1 /* audit.c -- Auditing support
2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
3 * System-call specific features have moved to auditsc.c
4 *
5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
6 * All Rights Reserved.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 *
22 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
23 *
24 * Goals: 1) Integrate fully with Security Modules.
25 * 2) Minimal run-time overhead:
26 * a) Minimal when syscall auditing is disabled (audit_enable=0).
27 * b) Small when syscall auditing is enabled and no audit record
28 * is generated (defer as much work as possible to record
29 * generation time):
30 * i) context is allocated,
31 * ii) names from getname are stored without a copy, and
32 * iii) inode information stored from path_lookup.
33 * 3) Ability to disable syscall auditing at boot time (audit=0).
34 * 4) Usable by other parts of the kernel (if audit_log* is called,
35 * then a syscall record will be generated automatically for the
36 * current syscall).
37 * 5) Netlink interface to user-space.
38 * 6) Support low-overhead kernel-based filtering to minimize the
39 * information that must be passed to user-space.
40 *
41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
42 */
43
44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45
46 #include <linux/file.h>
47 #include <linux/init.h>
48 #include <linux/types.h>
49 #include <linux/atomic.h>
50 #include <linux/mm.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/err.h>
54 #include <linux/kthread.h>
55 #include <linux/kernel.h>
56 #include <linux/syscalls.h>
57
58 #include <linux/audit.h>
59
60 #include <net/sock.h>
61 #include <net/netlink.h>
62 #include <linux/skbuff.h>
63 #ifdef CONFIG_SECURITY
64 #include <linux/security.h>
65 #endif
66 #include <linux/freezer.h>
67 #include <linux/pid_namespace.h>
68 #include <net/netns/generic.h>
69
70 #include "audit.h"
71
72 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
73 * (Initialization happens after skb_init is called.) */
74 #define AUDIT_DISABLED -1
75 #define AUDIT_UNINITIALIZED 0
76 #define AUDIT_INITIALIZED 1
77 static int audit_initialized;
78
79 #define AUDIT_OFF 0
80 #define AUDIT_ON 1
81 #define AUDIT_LOCKED 2
82 u32 audit_enabled = AUDIT_OFF;
83 u32 audit_ever_enabled = !!AUDIT_OFF;
84
85 EXPORT_SYMBOL_GPL(audit_enabled);
86
87 /* Default state when kernel boots without any parameters. */
88 static u32 audit_default = AUDIT_OFF;
89
90 /* If auditing cannot proceed, audit_failure selects what happens. */
91 static u32 audit_failure = AUDIT_FAIL_PRINTK;
92
93 /*
94 * If audit records are to be written to the netlink socket, audit_pid
95 * contains the pid of the auditd process and audit_nlk_portid contains
96 * the portid to use to send netlink messages to that process.
97 */
98 int audit_pid;
99 static __u32 audit_nlk_portid;
100
101 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
102 * to that number per second. This prevents DoS attacks, but results in
103 * audit records being dropped. */
104 static u32 audit_rate_limit;
105
106 /* Number of outstanding audit_buffers allowed.
