doing
425  * the first mount recovery, blocking mounts from other nodes, then demotes
426  * control_lock to NL when it's done (others_may_mount/first_done),
427  * allowing other nodes to continue mounting.
428  *
429  * first mounter:
430  * control_lock EX/NOQUEUE success
431  * mounted_lock EX/NOQUEUE success (no other PR, so no other mounters)
432  * set first=1
433  * do first mounter recovery
434  * mounted_lock EX->PR
435  * control_lock EX->NL, write lvb generation
436  *
437  * other mounter:
438  * control_lock EX/NOQUEUE success (if fail -EAGAIN, retry)
439  * mounted_lock EX/NOQUEUE fail -EAGAIN (expected due to other mounters PR)
440  * mounted_lock PR/NOQUEUE success
441  * read lvb generation
442  * control_lock EX->NL
443  * set first=0
444  *
445  * - mount during recovery
446  *
447  * If a node mounts while others are doing recovery (not first mounter),
448  * the mounting node will get its initial recover_done() callback without
449  * having seen any previous failures/callbacks.
450  *
451  * It must wait for all recoveries preceding its mount to be finished
452  * before it unblocks locks.  It does this by repeating the "other mounter"
453  * steps above until the lvb generation number is >= its mount generation
454  * number (from initial recover_done) and all lvb bits are clear.
455  *
456  * - control_lock lvb format
457  *
458  * 4 bytes generation number: the latest dlm lockspace generation number
459  * from recover_done callback.  Indicates the jid bitmap has been updated
460  * to reflect all slot failures through that generation.
461  * 4 bytes unused.
462  * GDLM_LVB_SIZE-8 bytes of jid bit map. If bit N is set, it indicates
463  * that jid N needs recovery.
464  */
465 
466 #define JID_BITMAP_OFFSET 8 /* 4 byte generation number + 4 byte unused */
467 
control_lvb_read(struct lm_lockstruct * ls,uint32_t * lvb_gen,char * lvb_bits)468 static void control_lvb_read(struct lm_lockstruct *ls, uint32_t *lvb_gen,
469 			     char *lvb_bits)
470 {
471 	__le32 gen;
472 	memcpy(lvb_bits, ls->ls_control_lvb, GDLM_LVB_SIZE);
473 	memcpy(&gen, lvb_bits, sizeof(__le32));
474 	*lvb_gen = le32_to_cpu(gen);
475 }
476 
control_lvb_write(struct lm_lockstruct * ls,uint32_t lvb_gen,char * lvb_bits)477 static void control_lvb_write(struct lm_lockstruct *ls, uint32_t lvb_gen,
478 			      char *lvb_bits)
479 {
480 	__le32 gen;
481 	memcpy(ls->ls_control_lvb, lvb_bits, GDLM_LVB_SIZE);
482 	gen = cpu_to_le32(lvb_gen);
483 	memcpy(ls->ls_control_lvb, &gen, sizeof(__le32));
484 }
485 
all_jid_bits_clear(char * lvb)486 static int all_jid_bits_clear(char *lvb)
487 {
488 	return !memchr_inv(lvb + JID_BITMAP_OFFSET, 0,
489 			GDLM_LVB_SIZE - JID_BITMAP_OFFSET);
490 }
491 
sync_wait_cb(void * arg)492 static void sync_wait_cb(void *arg)
493 {
494 	struct lm_lockstruct *ls = arg;
495 	complete(&ls->ls_sync_wait);
496 }
497 
sync_unlock(struct gfs2_sbd * sdp,struct dlm_lksb * lksb,char * name)498 static int sync_unlock(struct gfs2_sbd *sdp, struct dlm_lksb *lksb, char *name)
499 {
500 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
501 	int error;
502 
503 	error = dlm_unlock(ls->ls_dlm, lksb->sb_lkid, 0, lksb, ls);
504 	if (error) {
505 		fs_err(sdp, "%s lkid %x error %d\n",
506 		       name, lksb->sb_lkid, error);
507 		return error;
508 	}
509 
510 	wait_for_completion(&ls->ls_sync_wait);
511 
512 	if (lksb->sb_status != -DLM_EUNLOCK) {
513 		fs_err(sdp, "%s lkid %x status %d\n",
514 		       name, lksb->sb_lkid, lksb->sb_status);
515 		return -1;
516 	}
517 	return 0;
518 }
519 
