1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_shared.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_mount.h"
24 #include "xfs_inode.h"
25 #include "xfs_trans.h"
26 #include "xfs_inode_item.h"
27 #include "xfs_alloc.h"
28 #include "xfs_error.h"
29 #include "xfs_iomap.h"
30 #include "xfs_trace.h"
31 #include "xfs_bmap.h"
32 #include "xfs_bmap_util.h"
33 #include "xfs_bmap_btree.h"
34 #include "xfs_reflink.h"
35 #include <linux/gfp.h>
36 #include <linux/mpage.h>
37 #include <linux/pagevec.h>
38 #include <linux/writeback.h>
39
40 /* flags for direct write completions */
41 #define XFS_DIO_FLAG_UNWRITTEN (1 << 0)
42 #define XFS_DIO_FLAG_APPEND (1 << 1)
43 #define XFS_DIO_FLAG_COW (1 << 2)
44
45 /*
46 * structure owned by writepages passed to individual writepage calls
47 */
48 struct xfs_writepage_ctx {
49 struct xfs_bmbt_irec imap;
50 bool imap_valid;
51 unsigned int io_type;
52 struct xfs_ioend *ioend;
53 sector_t last_block;
54 };
55
56 void
xfs_count_page_state(struct page * page,int * delalloc,int * unwritten)57 xfs_count_page_state(
58 struct page *page,
59 int *delalloc,
60 int *unwritten)
61 {
62 struct buffer_head *bh, *head;
63
64 *delalloc = *unwritten = 0;
65
66 bh = head = page_buffers(page);
67 do {
68 if (buffer_unwritten(bh))
69 (*unwritten) = 1;
70 else if (buffer_delay(bh))
71 (*delalloc) = 1;
72 } while ((bh = bh->b_this_page) != head);
73 }
74
75 struct block_device *
xfs_find_bdev_for_inode(struct inode * inode)76 xfs_find_bdev_for_inode(
77 struct inode *inode)
78 {
79 struct xfs_inode *ip = XFS_I(inode);
80 struct xfs_mount *mp = ip->i_mount;
81
82 if (XFS_IS_REALTIME_INODE(ip))
83 return mp->m_rtdev_targp->bt_bdev;
84 else
85 return mp->m_ddev_targp->bt_bdev;
86 }
87
88 /*
89 * We're now finished for good with this page. Update the page state via the
90 * associated buffer_heads, paying attention to the start and end offsets that
91 * we need to process on the page.
92 *
93 * Note that we open code the action in end_buffer_async_write here so that we
94 * only have to iterate over the buffers attached to the page once. This is not
95 * only more efficient, but also ensures that we only calls end_page_writeback
96 * at the end of the iteration, and thus avoids the pitfall of having the page
97 * and buffers potentially freed after every call to end_buffer_async_write.
98 */
99 static void
xfs_finish_page_writeback(struct inode * inode,struct bio_vec * bvec,int error)100 xfs_finish_page_writeback(
101 struct inode *inode,
102 struct bio_vec *bvec,
103 int error)
104 {
105 struct buffer_head *head = page_buffers(bvec->bv_page), *bh = head;
106 bool busy = false;
107 unsigned int off = 0;
108 unsigned long flags;
109
110 ASSERT(bvec->bv_offset < PAGE_SIZE);
111 ASSERT((bvec->bv_offset & (i_blocksize(inode) - 1)) == 0);
112 ASSERT(bvec->bv_offset + bvec->bv_len <= PAGE_SIZE);
113 ASSERT((bvec->bv_len & (i_blocksize(inode) - 1)) == 0);
114
115 local_irq_save(flags);
116 bit_spin_lock(BH_Uptodate_Lock, &head->b_state);
117 do {
118 if (off >= bvec->bv_offset &&
119 off < bvec->bv_offset + bvec->bv_len) {
120 ASSERT(buffer_async_write(bh));
121 ASSERT(bh->b_end_io == NULL);
122
123 if (error) {
124 mapping_set_error(bvec->bv_page->mapping, -EIO);
125 set_buffer_write_io_error(bh);
126 clear_buffer_uptodate(bh);
127 SetPageError(bvec->bv_page);
128 } else {
129 set_buffer_uptodate(bh);
130 }
131 clear_buffer_async_write(bh);
132 unlock_buffer(bh);
133 } else if (buffer_async_write(bh)) {
134 ASSERT(buffer_locked(bh));
135 busy = true;
136 }
137 off += bh->b_size;
138 } while ((bh = bh->b_this_page) != head);
139 bit_spin_unlock(BH_Uptodate_Lock, &head->b_state);
140 local_irq_restore(flags);
141
142 if (!busy)
143 end_page_writeback(bvec->bv_page);
144 }
145
146 /*
147 * We're now finished for good with this ioend structure. Update the page
148 * state, release holds on bios, and finally free up memory. Do not use the
149 * ioend after this.
150 */
151 STATIC void
xfs_destroy_ioend(struct xfs_ioend * ioend,int error)152 xfs_destroy_ioend(
153 struct xfs_ioend *ioend,
154 int error)
155 {
156 struct inode *inode = ioend->io_inode;
157 struct bio *bio = &ioend->io_inline_bio;
158 struct bio *last = ioend->io_bio, *next;
159 u64 start = bio->bi_iter.bi_sector;
160 bool quiet = bio_flagged(bio, BIO_QUIET);
161
162 for (bio = &ioend->io_inline_bio; bio; bio = next) {
163 struct bio_vec *bvec;
164 int i;
165
166 /*
167 * For the last bio, bi_private points to the ioend, so we
168 * need to explicitly end the iteration here.
169 */
170 if (bio == last)
171 next = NULL;
172 else
173 next = bio->bi_private;
174
175 /* walk each page on bio, ending page IO on them */
176 bio_for_each_segment_all(bvec, bio, i)
177 xfs_finish_page_writeback(inode, bvec, error);
178
179 bio_put(bio);
180 }
181
182 if (unlikely(error && !quiet)) {
183 xfs_err_ratelimited(XFS_I(inode)->i_mount,
184 "writeback error on sector %llu", start);
185 }
186 }
187
188 /*
189 * Fast and loose check if this write could update the on-disk inode size.
190 */
xfs_ioend_is_append(struct xfs_ioend * ioend)191 static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
192 {
193 return ioend->io_offset + ioend->io_size >
194 XFS_I(ioend->io_inode)->i_d.di_size;
195 }
196
197 STATIC int
xfs_setfilesize_trans_alloc(struct xfs_ioend * ioend)198 xfs_setfilesize_trans_alloc(
199 struct xfs_ioend *ioend)
200 {
201 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
202 struct xfs_trans *tp;
203 int error;
204
205 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
206 if (error)
207 return error;
208
209 ioend->io_append_trans = tp;
210
211 /*
212 * We may pass freeze protection with a transaction. So tell lockdep
213 * we released it.
214 */
215 __sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS);
216 /*
217 * We hand off the transaction to the completion thread now, so
218 * clear the flag here.
219 */
220 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
221 return 0;
222 }
223
224 /*
225 * Update on-disk file size now that data has been written to disk.
