• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #ifndef _LINUX_PTRACE_H
2 #define _LINUX_PTRACE_H
3 
4 #include <linux/compiler.h>		/* For unlikely.  */
5 #include <linux/sched.h>		/* For struct task_struct.  */
6 #include <linux/err.h>			/* for IS_ERR_VALUE */
7 #include <linux/bug.h>			/* For BUG_ON.  */
8 #include <linux/pid_namespace.h>	/* For task_active_pid_ns.  */
9 #include <uapi/linux/ptrace.h>
10 
11 extern int ptrace_access_vm(struct task_struct *tsk, unsigned long addr,
12 			    void *buf, int len, unsigned int gup_flags);
13 
14 /*
15  * Ptrace flags
16  *
17  * The owner ship rules for task->ptrace which holds the ptrace
18  * flags is simple.  When a task is running it owns it's task->ptrace
19  * flags.  When the a task is stopped the ptracer owns task->ptrace.
20  */
21 
22 #define PT_SEIZED	0x00010000	/* SEIZE used, enable new behavior */
23 #define PT_PTRACED	0x00000001
24 #define PT_DTRACE	0x00000002	/* delayed trace (used on m68k, i386) */
25 
26 #define PT_OPT_FLAG_SHIFT	3
27 /* PT_TRACE_* event enable flags */
28 #define PT_EVENT_FLAG(event)	(1 << (PT_OPT_FLAG_SHIFT + (event)))
29 #define PT_TRACESYSGOOD		PT_EVENT_FLAG(0)
30 #define PT_TRACE_FORK		PT_EVENT_FLAG(PTRACE_EVENT_FORK)
31 #define PT_TRACE_VFORK		PT_EVENT_FLAG(PTRACE_EVENT_VFORK)
32 #define PT_TRACE_CLONE		PT_EVENT_FLAG(PTRACE_EVENT_CLONE)
33 #define PT_TRACE_EXEC		PT_EVENT_FLAG(PTRACE_EVENT_EXEC)
34 #define PT_TRACE_VFORK_DONE	PT_EVENT_FLAG(PTRACE_EVENT_VFORK_DONE)
35 #define PT_TRACE_EXIT		PT_EVENT_FLAG(PTRACE_EVENT_EXIT)
36 #define PT_TRACE_SECCOMP	PT_EVENT_FLAG(PTRACE_EVENT_SECCOMP)
37 
38 #define PT_EXITKILL		(PTRACE_O_EXITKILL << PT_OPT_FLAG_SHIFT)
39 #define PT_SUSPEND_SECCOMP	(PTRACE_O_SUSPEND_SECCOMP << PT_OPT_FLAG_SHIFT)
40 
41 /* single stepping state bits (used on ARM and PA-RISC) */
42 #define PT_SINGLESTEP_BIT	31
43 #define PT_SINGLESTEP		(1<<PT_SINGLESTEP_BIT)
44 #define PT_BLOCKSTEP_BIT	30
45 #define PT_BLOCKSTEP		(1<<PT_BLOCKSTEP_BIT)
46 
47 extern long arch_ptrace(struct task_struct *child, long request,
48 			unsigned long addr, unsigned long data);
49 extern int ptrace_readdata(struct task_struct *tsk, unsigned long src, char __user *dst, int len);
50 extern int ptrace_writedata(struct task_struct *tsk, char __user *src, unsigned long dst, int len);
51 extern void ptrace_disable(struct task_struct *);
52 extern int ptrace_request(struct task_struct *child, long request,
53 			  unsigned long addr, unsigned long data);
54 extern void ptrace_notify(int exit_code);
55 extern void __ptrace_link(struct task_struct *child,
56 			  struct task_struct *new_parent,
57 			  const struct cred *ptracer_cred);
58 extern void __ptrace_unlink(struct task_struct *child);
59 extern void exit_ptrace(struct task_struct *tracer, struct list_head *dead);
60 #define PTRACE_MODE_READ	0x01
61 #define PTRACE_MODE_ATTACH	0x02
62 #define PTRACE_MODE_NOAUDIT	0x04
63 #define PTRACE_MODE_FSCREDS 0x08
64 #define PTRACE_MODE_REALCREDS 0x10
65 
66 /* shorthands for READ/ATTACH and FSCREDS/REALCREDS combinations */
67 #define PTRACE_MODE_READ_FSCREDS (PTRACE_MODE_READ | PTRACE_MODE_FSCREDS)
68 #define PTRACE_MODE_READ_REALCREDS (PTRACE_MODE_READ | PTRACE_MODE_REALCREDS)
69 #define PTRACE_MODE_ATTACH_FSCREDS (PTRACE_MODE_ATTACH | PTRACE_MODE_FSCREDS)
70 #define PTRACE_MODE_ATTACH_REALCREDS (PTRACE_MODE_ATTACH | PTRACE_MODE_REALCREDS)
71 
72 /**
73  * ptrace_may_access - check whether the caller is permitted to access
74  * a target task.