107 * When set to zero, this means unlimited. */
108 static u32 audit_backlog_limit = 64;
109 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
110 static u32 audit_backlog_wait_time_master = AUDIT_BACKLOG_WAIT_TIME;
111 static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
112
113 /* The identity of the user shutting down the audit system. */
114 kuid_t audit_sig_uid = INVALID_UID;
115 pid_t audit_sig_pid = -1;
116 u32 audit_sig_sid = 0;
117
118 /* Records can be lost in several ways:
119 0) [suppressed in audit_alloc]
120 1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
121 2) out of memory in audit_log_move [alloc_skb]
122 3) suppressed due to audit_rate_limit
123 4) suppressed due to audit_backlog_limit
124 */
125 static atomic_t audit_lost = ATOMIC_INIT(0);
126
127 /* The netlink socket. */
128 static struct sock *audit_sock;
129 static int audit_net_id;
130
131 /* Hash for inode-based rules */
132 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
133
134 /* The audit_freelist is a list of pre-allocated audit buffers (if more
135 * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of
136 * being placed on the freelist). */
137 static DEFINE_SPINLOCK(audit_freelist_lock);
138 static int audit_freelist_count;
139 static LIST_HEAD(audit_freelist);
140
141 static struct sk_buff_head audit_skb_queue;
142 /* queue of skbs to send to auditd when/if it comes back */
143 static struct sk_buff_head audit_skb_hold_queue;
144 static struct task_struct *kauditd_task;
145 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
146 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
147
148 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
149 .mask = -1,
150 .features = 0,
151 .lock = 0,};
152
153 static char *audit_feature_names[2] = {
154 "only_unset_loginuid",
155 "loginuid_immutable",
156 };
157
158
159 /* Serialize requests from userspace. */
160 DEFINE_MUTEX(audit_cmd_mutex);
161
162 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
163 * audit records. Since printk uses a 1024 byte buffer, this buffer
164 * should be at least that large. */
165 #define AUDIT_BUFSIZ 1024
166
167 /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the
168 * audit_freelist. Doing so eliminates many kmalloc/kfree calls. */
169 #define AUDIT_MAXFREE (2*NR_CPUS)
170
171 /* The audit_buffer is used when formatting an audit record. The caller
172 * locks briefly to get the record off the freelist or to allocate the
173 * buffer, and locks briefly to send the buffer to the netlink layer or
174 * to place it on a transmit queue. Multiple audit_buffers can be in
175 * use simultaneously. */
176 struct audit_buffer {
177 struct list_head list;
178 struct sk_buff *skb; /* formatted skb ready to send */
179 struct audit_context *ctx; /* NULL or associated context */
180 gfp_t gfp_mask;
181 };
182
183 struct audit_reply {
184 __u32 portid;
185 struct net *net;
186 struct sk_buff *skb;
187 };
188
audit_set_portid(struct audit_buffer * ab,__u32 portid)189 static void audit_set_portid(struct audit_buffer *ab, __u32 portid)
190 {
191 if (ab) {
192 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
193 nlh->nlmsg_pid = portid;
194 }
195 }
196
audit_panic(const char * message)197 void audit_panic(const char *message)
198 {
199 switch (audit_failure) {
200 case AUDIT_FAIL_SILENT:
201 break;
202 case AUDIT_FAIL_PRINTK:
203 if (printk_ratelimit())
204 pr_err("%s\n", message);
205 break;
206 case AUDIT_FAIL_PANIC:
207 /* test audit_pid since printk is always losey, why bother? */
208 if (audit_pid)
209 panic("audit: %s\n", message);
210 break;
211 }
212 }
213
audit_rate_check(void)214 static inline int audit_rate_check(void)
215 {
216 static unsigned long last_check = 0;
217 static int messages = 0;
218 static DEFINE_SPINLOCK(lock);
219 unsigned long flags;
220 unsigned long now;
221 unsigned long elapsed;
222 int retval = 0;
223
224 if (!audit_rate_limit) return 1;
225
226 spin_lock_irqsave(&lock, flags);
227 if (++messages < audit_rate_limit) {
228 retval = 1;
229 } else {
230 now = jiffies;
231 elapsed = now - last_check;
232 if (elapsed > HZ) {
233 last_check = now;
234 messages = 0;
235 retval = 1;
236 }
237 }
238 spin_unlock_irqrestore(&lock, flags);
239
240 return retval;
241 }
242
243 /**
244 * audit_log_lost - conditionally log lost audit message event
245 * @message: the message stating reason for lost audit message
246 *
247 * Emit at least 1 message per second, even if audit_rate_check is
248 * throttling.
249 * Always increment the lost messages counter.