226 */
227 STATIC int
__xfs_setfilesize(struct xfs_inode * ip,struct xfs_trans * tp,xfs_off_t offset,size_t size)228 __xfs_setfilesize(
229 struct xfs_inode *ip,
230 struct xfs_trans *tp,
231 xfs_off_t offset,
232 size_t size)
233 {
234 xfs_fsize_t isize;
235
236 xfs_ilock(ip, XFS_ILOCK_EXCL);
237 isize = xfs_new_eof(ip, offset + size);
238 if (!isize) {
239 xfs_iunlock(ip, XFS_ILOCK_EXCL);
240 xfs_trans_cancel(tp);
241 return 0;
242 }
243
244 trace_xfs_setfilesize(ip, offset, size);
245
246 ip->i_d.di_size = isize;
247 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
248 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
249
250 return xfs_trans_commit(tp);
251 }
252
253 int
xfs_setfilesize(struct xfs_inode * ip,xfs_off_t offset,size_t size)254 xfs_setfilesize(
255 struct xfs_inode *ip,
256 xfs_off_t offset,
257 size_t size)
258 {
259 struct xfs_mount *mp = ip->i_mount;
260 struct xfs_trans *tp;
261 int error;
262
263 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
264 if (error)
265 return error;
266
267 return __xfs_setfilesize(ip, tp, offset, size);
268 }
269
270 STATIC int
xfs_setfilesize_ioend(struct xfs_ioend * ioend,int error)271 xfs_setfilesize_ioend(
272 struct xfs_ioend *ioend,
273 int error)
274 {
275 struct xfs_inode *ip = XFS_I(ioend->io_inode);
276 struct xfs_trans *tp = ioend->io_append_trans;
277
278 /*
279 * The transaction may have been allocated in the I/O submission thread,
280 * thus we need to mark ourselves as being in a transaction manually.
281 * Similarly for freeze protection.
282 */
283 current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
284 __sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS);
285
286 /* we abort the update if there was an IO error */
287 if (error) {
288 xfs_trans_cancel(tp);
289 return error;
290 }
291
292 return __xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
293 }
294
295 /*
296 * IO write completion.
297 */
298 STATIC void
xfs_end_io(struct work_struct * work)299 xfs_end_io(
300 struct work_struct *work)
301 {
302 struct xfs_ioend *ioend =
303 container_of(work, struct xfs_ioend, io_work);
304 struct xfs_inode *ip = XFS_I(ioend->io_inode);
305 xfs_off_t offset = ioend->io_offset;
306 size_t size = ioend->io_size;
307 int error = ioend->io_bio->bi_error;
308
309 /*
310 * Just clean up the in-memory strutures if the fs has been shut down.
311 */
312 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
313 error = -EIO;
314 goto done;
315 }
316
317 /*
318 * Clean up any COW blocks on an I/O error.
319 */
320 if (unlikely(error)) {
321 switch (ioend->io_type) {
322 case XFS_IO_COW:
323 xfs_reflink_cancel_cow_range(ip, offset, size, true);
324 break;
325 }
326
327 goto done;
328 }
329
330 /*
331 * Success: commit the COW or unwritten blocks if needed.
332 */
333 switch (ioend->io_type) {
334 case XFS_IO_COW:
335 error = xfs_reflink_end_cow(ip, offset, size);
336 break;
337 case XFS_IO_UNWRITTEN:
338 /* writeback should never update isize */
339 error = xfs_iomap_write_unwritten(ip, offset, size, false);
340 break;
341 default:
342 ASSERT(!xfs_ioend_is_append(ioend) || ioend->io_append_trans);
343 break;
344 }
345
346 done:
347 if (ioend->io_append_trans)
348 error = xfs_setfilesize_ioend(ioend, error);
349 xfs_destroy_ioend(ioend, error);
350 }
351
352 STATIC void
xfs_end_bio(struct bio * bio)353 xfs_end_bio(
354 struct bio *bio)
355 {
356 struct xfs_ioend *ioend = bio->bi_private;
357 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
358
359 if (ioend->io_type == XFS_IO_UNWRITTEN || ioend->io_type == XFS_IO_COW)
360 queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
361 else if (ioend->io_append_trans)
362 queue_work(mp->m_data_workqueue, &ioend->io_work);
363 else
364 xfs_destroy_ioend(ioend, bio->bi_error);
365 }
366
367 STATIC int
xfs_map_blocks(struct inode * inode,loff_t offset,struct xfs_bmbt_irec * imap,int type)368 xfs_map_blocks(
369 struct inode *inode,
370 loff_t offset,
371 struct xfs_bmbt_irec *imap,
372 int type)
373 {
374 struct xfs_inode *ip = XFS_I(inode);
375 struct xfs_mount *mp = ip->i_mount;
376 ssize_t count = i_blocksize(inode);
377 xfs_fileoff_t offset_fsb, end_fsb;
378 int error = 0;
379 int bmapi_flags = XFS_BMAPI_ENTIRE;
380 int nimaps = 1;
381
382 if (XFS_FORCED_SHUTDOWN(mp))
383 return -EIO;
384
385 ASSERT(type != XFS_IO_COW);
386 if (type == XFS_IO_UNWRITTEN)
387 bmapi_flags |= XFS_BMAPI_IGSTATE;
388
389 xfs_ilock(ip, XFS_ILOCK_SHARED);
390 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
391 (ip->i_df.if_flags & XFS_IFEXTENTS));
392 ASSERT(offset <= mp->m_super->s_maxbytes);
393
394 if ((xfs_ufsize_t)offset + count > mp->m_super->s_maxbytes)
395 count = mp->m_super->s_maxbytes - offset;
396 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
397 offset_fsb = XFS_B_TO_FSBT(mp, offset);
398 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
399 imap, &nimaps, bmapi_flags);
400 /*
401 * Truncate an overwrite extent if there's a pending CoW
402 * reservation before the end of this extent. This forces us
403 * to come back to writepage to take care of the CoW.
404 */
405 if (nimaps && type == XFS_IO_OVERWRITE)
406 xfs_reflink_trim_irec_to_next_cow(ip, offset_fsb, imap);
407 xfs_iunlock(ip, XFS_ILOCK_SHARED);
408
409 if (error)
410 return error;
411
412 if (type == XFS_IO_DELALLOC &&
413 (!nimaps || isnullstartblock(imap->br_startblock))) {
414 error = xfs_iomap_write_allocate(ip, XFS_DATA_FORK, offset,
415 imap);
416 if (!error)
417 trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
418 return error;
419 }
420
421 #ifdef DEBUG
422 if (type == XFS_IO_UNWRITTEN) {
423 ASSERT(nimaps);
424 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
425 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
426 }
427 #endif
428 if (nimaps)
429 trace_xfs_map_blocks_found(ip, offset, count, type, imap);
430 return 0;
431 }
432
433 STATIC bool
xfs_imap_valid(struct inode * inode,struct xfs_bmbt_irec * imap,xfs_off_t offset)434 xfs_imap_valid(
435 struct inode *inode,
436 struct xfs_bmbt_irec *imap,
437 xfs_off_t offset)
438 {
439 offset >>= inode->i_blkbits;
440
441 /*
442 * We have to make sure the cached mapping is within EOF to protect
443 * against eofblocks trimming on file release leaving us with a stale
444 * mapping. Otherwise, a page for a subsequent file extending buffered
445 * write could get picked up by this writeback cycle and written to the
446 * wrong blocks.
447 *
448 * Note that what we really want here is a generic mapping invalidation
449 * mechanism to protect us from arbitrary extent modifying contexts, not
450 * just eofblocks.
451 */
452 xfs_trim_extent_eof(imap, XFS_I(inode));
453
454 return offset >= imap->br_startoff &&
455 offset < imap->br_startoff + imap->br_blockcount;
456 }
457
458 STATIC void
xfs_start_buffer_writeback(struct buffer_head * bh)459 xfs_start_buffer_writeback(
460 struct buffer_head *bh)
461 {
462 ASSERT(buffer_mapped(bh));
463 ASSERT(buffer_locked(bh));
464 ASSERT(!buffer_delay(bh));
465 ASSERT(!buffer_unwritten(bh));
466
467 bh->b_end_io = NULL;
468 set_buffer_async_write(bh);
469 set_buffer_uptodate(bh);
470 clear_buffer_dirty(bh);
471 }
472
473 STATIC void
xfs_start_page_writeback(struct page * page,int clear_dirty)474 xfs_start_page_writeback(
475 struct page *page,
476 int clear_dirty)
477 {
478 ASSERT(PageLocked(page));
479 ASSERT(!PageWriteback(page));
480
481 /*
482 * if the page was not fully cleaned, we need to ensure that the higher
483 * layers come back to it correctly. That means we need to keep the page
484 * dirty, and for WB_SYNC_ALL writeback we need to ensure the
485 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to
486 * write this page in this writeback sweep will be made.