75  * @task: target task
76  * @mode: selects type of access and caller credentials
77  *
78  * Returns true on success, false on denial.
79  *
80  * One of the flags PTRACE_MODE_FSCREDS and PTRACE_MODE_REALCREDS must
81  * be set in @mode to specify whether the access was requested through
82  * a filesystem syscall (should use effective capabilities and fsuid
83  * of the caller) or through an explicit syscall such as
84  * process_vm_writev or ptrace (and should use the real credentials).
85  */
86 extern bool ptrace_may_access(struct task_struct *task, unsigned int mode);
87 
ptrace_reparented(struct task_struct * child)88 static inline int ptrace_reparented(struct task_struct *child)
89 {
90 	return !same_thread_group(child->real_parent, child->parent);
91 }
92 
ptrace_unlink(struct task_struct * child)93 static inline void ptrace_unlink(struct task_struct *child)
94 {
95 	if (unlikely(child->ptrace))
96 		__ptrace_unlink(child);
97 }
98 
99 int generic_ptrace_peekdata(struct task_struct *tsk, unsigned long addr,
100 			    unsigned long data);
101 int generic_ptrace_pokedata(struct task_struct *tsk, unsigned long addr,
102 			    unsigned long data);
103 
104 /**
105  * ptrace_parent - return the task that is tracing the given task
106  * @task: task to consider
107  *
108  * Returns %NULL if no one is tracing @task, or the &struct task_struct
109  * pointer to its tracer.
110  *
111  * Must called under rcu_read_lock().  The pointer returned might be kept
112  * live only by RCU.  During exec, this may be called with task_lock() held
113  * on @task, still held from when check_unsafe_exec() was called.
114  */
ptrace_parent(struct task_struct * task)115 static inline struct task_struct *ptrace_parent(struct task_struct *task)
116 {
117 	if (unlikely(task->ptrace))
118 		return rcu_dereference(task->parent);
119 	return NULL;
120 }
121 
122 /**
123  * ptrace_event_enabled - test whether a ptrace event is enabled
124  * @task: ptracee of interest
125  * @event: %PTRACE_EVENT_* to test
126  *
127  * Test whether @event is enabled for ptracee @task.
128  *
129  * Returns %true if @event is enabled, %false otherwise.
130  */
ptrace_event_enabled(struct task_struct * task,int event)131 static inline bool ptrace_event_enabled(struct task_struct *task, int event)
132 {
133 	return task->ptrace & PT_EVENT_FLAG(event);
134 }
135 
136 /**
137  * ptrace_event - possibly stop for a ptrace event notification
138  * @event:	%PTRACE_EVENT_* value to report
139  * @message:	value for %PTRACE_GETEVENTMSG to return
140  *
141  * Check whether @event is enabled and, if so, report @event and @message
142  * to the ptrace parent.
