• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_shared.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_mount.h"
24 #include "xfs_inode.h"
25 #include "xfs_trans.h"
26 #include "xfs_inode_item.h"
27 #include "xfs_alloc.h"
28 #include "xfs_error.h"
29 #include "xfs_iomap.h"
30 #include "xfs_trace.h"
31 #include "xfs_bmap.h"
32 #include "xfs_bmap_util.h"
33 #include "xfs_bmap_btree.h"
34 #include "xfs_reflink.h"
35 #include <linux/gfp.h>
36 #include <linux/mpage.h>
37 #include <linux/pagevec.h>
38 #include <linux/writeback.h>
39 
40 /* flags for direct write completions */
41 #define XFS_DIO_FLAG_UNWRITTEN	(1 << 0)
42 #define XFS_DIO_FLAG_APPEND	(1 << 1)
43 #define XFS_DIO_FLAG_COW	(1 << 2)
44 
45 /*
46  * structure owned by writepages passed to individual writepage calls
47  */
48 struct xfs_writepage_ctx {
49 	struct xfs_bmbt_irec    imap;
50 	bool			imap_valid;
51 	unsigned int		io_type;
52 	struct xfs_ioend	*ioend;
53 	sector_t		last_block;
54 };
55 
56 void
xfs_count_page_state(struct page * page,int * delalloc,int * unwritten)57 xfs_count_page_state(
58 	struct page		*page,
59 	int			*delalloc,
60 	int			*unwritten)
61 {
62 	struct buffer_head	*bh, *head;
63 
64 	*delalloc = *unwritten = 0;
65 
66 	bh = head = page_buffers(page);
67 	do {
68 		if (buffer_unwritten(bh))
69 			(*unwritten) = 1;
70 		else if (buffer_delay(bh))
71 			(*delalloc) = 1;
72 	} while ((bh = bh->b_this_page) != head);
73 }
74 
75 struct block_device *
xfs_find_bdev_for_inode(struct inode * inode)76 xfs_find_bdev_for_inode(
77 	struct inode		*inode)
78 {
79 	struct xfs_inode	*ip = XFS_I(inode);
80 	struct xfs_mount	*mp = ip->i_mount;
81 
82 	if (XFS_IS_REALTIME_INODE(ip))
83 		return mp->m_rtdev_targp->bt_bdev;
84 	else
85 		return mp->m_ddev_targp->bt_bdev;
86 }
87 
88 /*
89  * We're now finished for good with this page.  Update the page state via the
90  * associated buffer_heads, paying attention to the start and end offsets that
91  * we need to process on the page.
92  *
93  * Note that we open code the action in end_buffer_async_write here so that we
94  * only have to iterate over the buffers attached to the page once.  This is not
95  * only more efficient, but also ensures that we only calls end_page_writeback
96  * at the end of the iteration, and thus avoids the pitfall of having the page
97  * and buffers potentially freed after every call to end_buffer_async_write.
98  */
99 static void
xfs_finish_page_writeback(struct inode * inode,struct bio_vec * bvec,int error)100 xfs_finish_page_writeback(
101 	struct inode		*inode,
102 	struct bio_vec		*bvec,
103 	int			error)
104 {
105 	struct buffer_head	*head = page_buffers(bvec->bv_page), *bh = head;
106 	bool			busy = false;
107 	unsigned int		off = 0;
108 	unsigned long		flags;
109 
110 	ASSERT(bvec->bv_offset < PAGE_SIZE);
111 	ASSERT((bvec->bv_offset & (i_blocksize(inode) - 1)) == 0);
112 	ASSERT(bvec->bv_offset + bvec->bv_len <= PAGE_SIZE);
113 	ASSERT((bvec->bv_len & (i_blocksize(inode) - 1)) == 0);
114 
115 	local_irq_save(flags);
116 	bit_spin_lock(BH_Uptodate_Lock, &head->b_state);
117 	do {
118 		if (off >= bvec->bv_offset &&
119 		    off < bvec->bv_offset + bvec->bv_len) {
120 			ASSERT(buffer_async_write(bh));
121 			ASSERT(bh->b_end_io == NULL);
122 
123 			if (error) {
124 				mapping_set_error(bvec->bv_page->mapping, -EIO);
125 				set_buffer_write_io_error(bh);
126 				clear_buffer_uptodate(bh);
127 				SetPageError(bvec->bv_page);
128 			} else {
129 				set_buffer_uptodate(bh);
130 			}
131 			clear_buffer_async_write(bh);
132 			unlock_buffer(bh);
133 		} else if (buffer_async_write(bh)) {
134 			ASSERT(buffer_locked(bh));
135 			busy = true;
136 		}
137 		off += bh->b_size;
138 	} while ((bh = bh->b_this_page) != head);
139 	bit_spin_unlock(BH_Uptodate_Lock, &head->b_state);
140 	local_irq_restore(flags);
141 
142 	if (!busy)
143 		end_page_writeback(bvec->bv_page);
144 }
145 
146 /*
147  * We're now finished for good with this ioend structure.  Update the page
148  * state, release holds on bios, and finally free up memory.  Do not use the
149  * ioend after this.
150  */
151 STATIC void
xfs_destroy_ioend(struct xfs_ioend * ioend,int error)152 xfs_destroy_ioend(
153 	struct xfs_ioend	*ioend,
154 	int			error)
155 {
156 	struct inode		*inode = ioend->io_inode;
157 	struct bio		*bio = &ioend->io_inline_bio;
158 	struct bio		*last = ioend->io_bio, *next;
159 	u64			start = bio->bi_iter.bi_sector;
160 	bool			quiet = bio_flagged(bio, BIO_QUIET);
161 
162 	for (bio = &ioend->io_inline_bio; bio; bio = next) {
163 		struct bio_vec	*bvec;
164 		int		i;
165 
166 		/*
167 		 * For the last bio, bi_private points to the ioend, so we
168 		 * need to explicitly end the iteration here.
169 		 */
170 		if (bio == last)
171 			next = NULL;
172 		else
173 			next = bio->bi_private;
174 
175 		/* walk each page on bio, ending page IO on them */
176 		bio_for_each_segment_all(bvec, bio, i)
177 			xfs_finish_page_writeback(inode, bvec, error);
178 
179 		bio_put(bio);
180 	}
181 
182 	if (unlikely(error && !quiet)) {
183 		xfs_err_ratelimited(XFS_I(inode)->i_mount,
184 			"writeback error on sector %llu", start);
185 	}
186 }
187 
188 /*
189  * Fast and loose check if this write could update the on-disk inode size.
190  */
xfs_ioend_is_append(struct xfs_ioend * ioend)191 static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
192 {
193 	return ioend->io_offset + ioend->io_size >
194 		XFS_I(ioend->io_inode)->i_d.di_size;
195 }
196 
197 STATIC int
xfs_setfilesize_trans_alloc(struct xfs_ioend * ioend)198 xfs_setfilesize_trans_alloc(
199 	struct xfs_ioend	*ioend)
200 {
201 	struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
202 	struct xfs_trans	*tp;
203 	int			error;
204 
205 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
206 	if (error)
207 		return error;
208 
209 	ioend->io_append_trans = tp;
210 
211 	/*
212 	 * We may pass freeze protection with a transaction.  So tell lockdep
213 	 * we released it.
214 	 */
215 	__sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS);
216 	/*
217 	 * We hand off the transaction to the completion thread now, so
218 	 * clear the flag here.
219 	 */
220 	current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
221 	return 0;
222 }
223 
224 /*
225  * Update on-disk file size now that data has been written to disk.
