• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  fs/userfaultfd.c
3  *
4  *  Copyright (C) 2007  Davide Libenzi <davidel@xmailserver.org>
5  *  Copyright (C) 2008-2009 Red Hat, Inc.
6  *  Copyright (C) 2015  Red Hat, Inc.
7  *
8  *  This work is licensed under the terms of the GNU GPL, version 2. See
9  *  the COPYING file in the top-level directory.
10  *
11  *  Some part derived from fs/eventfd.c (anon inode setup) and
12  *  mm/ksm.c (mm hashing).
13  */
14 
15 #include <linux/hashtable.h>
16 #include <linux/sched.h>
17 #include <linux/mm.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/seq_file.h>
21 #include <linux/file.h>
22 #include <linux/bug.h>
23 #include <linux/anon_inodes.h>
24 #include <linux/syscalls.h>
25 #include <linux/userfaultfd_k.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ioctl.h>
28 #include <linux/security.h>
29 
30 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
31 
32 enum userfaultfd_state {
33 	UFFD_STATE_WAIT_API,
34 	UFFD_STATE_RUNNING,
35 };
36 
37 /*
38  * Start with fault_pending_wqh and fault_wqh so they're more likely
39  * to be in the same cacheline.
40  */
41 struct userfaultfd_ctx {
42 	/* waitqueue head for the pending (i.e. not read) userfaults */
43 	wait_queue_head_t fault_pending_wqh;
44 	/* waitqueue head for the userfaults */
45 	wait_queue_head_t fault_wqh;
46 	/* waitqueue head for the pseudo fd to wakeup poll/read */
47 	wait_queue_head_t fd_wqh;
48 	/* a refile sequence protected by fault_pending_wqh lock */
49 	struct seqcount refile_seq;
50 	/* pseudo fd refcounting */
51 	atomic_t refcount;
52 	/* userfaultfd syscall flags */
53 	unsigned int flags;
54 	/* state machine */
55 	enum userfaultfd_state state;
56 	/* released */
57 	bool released;
58 	/* mm with one ore more vmas attached to this userfaultfd_ctx */
59 	struct mm_struct *mm;
60 };
61 
62 struct userfaultfd_wait_queue {
63 	struct uffd_msg msg;
64 	wait_queue_t wq;
65 	struct userfaultfd_ctx *ctx;
66 	bool waken;
67 };
68 
69 struct userfaultfd_wake_range {
70 	unsigned long start;
71 	unsigned long len;
72 };
73 
userfaultfd_wake_function(wait_queue_t * wq,unsigned mode,int wake_flags,void * key)74 static int userfaultfd_wake_function(wait_queue_t *wq, unsigned mode,
75 				     int wake_flags, void *key)
76 {
77 	struct userfaultfd_wake_range *range = key;
78 	int ret;
79 	struct userfaultfd_wait_queue *uwq;
80 	unsigned long start, len;
81 
82 	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
83 	ret = 0;
84 	/* len == 0 means wake all */
85 	start = range->start;
86 	len = range->len;
87 	if (len && (start > uwq->msg.arg.pagefault.address ||
88 		    start + len <= uwq->msg.arg.pagefault.address))
89 		goto out;
90 	WRITE_ONCE(uwq->waken, true);
91 	/*
92 	 * The implicit smp_mb__before_spinlock in try_to_wake_up()
93 	 * renders uwq->waken visible to other CPUs before the task is
94 	 * waken.
95 	 */
96 	ret = wake_up_state(wq->private, mode);
97 	if (ret)
98 		/*
99 		 * Wake only once, autoremove behavior.
100 		 *
101 		 * After the effect of list_del_init is visible to the
102 		 * other CPUs, the waitqueue may disappear from under
103 		 * us, see the !list_empty_careful() in
104 		 * handle_userfault(). try_to_wake_up() has an
105 		 * implicit smp_mb__before_spinlock, and the
106 		 * wq->private is read before calling the extern
107 		 * function "wake_up_state" (which in turns calls
108 		 * try_to_wake_up). While the spin_lock;spin_unlock;
109 		 * wouldn't be enough, the smp_mb__before_spinlock is
110 		 * enough to avoid an explicit smp_mb() here.
111 		 */
112 		list_del_init(&wq->task_list);
113 out:
114 	return ret;
115 }
116 
117 /**
118  * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
119  * context.
120  * @ctx: [in] Pointer to the userfaultfd context.
121  *
122  * Returns: In case of success, returns not zero.
123  */
userfaultfd_ctx_get(struct userfaultfd_ctx * ctx)124 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
125 {
126 	if (!atomic_inc_not_zero(&ctx->refcount))
127 		BUG();
128 }
129 
130 /**
131  * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
132  * context.
133  * @ctx: [in] Pointer to userfaultfd context.
134  *
135  * The userfaultfd context reference must have been previously acquired either
136  * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
137  */
userfaultfd_ctx_put(struct userfaultfd_ctx * ctx)138 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
139 {
140 	if (atomic_dec_and_test(&ctx->refcount)) {
141 		VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
142 		VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
143 		VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
144 		VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
145 		VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
146 		VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
147 		mmdrop(ctx->mm);
148 		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
149 	}
150 }
151 
msg_init(struct uffd_msg * msg)152 static inline void msg_init(struct uffd_msg *msg)
153 {
154 	BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
155 	/*
156 	 * Must use memset to zero out the paddings or kernel data is
157 	 * leaked to userland.
158 	 */
159 	memset(msg, 0, sizeof(struct uffd_msg));
160 }
161 
userfault_msg(unsigned long address,unsigned int flags,unsigned long reason)162 static inline struct uffd_msg userfault_msg(unsigned long address,
163 					    unsigned int flags,
164 					    unsigned long reason)
165 {
166 	struct uffd_msg msg;
167 	msg_init(&msg);
168 	msg.event = UFFD_EVENT_PAGEFAULT;
169 	msg.arg.pagefault.address = address;
170 	if (flags & FAULT_FLAG_WRITE)
171 		/*
172 		 * If UFFD_FEATURE_PAGEFAULT_FLAG_WRITE was set in the
173 		 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
174 		 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
175 		 * was a read fault, otherwise if set it means it's
176 		 * a write fault.