143  *
144  * Called without locks.
145  */
ptrace_event(int event,unsigned long message)146 static inline void ptrace_event(int event, unsigned long message)
147 {
148 	if (unlikely(ptrace_event_enabled(current, event))) {
149 		current->ptrace_message = message;
150 		ptrace_notify((event << 8) | SIGTRAP);
151 	} else if (event == PTRACE_EVENT_EXEC) {
152 		/* legacy EXEC report via SIGTRAP */
153 		if ((current->ptrace & (PT_PTRACED|PT_SEIZED)) == PT_PTRACED)
154 			send_sig(SIGTRAP, current, 0);
155 	}
156 }
157 
158 /**
159  * ptrace_event_pid - possibly stop for a ptrace event notification
160  * @event:	%PTRACE_EVENT_* value to report
161  * @pid:	process identifier for %PTRACE_GETEVENTMSG to return
162  *
163  * Check whether @event is enabled and, if so, report @event and @pid
164  * to the ptrace parent.  @pid is reported as the pid_t seen from the
165  * the ptrace parent's pid namespace.
166  *
167  * Called without locks.
168  */
ptrace_event_pid(int event,struct pid * pid)169 static inline void ptrace_event_pid(int event, struct pid *pid)
170 {
171 	/*
172 	 * FIXME: There's a potential race if a ptracer in a different pid
173 	 * namespace than parent attaches between computing message below and
174 	 * when we acquire tasklist_lock in ptrace_stop().  If this happens,
175 	 * the ptracer will get a bogus pid from PTRACE_GETEVENTMSG.
176 	 */
177 	unsigned long message = 0;
178 	struct pid_namespace *ns;
179 
180 	rcu_read_lock();
181 	ns = task_active_pid_ns(rcu_dereference(current->parent));
182 	if (ns)
183 		message = pid_nr_ns(pid, ns);
184 	rcu_read_unlock();
185 
186 	ptrace_event(event, message);
187 }
188 
189 /**
190  * ptrace_init_task - initialize ptrace state for a new child
191  * @child:		new child task
192  * @ptrace:		true if child should be ptrace'd by parent's tracer
193  *
194  * This is called immediately after adding @child to its parent's children
195  * list.  @ptrace is false in the normal case, and true to ptrace @child.
196  *
197  * Called with current's siglock and write_lock_irq(&tasklist_lock) held.
198  */
ptrace_init_task(struct task_struct * child,bool ptrace)199 static inline void ptrace_init_task(struct task_struct *child, bool ptrace)
200 {
201 	INIT_LIST_HEAD(&child->ptrace_entry);
202 	INIT_LIST_HEAD(&child->ptraced);
203 	child->jobctl = 0;
204 	child->ptrace = 0;
205 	child->parent = child->real_parent;
206 
207 	if (unlikely(ptrace) && current->ptrace) {
208 		child->ptrace = current->ptrace;
209 		__ptrace_link(child, current->parent, current->ptracer_cred);
210 
211 		if (child->ptrace & PT_SEIZED)
212 			task_set_jobctl_pending(child, JOBCTL_TRAP_STOP);
213 		else
214 			sigaddset(&child->pending.signal, SIGSTOP);
215 
216 		set_tsk_thread_flag(child, TIF_SIGPENDING);
217 	}
218 	else
219 		child->ptracer_cred = NULL;
220 }
221 
222 /**
223  * ptrace_release_task - final ptrace-related cleanup of a zombie being reaped
224  * @task:	task in %EXIT_DEAD state
225  *
226  * Called with write_lock(&tasklist_lock) held.