487 */
488 if (clear_dirty) {
489 clear_page_dirty_for_io(page);
490 set_page_writeback(page);
491 } else
492 set_page_writeback_keepwrite(page);
493
494 unlock_page(page);
495 }
496
xfs_bio_add_buffer(struct bio * bio,struct buffer_head * bh)497 static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh)
498 {
499 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
500 }
501
502 /*
503 * Submit the bio for an ioend. We are passed an ioend with a bio attached to
504 * it, and we submit that bio. The ioend may be used for multiple bio
505 * submissions, so we only want to allocate an append transaction for the ioend
506 * once. In the case of multiple bio submission, each bio will take an IO
507 * reference to the ioend to ensure that the ioend completion is only done once
508 * all bios have been submitted and the ioend is really done.
509 *
510 * If @fail is non-zero, it means that we have a situation where some part of
511 * the submission process has failed after we have marked paged for writeback
512 * and unlocked them. In this situation, we need to fail the bio and ioend
513 * rather than submit it to IO. This typically only happens on a filesystem
514 * shutdown.
515 */
516 STATIC int
xfs_submit_ioend(struct writeback_control * wbc,struct xfs_ioend * ioend,int status)517 xfs_submit_ioend(
518 struct writeback_control *wbc,
519 struct xfs_ioend *ioend,
520 int status)
521 {
522 /* Convert CoW extents to regular */
523 if (!status && ioend->io_type == XFS_IO_COW) {
524 status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode),
525 ioend->io_offset, ioend->io_size);
526 }
527
528 /* Reserve log space if we might write beyond the on-disk inode size. */
529 if (!status &&
530 ioend->io_type != XFS_IO_UNWRITTEN &&
531 xfs_ioend_is_append(ioend) &&
532 !ioend->io_append_trans)
533 status = xfs_setfilesize_trans_alloc(ioend);
534
535 ioend->io_bio->bi_private = ioend;
536 ioend->io_bio->bi_end_io = xfs_end_bio;
537 bio_set_op_attrs(ioend->io_bio, REQ_OP_WRITE,
538 (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : 0);
539 /*
540 * If we are failing the IO now, just mark the ioend with an
541 * error and finish it. This will run IO completion immediately
542 * as there is only one reference to the ioend at this point in
543 * time.
544 */
545 if (status) {
546 ioend->io_bio->bi_error = status;
547 bio_endio(ioend->io_bio);
548 return status;
549 }
550
551 submit_bio(ioend->io_bio);
552 return 0;
553 }
554
555 static void
xfs_init_bio_from_bh(struct bio * bio,struct buffer_head * bh)556 xfs_init_bio_from_bh(
557 struct bio *bio,
558 struct buffer_head *bh)
559 {
560 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
561 bio->bi_bdev = bh->b_bdev;
562 }
563
564 static struct xfs_ioend *
xfs_alloc_ioend(struct inode * inode,unsigned int type,xfs_off_t offset,struct buffer_head * bh)565 xfs_alloc_ioend(
566 struct inode *inode,
567 unsigned int type,
568 xfs_off_t offset,
569 struct buffer_head *bh)
570 {
571 struct xfs_ioend *ioend;
572 struct bio *bio;
573
574 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, xfs_ioend_bioset);
575 xfs_init_bio_from_bh(bio, bh);
576
577 ioend = container_of(bio, struct xfs_ioend, io_inline_bio);
578 INIT_LIST_HEAD(&ioend->io_list);
579 ioend->io_type = type;
580 ioend->io_inode = inode;
581 ioend->io_size = 0;
582 ioend->io_offset = offset;
583 INIT_WORK(&ioend->io_work, xfs_end_io);
584 ioend->io_append_trans = NULL;
585 ioend->io_bio = bio;
586 return ioend;
587 }
588
589 /*
590 * Allocate a new bio, and chain the old bio to the new one.
591 *
592 * Note that we have to do perform the chaining in this unintuitive order
593 * so that the bi_private linkage is set up in the right direction for the
594 * traversal in xfs_destroy_ioend().
595 */
596 static void
xfs_chain_bio(struct xfs_ioend * ioend,struct writeback_control * wbc,struct buffer_head * bh)597 xfs_chain_bio(
598 struct xfs_ioend *ioend,
599 struct writeback_control *wbc,
600 struct buffer_head *bh)
601 {
602 struct bio *new;
603
604 new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES);
605 xfs_init_bio_from_bh(new, bh);
606
607 bio_chain(ioend->io_bio, new);
608 bio_get(ioend->io_bio); /* for xfs_destroy_ioend */
609 bio_set_op_attrs(ioend->io_bio, REQ_OP_WRITE,
610 (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : 0);
611 submit_bio(ioend->io_bio);
612 ioend->io_bio = new;
613 }
614
615 /*
616 * Test to see if we've been building up a completion structure for
617 * earlier buffers -- if so, we try to append to this ioend if we
618 * can, otherwise we finish off any current ioend and start another.
619 * Return the ioend we finished off so that the caller can submit it
620 * once it has finished processing the dirty page.
621 */
622 STATIC void
xfs_add_to_ioend(struct inode * inode,struct buffer_head * bh,xfs_off_t offset,struct xfs_writepage_ctx * wpc,struct writeback_control * wbc,struct list_head * iolist)623 xfs_add_to_ioend(
624 struct inode *inode,
625 struct buffer_head *bh,
626 xfs_off_t offset,
627 struct xfs_writepage_ctx *wpc,
628 struct writeback_control *wbc,
629 struct list_head *iolist)
630 {
631 if (!wpc->ioend || wpc->io_type != wpc->ioend->io_type ||
632 bh->b_blocknr != wpc->last_block + 1 ||
633 offset != wpc->ioend->io_offset + wpc->ioend->io_size) {
634 if (wpc->ioend)
635 list_add(&wpc->ioend->io_list, iolist);
636 wpc->ioend = xfs_alloc_ioend(inode, wpc->io_type, offset, bh);
637 }
638
639 /*
640 * If the buffer doesn't fit into the bio we need to allocate a new
641 * one. This shouldn't happen more than once for a given buffer.
642 */
643 while (xfs_bio_add_buffer(wpc->ioend->io_bio, bh) != bh->b_size)
644 xfs_chain_bio(wpc->ioend, wbc, bh);
645
646 wpc->ioend->io_size += bh->b_size;
647 wpc->last_block = bh->b_blocknr;
648 xfs_start_buffer_writeback(bh);
649 }
650
651 STATIC void
xfs_map_buffer(struct inode * inode,struct buffer_head * bh,struct xfs_bmbt_irec * imap,xfs_off_t offset)652 xfs_map_buffer(
653 struct inode *inode,
654 struct buffer_head *bh,
655 struct xfs_bmbt_irec *imap,
656 xfs_off_t offset)
657 {
658 sector_t bn;
659 struct xfs_mount *m = XFS_I(inode)->i_mount;
660 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
661 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
662
663 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
664 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
665
666 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
667 ((offset - iomap_offset) >> inode->i_blkbits);
668
669 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
670
671 bh->b_blocknr = bn;
672 set_buffer_mapped(bh);
673 }
674
675 STATIC void
xfs_map_at_offset(struct inode * inode,struct buffer_head * bh,struct xfs_bmbt_irec * imap,xfs_off_t offset)676 xfs_map_at_offset(
677 struct inode *inode,
678 struct buffer_head *bh,
679 struct xfs_bmbt_irec *imap,
680 xfs_off_t offset)
681 {
682 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
683 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
684
685 xfs_map_buffer(inode, bh, imap, offset);
686 set_buffer_mapped(bh);
687 clear_buffer_delay(bh);
688 clear_buffer_unwritten(bh);
689 }
690
691 /*
692 * Test if a given page contains at least one buffer of a given @type.
