1 /*
2 * fs/mpage.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains functions related to preparing and submitting BIOs which contain
7 * multiple pagecache pages.
8 *
9 * 15May2002 Andrew Morton
10 * Initial version
11 * 27Jun2002 axboe@suse.de
12 * use bio_add_page() to build bio's just the right size
13 */
14
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/mm.h>
18 #include <linux/kdev_t.h>
19 #include <linux/gfp.h>
20 #include <linux/bio.h>
21 #include <linux/fs.h>
22 #include <linux/buffer_head.h>
23 #include <linux/blkdev.h>
24 #include <linux/highmem.h>
25 #include <linux/prefetch.h>
26 #include <linux/mpage.h>
27 #include <linux/mm_inline.h>
28 #include <linux/writeback.h>
29 #include <linux/backing-dev.h>
30 #include <linux/pagevec.h>
31 #include <linux/cleancache.h>
32 #include "internal.h"
33
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/android_fs.h>
36
37 EXPORT_TRACEPOINT_SYMBOL(android_fs_datawrite_start);
38 EXPORT_TRACEPOINT_SYMBOL(android_fs_datawrite_end);
39 EXPORT_TRACEPOINT_SYMBOL(android_fs_dataread_start);
40 EXPORT_TRACEPOINT_SYMBOL(android_fs_dataread_end);
41
42 /*
43 * I/O completion handler for multipage BIOs.
44 *
45 * The mpage code never puts partial pages into a BIO (except for end-of-file).
46 * If a page does not map to a contiguous run of blocks then it simply falls
47 * back to block_read_full_page().
48 *
49 * Why is this? If a page's completion depends on a number of different BIOs
50 * which can complete in any order (or at the same time) then determining the
51 * status of that page is hard. See end_buffer_async_read() for the details.
52 * There is no point in duplicating all that complexity.
53 */
mpage_end_io(struct bio * bio)54 static void mpage_end_io(struct bio *bio)
55 {
56 struct bio_vec *bv;
57 int i;
58
59 if (trace_android_fs_dataread_end_enabled() &&
60 (bio_data_dir(bio) == READ)) {
61 struct page *first_page = bio->bi_io_vec[0].bv_page;
62
63 if (first_page != NULL)
64 trace_android_fs_dataread_end(first_page->mapping->host,
65 page_offset(first_page),
66 bio->bi_iter.bi_size);
67 }
68
69 bio_for_each_segment_all(bv, bio, i) {
70 struct page *page = bv->bv_page;
71 page_endio(page, op_is_write(bio_op(bio)), bio->bi_error);
72 }
73
74 bio_put(bio);
75 }
76
mpage_bio_submit(int op,int op_flags,struct bio * bio)77 static struct bio *mpage_bio_submit(int op, int op_flags, struct bio *bio)
78 {
79 if (trace_android_fs_dataread_start_enabled() && (op == REQ_OP_READ)) {
80 struct page *first_page = bio->bi_io_vec[0].bv_page;
81
82 if (first_page != NULL) {
83 char *path, pathbuf[MAX_TRACE_PATHBUF_LEN];
84
85 path = android_fstrace_get_pathname(pathbuf,
86 MAX_TRACE_PATHBUF_LEN,
87 first_page->mapping->host);
88 trace_android_fs_dataread_start(
89 first_page->mapping->host,
90 page_offset(first_page),
91 bio->bi_iter.bi_size,
92 current->pid,
93 path,
94 current->comm);
95 }
96 }
97 bio->bi_end_io = mpage_end_io;
98 bio_set_op_attrs(bio, op, op_flags);
99 guard_bio_eod(op, bio);
100 submit_bio(bio);
101 return NULL;
102 }
103
104 static struct bio *
mpage_alloc(struct block_device * bdev,sector_t first_sector,int nr_vecs,gfp_t gfp_flags)105 mpage_alloc(struct block_device *bdev,
106 sector_t first_sector, int nr_vecs,
107 gfp_t gfp_flags)
108 {
109 struct bio *bio;
110
111 /* Restrict the given (page cache) mask for slab allocations */
112 gfp_flags &= GFP_KERNEL;
113 bio = bio_alloc(gfp_flags, nr_vecs);
114
115 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
116 while (!bio && (nr_vecs /= 2))
117 bio = bio_alloc(gfp_flags, nr_vecs);
118 }
119
120 if (bio) {
121 bio->bi_bdev = bdev;
122 bio->bi_iter.bi_sector = first_sector;
123 }
124 return bio;
125 }
126
127 /*
128 * support function for mpage_readpages. The fs supplied get_block might
129 * return an up to date buffer. This is used to map that buffer into
130 * the page, which allows readpage to avoid triggering a duplicate call
131 * to get_block.