177 		 */
178 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
179 	if (reason & VM_UFFD_WP)
180 		/*
181 		 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
182 		 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
183 		 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
184 		 * a missing fault, otherwise if set it means it's a
185 		 * write protect fault.
186 		 */
187 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
188 	return msg;
189 }
190 
191 /*
192  * Verify the pagetables are still not ok after having reigstered into
193  * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
194  * userfault that has already been resolved, if userfaultfd_read and
195  * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
196  * threads.
197  */
userfaultfd_must_wait(struct userfaultfd_ctx * ctx,unsigned long address,unsigned long flags,unsigned long reason)198 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
199 					 unsigned long address,
200 					 unsigned long flags,
201 					 unsigned long reason)
202 {
203 	struct mm_struct *mm = ctx->mm;
204 	pgd_t *pgd;
205 	pud_t *pud;
206 	pmd_t *pmd, _pmd;
207 	pte_t *pte;
208 	bool ret = true;
209 
210 	VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
211 
212 	pgd = pgd_offset(mm, address);
213 	if (!pgd_present(*pgd))
214 		goto out;
215 	pud = pud_offset(pgd, address);
216 	if (!pud_present(*pud))
217 		goto out;
218 	pmd = pmd_offset(pud, address);
219 	/*
220 	 * READ_ONCE must function as a barrier with narrower scope
221 	 * and it must be equivalent to:
222 	 *	_pmd = *pmd; barrier();
223 	 *
224 	 * This is to deal with the instability (as in
225 	 * pmd_trans_unstable) of the pmd.
226 	 */
227 	_pmd = READ_ONCE(*pmd);
228 	if (!pmd_present(_pmd))
229 		goto out;
230 
231 	ret = false;
232 	if (pmd_trans_huge(_pmd))
233 		goto out;
234 
235 	/*
236 	 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
237 	 * and use the standard pte_offset_map() instead of parsing _pmd.
238 	 */
239 	pte = pte_offset_map(pmd, address);
240 	/*
241 	 * Lockless access: we're in a wait_event so it's ok if it
242 	 * changes under us.
243 	 */
244 	if (pte_none(*pte))
245 		ret = true;
246 	pte_unmap(pte);
247 
248 out:
249 	return ret;
250 }
251 
252 /*
253  * The locking rules involved in returning VM_FAULT_RETRY depending on
254  * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
255  * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
256  * recommendation in __lock_page_or_retry is not an understatement.
257  *
258  * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
259  * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
260  * not set.
261  *
262  * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
263  * set, VM_FAULT_RETRY can still be returned if and only if there are
264  * fatal_signal_pending()s, and the mmap_sem must be released before
265  * returning it.
266  */
handle_userfault(struct fault_env * fe,unsigned long reason)267 int handle_userfault(struct fault_env *fe, unsigned long reason)
268 {
269 	struct mm_struct *mm = fe->vma->vm_mm;
270 	struct userfaultfd_ctx *ctx;
271 	struct userfaultfd_wait_queue uwq;
272 	int ret;
273 	bool must_wait, return_to_userland;
274 	long blocking_state;
275 
276 	BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
277 
278 	ret = VM_FAULT_SIGBUS;
279 	ctx = fe->vma->vm_userfaultfd_ctx.ctx;
280 	if (!ctx)
281 		goto out;
282 
283 	BUG_ON(ctx->mm != mm);
284 
285 	VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
286 	VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
287 
288 	/*
289 	 * If it's already released don't get it. This avoids to loop
290 	 * in __get_user_pages if userfaultfd_release waits on the
291 	 * caller of handle_userfault to release the mmap_sem.
292 	 */
293 	if (unlikely(ACCESS_ONCE(ctx->released)))
294 		goto out;
295 
296 	/*
297 	 * We don't do userfault handling for the final child pid update.
298 	 */
299 	if (current->flags & PF_EXITING)
300 		goto out;
301 
302 	/*
303 	 * Check that we can return VM_FAULT_RETRY.
304 	 *
305 	 * NOTE: it should become possible to return VM_FAULT_RETRY
306 	 * even if FAULT_FLAG_TRIED is set without leading to gup()
307 	 * -EBUSY failures, if the userfaultfd is to be extended for
308 	 * VM_UFFD_WP tracking and we intend to arm the userfault
309 	 * without first stopping userland access to the memory. For
310 	 * VM_UFFD_MISSING userfaults this is enough for now.
311 	 */
312 	if (unlikely(!(fe->flags & FAULT_FLAG_ALLOW_RETRY))) {
313 		/*
314 		 * Validate the invariant that nowait must allow retry
315 		 * to be sure not to return SIGBUS erroneously on
316 		 * nowait invocations.
317 		 */
318 		BUG_ON(fe->flags & FAULT_FLAG_RETRY_NOWAIT);
319 #ifdef CONFIG_DEBUG_VM
320 		if (printk_ratelimit()) {
321 			printk(KERN_WARNING
322 			       "FAULT_FLAG_ALLOW_RETRY missing %x\n", fe->flags);
323 			dump_stack();
324 		}
325 #endif
326 		goto out;
327 	}
328 
329 	/*
330 	 * Handle nowait, not much to do other than tell it to retry
331 	 * and wait.
332 	 */
333 	ret = VM_FAULT_RETRY;
334 	if (fe->flags & FAULT_FLAG_RETRY_NOWAIT)
335 		goto out;
336 
337 	/* take the reference before dropping the mmap_sem */
338 	userfaultfd_ctx_get(ctx);
339 
340 	init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
341 	uwq.wq.private = current;
342 	uwq.msg = userfault_msg(fe->address, fe->flags, reason);
343 	uwq.ctx = ctx;
344 	uwq.waken = false;
345 
346 	return_to_userland =
347 		(fe->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) ==
348 		(FAULT_FLAG_USER|FAULT_FLAG_KILLABLE);
349 	blocking_state = return_to_userland ? TASK_INTERRUPTIBLE :
350 			 TASK_KILLABLE;
351 
352 	spin_lock(&ctx->fault_pending_wqh.lock);
353 	/*
354 	 * After the __add_wait_queue the uwq is visible to userland
355 	 * through poll/read().