693 * If @check_all_buffers is true, then we walk all the buffers in the page to
694 * try to find one of the type passed in. If it is not set, then the caller only
695 * needs to check the first buffer on the page for a match.
696 */
697 STATIC bool
xfs_check_page_type(struct page * page,unsigned int type,bool check_all_buffers)698 xfs_check_page_type(
699 struct page *page,
700 unsigned int type,
701 bool check_all_buffers)
702 {
703 struct buffer_head *bh;
704 struct buffer_head *head;
705
706 if (PageWriteback(page))
707 return false;
708 if (!page->mapping)
709 return false;
710 if (!page_has_buffers(page))
711 return false;
712
713 bh = head = page_buffers(page);
714 do {
715 if (buffer_unwritten(bh)) {
716 if (type == XFS_IO_UNWRITTEN)
717 return true;
718 } else if (buffer_delay(bh)) {
719 if (type == XFS_IO_DELALLOC)
720 return true;
721 } else if (buffer_dirty(bh) && buffer_mapped(bh)) {
722 if (type == XFS_IO_OVERWRITE)
723 return true;
724 }
725
726 /* If we are only checking the first buffer, we are done now. */
727 if (!check_all_buffers)
728 break;
729 } while ((bh = bh->b_this_page) != head);
730
731 return false;
732 }
733
734 STATIC void
xfs_vm_invalidatepage(struct page * page,unsigned int offset,unsigned int length)735 xfs_vm_invalidatepage(
736 struct page *page,
737 unsigned int offset,
738 unsigned int length)
739 {
740 trace_xfs_invalidatepage(page->mapping->host, page, offset,
741 length);
742
743 /*
744 * If we are invalidating the entire page, clear the dirty state from it
745 * so that we can check for attempts to release dirty cached pages in
746 * xfs_vm_releasepage().
747 */
748 if (offset == 0 && length >= PAGE_SIZE)
749 cancel_dirty_page(page);
750 block_invalidatepage(page, offset, length);
751 }
752
753 /*
754 * If the page has delalloc buffers on it, we need to punch them out before we
755 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
756 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
757 * is done on that same region - the delalloc extent is returned when none is
758 * supposed to be there.
759 *
760 * We prevent this by truncating away the delalloc regions on the page before
761 * invalidating it. Because they are delalloc, we can do this without needing a
762 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
763 * truncation without a transaction as there is no space left for block
764 * reservation (typically why we see a ENOSPC in writeback).
765 *
766 * This is not a performance critical path, so for now just do the punching a
767 * buffer head at a time.
768 */
769 STATIC void
xfs_aops_discard_page(struct page * page)770 xfs_aops_discard_page(
771 struct page *page)
772 {
773 struct inode *inode = page->mapping->host;
774 struct xfs_inode *ip = XFS_I(inode);
775 struct buffer_head *bh, *head;
776 loff_t offset = page_offset(page);
777
778 if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true))
779 goto out_invalidate;
780
781 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
782 goto out_invalidate;
783
784 xfs_alert(ip->i_mount,
785 "page discard on page %p, inode 0x%llx, offset %llu.",
786 page, ip->i_ino, offset);
787
788 xfs_ilock(ip, XFS_ILOCK_EXCL);
789 bh = head = page_buffers(page);
790 do {
791 int error;
792 xfs_fileoff_t start_fsb;
793
794 if (!buffer_delay(bh))
795 goto next_buffer;
796
797 start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
798 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
799 if (error) {
800 /* something screwed, just bail */
801 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
802 xfs_alert(ip->i_mount,
803 "page discard unable to remove delalloc mapping.");
804 }
805 break;
806 }
807 next_buffer:
808 offset += i_blocksize(inode);
809
810 } while ((bh = bh->b_this_page) != head);
811
812 xfs_iunlock(ip, XFS_ILOCK_EXCL);
813 out_invalidate:
814 xfs_vm_invalidatepage(page, 0, PAGE_SIZE);
815 return;
816 }
817
818 static int
xfs_map_cow(struct xfs_writepage_ctx * wpc,struct inode * inode,loff_t offset,unsigned int * new_type)819 xfs_map_cow(
820 struct xfs_writepage_ctx *wpc,
821 struct inode *inode,
822 loff_t offset,
823 unsigned int *new_type)
824 {
825 struct xfs_inode *ip = XFS_I(inode);
826 struct xfs_bmbt_irec imap;
827 bool is_cow = false, need_alloc = false;
828 int error;
829
830 /*
831 * If we already have a valid COW mapping keep using it.
832 */
833 if (wpc->io_type == XFS_IO_COW) {
834 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap, offset);
835 if (wpc->imap_valid) {
836 *new_type = XFS_IO_COW;
837 return 0;
838 }
839 }
840
841 /*
842 * Else we need to check if there is a COW mapping at this offset.
843 */
844 xfs_ilock(ip, XFS_ILOCK_SHARED);
845 is_cow = xfs_reflink_find_cow_mapping(ip, offset, &imap, &need_alloc);
846 xfs_iunlock(ip, XFS_ILOCK_SHARED);
847
848 if (!is_cow)
849 return 0;
850
851 /*
852 * And if the COW mapping has a delayed extent here we need to
853 * allocate real space for it now.
854 */
855 if (need_alloc) {
856 error = xfs_iomap_write_allocate(ip, XFS_COW_FORK, offset,
857 &imap);
858 if (error)
859 return error;
860 }
861
862 wpc->io_type = *new_type = XFS_IO_COW;
863 wpc->imap_valid = true;
864 wpc->imap = imap;
865 return 0;
866 }
867
868 /*
869 * We implement an immediate ioend submission policy here to avoid needing to
870 * chain multiple ioends and hence nest mempool allocations which can violate
871 * forward progress guarantees we need to provide. The current ioend we are
872 * adding buffers to is cached on the writepage context, and if the new buffer
873 * does not append to the cached ioend it will create a new ioend and cache that
874 * instead.
875 *
876 * If a new ioend is created and cached, the old ioend is returned and queued
877 * locally for submission once the entire page is processed or an error has been
878 * detected. While ioends are submitted immediately after they are completed,
879 * batching optimisations are provided by higher level block plugging.
880 *
881 * At the end of a writeback pass, there will be a cached ioend remaining on the
882 * writepage context that the caller will need to submit.
883 */
884 static int
xfs_writepage_map(struct xfs_writepage_ctx * wpc,struct writeback_control * wbc,struct inode * inode,struct page * page,loff_t offset,__uint64_t end_offset)885 xfs_writepage_map(
886 struct xfs_writepage_ctx *wpc,
887 struct writeback_control *wbc,
888 struct inode *inode,
889 struct page *page,
890 loff_t offset,
891 __uint64_t end_offset)
892 {
893 LIST_HEAD(submit_list);
894 struct xfs_ioend *ioend, *next;
895 struct buffer_head *bh, *head;
896 ssize_t len = i_blocksize(inode);
897 int error = 0;
898 int count = 0;
899 int uptodate = 1;
900 unsigned int new_type;
901
902 bh = head = page_buffers(page);
903 offset = page_offset(page);
904 do {
905 if (offset >= end_offset)
906 break;
907 if (!buffer_uptodate(bh))
908 uptodate = 0;
909
910 /*
911 * set_page_dirty dirties all buffers in a page, independent
912 * of their state. The dirty state however is entirely
913 * meaningless for holes (!mapped && uptodate), so skip
914 * buffers covering holes here.