250 */
audit_log_lost(const char * message)251 void audit_log_lost(const char *message)
252 {
253 static unsigned long last_msg = 0;
254 static DEFINE_SPINLOCK(lock);
255 unsigned long flags;
256 unsigned long now;
257 int print;
258
259 atomic_inc(&audit_lost);
260
261 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
262
263 if (!print) {
264 spin_lock_irqsave(&lock, flags);
265 now = jiffies;
266 if (now - last_msg > HZ) {
267 print = 1;
268 last_msg = now;
269 }
270 spin_unlock_irqrestore(&lock, flags);
271 }
272
273 if (print) {
274 if (printk_ratelimit())
275 pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
276 atomic_read(&audit_lost),
277 audit_rate_limit,
278 audit_backlog_limit);
279 audit_panic(message);
280 }
281 }
282
audit_log_config_change(char * function_name,u32 new,u32 old,int allow_changes)283 static int audit_log_config_change(char *function_name, u32 new, u32 old,
284 int allow_changes)
285 {
286 struct audit_buffer *ab;
287 int rc = 0;
288
289 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
290 if (unlikely(!ab))
291 return rc;
292 audit_log_format(ab, "%s=%u old=%u", function_name, new, old);
293 audit_log_session_info(ab);
294 rc = audit_log_task_context(ab);
295 if (rc)
296 allow_changes = 0; /* Something weird, deny request */
297 audit_log_format(ab, " res=%d", allow_changes);
298 audit_log_end(ab);
299 return rc;
300 }
301
audit_do_config_change(char * function_name,u32 * to_change,u32 new)302 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
303 {
304 int allow_changes, rc = 0;
305 u32 old = *to_change;
306
307 /* check if we are locked */
308 if (audit_enabled == AUDIT_LOCKED)
309 allow_changes = 0;
310 else
311 allow_changes = 1;
312
313 if (audit_enabled != AUDIT_OFF) {
314 rc = audit_log_config_change(function_name, new, old, allow_changes);
315 if (rc)
316 allow_changes = 0;
317 }
318
319 /* If we are allowed, make the change */
320 if (allow_changes == 1)
321 *to_change = new;
322 /* Not allowed, update reason */
323 else if (rc == 0)
324 rc = -EPERM;
325 return rc;
326 }
327
audit_set_rate_limit(u32 limit)328 static int audit_set_rate_limit(u32 limit)
329 {
330 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
331 }
332
audit_set_backlog_limit(u32 limit)333 static int audit_set_backlog_limit(u32 limit)
334 {
335 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
336 }
337
audit_set_backlog_wait_time(u32 timeout)338 static int audit_set_backlog_wait_time(u32 timeout)
339 {
340 return audit_do_config_change("audit_backlog_wait_time",
341 &audit_backlog_wait_time_master, timeout);
342 }
343
audit_set_enabled(u32 state)344 static int audit_set_enabled(u32 state)
345 {
346 int rc;
347 if (state > AUDIT_LOCKED)
348 return -EINVAL;
349
350 rc = audit_do_config_change("audit_enabled", &audit_enabled, state);
351 if (!rc)
352 audit_ever_enabled |= !!state;
353
354 return rc;
355 }
356
audit_set_failure(u32 state)357 static int audit_set_failure(u32 state)
358 {
359 if (state != AUDIT_FAIL_SILENT
360 && state != AUDIT_FAIL_PRINTK
361 && state != AUDIT_FAIL_PANIC)
362 return -EINVAL;
363
364 return audit_do_config_change("audit_failure", &audit_failure, state);
365 }
366
367 /*
368 * Queue skbs to be sent to auditd when/if it comes back. These skbs should
369 * already have been sent via prink/syslog and so if these messages are dropped
370 * it is not a huge concern since we already passed the audit_log_lost()
371 * notification and stuff. This is just nice to get audit messages during
372 * boot before auditd is running or messages generated while auditd is stopped.
373 * This only holds messages is audit_default is set, aka booting with audit=1
374 * or building your kernel that way.
375 */
audit_hold_skb(struct sk_buff * skb)376 static void audit_hold_skb(struct sk_buff *skb)
377 {
378 if (audit_default &&
379 (!audit_backlog_limit ||
380 skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit))
381 skb_queue_tail(&audit_skb_hold_queue, skb);
382 else
383 kfree_skb(skb);
384 }
385
386 /*
387 * For one reason or another this nlh isn't getting delivered to the userspace
388 * audit daemon, just send it to printk.