356 	 */
357 	__add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
358 	/*
359 	 * The smp_mb() after __set_current_state prevents the reads
360 	 * following the spin_unlock to happen before the list_add in
361 	 * __add_wait_queue.
362 	 */
363 	set_current_state(blocking_state);
364 	spin_unlock(&ctx->fault_pending_wqh.lock);
365 
366 	must_wait = userfaultfd_must_wait(ctx, fe->address, fe->flags, reason);
367 	up_read(&mm->mmap_sem);
368 
369 	if (likely(must_wait && !ACCESS_ONCE(ctx->released) &&
370 		   (return_to_userland ? !signal_pending(current) :
371 		    !fatal_signal_pending(current)))) {
372 		wake_up_poll(&ctx->fd_wqh, POLLIN);
373 		schedule();
374 		ret |= VM_FAULT_MAJOR;
375 
376 		/*
377 		 * False wakeups can orginate even from rwsem before
378 		 * up_read() however userfaults will wait either for a
379 		 * targeted wakeup on the specific uwq waitqueue from
380 		 * wake_userfault() or for signals or for uffd
381 		 * release.
382 		 */
383 		while (!READ_ONCE(uwq.waken)) {
384 			/*
385 			 * This needs the full smp_store_mb()
386 			 * guarantee as the state write must be
387 			 * visible to other CPUs before reading
388 			 * uwq.waken from other CPUs.
389 			 */
390 			set_current_state(blocking_state);
391 			if (READ_ONCE(uwq.waken) ||
392 			    READ_ONCE(ctx->released) ||
393 			    (return_to_userland ? signal_pending(current) :
394 			     fatal_signal_pending(current)))
395 				break;
396 			schedule();
397 		}
398 	}
399 
400 	__set_current_state(TASK_RUNNING);
401 
402 	if (return_to_userland) {
403 		if (signal_pending(current) &&
404 		    !fatal_signal_pending(current)) {
405 			/*
406 			 * If we got a SIGSTOP or SIGCONT and this is
407 			 * a normal userland page fault, just let
408 			 * userland return so the signal will be
409 			 * handled and gdb debugging works.  The page
410 			 * fault code immediately after we return from
411 			 * this function is going to release the
412 			 * mmap_sem and it's not depending on it
413 			 * (unlike gup would if we were not to return
414 			 * VM_FAULT_RETRY).
415 			 *
416 			 * If a fatal signal is pending we still take
417 			 * the streamlined VM_FAULT_RETRY failure path
418 			 * and there's no need to retake the mmap_sem
419 			 * in such case.
420 			 */
421 			down_read(&mm->mmap_sem);
422 			ret = VM_FAULT_NOPAGE;
423 		}
424 	}
425 
426 	/*
427 	 * Here we race with the list_del; list_add in
428 	 * userfaultfd_ctx_read(), however because we don't ever run
429 	 * list_del_init() to refile across the two lists, the prev
430 	 * and next pointers will never point to self. list_add also
431 	 * would never let any of the two pointers to point to
432 	 * self. So list_empty_careful won't risk to see both pointers
433 	 * pointing to self at any time during the list refile. The
434 	 * only case where list_del_init() is called is the full
435 	 * removal in the wake function and there we don't re-list_add
436 	 * and it's fine not to block on the spinlock. The uwq on this
437 	 * kernel stack can be released after the list_del_init.
438 	 */
439 	if (!list_empty_careful(&uwq.wq.task_list)) {
440 		spin_lock(&ctx->fault_pending_wqh.lock);
441 		/*
442 		 * No need of list_del_init(), the uwq on the stack
443 		 * will be freed shortly anyway.
444 		 */
445 		list_del(&uwq.wq.task_list);
446 		spin_unlock(&ctx->fault_pending_wqh.lock);
447 	}
448 
449 	/*
450 	 * ctx may go away after this if the userfault pseudo fd is
451 	 * already released.
452 	 */
453 	userfaultfd_ctx_put(ctx);
454 
455 out:
456 	return ret;
457 }
458 
userfaultfd_release(struct inode * inode,struct file * file)459 static int userfaultfd_release(struct inode *inode, struct file *file)
460 {
461 	struct userfaultfd_ctx *ctx = file->private_data;
462 	struct mm_struct *mm = ctx->mm;
463 	struct vm_area_struct *vma, *prev;
464 	/* len == 0 means wake all */
465 	struct userfaultfd_wake_range range = { .len = 0, };
466 	unsigned long new_flags;
467 
468 	ACCESS_ONCE(ctx->released) = true;
469 
470 	if (!mmget_not_zero(mm))
471 		goto wakeup;
472 
473 	/*
474 	 * Flush page faults out of all CPUs. NOTE: all page faults
475 	 * must be retried without returning VM_FAULT_SIGBUS if
476 	 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
477 	 * changes while handle_userfault released the mmap_sem. So
478 	 * it's critical that released is set to true (above), before
479 	 * taking the mmap_sem for writing.
480 	 */
481 	down_write(&mm->mmap_sem);
482 	prev = NULL;
483 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
484 		cond_resched();
485 		BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
486 		       !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
487 		if (vma->vm_userfaultfd_ctx.ctx != ctx) {
488 			prev = vma;
489 			continue;
490 		}
491 		new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
492 		prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
493 				 new_flags, vma->anon_vma,
494 				 vma->vm_file, vma->vm_pgoff,
495 				 vma_policy(vma),
496 				 NULL_VM_UFFD_CTX,
497 				 vma_get_anon_name(vma));
498 		if (prev)
499 			vma = prev;
500 		else
501 			prev = vma;
502 		vma->vm_flags = new_flags;
503 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
504 	}
505 	up_write(&mm->mmap_sem);
506 	mmput(mm);
507 wakeup:
508 	/*
509 	 * After no new page faults can wait on this fault_*wqh, flush
510 	 * the last page faults that may have been already waiting on
511 	 * the fault_*wqh.