132 *
133 * The idea is to avoid adding buffers to pages that don't already have
134 * them. So when the buffer is up to date and the page size == block size,
135 * this marks the page up to date instead of adding new buffers.
136 */
137 static void
map_buffer_to_page(struct page * page,struct buffer_head * bh,int page_block)138 map_buffer_to_page(struct page *page, struct buffer_head *bh, int page_block)
139 {
140 struct inode *inode = page->mapping->host;
141 struct buffer_head *page_bh, *head;
142 int block = 0;
143
144 if (!page_has_buffers(page)) {
145 /*
146 * don't make any buffers if there is only one buffer on
147 * the page and the page just needs to be set up to date
148 */
149 if (inode->i_blkbits == PAGE_SHIFT &&
150 buffer_uptodate(bh)) {
151 SetPageUptodate(page);
152 return;
153 }
154 create_empty_buffers(page, i_blocksize(inode), 0);
155 }
156 head = page_buffers(page);
157 page_bh = head;
158 do {
159 if (block == page_block) {
160 page_bh->b_state = bh->b_state;
161 page_bh->b_bdev = bh->b_bdev;
162 page_bh->b_blocknr = bh->b_blocknr;
163 break;
164 }
165 page_bh = page_bh->b_this_page;
166 block++;
167 } while (page_bh != head);
168 }
169
170 /*
171 * This is the worker routine which does all the work of mapping the disk
172 * blocks and constructs largest possible bios, submits them for IO if the
173 * blocks are not contiguous on the disk.
174 *
175 * We pass a buffer_head back and forth and use its buffer_mapped() flag to
176 * represent the validity of its disk mapping and to decide when to do the next
177 * get_block() call.
178 */
179 static struct bio *
do_mpage_readpage(struct bio * bio,struct page * page,unsigned nr_pages,sector_t * last_block_in_bio,struct buffer_head * map_bh,unsigned long * first_logical_block,get_block_t get_block,gfp_t gfp)180 do_mpage_readpage(struct bio *bio, struct page *page, unsigned nr_pages,
181 sector_t *last_block_in_bio, struct buffer_head *map_bh,
182 unsigned long *first_logical_block, get_block_t get_block,
183 gfp_t gfp)
184 {
185 struct inode *inode = page->mapping->host;
186 const unsigned blkbits = inode->i_blkbits;
187 const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
188 const unsigned blocksize = 1 << blkbits;
189 sector_t block_in_file;
190 sector_t last_block;
191 sector_t last_block_in_file;
192 sector_t blocks[MAX_BUF_PER_PAGE];
193 unsigned page_block;
194 unsigned first_hole = blocks_per_page;
195 struct block_device *bdev = NULL;
196 int length;
197 int fully_mapped = 1;
198 unsigned nblocks;
199 unsigned relative_block;
200
201 if (page_has_buffers(page))
202 goto confused;
203
204 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
205 last_block = block_in_file + nr_pages * blocks_per_page;
206 last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits;
207 if (last_block > last_block_in_file)
208 last_block = last_block_in_file;
209 page_block = 0;
210
211 /*
212 * Map blocks using the result from the previous get_blocks call first.