226  */
227 STATIC int
__xfs_setfilesize(struct xfs_inode * ip,struct xfs_trans * tp,xfs_off_t offset,size_t size)228 __xfs_setfilesize(
229 	struct xfs_inode	*ip,
230 	struct xfs_trans	*tp,
231 	xfs_off_t		offset,
232 	size_t			size)
233 {
234 	xfs_fsize_t		isize;
235 
236 	xfs_ilock(ip, XFS_ILOCK_EXCL);
237 	isize = xfs_new_eof(ip, offset + size);
238 	if (!isize) {
239 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
240 		xfs_trans_cancel(tp);
241 		return 0;
242 	}
243 
244 	trace_xfs_setfilesize(ip, offset, size);
245 
246 	ip->i_d.di_size = isize;
247 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
248 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
249 
250 	return xfs_trans_commit(tp);
251 }
252 
253 int
xfs_setfilesize(struct xfs_inode * ip,xfs_off_t offset,size_t size)254 xfs_setfilesize(
255 	struct xfs_inode	*ip,
256 	xfs_off_t		offset,
257 	size_t			size)
258 {
259 	struct xfs_mount	*mp = ip->i_mount;
260 	struct xfs_trans	*tp;
261 	int			error;
262 
263 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
264 	if (error)
265 		return error;
266 
267 	return __xfs_setfilesize(ip, tp, offset, size);
268 }
269 
270 STATIC int
xfs_setfilesize_ioend(struct xfs_ioend * ioend,int error)271 xfs_setfilesize_ioend(
272 	struct xfs_ioend	*ioend,
273 	int			error)
274 {
275 	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
276 	struct xfs_trans	*tp = ioend->io_append_trans;
277 
278 	/*
279 	 * The transaction may have been allocated in the I/O submission thread,
280 	 * thus we need to mark ourselves as being in a transaction manually.
281 	 * Similarly for freeze protection.
282 	 */
283 	current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
284 	__sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS);
285 
286 	/* we abort the update if there was an IO error */
287 	if (error) {
288 		xfs_trans_cancel(tp);
289 		return error;
290 	}
291 
292 	return __xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
293 }
294 
295 /*
296  * IO write completion.
297  */
298 STATIC void
xfs_end_io(struct work_struct * work)299 xfs_end_io(
300 	struct work_struct *work)
301 {
302 	struct xfs_ioend	*ioend =
303 		container_of(work, struct xfs_ioend, io_work);
304 	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
305 	xfs_off_t		offset = ioend->io_offset;
306 	size_t			size = ioend->io_size;
307 	int			error = ioend->io_bio->bi_error;
308 
309 	/*
310 	 * Just clean up the in-memory strutures if the fs has been shut down.
311 	 */
312 	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
313 		error = -EIO;
314 		goto done;
315 	}
316 
317 	/*
318 	 * Clean up any COW blocks on an I/O error.
319 	 */
320 	if (unlikely(error)) {
321 		switch (ioend->io_type) {
322 		case XFS_IO_COW:
323 			xfs_reflink_cancel_cow_range(ip, offset, size, true);
324 			break;
325 		}
326 
327 		goto done;
328 	}
329 
330 	/*
331 	 * Success:  commit the COW or unwritten blocks if needed.
332 	 */
333 	switch (ioend->io_type) {
334 	case XFS_IO_COW:
335 		error = xfs_reflink_end_cow(ip, offset, size);
336 		break;
337 	case XFS_IO_UNWRITTEN:
338 		/* writeback should never update isize */
339 		error = xfs_iomap_write_unwritten(ip, offset, size, false);
340 		break;
341 	default:
342 		ASSERT(!xfs_ioend_is_append(ioend) || ioend->io_append_trans);
343 		break;
344 	}
345 
346 done:
347 	if (ioend->io_append_trans)
348 		error = xfs_setfilesize_ioend(ioend, error);
349 	xfs_destroy_ioend(ioend, error);
350 }
351 
352 STATIC void
xfs_end_bio(struct bio * bio)353 xfs_end_bio(
354 	struct bio		*bio)
355 {
356 	struct xfs_ioend	*ioend = bio->bi_private;
357 	struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
358 
359 	if (ioend->io_type == XFS_IO_UNWRITTEN || ioend->io_type == XFS_IO_COW)
360 		queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
361 	else if (ioend->io_append_trans)
362 		queue_work(mp->m_data_workqueue, &ioend->io_work);
363 	else
364 		xfs_destroy_ioend(ioend, bio->bi_error);
365 }
366 
367 STATIC int
xfs_map_blocks(struct inode * inode,loff_t offset,struct xfs_bmbt_irec * imap,int type)368 xfs_map_blocks(
369 	struct inode		*inode,
370 	loff_t			offset,
371 	struct xfs_bmbt_irec	*imap,
372 	int			type)
373 {
374 	struct xfs_inode	*ip = XFS_I(inode);
375 	struct xfs_mount	*mp = ip->i_mount;
376 	ssize_t			count = i_blocksize(inode);
377 	xfs_fileoff_t		offset_fsb, end_fsb;
378 	int			error = 0;
379 	int			bmapi_flags = XFS_BMAPI_ENTIRE;
380 	int			nimaps = 1;
381 
382 	if (XFS_FORCED_SHUTDOWN(mp))
383 		return -EIO;
384 
385 	ASSERT(type != XFS_IO_COW);
386 	if (type == XFS_IO_UNWRITTEN)
387 		bmapi_flags |= XFS_BMAPI_IGSTATE;
388 
389 	xfs_ilock(ip, XFS_ILOCK_SHARED);
390 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
391 	       (ip->i_df.if_flags & XFS_IFEXTENTS));
392 	ASSERT(offset <= mp->m_super->s_maxbytes);
393 
394 	if ((xfs_ufsize_t)offset + count > mp->m_super->s_maxbytes)
395 		count = mp->m_super->s_maxbytes - offset;
396 	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
397 	offset_fsb = XFS_B_TO_FSBT(mp, offset);
398 	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
399 				imap, &nimaps, bmapi_flags);
400 	/*
401 	 * Truncate an overwrite extent if there's a pending CoW
402 	 * reservation before the end of this extent.  This forces us
403 	 * to come back to writepage to take care of the CoW.
404 	 */
405 	if (nimaps && type == XFS_IO_OVERWRITE)
406 		xfs_reflink_trim_irec_to_next_cow(ip, offset_fsb, imap);
407 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
408 
409 	if (error)
410 		return error;
411 
412 	if (type == XFS_IO_DELALLOC &&
413 	    (!nimaps || isnullstartblock(imap->br_startblock))) {
414 		error = xfs_iomap_write_allocate(ip, XFS_DATA_FORK, offset,
415 				imap);
416 		if (!error)
417 			trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
418 		return error;
419 	}
420 
421 #ifdef DEBUG
422 	if (type == XFS_IO_UNWRITTEN) {
423 		ASSERT(nimaps);
424 		ASSERT(imap->br_startblock != HOLESTARTBLOCK);
425 		ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
426 	}
427 #endif
428 	if (nimaps)
429 		trace_xfs_map_blocks_found(ip, offset, count, type, imap);
430 	return 0;
431 }
432 
433 STATIC bool
xfs_imap_valid(struct inode * inode,struct xfs_bmbt_irec * imap,xfs_off_t offset)434 xfs_imap_valid(
435 	struct inode		*inode,
436 	struct xfs_bmbt_irec	*imap,
437 	xfs_off_t		offset)
438 {
439 	offset >>= inode->i_blkbits;
440 
441 	/*
442 	 * We have to make sure the cached mapping is within EOF to protect
443 	 * against eofblocks trimming on file release leaving us with a stale
444 	 * mapping. Otherwise, a page for a subsequent file extending buffered
445 	 * write could get picked up by this writeback cycle and written to the
446 	 * wrong blocks.
447 	 *
448 	 * Note that what we really want here is a generic mapping invalidation
449 	 * mechanism to protect us from arbitrary extent modifying contexts, not
450 	 * just eofblocks.
451 	 */
452 	xfs_trim_extent_eof(imap, XFS_I(inode));
453 
454 	return offset >= imap->br_startoff &&
455 		offset < imap->br_startoff + imap->br_blockcount;
456 }
457 
458 STATIC void
xfs_start_buffer_writeback(struct buffer_head * bh)459 xfs_start_buffer_writeback(
460 	struct buffer_head	*bh)
461 {
462 	ASSERT(buffer_mapped(bh));
463 	ASSERT(buffer_locked(bh));
464 	ASSERT(!buffer_delay(bh));
465 	ASSERT(!buffer_unwritten(bh));
466 
467 	bh->b_end_io = NULL;
468 	set_buffer_async_write(bh);
469 	set_buffer_uptodate(bh);
470 	clear_buffer_dirty(bh);
471 }
472 
473 STATIC void
xfs_start_page_writeback(struct page * page,int clear_dirty)474 xfs_start_page_writeback(
475 	struct page		*page,
476 	int			clear_dirty)
477 {
478 	ASSERT(PageLocked(page));
479 	ASSERT(!PageWriteback(page));
480 
481 	/*
482 	 * if the page was not fully cleaned, we need to ensure that the higher
483 	 * layers come back to it correctly. That means we need to keep the page
484 	 * dirty, and for WB_SYNC_ALL writeback we need to ensure the
485 	 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to
486 	 * write this page in this writeback sweep will be made.
