• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *	fs/libfs.c
3  *	Library for filesystems writers.
4  */
5 
6 #include <linux/blkdev.h>
7 #include <linux/export.h>
8 #include <linux/pagemap.h>
9 #include <linux/slab.h>
10 #include <linux/mount.h>
11 #include <linux/vfs.h>
12 #include <linux/quotaops.h>
13 #include <linux/mutex.h>
14 #include <linux/namei.h>
15 #include <linux/exportfs.h>
16 #include <linux/writeback.h>
17 #include <linux/buffer_head.h> /* sync_mapping_buffers */
18 
19 #include <asm/uaccess.h>
20 
21 #include "internal.h"
22 
simple_getattr(struct vfsmount * mnt,struct dentry * dentry,struct kstat * stat)23 int simple_getattr(struct vfsmount *mnt, struct dentry *dentry,
24 		   struct kstat *stat)
25 {
26 	struct inode *inode = d_inode(dentry);
27 	generic_fillattr(inode, stat);
28 	stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
29 	return 0;
30 }
31 EXPORT_SYMBOL(simple_getattr);
32 
simple_statfs(struct dentry * dentry,struct kstatfs * buf)33 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
34 {
35 	buf->f_type = dentry->d_sb->s_magic;
36 	buf->f_bsize = PAGE_SIZE;
37 	buf->f_namelen = NAME_MAX;
38 	return 0;
39 }
40 EXPORT_SYMBOL(simple_statfs);
41 
42 /*
43  * Retaining negative dentries for an in-memory filesystem just wastes
44  * memory and lookup time: arrange for them to be deleted immediately.
45  */
always_delete_dentry(const struct dentry * dentry)46 int always_delete_dentry(const struct dentry *dentry)
47 {
48 	return 1;
49 }
50 EXPORT_SYMBOL(always_delete_dentry);
51 
52 const struct dentry_operations simple_dentry_operations = {
53 	.d_delete = always_delete_dentry,
54 };
55 EXPORT_SYMBOL(simple_dentry_operations);
56 
57 /*
58  * Lookup the data. This is trivial - if the dentry didn't already
59  * exist, we know it is negative.  Set d_op to delete negative dentries.
60  */
simple_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)61 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
62 {
63 	if (dentry->d_name.len > NAME_MAX)
64 		return ERR_PTR(-ENAMETOOLONG);
65 	if (!dentry->d_sb->s_d_op)
66 		d_set_d_op(dentry, &simple_dentry_operations);
67 	d_add(dentry, NULL);
68 	return NULL;
69 }
70 EXPORT_SYMBOL(simple_lookup);
71 
dcache_dir_open(struct inode * inode,struct file * file)72 int dcache_dir_open(struct inode *inode, struct file *file)
73 {
74 	file->private_data = d_alloc_cursor(file->f_path.dentry);
75 
76 	return file->private_data ? 0 : -ENOMEM;
77 }
78 EXPORT_SYMBOL(dcache_dir_open);
79 
dcache_dir_close(struct inode * inode,struct file * file)80 int dcache_dir_close(struct inode *inode, struct file *file)
81 {
82 	dput(file->private_data);
83 	return 0;
84 }
85 EXPORT_SYMBOL(dcache_dir_close);
86 
87 /* parent is locked at least shared */
next_positive(struct dentry * parent,struct list_head * from,int count)88 static struct dentry *next_positive(struct dentry *parent,
89 				    struct list_head *from,
90 				    int count)
91 {
92 	unsigned *seq = &parent->d_inode->i_dir_seq, n;
93 	struct dentry *res;
94 	struct list_head *p;
95 	bool skipped;
96 	int i;
97 
98 retry:
99 	i = count;
100 	skipped = false;
101 	n = smp_load_acquire(seq) & ~1;
102 	res = NULL;
103 	rcu_read_lock();
104 	for (p = from->next; p != &parent->d_subdirs; p = p->next) {
105 		struct dentry *d = list_entry(p, struct dentry, d_child);
106 		if (!simple_positive(d)) {
107 			skipped = true;
108 		} else if (!--i) {
109 			res = d;
110 			break;
111 		}
112 	}
113 	rcu_read_unlock();
114 	if (skipped) {
115 		smp_rmb();
116 		if (unlikely(*seq != n))
117 			goto retry;
118 	}
119 	return res;
120 }
121 
move_cursor(struct dentry * cursor,struct list_head * after)122 static void move_cursor(struct dentry *cursor, struct list_head *after)
123 {
124 	struct dentry *parent = cursor->d_parent;
125 	unsigned n, *seq = &parent->d_inode->i_dir_seq;
126 	spin_lock(&parent->d_lock);
127 	for (;;) {
128 		n = *seq;
129 		if (!(n & 1) && cmpxchg(seq, n, n + 1) == n)
130 			break;
131 		cpu_relax();
132 	}
133 	__list_del(cursor->d_child.prev, cursor->d_child.next);
134 	if (after)
135 		list_add(&cursor->d_child, after);
136 	else
137 		list_add_tail(&cursor->d_child, &parent->d_subdirs);
138 	smp_store_release(seq, n + 2);
139 	spin_unlock(&parent->d_lock);
140 }
141 
dcache_dir_lseek(struct file * file,loff_t offset,int whence)142 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
143 {
144 	struct dentry *dentry = file->f_path.dentry;
145 	switch (whence) {
146 		case 1:
147 			offset += file->f_pos;
148 		case 0:
149 			if (offset >= 0)
150 				break;
151 		default:
152 			return -EINVAL;
153 	}
154 	if (offset != file->f_pos) {
155 		file->f_pos = offset;
156 		if (file->f_pos >= 2) {
157 			struct dentry *cursor = file->private_data;
158 			struct dentry *to;
159 			loff_t n = file->f_pos - 2;
160 
161 			inode_lock_shared(dentry->d_inode);
162 			to = next_positive(dentry, &dentry->d_subdirs, n);
163 			move_cursor(cursor, to ? &to->d_child : NULL);
164 			inode_unlock_shared(dentry->d_inode);
165 		}
166 	}
167 	return offset;
168 }
169 EXPORT_SYMBOL(dcache_dir_lseek);
170 
171 /* Relationship between i_mode and the DT_xxx types */
dt_type(struct inode * inode)172 static inline unsigned char dt_type(struct inode *inode)
173 {
174 	return (inode->i_mode >> 12) & 15;
175 }
176 
177 /*
178  * Directory is locked and all positive dentries in it are safe, since
179  * for ramfs-type trees they can't go away without unlink() or rmdir(),
180  * both impossible due to the lock on directory.
