• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём)
20  *          Adrian Hunter
21  */
22 
23 /*
24  * This file implements UBIFS initialization and VFS superblock operations. Some
25  * initialization stuff which is rather large and complex is placed at
26  * corresponding subsystems, but most of it is here.
27  */
28 
29 #include <linux/init.h>
30 #include <linux/slab.h>
31 #include <linux/module.h>
32 #include <linux/ctype.h>
33 #include <linux/kthread.h>
34 #include <linux/parser.h>
35 #include <linux/seq_file.h>
36 #include <linux/mount.h>
37 #include <linux/math64.h>
38 #include <linux/writeback.h>
39 #include "ubifs.h"
40 
41 /*
42  * Maximum amount of memory we may 'kmalloc()' without worrying that we are
43  * allocating too much.
44  */
45 #define UBIFS_KMALLOC_OK (128*1024)
46 
47 /* Slab cache for UBIFS inodes */
48 struct kmem_cache *ubifs_inode_slab;
49 
50 /* UBIFS TNC shrinker description */
51 static struct shrinker ubifs_shrinker_info = {
52 	.scan_objects = ubifs_shrink_scan,
53 	.count_objects = ubifs_shrink_count,
54 	.seeks = DEFAULT_SEEKS,
55 };
56 
57 /**
58  * validate_inode - validate inode.
59  * @c: UBIFS file-system description object
60  * @inode: the inode to validate
61  *
62  * This is a helper function for 'ubifs_iget()' which validates various fields
63  * of a newly built inode to make sure they contain sane values and prevent
64  * possible vulnerabilities. Returns zero if the inode is all right and
65  * a non-zero error code if not.
66  */
validate_inode(struct ubifs_info * c,const struct inode * inode)67 static int validate_inode(struct ubifs_info *c, const struct inode *inode)
68 {
69 	int err;
70 	const struct ubifs_inode *ui = ubifs_inode(inode);
71 
72 	if (inode->i_size > c->max_inode_sz) {
73 		ubifs_err(c, "inode is too large (%lld)",
74 			  (long long)inode->i_size);
75 		return 1;
76 	}
77 
78 	if (ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
79 		ubifs_err(c, "unknown compression type %d", ui->compr_type);
80 		return 2;
81 	}
82 
83 	if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
84 		return 3;
85 
86 	if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
87 		return 4;
88 
89 	if (ui->xattr && !S_ISREG(inode->i_mode))
90 		return 5;
91 
92 	if (!ubifs_compr_present(ui->compr_type)) {
93 		ubifs_warn(c, "inode %lu uses '%s' compression, but it was not compiled in",
94 			   inode->i_ino, ubifs_compr_name(ui->compr_type));
95 	}
96 
97 	err = dbg_check_dir(c, inode);
98 	return err;
99 }
100 
ubifs_iget(struct super_block * sb,unsigned long inum)101 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
102 {
103 	int err;
104 	union ubifs_key key;
105 	struct ubifs_ino_node *ino;
106 	struct ubifs_info *c = sb->s_fs_info;
107 	struct inode *inode;
108 	struct ubifs_inode *ui;
109 
110 	dbg_gen("inode %lu", inum);
111 
112 	inode = iget_locked(sb, inum);
113 	if (!inode)
114 		return ERR_PTR(-ENOMEM);
115 	if (!(inode->i_state & I_NEW))
116 		return inode;
117 	ui = ubifs_inode(inode);
118 
119 	ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
120 	if (!ino) {
121 		err = -ENOMEM;
122 		goto out;
123 	}
124 
125 	ino_key_init(c, &key, inode->i_ino);
126 
127 	err = ubifs_tnc_lookup(c, &key, ino);
128 	if (err)
129 		goto out_ino;
130 
131 	inode->i_flags |= S_NOCMTIME;
132 #ifndef CONFIG_UBIFS_ATIME_SUPPORT
133 	inode->i_flags |= S_NOATIME;
134 #endif
135 	set_nlink(inode, le32_to_cpu(ino->nlink));
136 	i_uid_write(inode, le32_to_cpu(ino->uid));
137 	i_gid_write(inode, le32_to_cpu(ino->gid));
138 	inode->i_atime.tv_sec  = (int64_t)le64_to_cpu(ino->atime_sec);
139 	inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
140 	inode->i_mtime.tv_sec  = (int64_t)le64_to_cpu(ino->mtime_sec);
141 	inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
142 	inode->i_ctime.tv_sec  = (int64_t)le64_to_cpu(ino->ctime_sec);
143 	inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
144 	inode->i_mode = le32_to_cpu(ino->mode);
145 	inode->i_size = le64_to_cpu(ino->size);
146 
147 	ui->data_len    = le32_to_cpu(ino->data_len);
148 	ui->flags       = le32_to_cpu(ino->flags);
149 	ui->compr_type  = le16_to_cpu(ino->compr_type);
150 	ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
151 	ui->xattr_cnt   = le32_to_cpu(ino->xattr_cnt);
152 	ui->xattr_size  = le32_to_cpu(ino->xattr_size);
153 	ui->xattr_names = le32_to_cpu(ino->xattr_names);
154 	ui->synced_i_size = ui->ui_size = inode->i_size;
155 
156 	ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
157 
158 	err = validate_inode(c, inode);
159 	if (err)
160 		goto out_invalid;
161 
162 	switch (inode->i_mode & S_IFMT) {
163 	case S_IFREG:
164 		inode->i_mapping->a_ops = &ubifs_file_address_operations;
165 		inode->i_op = &ubifs_file_inode_operations;
166 		inode->i_fop = &ubifs_file_operations;
167 		if (ui->xattr) {
168 			ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
169 			if (!ui->data) {
170 				err = -ENOMEM;
171 				goto out_ino;
172 			}
173 			memcpy(ui->data, ino->data, ui->data_len);
174 			((char *)ui->data)[ui->data_len] = '\0';
175 		} else if (ui->data_len != 0) {
176 			err = 10;
177 			goto out_invalid;
178 		}
179 		break;
180 	case S_IFDIR:
181 		inode->i_op  = &ubifs_dir_inode_operations;
182 		inode->i_fop = &ubifs_dir_operations;
183 		if (ui->data_len != 0) {
184 			err = 11;
185 			goto out_invalid;
186 		}
187 		break;
188 	case S_IFLNK:
189 		inode->i_op = &ubifs_symlink_inode_operations;
190 		if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
191 			err = 12;
192 			goto out_invalid;
193 		}
194 		ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
195 		if (!ui->data) {
196 			err = -ENOMEM;
197 			goto out_ino;
198 		}
199 		memcpy(ui->data, ino->data, ui->data_len);
200 		((char *)ui->data)[ui->data_len] = '\0';
201 		inode->i_link = ui->data;
202 		break;
203 	case S_IFBLK:
204 	case S_IFCHR:
205 	{
206 		dev_t rdev;
207 		union ubifs_dev_desc *dev;
208 
209 		ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
210 		if (!ui->data) {
211 			err = -ENOMEM;
212 			goto out_ino;
213 		}
214 
215 		dev = (union ubifs_dev_desc *)ino->data;
216 		if (ui->data_len == sizeof(dev->new))
217 			rdev = new_decode_dev(le32_to_cpu(dev->new));
218 		else if (ui->data_len == sizeof(dev->huge))
219 			rdev = huge_decode_dev(le64_to_cpu(dev->huge));
220 		else {
221 			err = 13;
222 			goto out_invalid;
223 		}
224 		memcpy(ui->data, ino->data, ui->data_len);
225 		inode->i_op = &ubifs_file_inode_operations;
226 		init_special_inode(inode, inode->i_mode, rdev);
227 		break;
228 	}
229 	case S_IFSOCK:
230 	case S_IFIFO:
231 		inode->i_op = &ubifs_file_inode_operations;
232 		init_special_inode(inode, inode->i_mode, 0);
233 		if (ui->data_len != 0) {
234 			err = 14;
235 			goto out_invalid;
236 		}
237 		break;
238 	default:
239 		err = 15;
240 		goto out_invalid;
241 	}
242 
243 	kfree(ino);
244 	ubifs_set_inode_flags(inode);
245 	unlock_new_inode(inode);
246 	return inode;
247 
248 out_invalid:
249 	ubifs_err(c, "inode %lu validation failed, error %d", inode->i_ino, err);
250 	ubifs_dump_node(c, ino);
251 	ubifs_dump_inode(c, inode);
252 	err = -EINVAL;
253 out_ino:
254 	kfree(ino);
255 out:
256 	ubifs_err(c, "failed to read inode %lu, error %d", inode->i_ino, err);
257 	iget_failed(inode);
258 	return ERR_PTR(err);
259 }
260 
ubifs_alloc_inode(struct super_block * sb)261 static struct inode *ubifs_alloc_inode(struct super_block *sb)
262 {
263 	struct ubifs_inode *ui;
264 
265 	ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
266 	if (!ui)
267 		return NULL;
268 
269 	memset((void *)ui + sizeof(struct inode), 0,
270 	       sizeof(struct ubifs_inode) - sizeof(struct inode));
271 	mutex_init(&ui->ui_mutex);
272 	spin_lock_init(&ui->ui_lock);
273 	return &ui->vfs_inode;
274 };
275 
ubifs_i_callback(struct rcu_head * head)276 static void ubifs_i_callback(struct rcu_head *head)
277 {
278 	struct inode *inode = container_of(head, struct inode, i_rcu);
279 	struct ubifs_inode *ui = ubifs_inode(inode);
280 	kmem_cache_free(ubifs_inode_slab, ui);
281 }
282 
ubifs_destroy_inode(struct inode * inode)283 static void ubifs_destroy_inode(struct inode *inode)
284 {
285 	struct ubifs_inode *ui = ubifs_inode(inode);
286 
287 	kfree(ui->data);
288 	call_rcu(&inode->i_rcu, ubifs_i_callback);
289 }
290 
291 /*
292  * Note, Linux write-back code calls this without 'i_mutex'.
293  */
ubifs_write_inode(struct inode * inode,struct writeback_control * wbc)294 static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc)
295 {
296 	int err = 0;
297 	struct ubifs_info *c = inode->i_sb->s_fs_info;
298 	struct ubifs_inode *ui = ubifs_inode(inode);
299 
300 	ubifs_assert(!ui->xattr);
301 	if (is_bad_inode(inode))
302 		return 0;
303 
304 	mutex_lock(&ui->ui_mutex);
305 	/*
306 	 * Due to races between write-back forced by budgeting
307 	 * (see 'sync_some_inodes()') and background write-back, the inode may
308 	 * have already been synchronized, do not do this again. This might
309 	 * also happen if it was synchronized in an VFS operation, e.g.