512 	 */
513 	spin_lock(&ctx->fault_pending_wqh.lock);
514 	__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
515 	__wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, &range);
516 	spin_unlock(&ctx->fault_pending_wqh.lock);
517 
518 	wake_up_poll(&ctx->fd_wqh, POLLHUP);
519 	userfaultfd_ctx_put(ctx);
520 	return 0;
521 }
522 
523 /* fault_pending_wqh.lock must be hold by the caller */
find_userfault(struct userfaultfd_ctx * ctx)524 static inline struct userfaultfd_wait_queue *find_userfault(
525 	struct userfaultfd_ctx *ctx)
526 {
527 	wait_queue_t *wq;
528 	struct userfaultfd_wait_queue *uwq;
529 
530 	VM_BUG_ON(!spin_is_locked(&ctx->fault_pending_wqh.lock));
531 
532 	uwq = NULL;
533 	if (!waitqueue_active(&ctx->fault_pending_wqh))
534 		goto out;
535 	/* walk in reverse to provide FIFO behavior to read userfaults */
536 	wq = list_last_entry(&ctx->fault_pending_wqh.task_list,
537 			     typeof(*wq), task_list);
538 	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
539 out:
540 	return uwq;
541 }
542 
userfaultfd_poll(struct file * file,poll_table * wait)543 static unsigned int userfaultfd_poll(struct file *file, poll_table *wait)
544 {
545 	struct userfaultfd_ctx *ctx = file->private_data;
546 	unsigned int ret;
547 
548 	poll_wait(file, &ctx->fd_wqh, wait);
549 
550 	switch (ctx->state) {
551 	case UFFD_STATE_WAIT_API:
552 		return POLLERR;
553 	case UFFD_STATE_RUNNING:
554 		/*
555 		 * poll() never guarantees that read won't block.
556 		 * userfaults can be waken before they're read().
557 		 */
558 		if (unlikely(!(file->f_flags & O_NONBLOCK)))
559 			return POLLERR;
560 		/*
561 		 * lockless access to see if there are pending faults
562 		 * __pollwait last action is the add_wait_queue but
563 		 * the spin_unlock would allow the waitqueue_active to
564 		 * pass above the actual list_add inside
565 		 * add_wait_queue critical section. So use a full
566 		 * memory barrier to serialize the list_add write of
567 		 * add_wait_queue() with the waitqueue_active read
568 		 * below.
569 		 */
570 		ret = 0;
571 		smp_mb();
572 		if (waitqueue_active(&ctx->fault_pending_wqh))
573 			ret = POLLIN;
574 		return ret;
575 	default:
576 		BUG();
577 	}
578 }
579 
userfaultfd_ctx_read(struct userfaultfd_ctx * ctx,int no_wait,struct uffd_msg * msg)580 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
581 				    struct uffd_msg *msg)
582 {
583 	ssize_t ret;
584 	DECLARE_WAITQUEUE(wait, current);
585 	struct userfaultfd_wait_queue *uwq;
586 
587 	/* always take the fd_wqh lock before the fault_pending_wqh lock */
588 	spin_lock(&ctx->fd_wqh.lock);
589 	__add_wait_queue(&ctx->fd_wqh, &wait);
590 	for (;;) {
591 		set_current_state(TASK_INTERRUPTIBLE);
592 		spin_lock(&ctx->fault_pending_wqh.lock);
593 		uwq = find_userfault(ctx);
594 		if (uwq) {
595 			/*
596 			 * Use a seqcount to repeat the lockless check
597 			 * in wake_userfault() to avoid missing
598 			 * wakeups because during the refile both
599 			 * waitqueue could become empty if this is the
600 			 * only userfault.
601 			 */
602 			write_seqcount_begin(&ctx->refile_seq);
603 
604 			/*
605 			 * The fault_pending_wqh.lock prevents the uwq
606 			 * to disappear from under us.
607 			 *
608 			 * Refile this userfault from
609 			 * fault_pending_wqh to fault_wqh, it's not
610 			 * pending anymore after we read it.
611 			 *
612 			 * Use list_del() by hand (as
613 			 * userfaultfd_wake_function also uses
614 			 * list_del_init() by hand) to be sure nobody
615 			 * changes __remove_wait_queue() to use
616 			 * list_del_init() in turn breaking the
617 			 * !list_empty_careful() check in
618 			 * handle_userfault(). The uwq->wq.task_list
619 			 * must never be empty at any time during the
620 			 * refile, or the waitqueue could disappear
621 			 * from under us. The "wait_queue_head_t"
622 			 * parameter of __remove_wait_queue() is unused
623 			 * anyway.
624 			 */
625 			list_del(&uwq->wq.task_list);
626 			__add_wait_queue(&ctx->fault_wqh, &uwq->wq);
627 
628 			write_seqcount_end(&ctx->refile_seq);
629 
630 			/* careful to always initialize msg if ret == 0 */
631 			*msg = uwq->msg;
632 			spin_unlock(&ctx->fault_pending_wqh.lock);
633 			ret = 0;
634 			break;
635 		}
636 		spin_unlock(&ctx->fault_pending_wqh.lock);
637 		if (signal_pending(current)) {
638 			ret = -ERESTARTSYS;
639 			break;
640 		}
641 		if (no_wait) {
642 			ret = -EAGAIN;
643 			break;
644 		}
645 		spin_unlock(&ctx->fd_wqh.lock);
646 		schedule();
647 		spin_lock(&ctx->fd_wqh.lock);
648 	}
649 	__remove_wait_queue(&ctx->fd_wqh, &wait);
650 	__set_current_state(TASK_RUNNING);
651 	spin_unlock(&ctx->fd_wqh.lock);
652 
653 	return ret;
654 }
655 
userfaultfd_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)656 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
657 				size_t count, loff_t *ppos)
658 {
659 	struct userfaultfd_ctx *ctx = file->private_data;
660 	ssize_t _ret, ret = 0;
661 	struct uffd_msg msg;
662 	int no_wait = file->f_flags & O_NONBLOCK;
663 
664 	if (ctx->state == UFFD_STATE_WAIT_API)
665 		return -EINVAL;
666 
667 	for (;;) {
668 		if (count < sizeof(msg))
669 			return ret ? ret : -EINVAL;
670 		_ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
671 		if (_ret < 0)
672 			return ret ? ret : _ret;
673 		if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
674 			return ret ? ret : -EFAULT;
675 		ret += sizeof(msg);
676 		buf += sizeof(msg);
677 		count -= sizeof(msg);
678 		/*
679 		 * Allow to read more than one fault at time but only
680 		 * block if waiting for the very first one.