sync_lock(struct gfs2_sbd * sdp,int mode,uint32_t flags,unsigned int num,struct dlm_lksb * lksb,char * name)520 static int sync_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags,
521 		     unsigned int num, struct dlm_lksb *lksb, char *name)
522 {
523 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
524 	char strname[GDLM_STRNAME_BYTES];
525 	int error, status;
526 
527 	memset(strname, 0, GDLM_STRNAME_BYTES);
528 	snprintf(strname, GDLM_STRNAME_BYTES, "%8x%16x", LM_TYPE_NONDISK, num);
529 
530 	error = dlm_lock(ls->ls_dlm, mode, lksb, flags,
531 			 strname, GDLM_STRNAME_BYTES - 1,
532 			 0, sync_wait_cb, ls, NULL);
533 	if (error) {
534 		fs_err(sdp, "%s lkid %x flags %x mode %d error %d\n",
535 		       name, lksb->sb_lkid, flags, mode, error);
536 		return error;
537 	}
538 
539 	wait_for_completion(&ls->ls_sync_wait);
540 
541 	status = lksb->sb_status;
542 
543 	if (status && status != -EAGAIN) {
544 		fs_err(sdp, "%s lkid %x flags %x mode %d status %d\n",
545 		       name, lksb->sb_lkid, flags, mode, status);
546 	}
547 
548 	return status;
549 }
550 
mounted_unlock(struct gfs2_sbd * sdp)551 static int mounted_unlock(struct gfs2_sbd *sdp)
552 {
553 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
554 	return sync_unlock(sdp, &ls->ls_mounted_lksb, "mounted_lock");
555 }
556 
mounted_lock(struct gfs2_sbd * sdp,int mode,uint32_t flags)557 static int mounted_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
558 {
559 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
560 	return sync_lock(sdp, mode, flags, GFS2_MOUNTED_LOCK,
561 			 &ls->ls_mounted_lksb, "mounted_lock");
562 }
563 
control_unlock(struct gfs2_sbd * sdp)564 static int control_unlock(struct gfs2_sbd *sdp)
565 {
566 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
567 	return sync_unlock(sdp, &ls->ls_control_lksb, "control_lock");
568 }
569 
control_lock(struct gfs2_sbd * sdp,int mode,uint32_t flags)570 static int control_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
571 {
572 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
573 	return sync_lock(sdp, mode, flags, GFS2_CONTROL_LOCK,
574 			 &ls->ls_control_lksb, "control_lock");
575 }
576 
gfs2_control_func(struct work_struct * work)577 static void gfs2_control_func(struct work_struct *work)
578 {
579 	struct gfs2_sbd *sdp = container_of(work, struct gfs2_sbd, sd_control_work.work);
580 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
581 	uint32_t block_gen, start_gen, lvb_gen, flags;
582 	int recover_set = 0;
583 	int write_lvb = 0;
584 	int recover_size;
585 	int i, error;
586 
587 	spin_lock(&ls->ls_recover_spin);
588 	/*
589 	 * No MOUNT_DONE means we're still mounting; control_mount()
590 	 * will set this flag, after which this thread will take over
591 	 * all further clearing of BLOCK_LOCKS.
592 	 *
593 	 * FIRST_MOUNT means this node is doing first mounter recovery,
594 	 * for which recovery control is handled by
595 	 * control_mount()/control_first_done(), not this thread.
596 	 */
597 	if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
598 	     test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
599 		spin_unlock(&ls->ls_recover_spin);
600 		return;
601 	}
602 	block_gen = ls->ls_recover_block;
603 	start_gen = ls->ls_recover_start;
604 	spin_unlock(&ls->ls_recover_spin);
605 
606 	/*
607 	 * Equal block_gen and start_gen implies we are between
608 	 * recover_prep and recover_done callbacks, which means
609 	 * dlm recovery is in progress and dlm locking is blocked.
610 	 * There's no point trying to do any work until recover_done.