227  */
ptrace_release_task(struct task_struct * task)228 static inline void ptrace_release_task(struct task_struct *task)
229 {
230 	BUG_ON(!list_empty(&task->ptraced));
231 	ptrace_unlink(task);
232 	BUG_ON(!list_empty(&task->ptrace_entry));
233 }
234 
235 #ifndef force_successful_syscall_return
236 /*
237  * System call handlers that, upon successful completion, need to return a
238  * negative value should call force_successful_syscall_return() right before
239  * returning.  On architectures where the syscall convention provides for a
240  * separate error flag (e.g., alpha, ia64, ppc{,64}, sparc{,64}, possibly
241  * others), this macro can be used to ensure that the error flag will not get
242  * set.  On architectures which do not support a separate error flag, the macro
243  * is a no-op and the spurious error condition needs to be filtered out by some
244  * other means (e.g., in user-level, by passing an extra argument to the
245  * syscall handler, or something along those lines).
246  */
247 #define force_successful_syscall_return() do { } while (0)
248 #endif
249 
250 #ifndef is_syscall_success
251 /*
252  * On most systems we can tell if a syscall is a success based on if the retval
253  * is an error value.  On some systems like ia64 and powerpc they have different
254  * indicators of success/failure and must define their own.
255  */
256 #define is_syscall_success(regs) (!IS_ERR_VALUE((unsigned long)(regs_return_value(regs))))
257 #endif
258 
259 /*
260  * <asm/ptrace.h> should define the following things inside #ifdef __KERNEL__.
261  *
262  * These do-nothing inlines are used when the arch does not
263  * implement single-step.  The kerneldoc comments are here
264  * to document the interface for all arch definitions.
265  */
266 
267 #ifndef arch_has_single_step
268 /**
269  * arch_has_single_step - does this CPU support user-mode single-step?
270  *
271  * If this is defined, then there must be function declarations or
272  * inlines for user_enable_single_step() and user_disable_single_step().
273  * arch_has_single_step() should evaluate to nonzero iff the machine
274  * supports instruction single-step for user mode.
275  * It can be a constant or it can test a CPU feature bit.
276  */
277 #define arch_has_single_step()		(0)
278 
279 /**
280  * user_enable_single_step - single-step in user-mode task
281  * @task: either current or a task stopped in %TASK_TRACED
282  *
283  * This can only be called when arch_has_single_step() has returned nonzero.
284  * Set @task so that when it returns to user mode, it will trap after the
285  * next single instruction executes.  If arch_has_block_step() is defined,
286  * this must clear the effects of user_enable_block_step() too.
287  */
user_enable_single_step(struct task_struct * task)288 static inline void user_enable_single_step(struct task_struct *task)
289 {
290 	BUG();			/* This can never be called.  */
291 }
292 
293 /**
294  * user_disable_single_step - cancel user-mode single-step
295  * @task: either current or a task stopped in %TASK_TRACED
296  *
297  * Clear @task of the effects of user_enable_single_step() and
298  * user_enable_block_step().  This can be called whether or not either
299  * of those was ever called on @task, and even if arch_has_single_step()
300  * returned zero.
301  */
user_disable_single_step(struct task_struct * task)302 static inline void user_disable_single_step(struct task_struct *task)
303 {
304 }
305 #else
306 extern void user_enable_single_step(struct task_struct *);
307 extern void user_disable_single_step(struct task_struct *);
308 #endif	/* arch_has_single_step */
309 
310 #ifndef arch_has_block_step
311 /**
312  * arch_has_block_step - does this CPU support user-mode block-step?
313  *
314  * If this is defined, then there must be a function declaration or inline
315  * for user_enable_block_step(), and arch_has_single_step() must be defined
316  * too.  arch_has_block_step() should evaluate to nonzero iff the machine
317  * supports step-until-branch for user mode.  It can be a constant or it
318  * can test a CPU feature bit.
319  */
320 #define arch_has_block_step()		(0)
321 
322 /**
323  * user_enable_block_step - step until branch in user-mode task
324  * @task: either current or a task stopped in %TASK_TRACED
325  *
326  * This can only be called when arch_has_block_step() has returned nonzero,
327  * and will never be called when single-instruction stepping is being used.