681 		 */
682 		no_wait = O_NONBLOCK;
683 	}
684 }
685 
__wake_userfault(struct userfaultfd_ctx * ctx,struct userfaultfd_wake_range * range)686 static void __wake_userfault(struct userfaultfd_ctx *ctx,
687 			     struct userfaultfd_wake_range *range)
688 {
689 	unsigned long start, end;
690 
691 	start = range->start;
692 	end = range->start + range->len;
693 
694 	spin_lock(&ctx->fault_pending_wqh.lock);
695 	/* wake all in the range and autoremove */
696 	if (waitqueue_active(&ctx->fault_pending_wqh))
697 		__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
698 				     range);
699 	if (waitqueue_active(&ctx->fault_wqh))
700 		__wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, range);
701 	spin_unlock(&ctx->fault_pending_wqh.lock);
702 }
703 
wake_userfault(struct userfaultfd_ctx * ctx,struct userfaultfd_wake_range * range)704 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
705 					   struct userfaultfd_wake_range *range)
706 {
707 	unsigned seq;
708 	bool need_wakeup;
709 
710 	/*
711 	 * To be sure waitqueue_active() is not reordered by the CPU
712 	 * before the pagetable update, use an explicit SMP memory
713 	 * barrier here. PT lock release or up_read(mmap_sem) still
714 	 * have release semantics that can allow the
715 	 * waitqueue_active() to be reordered before the pte update.
716 	 */
717 	smp_mb();
718 
719 	/*
720 	 * Use waitqueue_active because it's very frequent to
721 	 * change the address space atomically even if there are no
722 	 * userfaults yet. So we take the spinlock only when we're
723 	 * sure we've userfaults to wake.
724 	 */
725 	do {
726 		seq = read_seqcount_begin(&ctx->refile_seq);
727 		need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
728 			waitqueue_active(&ctx->fault_wqh);
729 		cond_resched();
730 	} while (read_seqcount_retry(&ctx->refile_seq, seq));
731 	if (need_wakeup)
732 		__wake_userfault(ctx, range);
733 }
734 
validate_range(struct mm_struct * mm,__u64 start,__u64 len)735 static __always_inline int validate_range(struct mm_struct *mm,
736 					  __u64 start, __u64 len)
737 {
738 	__u64 task_size = mm->task_size;
739 
740 	if (start & ~PAGE_MASK)
741 		return -EINVAL;
742 	if (len & ~PAGE_MASK)
743 		return -EINVAL;
744 	if (!len)
745 		return -EINVAL;
746 	if (start < mmap_min_addr)
747 		return -EINVAL;
748 	if (start >= task_size)
749 		return -EINVAL;
750 	if (len > task_size - start)
751 		return -EINVAL;
752 	return 0;
753 }
754 
userfaultfd_register(struct userfaultfd_ctx * ctx,unsigned long arg)755 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
756 				unsigned long arg)
757 {
758 	struct mm_struct *mm = ctx->mm;
759 	struct vm_area_struct *vma, *prev, *cur;
760 	int ret;
761 	struct uffdio_register uffdio_register;
762 	struct uffdio_register __user *user_uffdio_register;
763 	unsigned long vm_flags, new_flags;
764 	bool found;
765 	unsigned long start, end, vma_end;
766 
767 	user_uffdio_register = (struct uffdio_register __user *) arg;
768 
769 	ret = -EFAULT;
770 	if (copy_from_user(&uffdio_register, user_uffdio_register,
771 			   sizeof(uffdio_register)-sizeof(__u64)))
772 		goto out;
773 
774 	ret = -EINVAL;
775 	if (!uffdio_register.mode)
776 		goto out;
777 	if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
778 				     UFFDIO_REGISTER_MODE_WP))
779 		goto out;
780 	vm_flags = 0;
781 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
782 		vm_flags |= VM_UFFD_MISSING;
783 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
784 		vm_flags |= VM_UFFD_WP;
785 		/*
786 		 * FIXME: remove the below error constraint by
787 		 * implementing the wprotect tracking mode.
788 		 */
789 		ret = -EINVAL;
790 		goto out;
791 	}
792 
793 	ret = validate_range(mm, uffdio_register.range.start,
794 			     uffdio_register.range.len);
795 	if (ret)
796 		goto out;
797 
798 	start = uffdio_register.range.start;
799 	end = start + uffdio_register.range.len;
800 
801 	ret = -ENOMEM;
802 	if (!mmget_not_zero(mm))
803 		goto out;
804 
805 	down_write(&mm->mmap_sem);
806 	vma = find_vma_prev(mm, start, &prev);
807 	if (!vma)
808 		goto out_unlock;
809 
810 	/* check that there's at least one vma in the range */
811 	ret = -EINVAL;
812 	if (vma->vm_start >= end)
813 		goto out_unlock;
814 
815 	/*
816 	 * Search for not compatible vmas.
817 	 *
818 	 * FIXME: this shall be relaxed later so that it doesn't fail
819 	 * on tmpfs backed vmas (in addition to the current allowance
820 	 * on anonymous vmas).
821 	 */
822 	found = false;
823 	for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
824 		cond_resched();
825 
826 		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
827 		       !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
828 
829 		/* check not compatible vmas */
830 		ret = -EINVAL;
831 		if (cur->vm_ops)
832 			goto out_unlock;
833 
834 		/*
835 		 * Check that this vma isn't already owned by a
836 		 * different userfaultfd. We can't allow more than one
837 		 * userfaultfd to own a single vma simultaneously or we
838 		 * wouldn't know which one to deliver the userfaults to.