611 	 */
612 
613 	if (block_gen == start_gen)
614 		return;
615 
616 	/*
617 	 * Propagate recover_submit[] and recover_result[] to lvb:
618 	 * dlm_recoverd adds to recover_submit[] jids needing recovery
619 	 * gfs2_recover adds to recover_result[] journal recovery results
620 	 *
621 	 * set lvb bit for jids in recover_submit[] if the lvb has not
622 	 * yet been updated for the generation of the failure
623 	 *
624 	 * clear lvb bit for jids in recover_result[] if the result of
625 	 * the journal recovery is SUCCESS
626 	 */
627 
628 	error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
629 	if (error) {
630 		fs_err(sdp, "control lock EX error %d\n", error);
631 		return;
632 	}
633 
634 	control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
635 
636 	spin_lock(&ls->ls_recover_spin);
637 	if (block_gen != ls->ls_recover_block ||
638 	    start_gen != ls->ls_recover_start) {
639 		fs_info(sdp, "recover generation %u block1 %u %u\n",
640 			start_gen, block_gen, ls->ls_recover_block);
641 		spin_unlock(&ls->ls_recover_spin);
642 		control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
643 		return;
644 	}
645 
646 	recover_size = ls->ls_recover_size;
647 
648 	if (lvb_gen <= start_gen) {
649 		/*
650 		 * Clear lvb bits for jids we've successfully recovered.
651 		 * Because all nodes attempt to recover failed journals,
652 		 * a journal can be recovered multiple times successfully
653 		 * in succession.  Only the first will really do recovery,
654 		 * the others find it clean, but still report a successful
655 		 * recovery.  So, another node may have already recovered
656 		 * the jid and cleared the lvb bit for it.
657 		 */
658 		for (i = 0; i < recover_size; i++) {
659 			if (ls->ls_recover_result[i] != LM_RD_SUCCESS)
660 				continue;
661 
662 			ls->ls_recover_result[i] = 0;
663 
664 			if (!test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET))
665 				continue;
666 
667 			__clear_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
668 			write_lvb = 1;
669 		}
670 	}
671 
672 	if (lvb_gen == start_gen) {
673 		/*
674 		 * Failed slots before start_gen are already set in lvb.
675 		 */
676 		for (i = 0; i < recover_size; i++) {
677 			if (!ls->ls_recover_submit[i])
678 				continue;
679 			if (ls->ls_recover_submit[i] < lvb_gen)
680 				ls->ls_recover_submit[i] = 0;
681 		}
682 	} else if (lvb_gen < start_gen) {
683 		/*
684 		 * Failed slots before start_gen are not yet set in lvb.
685 		 */
686 		for (i = 0; i < recover_size; i++) {
687 			if (!ls->ls_recover_submit[i])
688 				continue;
689 			if (ls->ls_recover_submit[i] < start_gen) {
690 				ls->ls_recover_submit[i] = 0;
691 				__set_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
692 			}
693 		}
694 		/* even if there are no bits to set, we need to write the
695 		   latest generation to the lvb */
696 		write_lvb = 1;
697 	} else {
698 		/*
699 		 * we should be getting a recover_done() for lvb_gen soon
700 		 */
701 	}
702 	spin_unlock(&ls->ls_recover_spin);
703 
704 	if (write_lvb) {
705 		control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
706 		flags = DLM_LKF_CONVERT | DLM_LKF_VALBLK;
707 	} else {
708 		flags = DLM_LKF_CONVERT;
709 	}
710 
711 	error = control_lock(sdp, DLM_LOCK_NL, flags);
712 	if (error) {
713 		fs_err(sdp, "control lock NL error %d\n", error);
714 		return;
715 	}
716 
717 	/*
718 	 * Everyone will see jid bits set in the lvb, run gfs2_recover_set(),
719 	 * and clear a jid bit in the lvb if the recovery is a success.
720 	 * Eventually all journals will be recovered, all jid bits will
721 	 * be cleared in the lvb, and everyone will clear BLOCK_LOCKS.