213 */
214 nblocks = map_bh->b_size >> blkbits;
215 if (buffer_mapped(map_bh) && block_in_file > *first_logical_block &&
216 block_in_file < (*first_logical_block + nblocks)) {
217 unsigned map_offset = block_in_file - *first_logical_block;
218 unsigned last = nblocks - map_offset;
219
220 for (relative_block = 0; ; relative_block++) {
221 if (relative_block == last) {
222 clear_buffer_mapped(map_bh);
223 break;
224 }
225 if (page_block == blocks_per_page)
226 break;
227 blocks[page_block] = map_bh->b_blocknr + map_offset +
228 relative_block;
229 page_block++;
230 block_in_file++;
231 }
232 bdev = map_bh->b_bdev;
233 }
234
235 /*
236 * Then do more get_blocks calls until we are done with this page.
237 */
238 map_bh->b_page = page;
239 while (page_block < blocks_per_page) {
240 map_bh->b_state = 0;
241 map_bh->b_size = 0;
242
243 if (block_in_file < last_block) {
244 map_bh->b_size = (last_block-block_in_file) << blkbits;
245 if (get_block(inode, block_in_file, map_bh, 0))
246 goto confused;
247 *first_logical_block = block_in_file;
248 }
249
250 if (!buffer_mapped(map_bh)) {
251 fully_mapped = 0;
252 if (first_hole == blocks_per_page)
253 first_hole = page_block;
254 page_block++;
255 block_in_file++;
256 continue;
257 }
258
259 /* some filesystems will copy data into the page during
260 * the get_block call, in which case we don't want to
261 * read it again. map_buffer_to_page copies the data
262 * we just collected from get_block into the page's buffers
263 * so readpage doesn't have to repeat the get_block call
264 */
265 if (buffer_uptodate(map_bh)) {
266 map_buffer_to_page(page, map_bh, page_block);
267 goto confused;
268 }
269
270 if (first_hole != blocks_per_page)
271 goto confused; /* hole -> non-hole */
272
273 /* Contiguous blocks? */
274 if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1)
275 goto confused;
276 nblocks = map_bh->b_size >> blkbits;
277 for (relative_block = 0; ; relative_block++) {
278 if (relative_block == nblocks) {
279 clear_buffer_mapped(map_bh);
280 break;
281 } else if (page_block == blocks_per_page)
282 break;
283 blocks[page_block] = map_bh->b_blocknr+relative_block;
284 page_block++;
285 block_in_file++;
286 }
287 bdev = map_bh->b_bdev;
288 }
289
290 if (first_hole != blocks_per_page) {
291 zero_user_segment(page, first_hole << blkbits, PAGE_SIZE);
292 if (first_hole == 0) {
293 SetPageUptodate(page);
294 unlock_page(page);
295 goto out;
296 }
297 } else if (fully_mapped) {
298 SetPageMappedToDisk(page);
299 }
300
301 if (fully_mapped && blocks_per_page == 1 && !PageUptodate(page) &&
302 cleancache_get_page(page) == 0) {
303 SetPageUptodate(page);
304 goto confused;
305 }
306
307 /*
308 * This page will go to BIO. Do we need to send this BIO off first?