915 */
916 if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
917 wpc->imap_valid = false;
918 continue;
919 }
920
921 if (buffer_unwritten(bh))
922 new_type = XFS_IO_UNWRITTEN;
923 else if (buffer_delay(bh))
924 new_type = XFS_IO_DELALLOC;
925 else if (buffer_uptodate(bh))
926 new_type = XFS_IO_OVERWRITE;
927 else {
928 if (PageUptodate(page))
929 ASSERT(buffer_mapped(bh));
930 /*
931 * This buffer is not uptodate and will not be
932 * written to disk. Ensure that we will put any
933 * subsequent writeable buffers into a new
934 * ioend.
935 */
936 wpc->imap_valid = false;
937 continue;
938 }
939
940 if (xfs_is_reflink_inode(XFS_I(inode))) {
941 error = xfs_map_cow(wpc, inode, offset, &new_type);
942 if (error)
943 goto out;
944 }
945
946 if (wpc->io_type != new_type) {
947 wpc->io_type = new_type;
948 wpc->imap_valid = false;
949 }
950
951 if (wpc->imap_valid)
952 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
953 offset);
954 if (!wpc->imap_valid) {
955 error = xfs_map_blocks(inode, offset, &wpc->imap,
956 wpc->io_type);
957 if (error)
958 goto out;
959 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
960 offset);
961 }
962 if (wpc->imap_valid) {
963 lock_buffer(bh);
964 if (wpc->io_type != XFS_IO_OVERWRITE)
965 xfs_map_at_offset(inode, bh, &wpc->imap, offset);
966 xfs_add_to_ioend(inode, bh, offset, wpc, wbc, &submit_list);
967 count++;
968 }
969
970 } while (offset += len, ((bh = bh->b_this_page) != head));
971
972 if (uptodate && bh == head)
973 SetPageUptodate(page);
974
975 ASSERT(wpc->ioend || list_empty(&submit_list));
976
977 out:
978 /*
979 * On error, we have to fail the ioend here because we have locked
980 * buffers in the ioend. If we don't do this, we'll deadlock
981 * invalidating the page as that tries to lock the buffers on the page.
982 * Also, because we may have set pages under writeback, we have to make
983 * sure we run IO completion to mark the error state of the IO
984 * appropriately, so we can't cancel the ioend directly here. That means
985 * we have to mark this page as under writeback if we included any
986 * buffers from it in the ioend chain so that completion treats it
987 * correctly.
988 *
989 * If we didn't include the page in the ioend, the on error we can
990 * simply discard and unlock it as there are no other users of the page
991 * or it's buffers right now. The caller will still need to trigger
992 * submission of outstanding ioends on the writepage context so they are
993 * treated correctly on error.
994 */
995 if (count) {
996 xfs_start_page_writeback(page, !error);
997
998 /*
999 * Preserve the original error if there was one, otherwise catch
1000 * submission errors here and propagate into subsequent ioend
1001 * submissions.
1002 */
1003 list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
1004 int error2;
1005
1006 list_del_init(&ioend->io_list);
1007 error2 = xfs_submit_ioend(wbc, ioend, error);
1008 if (error2 && !error)
1009 error = error2;
1010 }
1011 } else if (error) {
1012 xfs_aops_discard_page(page);
1013 ClearPageUptodate(page);
1014 unlock_page(page);
1015 } else {
1016 /*
1017 * We can end up here with no error and nothing to write if we
1018 * race with a partial page truncate on a sub-page block sized
1019 * filesystem. In that case we need to mark the page clean.
1020 */
1021 xfs_start_page_writeback(page, 1);
1022 end_page_writeback(page);
1023 }
1024
1025 mapping_set_error(page->mapping, error);
1026 return error;
1027 }
1028
1029 /*
1030 * Write out a dirty page.
1031 *
1032 * For delalloc space on the page we need to allocate space and flush it.
1033 * For unwritten space on the page we need to start the conversion to
1034 * regular allocated space.
1035 * For any other dirty buffer heads on the page we should flush them.
1036 */
1037 STATIC int
xfs_do_writepage(struct page * page,struct writeback_control * wbc,void * data)1038 xfs_do_writepage(
1039 struct page *page,
1040 struct writeback_control *wbc,
1041 void *data)
1042 {
1043 struct xfs_writepage_ctx *wpc = data;
1044 struct inode *inode = page->mapping->host;
1045 loff_t offset;
1046 __uint64_t end_offset;
1047 pgoff_t end_index;
1048
1049 trace_xfs_writepage(inode, page, 0, 0);
1050
1051 ASSERT(page_has_buffers(page));
1052
1053 /*
1054 * Refuse to write the page out if we are called from reclaim context.
1055 *
1056 * This avoids stack overflows when called from deeply used stacks in
1057 * random callers for direct reclaim or memcg reclaim. We explicitly
1058 * allow reclaim from kswapd as the stack usage there is relatively low.
1059 *
1060 * This should never happen except in the case of a VM regression so
1061 * warn about it.
1062 */
1063 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
1064 PF_MEMALLOC))
1065 goto redirty;
1066
1067 /*
1068 * Given that we do not allow direct reclaim to call us, we should
1069 * never be called while in a filesystem transaction.
1070 */
1071 if (WARN_ON_ONCE(current->flags & PF_FSTRANS))
1072 goto redirty;
1073
1074 /*
1075 * Is this page beyond the end of the file?
1076 *
1077 * The page index is less than the end_index, adjust the end_offset
1078 * to the highest offset that this page should represent.
1079 * -----------------------------------------------------
1080 * | file mapping | <EOF> |
1081 * -----------------------------------------------------
1082 * | Page ... | Page N-2 | Page N-1 | Page N | |
1083 * ^--------------------------------^----------|--------
1084 * | desired writeback range | see else |
1085 * ---------------------------------^------------------|
1086 */
1087 offset = i_size_read(inode);
1088 end_index = offset >> PAGE_SHIFT;
1089 if (page->index < end_index)
1090 end_offset = (xfs_off_t)(page->index + 1) << PAGE_SHIFT;
1091 else {
1092 /*
1093 * Check whether the page to write out is beyond or straddles
1094 * i_size or not.
1095 * -------------------------------------------------------
1096 * | file mapping | <EOF> |
1097 * -------------------------------------------------------
1098 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond |
1099 * ^--------------------------------^-----------|---------
1100 * | | Straddles |
1101 * ---------------------------------^-----------|--------|
1102 */
1103 unsigned offset_into_page = offset & (PAGE_SIZE - 1);
1104
1105 /*
1106 * Skip the page if it is fully outside i_size, e.g. due to a
1107 * truncate operation that is in progress. We must redirty the
1108 * page so that reclaim stops reclaiming it. Otherwise
1109 * xfs_vm_releasepage() is called on it and gets confused.
1110 *
1111 * Note that the end_index is unsigned long, it would overflow
1112 * if the given offset is greater than 16TB on 32-bit system
1113 * and if we do check the page is fully outside i_size or not
1114 * via "if (page->index >= end_index + 1)" as "end_index + 1"
1115 * will be evaluated to 0. Hence this page will be redirtied
1116 * and be written out repeatedly which would result in an
1117 * infinite loop, the user program that perform this operation
1118 * will hang. Instead, we can verify this situation by checking
1119 * if the page to write is totally beyond the i_size or if it's
1120 * offset is just equal to the EOF.
1121 */
1122 if (page->index > end_index ||
1123 (page->index == end_index && offset_into_page == 0))
1124 goto redirty;
1125
1126 /*
1127 * The page straddles i_size. It must be zeroed out on each
1128 * and every writepage invocation because it may be mmapped.
1129 * "A file is mapped in multiples of the page size. For a file
1130 * that is not a multiple of the page size, the remaining
1131 * memory is zeroed when mapped, and writes to that region are
1132 * not written out to the file."