181  */
182 
dcache_readdir(struct file * file,struct dir_context * ctx)183 int dcache_readdir(struct file *file, struct dir_context *ctx)
184 {
185 	struct dentry *dentry = file->f_path.dentry;
186 	struct dentry *cursor = file->private_data;
187 	struct list_head *p = &cursor->d_child;
188 	struct dentry *next;
189 	bool moved = false;
190 
191 	if (!dir_emit_dots(file, ctx))
192 		return 0;
193 
194 	if (ctx->pos == 2)
195 		p = &dentry->d_subdirs;
196 	while ((next = next_positive(dentry, p, 1)) != NULL) {
197 		if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
198 			      d_inode(next)->i_ino, dt_type(d_inode(next))))
199 			break;
200 		moved = true;
201 		p = &next->d_child;
202 		ctx->pos++;
203 	}
204 	if (moved)
205 		move_cursor(cursor, p);
206 	return 0;
207 }
208 EXPORT_SYMBOL(dcache_readdir);
209 
generic_read_dir(struct file * filp,char __user * buf,size_t siz,loff_t * ppos)210 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
211 {
212 	return -EISDIR;
213 }
214 EXPORT_SYMBOL(generic_read_dir);
215 
216 const struct file_operations simple_dir_operations = {
217 	.open		= dcache_dir_open,
218 	.release	= dcache_dir_close,
219 	.llseek		= dcache_dir_lseek,
220 	.read		= generic_read_dir,
221 	.iterate_shared	= dcache_readdir,
222 	.fsync		= noop_fsync,
223 };
224 EXPORT_SYMBOL(simple_dir_operations);
225 
226 const struct inode_operations simple_dir_inode_operations = {
227 	.lookup		= simple_lookup,
228 };
229 EXPORT_SYMBOL(simple_dir_inode_operations);
230 
231 static const struct super_operations simple_super_operations = {
232 	.statfs		= simple_statfs,
233 };
234 
235 /*
236  * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
237  * will never be mountable)
238  */
mount_pseudo_xattr(struct file_system_type * fs_type,char * name,const struct super_operations * ops,const struct xattr_handler ** xattr,const struct dentry_operations * dops,unsigned long magic)239 struct dentry *mount_pseudo_xattr(struct file_system_type *fs_type, char *name,
240 	const struct super_operations *ops, const struct xattr_handler **xattr,
241 	const struct dentry_operations *dops, unsigned long magic)
242 {
243 	struct super_block *s;
244 	struct dentry *dentry;
245 	struct inode *root;
246 	struct qstr d_name = QSTR_INIT(name, strlen(name));
247 
248 	s = sget_userns(fs_type, NULL, set_anon_super, MS_KERNMOUNT|MS_NOUSER,
249 			&init_user_ns, NULL);
250 	if (IS_ERR(s))
251 		return ERR_CAST(s);
252 
253 	s->s_maxbytes = MAX_LFS_FILESIZE;
254 	s->s_blocksize = PAGE_SIZE;
255 	s->s_blocksize_bits = PAGE_SHIFT;
256 	s->s_magic = magic;
257 	s->s_op = ops ? ops : &simple_super_operations;
258 	s->s_xattr = xattr;
259 	s->s_time_gran = 1;
260 	root = new_inode(s);
261 	if (!root)
262 		goto Enomem;
263 	/*
264 	 * since this is the first inode, make it number 1. New inodes created
265 	 * after this must take care not to collide with it (by passing
266 	 * max_reserved of 1 to iunique).