389 */
audit_printk_skb(struct sk_buff * skb)390 static void audit_printk_skb(struct sk_buff *skb)
391 {
392 struct nlmsghdr *nlh = nlmsg_hdr(skb);
393 char *data = nlmsg_data(nlh);
394
395 if (nlh->nlmsg_type != AUDIT_EOE) {
396 if (printk_ratelimit())
397 pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
398 else
399 audit_log_lost("printk limit exceeded");
400 }
401
402 audit_hold_skb(skb);
403 }
404
kauditd_send_skb(struct sk_buff * skb)405 static void kauditd_send_skb(struct sk_buff *skb)
406 {
407 int err;
408 int attempts = 0;
409 #define AUDITD_RETRIES 5
410
411 restart:
412 /* take a reference in case we can't send it and we want to hold it */
413 skb_get(skb);
414 err = netlink_unicast(audit_sock, skb, audit_nlk_portid, 0);
415 if (err < 0) {
416 pr_err("netlink_unicast sending to audit_pid=%d returned error: %d\n",
417 audit_pid, err);
418 if (audit_pid) {
419 if (err == -ECONNREFUSED || err == -EPERM
420 || ++attempts >= AUDITD_RETRIES) {
421 char s[32];
422
423 snprintf(s, sizeof(s), "audit_pid=%d reset", audit_pid);
424 audit_log_lost(s);
425 audit_pid = 0;
426 audit_sock = NULL;
427 } else {
428 pr_warn("re-scheduling(#%d) write to audit_pid=%d\n",
429 attempts, audit_pid);
430 set_current_state(TASK_INTERRUPTIBLE);
431 schedule();
432 goto restart;
433 }
434 }
435 /* we might get lucky and get this in the next auditd */
436 audit_hold_skb(skb);
437 } else
438 /* drop the extra reference if sent ok */
439 consume_skb(skb);
440 }
441
442 /*
443 * kauditd_send_multicast_skb - send the skb to multicast userspace listeners
444 *
445 * This function doesn't consume an skb as might be expected since it has to
446 * copy it anyways.
447 */
kauditd_send_multicast_skb(struct sk_buff * skb,gfp_t gfp_mask)448 static void kauditd_send_multicast_skb(struct sk_buff *skb, gfp_t gfp_mask)
449 {
450 struct sk_buff *copy;
451 struct audit_net *aunet = net_generic(&init_net, audit_net_id);
452 struct sock *sock = aunet->nlsk;
453
454 if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
455 return;
456
457 /*
458 * The seemingly wasteful skb_copy() rather than bumping the refcount
459 * using skb_get() is necessary because non-standard mods are made to
460 * the skb by the original kaudit unicast socket send routine. The
461 * existing auditd daemon assumes this breakage. Fixing this would
462 * require co-ordinating a change in the established protocol between
463 * the kaudit kernel subsystem and the auditd userspace code. There is
464 * no reason for new multicast clients to continue with this
465 * non-compliance.
466 */
467 copy = skb_copy(skb, gfp_mask);
468 if (!copy)
469 return;
470
471 nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, gfp_mask);
472 }
473
474 /*
475 * flush_hold_queue - empty the hold queue if auditd appears
476 *
477 * If auditd just started, drain the queue of messages already
478 * sent to syslog/printk. Remember loss here is ok. We already
479 * called audit_log_lost() if it didn't go out normally. so the
480 * race between the skb_dequeue and the next check for audit_pid
481 * doesn't matter.
482 *
483 * If you ever find kauditd to be too slow we can get a perf win
484 * by doing our own locking and keeping better track if there
485 * are messages in this queue. I don't see the need now, but
486 * in 5 years when I want to play with this again I'll see this
487 * note and still have no friggin idea what i'm thinking today.