1133 */
1134 zero_user_segment(page, offset_into_page, PAGE_SIZE);
1135
1136 /* Adjust the end_offset to the end of file */
1137 end_offset = offset;
1138 }
1139
1140 return xfs_writepage_map(wpc, wbc, inode, page, offset, end_offset);
1141
1142 redirty:
1143 redirty_page_for_writepage(wbc, page);
1144 unlock_page(page);
1145 return 0;
1146 }
1147
1148 STATIC int
xfs_vm_writepage(struct page * page,struct writeback_control * wbc)1149 xfs_vm_writepage(
1150 struct page *page,
1151 struct writeback_control *wbc)
1152 {
1153 struct xfs_writepage_ctx wpc = {
1154 .io_type = XFS_IO_INVALID,
1155 };
1156 int ret;
1157
1158 ret = xfs_do_writepage(page, wbc, &wpc);
1159 if (wpc.ioend)
1160 ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1161 return ret;
1162 }
1163
1164 STATIC int
xfs_vm_writepages(struct address_space * mapping,struct writeback_control * wbc)1165 xfs_vm_writepages(
1166 struct address_space *mapping,
1167 struct writeback_control *wbc)
1168 {
1169 struct xfs_writepage_ctx wpc = {
1170 .io_type = XFS_IO_INVALID,
1171 };
1172 int ret;
1173
1174 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1175 if (dax_mapping(mapping))
1176 return dax_writeback_mapping_range(mapping,
1177 xfs_find_bdev_for_inode(mapping->host), wbc);
1178
1179 ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc);
1180 if (wpc.ioend)
1181 ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1182 return ret;
1183 }
1184
1185 /*
1186 * Called to move a page into cleanable state - and from there
1187 * to be released. The page should already be clean. We always
1188 * have buffer heads in this call.
1189 *
1190 * Returns 1 if the page is ok to release, 0 otherwise.
1191 */
1192 STATIC int
xfs_vm_releasepage(struct page * page,gfp_t gfp_mask)1193 xfs_vm_releasepage(
1194 struct page *page,
1195 gfp_t gfp_mask)
1196 {
1197 int delalloc, unwritten;
1198
1199 trace_xfs_releasepage(page->mapping->host, page, 0, 0);
1200
1201 /*
1202 * mm accommodates an old ext3 case where clean pages might not have had
1203 * the dirty bit cleared. Thus, it can send actual dirty pages to
1204 * ->releasepage() via shrink_active_list(). Conversely,
1205 * block_invalidatepage() can send pages that are still marked dirty but
1206 * otherwise have invalidated buffers.
1207 *
1208 * We want to release the latter to avoid unnecessary buildup of the
1209 * LRU, so xfs_vm_invalidatepage() clears the page dirty flag on pages
1210 * that are entirely invalidated and need to be released. Hence the
1211 * only time we should get dirty pages here is through
1212 * shrink_active_list() and so we can simply skip those now.
1213 *
1214 * warn if we've left any lingering delalloc/unwritten buffers on clean
1215 * or invalidated pages we are about to release.
1216 */
1217 if (PageDirty(page))
1218 return 0;
1219
1220 xfs_count_page_state(page, &delalloc, &unwritten);
1221
1222 if (WARN_ON_ONCE(delalloc))
1223 return 0;
1224 if (WARN_ON_ONCE(unwritten))
1225 return 0;
1226
1227 return try_to_free_buffers(page);
1228 }
1229
1230 /*
1231 * When we map a DIO buffer, we may need to pass flags to
1232 * xfs_end_io_direct_write to tell it what kind of write IO we are doing.
1233 *
1234 * Note that for DIO, an IO to the highest supported file block offset (i.e.
1235 * 2^63 - 1FSB bytes) will result in the offset + count overflowing a signed 64
1236 * bit variable. Hence if we see this overflow, we have to assume that the IO is
1237 * extending the file size. We won't know for sure until IO completion is run
1238 * and the actual max write offset is communicated to the IO completion
1239 * routine.
1240 */
1241 static void
xfs_map_direct(struct inode * inode,struct buffer_head * bh_result,struct xfs_bmbt_irec * imap,xfs_off_t offset,bool is_cow)1242 xfs_map_direct(
1243 struct inode *inode,
1244 struct buffer_head *bh_result,
1245 struct xfs_bmbt_irec *imap,
1246 xfs_off_t offset,
1247 bool is_cow)
1248 {
1249 uintptr_t *flags = (uintptr_t *)&bh_result->b_private;
1250 xfs_off_t size = bh_result->b_size;
1251
1252 trace_xfs_get_blocks_map_direct(XFS_I(inode), offset, size,
1253 ISUNWRITTEN(imap) ? XFS_IO_UNWRITTEN : is_cow ? XFS_IO_COW :
1254 XFS_IO_OVERWRITE, imap);
1255
1256 if (ISUNWRITTEN(imap)) {
1257 *flags |= XFS_DIO_FLAG_UNWRITTEN;
1258 set_buffer_defer_completion(bh_result);
1259 } else if (is_cow) {
1260 *flags |= XFS_DIO_FLAG_COW;
1261 set_buffer_defer_completion(bh_result);
1262 }
1263 if (offset + size > i_size_read(inode) || offset + size < 0) {
1264 *flags |= XFS_DIO_FLAG_APPEND;
1265 set_buffer_defer_completion(bh_result);
1266 }
1267 }
1268
1269 /*
1270 * If this is O_DIRECT or the mpage code calling tell them how large the mapping
1271 * is, so that we can avoid repeated get_blocks calls.
1272 *
1273 * If the mapping spans EOF, then we have to break the mapping up as the mapping
1274 * for blocks beyond EOF must be marked new so that sub block regions can be
1275 * correctly zeroed. We can't do this for mappings within EOF unless the mapping
1276 * was just allocated or is unwritten, otherwise the callers would overwrite
1277 * existing data with zeros. Hence we have to split the mapping into a range up
1278 * to and including EOF, and a second mapping for beyond EOF.
1279 */
1280 static void
xfs_map_trim_size(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,struct xfs_bmbt_irec * imap,xfs_off_t offset,ssize_t size)1281 xfs_map_trim_size(
1282 struct inode *inode,
1283 sector_t iblock,
1284 struct buffer_head *bh_result,
1285 struct xfs_bmbt_irec *imap,
1286 xfs_off_t offset,
1287 ssize_t size)
1288 {
1289 xfs_off_t mapping_size;
1290
1291 mapping_size = imap->br_startoff + imap->br_blockcount - iblock;
1292 mapping_size <<= inode->i_blkbits;
1293
1294 ASSERT(mapping_size > 0);
1295 if (mapping_size > size)
1296 mapping_size = size;
1297 if (offset < i_size_read(inode) &&
1298 (xfs_ufsize_t)offset + mapping_size >= i_size_read(inode)) {
1299 /* limit mapping to block that spans EOF */
1300 mapping_size = roundup_64(i_size_read(inode) - offset,
1301 i_blocksize(inode));
1302 }
1303 if (mapping_size > LONG_MAX)
1304 mapping_size = LONG_MAX;
1305
1306 bh_result->b_size = mapping_size;
1307 }
1308
1309 STATIC int
__xfs_get_blocks(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create,bool direct,bool dax_fault)1310 __xfs_get_blocks(
1311 struct inode *inode,
1312 sector_t iblock,
1313 struct buffer_head *bh_result,
1314 int create,
1315 bool direct,
1316 bool dax_fault)
1317 {
1318 struct xfs_inode *ip = XFS_I(inode);
1319 struct xfs_mount *mp = ip->i_mount;
1320 xfs_fileoff_t offset_fsb, end_fsb;
1321 int error = 0;
1322 int lockmode = 0;
1323 struct xfs_bmbt_irec imap;
1324 int nimaps = 1;
1325 xfs_off_t offset;
1326 ssize_t size;
1327 int new = 0;
1328 bool is_cow = false;
1329 bool need_alloc = false;
1330
1331 BUG_ON(create && !direct);
1332
1333 if (XFS_FORCED_SHUTDOWN(mp))
1334 return -EIO;
1335
1336 offset = (xfs_off_t)iblock << inode->i_blkbits;
1337 ASSERT(bh_result->b_size >= i_blocksize(inode));
1338 size = bh_result->b_size;
1339
1340 if (!create && offset >= i_size_read(inode))
1341 return 0;
1342
1343 /*
1344 * Direct I/O is usually done on preallocated files, so try getting
1345 * a block mapping without an exclusive lock first.