722 	 */
723 
724 	for (i = 0; i < recover_size; i++) {
725 		if (test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET)) {
726 			fs_info(sdp, "recover generation %u jid %d\n",
727 				start_gen, i);
728 			gfs2_recover_set(sdp, i);
729 			recover_set++;
730 		}
731 	}
732 	if (recover_set)
733 		return;
734 
735 	/*
736 	 * No more jid bits set in lvb, all recovery is done, unblock locks
737 	 * (unless a new recover_prep callback has occured blocking locks
738 	 * again while working above)
739 	 */
740 
741 	spin_lock(&ls->ls_recover_spin);
742 	if (ls->ls_recover_block == block_gen &&
743 	    ls->ls_recover_start == start_gen) {
744 		clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
745 		spin_unlock(&ls->ls_recover_spin);
746 		fs_info(sdp, "recover generation %u done\n", start_gen);
747 		gfs2_glock_thaw(sdp);
748 	} else {
749 		fs_info(sdp, "recover generation %u block2 %u %u\n",
750 			start_gen, block_gen, ls->ls_recover_block);
751 		spin_unlock(&ls->ls_recover_spin);
752 	}
753 }
754 
control_mount(struct gfs2_sbd * sdp)755 static int control_mount(struct gfs2_sbd *sdp)
756 {
757 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
758 	uint32_t start_gen, block_gen, mount_gen, lvb_gen;
759 	int mounted_mode;
760 	int retries = 0;
761 	int error;
762 
763 	memset(&ls->ls_mounted_lksb, 0, sizeof(struct dlm_lksb));
764 	memset(&ls->ls_control_lksb, 0, sizeof(struct dlm_lksb));
765 	memset(&ls->ls_control_lvb, 0, GDLM_LVB_SIZE);
766 	ls->ls_control_lksb.sb_lvbptr = ls->ls_control_lvb;
767 	init_completion(&ls->ls_sync_wait);
768 
769 	set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
770 
771 	error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_VALBLK);
772 	if (error) {
773 		fs_err(sdp, "control_mount control_lock NL error %d\n", error);
774 		return error;
775 	}
776 
777 	error = mounted_lock(sdp, DLM_LOCK_NL, 0);
778 	if (error) {
779 		fs_err(sdp, "control_mount mounted_lock NL error %d\n", error);
780 		control_unlock(sdp);
781 		return error;
782 	}
783 	mounted_mode = DLM_LOCK_NL;
784 
785 restart:
786 	if (retries++ && signal_pending(current)) {
787 		error = -EINTR;
788 		goto fail;
789 	}
790 
791 	/*
792 	 * We always start with both locks in NL. control_lock is
793 	 * demoted to NL below so we don't need to do it here.
794 	 */
795 
796 	if (mounted_mode != DLM_LOCK_NL) {
797 		error = mounted_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
798 		if (error)
799 			goto fail;
800 		mounted_mode = DLM_LOCK_NL;
801 	}
802 
803 	/*
804 	 * Other nodes need to do some work in dlm recovery and gfs2_control
805 	 * before the recover_done and control_lock will be ready for us below.
806 	 * A delay here is not required but often avoids having to retry.
807 	 */
808 
809 	msleep_interruptible(500);
810 
811 	/*
812 	 * Acquire control_lock in EX and mounted_lock in either EX or PR.
813 	 * control_lock lvb keeps track of any pending journal recoveries.
814 	 * mounted_lock indicates if any other nodes have the fs mounted.
815 	 */
816 
817 	error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE|DLM_LKF_VALBLK);
818 	if (error == -EAGAIN) {
819 		goto restart;
820 	} else if (error) {
821 		fs_err(sdp, "control_mount control_lock EX error %d\n", error);
822 		goto fail;
823 	}
824 
825 	error = mounted_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
826 	if (!error) {
827 		mounted_mode = DLM_LOCK_EX;
828 		goto locks_done;
829 	} else if (error != -EAGAIN) {
830 		fs_err(sdp, "control_mount mounted_lock EX error %d\n", error);
831 		goto fail;
832 	}
833 
834 	error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
835 	if (!error) {
836 		mounted_mode = DLM_LOCK_PR;
837 		goto locks_done;
838 	} else {
839 		/* not even -EAGAIN should happen here */
840 		fs_err(sdp, "control_mount mounted_lock PR error %d\n", error);
841 		goto fail;
842 	}
843 
844 locks_done:
845 	/*
846 	 * If we got both locks above in EX, then we're the first mounter.
847 	 * If not, then we need to wait for the control_lock lvb to be
848 	 * updated by other mounted nodes to reflect our mount generation.
849 	 *
850 	 * In simple first mounter cases, first mounter will see zero lvb_gen,
851 	 * but in cases where all existing nodes leave/fail before mounting
852 	 * nodes finish control_mount, then all nodes will be mounting and
853 	 * lvb_gen will be non-zero.
854 	 */
855 
856 	control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
857 
858 	if (lvb_gen == 0xFFFFFFFF) {
859 		/* special value to force mount attempts to fail */
860 		fs_err(sdp, "control_mount control_lock disabled\n");
861 		error = -EINVAL;
862 		goto fail;
863 	}
864 
865 	if (mounted_mode == DLM_LOCK_EX) {
866 		/* first mounter, keep both EX while doing first recovery */
867 		spin_lock(&ls->ls_recover_spin);
868 		clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
869 		set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
870 		set_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
871 		spin_unlock(&ls->ls_recover_spin);
872 		fs_info(sdp, "first mounter control generation %u\n", lvb_gen);
873 		return 0;
874 	}
875 
876 	error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
877 	if (error)
878 		goto fail;
879 
880 	/*
881 	 * We are not first mounter, now we need to wait for the control_lock
882 	 * lvb generation to be >= the generation from our first recover_done
883 	 * and all lvb bits to be clear (no pending journal recoveries.)