309 */
310 if (bio && (*last_block_in_bio != blocks[0] - 1))
311 bio = mpage_bio_submit(REQ_OP_READ, 0, bio);
312
313 alloc_new:
314 if (bio == NULL) {
315 if (first_hole == blocks_per_page) {
316 if (!bdev_read_page(bdev, blocks[0] << (blkbits - 9),
317 page))
318 goto out;
319 }
320 bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
321 min_t(int, nr_pages, BIO_MAX_PAGES), gfp);
322 if (bio == NULL)
323 goto confused;
324 }
325
326 length = first_hole << blkbits;
327 if (bio_add_page(bio, page, length, 0) < length) {
328 bio = mpage_bio_submit(REQ_OP_READ, 0, bio);
329 goto alloc_new;
330 }
331
332 relative_block = block_in_file - *first_logical_block;
333 nblocks = map_bh->b_size >> blkbits;
334 if ((buffer_boundary(map_bh) && relative_block == nblocks) ||
335 (first_hole != blocks_per_page))
336 bio = mpage_bio_submit(REQ_OP_READ, 0, bio);
337 else
338 *last_block_in_bio = blocks[blocks_per_page - 1];
339 out:
340 return bio;
341
342 confused:
343 if (bio)
344 bio = mpage_bio_submit(REQ_OP_READ, 0, bio);
345 if (!PageUptodate(page))
346 block_read_full_page(page, get_block);
347 else
348 unlock_page(page);
349 goto out;
350 }
351
352 /**
353 * mpage_readpages - populate an address space with some pages & start reads against them
354 * @mapping: the address_space
355 * @pages: The address of a list_head which contains the target pages. These
356 * pages have their ->index populated and are otherwise uninitialised.
357 * The page at @pages->prev has the lowest file offset, and reads should be
358 * issued in @pages->prev to @pages->next order.
359 * @nr_pages: The number of pages at *@pages
360 * @get_block: The filesystem's block mapper function.
361 *
362 * This function walks the pages and the blocks within each page, building and
363 * emitting large BIOs.
364 *
365 * If anything unusual happens, such as:
366 *
367 * - encountering a page which has buffers
368 * - encountering a page which has a non-hole after a hole
369 * - encountering a page with non-contiguous blocks
370 *
371 * then this code just gives up and calls the buffer_head-based read function.
372 * It does handle a page which has holes at the end - that is a common case:
373 * the end-of-file on blocksize < PAGE_SIZE setups.
374 *
375 * BH_Boundary explanation:
376 *
377 * There is a problem. The mpage read code assembles several pages, gets all
378 * their disk mappings, and then submits them all. That's fine, but obtaining
379 * the disk mappings may require I/O. Reads of indirect blocks, for example.
380 *
381 * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be
382 * submitted in the following order:
383 * 12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16
384 *
385 * because the indirect block has to be read to get the mappings of blocks
386 * 13,14,15,16. Obviously, this impacts performance.
387 *
388 * So what we do it to allow the filesystem's get_block() function to set
389 * BH_Boundary when it maps block 11. BH_Boundary says: mapping of the block
390 * after this one will require I/O against a block which is probably close to
391 * this one. So you should push what I/O you have currently accumulated.
392 *
393 * This all causes the disk requests to be issued in the correct order.
394 */
395 int
mpage_readpages(struct address_space * mapping,struct list_head * pages,unsigned nr_pages,get_block_t get_block)396 mpage_readpages(struct address_space *mapping, struct list_head *pages,
397 unsigned nr_pages, get_block_t get_block)
398 {
399 struct bio *bio = NULL;
400 unsigned page_idx;
401 sector_t last_block_in_bio = 0;
402 struct buffer_head map_bh;
403 unsigned long first_logical_block = 0;
404 gfp_t gfp = readahead_gfp_mask(mapping);
405
406 map_bh.b_state = 0;
407 map_bh.b_size = 0;
408 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
409 struct page *page = lru_to_page(pages);
410
411 prefetchw(&page->flags);
412 list_del(&page->lru);
413 if (!add_to_page_cache_lru(page, mapping,
414 page->index,
415 gfp)) {
416 bio = do_mpage_readpage(bio, page,
417 nr_pages - page_idx,
418 &last_block_in_bio, &map_bh,
419 &first_logical_block,
420 get_block, gfp);
421 }
422 put_page(page);
423 }
424 BUG_ON(!list_empty(pages));
425 if (bio)
426 mpage_bio_submit(REQ_OP_READ, 0, bio);
427 return 0;
428 }
429 EXPORT_SYMBOL(mpage_readpages);
430
431 /*
432 * This isn't called much at all
433 */
mpage_readpage(struct page * page,get_block_t get_block)434 int mpage_readpage(struct page *page, get_block_t get_block)
435 {
436 struct bio *bio = NULL;
437 sector_t last_block_in_bio = 0;
438 struct buffer_head map_bh;
439 unsigned long first_logical_block = 0;
440 gfp_t gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL);
441
442 map_bh.b_state = 0;
443 map_bh.b_size = 0;
444 bio = do_mpage_readpage(bio, page, 1, &last_block_in_bio,
445 &map_bh, &first_logical_block, get_block, gfp);
446 if (bio)
447 mpage_bio_submit(REQ_OP_READ, 0, bio);
448 return 0;
449 }
450 EXPORT_SYMBOL(mpage_readpage);
451
452 /*
453 * Writing is not so simple.