487 	 */
488 	if (clear_dirty) {
489 		clear_page_dirty_for_io(page);
490 		set_page_writeback(page);
491 	} else
492 		set_page_writeback_keepwrite(page);
493 
494 	unlock_page(page);
495 }
496 
xfs_bio_add_buffer(struct bio * bio,struct buffer_head * bh)497 static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh)
498 {
499 	return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
500 }
501 
502 /*
503  * Submit the bio for an ioend. We are passed an ioend with a bio attached to
504  * it, and we submit that bio. The ioend may be used for multiple bio
505  * submissions, so we only want to allocate an append transaction for the ioend
506  * once. In the case of multiple bio submission, each bio will take an IO
507  * reference to the ioend to ensure that the ioend completion is only done once
508  * all bios have been submitted and the ioend is really done.
509  *
510  * If @fail is non-zero, it means that we have a situation where some part of
511  * the submission process has failed after we have marked paged for writeback
512  * and unlocked them. In this situation, we need to fail the bio and ioend
513  * rather than submit it to IO. This typically only happens on a filesystem
514  * shutdown.
515  */
516 STATIC int
xfs_submit_ioend(struct writeback_control * wbc,struct xfs_ioend * ioend,int status)517 xfs_submit_ioend(
518 	struct writeback_control *wbc,
519 	struct xfs_ioend	*ioend,
520 	int			status)
521 {
522 	/* Convert CoW extents to regular */
523 	if (!status && ioend->io_type == XFS_IO_COW) {
524 		status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode),
525 				ioend->io_offset, ioend->io_size);
526 	}
527 
528 	/* Reserve log space if we might write beyond the on-disk inode size. */
529 	if (!status &&
530 	    ioend->io_type != XFS_IO_UNWRITTEN &&
531 	    xfs_ioend_is_append(ioend) &&
532 	    !ioend->io_append_trans)
533 		status = xfs_setfilesize_trans_alloc(ioend);
534 
535 	ioend->io_bio->bi_private = ioend;
536 	ioend->io_bio->bi_end_io = xfs_end_bio;
537 	bio_set_op_attrs(ioend->io_bio, REQ_OP_WRITE,
538 			 (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : 0);
539 	/*
540 	 * If we are failing the IO now, just mark the ioend with an
541 	 * error and finish it. This will run IO completion immediately
542 	 * as there is only one reference to the ioend at this point in
543 	 * time.
544 	 */
545 	if (status) {
546 		ioend->io_bio->bi_error = status;
547 		bio_endio(ioend->io_bio);
548 		return status;
549 	}
550 
551 	submit_bio(ioend->io_bio);
552 	return 0;
553 }
554 
555 static void
xfs_init_bio_from_bh(struct bio * bio,struct buffer_head * bh)556 xfs_init_bio_from_bh(
557 	struct bio		*bio,
558 	struct buffer_head	*bh)
559 {
560 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
561 	bio->bi_bdev = bh->b_bdev;
562 }
563 
564 static struct xfs_ioend *
xfs_alloc_ioend(struct inode * inode,unsigned int type,xfs_off_t offset,struct buffer_head * bh)565 xfs_alloc_ioend(
566 	struct inode		*inode,
567 	unsigned int		type,
568 	xfs_off_t		offset,
569 	struct buffer_head	*bh)
570 {
571 	struct xfs_ioend	*ioend;
572 	struct bio		*bio;
573 
574 	bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, xfs_ioend_bioset);
575 	xfs_init_bio_from_bh(bio, bh);
576 
577 	ioend = container_of(bio, struct xfs_ioend, io_inline_bio);
578 	INIT_LIST_HEAD(&ioend->io_list);
579 	ioend->io_type = type;
580 	ioend->io_inode = inode;
581 	ioend->io_size = 0;
582 	ioend->io_offset = offset;
583 	INIT_WORK(&ioend->io_work, xfs_end_io);
584 	ioend->io_append_trans = NULL;
585 	ioend->io_bio = bio;
586 	return ioend;
587 }
588 
589 /*
590  * Allocate a new bio, and chain the old bio to the new one.
591  *
592  * Note that we have to do perform the chaining in this unintuitive order
593  * so that the bi_private linkage is set up in the right direction for the
594  * traversal in xfs_destroy_ioend().
595  */
596 static void
xfs_chain_bio(struct xfs_ioend * ioend,struct writeback_control * wbc,struct buffer_head * bh)597 xfs_chain_bio(
598 	struct xfs_ioend	*ioend,
599 	struct writeback_control *wbc,
600 	struct buffer_head	*bh)
601 {
602 	struct bio *new;
603 
604 	new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES);
605 	xfs_init_bio_from_bh(new, bh);
606 
607 	bio_chain(ioend->io_bio, new);
608 	bio_get(ioend->io_bio);		/* for xfs_destroy_ioend */
609 	bio_set_op_attrs(ioend->io_bio, REQ_OP_WRITE,
610 			  (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : 0);
611 	submit_bio(ioend->io_bio);
612 	ioend->io_bio = new;
613 }
614 
615 /*
616  * Test to see if we've been building up a completion structure for
617  * earlier buffers -- if so, we try to append to this ioend if we
618  * can, otherwise we finish off any current ioend and start another.
619  * Return the ioend we finished off so that the caller can submit it
620  * once it has finished processing the dirty page.
621  */
622 STATIC void
xfs_add_to_ioend(struct inode * inode,struct buffer_head * bh,xfs_off_t offset,struct xfs_writepage_ctx * wpc,struct writeback_control * wbc,struct list_head * iolist)623 xfs_add_to_ioend(
624 	struct inode		*inode,
625 	struct buffer_head	*bh,
626 	xfs_off_t		offset,
627 	struct xfs_writepage_ctx *wpc,
628 	struct writeback_control *wbc,
629 	struct list_head	*iolist)
630 {
631 	if (!wpc->ioend || wpc->io_type != wpc->ioend->io_type ||
632 	    bh->b_blocknr != wpc->last_block + 1 ||
633 	    offset != wpc->ioend->io_offset + wpc->ioend->io_size) {
634 		if (wpc->ioend)
635 			list_add(&wpc->ioend->io_list, iolist);
636 		wpc->ioend = xfs_alloc_ioend(inode, wpc->io_type, offset, bh);
637 	}
638 
639 	/*
640 	 * If the buffer doesn't fit into the bio we need to allocate a new
641 	 * one.  This shouldn't happen more than once for a given buffer.
642 	 */
643 	while (xfs_bio_add_buffer(wpc->ioend->io_bio, bh) != bh->b_size)
644 		xfs_chain_bio(wpc->ioend, wbc, bh);
645 
646 	wpc->ioend->io_size += bh->b_size;
647 	wpc->last_block = bh->b_blocknr;
648 	xfs_start_buffer_writeback(bh);
649 }
650 
651 STATIC void
xfs_map_buffer(struct inode * inode,struct buffer_head * bh,struct xfs_bmbt_irec * imap,xfs_off_t offset)652 xfs_map_buffer(
653 	struct inode		*inode,
654 	struct buffer_head	*bh,
655 	struct xfs_bmbt_irec	*imap,
656 	xfs_off_t		offset)
657 {
658 	sector_t		bn;
659 	struct xfs_mount	*m = XFS_I(inode)->i_mount;
660 	xfs_off_t		iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
661 	xfs_daddr_t		iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
662 
663 	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
664 	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
665 
666 	bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
667 	      ((offset - iomap_offset) >> inode->i_blkbits);
668 
669 	ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
670 
671 	bh->b_blocknr = bn;
672 	set_buffer_mapped(bh);
673 }
674 
675 STATIC void
xfs_map_at_offset(struct inode * inode,struct buffer_head * bh,struct xfs_bmbt_irec * imap,xfs_off_t offset)676 xfs_map_at_offset(
677 	struct inode		*inode,
678 	struct buffer_head	*bh,
679 	struct xfs_bmbt_irec	*imap,
680 	xfs_off_t		offset)
681 {
682 	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
683 	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
684 
685 	xfs_map_buffer(inode, bh, imap, offset);
686 	set_buffer_mapped(bh);
687 	clear_buffer_delay(bh);
688 	clear_buffer_unwritten(bh);
689 }
690 
691 /*
692  * Test if a given page contains at least one buffer of a given @type.