884 	 */
885 
886 	if (!all_jid_bits_clear(ls->ls_lvb_bits)) {
887 		/* journals need recovery, wait until all are clear */
888 		fs_info(sdp, "control_mount wait for journal recovery\n");
889 		goto restart;
890 	}
891 
892 	spin_lock(&ls->ls_recover_spin);
893 	block_gen = ls->ls_recover_block;
894 	start_gen = ls->ls_recover_start;
895 	mount_gen = ls->ls_recover_mount;
896 
897 	if (lvb_gen < mount_gen) {
898 		/* wait for mounted nodes to update control_lock lvb to our
899 		   generation, which might include new recovery bits set */
900 		fs_info(sdp, "control_mount wait1 block %u start %u mount %u "
901 			"lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
902 			lvb_gen, ls->ls_recover_flags);
903 		spin_unlock(&ls->ls_recover_spin);
904 		goto restart;
905 	}
906 
907 	if (lvb_gen != start_gen) {
908 		/* wait for mounted nodes to update control_lock lvb to the
909 		   latest recovery generation */
910 		fs_info(sdp, "control_mount wait2 block %u start %u mount %u "
911 			"lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
912 			lvb_gen, ls->ls_recover_flags);
913 		spin_unlock(&ls->ls_recover_spin);
914 		goto restart;
915 	}
916 
917 	if (block_gen == start_gen) {
918 		/* dlm recovery in progress, wait for it to finish */
919 		fs_info(sdp, "control_mount wait3 block %u start %u mount %u "
920 			"lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
921 			lvb_gen, ls->ls_recover_flags);
922 		spin_unlock(&ls->ls_recover_spin);
923 		goto restart;
924 	}
925 
926 	clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
927 	set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
928 	memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
929 	memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
930 	spin_unlock(&ls->ls_recover_spin);
931 	return 0;
932 
933 fail:
934 	mounted_unlock(sdp);
935 	control_unlock(sdp);
936 	return error;
937 }
938 
control_first_done(struct gfs2_sbd * sdp)939 static int control_first_done(struct gfs2_sbd *sdp)
940 {
941 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
942 	uint32_t start_gen, block_gen;
943 	int error;
944 
945 restart:
946 	spin_lock(&ls->ls_recover_spin);
947 	start_gen = ls->ls_recover_start;
948 	block_gen = ls->ls_recover_block;
949 
950 	if (test_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags) ||
951 	    !test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
952 	    !test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
953 		/* sanity check, should not happen */
954 		fs_err(sdp, "control_first_done start %u block %u flags %lx\n",
955 		       start_gen, block_gen, ls->ls_recover_flags);
956 		spin_unlock(&ls->ls_recover_spin);
957 		control_unlock(sdp);
958 		return -1;
959 	}
960 
961 	if (start_gen == block_gen) {
962 		/*
963 		 * Wait for the end of a dlm recovery cycle to switch from
964 		 * first mounter recovery.  We can ignore any recover_slot
965 		 * callbacks between the recover_prep and next recover_done
966 		 * because we are still the first mounter and any failed nodes
967 		 * have not fully mounted, so they don't need recovery.