267 	 */
268 	root->i_ino = 1;
269 	root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
270 	root->i_atime = root->i_mtime = root->i_ctime = current_time(root);
271 	dentry = __d_alloc(s, &d_name);
272 	if (!dentry) {
273 		iput(root);
274 		goto Enomem;
275 	}
276 	d_instantiate(dentry, root);
277 	s->s_root = dentry;
278 	s->s_d_op = dops;
279 	s->s_flags |= MS_ACTIVE;
280 	return dget(s->s_root);
281 
282 Enomem:
283 	deactivate_locked_super(s);
284 	return ERR_PTR(-ENOMEM);
285 }
286 EXPORT_SYMBOL(mount_pseudo_xattr);
287 
simple_open(struct inode * inode,struct file * file)288 int simple_open(struct inode *inode, struct file *file)
289 {
290 	if (inode->i_private)
291 		file->private_data = inode->i_private;
292 	return 0;
293 }
294 EXPORT_SYMBOL(simple_open);
295 
simple_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)296 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
297 {
298 	struct inode *inode = d_inode(old_dentry);
299 
300 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
301 	inc_nlink(inode);
302 	ihold(inode);
303 	dget(dentry);
304 	d_instantiate(dentry, inode);
305 	return 0;
306 }
307 EXPORT_SYMBOL(simple_link);
308 
simple_empty(struct dentry * dentry)309 int simple_empty(struct dentry *dentry)
310 {
311 	struct dentry *child;
312 	int ret = 0;
313 
314 	spin_lock(&dentry->d_lock);
315 	list_for_each_entry(child, &dentry->d_subdirs, d_child) {
316 		spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
317 		if (simple_positive(child)) {
318 			spin_unlock(&child->d_lock);
319 			goto out;
320 		}
321 		spin_unlock(&child->d_lock);
322 	}
323 	ret = 1;
324 out:
325 	spin_unlock(&dentry->d_lock);
326 	return ret;
327 }
328 EXPORT_SYMBOL(simple_empty);
329 
simple_unlink(struct inode * dir,struct dentry * dentry)330 int simple_unlink(struct inode *dir, struct dentry *dentry)
331 {
332 	struct inode *inode = d_inode(dentry);
333 
334 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
335 	drop_nlink(inode);
336 	dput(dentry);
337 	return 0;
338 }
339 EXPORT_SYMBOL(simple_unlink);
340 
simple_rmdir(struct inode * dir,struct dentry * dentry)341 int simple_rmdir(struct inode *dir, struct dentry *dentry)
342 {
343 	if (!simple_empty(dentry))
344 		return -ENOTEMPTY;
345 
346 	drop_nlink(d_inode(dentry));
347 	simple_unlink(dir, dentry);
348 	drop_nlink(dir);
349 	return 0;
350 }
351 EXPORT_SYMBOL(simple_rmdir);
352 
simple_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)353 int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
354 		  struct inode *new_dir, struct dentry *new_dentry,
355 		  unsigned int flags)
356 {
357 	struct inode *inode = d_inode(old_dentry);
358 	int they_are_dirs = d_is_dir(old_dentry);
359 
360 	if (flags & ~RENAME_NOREPLACE)
361 		return -EINVAL;
362 
363 	if (!simple_empty(new_dentry))
364 		return -ENOTEMPTY;
365 
366 	if (d_really_is_positive(new_dentry)) {
367 		simple_unlink(new_dir, new_dentry);
368 		if (they_are_dirs) {
369 			drop_nlink(d_inode(new_dentry));
370 			drop_nlink(old_dir);
371 		}
372 	} else if (they_are_dirs) {
373 		drop_nlink(old_dir);
374 		inc_nlink(new_dir);
375 	}
376 
377 	old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
378 		new_dir->i_mtime = inode->i_ctime = current_time(old_dir);
379 
380 	return 0;
381 }
382 EXPORT_SYMBOL(simple_rename);
383 
384 /**
385  * simple_setattr - setattr for simple filesystem
386  * @dentry: dentry
387  * @iattr: iattr structure
388  *
389  * Returns 0 on success, -error on failure.
390  *
391  * simple_setattr is a simple ->setattr implementation without a proper
392  * implementation of size changes.
393  *
394  * It can either be used for in-memory filesystems or special files
395  * on simple regular filesystems.  Anything that needs to change on-disk
396  * or wire state on size changes needs its own setattr method.
397  */
simple_setattr(struct dentry * dentry,struct iattr * iattr)398 int simple_setattr(struct dentry *dentry, struct iattr *iattr)
399 {
400 	struct inode *inode = d_inode(dentry);
401 	int error;
402 
403 	error = setattr_prepare(dentry, iattr);
404 	if (error)
405 		return error;
406 
407 	if (iattr->ia_valid & ATTR_SIZE)
408 		truncate_setsize(inode, iattr->ia_size);
409 	setattr_copy(inode, iattr);
410 	mark_inode_dirty(inode);
411 	return 0;
412 }
413 EXPORT_SYMBOL(simple_setattr);
414 
simple_readpage(struct file * file,struct page * page)415 int simple_readpage(struct file *file, struct page *page)
416 {
417 	clear_highpage(page);
418 	flush_dcache_page(page);
419 	SetPageUptodate(page);
420 	unlock_page(page);
421 	return 0;
422 }
423 EXPORT_SYMBOL(simple_readpage);
424 
simple_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)425 int simple_write_begin(struct file *file, struct address_space *mapping,
426 			loff_t pos, unsigned len, unsigned flags,
427 			struct page **pagep, void **fsdata)
428 {
429 	struct page *page;
430 	pgoff_t index;
431 
432 	index = pos >> PAGE_SHIFT;
433 
434 	page = grab_cache_page_write_begin(mapping, index, flags);
435 	if (!page)
436 		return -ENOMEM;
437 
438 	*pagep = page;
439 
440 	if (!PageUptodate(page) && (len != PAGE_SIZE)) {
441 		unsigned from = pos & (PAGE_SIZE - 1);
442 
443 		zero_user_segments(page, 0, from, from + len, PAGE_SIZE);
444 	}
445 	return 0;
446 }
447 EXPORT_SYMBOL(simple_write_begin);
448 
449 /**
450  * simple_write_end - .write_end helper for non-block-device FSes
451  * @available: See .write_end of address_space_operations
452  * @file: 		"
453  * @mapping: 		"
454  * @pos: 		"
455  * @len: 		"
456  * @copied: 		"
457  * @page: 		"
458  * @fsdata: 		"
459  *
460  * simple_write_end does the minimum needed for updating a page after writing is
461  * done. It has the same API signature as the .write_end of
462  * address_space_operations vector. So it can just be set onto .write_end for
463  * FSes that don't need any other processing. i_mutex is assumed to be held.