693  * If @check_all_buffers is true, then we walk all the buffers in the page to
694  * try to find one of the type passed in. If it is not set, then the caller only
695  * needs to check the first buffer on the page for a match.
696  */
697 STATIC bool
xfs_check_page_type(struct page * page,unsigned int type,bool check_all_buffers)698 xfs_check_page_type(
699 	struct page		*page,
700 	unsigned int		type,
701 	bool			check_all_buffers)
702 {
703 	struct buffer_head	*bh;
704 	struct buffer_head	*head;
705 
706 	if (PageWriteback(page))
707 		return false;
708 	if (!page->mapping)
709 		return false;
710 	if (!page_has_buffers(page))
711 		return false;
712 
713 	bh = head = page_buffers(page);
714 	do {
715 		if (buffer_unwritten(bh)) {
716 			if (type == XFS_IO_UNWRITTEN)
717 				return true;
718 		} else if (buffer_delay(bh)) {
719 			if (type == XFS_IO_DELALLOC)
720 				return true;
721 		} else if (buffer_dirty(bh) && buffer_mapped(bh)) {
722 			if (type == XFS_IO_OVERWRITE)
723 				return true;
724 		}
725 
726 		/* If we are only checking the first buffer, we are done now. */
727 		if (!check_all_buffers)
728 			break;
729 	} while ((bh = bh->b_this_page) != head);
730 
731 	return false;
732 }
733 
734 STATIC void
xfs_vm_invalidatepage(struct page * page,unsigned int offset,unsigned int length)735 xfs_vm_invalidatepage(
736 	struct page		*page,
737 	unsigned int		offset,
738 	unsigned int		length)
739 {
740 	trace_xfs_invalidatepage(page->mapping->host, page, offset,
741 				 length);
742 
743 	/*
744 	 * If we are invalidating the entire page, clear the dirty state from it
745 	 * so that we can check for attempts to release dirty cached pages in
746 	 * xfs_vm_releasepage().
747 	 */
748 	if (offset == 0 && length >= PAGE_SIZE)
749 		cancel_dirty_page(page);
750 	block_invalidatepage(page, offset, length);
751 }
752 
753 /*
754  * If the page has delalloc buffers on it, we need to punch them out before we
755  * invalidate the page. If we don't, we leave a stale delalloc mapping on the
756  * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
757  * is done on that same region - the delalloc extent is returned when none is
758  * supposed to be there.
759  *
760  * We prevent this by truncating away the delalloc regions on the page before
761  * invalidating it. Because they are delalloc, we can do this without needing a
762  * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
763  * truncation without a transaction as there is no space left for block
764  * reservation (typically why we see a ENOSPC in writeback).
765  *
766  * This is not a performance critical path, so for now just do the punching a
767  * buffer head at a time.
768  */
769 STATIC void
xfs_aops_discard_page(struct page * page)770 xfs_aops_discard_page(
771 	struct page		*page)
772 {
773 	struct inode		*inode = page->mapping->host;
774 	struct xfs_inode	*ip = XFS_I(inode);
775 	struct buffer_head	*bh, *head;
776 	loff_t			offset = page_offset(page);
777 
778 	if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true))
779 		goto out_invalidate;
780 
781 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
782 		goto out_invalidate;
783 
784 	xfs_alert(ip->i_mount,
785 		"page discard on page %p, inode 0x%llx, offset %llu.",
786 			page, ip->i_ino, offset);
787 
788 	xfs_ilock(ip, XFS_ILOCK_EXCL);
789 	bh = head = page_buffers(page);
790 	do {
791 		int		error;
792 		xfs_fileoff_t	start_fsb;
793 
794 		if (!buffer_delay(bh))
795 			goto next_buffer;
796 
797 		start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
798 		error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
799 		if (error) {
800 			/* something screwed, just bail */
801 			if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
802 				xfs_alert(ip->i_mount,
803 			"page discard unable to remove delalloc mapping.");
804 			}
805 			break;
806 		}
807 next_buffer:
808 		offset += i_blocksize(inode);
809 
810 	} while ((bh = bh->b_this_page) != head);
811 
812 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
813 out_invalidate:
814 	xfs_vm_invalidatepage(page, 0, PAGE_SIZE);
815 	return;
816 }
817 
818 static int
xfs_map_cow(struct xfs_writepage_ctx * wpc,struct inode * inode,loff_t offset,unsigned int * new_type)819 xfs_map_cow(
820 	struct xfs_writepage_ctx *wpc,
821 	struct inode		*inode,
822 	loff_t			offset,
823 	unsigned int		*new_type)
824 {
825 	struct xfs_inode	*ip = XFS_I(inode);
826 	struct xfs_bmbt_irec	imap;
827 	bool			is_cow = false, need_alloc = false;
828 	int			error;
829 
830 	/*
831 	 * If we already have a valid COW mapping keep using it.
832 	 */
833 	if (wpc->io_type == XFS_IO_COW) {
834 		wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap, offset);
835 		if (wpc->imap_valid) {
836 			*new_type = XFS_IO_COW;
837 			return 0;
838 		}
839 	}
840 
841 	/*
842 	 * Else we need to check if there is a COW mapping at this offset.
843 	 */
844 	xfs_ilock(ip, XFS_ILOCK_SHARED);
845 	is_cow = xfs_reflink_find_cow_mapping(ip, offset, &imap, &need_alloc);
846 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
847 
848 	if (!is_cow)
849 		return 0;
850 
851 	/*
852 	 * And if the COW mapping has a delayed extent here we need to
853 	 * allocate real space for it now.
854 	 */
855 	if (need_alloc) {
856 		error = xfs_iomap_write_allocate(ip, XFS_COW_FORK, offset,
857 				&imap);
858 		if (error)
859 			return error;
860 	}
861 
862 	wpc->io_type = *new_type = XFS_IO_COW;
863 	wpc->imap_valid = true;
864 	wpc->imap = imap;
865 	return 0;
866 }
867 
868 /*
869  * We implement an immediate ioend submission policy here to avoid needing to
870  * chain multiple ioends and hence nest mempool allocations which can violate
871  * forward progress guarantees we need to provide. The current ioend we are
872  * adding buffers to is cached on the writepage context, and if the new buffer
873  * does not append to the cached ioend it will create a new ioend and cache that
874  * instead.
875  *
876  * If a new ioend is created and cached, the old ioend is returned and queued
877  * locally for submission once the entire page is processed or an error has been
878  * detected.  While ioends are submitted immediately after they are completed,
879  * batching optimisations are provided by higher level block plugging.
880  *
881  * At the end of a writeback pass, there will be a cached ioend remaining on the
882  * writepage context that the caller will need to submit.
883  */
884 static int
xfs_writepage_map(struct xfs_writepage_ctx * wpc,struct writeback_control * wbc,struct inode * inode,struct page * page,loff_t offset,__uint64_t end_offset)885 xfs_writepage_map(
886 	struct xfs_writepage_ctx *wpc,
887 	struct writeback_control *wbc,
888 	struct inode		*inode,
889 	struct page		*page,
890 	loff_t			offset,
891 	__uint64_t              end_offset)
892 {
893 	LIST_HEAD(submit_list);
894 	struct xfs_ioend	*ioend, *next;
895 	struct buffer_head	*bh, *head;
896 	ssize_t			len = i_blocksize(inode);
897 	int			error = 0;
898 	int			count = 0;
899 	int			uptodate = 1;
900 	unsigned int		new_type;
901 
902 	bh = head = page_buffers(page);
903 	offset = page_offset(page);
904 	do {
905 		if (offset >= end_offset)
906 			break;
907 		if (!buffer_uptodate(bh))
908 			uptodate = 0;
909 
910 		/*
911 		 * set_page_dirty dirties all buffers in a page, independent
912 		 * of their state.  The dirty state however is entirely
913 		 * meaningless for holes (!mapped && uptodate), so skip
914 		 * buffers covering holes here.
915 		 */
916 		if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
917 			wpc->imap_valid = false;
918 			continue;
919 		}
920 
921 		if (buffer_unwritten(bh))
922 			new_type = XFS_IO_UNWRITTEN;
923 		else if (buffer_delay(bh))
924 			new_type = XFS_IO_DELALLOC;
925 		else if (buffer_uptodate(bh))
926 			new_type = XFS_IO_OVERWRITE;
927 		else {
928 			if (PageUptodate(page))
929 				ASSERT(buffer_mapped(bh));
930 			/*
931 			 * This buffer is not uptodate and will not be
932 			 * written to disk.  Ensure that we will put any
933 			 * subsequent writeable buffers into a new
934 			 * ioend.