328  * Set @task so that when it returns to user mode, it will trap after the
329  * next branch or trap taken.
330  */
user_enable_block_step(struct task_struct * task)331 static inline void user_enable_block_step(struct task_struct *task)
332 {
333 	BUG();			/* This can never be called.  */
334 }
335 #else
336 extern void user_enable_block_step(struct task_struct *);
337 #endif	/* arch_has_block_step */
338 
339 #ifdef ARCH_HAS_USER_SINGLE_STEP_INFO
340 extern void user_single_step_siginfo(struct task_struct *tsk,
341 				struct pt_regs *regs, siginfo_t *info);
342 #else
user_single_step_siginfo(struct task_struct * tsk,struct pt_regs * regs,siginfo_t * info)343 static inline void user_single_step_siginfo(struct task_struct *tsk,
344 				struct pt_regs *regs, siginfo_t *info)
345 {
346 	memset(info, 0, sizeof(*info));
347 	info->si_signo = SIGTRAP;
348 }
349 #endif
350 
351 #ifndef arch_ptrace_stop_needed
352 /**
353  * arch_ptrace_stop_needed - Decide whether arch_ptrace_stop() should be called
354  * @code:	current->exit_code value ptrace will stop with
355  * @info:	siginfo_t pointer (or %NULL) for signal ptrace will stop with
356  *
357  * This is called with the siglock held, to decide whether or not it's
358  * necessary to release the siglock and call arch_ptrace_stop() with the
359  * same @code and @info arguments.  It can be defined to a constant if
360  * arch_ptrace_stop() is never required, or always is.  On machines where
361  * this makes sense, it should be defined to a quick test to optimize out
362  * calling arch_ptrace_stop() when it would be superfluous.  For example,
363  * if the thread has not been back to user mode since the last stop, the
364  * thread state might indicate that nothing needs to be done.
365  *
366  * This is guaranteed to be invoked once before a task stops for ptrace and
367  * may include arch-specific operations necessary prior to a ptrace stop.
368  */
369 #define arch_ptrace_stop_needed(code, info)	(0)
370 #endif
371 
372 #ifndef arch_ptrace_stop
373 /**
374  * arch_ptrace_stop - Do machine-specific work before stopping for ptrace
375  * @code:	current->exit_code value ptrace will stop with
376  * @info:	siginfo_t pointer (or %NULL) for signal ptrace will stop with
377  *
378  * This is called with no locks held when arch_ptrace_stop_needed() has
379  * just returned nonzero.  It is allowed to block, e.g. for user memory
380  * access.  The arch can have machine-specific work to be done before
381  * ptrace stops.  On ia64, register backing store gets written back to user
382  * memory here.  Since this can be costly (requires dropping the siglock),
383  * we only do it when the arch requires it for this particular stop, as
384  * indicated by arch_ptrace_stop_needed().
385  */
386 #define arch_ptrace_stop(code, info)		do { } while (0)
387 #endif
388 
389 #ifndef current_pt_regs
390 #define current_pt_regs() task_pt_regs(current)
391 #endif
392 
393 #ifndef ptrace_signal_deliver
394 #define ptrace_signal_deliver() ((void)0)
395 #endif
396 
397 /*
398  * unlike current_pt_regs(), this one is equal to task_pt_regs(current)
399  * on *all* architectures; the only reason to have a per-arch definition
400  * is optimisation.
401  */
402 #ifndef signal_pt_regs
403 #define signal_pt_regs() task_pt_regs(current)
404 #endif
405 
406 #ifndef current_user_stack_pointer
407 #define current_user_stack_pointer() user_stack_pointer(current_pt_regs())
408 #endif
409 
410 extern int task_current_syscall(struct task_struct *target, long *callno,
411 				unsigned long args[6], unsigned int maxargs,
412 				unsigned long *sp, unsigned long *pc);
413 
414 #endif
415