464  * Block based filesystems should use generic_write_end().
465  * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
466  * is not called, so a filesystem that actually does store data in .write_inode
467  * should extend on what's done here with a call to mark_inode_dirty() in the
468  * case that i_size has changed.
469  */
simple_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)470 int simple_write_end(struct file *file, struct address_space *mapping,
471 			loff_t pos, unsigned len, unsigned copied,
472 			struct page *page, void *fsdata)
473 {
474 	struct inode *inode = page->mapping->host;
475 	loff_t last_pos = pos + copied;
476 
477 	/* zero the stale part of the page if we did a short copy */
478 	if (copied < len) {
479 		unsigned from = pos & (PAGE_SIZE - 1);
480 
481 		zero_user(page, from + copied, len - copied);
482 	}
483 
484 	if (!PageUptodate(page))
485 		SetPageUptodate(page);
486 	/*
487 	 * No need to use i_size_read() here, the i_size
488 	 * cannot change under us because we hold the i_mutex.
489 	 */
490 	if (last_pos > inode->i_size)
491 		i_size_write(inode, last_pos);
492 
493 	set_page_dirty(page);
494 	unlock_page(page);
495 	put_page(page);
496 
497 	return copied;
498 }
499 EXPORT_SYMBOL(simple_write_end);
500 
501 /*
502  * the inodes created here are not hashed. If you use iunique to generate
503  * unique inode values later for this filesystem, then you must take care
504  * to pass it an appropriate max_reserved value to avoid collisions.
505  */
simple_fill_super(struct super_block * s,unsigned long magic,struct tree_descr * files)506 int simple_fill_super(struct super_block *s, unsigned long magic,
507 		      struct tree_descr *files)
508 {
509 	struct inode *inode;
510 	struct dentry *root;
511 	struct dentry *dentry;
512 	int i;
513 
514 	s->s_blocksize = PAGE_SIZE;
515 	s->s_blocksize_bits = PAGE_SHIFT;
516 	s->s_magic = magic;
517 	s->s_op = &simple_super_operations;
518 	s->s_time_gran = 1;
519 
520 	inode = new_inode(s);
521 	if (!inode)
522 		return -ENOMEM;
523 	/*
524 	 * because the root inode is 1, the files array must not contain an
525 	 * entry at index 1
526 	 */
527 	inode->i_ino = 1;
528 	inode->i_mode = S_IFDIR | 0755;
529 	inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
530 	inode->i_op = &simple_dir_inode_operations;
531 	inode->i_fop = &simple_dir_operations;
532 	set_nlink(inode, 2);
533 	root = d_make_root(inode);
534 	if (!root)
535 		return -ENOMEM;
536 	for (i = 0; !files->name || files->name[0]; i++, files++) {
537 		if (!files->name)
538 			continue;
539 
540 		/* warn if it tries to conflict with the root inode */
541 		if (unlikely(i == 1))
542 			printk(KERN_WARNING "%s: %s passed in a files array"
543 				"with an index of 1!\n", __func__,
544 				s->s_type->name);
545 
546 		dentry = d_alloc_name(root, files->name);
547 		if (!dentry)
548 			goto out;
549 		inode = new_inode(s);
550 		if (!inode) {
551 			dput(dentry);
552 			goto out;
553 		}
554 		inode->i_mode = S_IFREG | files->mode;
555 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
556 		inode->i_fop = files->ops;
557 		inode->i_ino = i;
558 		d_add(dentry, inode);
559 	}
560 	s->s_root = root;
561 	return 0;
562 out:
563 	d_genocide(root);
564 	shrink_dcache_parent(root);
565 	dput(root);
566 	return -ENOMEM;
567 }
568 EXPORT_SYMBOL(simple_fill_super);
569 
570 static DEFINE_SPINLOCK(pin_fs_lock);
571 
simple_pin_fs(struct file_system_type * type,struct vfsmount ** mount,int * count)572 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
573 {
574 	struct vfsmount *mnt = NULL;
575 	spin_lock(&pin_fs_lock);
576 	if (unlikely(!*mount)) {
577 		spin_unlock(&pin_fs_lock);
578 		mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, NULL);
579 		if (IS_ERR(mnt))
580 			return PTR_ERR(mnt);
581 		spin_lock(&pin_fs_lock);
582 		if (!*mount)
583 			*mount = mnt;
584 	}
585 	mntget(*mount);
586 	++*count;
587 	spin_unlock(&pin_fs_lock);
588 	mntput(mnt);
589 	return 0;
590 }
591 EXPORT_SYMBOL(simple_pin_fs);
592 
simple_release_fs(struct vfsmount ** mount,int * count)593 void simple_release_fs(struct vfsmount **mount, int *count)
594 {
595 	struct vfsmount *mnt;
596 	spin_lock(&pin_fs_lock);
597 	mnt = *mount;
598 	if (!--*count)
599 		*mount = NULL;
600 	spin_unlock(&pin_fs_lock);
601 	mntput(mnt);
602 }
603 EXPORT_SYMBOL(simple_release_fs);
604 
605 /**
606  * simple_read_from_buffer - copy data from the buffer to user space
607  * @to: the user space buffer to read to
608  * @count: the maximum number of bytes to read
609  * @ppos: the current position in the buffer
610  * @from: the buffer to read from
611  * @available: the size of the buffer
612  *
613  * The simple_read_from_buffer() function reads up to @count bytes from the
614  * buffer @from at offset @ppos into the user space address starting at @to.