935 			 */
936 			wpc->imap_valid = false;
937 			continue;
938 		}
939 
940 		if (xfs_is_reflink_inode(XFS_I(inode))) {
941 			error = xfs_map_cow(wpc, inode, offset, &new_type);
942 			if (error)
943 				goto out;
944 		}
945 
946 		if (wpc->io_type != new_type) {
947 			wpc->io_type = new_type;
948 			wpc->imap_valid = false;
949 		}
950 
951 		if (wpc->imap_valid)
952 			wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
953 							 offset);
954 		if (!wpc->imap_valid) {
955 			error = xfs_map_blocks(inode, offset, &wpc->imap,
956 					     wpc->io_type);
957 			if (error)
958 				goto out;
959 			wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
960 							 offset);
961 		}
962 		if (wpc->imap_valid) {
963 			lock_buffer(bh);
964 			if (wpc->io_type != XFS_IO_OVERWRITE)
965 				xfs_map_at_offset(inode, bh, &wpc->imap, offset);
966 			xfs_add_to_ioend(inode, bh, offset, wpc, wbc, &submit_list);
967 			count++;
968 		}
969 
970 	} while (offset += len, ((bh = bh->b_this_page) != head));
971 
972 	if (uptodate && bh == head)
973 		SetPageUptodate(page);
974 
975 	ASSERT(wpc->ioend || list_empty(&submit_list));
976 
977 out:
978 	/*
979 	 * On error, we have to fail the ioend here because we have locked
980 	 * buffers in the ioend. If we don't do this, we'll deadlock
981 	 * invalidating the page as that tries to lock the buffers on the page.
982 	 * Also, because we may have set pages under writeback, we have to make
983 	 * sure we run IO completion to mark the error state of the IO
984 	 * appropriately, so we can't cancel the ioend directly here. That means
985 	 * we have to mark this page as under writeback if we included any
986 	 * buffers from it in the ioend chain so that completion treats it
987 	 * correctly.
988 	 *
989 	 * If we didn't include the page in the ioend, the on error we can
990 	 * simply discard and unlock it as there are no other users of the page
991 	 * or it's buffers right now. The caller will still need to trigger
992 	 * submission of outstanding ioends on the writepage context so they are
993 	 * treated correctly on error.
994 	 */
995 	if (count) {
996 		xfs_start_page_writeback(page, !error);
997 
998 		/*
999 		 * Preserve the original error if there was one, otherwise catch
1000 		 * submission errors here and propagate into subsequent ioend
1001 		 * submissions.
1002 		 */
1003 		list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
1004 			int error2;
1005 
1006 			list_del_init(&ioend->io_list);
1007 			error2 = xfs_submit_ioend(wbc, ioend, error);
1008 			if (error2 && !error)
1009 				error = error2;
1010 		}
1011 	} else if (error) {
1012 		xfs_aops_discard_page(page);
1013 		ClearPageUptodate(page);
1014 		unlock_page(page);
1015 	} else {
1016 		/*
1017 		 * We can end up here with no error and nothing to write if we
1018 		 * race with a partial page truncate on a sub-page block sized
1019 		 * filesystem. In that case we need to mark the page clean.
1020 		 */
1021 		xfs_start_page_writeback(page, 1);
1022 		end_page_writeback(page);
1023 	}
1024 
1025 	mapping_set_error(page->mapping, error);
1026 	return error;
1027 }
1028 
1029 /*
1030  * Write out a dirty page.
1031  *
1032  * For delalloc space on the page we need to allocate space and flush it.
1033  * For unwritten space on the page we need to start the conversion to
1034  * regular allocated space.
1035  * For any other dirty buffer heads on the page we should flush them.
1036  */
1037 STATIC int
xfs_do_writepage(struct page * page,struct writeback_control * wbc,void * data)1038 xfs_do_writepage(
1039 	struct page		*page,
1040 	struct writeback_control *wbc,
1041 	void			*data)
1042 {
1043 	struct xfs_writepage_ctx *wpc = data;
1044 	struct inode		*inode = page->mapping->host;
1045 	loff_t			offset;
1046 	__uint64_t              end_offset;
1047 	pgoff_t                 end_index;
1048 
1049 	trace_xfs_writepage(inode, page, 0, 0);
1050 
1051 	ASSERT(page_has_buffers(page));
1052 
1053 	/*
1054 	 * Refuse to write the page out if we are called from reclaim context.
1055 	 *
1056 	 * This avoids stack overflows when called from deeply used stacks in
1057 	 * random callers for direct reclaim or memcg reclaim.  We explicitly
1058 	 * allow reclaim from kswapd as the stack usage there is relatively low.
1059 	 *
1060 	 * This should never happen except in the case of a VM regression so
1061 	 * warn about it.
1062 	 */
1063 	if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
1064 			PF_MEMALLOC))
1065 		goto redirty;
1066 
1067 	/*
1068 	 * Given that we do not allow direct reclaim to call us, we should
1069 	 * never be called while in a filesystem transaction.
1070 	 */
1071 	if (WARN_ON_ONCE(current->flags & PF_FSTRANS))
1072 		goto redirty;
1073 
1074 	/*
1075 	 * Is this page beyond the end of the file?
1076 	 *
1077 	 * The page index is less than the end_index, adjust the end_offset
1078 	 * to the highest offset that this page should represent.
1079 	 * -----------------------------------------------------
1080 	 * |			file mapping	       | <EOF> |
1081 	 * -----------------------------------------------------
1082 	 * | Page ... | Page N-2 | Page N-1 |  Page N  |       |
1083 	 * ^--------------------------------^----------|--------
1084 	 * |     desired writeback range    |      see else    |
1085 	 * ---------------------------------^------------------|
1086 	 */
1087 	offset = i_size_read(inode);
1088 	end_index = offset >> PAGE_SHIFT;
1089 	if (page->index < end_index)
1090 		end_offset = (xfs_off_t)(page->index + 1) << PAGE_SHIFT;
1091 	else {
1092 		/*
1093 		 * Check whether the page to write out is beyond or straddles
1094 		 * i_size or not.
1095 		 * -------------------------------------------------------
1096 		 * |		file mapping		        | <EOF>  |
1097 		 * -------------------------------------------------------
1098 		 * | Page ... | Page N-2 | Page N-1 |  Page N   | Beyond |
1099 		 * ^--------------------------------^-----------|---------
1100 		 * |				    |      Straddles     |
1101 		 * ---------------------------------^-----------|--------|
1102 		 */
1103 		unsigned offset_into_page = offset & (PAGE_SIZE - 1);
1104 
1105 		/*
1106 		 * Skip the page if it is fully outside i_size, e.g. due to a
1107 		 * truncate operation that is in progress. We must redirty the
1108 		 * page so that reclaim stops reclaiming it. Otherwise
1109 		 * xfs_vm_releasepage() is called on it and gets confused.
1110 		 *
1111 		 * Note that the end_index is unsigned long, it would overflow
1112 		 * if the given offset is greater than 16TB on 32-bit system
1113 		 * and if we do check the page is fully outside i_size or not
1114 		 * via "if (page->index >= end_index + 1)" as "end_index + 1"
1115 		 * will be evaluated to 0.  Hence this page will be redirtied
1116 		 * and be written out repeatedly which would result in an
1117 		 * infinite loop, the user program that perform this operation
1118 		 * will hang.  Instead, we can verify this situation by checking
1119 		 * if the page to write is totally beyond the i_size or if it's
1120 		 * offset is just equal to the EOF.
1121 		 */
1122 		if (page->index > end_index ||
1123 		    (page->index == end_index && offset_into_page == 0))
1124 			goto redirty;
1125 
1126 		/*
1127 		 * The page straddles i_size.  It must be zeroed out on each
1128 		 * and every writepage invocation because it may be mmapped.
1129 		 * "A file is mapped in multiples of the page size.  For a file
1130 		 * that is not a multiple of the page size, the remaining
1131 		 * memory is zeroed when mapped, and writes to that region are
1132 		 * not written out to the file."