968 		 */
969 		spin_unlock(&ls->ls_recover_spin);
970 		fs_info(sdp, "control_first_done wait gen %u\n", start_gen);
971 
972 		wait_on_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY,
973 			    TASK_UNINTERRUPTIBLE);
974 		goto restart;
975 	}
976 
977 	clear_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
978 	set_bit(DFL_FIRST_MOUNT_DONE, &ls->ls_recover_flags);
979 	memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
980 	memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
981 	spin_unlock(&ls->ls_recover_spin);
982 
983 	memset(ls->ls_lvb_bits, 0, GDLM_LVB_SIZE);
984 	control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
985 
986 	error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT);
987 	if (error)
988 		fs_err(sdp, "control_first_done mounted PR error %d\n", error);
989 
990 	error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
991 	if (error)
992 		fs_err(sdp, "control_first_done control NL error %d\n", error);
993 
994 	return error;
995 }
996 
997 /*
998  * Expand static jid arrays if necessary (by increments of RECOVER_SIZE_INC)
999  * to accomodate the largest slot number.  (NB dlm slot numbers start at 1,
1000  * gfs2 jids start at 0, so jid = slot - 1)
1001  */
1002 
1003 #define RECOVER_SIZE_INC 16
1004 
set_recover_size(struct gfs2_sbd * sdp,struct dlm_slot * slots,int num_slots)1005 static int set_recover_size(struct gfs2_sbd *sdp, struct dlm_slot *slots,
1006 			    int num_slots)
1007 {
1008 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1009 	uint32_t *submit = NULL;
1010 	uint32_t *result = NULL;
1011 	uint32_t old_size, new_size;
1012 	int i, max_jid;
1013 
1014 	if (!ls->ls_lvb_bits) {
1015 		ls->ls_lvb_bits = kzalloc(GDLM_LVB_SIZE, GFP_NOFS);
1016 		if (!ls->ls_lvb_bits)
1017 			return -ENOMEM;
1018 	}
1019 
1020 	max_jid = 0;
1021 	for (i = 0; i < num_slots; i++) {
1022 		if (max_jid < slots[i].slot - 1)
1023 			max_jid = slots[i].slot - 1;
1024 	}
1025 
1026 	old_size = ls->ls_recover_size;
1027 
1028 	if (old_size >= max_jid + 1)
1029 		return 0;
1030 
1031 	new_size = old_size + RECOVER_SIZE_INC;
1032 
1033 	submit = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS);
1034 	result = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS);
1035 	if (!submit || !result) {
1036 		kfree(submit);
1037 		kfree(result);
1038 		return -ENOMEM;
1039 	}
1040 
1041 	spin_lock(&ls->ls_recover_spin);
1042 	memcpy(submit, ls->ls_recover_submit, old_size * sizeof(uint32_t));
1043 	memcpy(result, ls->ls_recover_result, old_size * sizeof(uint32_t));
1044 	kfree(ls->ls_recover_submit);
1045 	kfree(ls->ls_recover_result);
1046 	ls->ls_recover_submit = submit;
1047 	ls->ls_recover_result = result;
1048 	ls->ls_recover_size = new_size;
1049 	spin_unlock(&ls->ls_recover_spin);
1050 	return 0;
1051 }
1052 
free_recover_size(struct lm_lockstruct * ls)1053 static void free_recover_size(struct lm_lockstruct *ls)
1054 {
1055 	kfree(ls->ls_lvb_bits);
1056 	kfree(ls->ls_recover_submit);
1057 	kfree(ls->ls_recover_result);
1058 	ls->ls_recover_submit = NULL;
1059 	ls->ls_recover_result = NULL;
1060 	ls->ls_recover_size = 0;
1061 }
1062 
1063 /* dlm calls before it does lock recovery */
1064 
gdlm_recover_prep(void * arg)1065 static void gdlm_recover_prep(void *arg)
1066 {
1067 	struct gfs2_sbd *sdp = arg;
1068 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1069 
1070 	spin_lock(&ls->ls_recover_spin);
1071 	ls->ls_recover_block = ls->ls_recover_start;
1072 	set_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1073 
1074 	if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
1075 	     test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1076 		spin_unlock(&ls->ls_recover_spin);
1077 		return;
1078 	}
1079 	set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
1080 	spin_unlock(&ls->ls_recover_spin);
1081 }
1082 
1083 /* dlm calls after recover_prep has been completed on all lockspace members;
1084    identifies slot/jid of failed member */
1085 
gdlm_recover_slot(void * arg,struct dlm_slot * slot)1086 static void gdlm_recover_slot(void *arg, struct dlm_slot *slot)
1087 {
1088 	struct gfs2_sbd *sdp = arg;
1089 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1090 	int jid = slot->slot - 1;
1091 
1092 	spin_lock(&ls->ls_recover_spin);
1093 	if (ls->ls_recover_size < jid + 1) {
1094 		fs_err(sdp, "recover_slot jid %d gen %u short size %d",
1095 		       jid, ls->ls_recover_block, ls->ls_recover_size);
1096 		spin_unlock(&ls->ls_recover_spin);
1097 		return;
1098 	}
1099 
1100 	if (ls->ls_recover_submit[jid]) {
1101 		fs_info(sdp, "recover_slot jid %d gen %u prev %u\n",