615  *
616  * On success, the number of bytes read is returned and the offset @ppos is
617  * advanced by this number, or negative value is returned on error.
618  **/
simple_read_from_buffer(void __user * to,size_t count,loff_t * ppos,const void * from,size_t available)619 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
620 				const void *from, size_t available)
621 {
622 	loff_t pos = *ppos;
623 	size_t ret;
624 
625 	if (pos < 0)
626 		return -EINVAL;
627 	if (pos >= available || !count)
628 		return 0;
629 	if (count > available - pos)
630 		count = available - pos;
631 	ret = copy_to_user(to, from + pos, count);
632 	if (ret == count)
633 		return -EFAULT;
634 	count -= ret;
635 	*ppos = pos + count;
636 	return count;
637 }
638 EXPORT_SYMBOL(simple_read_from_buffer);
639 
640 /**
641  * simple_write_to_buffer - copy data from user space to the buffer
642  * @to: the buffer to write to
643  * @available: the size of the buffer
644  * @ppos: the current position in the buffer
645  * @from: the user space buffer to read from
646  * @count: the maximum number of bytes to read
647  *
648  * The simple_write_to_buffer() function reads up to @count bytes from the user
649  * space address starting at @from into the buffer @to at offset @ppos.
650  *
651  * On success, the number of bytes written is returned and the offset @ppos is
652  * advanced by this number, or negative value is returned on error.
653  **/
simple_write_to_buffer(void * to,size_t available,loff_t * ppos,const void __user * from,size_t count)654 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
655 		const void __user *from, size_t count)
656 {
657 	loff_t pos = *ppos;
658 	size_t res;
659 
660 	if (pos < 0)
661 		return -EINVAL;
662 	if (pos >= available || !count)
663 		return 0;
664 	if (count > available - pos)
665 		count = available - pos;
666 	res = copy_from_user(to + pos, from, count);
667 	if (res == count)
668 		return -EFAULT;
669 	count -= res;
670 	*ppos = pos + count;
671 	return count;
672 }
673 EXPORT_SYMBOL(simple_write_to_buffer);
674 
675 /**
676  * memory_read_from_buffer - copy data from the buffer
677  * @to: the kernel space buffer to read to
678  * @count: the maximum number of bytes to read
679  * @ppos: the current position in the buffer
680  * @from: the buffer to read from
681  * @available: the size of the buffer
682  *
683  * The memory_read_from_buffer() function reads up to @count bytes from the
684  * buffer @from at offset @ppos into the kernel space address starting at @to.
685  *
686  * On success, the number of bytes read is returned and the offset @ppos is
687  * advanced by this number, or negative value is returned on error.
688  **/
memory_read_from_buffer(void * to,size_t count,loff_t * ppos,const void * from,size_t available)689 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
690 				const void *from, size_t available)
691 {
692 	loff_t pos = *ppos;
693 
694 	if (pos < 0)
695 		return -EINVAL;
696 	if (pos >= available)
697 		return 0;
698 	if (count > available - pos)
699 		count = available - pos;
700 	memcpy(to, from + pos, count);
701 	*ppos = pos + count;
702 
703 	return count;
704 }
705 EXPORT_SYMBOL(memory_read_from_buffer);
706 
707 /*
708  * Transaction based IO.
709  * The file expects a single write which triggers the transaction, and then
710  * possibly a read which collects the result - which is stored in a
711  * file-local buffer.
712  */
713 
simple_transaction_set(struct file * file,size_t n)714 void simple_transaction_set(struct file *file, size_t n)
715 {
716 	struct simple_transaction_argresp *ar = file->private_data;
717 
718 	BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
719 
720 	/*
721 	 * The barrier ensures that ar->size will really remain zero until
722 	 * ar->data is ready for reading.