1133 		 */
1134 		zero_user_segment(page, offset_into_page, PAGE_SIZE);
1135 
1136 		/* Adjust the end_offset to the end of file */
1137 		end_offset = offset;
1138 	}
1139 
1140 	return xfs_writepage_map(wpc, wbc, inode, page, offset, end_offset);
1141 
1142 redirty:
1143 	redirty_page_for_writepage(wbc, page);
1144 	unlock_page(page);
1145 	return 0;
1146 }
1147 
1148 STATIC int
xfs_vm_writepage(struct page * page,struct writeback_control * wbc)1149 xfs_vm_writepage(
1150 	struct page		*page,
1151 	struct writeback_control *wbc)
1152 {
1153 	struct xfs_writepage_ctx wpc = {
1154 		.io_type = XFS_IO_INVALID,
1155 	};
1156 	int			ret;
1157 
1158 	ret = xfs_do_writepage(page, wbc, &wpc);
1159 	if (wpc.ioend)
1160 		ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1161 	return ret;
1162 }
1163 
1164 STATIC int
xfs_vm_writepages(struct address_space * mapping,struct writeback_control * wbc)1165 xfs_vm_writepages(
1166 	struct address_space	*mapping,
1167 	struct writeback_control *wbc)
1168 {
1169 	struct xfs_writepage_ctx wpc = {
1170 		.io_type = XFS_IO_INVALID,
1171 	};
1172 	int			ret;
1173 
1174 	xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1175 	if (dax_mapping(mapping))
1176 		return dax_writeback_mapping_range(mapping,
1177 				xfs_find_bdev_for_inode(mapping->host), wbc);
1178 
1179 	ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc);
1180 	if (wpc.ioend)
1181 		ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1182 	return ret;
1183 }
1184 
1185 /*
1186  * Called to move a page into cleanable state - and from there
1187  * to be released. The page should already be clean. We always
1188  * have buffer heads in this call.
1189  *
1190  * Returns 1 if the page is ok to release, 0 otherwise.
1191  */
1192 STATIC int
xfs_vm_releasepage(struct page * page,gfp_t gfp_mask)1193 xfs_vm_releasepage(
1194 	struct page		*page,
1195 	gfp_t			gfp_mask)
1196 {
1197 	int			delalloc, unwritten;
1198 
1199 	trace_xfs_releasepage(page->mapping->host, page, 0, 0);
1200 
1201 	/*
1202 	 * mm accommodates an old ext3 case where clean pages might not have had
1203 	 * the dirty bit cleared. Thus, it can send actual dirty pages to
1204 	 * ->releasepage() via shrink_active_list(). Conversely,
1205 	 * block_invalidatepage() can send pages that are still marked dirty but
1206 	 * otherwise have invalidated buffers.
1207 	 *
1208 	 * We want to release the latter to avoid unnecessary buildup of the
1209 	 * LRU, so xfs_vm_invalidatepage() clears the page dirty flag on pages
1210 	 * that are entirely invalidated and need to be released.  Hence the
1211 	 * only time we should get dirty pages here is through
1212 	 * shrink_active_list() and so we can simply skip those now.
1213 	 *
1214 	 * warn if we've left any lingering delalloc/unwritten buffers on clean
1215 	 * or invalidated pages we are about to release.
1216 	 */
1217 	if (PageDirty(page))
1218 		return 0;
1219 
1220 	xfs_count_page_state(page, &delalloc, &unwritten);
1221 
1222 	if (WARN_ON_ONCE(delalloc))
1223 		return 0;
1224 	if (WARN_ON_ONCE(unwritten))
1225 		return 0;
1226 
1227 	return try_to_free_buffers(page);
1228 }
1229 
1230 /*
1231  * When we map a DIO buffer, we may need to pass flags to
1232  * xfs_end_io_direct_write to tell it what kind of write IO we are doing.
1233  *
1234  * Note that for DIO, an IO to the highest supported file block offset (i.e.
1235  * 2^63 - 1FSB bytes) will result in the offset + count overflowing a signed 64
1236  * bit variable. Hence if we see this overflow, we have to assume that the IO is
1237  * extending the file size. We won't know for sure until IO completion is run
1238  * and the actual max write offset is communicated to the IO completion
1239  * routine.
1240  */
1241 static void
xfs_map_direct(struct inode * inode,struct buffer_head * bh_result,struct xfs_bmbt_irec * imap,xfs_off_t offset,bool is_cow)1242 xfs_map_direct(
1243 	struct inode		*inode,
1244 	struct buffer_head	*bh_result,
1245 	struct xfs_bmbt_irec	*imap,
1246 	xfs_off_t		offset,
1247 	bool			is_cow)
1248 {
1249 	uintptr_t		*flags = (uintptr_t *)&bh_result->b_private;
1250 	xfs_off_t		size = bh_result->b_size;
1251 
1252 	trace_xfs_get_blocks_map_direct(XFS_I(inode), offset, size,
1253 		ISUNWRITTEN(imap) ? XFS_IO_UNWRITTEN : is_cow ? XFS_IO_COW :
1254 		XFS_IO_OVERWRITE, imap);
1255 
1256 	if (ISUNWRITTEN(imap)) {
1257 		*flags |= XFS_DIO_FLAG_UNWRITTEN;
1258 		set_buffer_defer_completion(bh_result);
1259 	} else if (is_cow) {
1260 		*flags |= XFS_DIO_FLAG_COW;
1261 		set_buffer_defer_completion(bh_result);
1262 	}
1263 	if (offset + size > i_size_read(inode) || offset + size < 0) {
1264 		*flags |= XFS_DIO_FLAG_APPEND;
1265 		set_buffer_defer_completion(bh_result);
1266 	}
1267 }
1268 
1269 /*
1270  * If this is O_DIRECT or the mpage code calling tell them how large the mapping
1271  * is, so that we can avoid repeated get_blocks calls.
1272  *
1273  * If the mapping spans EOF, then we have to break the mapping up as the mapping
1274  * for blocks beyond EOF must be marked new so that sub block regions can be
1275  * correctly zeroed. We can't do this for mappings within EOF unless the mapping
1276  * was just allocated or is unwritten, otherwise the callers would overwrite
1277  * existing data with zeros. Hence we have to split the mapping into a range up
1278  * to and including EOF, and a second mapping for beyond EOF.
1279  */
1280 static void
xfs_map_trim_size(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,struct xfs_bmbt_irec * imap,xfs_off_t offset,ssize_t size)1281 xfs_map_trim_size(
1282 	struct inode		*inode,
1283 	sector_t		iblock,
1284 	struct buffer_head	*bh_result,
1285 	struct xfs_bmbt_irec	*imap,
1286 	xfs_off_t		offset,
1287 	ssize_t			size)
1288 {
1289 	xfs_off_t		mapping_size;
1290 
1291 	mapping_size = imap->br_startoff + imap->br_blockcount - iblock;
1292 	mapping_size <<= inode->i_blkbits;
1293 
1294 	ASSERT(mapping_size > 0);
1295 	if (mapping_size > size)
1296 		mapping_size = size;
1297 	if (offset < i_size_read(inode) &&
1298 	    (xfs_ufsize_t)offset + mapping_size >= i_size_read(inode)) {
1299 		/* limit mapping to block that spans EOF */
1300 		mapping_size = roundup_64(i_size_read(inode) - offset,
1301 					  i_blocksize(inode));
1302 	}
1303 	if (mapping_size > LONG_MAX)
1304 		mapping_size = LONG_MAX;
1305 
1306 	bh_result->b_size = mapping_size;
1307 }
1308 
1309 STATIC int
__xfs_get_blocks(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create,bool direct,bool dax_fault)1310 __xfs_get_blocks(
1311 	struct inode		*inode,
1312 	sector_t		iblock,
1313 	struct buffer_head	*bh_result,
1314 	int			create,
1315 	bool			direct,
1316 	bool			dax_fault)
1317 {
1318 	struct xfs_inode	*ip = XFS_I(inode);
1319 	struct xfs_mount	*mp = ip->i_mount;
1320 	xfs_fileoff_t		offset_fsb, end_fsb;
1321 	int			error = 0;
1322 	int			lockmode = 0;
1323 	struct xfs_bmbt_irec	imap;
1324 	int			nimaps = 1;
1325 	xfs_off_t		offset;
1326 	ssize_t			size;
1327 	int			new = 0;
1328 	bool			is_cow = false;
1329 	bool			need_alloc = false;
1330 
1331 	BUG_ON(create && !direct);
1332 
1333 	if (XFS_FORCED_SHUTDOWN(mp))
1334 		return -EIO;
1335 
1336 	offset = (xfs_off_t)iblock << inode->i_blkbits;
1337 	ASSERT(bh_result->b_size >= i_blocksize(inode));
1338 	size = bh_result->b_size;
1339 
1340 	if (!create && offset >= i_size_read(inode))
1341 		return 0;
1342 
1343 	/*
1344 	 * Direct I/O is usually done on preallocated files, so try getting
1345 	 * a block mapping without an exclusive lock first.