1346 */
1347 lockmode = xfs_ilock_data_map_shared(ip);
1348
1349 ASSERT(offset <= mp->m_super->s_maxbytes);
1350 if ((xfs_ufsize_t)offset + size > mp->m_super->s_maxbytes)
1351 size = mp->m_super->s_maxbytes - offset;
1352 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1353 offset_fsb = XFS_B_TO_FSBT(mp, offset);
1354
1355 if (create && direct && xfs_is_reflink_inode(ip))
1356 is_cow = xfs_reflink_find_cow_mapping(ip, offset, &imap,
1357 &need_alloc);
1358 if (!is_cow) {
1359 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
1360 &imap, &nimaps, XFS_BMAPI_ENTIRE);
1361 /*
1362 * Truncate an overwrite extent if there's a pending CoW
1363 * reservation before the end of this extent. This
1364 * forces us to come back to get_blocks to take care of
1365 * the CoW.
1366 */
1367 if (create && direct && nimaps &&
1368 imap.br_startblock != HOLESTARTBLOCK &&
1369 imap.br_startblock != DELAYSTARTBLOCK &&
1370 !ISUNWRITTEN(&imap))
1371 xfs_reflink_trim_irec_to_next_cow(ip, offset_fsb,
1372 &imap);
1373 }
1374 ASSERT(!need_alloc);
1375 if (error)
1376 goto out_unlock;
1377
1378 /*
1379 * The only time we can ever safely find delalloc blocks on direct I/O
1380 * is a dio write to post-eof speculative preallocation. All other
1381 * scenarios are indicative of a problem or misuse (such as mixing
1382 * direct and mapped I/O).
1383 *
1384 * The file may be unmapped by the time we get here so we cannot
1385 * reliably fail the I/O based on mapping. Instead, fail the I/O if this
1386 * is a read or a write within eof. Otherwise, carry on but warn as a
1387 * precuation if the file happens to be mapped.
1388 */
1389 if (direct && imap.br_startblock == DELAYSTARTBLOCK) {
1390 if (!create || offset < i_size_read(VFS_I(ip))) {
1391 WARN_ON_ONCE(1);
1392 error = -EIO;
1393 goto out_unlock;
1394 }
1395 WARN_ON_ONCE(mapping_mapped(VFS_I(ip)->i_mapping));
1396 }
1397
1398 /* for DAX, we convert unwritten extents directly */
1399 if (create &&
1400 (!nimaps ||
1401 (imap.br_startblock == HOLESTARTBLOCK ||
1402 imap.br_startblock == DELAYSTARTBLOCK) ||
1403 (IS_DAX(inode) && ISUNWRITTEN(&imap)))) {
1404 /*
1405 * xfs_iomap_write_direct() expects the shared lock. It
1406 * is unlocked on return.
1407 */
1408 if (lockmode == XFS_ILOCK_EXCL)
1409 xfs_ilock_demote(ip, lockmode);
1410
1411 error = xfs_iomap_write_direct(ip, offset, size,
1412 &imap, nimaps);
1413 if (error)
1414 return error;
1415 new = 1;
1416
1417 trace_xfs_get_blocks_alloc(ip, offset, size,
1418 ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
1419 : XFS_IO_DELALLOC, &imap);
1420 } else if (nimaps) {
1421 trace_xfs_get_blocks_found(ip, offset, size,
1422 ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
1423 : XFS_IO_OVERWRITE, &imap);
1424 xfs_iunlock(ip, lockmode);
1425 } else {
1426 trace_xfs_get_blocks_notfound(ip, offset, size);
1427 goto out_unlock;
1428 }
1429
1430 if (IS_DAX(inode) && create) {
1431 ASSERT(!ISUNWRITTEN(&imap));
1432 /* zeroing is not needed at a higher layer */
1433 new = 0;
1434 }
1435
1436 /* trim mapping down to size requested */
1437 xfs_map_trim_size(inode, iblock, bh_result, &imap, offset, size);
1438
1439 /*
1440 * For unwritten extents do not report a disk address in the buffered
1441 * read case (treat as if we're reading into a hole).
1442 */
1443 if (imap.br_startblock != HOLESTARTBLOCK &&
1444 imap.br_startblock != DELAYSTARTBLOCK &&
1445 (create || !ISUNWRITTEN(&imap))) {
1446 xfs_map_buffer(inode, bh_result, &imap, offset);
1447 if (ISUNWRITTEN(&imap))
1448 set_buffer_unwritten(bh_result);
1449 /* direct IO needs special help */
1450 if (create) {
1451 if (dax_fault)
1452 ASSERT(!ISUNWRITTEN(&imap));
1453 else
1454 xfs_map_direct(inode, bh_result, &imap, offset,
1455 is_cow);
1456 }
1457 }
1458
1459 /*
1460 * If this is a realtime file, data may be on a different device.
1461 * to that pointed to from the buffer_head b_bdev currently.
1462 */
1463 bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1464
1465 /*
1466 * If we previously allocated a block out beyond eof and we are now
1467 * coming back to use it then we will need to flag it as new even if it
1468 * has a disk address.
1469 *
1470 * With sub-block writes into unwritten extents we also need to mark
1471 * the buffer as new so that the unwritten parts of the buffer gets
1472 * correctly zeroed.
1473 */
1474 if (create &&
1475 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
1476 (offset >= i_size_read(inode)) ||
1477 (new || ISUNWRITTEN(&imap))))
1478 set_buffer_new(bh_result);
1479
1480 return 0;
1481
1482 out_unlock:
1483 xfs_iunlock(ip, lockmode);
1484 return error;
1485 }
1486
1487 int
xfs_get_blocks(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)1488 xfs_get_blocks(
1489 struct inode *inode,
1490 sector_t iblock,
1491 struct buffer_head *bh_result,
1492 int create)
1493 {
1494 return __xfs_get_blocks(inode, iblock, bh_result, create, false, false);
1495 }
1496
1497 int
xfs_get_blocks_direct(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)1498 xfs_get_blocks_direct(
1499 struct inode *inode,
1500 sector_t iblock,
1501 struct buffer_head *bh_result,
1502 int create)
1503 {
1504 return __xfs_get_blocks(inode, iblock, bh_result, create, true, false);
1505 }
1506
1507 int
xfs_get_blocks_dax_fault(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)1508 xfs_get_blocks_dax_fault(
1509 struct inode *inode,
1510 sector_t iblock,
1511 struct buffer_head *bh_result,
1512 int create)
1513 {
1514 return __xfs_get_blocks(inode, iblock, bh_result, create, true, true);
1515 }
1516
1517 /*
1518 * Complete a direct I/O write request.
1519 *
1520 * xfs_map_direct passes us some flags in the private data to tell us what to
1521 * do. If no flags are set, then the write IO is an overwrite wholly within
1522 * the existing allocated file size and so there is nothing for us to do.
1523 *
1524 * Note that in this case the completion can be called in interrupt context,
1525 * whereas if we have flags set we will always be called in task context
1526 * (i.e. from a workqueue).