723 	 */
724 	smp_mb();
725 	ar->size = n;
726 }
727 EXPORT_SYMBOL(simple_transaction_set);
728 
simple_transaction_get(struct file * file,const char __user * buf,size_t size)729 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
730 {
731 	struct simple_transaction_argresp *ar;
732 	static DEFINE_SPINLOCK(simple_transaction_lock);
733 
734 	if (size > SIMPLE_TRANSACTION_LIMIT - 1)
735 		return ERR_PTR(-EFBIG);
736 
737 	ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
738 	if (!ar)
739 		return ERR_PTR(-ENOMEM);
740 
741 	spin_lock(&simple_transaction_lock);
742 
743 	/* only one write allowed per open */
744 	if (file->private_data) {
745 		spin_unlock(&simple_transaction_lock);
746 		free_page((unsigned long)ar);
747 		return ERR_PTR(-EBUSY);
748 	}
749 
750 	file->private_data = ar;
751 
752 	spin_unlock(&simple_transaction_lock);
753 
754 	if (copy_from_user(ar->data, buf, size))
755 		return ERR_PTR(-EFAULT);
756 
757 	return ar->data;
758 }
759 EXPORT_SYMBOL(simple_transaction_get);
760 
simple_transaction_read(struct file * file,char __user * buf,size_t size,loff_t * pos)761 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
762 {
763 	struct simple_transaction_argresp *ar = file->private_data;
764 
765 	if (!ar)
766 		return 0;
767 	return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
768 }
769 EXPORT_SYMBOL(simple_transaction_read);
770 
simple_transaction_release(struct inode * inode,struct file * file)771 int simple_transaction_release(struct inode *inode, struct file *file)
772 {
773 	free_page((unsigned long)file->private_data);
774 	return 0;
775 }
776 EXPORT_SYMBOL(simple_transaction_release);
777 
778 /* Simple attribute files */
779 
780 struct simple_attr {
781 	int (*get)(void *, u64 *);
782 	int (*set)(void *, u64);
783 	char get_buf[24];	/* enough to store a u64 and "\n\0" */
784 	char set_buf[24];
785 	void *data;
786 	const char *fmt;	/* format for read operation */
787 	struct mutex mutex;	/* protects access to these buffers */
788 };
789 
790 /* simple_attr_open is called by an actual attribute open file operation
791  * to set the attribute specific access operations. */
simple_attr_open(struct inode * inode,struct file * file,int (* get)(void *,u64 *),int (* set)(void *,u64),const char * fmt)792 int simple_attr_open(struct inode *inode, struct file *file,
793 		     int (*get)(void *, u64 *), int (*set)(void *, u64),
794 		     const char *fmt)
795 {
796 	struct simple_attr *attr;
797 
798 	attr = kmalloc(sizeof(*attr), GFP_KERNEL);
799 	if (!attr)
800 		return -ENOMEM;
801 
802 	attr->get = get;
803 	attr->set = set;
804 	attr->data = inode->i_private;
805 	attr->fmt = fmt;
806 	mutex_init(&attr->mutex);
807 
808 	file->private_data = attr;
809 
810 	return nonseekable_open(inode, file);
811 }
812 EXPORT_SYMBOL_GPL(simple_attr_open);
813 
simple_attr_release(struct inode * inode,struct file * file)814 int simple_attr_release(struct inode *inode, struct file *file)
815 {
816 	kfree(file->private_data);
817 	return 0;
818 }
819 EXPORT_SYMBOL_GPL(simple_attr_release);	/* GPL-only?  This?  Really? */
820 
821 /* read from the buffer that is filled with the get function */
simple_attr_read(struct file * file,char __user * buf,size_t len,loff_t * ppos)822 ssize_t simple_attr_read(struct file *file, char __user *buf,
823 			 size_t len, loff_t *ppos)
824 {
825 	struct simple_attr *attr;
826 	size_t size;
827 	ssize_t ret;
828 
829 	attr = file->private_data;
830 
831 	if (!attr->get)
832 		return -EACCES;
833 
834 	ret = mutex_lock_interruptible(&attr->mutex);
835 	if (ret)
836 		return ret;
837 
838 	if (*ppos) {		/* continued read */
839 		size = strlen(attr->get_buf);
840 	} else {		/* first read */
841 		u64 val;
842 		ret = attr->get(attr->data, &val);
843 		if (ret)
844 			goto out;
845 
846 		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
847 				 attr->fmt, (unsigned long long)val);
848 	}
849 
850 	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
851 out:
852 	mutex_unlock(&attr->mutex);
853 	return ret;
854 }
855 EXPORT_SYMBOL_GPL(simple_attr_read);
856 
857 /* interpret the buffer as a number to call the set function with */
simple_attr_write(struct file * file,const char __user * buf,size_t len,loff_t * ppos)858 ssize_t simple_attr_write(struct file *file, const char __user *buf,
859 			  size_t len, loff_t *ppos)
860 {
861 	struct simple_attr *attr;
862 	u64 val;
863 	size_t size;
864 	ssize_t ret;
865 
866 	attr = file->private_data;
867 	if (!attr->set)
868 		return -EACCES;
869 
870 	ret = mutex_lock_interruptible(&attr->mutex);
871 	if (ret)
872 		return ret;
873 
874 	ret = -EFAULT;
875 	size = min(sizeof(attr->set_buf) - 1, len);
876 	if (copy_from_user(attr->set_buf, buf, size))
877 		goto out;
878 
879 	attr->set_buf[size] = '\0';
880 	val = simple_strtoll(attr->set_buf, NULL, 0);
881 	ret = attr->set(attr->data, val);
882 	if (ret == 0)
883 		ret = len; /* on success, claim we got the whole input */
884 out:
885 	mutex_unlock(&attr->mutex);
886 	return ret;
887 }
888 EXPORT_SYMBOL_GPL(simple_attr_write);
889 
890 /**
891  * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
892  * @sb:		filesystem to do the file handle conversion on
893  * @fid:	file handle to convert
894  * @fh_len:	length of the file handle in bytes
895  * @fh_type:	type of file handle
896  * @get_inode:	filesystem callback to retrieve inode
897  *
898  * This function decodes @fid as long as it has one of the well-known
899  * Linux filehandle types and calls @get_inode on it to retrieve the
900  * inode for the object specified in the file handle.
901  */
generic_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type,struct inode * (* get_inode)(struct super_block * sb,u64 ino,u32 gen))902 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
903 		int fh_len, int fh_type, struct inode *(*get_inode)
904 			(struct super_block *sb, u64 ino, u32 gen))
905 {
906 	struct inode *inode = NULL;
907 
908 	if (fh_len < 2)
909 		return NULL;
910 
911 	switch (fh_type) {
912 	case FILEID_INO32_GEN:
913 	case FILEID_INO32_GEN_PARENT:
914 		inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
915 		break;
916 	}
917 
918 	return d_obtain_alias(inode);
919 }
920 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
921 
922 /**
923  * generic_fh_to_parent - generic helper for the fh_to_parent export operation
924  * @sb:		filesystem to do the file handle conversion on
925  * @fid:	file handle to convert
926  * @fh_len:	length of the file handle in bytes
927  * @fh_type:	type of file handle
928  * @get_inode:	filesystem callback to retrieve inode
929  *
930  * This function decodes @fid as long as it has one of the well-known
931  * Linux filehandle types and calls @get_inode on it to retrieve the
932  * inode for the _parent_ object specified in the file handle if it
933  * is specified in the file handle, or NULL otherwise.