310 	 * 'ubifs_link()'.
311 	 */
312 	if (!ui->dirty) {
313 		mutex_unlock(&ui->ui_mutex);
314 		return 0;
315 	}
316 
317 	/*
318 	 * As an optimization, do not write orphan inodes to the media just
319 	 * because this is not needed.
320 	 */
321 	dbg_gen("inode %lu, mode %#x, nlink %u",
322 		inode->i_ino, (int)inode->i_mode, inode->i_nlink);
323 	if (inode->i_nlink) {
324 		err = ubifs_jnl_write_inode(c, inode);
325 		if (err)
326 			ubifs_err(c, "can't write inode %lu, error %d",
327 				  inode->i_ino, err);
328 		else
329 			err = dbg_check_inode_size(c, inode, ui->ui_size);
330 	}
331 
332 	ui->dirty = 0;
333 	mutex_unlock(&ui->ui_mutex);
334 	ubifs_release_dirty_inode_budget(c, ui);
335 	return err;
336 }
337 
ubifs_evict_inode(struct inode * inode)338 static void ubifs_evict_inode(struct inode *inode)
339 {
340 	int err;
341 	struct ubifs_info *c = inode->i_sb->s_fs_info;
342 	struct ubifs_inode *ui = ubifs_inode(inode);
343 
344 	if (ui->xattr)
345 		/*
346 		 * Extended attribute inode deletions are fully handled in
347 		 * 'ubifs_removexattr()'. These inodes are special and have
348 		 * limited usage, so there is nothing to do here.
349 		 */
350 		goto out;
351 
352 	dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
353 	ubifs_assert(!atomic_read(&inode->i_count));
354 
355 	truncate_inode_pages_final(&inode->i_data);
356 
357 	if (inode->i_nlink)
358 		goto done;
359 
360 	if (is_bad_inode(inode))
361 		goto out;
362 
363 	ui->ui_size = inode->i_size = 0;
364 	err = ubifs_jnl_delete_inode(c, inode);
365 	if (err)
366 		/*
367 		 * Worst case we have a lost orphan inode wasting space, so a
368 		 * simple error message is OK here.
369 		 */
370 		ubifs_err(c, "can't delete inode %lu, error %d",
371 			  inode->i_ino, err);
372 
373 out:
374 	if (ui->dirty)
375 		ubifs_release_dirty_inode_budget(c, ui);
376 	else {
377 		/* We've deleted something - clean the "no space" flags */
378 		c->bi.nospace = c->bi.nospace_rp = 0;
379 		smp_wmb();
380 	}
381 done:
382 	clear_inode(inode);
383 }
384 
ubifs_dirty_inode(struct inode * inode,int flags)385 static void ubifs_dirty_inode(struct inode *inode, int flags)
386 {
387 	struct ubifs_inode *ui = ubifs_inode(inode);
388 
389 	ubifs_assert(mutex_is_locked(&ui->ui_mutex));
390 	if (!ui->dirty) {
391 		ui->dirty = 1;
392 		dbg_gen("inode %lu",  inode->i_ino);
393 	}
394 }
395 
ubifs_statfs(struct dentry * dentry,struct kstatfs * buf)396 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
397 {
398 	struct ubifs_info *c = dentry->d_sb->s_fs_info;
399 	unsigned long long free;
400 	__le32 *uuid = (__le32 *)c->uuid;
401 
402 	free = ubifs_get_free_space(c);
403 	dbg_gen("free space %lld bytes (%lld blocks)",
404 		free, free >> UBIFS_BLOCK_SHIFT);
405 
406 	buf->f_type = UBIFS_SUPER_MAGIC;
407 	buf->f_bsize = UBIFS_BLOCK_SIZE;
408 	buf->f_blocks = c->block_cnt;
409 	buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
410 	if (free > c->report_rp_size)
411 		buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
412 	else
413 		buf->f_bavail = 0;
414 	buf->f_files = 0;
415 	buf->f_ffree = 0;
416 	buf->f_namelen = UBIFS_MAX_NLEN;
417 	buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
418 	buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
419 	ubifs_assert(buf->f_bfree <= c->block_cnt);
420 	return 0;
421 }
422 
ubifs_show_options(struct seq_file * s,struct dentry * root)423 static int ubifs_show_options(struct seq_file *s, struct dentry *root)
424 {
425 	struct ubifs_info *c = root->d_sb->s_fs_info;
426 
427 	if (c->mount_opts.unmount_mode == 2)
428 		seq_puts(s, ",fast_unmount");
429 	else if (c->mount_opts.unmount_mode == 1)
430 		seq_puts(s, ",norm_unmount");
431 
432 	if (c->mount_opts.bulk_read == 2)
433 		seq_puts(s, ",bulk_read");
434 	else if (c->mount_opts.bulk_read == 1)
435 		seq_puts(s, ",no_bulk_read");
436 
437 	if (c->mount_opts.chk_data_crc == 2)
438 		seq_puts(s, ",chk_data_crc");
439 	else if (c->mount_opts.chk_data_crc == 1)
440 		seq_puts(s, ",no_chk_data_crc");
441 
442 	if (c->mount_opts.override_compr) {
443 		seq_printf(s, ",compr=%s",
444 			   ubifs_compr_name(c->mount_opts.compr_type));
445 	}
446 
447 	return 0;
448 }
449 
ubifs_sync_fs(struct super_block * sb,int wait)450 static int ubifs_sync_fs(struct super_block *sb, int wait)
451 {
452 	int i, err;
453 	struct ubifs_info *c = sb->s_fs_info;
454 
455 	/*
456 	 * Zero @wait is just an advisory thing to help the file system shove
457 	 * lots of data into the queues, and there will be the second
458 	 * '->sync_fs()' call, with non-zero @wait.
459 	 */
460 	if (!wait)
461 		return 0;
462 
463 	/*
464 	 * Synchronize write buffers, because 'ubifs_run_commit()' does not
465 	 * do this if it waits for an already running commit.
466 	 */
467 	for (i = 0; i < c->jhead_cnt; i++) {
468 		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
469 		if (err)
470 			return err;
471 	}
472 
473 	/*
474 	 * Strictly speaking, it is not necessary to commit the journal here,
475 	 * synchronizing write-buffers would be enough. But committing makes
476 	 * UBIFS free space predictions much more accurate, so we want to let
477 	 * the user be able to get more accurate results of 'statfs()' after
478 	 * they synchronize the file system.
479 	 */
480 	err = ubifs_run_commit(c);
481 	if (err)
482 		return err;
483 
484 	return ubi_sync(c->vi.ubi_num);
485 }
486 
487 /**
488  * init_constants_early - initialize UBIFS constants.
489  * @c: UBIFS file-system description object
490  *
491  * This function initialize UBIFS constants which do not need the superblock to
492  * be read. It also checks that the UBI volume satisfies basic UBIFS
493  * requirements. Returns zero in case of success and a negative error code in
494  * case of failure.
495  */
init_constants_early(struct ubifs_info * c)496 static int init_constants_early(struct ubifs_info *c)
497 {
498 	if (c->vi.corrupted) {
499 		ubifs_warn(c, "UBI volume is corrupted - read-only mode");
500 		c->ro_media = 1;
501 	}
502 
503 	if (c->di.ro_mode) {
504 		ubifs_msg(c, "read-only UBI device");
505 		c->ro_media = 1;
506 	}
507 
508 	if (c->vi.vol_type == UBI_STATIC_VOLUME) {
509 		ubifs_msg(c, "static UBI volume - read-only mode");
510 		c->ro_media = 1;
511 	}
512 
513 	c->leb_cnt = c->vi.size;
514 	c->leb_size = c->vi.usable_leb_size;
515 	c->leb_start = c->di.leb_start;
516 	c->half_leb_size = c->leb_size / 2;
517 	c->min_io_size = c->di.min_io_size;
518 	c->min_io_shift = fls(c->min_io_size) - 1;
519 	c->max_write_size = c->di.max_write_size;
520 	c->max_write_shift = fls(c->max_write_size) - 1;
521 
522 	if (c->leb_size < UBIFS_MIN_LEB_SZ) {
523 		ubifs_errc(c, "too small LEBs (%d bytes), min. is %d bytes",
524 			   c->leb_size, UBIFS_MIN_LEB_SZ);
525 		return -EINVAL;
526 	}
527 
528 	if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
529 		ubifs_errc(c, "too few LEBs (%d), min. is %d",
530 			   c->leb_cnt, UBIFS_MIN_LEB_CNT);
531 		return -EINVAL;
532 	}
533 
534 	if (!is_power_of_2(c->min_io_size)) {
535 		ubifs_errc(c, "bad min. I/O size %d", c->min_io_size);
536 		return -EINVAL;
537 	}
538 
539 	/*
540 	 * Maximum write size has to be greater or equivalent to min. I/O
541 	 * size, and be multiple of min. I/O size.
542 	 */
543 	if (c->max_write_size < c->min_io_size ||
544 	    c->max_write_size % c->min_io_size ||
545 	    !is_power_of_2(c->max_write_size)) {
546 		ubifs_errc(c, "bad write buffer size %d for %d min. I/O unit",
547 			   c->max_write_size, c->min_io_size);
548 		return -EINVAL;
549 	}
550 
551 	/*
552 	 * UBIFS aligns all node to 8-byte boundary, so to make function in
553 	 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
554 	 * less than 8.
555 	 */
556 	if (c->min_io_size < 8) {
557 		c->min_io_size = 8;
558 		c->min_io_shift = 3;
559 		if (c->max_write_size < c->min_io_size) {
560 			c->max_write_size = c->min_io_size;
561 			c->max_write_shift = c->min_io_shift;
562 		}
563 	}
564 
565 	c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
566 	c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
567 
568 	/*
569 	 * Initialize node length ranges which are mostly needed for node
570 	 * length validation.
571 	 */
572 	c->ranges[UBIFS_PAD_NODE].len  = UBIFS_PAD_NODE_SZ;
573 	c->ranges[UBIFS_SB_NODE].len   = UBIFS_SB_NODE_SZ;
574 	c->ranges[UBIFS_MST_NODE].len  = UBIFS_MST_NODE_SZ;
575 	c->ranges[UBIFS_REF_NODE].len  = UBIFS_REF_NODE_SZ;
576 	c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
577 	c->ranges[UBIFS_CS_NODE].len   = UBIFS_CS_NODE_SZ;
578 
579 	c->ranges[UBIFS_INO_NODE].min_len  = UBIFS_INO_NODE_SZ;
580 	c->ranges[UBIFS_INO_NODE].max_len  = UBIFS_MAX_INO_NODE_SZ;
581 	c->ranges[UBIFS_ORPH_NODE].min_len =
582 				UBIFS_ORPH_NODE_SZ + sizeof(__le64);
583 	c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
584 	c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
585 	c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
586 	c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
587 	c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
588 	c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
589 	c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
590 	/*
591 	 * Minimum indexing node size is amended later when superblock is
592 	 * read and the key length is known.