839 		 */
840 		ret = -EBUSY;
841 		if (cur->vm_userfaultfd_ctx.ctx &&
842 		    cur->vm_userfaultfd_ctx.ctx != ctx)
843 			goto out_unlock;
844 
845 		found = true;
846 	}
847 	BUG_ON(!found);
848 
849 	if (vma->vm_start < start)
850 		prev = vma;
851 
852 	ret = 0;
853 	do {
854 		cond_resched();
855 
856 		BUG_ON(vma->vm_ops);
857 		BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
858 		       vma->vm_userfaultfd_ctx.ctx != ctx);
859 
860 		/*
861 		 * Nothing to do: this vma is already registered into this
862 		 * userfaultfd and with the right tracking mode too.
863 		 */
864 		if (vma->vm_userfaultfd_ctx.ctx == ctx &&
865 		    (vma->vm_flags & vm_flags) == vm_flags)
866 			goto skip;
867 
868 		if (vma->vm_start > start)
869 			start = vma->vm_start;
870 		vma_end = min(end, vma->vm_end);
871 
872 		new_flags = (vma->vm_flags & ~vm_flags) | vm_flags;
873 		prev = vma_merge(mm, prev, start, vma_end, new_flags,
874 				 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
875 				 vma_policy(vma),
876 				 ((struct vm_userfaultfd_ctx){ ctx }),
877 				 vma_get_anon_name(vma));
878 		if (prev) {
879 			vma = prev;
880 			goto next;
881 		}
882 		if (vma->vm_start < start) {
883 			ret = split_vma(mm, vma, start, 1);
884 			if (ret)
885 				break;
886 		}
887 		if (vma->vm_end > end) {
888 			ret = split_vma(mm, vma, end, 0);
889 			if (ret)
890 				break;
891 		}
892 	next:
893 		/*
894 		 * In the vma_merge() successful mprotect-like case 8:
895 		 * the next vma was merged into the current one and
896 		 * the current one has not been updated yet.
897 		 */
898 		vma->vm_flags = new_flags;
899 		vma->vm_userfaultfd_ctx.ctx = ctx;
900 
901 	skip:
902 		prev = vma;
903 		start = vma->vm_end;
904 		vma = vma->vm_next;
905 	} while (vma && vma->vm_start < end);
906 out_unlock:
907 	up_write(&mm->mmap_sem);
908 	mmput(mm);
909 	if (!ret) {
910 		/*
911 		 * Now that we scanned all vmas we can already tell
912 		 * userland which ioctls methods are guaranteed to
913 		 * succeed on this range.
914 		 */
915 		if (put_user(UFFD_API_RANGE_IOCTLS,
916 			     &user_uffdio_register->ioctls))
917 			ret = -EFAULT;
918 	}
919 out:
920 	return ret;
921 }
922 
userfaultfd_unregister(struct userfaultfd_ctx * ctx,unsigned long arg)923 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
924 				  unsigned long arg)
925 {
926 	struct mm_struct *mm = ctx->mm;
927 	struct vm_area_struct *vma, *prev, *cur;
928 	int ret;
929 	struct uffdio_range uffdio_unregister;
930 	unsigned long new_flags;
931 	bool found;
932 	unsigned long start, end, vma_end;
933 	const void __user *buf = (void __user *)arg;
934 
935 	ret = -EFAULT;
936 	if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
937 		goto out;
938 
939 	ret = validate_range(mm, uffdio_unregister.start,
940 			     uffdio_unregister.len);
941 	if (ret)
942 		goto out;
943 
944 	start = uffdio_unregister.start;
945 	end = start + uffdio_unregister.len;
946 
947 	ret = -ENOMEM;
948 	if (!mmget_not_zero(mm))
949 		goto out;
950 
951 	down_write(&mm->mmap_sem);
952 	vma = find_vma_prev(mm, start, &prev);
953 	if (!vma)
954 		goto out_unlock;
955 
956 	/* check that there's at least one vma in the range */
957 	ret = -EINVAL;
958 	if (vma->vm_start >= end)
959 		goto out_unlock;
960 
961 	/*
962 	 * Search for not compatible vmas.
963 	 *
964 	 * FIXME: this shall be relaxed later so that it doesn't fail
965 	 * on tmpfs backed vmas (in addition to the current allowance
966 	 * on anonymous vmas).
967 	 */
968 	found = false;
969 	ret = -EINVAL;
970 	for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
971 		cond_resched();
972 
973 		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
974 		       !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
975 
976 		/*
977 		 * Check not compatible vmas, not strictly required
978 		 * here as not compatible vmas cannot have an
979 		 * userfaultfd_ctx registered on them, but this
980 		 * provides for more strict behavior to notice
981 		 * unregistration errors.
982 		 */
983 		if (cur->vm_ops)
984 			goto out_unlock;
985 
986 		found = true;
987 	}
988 	BUG_ON(!found);
989 
990 	if (vma->vm_start < start)
991 		prev = vma;
992 
993 	ret = 0;
994 	do {
995 		cond_resched();
996 
997 		BUG_ON(vma->vm_ops);
998 
999 		/*
1000 		 * Nothing to do: this vma is already registered into this
1001 		 * userfaultfd and with the right tracking mode too.
1002 		 */
1003 		if (!vma->vm_userfaultfd_ctx.ctx)
1004 			goto skip;
1005 
1006 		if (vma->vm_start > start)
1007 			start = vma->vm_start;
1008 		vma_end = min(end, vma->vm_end);
1009 
1010 		new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
1011 		prev = vma_merge(mm, prev, start, vma_end, new_flags,
1012 				 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1013 				 vma_policy(vma),
1014 				 NULL_VM_UFFD_CTX,
1015 				 vma_get_anon_name(vma));
1016 		if (prev) {
1017 			vma = prev;
1018 			goto next;
1019 		}
1020 		if (vma->vm_start < start) {
1021 			ret = split_vma(mm, vma, start, 1);
1022 			if (ret)
1023 				break;
1024 		}
1025 		if (vma->vm_end > end) {
1026 			ret = split_vma(mm, vma, end, 0);
1027 			if (ret)
1028 				break;
1029 		}
1030 	next:
1031 		/*
1032 		 * In the vma_merge() successful mprotect-like case 8:
1033 		 * the next vma was merged into the current one and
1034 		 * the current one has not been updated yet.