934  */
generic_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type,struct inode * (* get_inode)(struct super_block * sb,u64 ino,u32 gen))935 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
936 		int fh_len, int fh_type, struct inode *(*get_inode)
937 			(struct super_block *sb, u64 ino, u32 gen))
938 {
939 	struct inode *inode = NULL;
940 
941 	if (fh_len <= 2)
942 		return NULL;
943 
944 	switch (fh_type) {
945 	case FILEID_INO32_GEN_PARENT:
946 		inode = get_inode(sb, fid->i32.parent_ino,
947 				  (fh_len > 3 ? fid->i32.parent_gen : 0));
948 		break;
949 	}
950 
951 	return d_obtain_alias(inode);
952 }
953 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
954 
955 /**
956  * __generic_file_fsync - generic fsync implementation for simple filesystems
957  *
958  * @file:	file to synchronize
959  * @start:	start offset in bytes
960  * @end:	end offset in bytes (inclusive)
961  * @datasync:	only synchronize essential metadata if true
962  *
963  * This is a generic implementation of the fsync method for simple
964  * filesystems which track all non-inode metadata in the buffers list
965  * hanging off the address_space structure.
966  */
__generic_file_fsync(struct file * file,loff_t start,loff_t end,int datasync)967 int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
968 				 int datasync)
969 {
970 	struct inode *inode = file->f_mapping->host;
971 	int err;
972 	int ret;
973 
974 	err = filemap_write_and_wait_range(inode->i_mapping, start, end);
975 	if (err)
976 		return err;
977 
978 	inode_lock(inode);
979 	ret = sync_mapping_buffers(inode->i_mapping);
980 	if (!(inode->i_state & I_DIRTY_ALL))
981 		goto out;
982 	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
983 		goto out;
984 
985 	err = sync_inode_metadata(inode, 1);
986 	if (ret == 0)
987 		ret = err;
988 
989 out:
990 	inode_unlock(inode);
991 	return ret;
992 }
993 EXPORT_SYMBOL(__generic_file_fsync);
994 
995 /**
996  * generic_file_fsync - generic fsync implementation for simple filesystems
997  *			with flush
998  * @file:	file to synchronize
999  * @start:	start offset in bytes
1000  * @end:	end offset in bytes (inclusive)
1001  * @datasync:	only synchronize essential metadata if true
1002  *
1003  */
1004 
generic_file_fsync(struct file * file,loff_t start,loff_t end,int datasync)1005 int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1006 		       int datasync)
1007 {
1008 	struct inode *inode = file->f_mapping->host;
1009 	int err;
1010 
1011 	err = __generic_file_fsync(file, start, end, datasync);
1012 	if (err)
1013 		return err;
1014 	return blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
1015 }
1016 EXPORT_SYMBOL(generic_file_fsync);
1017 
1018 /**
1019  * generic_check_addressable - Check addressability of file system
1020  * @blocksize_bits:	log of file system block size
1021  * @num_blocks:		number of blocks in file system
1022  *
1023  * Determine whether a file system with @num_blocks blocks (and a
1024  * block size of 2**@blocksize_bits) is addressable by the sector_t
1025  * and page cache of the system.  Return 0 if so and -EFBIG otherwise.
1026  */
generic_check_addressable(unsigned blocksize_bits,u64 num_blocks)1027 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1028 {
1029 	u64 last_fs_block = num_blocks - 1;
1030 	u64 last_fs_page =
1031 		last_fs_block >> (PAGE_SHIFT - blocksize_bits);
1032 
1033 	if (unlikely(num_blocks == 0))
1034 		return 0;
1035 
1036 	if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1037 		return -EINVAL;
1038 
1039 	if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1040 	    (last_fs_page > (pgoff_t)(~0ULL))) {
1041 		return -EFBIG;
1042 	}
1043 	return 0;
1044 }
1045 EXPORT_SYMBOL(generic_check_addressable);
1046 
1047 /*
1048  * No-op implementation of ->fsync for in-memory filesystems.
1049  */
noop_fsync(struct file * file,loff_t start,loff_t end,int datasync)1050 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1051 {
1052 	return 0;
1053 }
1054 EXPORT_SYMBOL(noop_fsync);
1055 
1056 /* Because kfree isn't assignment-compatible with void(void*) ;-/ */
kfree_link(void * p)1057 void kfree_link(void *p)
1058 {
1059 	kfree(p);
1060 }
1061 EXPORT_SYMBOL(kfree_link);
1062 
1063 /*
1064  * nop .set_page_dirty method so that people can use .page_mkwrite on
1065  * anon inodes.
1066  */
anon_set_page_dirty(struct page * page)1067 static int anon_set_page_dirty(struct page *page)
1068 {
1069 	return 0;
1070 };
1071 
1072 /*
1073  * A single inode exists for all anon_inode files. Contrary to pipes,
1074  * anon_inode inodes have no associated per-instance data, so we need
1075  * only allocate one of them.