593 	 */
594 	c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
595 	/*
596 	 * Maximum indexing node size is amended later when superblock is
597 	 * read and the fanout is known.
598 	 */
599 	c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
600 
601 	/*
602 	 * Initialize dead and dark LEB space watermarks. See gc.c for comments
603 	 * about these values.
604 	 */
605 	c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
606 	c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
607 
608 	/*
609 	 * Calculate how many bytes would be wasted at the end of LEB if it was
610 	 * fully filled with data nodes of maximum size. This is used in
611 	 * calculations when reporting free space.
612 	 */
613 	c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
614 
615 	/* Buffer size for bulk-reads */
616 	c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
617 	if (c->max_bu_buf_len > c->leb_size)
618 		c->max_bu_buf_len = c->leb_size;
619 	return 0;
620 }
621 
622 /**
623  * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
624  * @c: UBIFS file-system description object
625  * @lnum: LEB the write-buffer was synchronized to
626  * @free: how many free bytes left in this LEB
627  * @pad: how many bytes were padded
628  *
629  * This is a callback function which is called by the I/O unit when the
630  * write-buffer is synchronized. We need this to correctly maintain space
631  * accounting in bud logical eraseblocks. This function returns zero in case of
632  * success and a negative error code in case of failure.
633  *
634  * This function actually belongs to the journal, but we keep it here because
635  * we want to keep it static.
636  */
bud_wbuf_callback(struct ubifs_info * c,int lnum,int free,int pad)637 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
638 {
639 	return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
640 }
641 
642 /*
643  * init_constants_sb - initialize UBIFS constants.
644  * @c: UBIFS file-system description object
645  *
646  * This is a helper function which initializes various UBIFS constants after
647  * the superblock has been read. It also checks various UBIFS parameters and
648  * makes sure they are all right. Returns zero in case of success and a
649  * negative error code in case of failure.
650  */
init_constants_sb(struct ubifs_info * c)651 static int init_constants_sb(struct ubifs_info *c)
652 {
653 	int tmp, err;
654 	long long tmp64;
655 
656 	c->main_bytes = (long long)c->main_lebs * c->leb_size;
657 	c->max_znode_sz = sizeof(struct ubifs_znode) +
658 				c->fanout * sizeof(struct ubifs_zbranch);
659 
660 	tmp = ubifs_idx_node_sz(c, 1);
661 	c->ranges[UBIFS_IDX_NODE].min_len = tmp;
662 	c->min_idx_node_sz = ALIGN(tmp, 8);
663 
664 	tmp = ubifs_idx_node_sz(c, c->fanout);
665 	c->ranges[UBIFS_IDX_NODE].max_len = tmp;
666 	c->max_idx_node_sz = ALIGN(tmp, 8);
667 
668 	/* Make sure LEB size is large enough to fit full commit */
669 	tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
670 	tmp = ALIGN(tmp, c->min_io_size);
671 	if (tmp > c->leb_size) {
672 		ubifs_err(c, "too small LEB size %d, at least %d needed",
673 			  c->leb_size, tmp);
674 		return -EINVAL;
675 	}
676 
677 	/*
678 	 * Make sure that the log is large enough to fit reference nodes for
679 	 * all buds plus one reserved LEB.
680 	 */
681 	tmp64 = c->max_bud_bytes + c->leb_size - 1;
682 	c->max_bud_cnt = div_u64(tmp64, c->leb_size);
683 	tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
684 	tmp /= c->leb_size;
685 	tmp += 1;
686 	if (c->log_lebs < tmp) {
687 		ubifs_err(c, "too small log %d LEBs, required min. %d LEBs",
688 			  c->log_lebs, tmp);
689 		return -EINVAL;
690 	}
691 
692 	/*
693 	 * When budgeting we assume worst-case scenarios when the pages are not
694 	 * be compressed and direntries are of the maximum size.
695 	 *
696 	 * Note, data, which may be stored in inodes is budgeted separately, so
697 	 * it is not included into 'c->bi.inode_budget'.
698 	 */
699 	c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
700 	c->bi.inode_budget = UBIFS_INO_NODE_SZ;
701 	c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ;
702 
703 	/*
704 	 * When the amount of flash space used by buds becomes
705 	 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
706 	 * The writers are unblocked when the commit is finished. To avoid
707 	 * writers to be blocked UBIFS initiates background commit in advance,
708 	 * when number of bud bytes becomes above the limit defined below.
709 	 */
710 	c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
711 
712 	/*
713 	 * Ensure minimum journal size. All the bytes in the journal heads are
714 	 * considered to be used, when calculating the current journal usage.
715 	 * Consequently, if the journal is too small, UBIFS will treat it as
716 	 * always full.
717 	 */
718 	tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
719 	if (c->bg_bud_bytes < tmp64)
720 		c->bg_bud_bytes = tmp64;
721 	if (c->max_bud_bytes < tmp64 + c->leb_size)
722 		c->max_bud_bytes = tmp64 + c->leb_size;
723 
724 	err = ubifs_calc_lpt_geom(c);
725 	if (err)
726 		return err;
727 
728 	/* Initialize effective LEB size used in budgeting calculations */
729 	c->idx_leb_size = c->leb_size - c->max_idx_node_sz;
730 	return 0;
731 }
732 
733 /*
734  * init_constants_master - initialize UBIFS constants.
735  * @c: UBIFS file-system description object
736  *
737  * This is a helper function which initializes various UBIFS constants after
738  * the master node has been read. It also checks various UBIFS parameters and
739  * makes sure they are all right.
740  */
init_constants_master(struct ubifs_info * c)741 static void init_constants_master(struct ubifs_info *c)
742 {
743 	long long tmp64;
744 
745 	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
746 	c->report_rp_size = ubifs_reported_space(c, c->rp_size);
747 
748 	/*
749 	 * Calculate total amount of FS blocks. This number is not used
750 	 * internally because it does not make much sense for UBIFS, but it is
751 	 * necessary to report something for the 'statfs()' call.
752 	 *
753 	 * Subtract the LEB reserved for GC, the LEB which is reserved for
754 	 * deletions, minimum LEBs for the index, and assume only one journal
755 	 * head is available.
756 	 */
757 	tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
758 	tmp64 *= (long long)c->leb_size - c->leb_overhead;
759 	tmp64 = ubifs_reported_space(c, tmp64);
760 	c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
761 }
762 
763 /**
764  * take_gc_lnum - reserve GC LEB.
765  * @c: UBIFS file-system description object
766  *
767  * This function ensures that the LEB reserved for garbage collection is marked
768  * as "taken" in lprops. We also have to set free space to LEB size and dirty
769  * space to zero, because lprops may contain out-of-date information if the
770  * file-system was un-mounted before it has been committed. This function
771  * returns zero in case of success and a negative error code in case of
772  * failure.
773  */
take_gc_lnum(struct ubifs_info * c)774 static int take_gc_lnum(struct ubifs_info *c)
775 {
776 	int err;
777 
778 	if (c->gc_lnum == -1) {
779 		ubifs_err(c, "no LEB for GC");
780 		return -EINVAL;
781 	}
782 
783 	/* And we have to tell lprops that this LEB is taken */
784 	err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
785 				  LPROPS_TAKEN, 0, 0);
786 	return err;
787 }
788 
789 /**
790  * alloc_wbufs - allocate write-buffers.
791  * @c: UBIFS file-system description object
792  *
793  * This helper function allocates and initializes UBIFS write-buffers. Returns
794  * zero in case of success and %-ENOMEM in case of failure.
795  */
alloc_wbufs(struct ubifs_info * c)796 static int alloc_wbufs(struct ubifs_info *c)
797 {
798 	int i, err;
799 
800 	c->jheads = kcalloc(c->jhead_cnt, sizeof(struct ubifs_jhead),
801 			    GFP_KERNEL);
802 	if (!c->jheads)
803 		return -ENOMEM;
804 
805 	/* Initialize journal heads */
806 	for (i = 0; i < c->jhead_cnt; i++) {
807 		INIT_LIST_HEAD(&c->jheads[i].buds_list);
808 		err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
809 		if (err)
810 			return err;
811 
812 		c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
813 		c->jheads[i].wbuf.jhead = i;
814 		c->jheads[i].grouped = 1;
815 	}
816 
817 	/*
818 	 * Garbage Collector head does not need to be synchronized by timer.
819 	 * Also GC head nodes are not grouped.
820 	 */
821 	c->jheads[GCHD].wbuf.no_timer = 1;
822 	c->jheads[GCHD].grouped = 0;
823 
824 	return 0;
825 }
826 
827 /**
828  * free_wbufs - free write-buffers.
829  * @c: UBIFS file-system description object
830  */
free_wbufs(struct ubifs_info * c)831 static void free_wbufs(struct ubifs_info *c)
832 {
833 	int i;
834 
835 	if (c->jheads) {
836 		for (i = 0; i < c->jhead_cnt; i++) {
837 			kfree(c->jheads[i].wbuf.buf);
838 			kfree(c->jheads[i].wbuf.inodes);
839 		}
840 		kfree(c->jheads);
841 		c->jheads = NULL;
842 	}
843 }
844 
845 /**
846  * free_orphans - free orphans.
847  * @c: UBIFS file-system description object
848  */
free_orphans(struct ubifs_info * c)849 static void free_orphans(struct ubifs_info *c)
850 {
851 	struct ubifs_orphan *orph;
852 
853 	while (c->orph_dnext) {
854 		orph = c->orph_dnext;
855 		c->orph_dnext = orph->dnext;
856 		list_del(&orph->list);
857 		kfree(orph);
858 	}
859 
860 	while (!list_empty(&c->orph_list)) {
861 		orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
862 		list_del(&orph->list);
863 		kfree(orph);
864 		ubifs_err(c, "orphan list not empty at unmount");
865 	}
866 
867 	vfree(c->orph_buf);
868 	c->orph_buf = NULL;
869 }
870 
871 /**
872  * free_buds - free per-bud objects.
873  * @c: UBIFS file-system description object
874  */
free_buds(struct ubifs_info * c)875 static void free_buds(struct ubifs_info *c)
876 {
877 	struct ubifs_bud *bud, *n;
878 
879 	rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb)
880 		kfree(bud);
881 }
882 
883 /**
884  * check_volume_empty - check if the UBI volume is empty.
885  * @c: UBIFS file-system description object
886  *
887  * This function checks if the UBIFS volume is empty by looking if its LEBs are
888  * mapped or not. The result of checking is stored in the @c->empty variable.