1102 			jid, ls->ls_recover_block, ls->ls_recover_submit[jid]);
1103 	}
1104 	ls->ls_recover_submit[jid] = ls->ls_recover_block;
1105 	spin_unlock(&ls->ls_recover_spin);
1106 }
1107 
1108 /* dlm calls after recover_slot and after it completes lock recovery */
1109 
gdlm_recover_done(void * arg,struct dlm_slot * slots,int num_slots,int our_slot,uint32_t generation)1110 static void gdlm_recover_done(void *arg, struct dlm_slot *slots, int num_slots,
1111 			      int our_slot, uint32_t generation)
1112 {
1113 	struct gfs2_sbd *sdp = arg;
1114 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1115 
1116 	/* ensure the ls jid arrays are large enough */
1117 	set_recover_size(sdp, slots, num_slots);
1118 
1119 	spin_lock(&ls->ls_recover_spin);
1120 	ls->ls_recover_start = generation;
1121 
1122 	if (!ls->ls_recover_mount) {
1123 		ls->ls_recover_mount = generation;
1124 		ls->ls_jid = our_slot - 1;
1125 	}
1126 
1127 	if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1128 		queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 0);
1129 
1130 	clear_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1131 	smp_mb__after_atomic();
1132 	wake_up_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY);
1133 	spin_unlock(&ls->ls_recover_spin);
1134 }
1135 
1136 /* gfs2_recover thread has a journal recovery result */
1137 
gdlm_recovery_result(struct gfs2_sbd * sdp,unsigned int jid,unsigned int result)1138 static void gdlm_recovery_result(struct gfs2_sbd *sdp, unsigned int jid,
1139 				 unsigned int result)
1140 {
1141 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1142 
1143 	if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1144 		return;
1145 
1146 	/* don't care about the recovery of own journal during mount */
1147 	if (jid == ls->ls_jid)
1148 		return;
1149 
1150 	spin_lock(&ls->ls_recover_spin);
1151 	if (test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1152 		spin_unlock(&ls->ls_recover_spin);
1153 		return;
1154 	}
1155 	if (ls->ls_recover_size < jid + 1) {
1156 		fs_err(sdp, "recovery_result jid %d short size %d",
1157 		       jid, ls->ls_recover_size);
1158 		spin_unlock(&ls->ls_recover_spin);
1159 		return;
1160 	}
1161 
1162 	fs_info(sdp, "recover jid %d result %s\n", jid,
1163 		result == LM_RD_GAVEUP ? "busy" : "success");
1164 
1165 	ls->ls_recover_result[jid] = result;
1166 
1167 	/* GAVEUP means another node is recovering the journal; delay our
1168 	   next attempt to recover it, to give the other node a chance to
1169 	   finish before trying again */
1170 
1171 	if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1172 		queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work,
1173 				   result == LM_RD_GAVEUP ? HZ : 0);
1174 	spin_unlock(&ls->ls_recover_spin);
1175 }
1176 
1177 const struct dlm_lockspace_ops gdlm_lockspace_ops = {
1178 	.recover_prep = gdlm_recover_prep,
1179 	.recover_slot = gdlm_recover_slot,
1180 	.recover_done = gdlm_recover_done,
1181 };
1182 
gdlm_mount(struct gfs2_sbd * sdp,const char * table)1183 static int gdlm_mount(struct gfs2_sbd *sdp, const char *table)
1184 {
1185 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1186 	char cluster[GFS2_LOCKNAME_LEN];
1187 	const char *fsname;
1188 	uint32_t flags;
1189 	int error, ops_result;
1190 
1191 	/*
1192 	 * initialize everything
1193 	 */
1194 
1195 	INIT_DELAYED_WORK(&sdp->sd_control_work, gfs2_control_func);
1196 	spin_lock_init(&ls->ls_recover_spin);
1197 	ls->ls_recover_flags = 0;
1198 	ls->ls_recover_mount = 0;
1199 	ls->ls_recover_start = 0;
1200 	ls->ls_recover_block = 0;
1201 	ls->ls_recover_size = 0;
1202 	ls->ls_recover_submit = NULL;
1203 	ls->ls_recover_result = NULL;
1204 	ls->ls_lvb_bits = NULL;
1205 
1206 	error = set_recover_size(sdp, NULL, 0);
1207 	if (error)
1208 		goto fail;
1209 
1210 	/*
1211 	 * prepare dlm_new_lockspace args
1212 	 */
1213 
1214 	fsname = strchr(table, ':');
1215 	if (!fsname) {
1216 		fs_info(sdp, "no fsname found\n");
1217 		error = -EINVAL;
1218 		goto fail_free;
1219 	}
1220 	memset(cluster, 0, sizeof(cluster));
1221 	memcpy(cluster, table, strlen(table) - strlen(fsname));
1222 	fsname++;
1223 
1224 	flags = DLM_LSFL_FS | DLM_LSFL_NEWEXCL;
1225 
1226 	/*
1227 	 * create/join lockspace
1228 	 */
1229 
1230 	error = dlm_new_lockspace(fsname, cluster, flags, GDLM_LVB_SIZE,
1231 				  &gdlm_lockspace_ops, sdp, &ops_result,
1232 				  &ls->ls_dlm);
1233 	if (error) {
1234 		fs_err(sdp, "dlm_new_lockspace error %d\n", error);
1235 		goto fail_free;
1236 	}
1237 
1238 	if (ops_result < 0) {
1239 		/*
1240 		 * dlm does not support ops callbacks,
1241 		 * old dlm_controld/gfs_controld are used, try without ops.