454 *
455 * If the page has buffers then they will be used for obtaining the disk
456 * mapping. We only support pages which are fully mapped-and-dirty, with a
457 * special case for pages which are unmapped at the end: end-of-file.
458 *
459 * If the page has no buffers (preferred) then the page is mapped here.
460 *
461 * If all blocks are found to be contiguous then the page can go into the
462 * BIO. Otherwise fall back to the mapping's writepage().
463 *
464 * FIXME: This code wants an estimate of how many pages are still to be
465 * written, so it can intelligently allocate a suitably-sized BIO. For now,
466 * just allocate full-size (16-page) BIOs.
467 */
468
469 struct mpage_data {
470 struct bio *bio;
471 sector_t last_block_in_bio;
472 get_block_t *get_block;
473 unsigned use_writepage;
474 };
475
476 /*
477 * We have our BIO, so we can now mark the buffers clean. Make
478 * sure to only clean buffers which we know we'll be writing.
479 */
clean_buffers(struct page * page,unsigned first_unmapped)480 static void clean_buffers(struct page *page, unsigned first_unmapped)
481 {
482 unsigned buffer_counter = 0;
483 struct buffer_head *bh, *head;
484 if (!page_has_buffers(page))
485 return;
486 head = page_buffers(page);
487 bh = head;
488
489 do {
490 if (buffer_counter++ == first_unmapped)
491 break;
492 clear_buffer_dirty(bh);
493 bh = bh->b_this_page;
494 } while (bh != head);
495
496 /*
497 * we cannot drop the bh if the page is not uptodate or a concurrent
498 * readpage would fail to serialize with the bh and it would read from
499 * disk before we reach the platter.
500 */
501 if (buffer_heads_over_limit && PageUptodate(page))
502 try_to_free_buffers(page);
503 }
504
505 /*
506 * For situations where we want to clean all buffers attached to a page.
507 * We don't need to calculate how many buffers are attached to the page,
508 * we just need to specify a number larger than the maximum number of buffers.
509 */
clean_page_buffers(struct page * page)510 void clean_page_buffers(struct page *page)
511 {
512 clean_buffers(page, ~0U);
513 }
514
__mpage_writepage(struct page * page,struct writeback_control * wbc,void * data)515 static int __mpage_writepage(struct page *page, struct writeback_control *wbc,
516 void *data)
517 {
518 struct mpage_data *mpd = data;
519 struct bio *bio = mpd->bio;
520 struct address_space *mapping = page->mapping;
521 struct inode *inode = page->mapping->host;
522 const unsigned blkbits = inode->i_blkbits;
523 unsigned long end_index;
524 const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
525 sector_t last_block;
526 sector_t block_in_file;
527 sector_t blocks[MAX_BUF_PER_PAGE];
528 unsigned page_block;
529 unsigned first_unmapped = blocks_per_page;
530 struct block_device *bdev = NULL;
531 int boundary = 0;
532 sector_t boundary_block = 0;
533 struct block_device *boundary_bdev = NULL;
534 int length;
535 struct buffer_head map_bh;
536 loff_t i_size = i_size_read(inode);
537 int ret = 0;
538 int op_flags = (wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : 0);