889  * Returns zero in case of success and a negative error code in case of
890  * failure.
891  */
check_volume_empty(struct ubifs_info * c)892 static int check_volume_empty(struct ubifs_info *c)
893 {
894 	int lnum, err;
895 
896 	c->empty = 1;
897 	for (lnum = 0; lnum < c->leb_cnt; lnum++) {
898 		err = ubifs_is_mapped(c, lnum);
899 		if (unlikely(err < 0))
900 			return err;
901 		if (err == 1) {
902 			c->empty = 0;
903 			break;
904 		}
905 
906 		cond_resched();
907 	}
908 
909 	return 0;
910 }
911 
912 /*
913  * UBIFS mount options.
914  *
915  * Opt_fast_unmount: do not run a journal commit before un-mounting
916  * Opt_norm_unmount: run a journal commit before un-mounting
917  * Opt_bulk_read: enable bulk-reads
918  * Opt_no_bulk_read: disable bulk-reads
919  * Opt_chk_data_crc: check CRCs when reading data nodes
920  * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
921  * Opt_override_compr: override default compressor
922  * Opt_err: just end of array marker
923  */
924 enum {
925 	Opt_fast_unmount,
926 	Opt_norm_unmount,
927 	Opt_bulk_read,
928 	Opt_no_bulk_read,
929 	Opt_chk_data_crc,
930 	Opt_no_chk_data_crc,
931 	Opt_override_compr,
932 	Opt_err,
933 };
934 
935 static const match_table_t tokens = {
936 	{Opt_fast_unmount, "fast_unmount"},
937 	{Opt_norm_unmount, "norm_unmount"},
938 	{Opt_bulk_read, "bulk_read"},
939 	{Opt_no_bulk_read, "no_bulk_read"},
940 	{Opt_chk_data_crc, "chk_data_crc"},
941 	{Opt_no_chk_data_crc, "no_chk_data_crc"},
942 	{Opt_override_compr, "compr=%s"},
943 	{Opt_err, NULL},
944 };
945 
946 /**
947  * parse_standard_option - parse a standard mount option.
948  * @option: the option to parse
949  *
950  * Normally, standard mount options like "sync" are passed to file-systems as
951  * flags. However, when a "rootflags=" kernel boot parameter is used, they may
952  * be present in the options string. This function tries to deal with this
953  * situation and parse standard options. Returns 0 if the option was not
954  * recognized, and the corresponding integer flag if it was.
955  *
956  * UBIFS is only interested in the "sync" option, so do not check for anything
957  * else.
958  */
parse_standard_option(const char * option)959 static int parse_standard_option(const char *option)
960 {
961 
962 	pr_notice("UBIFS: parse %s\n", option);
963 	if (!strcmp(option, "sync"))
964 		return MS_SYNCHRONOUS;
965 	return 0;
966 }
967 
968 /**
969  * ubifs_parse_options - parse mount parameters.
970  * @c: UBIFS file-system description object
971  * @options: parameters to parse
972  * @is_remount: non-zero if this is FS re-mount
973  *
974  * This function parses UBIFS mount options and returns zero in case success
975  * and a negative error code in case of failure.
976  */
ubifs_parse_options(struct ubifs_info * c,char * options,int is_remount)977 static int ubifs_parse_options(struct ubifs_info *c, char *options,
978 			       int is_remount)
979 {
980 	char *p;
981 	substring_t args[MAX_OPT_ARGS];
982 
983 	if (!options)
984 		return 0;
985 
986 	while ((p = strsep(&options, ","))) {
987 		int token;
988 
989 		if (!*p)
990 			continue;
991 
992 		token = match_token(p, tokens, args);
993 		switch (token) {
994 		/*
995 		 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
996 		 * We accept them in order to be backward-compatible. But this
997 		 * should be removed at some point.
998 		 */
999 		case Opt_fast_unmount:
1000 			c->mount_opts.unmount_mode = 2;
1001 			break;
1002 		case Opt_norm_unmount:
1003 			c->mount_opts.unmount_mode = 1;
1004 			break;
1005 		case Opt_bulk_read:
1006 			c->mount_opts.bulk_read = 2;
1007 			c->bulk_read = 1;
1008 			break;
1009 		case Opt_no_bulk_read:
1010 			c->mount_opts.bulk_read = 1;
1011 			c->bulk_read = 0;
1012 			break;
1013 		case Opt_chk_data_crc:
1014 			c->mount_opts.chk_data_crc = 2;
1015 			c->no_chk_data_crc = 0;
1016 			break;
1017 		case Opt_no_chk_data_crc:
1018 			c->mount_opts.chk_data_crc = 1;
1019 			c->no_chk_data_crc = 1;
1020 			break;
1021 		case Opt_override_compr:
1022 		{
1023 			char *name = match_strdup(&args[0]);
1024 
1025 			if (!name)
1026 				return -ENOMEM;
1027 			if (!strcmp(name, "none"))
1028 				c->mount_opts.compr_type = UBIFS_COMPR_NONE;
1029 			else if (!strcmp(name, "lzo"))
1030 				c->mount_opts.compr_type = UBIFS_COMPR_LZO;
1031 			else if (!strcmp(name, "zlib"))
1032 				c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
1033 			else {
1034 				ubifs_err(c, "unknown compressor \"%s\"", name); //FIXME: is c ready?
1035 				kfree(name);
1036 				return -EINVAL;
1037 			}
1038 			kfree(name);
1039 			c->mount_opts.override_compr = 1;
1040 			c->default_compr = c->mount_opts.compr_type;
1041 			break;
1042 		}
1043 		default:
1044 		{
1045 			unsigned long flag;
1046 			struct super_block *sb = c->vfs_sb;
1047 
1048 			flag = parse_standard_option(p);
1049 			if (!flag) {
1050 				ubifs_err(c, "unrecognized mount option \"%s\" or missing value",
1051 					  p);
1052 				return -EINVAL;
1053 			}
1054 			sb->s_flags |= flag;
1055 			break;
1056 		}
1057 		}
1058 	}
1059 
1060 	return 0;
1061 }
1062 
1063 /**
1064  * destroy_journal - destroy journal data structures.
1065  * @c: UBIFS file-system description object
1066  *
1067  * This function destroys journal data structures including those that may have
1068  * been created by recovery functions.
1069  */
destroy_journal(struct ubifs_info * c)1070 static void destroy_journal(struct ubifs_info *c)
1071 {
1072 	while (!list_empty(&c->unclean_leb_list)) {
1073 		struct ubifs_unclean_leb *ucleb;
1074 
1075 		ucleb = list_entry(c->unclean_leb_list.next,
1076 				   struct ubifs_unclean_leb, list);
1077 		list_del(&ucleb->list);
1078 		kfree(ucleb);
1079 	}
1080 	while (!list_empty(&c->old_buds)) {
1081 		struct ubifs_bud *bud;
1082 
1083 		bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
1084 		list_del(&bud->list);
1085 		kfree(bud);
1086 	}
1087 	ubifs_destroy_idx_gc(c);
1088 	ubifs_destroy_size_tree(c);
1089 	ubifs_tnc_close(c);
1090 	free_buds(c);
1091 }
1092 
1093 /**
1094  * bu_init - initialize bulk-read information.
1095  * @c: UBIFS file-system description object
1096  */
bu_init(struct ubifs_info * c)1097 static void bu_init(struct ubifs_info *c)
1098 {
1099 	ubifs_assert(c->bulk_read == 1);
1100 
1101 	if (c->bu.buf)
1102 		return; /* Already initialized */
1103 
1104 again:
1105 	c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
1106 	if (!c->bu.buf) {
1107 		if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
1108 			c->max_bu_buf_len = UBIFS_KMALLOC_OK;
1109 			goto again;
1110 		}
1111 
1112 		/* Just disable bulk-read */
1113 		ubifs_warn(c, "cannot allocate %d bytes of memory for bulk-read, disabling it",
1114 			   c->max_bu_buf_len);
1115 		c->mount_opts.bulk_read = 1;
1116 		c->bulk_read = 0;
1117 		return;
1118 	}
1119 }
1120 
1121 /**
1122  * check_free_space - check if there is enough free space to mount.
1123  * @c: UBIFS file-system description object
1124  *
1125  * This function makes sure UBIFS has enough free space to be mounted in
1126  * read/write mode. UBIFS must always have some free space to allow deletions.
1127  */
check_free_space(struct ubifs_info * c)1128 static int check_free_space(struct ubifs_info *c)
1129 {
1130 	ubifs_assert(c->dark_wm > 0);
1131 	if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
1132 		ubifs_err(c, "insufficient free space to mount in R/W mode");
1133 		ubifs_dump_budg(c, &c->bi);
1134 		ubifs_dump_lprops(c);
1135 		return -ENOSPC;
1136 	}
1137 	return 0;
1138 }
1139 
1140 /**
1141  * mount_ubifs - mount UBIFS file-system.
1142  * @c: UBIFS file-system description object
1143  *
1144  * This function mounts UBIFS file system. Returns zero in case of success and
1145  * a negative error code in case of failure.
1146  */
mount_ubifs(struct ubifs_info * c)1147 static int mount_ubifs(struct ubifs_info *c)
1148 {
1149 	int err;
1150 	long long x, y;
1151 	size_t sz;
1152 
1153 	c->ro_mount = !!(c->vfs_sb->s_flags & MS_RDONLY);
1154 	/* Suppress error messages while probing if MS_SILENT is set */
1155 	c->probing = !!(c->vfs_sb->s_flags & MS_SILENT);
1156 
1157 	err = init_constants_early(c);
1158 	if (err)
1159 		return err;
1160 
1161 	err = ubifs_debugging_init(c);
1162 	if (err)
1163 		return err;
1164 
1165 	err = check_volume_empty(c);
1166 	if (err)
1167 		goto out_free;
1168 
1169 	if (c->empty && (c->ro_mount || c->ro_media)) {
1170 		/*
1171 		 * This UBI volume is empty, and read-only, or the file system
1172 		 * is mounted read-only - we cannot format it.
1173 		 */
1174 		ubifs_err(c, "can't format empty UBI volume: read-only %s",
1175 			  c->ro_media ? "UBI volume" : "mount");
1176 		err = -EROFS;
1177 		goto out_free;
1178 	}
1179 
1180 	if (c->ro_media && !c->ro_mount) {
1181 		ubifs_err(c, "cannot mount read-write - read-only media");
1182 		err = -EROFS;
1183 		goto out_free;
1184 	}
1185 
1186 	/*
1187 	 * The requirement for the buffer is that it should fit indexing B-tree
1188 	 * height amount of integers. We assume the height if the TNC tree will
1189 	 * never exceed 64.