1346 	 */
1347 	lockmode = xfs_ilock_data_map_shared(ip);
1348 
1349 	ASSERT(offset <= mp->m_super->s_maxbytes);
1350 	if ((xfs_ufsize_t)offset + size > mp->m_super->s_maxbytes)
1351 		size = mp->m_super->s_maxbytes - offset;
1352 	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1353 	offset_fsb = XFS_B_TO_FSBT(mp, offset);
1354 
1355 	if (create && direct && xfs_is_reflink_inode(ip))
1356 		is_cow = xfs_reflink_find_cow_mapping(ip, offset, &imap,
1357 					&need_alloc);
1358 	if (!is_cow) {
1359 		error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
1360 					&imap, &nimaps, XFS_BMAPI_ENTIRE);
1361 		/*
1362 		 * Truncate an overwrite extent if there's a pending CoW
1363 		 * reservation before the end of this extent.  This
1364 		 * forces us to come back to get_blocks to take care of
1365 		 * the CoW.
1366 		 */
1367 		if (create && direct && nimaps &&
1368 		    imap.br_startblock != HOLESTARTBLOCK &&
1369 		    imap.br_startblock != DELAYSTARTBLOCK &&
1370 		    !ISUNWRITTEN(&imap))
1371 			xfs_reflink_trim_irec_to_next_cow(ip, offset_fsb,
1372 					&imap);
1373 	}
1374 	ASSERT(!need_alloc);
1375 	if (error)
1376 		goto out_unlock;
1377 
1378 	/*
1379 	 * The only time we can ever safely find delalloc blocks on direct I/O
1380 	 * is a dio write to post-eof speculative preallocation. All other
1381 	 * scenarios are indicative of a problem or misuse (such as mixing
1382 	 * direct and mapped I/O).
1383 	 *
1384 	 * The file may be unmapped by the time we get here so we cannot
1385 	 * reliably fail the I/O based on mapping. Instead, fail the I/O if this
1386 	 * is a read or a write within eof. Otherwise, carry on but warn as a
1387 	 * precuation if the file happens to be mapped.
1388 	 */
1389 	if (direct && imap.br_startblock == DELAYSTARTBLOCK) {
1390 		if (!create || offset < i_size_read(VFS_I(ip))) {
1391 			WARN_ON_ONCE(1);
1392 			error = -EIO;
1393 			goto out_unlock;
1394 		}
1395 		WARN_ON_ONCE(mapping_mapped(VFS_I(ip)->i_mapping));
1396 	}
1397 
1398 	/* for DAX, we convert unwritten extents directly */
1399 	if (create &&
1400 	    (!nimaps ||
1401 	     (imap.br_startblock == HOLESTARTBLOCK ||
1402 	      imap.br_startblock == DELAYSTARTBLOCK) ||
1403 	     (IS_DAX(inode) && ISUNWRITTEN(&imap)))) {
1404 		/*
1405 		 * xfs_iomap_write_direct() expects the shared lock. It
1406 		 * is unlocked on return.
1407 		 */
1408 		if (lockmode == XFS_ILOCK_EXCL)
1409 			xfs_ilock_demote(ip, lockmode);
1410 
1411 		error = xfs_iomap_write_direct(ip, offset, size,
1412 					       &imap, nimaps);
1413 		if (error)
1414 			return error;
1415 		new = 1;
1416 
1417 		trace_xfs_get_blocks_alloc(ip, offset, size,
1418 				ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
1419 						   : XFS_IO_DELALLOC, &imap);
1420 	} else if (nimaps) {
1421 		trace_xfs_get_blocks_found(ip, offset, size,
1422 				ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
1423 						   : XFS_IO_OVERWRITE, &imap);
1424 		xfs_iunlock(ip, lockmode);
1425 	} else {
1426 		trace_xfs_get_blocks_notfound(ip, offset, size);
1427 		goto out_unlock;
1428 	}
1429 
1430 	if (IS_DAX(inode) && create) {
1431 		ASSERT(!ISUNWRITTEN(&imap));
1432 		/* zeroing is not needed at a higher layer */
1433 		new = 0;
1434 	}
1435 
1436 	/* trim mapping down to size requested */
1437 	xfs_map_trim_size(inode, iblock, bh_result, &imap, offset, size);
1438 
1439 	/*
1440 	 * For unwritten extents do not report a disk address in the buffered
1441 	 * read case (treat as if we're reading into a hole).
1442 	 */
1443 	if (imap.br_startblock != HOLESTARTBLOCK &&
1444 	    imap.br_startblock != DELAYSTARTBLOCK &&
1445 	    (create || !ISUNWRITTEN(&imap))) {
1446 		xfs_map_buffer(inode, bh_result, &imap, offset);
1447 		if (ISUNWRITTEN(&imap))
1448 			set_buffer_unwritten(bh_result);
1449 		/* direct IO needs special help */
1450 		if (create) {
1451 			if (dax_fault)
1452 				ASSERT(!ISUNWRITTEN(&imap));
1453 			else
1454 				xfs_map_direct(inode, bh_result, &imap, offset,
1455 						is_cow);
1456 		}
1457 	}
1458 
1459 	/*
1460 	 * If this is a realtime file, data may be on a different device.
1461 	 * to that pointed to from the buffer_head b_bdev currently.
1462 	 */
1463 	bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1464 
1465 	/*
1466 	 * If we previously allocated a block out beyond eof and we are now
1467 	 * coming back to use it then we will need to flag it as new even if it
1468 	 * has a disk address.
1469 	 *
1470 	 * With sub-block writes into unwritten extents we also need to mark
1471 	 * the buffer as new so that the unwritten parts of the buffer gets
1472 	 * correctly zeroed.
1473 	 */
1474 	if (create &&
1475 	    ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
1476 	     (offset >= i_size_read(inode)) ||
1477 	     (new || ISUNWRITTEN(&imap))))
1478 		set_buffer_new(bh_result);
1479 
1480 	return 0;
1481 
1482 out_unlock:
1483 	xfs_iunlock(ip, lockmode);
1484 	return error;
1485 }
1486 
1487 int
xfs_get_blocks(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)1488 xfs_get_blocks(
1489 	struct inode		*inode,
1490 	sector_t		iblock,
1491 	struct buffer_head	*bh_result,
1492 	int			create)
1493 {
1494 	return __xfs_get_blocks(inode, iblock, bh_result, create, false, false);
1495 }
1496 
1497 int
xfs_get_blocks_direct(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)1498 xfs_get_blocks_direct(
1499 	struct inode		*inode,
1500 	sector_t		iblock,
1501 	struct buffer_head	*bh_result,
1502 	int			create)
1503 {
1504 	return __xfs_get_blocks(inode, iblock, bh_result, create, true, false);
1505 }
1506 
1507 int
xfs_get_blocks_dax_fault(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)1508 xfs_get_blocks_dax_fault(
1509 	struct inode		*inode,
1510 	sector_t		iblock,
1511 	struct buffer_head	*bh_result,
1512 	int			create)
1513 {
1514 	return __xfs_get_blocks(inode, iblock, bh_result, create, true, true);
1515 }
1516 
1517 /*
1518  * Complete a direct I/O write request.
1519  *
1520  * xfs_map_direct passes us some flags in the private data to tell us what to
1521  * do.  If no flags are set, then the write IO is an overwrite wholly within
1522  * the existing allocated file size and so there is nothing for us to do.
1523  *
1524  * Note that in this case the completion can be called in interrupt context,
1525  * whereas if we have flags set we will always be called in task context
1526  * (i.e. from a workqueue).
1527  */
1528 int
xfs_end_io_direct_write(struct kiocb * iocb,loff_t offset,ssize_t size,void * private)1529 xfs_end_io_direct_write(
1530 	struct kiocb		*iocb,
1531 	loff_t			offset,
1532 	ssize_t			size,
1533 	void			*private)
1534 {
1535 	struct inode		*inode = file_inode(iocb->ki_filp);
1536 	struct xfs_inode	*ip = XFS_I(inode);
1537 	uintptr_t		flags = (uintptr_t)private;
1538 	int			error = 0;
1539 
1540 	trace_xfs_end_io_direct_write(ip, offset, size);
1541 
1542 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
1543 		return -EIO;
1544 
1545 	if (size <= 0)
1546 		return size;
1547 
1548 	/*
1549 	 * The flags tell us whether we are doing unwritten extent conversions
1550 	 * or an append transaction that updates the on-disk file size. These
1551 	 * cases are the only cases where we should *potentially* be needing
1552 	 * to update the VFS inode size.