1242 		 */
1243 		fs_info(sdp, "dlm lockspace ops not used\n");
1244 		free_recover_size(ls);
1245 		set_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags);
1246 		return 0;
1247 	}
1248 
1249 	if (!test_bit(SDF_NOJOURNALID, &sdp->sd_flags)) {
1250 		fs_err(sdp, "dlm lockspace ops disallow jid preset\n");
1251 		error = -EINVAL;
1252 		goto fail_release;
1253 	}
1254 
1255 	/*
1256 	 * control_mount() uses control_lock to determine first mounter,
1257 	 * and for later mounts, waits for any recoveries to be cleared.
1258 	 */
1259 
1260 	error = control_mount(sdp);
1261 	if (error) {
1262 		fs_err(sdp, "mount control error %d\n", error);
1263 		goto fail_release;
1264 	}
1265 
1266 	ls->ls_first = !!test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
1267 	clear_bit(SDF_NOJOURNALID, &sdp->sd_flags);
1268 	smp_mb__after_atomic();
1269 	wake_up_bit(&sdp->sd_flags, SDF_NOJOURNALID);
1270 	return 0;
1271 
1272 fail_release:
1273 	dlm_release_lockspace(ls->ls_dlm, 2);
1274 fail_free:
1275 	free_recover_size(ls);
1276 fail:
1277 	return error;
1278 }
1279 
gdlm_first_done(struct gfs2_sbd * sdp)1280 static void gdlm_first_done(struct gfs2_sbd *sdp)
1281 {
1282 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1283 	int error;
1284 
1285 	if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1286 		return;
1287 
1288 	error = control_first_done(sdp);
1289 	if (error)
1290 		fs_err(sdp, "mount first_done error %d\n", error);
1291 }
1292 
gdlm_unmount(struct gfs2_sbd * sdp)1293 static void gdlm_unmount(struct gfs2_sbd *sdp)
1294 {
1295 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1296 
1297 	if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1298 		goto release;
1299 
1300 	/* wait for gfs2_control_wq to be done with this mount */
1301 
1302 	spin_lock(&ls->ls_recover_spin);
1303 	set_bit(DFL_UNMOUNT, &ls->ls_recover_flags);
1304 	spin_unlock(&ls->ls_recover_spin);
1305 	flush_delayed_work(&sdp->sd_control_work);
1306 
1307 	/* mounted_lock and control_lock will be purged in dlm recovery */
1308 release:
1309 	if (ls->ls_dlm) {
1310 		dlm_release_lockspace(ls->ls_dlm, 2);
1311 		ls->ls_dlm = NULL;
1312 	}
1313 
1314 	free_recover_size(ls);
1315 }
1316 
1317 static const match_table_t dlm_tokens = {
1318 	{ Opt_jid, "jid=%d"},
1319 	{ Opt_id, "id=%d"},
1320 	{ Opt_first, "first=%d"},
1321 	{ Opt_nodir, "nodir=%d"},
1322 	{ Opt_err, NULL },
1323 };
1324 
1325 const struct lm_lockops gfs2_dlm_ops = {
1326 	.lm_proto_name = "lock_dlm",
1327 	.lm_mount = gdlm_mount,
1328 	.lm_first_done = gdlm_first_done,
1329 	.lm_recovery_result = gdlm_recovery_result,
1330 	.lm_unmount = gdlm_unmount,
1331 	.lm_put_lock = gdlm_put_lock,
1332 	.lm_lock = gdlm_lock,
1333 	.lm_cancel = gdlm_cancel,
1334 	.lm_tokens = &dlm_tokens,
1335 };
1336 
1337