1190 	 */
1191 	err = -ENOMEM;
1192 	c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL);
1193 	if (!c->bottom_up_buf)
1194 		goto out_free;
1195 
1196 	c->sbuf = vmalloc(c->leb_size);
1197 	if (!c->sbuf)
1198 		goto out_free;
1199 
1200 	if (!c->ro_mount) {
1201 		c->ileb_buf = vmalloc(c->leb_size);
1202 		if (!c->ileb_buf)
1203 			goto out_free;
1204 	}
1205 
1206 	if (c->bulk_read == 1)
1207 		bu_init(c);
1208 
1209 	if (!c->ro_mount) {
1210 		c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ,
1211 					       GFP_KERNEL);
1212 		if (!c->write_reserve_buf)
1213 			goto out_free;
1214 	}
1215 
1216 	c->mounting = 1;
1217 
1218 	err = ubifs_read_superblock(c);
1219 	if (err)
1220 		goto out_free;
1221 
1222 	c->probing = 0;
1223 
1224 	/*
1225 	 * Make sure the compressor which is set as default in the superblock
1226 	 * or overridden by mount options is actually compiled in.
1227 	 */
1228 	if (!ubifs_compr_present(c->default_compr)) {
1229 		ubifs_err(c, "'compressor \"%s\" is not compiled in",
1230 			  ubifs_compr_name(c->default_compr));
1231 		err = -ENOTSUPP;
1232 		goto out_free;
1233 	}
1234 
1235 	err = init_constants_sb(c);
1236 	if (err)
1237 		goto out_free;
1238 
1239 	sz = ALIGN(c->max_idx_node_sz, c->min_io_size);
1240 	sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size);
1241 	c->cbuf = kmalloc(sz, GFP_NOFS);
1242 	if (!c->cbuf) {
1243 		err = -ENOMEM;
1244 		goto out_free;
1245 	}
1246 
1247 	err = alloc_wbufs(c);
1248 	if (err)
1249 		goto out_cbuf;
1250 
1251 	sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1252 	if (!c->ro_mount) {
1253 		/* Create background thread */
1254 		c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1255 		if (IS_ERR(c->bgt)) {
1256 			err = PTR_ERR(c->bgt);
1257 			c->bgt = NULL;
1258 			ubifs_err(c, "cannot spawn \"%s\", error %d",
1259 				  c->bgt_name, err);
1260 			goto out_wbufs;
1261 		}
1262 		wake_up_process(c->bgt);
1263 	}
1264 
1265 	err = ubifs_read_master(c);
1266 	if (err)
1267 		goto out_master;
1268 
1269 	init_constants_master(c);
1270 
1271 	if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1272 		ubifs_msg(c, "recovery needed");
1273 		c->need_recovery = 1;
1274 	}
1275 
1276 	if (c->need_recovery && !c->ro_mount) {
1277 		err = ubifs_recover_inl_heads(c, c->sbuf);
1278 		if (err)
1279 			goto out_master;
1280 	}
1281 
1282 	err = ubifs_lpt_init(c, 1, !c->ro_mount);
1283 	if (err)
1284 		goto out_master;
1285 
1286 	if (!c->ro_mount && c->space_fixup) {
1287 		err = ubifs_fixup_free_space(c);
1288 		if (err)
1289 			goto out_lpt;
1290 	}
1291 
1292 	if (!c->ro_mount && !c->need_recovery) {
1293 		/*
1294 		 * Set the "dirty" flag so that if we reboot uncleanly we
1295 		 * will notice this immediately on the next mount.
1296 		 */
1297 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1298 		err = ubifs_write_master(c);
1299 		if (err)
1300 			goto out_lpt;
1301 	}
1302 
1303 	err = dbg_check_idx_size(c, c->bi.old_idx_sz);
1304 	if (err)
1305 		goto out_lpt;
1306 
1307 	err = ubifs_replay_journal(c);
1308 	if (err)
1309 		goto out_journal;
1310 
1311 	/* Calculate 'min_idx_lebs' after journal replay */
1312 	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
1313 
1314 	err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount);
1315 	if (err)
1316 		goto out_orphans;
1317 
1318 	if (!c->ro_mount) {
1319 		int lnum;
1320 
1321 		err = check_free_space(c);
1322 		if (err)
1323 			goto out_orphans;
1324 
1325 		/* Check for enough log space */
1326 		lnum = c->lhead_lnum + 1;
1327 		if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1328 			lnum = UBIFS_LOG_LNUM;
1329 		if (lnum == c->ltail_lnum) {
1330 			err = ubifs_consolidate_log(c);
1331 			if (err)
1332 				goto out_orphans;
1333 		}
1334 
1335 		if (c->need_recovery) {
1336 			err = ubifs_recover_size(c);
1337 			if (err)
1338 				goto out_orphans;
1339 			err = ubifs_rcvry_gc_commit(c);
1340 			if (err)
1341 				goto out_orphans;
1342 		} else {
1343 			err = take_gc_lnum(c);
1344 			if (err)
1345 				goto out_orphans;
1346 
1347 			/*
1348 			 * GC LEB may contain garbage if there was an unclean
1349 			 * reboot, and it should be un-mapped.
1350 			 */
1351 			err = ubifs_leb_unmap(c, c->gc_lnum);
1352 			if (err)
1353 				goto out_orphans;
1354 		}
1355 
1356 		err = dbg_check_lprops(c);
1357 		if (err)
1358 			goto out_orphans;
1359 	} else if (c->need_recovery) {
1360 		err = ubifs_recover_size(c);
1361 		if (err)
1362 			goto out_orphans;
1363 	} else {
1364 		/*
1365 		 * Even if we mount read-only, we have to set space in GC LEB
1366 		 * to proper value because this affects UBIFS free space
1367 		 * reporting. We do not want to have a situation when
1368 		 * re-mounting from R/O to R/W changes amount of free space.
1369 		 */
1370 		err = take_gc_lnum(c);
1371 		if (err)
1372 			goto out_orphans;
1373 	}
1374 
1375 	spin_lock(&ubifs_infos_lock);
1376 	list_add_tail(&c->infos_list, &ubifs_infos);
1377 	spin_unlock(&ubifs_infos_lock);
1378 
1379 	if (c->need_recovery) {
1380 		if (c->ro_mount)
1381 			ubifs_msg(c, "recovery deferred");
1382 		else {
1383 			c->need_recovery = 0;
1384 			ubifs_msg(c, "recovery completed");
1385 			/*
1386 			 * GC LEB has to be empty and taken at this point. But
1387 			 * the journal head LEBs may also be accounted as
1388 			 * "empty taken" if they are empty.
1389 			 */
1390 			ubifs_assert(c->lst.taken_empty_lebs > 0);
1391 		}
1392 	} else
1393 		ubifs_assert(c->lst.taken_empty_lebs > 0);
1394 
1395 	err = dbg_check_filesystem(c);
1396 	if (err)
1397 		goto out_infos;
1398 
1399 	err = dbg_debugfs_init_fs(c);
1400 	if (err)
1401 		goto out_infos;
1402 
1403 	c->mounting = 0;
1404 
1405 	ubifs_msg(c, "UBIFS: mounted UBI device %d, volume %d, name \"%s\"%s",
1406 		  c->vi.ubi_num, c->vi.vol_id, c->vi.name,
1407 		  c->ro_mount ? ", R/O mode" : "");
1408 	x = (long long)c->main_lebs * c->leb_size;
1409 	y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1410 	ubifs_msg(c, "LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes",
1411 		  c->leb_size, c->leb_size >> 10, c->min_io_size,
1412 		  c->max_write_size);
1413 	ubifs_msg(c, "FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)",
1414 		  x, x >> 20, c->main_lebs,
1415 		  y, y >> 20, c->log_lebs + c->max_bud_cnt);
1416 	ubifs_msg(c, "reserved for root: %llu bytes (%llu KiB)",
1417 		  c->report_rp_size, c->report_rp_size >> 10);
1418 	ubifs_msg(c, "media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s",
1419 		  c->fmt_version, c->ro_compat_version,
1420 		  UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid,
1421 		  c->big_lpt ? ", big LPT model" : ", small LPT model");
1422 
1423 	dbg_gen("default compressor:  %s", ubifs_compr_name(c->default_compr));
1424 	dbg_gen("data journal heads:  %d",
1425 		c->jhead_cnt - NONDATA_JHEADS_CNT);
1426 	dbg_gen("log LEBs:            %d (%d - %d)",
1427 		c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1428 	dbg_gen("LPT area LEBs:       %d (%d - %d)",
1429 		c->lpt_lebs, c->lpt_first, c->lpt_last);
1430 	dbg_gen("orphan area LEBs:    %d (%d - %d)",
1431 		c->orph_lebs, c->orph_first, c->orph_last);
1432 	dbg_gen("main area LEBs:      %d (%d - %d)",
1433 		c->main_lebs, c->main_first, c->leb_cnt - 1);
1434 	dbg_gen("index LEBs:          %d", c->lst.idx_lebs);
1435 	dbg_gen("total index bytes:   %lld (%lld KiB, %lld MiB)",
1436 		c->bi.old_idx_sz, c->bi.old_idx_sz >> 10,
1437 		c->bi.old_idx_sz >> 20);
1438 	dbg_gen("key hash type:       %d", c->key_hash_type);
1439 	dbg_gen("tree fanout:         %d", c->fanout);
1440 	dbg_gen("reserved GC LEB:     %d", c->gc_lnum);
1441 	dbg_gen("max. znode size      %d", c->max_znode_sz);
1442 	dbg_gen("max. index node size %d", c->max_idx_node_sz);
1443 	dbg_gen("node sizes:          data %zu, inode %zu, dentry %zu",
1444 		UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
1445 	dbg_gen("node sizes:          trun %zu, sb %zu, master %zu",
1446 		UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
1447 	dbg_gen("node sizes:          ref %zu, cmt. start %zu, orph %zu",
1448 		UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
1449 	dbg_gen("max. node sizes:     data %zu, inode %zu dentry %zu, idx %d",
1450 		UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
1451 		UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout));
1452 	dbg_gen("dead watermark:      %d", c->dead_wm);
1453 	dbg_gen("dark watermark:      %d", c->dark_wm);
1454 	dbg_gen("LEB overhead:        %d", c->leb_overhead);
1455 	x = (long long)c->main_lebs * c->dark_wm;
1456 	dbg_gen("max. dark space:     %lld (%lld KiB, %lld MiB)",
1457 		x, x >> 10, x >> 20);
1458 	dbg_gen("maximum bud bytes:   %lld (%lld KiB, %lld MiB)",
1459 		c->max_bud_bytes, c->max_bud_bytes >> 10,
1460 		c->max_bud_bytes >> 20);
1461 	dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1462 		c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1463 		c->bg_bud_bytes >> 20);
1464 	dbg_gen("current bud bytes    %lld (%lld KiB, %lld MiB)",
1465 		c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1466 	dbg_gen("max. seq. number:    %llu", c->max_sqnum);
1467 	dbg_gen("commit number:       %llu", c->cmt_no);
1468 
1469 	return 0;
1470 
1471 out_infos:
1472 	spin_lock(&ubifs_infos_lock);
1473 	list_del(&c->infos_list);
1474 	spin_unlock(&ubifs_infos_lock);
1475 out_orphans:
1476 	free_orphans(c);
1477 out_journal:
1478 	destroy_journal(c);
1479 out_lpt:
1480 	ubifs_lpt_free(c, 0);
1481 out_master:
1482 	kfree(c->mst_node);
1483 	kfree(c->rcvrd_mst_node);
1484 	if (c->bgt)
1485 		kthread_stop(c->bgt);
1486 out_wbufs:
1487 	free_wbufs(c);
1488 out_cbuf:
1489 	kfree(c->cbuf);
1490 out_free:
1491 	kfree(c->write_reserve_buf);
1492 	kfree(c->bu.buf);
1493 	vfree(c->ileb_buf);
1494 	vfree(c->sbuf);
1495 	kfree(c->bottom_up_buf);
1496 	ubifs_debugging_exit(c);
1497 	return err;
1498 }
1499 
1500 /**
1501  * ubifs_umount - un-mount UBIFS file-system.