1553 	 */
1554 	if (flags == 0) {
1555 		ASSERT(offset + size <= i_size_read(inode));
1556 		return 0;
1557 	}
1558 
1559 	if (flags & XFS_DIO_FLAG_COW)
1560 		error = xfs_reflink_end_cow(ip, offset, size);
1561 
1562 	/*
1563 	 * Unwritten conversion updates the in-core isize after extent
1564 	 * conversion but before updating the on-disk size. Updating isize any
1565 	 * earlier allows a racing dio read to find unwritten extents before
1566 	 * they are converted.
1567 	 */
1568 	if (flags & XFS_DIO_FLAG_UNWRITTEN) {
1569 		trace_xfs_end_io_direct_write_unwritten(ip, offset, size);
1570 
1571 		return xfs_iomap_write_unwritten(ip, offset, size, true);
1572 	}
1573 
1574 	/*
1575 	 * We need to update the in-core inode size here so that we don't end up
1576 	 * with the on-disk inode size being outside the in-core inode size. We
1577 	 * have no other method of updating EOF for AIO, so always do it here
1578 	 * if necessary.
1579 	 *
1580 	 * We need to lock the test/set EOF update as we can be racing with
1581 	 * other IO completions here to update the EOF. Failing to serialise
1582 	 * here can result in EOF moving backwards and Bad Things Happen when
1583 	 * that occurs.
1584 	 */
1585 	spin_lock(&ip->i_flags_lock);
1586 	if (offset + size > i_size_read(inode))
1587 		i_size_write(inode, offset + size);
1588 	spin_unlock(&ip->i_flags_lock);
1589 
1590 	if (flags & XFS_DIO_FLAG_APPEND) {
1591 		trace_xfs_end_io_direct_write_append(ip, offset, size);
1592 
1593 		error = xfs_setfilesize(ip, offset, size);
1594 	}
1595 
1596 	return error;
1597 }
1598 
1599 STATIC ssize_t
xfs_vm_direct_IO(struct kiocb * iocb,struct iov_iter * iter)1600 xfs_vm_direct_IO(
1601 	struct kiocb		*iocb,
1602 	struct iov_iter		*iter)
1603 {
1604 	/*
1605 	 * We just need the method present so that open/fcntl allow direct I/O.
1606 	 */
1607 	return -EINVAL;
1608 }
1609 
1610 STATIC sector_t
xfs_vm_bmap(struct address_space * mapping,sector_t block)1611 xfs_vm_bmap(
1612 	struct address_space	*mapping,
1613 	sector_t		block)
1614 {
1615 	struct inode		*inode = (struct inode *)mapping->host;
1616 	struct xfs_inode	*ip = XFS_I(inode);
1617 
1618 	trace_xfs_vm_bmap(XFS_I(inode));
1619 	xfs_ilock(ip, XFS_IOLOCK_SHARED);
1620 
1621 	/*
1622 	 * The swap code (ab-)uses ->bmap to get a block mapping and then
1623 	 * bypasseŃ• the file system for actual I/O.  We really can't allow
1624 	 * that on reflinks inodes, so we have to skip out here.  And yes,
1625 	 * 0 is the magic code for a bmap error.
1626 	 *
1627 	 * Since we don't pass back blockdev info, we can't return bmap
1628 	 * information for rt files either.
1629 	 */
1630 	if (xfs_is_reflink_inode(ip) || XFS_IS_REALTIME_INODE(ip)) {
1631 		xfs_iunlock(ip, XFS_IOLOCK_SHARED);
1632 		return 0;
1633 	}
1634 	filemap_write_and_wait(mapping);
1635 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
1636 	return generic_block_bmap(mapping, block, xfs_get_blocks);
1637 }
1638 
1639 STATIC int
xfs_vm_readpage(struct file * unused,struct page * page)1640 xfs_vm_readpage(
1641 	struct file		*unused,
1642 	struct page		*page)
1643 {
1644 	trace_xfs_vm_readpage(page->mapping->host, 1);
1645 	return mpage_readpage(page, xfs_get_blocks);
1646 }
1647 
1648 STATIC int
xfs_vm_readpages(struct file * unused,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)1649 xfs_vm_readpages(
1650 	struct file		*unused,
1651 	struct address_space	*mapping,
1652 	struct list_head	*pages,
1653 	unsigned		nr_pages)
1654 {
1655 	trace_xfs_vm_readpages(mapping->host, nr_pages);
1656 	return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1657 }
1658 
1659 /*
1660  * This is basically a copy of __set_page_dirty_buffers() with one
1661  * small tweak: buffers beyond EOF do not get marked dirty. If we mark them
1662  * dirty, we'll never be able to clean them because we don't write buffers
1663  * beyond EOF, and that means we can't invalidate pages that span EOF
1664  * that have been marked dirty. Further, the dirty state can leak into
1665  * the file interior if the file is extended, resulting in all sorts of
1666  * bad things happening as the state does not match the underlying data.
1667  *
1668  * XXX: this really indicates that bufferheads in XFS need to die. Warts like
1669  * this only exist because of bufferheads and how the generic code manages them.
1670  */
1671 STATIC int
xfs_vm_set_page_dirty(struct page * page)1672 xfs_vm_set_page_dirty(
1673 	struct page		*page)
1674 {
1675 	struct address_space	*mapping = page->mapping;
1676 	struct inode		*inode = mapping->host;
1677 	loff_t			end_offset;
1678 	loff_t			offset;
1679 	int			newly_dirty;
1680 
1681 	if (unlikely(!mapping))
1682 		return !TestSetPageDirty(page);
1683 
1684 	end_offset = i_size_read(inode);
1685 	offset = page_offset(page);
1686 
1687 	spin_lock(&mapping->private_lock);
1688 	if (page_has_buffers(page)) {
1689 		struct buffer_head *head = page_buffers(page);
1690 		struct buffer_head *bh = head;
1691 
1692 		do {
1693 			if (offset < end_offset)
1694 				set_buffer_dirty(bh);
1695 			bh = bh->b_this_page;
1696 			offset += i_blocksize(inode);
1697 		} while (bh != head);
1698 	}
1699 	/*
1700 	 * Lock out page->mem_cgroup migration to keep PageDirty
1701 	 * synchronized with per-memcg dirty page counters.
1702 	 */
1703 	lock_page_memcg(page);
1704 	newly_dirty = !TestSetPageDirty(page);
1705 	spin_unlock(&mapping->private_lock);
1706 
1707 	if (newly_dirty) {
1708 		/* sigh - __set_page_dirty() is static, so copy it here, too */
1709 		unsigned long flags;
1710 
1711 		spin_lock_irqsave(&mapping->tree_lock, flags);
1712 		if (page->mapping) {	/* Race with truncate? */
1713 			WARN_ON_ONCE(!PageUptodate(page));
1714 			account_page_dirtied(page, mapping);
1715 			radix_tree_tag_set(&mapping->page_tree,
1716 					page_index(page), PAGECACHE_TAG_DIRTY);
1717 		}
1718 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
1719 	}
1720 	unlock_page_memcg(page);
1721 	if (newly_dirty)
1722 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1723 	return newly_dirty;
1724 }
1725 
1726 const struct address_space_operations xfs_address_space_operations = {
1727 	.readpage		= xfs_vm_readpage,
1728 	.readpages		= xfs_vm_readpages,
1729 	.writepage		= xfs_vm_writepage,
1730 	.writepages		= xfs_vm_writepages,
1731 	.set_page_dirty		= xfs_vm_set_page_dirty,
1732 	.releasepage		= xfs_vm_releasepage,
1733 	.invalidatepage		= xfs_vm_invalidatepage,
1734 	.bmap			= xfs_vm_bmap,
1735 	.direct_IO		= xfs_vm_direct_IO,
1736 	.migratepage		= buffer_migrate_page,
1737 	.is_partially_uptodate  = block_is_partially_uptodate,
1738 	.error_remove_page	= generic_error_remove_page,
1739 };
1740