1035 		 */
1036 		vma->vm_flags = new_flags;
1037 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1038 
1039 	skip:
1040 		prev = vma;
1041 		start = vma->vm_end;
1042 		vma = vma->vm_next;
1043 	} while (vma && vma->vm_start < end);
1044 out_unlock:
1045 	up_write(&mm->mmap_sem);
1046 	mmput(mm);
1047 out:
1048 	return ret;
1049 }
1050 
1051 /*
1052  * userfaultfd_wake may be used in combination with the
1053  * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1054  */
userfaultfd_wake(struct userfaultfd_ctx * ctx,unsigned long arg)1055 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1056 			    unsigned long arg)
1057 {
1058 	int ret;
1059 	struct uffdio_range uffdio_wake;
1060 	struct userfaultfd_wake_range range;
1061 	const void __user *buf = (void __user *)arg;
1062 
1063 	ret = -EFAULT;
1064 	if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1065 		goto out;
1066 
1067 	ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1068 	if (ret)
1069 		goto out;
1070 
1071 	range.start = uffdio_wake.start;
1072 	range.len = uffdio_wake.len;
1073 
1074 	/*
1075 	 * len == 0 means wake all and we don't want to wake all here,
1076 	 * so check it again to be sure.
1077 	 */
1078 	VM_BUG_ON(!range.len);
1079 
1080 	wake_userfault(ctx, &range);
1081 	ret = 0;
1082 
1083 out:
1084 	return ret;
1085 }
1086 
userfaultfd_copy(struct userfaultfd_ctx * ctx,unsigned long arg)1087 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1088 			    unsigned long arg)
1089 {
1090 	__s64 ret;
1091 	struct uffdio_copy uffdio_copy;
1092 	struct uffdio_copy __user *user_uffdio_copy;
1093 	struct userfaultfd_wake_range range;
1094 
1095 	user_uffdio_copy = (struct uffdio_copy __user *) arg;
1096 
1097 	ret = -EFAULT;
1098 	if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1099 			   /* don't copy "copy" last field */
1100 			   sizeof(uffdio_copy)-sizeof(__s64)))
1101 		goto out;
1102 
1103 	ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1104 	if (ret)
1105 		goto out;
1106 	/*
1107 	 * double check for wraparound just in case. copy_from_user()
1108 	 * will later check uffdio_copy.src + uffdio_copy.len to fit
1109 	 * in the userland range.
1110 	 */
1111 	ret = -EINVAL;
1112 	if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1113 		goto out;
1114 	if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE)
1115 		goto out;
1116 	if (mmget_not_zero(ctx->mm)) {
1117 		ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1118 				   uffdio_copy.len);
1119 		mmput(ctx->mm);
1120 	}
1121 	if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1122 		return -EFAULT;
1123 	if (ret < 0)
1124 		goto out;
1125 	BUG_ON(!ret);
1126 	/* len == 0 would wake all */
1127 	range.len = ret;
1128 	if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1129 		range.start = uffdio_copy.dst;
1130 		wake_userfault(ctx, &range);
1131 	}
1132 	ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1133 out:
1134 	return ret;
1135 }
1136 
userfaultfd_zeropage(struct userfaultfd_ctx * ctx,unsigned long arg)1137 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1138 				unsigned long arg)
1139 {
1140 	__s64 ret;
1141 	struct uffdio_zeropage uffdio_zeropage;
1142 	struct uffdio_zeropage __user *user_uffdio_zeropage;
1143 	struct userfaultfd_wake_range range;
1144 
1145 	user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1146 
1147 	ret = -EFAULT;
1148 	if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1149 			   /* don't copy "zeropage" last field */
1150 			   sizeof(uffdio_zeropage)-sizeof(__s64)))
1151 		goto out;
1152 
1153 	ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1154 			     uffdio_zeropage.range.len);
1155 	if (ret)
1156 		goto out;
1157 	ret = -EINVAL;
1158 	if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1159 		goto out;
1160 
1161 	if (mmget_not_zero(ctx->mm)) {
1162 		ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1163 				     uffdio_zeropage.range.len);
1164 		mmput(ctx->mm);
1165 	}
1166 	if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1167 		return -EFAULT;
1168 	if (ret < 0)
1169 		goto out;
1170 	/* len == 0 would wake all */
1171 	BUG_ON(!ret);
1172 	range.len = ret;
1173 	if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1174 		range.start = uffdio_zeropage.range.start;
1175 		wake_userfault(ctx, &range);
1176 	}
1177 	ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1178 out:
1179 	return ret;
1180 }
1181 
1182 /*
1183  * userland asks for a certain API version and we return which bits
1184  * and ioctl commands are implemented in this kernel for such API
1185  * version or -EINVAL if unknown.