1502  * @c: UBIFS file-system description object
1503  *
1504  * Note, this function is called to free allocated resourced when un-mounting,
1505  * as well as free resources when an error occurred while we were half way
1506  * through mounting (error path cleanup function). So it has to make sure the
1507  * resource was actually allocated before freeing it.
1508  */
ubifs_umount(struct ubifs_info * c)1509 static void ubifs_umount(struct ubifs_info *c)
1510 {
1511 	dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1512 		c->vi.vol_id);
1513 
1514 	dbg_debugfs_exit_fs(c);
1515 	spin_lock(&ubifs_infos_lock);
1516 	list_del(&c->infos_list);
1517 	spin_unlock(&ubifs_infos_lock);
1518 
1519 	if (c->bgt)
1520 		kthread_stop(c->bgt);
1521 
1522 	destroy_journal(c);
1523 	free_wbufs(c);
1524 	free_orphans(c);
1525 	ubifs_lpt_free(c, 0);
1526 
1527 	kfree(c->cbuf);
1528 	kfree(c->rcvrd_mst_node);
1529 	kfree(c->mst_node);
1530 	kfree(c->write_reserve_buf);
1531 	kfree(c->bu.buf);
1532 	vfree(c->ileb_buf);
1533 	vfree(c->sbuf);
1534 	kfree(c->bottom_up_buf);
1535 	ubifs_debugging_exit(c);
1536 }
1537 
1538 /**
1539  * ubifs_remount_rw - re-mount in read-write mode.
1540  * @c: UBIFS file-system description object
1541  *
1542  * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1543  * mode. This function allocates the needed resources and re-mounts UBIFS in
1544  * read-write mode.
1545  */
ubifs_remount_rw(struct ubifs_info * c)1546 static int ubifs_remount_rw(struct ubifs_info *c)
1547 {
1548 	int err, lnum;
1549 
1550 	if (c->rw_incompat) {
1551 		ubifs_err(c, "the file-system is not R/W-compatible");
1552 		ubifs_msg(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
1553 			  c->fmt_version, c->ro_compat_version,
1554 			  UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION);
1555 		return -EROFS;
1556 	}
1557 
1558 	mutex_lock(&c->umount_mutex);
1559 	dbg_save_space_info(c);
1560 	c->remounting_rw = 1;
1561 	c->ro_mount = 0;
1562 
1563 	if (c->space_fixup) {
1564 		err = ubifs_fixup_free_space(c);
1565 		if (err)
1566 			goto out;
1567 	}
1568 
1569 	err = check_free_space(c);
1570 	if (err)
1571 		goto out;
1572 
1573 	if (c->old_leb_cnt != c->leb_cnt) {
1574 		struct ubifs_sb_node *sup;
1575 
1576 		sup = ubifs_read_sb_node(c);
1577 		if (IS_ERR(sup)) {
1578 			err = PTR_ERR(sup);
1579 			goto out;
1580 		}
1581 		sup->leb_cnt = cpu_to_le32(c->leb_cnt);
1582 		err = ubifs_write_sb_node(c, sup);
1583 		kfree(sup);
1584 		if (err)
1585 			goto out;
1586 	}
1587 
1588 	if (c->need_recovery) {
1589 		ubifs_msg(c, "completing deferred recovery");
1590 		err = ubifs_write_rcvrd_mst_node(c);
1591 		if (err)
1592 			goto out;
1593 		err = ubifs_recover_size(c);
1594 		if (err)
1595 			goto out;
1596 		err = ubifs_clean_lebs(c, c->sbuf);
1597 		if (err)
1598 			goto out;
1599 		err = ubifs_recover_inl_heads(c, c->sbuf);
1600 		if (err)
1601 			goto out;
1602 	} else {
1603 		/* A readonly mount is not allowed to have orphans */
1604 		ubifs_assert(c->tot_orphans == 0);
1605 		err = ubifs_clear_orphans(c);
1606 		if (err)
1607 			goto out;
1608 	}
1609 
1610 	if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1611 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1612 		err = ubifs_write_master(c);
1613 		if (err)
1614 			goto out;
1615 	}
1616 
1617 	c->ileb_buf = vmalloc(c->leb_size);
1618 	if (!c->ileb_buf) {
1619 		err = -ENOMEM;
1620 		goto out;
1621 	}
1622 
1623 	c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ, GFP_KERNEL);
1624 	if (!c->write_reserve_buf) {
1625 		err = -ENOMEM;
1626 		goto out;
1627 	}
1628 
1629 	err = ubifs_lpt_init(c, 0, 1);
1630 	if (err)
1631 		goto out;
1632 
1633 	/* Create background thread */
1634 	c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1635 	if (IS_ERR(c->bgt)) {
1636 		err = PTR_ERR(c->bgt);
1637 		c->bgt = NULL;
1638 		ubifs_err(c, "cannot spawn \"%s\", error %d",
1639 			  c->bgt_name, err);
1640 		goto out;
1641 	}
1642 	wake_up_process(c->bgt);
1643 
1644 	c->orph_buf = vmalloc(c->leb_size);
1645 	if (!c->orph_buf) {
1646 		err = -ENOMEM;
1647 		goto out;
1648 	}
1649 
1650 	/* Check for enough log space */
1651 	lnum = c->lhead_lnum + 1;
1652 	if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1653 		lnum = UBIFS_LOG_LNUM;
1654 	if (lnum == c->ltail_lnum) {
1655 		err = ubifs_consolidate_log(c);
1656 		if (err)
1657 			goto out;
1658 	}
1659 
1660 	if (c->need_recovery)
1661 		err = ubifs_rcvry_gc_commit(c);
1662 	else
1663 		err = ubifs_leb_unmap(c, c->gc_lnum);
1664 	if (err)
1665 		goto out;
1666 
1667 	dbg_gen("re-mounted read-write");
1668 	c->remounting_rw = 0;
1669 
1670 	if (c->need_recovery) {
1671 		c->need_recovery = 0;
1672 		ubifs_msg(c, "deferred recovery completed");
1673 	} else {
1674 		/*
1675 		 * Do not run the debugging space check if the were doing
1676 		 * recovery, because when we saved the information we had the
1677 		 * file-system in a state where the TNC and lprops has been
1678 		 * modified in memory, but all the I/O operations (including a
1679 		 * commit) were deferred. So the file-system was in
1680 		 * "non-committed" state. Now the file-system is in committed
1681 		 * state, and of course the amount of free space will change
1682 		 * because, for example, the old index size was imprecise.
1683 		 */
1684 		err = dbg_check_space_info(c);
1685 	}
1686 
1687 	mutex_unlock(&c->umount_mutex);
1688 	return err;
1689 
1690 out:
1691 	c->ro_mount = 1;
1692 	vfree(c->orph_buf);
1693 	c->orph_buf = NULL;
1694 	if (c->bgt) {
1695 		kthread_stop(c->bgt);
1696 		c->bgt = NULL;
1697 	}
1698 	free_wbufs(c);
1699 	kfree(c->write_reserve_buf);
1700 	c->write_reserve_buf = NULL;
1701 	vfree(c->ileb_buf);
1702 	c->ileb_buf = NULL;
1703 	ubifs_lpt_free(c, 1);
1704 	c->remounting_rw = 0;
1705 	mutex_unlock(&c->umount_mutex);
1706 	return err;
1707 }
1708 
1709 /**
1710  * ubifs_remount_ro - re-mount in read-only mode.
1711  * @c: UBIFS file-system description object
1712  *
1713  * We assume VFS has stopped writing. Possibly the background thread could be
1714  * running a commit, however kthread_stop will wait in that case.
1715  */
ubifs_remount_ro(struct ubifs_info * c)1716 static void ubifs_remount_ro(struct ubifs_info *c)
1717 {
1718 	int i, err;
1719 
1720 	ubifs_assert(!c->need_recovery);
1721 	ubifs_assert(!c->ro_mount);
1722 
1723 	mutex_lock(&c->umount_mutex);
1724 	if (c->bgt) {
1725 		kthread_stop(c->bgt);
1726 		c->bgt = NULL;
1727 	}
1728 
1729 	dbg_save_space_info(c);
1730 
1731 	for (i = 0; i < c->jhead_cnt; i++) {
1732 		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1733 		if (err)
1734 			ubifs_ro_mode(c, err);
1735 	}
1736 
1737 	c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1738 	c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1739 	c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1740 	err = ubifs_write_master(c);
1741 	if (err)
1742 		ubifs_ro_mode(c, err);
1743 
1744 	vfree(c->orph_buf);
1745 	c->orph_buf = NULL;
1746 	kfree(c->write_reserve_buf);
1747 	c->write_reserve_buf = NULL;
1748 	vfree(c->ileb_buf);
1749 	c->ileb_buf = NULL;
1750 	ubifs_lpt_free(c, 1);
1751 	c->ro_mount = 1;
1752 	err = dbg_check_space_info(c);
1753 	if (err)
1754 		ubifs_ro_mode(c, err);
1755 	mutex_unlock(&c->umount_mutex);
1756 }
1757 
ubifs_put_super(struct super_block * sb)1758 static void ubifs_put_super(struct super_block *sb)
1759 {
1760 	int i;
1761 	struct ubifs_info *c = sb->s_fs_info;
1762 
1763 	ubifs_msg(c, "un-mount UBI device %d", c->vi.ubi_num);
1764 
1765 	/*
1766 	 * The following asserts are only valid if there has not been a failure
1767 	 * of the media. For example, there will be dirty inodes if we failed
1768 	 * to write them back because of I/O errors.