1527 */
1528 int
xfs_end_io_direct_write(struct kiocb * iocb,loff_t offset,ssize_t size,void * private)1529 xfs_end_io_direct_write(
1530 struct kiocb *iocb,
1531 loff_t offset,
1532 ssize_t size,
1533 void *private)
1534 {
1535 struct inode *inode = file_inode(iocb->ki_filp);
1536 struct xfs_inode *ip = XFS_I(inode);
1537 uintptr_t flags = (uintptr_t)private;
1538 int error = 0;
1539
1540 trace_xfs_end_io_direct_write(ip, offset, size);
1541
1542 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
1543 return -EIO;
1544
1545 if (size <= 0)
1546 return size;
1547
1548 /*
1549 * The flags tell us whether we are doing unwritten extent conversions
1550 * or an append transaction that updates the on-disk file size. These
1551 * cases are the only cases where we should *potentially* be needing
1552 * to update the VFS inode size.
1553 */
1554 if (flags == 0) {
1555 ASSERT(offset + size <= i_size_read(inode));
1556 return 0;
1557 }
1558
1559 if (flags & XFS_DIO_FLAG_COW)
1560 error = xfs_reflink_end_cow(ip, offset, size);
1561
1562 /*
1563 * Unwritten conversion updates the in-core isize after extent
1564 * conversion but before updating the on-disk size. Updating isize any
1565 * earlier allows a racing dio read to find unwritten extents before
1566 * they are converted.
1567 */
1568 if (flags & XFS_DIO_FLAG_UNWRITTEN) {
1569 trace_xfs_end_io_direct_write_unwritten(ip, offset, size);
1570
1571 return xfs_iomap_write_unwritten(ip, offset, size, true);
1572 }
1573
1574 /*
1575 * We need to update the in-core inode size here so that we don't end up
1576 * with the on-disk inode size being outside the in-core inode size. We
1577 * have no other method of updating EOF for AIO, so always do it here
1578 * if necessary.
1579 *
1580 * We need to lock the test/set EOF update as we can be racing with
1581 * other IO completions here to update the EOF. Failing to serialise
1582 * here can result in EOF moving backwards and Bad Things Happen when
1583 * that occurs.
1584 */
1585 spin_lock(&ip->i_flags_lock);
1586 if (offset + size > i_size_read(inode))
1587 i_size_write(inode, offset + size);
1588 spin_unlock(&ip->i_flags_lock);
1589
1590 if (flags & XFS_DIO_FLAG_APPEND) {
1591 trace_xfs_end_io_direct_write_append(ip, offset, size);
1592
1593 error = xfs_setfilesize(ip, offset, size);
1594 }
1595
1596 return error;
1597 }
1598
1599 STATIC ssize_t
xfs_vm_direct_IO(struct kiocb * iocb,struct iov_iter * iter)1600 xfs_vm_direct_IO(
1601 struct kiocb *iocb,
1602 struct iov_iter *iter)
1603 {
1604 /*
1605 * We just need the method present so that open/fcntl allow direct I/O.
1606 */
1607 return -EINVAL;
1608 }
1609
1610 STATIC sector_t
xfs_vm_bmap(struct address_space * mapping,sector_t block)1611 xfs_vm_bmap(
1612 struct address_space *mapping,
1613 sector_t block)
1614 {
1615 struct inode *inode = (struct inode *)mapping->host;
1616 struct xfs_inode *ip = XFS_I(inode);
1617
1618 trace_xfs_vm_bmap(XFS_I(inode));
1619 xfs_ilock(ip, XFS_IOLOCK_SHARED);
1620
1621 /*
1622 * The swap code (ab-)uses ->bmap to get a block mapping and then
1623 * bypasseѕ the file system for actual I/O. We really can't allow
1624 * that on reflinks inodes, so we have to skip out here. And yes,
1625 * 0 is the magic code for a bmap error.
1626 *
1627 * Since we don't pass back blockdev info, we can't return bmap
1628 * information for rt files either.
1629 */
1630 if (xfs_is_reflink_inode(ip) || XFS_IS_REALTIME_INODE(ip)) {
1631 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
1632 return 0;
1633 }
1634 filemap_write_and_wait(mapping);
1635 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
1636 return generic_block_bmap(mapping, block, xfs_get_blocks);
1637 }
1638
1639 STATIC int
xfs_vm_readpage(struct file * unused,struct page * page)1640 xfs_vm_readpage(
1641 struct file *unused,
1642 struct page *page)
1643 {
1644 trace_xfs_vm_readpage(page->mapping->host, 1);
1645 return mpage_readpage(page, xfs_get_blocks);
1646 }
1647
1648 STATIC int
xfs_vm_readpages(struct file * unused,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)1649 xfs_vm_readpages(
1650 struct file *unused,
1651 struct address_space *mapping,
1652 struct list_head *pages,
1653 unsigned nr_pages)
1654 {
1655 trace_xfs_vm_readpages(mapping->host, nr_pages);
1656 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1657 }
1658
1659 /*
1660 * This is basically a copy of __set_page_dirty_buffers() with one
1661 * small tweak: buffers beyond EOF do not get marked dirty. If we mark them
1662 * dirty, we'll never be able to clean them because we don't write buffers
1663 * beyond EOF, and that means we can't invalidate pages that span EOF
1664 * that have been marked dirty. Further, the dirty state can leak into
1665 * the file interior if the file is extended, resulting in all sorts of
1666 * bad things happening as the state does not match the underlying data.
1667 *
1668 * XXX: this really indicates that bufferheads in XFS need to die. Warts like
1669 * this only exist because of bufferheads and how the generic code manages them.
1670 */
1671 STATIC int
xfs_vm_set_page_dirty(struct page * page)1672 xfs_vm_set_page_dirty(
1673 struct page *page)
1674 {
1675 struct address_space *mapping = page->mapping;
1676 struct inode *inode = mapping->host;
1677 loff_t end_offset;
1678 loff_t offset;
1679 int newly_dirty;
1680
1681 if (unlikely(!mapping))
1682 return !TestSetPageDirty(page);
1683
1684 end_offset = i_size_read(inode);
1685 offset = page_offset(page);
1686
1687 spin_lock(&mapping->private_lock);
1688 if (page_has_buffers(page)) {
1689 struct buffer_head *head = page_buffers(page);
1690 struct buffer_head *bh = head;
1691
1692 do {
1693 if (offset < end_offset)
1694 set_buffer_dirty(bh);
1695 bh = bh->b_this_page;
1696 offset += i_blocksize(inode);
1697 } while (bh != head);
1698 }
1699 /*
1700 * Lock out page->mem_cgroup migration to keep PageDirty
1701 * synchronized with per-memcg dirty page counters.
1702 */
1703 lock_page_memcg(page);
1704 newly_dirty = !TestSetPageDirty(page);
1705 spin_unlock(&mapping->private_lock);
1706
1707 if (newly_dirty) {
1708 /* sigh - __set_page_dirty() is static, so copy it here, too */
1709 unsigned long flags;
1710
1711 spin_lock_irqsave(&mapping->tree_lock, flags);
1712 if (page->mapping) { /* Race with truncate? */
1713 WARN_ON_ONCE(!PageUptodate(page));
1714 account_page_dirtied(page, mapping);
1715 radix_tree_tag_set(&mapping->page_tree,
1716 page_index(page), PAGECACHE_TAG_DIRTY);
1717 }
1718 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1719 }
1720 unlock_page_memcg(page);
1721 if (newly_dirty)
1722 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1723 return newly_dirty;
1724 }
1725
1726 const struct address_space_operations xfs_address_space_operations = {
1727 .readpage = xfs_vm_readpage,
1728 .readpages = xfs_vm_readpages,
1729 .writepage = xfs_vm_writepage,
1730 .writepages = xfs_vm_writepages,
1731 .set_page_dirty = xfs_vm_set_page_dirty,
1732 .releasepage = xfs_vm_releasepage,
1733 .invalidatepage = xfs_vm_invalidatepage,
1734 .bmap = xfs_vm_bmap,
1735 .direct_IO = xfs_vm_direct_IO,
1736 .migratepage = buffer_migrate_page,
1737 .is_partially_uptodate = block_is_partially_uptodate,
1738 .error_remove_page = generic_error_remove_page,
1739 };
1740