1186  */
userfaultfd_api(struct userfaultfd_ctx * ctx,unsigned long arg)1187 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1188 			   unsigned long arg)
1189 {
1190 	struct uffdio_api uffdio_api;
1191 	void __user *buf = (void __user *)arg;
1192 	int ret;
1193 
1194 	ret = -EINVAL;
1195 	if (ctx->state != UFFD_STATE_WAIT_API)
1196 		goto out;
1197 	ret = -EFAULT;
1198 	if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1199 		goto out;
1200 	if (uffdio_api.api != UFFD_API || uffdio_api.features) {
1201 		memset(&uffdio_api, 0, sizeof(uffdio_api));
1202 		if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1203 			goto out;
1204 		ret = -EINVAL;
1205 		goto out;
1206 	}
1207 	uffdio_api.features = UFFD_API_FEATURES;
1208 	uffdio_api.ioctls = UFFD_API_IOCTLS;
1209 	ret = -EFAULT;
1210 	if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1211 		goto out;
1212 	ctx->state = UFFD_STATE_RUNNING;
1213 	ret = 0;
1214 out:
1215 	return ret;
1216 }
1217 
userfaultfd_ioctl(struct file * file,unsigned cmd,unsigned long arg)1218 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1219 			      unsigned long arg)
1220 {
1221 	int ret = -EINVAL;
1222 	struct userfaultfd_ctx *ctx = file->private_data;
1223 
1224 	if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1225 		return -EINVAL;
1226 
1227 	switch(cmd) {
1228 	case UFFDIO_API:
1229 		ret = userfaultfd_api(ctx, arg);
1230 		break;
1231 	case UFFDIO_REGISTER:
1232 		ret = userfaultfd_register(ctx, arg);
1233 		break;
1234 	case UFFDIO_UNREGISTER:
1235 		ret = userfaultfd_unregister(ctx, arg);
1236 		break;
1237 	case UFFDIO_WAKE:
1238 		ret = userfaultfd_wake(ctx, arg);
1239 		break;
1240 	case UFFDIO_COPY:
1241 		ret = userfaultfd_copy(ctx, arg);
1242 		break;
1243 	case UFFDIO_ZEROPAGE:
1244 		ret = userfaultfd_zeropage(ctx, arg);
1245 		break;
1246 	}
1247 	return ret;
1248 }
1249 
1250 #ifdef CONFIG_PROC_FS
userfaultfd_show_fdinfo(struct seq_file * m,struct file * f)1251 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1252 {
1253 	struct userfaultfd_ctx *ctx = f->private_data;
1254 	wait_queue_t *wq;
1255 	struct userfaultfd_wait_queue *uwq;
1256 	unsigned long pending = 0, total = 0;
1257 
1258 	spin_lock(&ctx->fault_pending_wqh.lock);
1259 	list_for_each_entry(wq, &ctx->fault_pending_wqh.task_list, task_list) {
1260 		uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1261 		pending++;
1262 		total++;
1263 	}
1264 	list_for_each_entry(wq, &ctx->fault_wqh.task_list, task_list) {
1265 		uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1266 		total++;
1267 	}
1268 	spin_unlock(&ctx->fault_pending_wqh.lock);
1269 
1270 	/*
1271 	 * If more protocols will be added, there will be all shown
1272 	 * separated by a space. Like this:
1273 	 *	protocols: aa:... bb:...
1274 	 */
1275 	seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1276 		   pending, total, UFFD_API, UFFD_API_FEATURES,
1277 		   UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1278 }
1279 #endif
1280 
1281 static const struct file_operations userfaultfd_fops = {
1282 #ifdef CONFIG_PROC_FS
1283 	.show_fdinfo	= userfaultfd_show_fdinfo,
1284 #endif
1285 	.release	= userfaultfd_release,
1286 	.poll		= userfaultfd_poll,
1287 	.read		= userfaultfd_read,
1288 	.unlocked_ioctl = userfaultfd_ioctl,
1289 	.compat_ioctl	= userfaultfd_ioctl,
1290 	.llseek		= noop_llseek,
1291 };
1292 
init_once_userfaultfd_ctx(void * mem)1293 static void init_once_userfaultfd_ctx(void *mem)
1294 {
1295 	struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1296 
1297 	init_waitqueue_head(&ctx->fault_pending_wqh);
1298 	init_waitqueue_head(&ctx->fault_wqh);
1299 	init_waitqueue_head(&ctx->fd_wqh);
1300 	seqcount_init(&ctx->refile_seq);
1301 }
1302 
1303 /**
1304  * userfaultfd_file_create - Creates an userfaultfd file pointer.
1305  * @flags: Flags for the userfaultfd file.
1306  *
1307  * This function creates an userfaultfd file pointer, w/out installing
1308  * it into the fd table. This is useful when the userfaultfd file is
1309  * used during the initialization of data structures that require
1310  * extra setup after the userfaultfd creation. So the userfaultfd
1311  * creation is split into the file pointer creation phase, and the
1312  * file descriptor installation phase.  In this way races with
1313  * userspace closing the newly installed file descriptor can be
1314  * avoided.  Returns an userfaultfd file pointer, or a proper error
1315  * pointer.
1316  */
userfaultfd_file_create(int flags)1317 static struct file *userfaultfd_file_create(int flags)
1318 {
1319 	struct file *file;
1320 	struct userfaultfd_ctx *ctx;
1321 
1322 	BUG_ON(!current->mm);
1323 
1324 	/* Check the UFFD_* constants for consistency.  */
1325 	BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1326 	BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1327 
1328 	file = ERR_PTR(-EINVAL);
1329 	if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
1330 		goto out;
1331 
1332 	file = ERR_PTR(-ENOMEM);
1333 	ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
1334 	if (!ctx)
1335 		goto out;
1336 
1337 	atomic_set(&ctx->refcount, 1);
1338 	ctx->flags = flags;
1339 	ctx->state = UFFD_STATE_WAIT_API;
1340 	ctx->released = false;
1341 	ctx->mm = current->mm;
1342 	/* prevent the mm struct to be freed */
1343 	atomic_inc(&ctx->mm->mm_count);
1344 
1345 	file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, ctx,
1346 				  O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
1347 	if (IS_ERR(file)) {
1348 		mmdrop(ctx->mm);
1349 		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
1350 	}
1351 out:
1352 	return file;
1353 }
1354 
SYSCALL_DEFINE1(userfaultfd,int,flags)1355 SYSCALL_DEFINE1(userfaultfd, int, flags)
1356 {
1357 	int fd, error;
1358 	struct file *file;
1359 
1360 	error = get_unused_fd_flags(flags & UFFD_SHARED_FCNTL_FLAGS);
1361 	if (error < 0)
1362 		return error;
1363 	fd = error;
1364 
1365 	file = userfaultfd_file_create(flags);
1366 	if (IS_ERR(file)) {
1367 		error = PTR_ERR(file);
1368 		goto err_put_unused_fd;
1369 	}
1370 	fd_install(fd, file);
1371 
1372 	return fd;
1373 
1374 err_put_unused_fd:
1375 	put_unused_fd(fd);
1376 
1377 	return error;
1378 }
1379 
userfaultfd_init(void)1380 static int __init userfaultfd_init(void)
1381 {
1382 	userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
1383 						sizeof(struct userfaultfd_ctx),
1384 						0,
1385 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1386 						init_once_userfaultfd_ctx);
1387 	return 0;
1388 }
1389 __initcall(userfaultfd_init);
1390