1769 	 */
1770 	if (!c->ro_error) {
1771 		ubifs_assert(c->bi.idx_growth == 0);
1772 		ubifs_assert(c->bi.dd_growth == 0);
1773 		ubifs_assert(c->bi.data_growth == 0);
1774 	}
1775 
1776 	/*
1777 	 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1778 	 * and file system un-mount. Namely, it prevents the shrinker from
1779 	 * picking this superblock for shrinking - it will be just skipped if
1780 	 * the mutex is locked.
1781 	 */
1782 	mutex_lock(&c->umount_mutex);
1783 	if (!c->ro_mount) {
1784 		/*
1785 		 * First of all kill the background thread to make sure it does
1786 		 * not interfere with un-mounting and freeing resources.
1787 		 */
1788 		if (c->bgt) {
1789 			kthread_stop(c->bgt);
1790 			c->bgt = NULL;
1791 		}
1792 
1793 		/*
1794 		 * On fatal errors c->ro_error is set to 1, in which case we do
1795 		 * not write the master node.
1796 		 */
1797 		if (!c->ro_error) {
1798 			int err;
1799 
1800 			/* Synchronize write-buffers */
1801 			for (i = 0; i < c->jhead_cnt; i++) {
1802 				err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1803 				if (err)
1804 					ubifs_ro_mode(c, err);
1805 			}
1806 
1807 			/*
1808 			 * We are being cleanly unmounted which means the
1809 			 * orphans were killed - indicate this in the master
1810 			 * node. Also save the reserved GC LEB number.
1811 			 */
1812 			c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1813 			c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1814 			c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1815 			err = ubifs_write_master(c);
1816 			if (err)
1817 				/*
1818 				 * Recovery will attempt to fix the master area
1819 				 * next mount, so we just print a message and
1820 				 * continue to unmount normally.
1821 				 */
1822 				ubifs_err(c, "failed to write master node, error %d",
1823 					  err);
1824 		} else {
1825 			for (i = 0; i < c->jhead_cnt; i++)
1826 				/* Make sure write-buffer timers are canceled */
1827 				hrtimer_cancel(&c->jheads[i].wbuf.timer);
1828 		}
1829 	}
1830 
1831 	ubifs_umount(c);
1832 	bdi_destroy(&c->bdi);
1833 	ubi_close_volume(c->ubi);
1834 	mutex_unlock(&c->umount_mutex);
1835 }
1836 
ubifs_remount_fs(struct super_block * sb,int * flags,char * data)1837 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
1838 {
1839 	int err;
1840 	struct ubifs_info *c = sb->s_fs_info;
1841 
1842 	sync_filesystem(sb);
1843 	dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
1844 
1845 	err = ubifs_parse_options(c, data, 1);
1846 	if (err) {
1847 		ubifs_err(c, "invalid or unknown remount parameter");
1848 		return err;
1849 	}
1850 
1851 	if (c->ro_mount && !(*flags & MS_RDONLY)) {
1852 		if (c->ro_error) {
1853 			ubifs_msg(c, "cannot re-mount R/W due to prior errors");
1854 			return -EROFS;
1855 		}
1856 		if (c->ro_media) {
1857 			ubifs_msg(c, "cannot re-mount R/W - UBI volume is R/O");
1858 			return -EROFS;
1859 		}
1860 		err = ubifs_remount_rw(c);
1861 		if (err)
1862 			return err;
1863 	} else if (!c->ro_mount && (*flags & MS_RDONLY)) {
1864 		if (c->ro_error) {
1865 			ubifs_msg(c, "cannot re-mount R/O due to prior errors");
1866 			return -EROFS;
1867 		}
1868 		ubifs_remount_ro(c);
1869 	}
1870 
1871 	if (c->bulk_read == 1)
1872 		bu_init(c);
1873 	else {
1874 		dbg_gen("disable bulk-read");
1875 		kfree(c->bu.buf);
1876 		c->bu.buf = NULL;
1877 	}
1878 
1879 	ubifs_assert(c->lst.taken_empty_lebs > 0);
1880 	return 0;
1881 }
1882 
1883 const struct super_operations ubifs_super_operations = {
1884 	.alloc_inode   = ubifs_alloc_inode,
1885 	.destroy_inode = ubifs_destroy_inode,
1886 	.put_super     = ubifs_put_super,
1887 	.write_inode   = ubifs_write_inode,
1888 	.evict_inode   = ubifs_evict_inode,
1889 	.statfs        = ubifs_statfs,
1890 	.dirty_inode   = ubifs_dirty_inode,
1891 	.remount_fs    = ubifs_remount_fs,
1892 	.show_options  = ubifs_show_options,
1893 	.sync_fs       = ubifs_sync_fs,
1894 };
1895 
1896 /**
1897  * open_ubi - parse UBI device name string and open the UBI device.
1898  * @name: UBI volume name
1899  * @mode: UBI volume open mode
1900  *
1901  * The primary method of mounting UBIFS is by specifying the UBI volume
1902  * character device node path. However, UBIFS may also be mounted withoug any
1903  * character device node using one of the following methods:
1904  *
1905  * o ubiX_Y    - mount UBI device number X, volume Y;
1906  * o ubiY      - mount UBI device number 0, volume Y;
1907  * o ubiX:NAME - mount UBI device X, volume with name NAME;
1908  * o ubi:NAME  - mount UBI device 0, volume with name NAME.
1909  *
1910  * Alternative '!' separator may be used instead of ':' (because some shells
1911  * like busybox may interpret ':' as an NFS host name separator). This function
1912  * returns UBI volume description object in case of success and a negative
1913  * error code in case of failure.
1914  */
open_ubi(const char * name,int mode)1915 static struct ubi_volume_desc *open_ubi(const char *name, int mode)
1916 {
1917 	struct ubi_volume_desc *ubi;
1918 	int dev, vol;
1919 	char *endptr;
1920 
1921 	/* First, try to open using the device node path method */
1922 	ubi = ubi_open_volume_path(name, mode);
1923 	if (!IS_ERR(ubi))
1924 		return ubi;
1925 
1926 	/* Try the "nodev" method */
1927 	if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
1928 		return ERR_PTR(-EINVAL);
1929 
1930 	/* ubi:NAME method */
1931 	if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
1932 		return ubi_open_volume_nm(0, name + 4, mode);
1933 
1934 	if (!isdigit(name[3]))
1935 		return ERR_PTR(-EINVAL);
1936 
1937 	dev = simple_strtoul(name + 3, &endptr, 0);
1938 
1939 	/* ubiY method */
1940 	if (*endptr == '\0')
1941 		return ubi_open_volume(0, dev, mode);
1942 
1943 	/* ubiX_Y method */
1944 	if (*endptr == '_' && isdigit(endptr[1])) {
1945 		vol = simple_strtoul(endptr + 1, &endptr, 0);
1946 		if (*endptr != '\0')
1947 			return ERR_PTR(-EINVAL);
1948 		return ubi_open_volume(dev, vol, mode);
1949 	}
1950 
1951 	/* ubiX:NAME method */
1952 	if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
1953 		return ubi_open_volume_nm(dev, ++endptr, mode);
1954 
1955 	return ERR_PTR(-EINVAL);
1956 }
1957 
alloc_ubifs_info(struct ubi_volume_desc * ubi)1958 static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi)
1959 {
1960 	struct ubifs_info *c;
1961 
1962 	c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
1963 	if (c) {
1964 		spin_lock_init(&c->cnt_lock);
1965 		spin_lock_init(&c->cs_lock);
1966 		spin_lock_init(&c->buds_lock);
1967 		spin_lock_init(&c->space_lock);
1968 		spin_lock_init(&c->orphan_lock);
1969 		init_rwsem(&c->commit_sem);
1970 		mutex_init(&c->lp_mutex);
1971 		mutex_init(&c->tnc_mutex);
1972 		mutex_init(&c->log_mutex);
1973 		mutex_init(&c->umount_mutex);
1974 		mutex_init(&c->bu_mutex);
1975 		mutex_init(&c->write_reserve_mutex);
1976 		init_waitqueue_head(&c->cmt_wq);
1977 		c->buds = RB_ROOT;
1978 		c->old_idx = RB_ROOT;
1979 		c->size_tree = RB_ROOT;
1980 		c->orph_tree = RB_ROOT;
1981 		INIT_LIST_HEAD(&c->infos_list);
1982 		INIT_LIST_HEAD(&c->idx_gc);
1983 		INIT_LIST_HEAD(&c->replay_list);
1984 		INIT_LIST_HEAD(&c->replay_buds);
1985 		INIT_LIST_HEAD(&c->uncat_list);
1986 		INIT_LIST_HEAD(&c->empty_list);
1987 		INIT_LIST_HEAD(&c->freeable_list);
1988 		INIT_LIST_HEAD(&c->frdi_idx_list);
1989 		INIT_LIST_HEAD(&c->unclean_leb_list);
1990 		INIT_LIST_HEAD(&c->old_buds);
1991 		INIT_LIST_HEAD(&c->orph_list);
1992 		INIT_LIST_HEAD(&c->orph_new);
1993 		c->no_chk_data_crc = 1;
1994 
1995 		c->highest_inum = UBIFS_FIRST_INO;
1996 		c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
1997 
1998 		ubi_get_volume_info(ubi, &c->vi);
1999 		ubi_get_device_info(c->vi.ubi_num, &c->di);
2000 	}
2001 	return c;
2002 }
2003 
ubifs_fill_super(struct super_block * sb,void * data,int silent)2004 static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
2005 {
2006 	struct ubifs_info *c = sb->s_fs_info;
2007 	struct inode *root;
2008 	int err;
2009 
2010 	c->vfs_sb = sb;
2011 	/* Re-open the UBI device in read-write mode */
2012 	c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
2013 	if (IS_ERR(c->ubi)) {
2014 		err = PTR_ERR(c->ubi);
2015 		goto out;
2016 	}
2017 
2018 	/*
2019 	 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
2020 	 * UBIFS, I/O is not deferred, it is done immediately in readpage,
2021 	 * which means the user would have to wait not just for their own I/O
2022 	 * but the read-ahead I/O as well i.e. completely pointless.
2023 	 *
2024 	 * Read-ahead will be disabled because @c->bdi.ra_pages is 0.
