• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1  #ifndef _FIXP_ARITH_H
2  #define _FIXP_ARITH_H
3  
4  #include <linux/math64.h>
5  
6  /*
7   * Simplistic fixed-point arithmetics.
8   * Hmm, I'm probably duplicating some code :(
9   *
10   * Copyright (c) 2002 Johann Deneux
11   */
12  
13  /*
14   * This program is free software; you can redistribute it and/or modify
15   * it under the terms of the GNU General Public License as published by
16   * the Free Software Foundation; either version 2 of the License, or
17   * (at your option) any later version.
18   *
19   * This program is distributed in the hope that it will be useful,
20   * but WITHOUT ANY WARRANTY; without even the implied warranty of
21   * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
22   * GNU General Public License for more details.
23   *
24   * You should have received a copy of the GNU General Public License
25   * along with this program; if not, write to the Free Software
26   * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
27   *
28   * Should you need to contact me, the author, you can do so by
29   * e-mail - mail your message to <johann.deneux@gmail.com>
30   */
31  
32  #include <linux/types.h>
33  
34  static const s32 sin_table[] = {
35  	0x00000000, 0x023be165, 0x04779632, 0x06b2f1d2, 0x08edc7b6, 0x0b27eb5c,
36  	0x0d61304d, 0x0f996a26, 0x11d06c96, 0x14060b67, 0x163a1a7d, 0x186c6ddd,
37  	0x1a9cd9ac, 0x1ccb3236, 0x1ef74bf2, 0x2120fb82, 0x234815ba, 0x256c6f9e,
38  	0x278dde6e, 0x29ac379f, 0x2bc750e8, 0x2ddf003f, 0x2ff31bdd, 0x32037a44,
39  	0x340ff241, 0x36185aee, 0x381c8bb5, 0x3a1c5c56, 0x3c17a4e7, 0x3e0e3ddb,
40  	0x3fffffff, 0x41ecc483, 0x43d464fa, 0x45b6bb5d, 0x4793a20f, 0x496af3e1,
41  	0x4b3c8c11, 0x4d084650, 0x4ecdfec6, 0x508d9210, 0x5246dd48, 0x53f9be04,
42  	0x55a6125a, 0x574bb8e5, 0x58ea90c2, 0x5a827999, 0x5c135399, 0x5d9cff82,
43  	0x5f1f5ea0, 0x609a52d1, 0x620dbe8a, 0x637984d3, 0x64dd894f, 0x6639b039,
44  	0x678dde6d, 0x68d9f963, 0x6a1de735, 0x6b598ea1, 0x6c8cd70a, 0x6db7a879,
45  	0x6ed9eba0, 0x6ff389de, 0x71046d3c, 0x720c8074, 0x730baeec, 0x7401e4bf,
46  	0x74ef0ebb, 0x75d31a5f, 0x76adf5e5, 0x777f903b, 0x7847d908, 0x7906c0af,
47  	0x79bc384c, 0x7a6831b8, 0x7b0a9f8c, 0x7ba3751c, 0x7c32a67c, 0x7cb82884,
48  	0x7d33f0c8, 0x7da5f5a3, 0x7e0e2e31, 0x7e6c924f, 0x7ec11aa3, 0x7f0bc095,
49  	0x7f4c7e52, 0x7f834ecf, 0x7fb02dc4, 0x7fd317b3, 0x7fec09e1, 0x7ffb025e,
50  	0x7fffffff
51  };
52  
53  /**
54   * __fixp_sin32() returns the sin of an angle in degrees
55   *
56   * @degrees: angle, in degrees, from 0 to 360.
57   *
58   * The returned value ranges from -0x7fffffff to +0x7fffffff.
59   */
__fixp_sin32(int degrees)60  static inline s32 __fixp_sin32(int degrees)
61  {
62  	s32 ret;
63  	bool negative = false;
64  
65  	if (degrees > 180) {
66  		negative = true;
67  		degrees -= 180;
68  	}
69  	if (degrees > 90)
70  		degrees = 180 - degrees;
71  
72  	ret = sin_table[degrees];
73  
74  	return negative ? -ret : ret;
75  }
76  
77  /**
78   * fixp_sin32() returns the sin of an angle in degrees
79   *
80   * @degrees: angle, in degrees. The angle can be positive or negative
81   *
82   * The returned value ranges from -0x7fffffff to +0x7fffffff.
83   */
fixp_sin32(int degrees)84  static inline s32 fixp_sin32(int degrees)
85  {
86  	degrees = (degrees % 360 + 360) % 360;
87  
88  	return __fixp_sin32(degrees);
89  }
90  
91  /* cos(x) = sin(x + 90 degrees) */
92  #define fixp_cos32(v) fixp_sin32((v) + 90)
93  
94  /*
95   * 16 bits variants
96   *
97   * The returned value ranges from -0x7fff to 0x7fff
98   */
99  
100  #define fixp_sin16(v) (fixp_sin32(v) >> 16)
101  #define fixp_cos16(v) (fixp_cos32(v) >> 16)
102  
103  /**
104   * fixp_sin32_rad() - calculates the sin of an angle in radians
105   *
106   * @radians: angle, in radians
107   * @twopi: value to be used for 2*pi
108   *
109   * Provides a variant for the cases where just 360
110   * values is not enough. This function uses linear
111   * interpolation to a wider range of values given by
112   * twopi var.
113   *
114   * Experimental tests gave a maximum difference of
115   * 0.000038 between the value calculated by sin() and
116   * the one produced by this function, when twopi is
117   * equal to 360000. That seems to be enough precision
118   * for practical purposes.
119   *
120   * Please notice that two high numbers for twopi could cause
121   * overflows, so the routine will not allow values of twopi
122   * bigger than 1^18.
123   */
fixp_sin32_rad(u32 radians,u32 twopi)124  static inline s32 fixp_sin32_rad(u32 radians, u32 twopi)
125  {
126  	int degrees;
127  	s32 v1, v2, dx, dy;
128  	s64 tmp;
129  
130  	/*
131  	 * Avoid too large values for twopi, as we don't want overflows.
132  	 */
133  	BUG_ON(twopi > 1 << 18);
134  
135  	degrees = (radians * 360) / twopi;
136  	tmp = radians - (degrees * twopi) / 360;
137  
138  	degrees = (degrees % 360 + 360) % 360;
139  	v1 = __fixp_sin32(degrees);
140  
141  	v2 = fixp_sin32(degrees + 1);
142  
143  	dx = twopi / 360;
144  	dy = v2 - v1;
145  
146  	tmp *= dy;
147  
148  	return v1 +  div_s64(tmp, dx);
149  }
150  
151  /* cos(x) = sin(x + pi/2 radians) */
152  
153  #define fixp_cos32_rad(rad, twopi)	\
154  	fixp_sin32_rad(rad + twopi / 4, twopi)
155  
156  #endif
157