539
540 if (page_has_buffers(page)) {
541 struct buffer_head *head = page_buffers(page);
542 struct buffer_head *bh = head;
543
544 /* If they're all mapped and dirty, do it */
545 page_block = 0;
546 do {
547 BUG_ON(buffer_locked(bh));
548 if (!buffer_mapped(bh)) {
549 /*
550 * unmapped dirty buffers are created by
551 * __set_page_dirty_buffers -> mmapped data
552 */
553 if (buffer_dirty(bh))
554 goto confused;
555 if (first_unmapped == blocks_per_page)
556 first_unmapped = page_block;
557 continue;
558 }
559
560 if (first_unmapped != blocks_per_page)
561 goto confused; /* hole -> non-hole */
562
563 if (!buffer_dirty(bh) || !buffer_uptodate(bh))
564 goto confused;
565 if (page_block) {
566 if (bh->b_blocknr != blocks[page_block-1] + 1)
567 goto confused;
568 }
569 blocks[page_block++] = bh->b_blocknr;
570 boundary = buffer_boundary(bh);
571 if (boundary) {
572 boundary_block = bh->b_blocknr;
573 boundary_bdev = bh->b_bdev;
574 }
575 bdev = bh->b_bdev;
576 } while ((bh = bh->b_this_page) != head);
577
578 if (first_unmapped)
579 goto page_is_mapped;
580
581 /*
582 * Page has buffers, but they are all unmapped. The page was
583 * created by pagein or read over a hole which was handled by
584 * block_read_full_page(). If this address_space is also
585 * using mpage_readpages then this can rarely happen.
586 */
587 goto confused;
588 }
589
590 /*
591 * The page has no buffers: map it to disk
592 */
593 BUG_ON(!PageUptodate(page));
594 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
595 last_block = (i_size - 1) >> blkbits;
596 map_bh.b_page = page;
597 for (page_block = 0; page_block < blocks_per_page; ) {
598
599 map_bh.b_state = 0;
600 map_bh.b_size = 1 << blkbits;
601 if (mpd->get_block(inode, block_in_file, &map_bh, 1))
602 goto confused;
603 if (buffer_new(&map_bh))
604 unmap_underlying_metadata(map_bh.b_bdev,
605 map_bh.b_blocknr);
606 if (buffer_boundary(&map_bh)) {
607 boundary_block = map_bh.b_blocknr;
608 boundary_bdev = map_bh.b_bdev;
609 }
610 if (page_block) {
611 if (map_bh.b_blocknr != blocks[page_block-1] + 1)
612 goto confused;
613 }
614 blocks[page_block++] = map_bh.b_blocknr;
615 boundary = buffer_boundary(&map_bh);
616 bdev = map_bh.b_bdev;
617 if (block_in_file == last_block)
618 break;
619 block_in_file++;
620 }
621 BUG_ON(page_block == 0);
622
623 first_unmapped = page_block;
624
625 page_is_mapped:
626 end_index = i_size >> PAGE_SHIFT;
627 if (page->index >= end_index) {
628 /*
629 * The page straddles i_size. It must be zeroed out on each
630 * and every writepage invocation because it may be mmapped.
631 * "A file is mapped in multiples of the page size. For a file
632 * that is not a multiple of the page size, the remaining memory
633 * is zeroed when mapped, and writes to that region are not
634 * written out to the file."
635 */
636 unsigned offset = i_size & (PAGE_SIZE - 1);
637
638 if (page->index > end_index || !offset)
639 goto confused;
640 zero_user_segment(page, offset, PAGE_SIZE);
641 }
642
643 /*
644 * This page will go to BIO. Do we need to send this BIO off first?