1076  */
alloc_anon_inode(struct super_block * s)1077 struct inode *alloc_anon_inode(struct super_block *s)
1078 {
1079 	static const struct address_space_operations anon_aops = {
1080 		.set_page_dirty = anon_set_page_dirty,
1081 	};
1082 	struct inode *inode = new_inode_pseudo(s);
1083 
1084 	if (!inode)
1085 		return ERR_PTR(-ENOMEM);
1086 
1087 	inode->i_ino = get_next_ino();
1088 	inode->i_mapping->a_ops = &anon_aops;
1089 
1090 	/*
1091 	 * Mark the inode dirty from the very beginning,
1092 	 * that way it will never be moved to the dirty
1093 	 * list because mark_inode_dirty() will think
1094 	 * that it already _is_ on the dirty list.
1095 	 */
1096 	inode->i_state = I_DIRTY;
1097 	inode->i_mode = S_IRUSR | S_IWUSR;
1098 	inode->i_uid = current_fsuid();
1099 	inode->i_gid = current_fsgid();
1100 	inode->i_flags |= S_PRIVATE;
1101 	inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
1102 	return inode;
1103 }
1104 EXPORT_SYMBOL(alloc_anon_inode);
1105 
1106 /**
1107  * simple_nosetlease - generic helper for prohibiting leases
1108  * @filp: file pointer
1109  * @arg: type of lease to obtain
1110  * @flp: new lease supplied for insertion
1111  * @priv: private data for lm_setup operation
1112  *
1113  * Generic helper for filesystems that do not wish to allow leases to be set.
1114  * All arguments are ignored and it just returns -EINVAL.
1115  */
1116 int
simple_nosetlease(struct file * filp,long arg,struct file_lock ** flp,void ** priv)1117 simple_nosetlease(struct file *filp, long arg, struct file_lock **flp,
1118 		  void **priv)
1119 {
1120 	return -EINVAL;
1121 }
1122 EXPORT_SYMBOL(simple_nosetlease);
1123 
simple_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)1124 const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1125 			    struct delayed_call *done)
1126 {
1127 	return inode->i_link;
1128 }
1129 EXPORT_SYMBOL(simple_get_link);
1130 
1131 const struct inode_operations simple_symlink_inode_operations = {
1132 	.get_link = simple_get_link,
1133 	.readlink = generic_readlink
1134 };
1135 EXPORT_SYMBOL(simple_symlink_inode_operations);
1136 
1137 /*
1138  * Operations for a permanently empty directory.
1139  */
empty_dir_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)1140 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1141 {
1142 	return ERR_PTR(-ENOENT);
1143 }
1144 
empty_dir_getattr(struct vfsmount * mnt,struct dentry * dentry,struct kstat * stat)1145 static int empty_dir_getattr(struct vfsmount *mnt, struct dentry *dentry,
1146 				 struct kstat *stat)
1147 {
1148 	struct inode *inode = d_inode(dentry);
1149 	generic_fillattr(inode, stat);
1150 	return 0;
1151 }
1152 
empty_dir_setattr(struct dentry * dentry,struct iattr * attr)1153 static int empty_dir_setattr(struct dentry *dentry, struct iattr *attr)
1154 {
1155 	return -EPERM;
1156 }
1157 
empty_dir_listxattr(struct dentry * dentry,char * list,size_t size)1158 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1159 {
1160 	return -EOPNOTSUPP;
1161 }
1162 
1163 static const struct inode_operations empty_dir_inode_operations = {
1164 	.lookup		= empty_dir_lookup,
1165 	.permission	= generic_permission,
1166 	.setattr	= empty_dir_setattr,
1167 	.getattr	= empty_dir_getattr,
1168 	.listxattr	= empty_dir_listxattr,
1169 };
1170 
empty_dir_llseek(struct file * file,loff_t offset,int whence)1171 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1172 {
1173 	/* An empty directory has two entries . and .. at offsets 0 and 1 */
1174 	return generic_file_llseek_size(file, offset, whence, 2, 2);
1175 }
1176 
empty_dir_readdir(struct file * file,struct dir_context * ctx)1177 static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1178 {
1179 	dir_emit_dots(file, ctx);
1180 	return 0;
1181 }
1182 
1183 static const struct file_operations empty_dir_operations = {
1184 	.llseek		= empty_dir_llseek,
1185 	.read		= generic_read_dir,
1186 	.iterate_shared	= empty_dir_readdir,
1187 	.fsync		= noop_fsync,
1188 };
1189 
1190 
make_empty_dir_inode(struct inode * inode)1191 void make_empty_dir_inode(struct inode *inode)
1192 {
1193 	set_nlink(inode, 2);
1194 	inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1195 	inode->i_uid = GLOBAL_ROOT_UID;
1196 	inode->i_gid = GLOBAL_ROOT_GID;
1197 	inode->i_rdev = 0;
1198 	inode->i_size = 0;
1199 	inode->i_blkbits = PAGE_SHIFT;
1200 	inode->i_blocks = 0;
1201 
1202 	inode->i_op = &empty_dir_inode_operations;
1203 	inode->i_opflags &= ~IOP_XATTR;
1204 	inode->i_fop = &empty_dir_operations;
1205 }
1206 
is_empty_dir_inode(struct inode * inode)1207 bool is_empty_dir_inode(struct inode *inode)
1208 {
1209 	return (inode->i_fop == &empty_dir_operations) &&
1210 		(inode->i_op == &empty_dir_inode_operations);
1211 }
1212