2025 	 */
2026 	c->bdi.name = "ubifs",
2027 	c->bdi.capabilities = 0;
2028 	err  = bdi_init(&c->bdi);
2029 	if (err)
2030 		goto out_close;
2031 	err = bdi_register(&c->bdi, NULL, "ubifs_%d_%d",
2032 			   c->vi.ubi_num, c->vi.vol_id);
2033 	if (err)
2034 		goto out_bdi;
2035 
2036 	err = ubifs_parse_options(c, data, 0);
2037 	if (err)
2038 		goto out_bdi;
2039 
2040 	sb->s_bdi = &c->bdi;
2041 	sb->s_fs_info = c;
2042 	sb->s_magic = UBIFS_SUPER_MAGIC;
2043 	sb->s_blocksize = UBIFS_BLOCK_SIZE;
2044 	sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
2045 	sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
2046 	if (c->max_inode_sz > MAX_LFS_FILESIZE)
2047 		sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
2048 	sb->s_op = &ubifs_super_operations;
2049 	sb->s_xattr = ubifs_xattr_handlers;
2050 
2051 	mutex_lock(&c->umount_mutex);
2052 	err = mount_ubifs(c);
2053 	if (err) {
2054 		ubifs_assert(err < 0);
2055 		goto out_unlock;
2056 	}
2057 
2058 	/* Read the root inode */
2059 	root = ubifs_iget(sb, UBIFS_ROOT_INO);
2060 	if (IS_ERR(root)) {
2061 		err = PTR_ERR(root);
2062 		goto out_umount;
2063 	}
2064 
2065 	sb->s_root = d_make_root(root);
2066 	if (!sb->s_root) {
2067 		err = -ENOMEM;
2068 		goto out_umount;
2069 	}
2070 
2071 	mutex_unlock(&c->umount_mutex);
2072 	return 0;
2073 
2074 out_umount:
2075 	ubifs_umount(c);
2076 out_unlock:
2077 	mutex_unlock(&c->umount_mutex);
2078 out_bdi:
2079 	bdi_destroy(&c->bdi);
2080 out_close:
2081 	ubi_close_volume(c->ubi);
2082 out:
2083 	return err;
2084 }
2085 
sb_test(struct super_block * sb,void * data)2086 static int sb_test(struct super_block *sb, void *data)
2087 {
2088 	struct ubifs_info *c1 = data;
2089 	struct ubifs_info *c = sb->s_fs_info;
2090 
2091 	return c->vi.cdev == c1->vi.cdev;
2092 }
2093 
sb_set(struct super_block * sb,void * data)2094 static int sb_set(struct super_block *sb, void *data)
2095 {
2096 	sb->s_fs_info = data;
2097 	return set_anon_super(sb, NULL);
2098 }
2099 
ubifs_mount(struct file_system_type * fs_type,int flags,const char * name,void * data)2100 static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags,
2101 			const char *name, void *data)
2102 {
2103 	struct ubi_volume_desc *ubi;
2104 	struct ubifs_info *c;
2105 	struct super_block *sb;
2106 	int err;
2107 
2108 	dbg_gen("name %s, flags %#x", name, flags);
2109 
2110 	/*
2111 	 * Get UBI device number and volume ID. Mount it read-only so far
2112 	 * because this might be a new mount point, and UBI allows only one
2113 	 * read-write user at a time.
2114 	 */
2115 	ubi = open_ubi(name, UBI_READONLY);
2116 	if (IS_ERR(ubi)) {
2117 		if (!(flags & MS_SILENT))
2118 			pr_err("UBIFS error (pid: %d): cannot open \"%s\", error %d",
2119 			       current->pid, name, (int)PTR_ERR(ubi));
2120 		return ERR_CAST(ubi);
2121 	}
2122 
2123 	c = alloc_ubifs_info(ubi);
2124 	if (!c) {
2125 		err = -ENOMEM;
2126 		goto out_close;
2127 	}
2128 
2129 	dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2130 
2131 	sb = sget(fs_type, sb_test, sb_set, flags, c);
2132 	if (IS_ERR(sb)) {
2133 		err = PTR_ERR(sb);
2134 		kfree(c);
2135 		goto out_close;
2136 	}
2137 
2138 	if (sb->s_root) {
2139 		struct ubifs_info *c1 = sb->s_fs_info;
2140 		kfree(c);
2141 		/* A new mount point for already mounted UBIFS */
2142 		dbg_gen("this ubi volume is already mounted");
2143 		if (!!(flags & MS_RDONLY) != c1->ro_mount) {
2144 			err = -EBUSY;
2145 			goto out_deact;
2146 		}
2147 	} else {
2148 		err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
2149 		if (err)
2150 			goto out_deact;
2151 		/* We do not support atime */
2152 		sb->s_flags |= MS_ACTIVE;
2153 #ifndef CONFIG_UBIFS_ATIME_SUPPORT
2154 		sb->s_flags |= MS_NOATIME;
2155 #else
2156 		ubifs_msg(c, "full atime support is enabled.");
2157 #endif
2158 	}
2159 
2160 	/* 'fill_super()' opens ubi again so we must close it here */
2161 	ubi_close_volume(ubi);
2162 
2163 	return dget(sb->s_root);
2164 
2165 out_deact:
2166 	deactivate_locked_super(sb);
2167 out_close:
2168 	ubi_close_volume(ubi);
2169 	return ERR_PTR(err);
2170 }
2171 
kill_ubifs_super(struct super_block * s)2172 static void kill_ubifs_super(struct super_block *s)
2173 {
2174 	struct ubifs_info *c = s->s_fs_info;
2175 	kill_anon_super(s);
2176 	kfree(c);
2177 }
2178 
2179 static struct file_system_type ubifs_fs_type = {
2180 	.name    = "ubifs",
2181 	.owner   = THIS_MODULE,
2182 	.mount   = ubifs_mount,
2183 	.kill_sb = kill_ubifs_super,
2184 };
2185 MODULE_ALIAS_FS("ubifs");
2186 
2187 /*
2188  * Inode slab cache constructor.
2189  */
inode_slab_ctor(void * obj)2190 static void inode_slab_ctor(void *obj)
2191 {
2192 	struct ubifs_inode *ui = obj;
2193 	inode_init_once(&ui->vfs_inode);
2194 }
2195 
ubifs_init(void)2196 static int __init ubifs_init(void)
2197 {
2198 	int err;
2199 
2200 	BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
2201 
2202 	/* Make sure node sizes are 8-byte aligned */
2203 	BUILD_BUG_ON(UBIFS_CH_SZ        & 7);
2204 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ  & 7);
2205 	BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
2206 	BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
2207 	BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
2208 	BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
2209 	BUILD_BUG_ON(UBIFS_SB_NODE_SZ   & 7);
2210 	BUILD_BUG_ON(UBIFS_MST_NODE_SZ  & 7);
2211 	BUILD_BUG_ON(UBIFS_REF_NODE_SZ  & 7);
2212 	BUILD_BUG_ON(UBIFS_CS_NODE_SZ   & 7);
2213 	BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
2214 
2215 	BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
2216 	BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
2217 	BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
2218 	BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  & 7);
2219 	BUILD_BUG_ON(UBIFS_MAX_NODE_SZ      & 7);
2220 	BUILD_BUG_ON(MIN_WRITE_SZ           & 7);
2221 
2222 	/* Check min. node size */
2223 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ  < MIN_WRITE_SZ);
2224 	BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
2225 	BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
2226 	BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
2227 
2228 	BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2229 	BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2230 	BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
2231 	BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  > UBIFS_MAX_NODE_SZ);
2232 
2233 	/* Defined node sizes */
2234 	BUILD_BUG_ON(UBIFS_SB_NODE_SZ  != 4096);
2235 	BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
2236 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
2237 	BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
2238 
2239 	/*
2240 	 * We use 2 bit wide bit-fields to store compression type, which should
2241 	 * be amended if more compressors are added. The bit-fields are:
2242 	 * @compr_type in 'struct ubifs_inode', @default_compr in
2243 	 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2244 	 */
2245 	BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
2246 
2247 	/*
2248 	 * We require that PAGE_SIZE is greater-than-or-equal-to
2249 	 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2250 	 */
2251 	if (PAGE_SIZE < UBIFS_BLOCK_SIZE) {
2252 		pr_err("UBIFS error (pid %d): VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes",
2253 		       current->pid, (unsigned int)PAGE_SIZE);
2254 		return -EINVAL;
2255 	}
2256 
2257 	ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
2258 				sizeof(struct ubifs_inode), 0,
2259 				SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT |
2260 				SLAB_ACCOUNT, &inode_slab_ctor);
2261 	if (!ubifs_inode_slab)
2262 		return -ENOMEM;
2263 
2264 	err = register_shrinker(&ubifs_shrinker_info);
2265 	if (err)
2266 		goto out_slab;
2267 
2268 	err = ubifs_compressors_init();
2269 	if (err)
2270 		goto out_shrinker;
2271 
2272 	err = dbg_debugfs_init();
2273 	if (err)
2274 		goto out_compr;
2275 
2276 	err = register_filesystem(&ubifs_fs_type);
2277 	if (err) {
2278 		pr_err("UBIFS error (pid %d): cannot register file system, error %d",
2279 		       current->pid, err);
2280 		goto out_dbg;
2281 	}
2282 	return 0;
2283 
2284 out_dbg:
2285 	dbg_debugfs_exit();
2286 out_compr:
2287 	ubifs_compressors_exit();
2288 out_shrinker:
2289 	unregister_shrinker(&ubifs_shrinker_info);
2290 out_slab:
2291 	kmem_cache_destroy(ubifs_inode_slab);
2292 	return err;
2293 }
2294 /* late_initcall to let compressors initialize first */
2295 late_initcall(ubifs_init);
2296 
ubifs_exit(void)2297 static void __exit ubifs_exit(void)
2298 {
2299 	ubifs_assert(list_empty(&ubifs_infos));
2300 	ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0);
2301 
2302 	dbg_debugfs_exit();
2303 	ubifs_compressors_exit();
2304 	unregister_shrinker(&ubifs_shrinker_info);
2305 
2306 	/*
2307 	 * Make sure all delayed rcu free inodes are flushed before we
2308 	 * destroy cache.
2309 	 */
2310 	rcu_barrier();
2311 	kmem_cache_destroy(ubifs_inode_slab);
2312 	unregister_filesystem(&ubifs_fs_type);
2313 }
2314 module_exit(ubifs_exit);
2315 
2316 MODULE_LICENSE("GPL");
2317 MODULE_VERSION(__stringify(UBIFS_VERSION));
2318 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2319 MODULE_DESCRIPTION("UBIFS - UBI File System");
2320