645 */
646 if (bio && mpd->last_block_in_bio != blocks[0] - 1)
647 bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
648
649 alloc_new:
650 if (bio == NULL) {
651 if (first_unmapped == blocks_per_page) {
652 if (!bdev_write_page(bdev, blocks[0] << (blkbits - 9),
653 page, wbc))
654 goto out;
655 }
656 bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
657 BIO_MAX_PAGES, GFP_NOFS|__GFP_HIGH);
658 if (bio == NULL)
659 goto confused;
660
661 wbc_init_bio(wbc, bio);
662 }
663
664 /*
665 * Must try to add the page before marking the buffer clean or
666 * the confused fail path above (OOM) will be very confused when
667 * it finds all bh marked clean (i.e. it will not write anything)
668 */
669 wbc_account_io(wbc, page, PAGE_SIZE);
670 length = first_unmapped << blkbits;
671 if (bio_add_page(bio, page, length, 0) < length) {
672 bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
673 goto alloc_new;
674 }
675
676 clean_buffers(page, first_unmapped);
677
678 BUG_ON(PageWriteback(page));
679 set_page_writeback(page);
680 unlock_page(page);
681 if (boundary || (first_unmapped != blocks_per_page)) {
682 bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
683 if (boundary_block) {
684 write_boundary_block(boundary_bdev,
685 boundary_block, 1 << blkbits);
686 }
687 } else {
688 mpd->last_block_in_bio = blocks[blocks_per_page - 1];
689 }
690 goto out;
691
692 confused:
693 if (bio)
694 bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
695
696 if (mpd->use_writepage) {
697 ret = mapping->a_ops->writepage(page, wbc);
698 } else {
699 ret = -EAGAIN;
700 goto out;
701 }
702 /*
703 * The caller has a ref on the inode, so *mapping is stable
704 */
705 mapping_set_error(mapping, ret);
706 out:
707 mpd->bio = bio;
708 return ret;
709 }
710
711 /**
712 * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them
713 * @mapping: address space structure to write
714 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
715 * @get_block: the filesystem's block mapper function.
716 * If this is NULL then use a_ops->writepage. Otherwise, go
717 * direct-to-BIO.
718 *
719 * This is a library function, which implements the writepages()
720 * address_space_operation.
721 *
722 * If a page is already under I/O, generic_writepages() skips it, even
723 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
724 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
725 * and msync() need to guarantee that all the data which was dirty at the time
726 * the call was made get new I/O started against them. If wbc->sync_mode is
727 * WB_SYNC_ALL then we were called for data integrity and we must wait for
728 * existing IO to complete.
729 */
730 int
mpage_writepages(struct address_space * mapping,struct writeback_control * wbc,get_block_t get_block)731 mpage_writepages(struct address_space *mapping,
732 struct writeback_control *wbc, get_block_t get_block)
733 {
734 struct blk_plug plug;
735 int ret;
736
737 blk_start_plug(&plug);
738
739 if (!get_block)
740 ret = generic_writepages(mapping, wbc);
741 else {
742 struct mpage_data mpd = {
743 .bio = NULL,
744 .last_block_in_bio = 0,
745 .get_block = get_block,
746 .use_writepage = 1,
747 };
748
749 ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd);
750 if (mpd.bio) {
751 int op_flags = (wbc->sync_mode == WB_SYNC_ALL ?
752 WRITE_SYNC : 0);
753 mpage_bio_submit(REQ_OP_WRITE, op_flags, mpd.bio);
754 }
755 }
756 blk_finish_plug(&plug);
757 return ret;
758 }
759 EXPORT_SYMBOL(mpage_writepages);
760
mpage_writepage(struct page * page,get_block_t get_block,struct writeback_control * wbc)761 int mpage_writepage(struct page *page, get_block_t get_block,
762 struct writeback_control *wbc)
763 {
764 struct mpage_data mpd = {
765 .bio = NULL,
766 .last_block_in_bio = 0,
767 .get_block = get_block,
768 .use_writepage = 0,
769 };
770 int ret = __mpage_writepage(page, wbc, &mpd);
771 if (mpd.bio) {
772 int op_flags = (wbc->sync_mode == WB_SYNC_ALL ?
773 WRITE_SYNC : 0);
774 mpage_bio_submit(REQ_OP_WRITE, op_flags, mpd.bio);
775 }
776 return ret;
777 }
778 EXPORT_SYMBOL(mpage_writepage);
779