488 */
flush_hold_queue(void)489 static void flush_hold_queue(void)
490 {
491 struct sk_buff *skb;
492
493 if (!audit_default || !audit_pid)
494 return;
495
496 skb = skb_dequeue(&audit_skb_hold_queue);
497 if (likely(!skb))
498 return;
499
500 while (skb && audit_pid) {
501 kauditd_send_skb(skb);
502 skb = skb_dequeue(&audit_skb_hold_queue);
503 }
504
505 /*
506 * if auditd just disappeared but we
507 * dequeued an skb we need to drop ref
508 */
509 consume_skb(skb);
510 }
511
kauditd_thread(void * dummy)512 static int kauditd_thread(void *dummy)
513 {
514 set_freezable();
515 while (!kthread_should_stop()) {
516 struct sk_buff *skb;
517
518 flush_hold_queue();
519
520 skb = skb_dequeue(&audit_skb_queue);
521
522 if (skb) {
523 if (!audit_backlog_limit ||
524 (skb_queue_len(&audit_skb_queue) <= audit_backlog_limit))
525 wake_up(&audit_backlog_wait);
526 if (audit_pid)
527 kauditd_send_skb(skb);
528 else
529 audit_printk_skb(skb);
530 continue;
531 }
532
533 wait_event_freezable(kauditd_wait, skb_queue_len(&audit_skb_queue));
534 }
535 return 0;
536 }
537
audit_send_list(void * _dest)538 int audit_send_list(void *_dest)
539 {
540 struct audit_netlink_list *dest = _dest;
541 struct sk_buff *skb;
542 struct net *net = dest->net;
543 struct audit_net *aunet = net_generic(net, audit_net_id);
544
545 /* wait for parent to finish and send an ACK */
546 mutex_lock(&audit_cmd_mutex);
547 mutex_unlock(&audit_cmd_mutex);
548
549 while ((skb = __skb_dequeue(&dest->q)) != NULL)
550 netlink_unicast(aunet->nlsk, skb, dest->portid, 0);
551
552 put_net(net);
553 kfree(dest);
554
555 return 0;
556 }
557
audit_make_reply(__u32 portid,int seq,int type,int done,int multi,const void * payload,int size)558 struct sk_buff *audit_make_reply(__u32 portid, int seq, int type, int done,
559 int multi, const void *payload, int size)
560 {
561 struct sk_buff *skb;
562 struct nlmsghdr *nlh;
563 void *data;
564 int flags = multi ? NLM_F_MULTI : 0;
565 int t = done ? NLMSG_DONE : type;
566
567 skb = nlmsg_new(size, GFP_KERNEL);
568 if (!skb)
569 return NULL;
570
571 nlh = nlmsg_put(skb, portid, seq, t, size, flags);
572 if (!nlh)
573 goto out_kfree_skb;
574 data = nlmsg_data(nlh);
575 memcpy(data, payload, size);
576 return skb;
577
578 out_kfree_skb:
579 kfree_skb(skb);
580 return NULL;
581 }
582
audit_send_reply_thread(void * arg)583 static int audit_send_reply_thread(void *arg)
584 {
585 struct audit_reply *reply = (struct audit_reply *)arg;
586 struct net *net = reply->net;
587 struct audit_net *aunet = net_generic(net, audit_net_id);
588
589 mutex_lock(&audit_cmd_mutex);
590 mutex_unlock(&audit_cmd_mutex);
591
592 /* Ignore failure. It'll only happen if the sender goes away,
593 because our timeout is set to infinite. */
594 netlink_unicast(aunet->nlsk , reply->skb, reply->portid, 0);
595 put_net(net);
596 kfree(reply);
597 return 0;
598 }
599 /**
600 * audit_send_reply - send an audit reply message via netlink
601 * @request_skb: skb of request we are replying to (used to target the reply)
602 * @seq: sequence number
603 * @type: audit message type
604 * @done: done (last) flag
605 * @multi: multi-part message flag
606 * @payload: payload data
607 * @size: payload size
608 *
609 * Allocates an skb, builds the netlink message, and sends it to the port id.
610 * No failure notifications.
611 */
audit_send_reply(struct sk_buff * request_skb,int seq,int type,int done,int multi,const void * payload,int size)612 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
613 int multi, const void *payload, int size)
614 {
615 u32 portid = NETLINK_CB(request_skb).portid;
616 struct net *net = sock_net(NETLINK_CB(request_skb).sk);
617 struct sk_buff *skb;
618 struct task_struct *tsk;
619 struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
620 GFP_KERNEL);
621
622 if (!reply)
623 return;
624
625 skb = audit_make_reply(portid, seq, type, done, multi, payload, size);
626 if (!skb)
627 goto out;
628
629 reply->net = get_net(net);
630 reply->portid = portid;
631 reply->skb = skb;
632
633 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
634 if (!IS_ERR(tsk))
635 return;
636 kfree_skb(skb);
637 out:
638 kfree(reply);
639 }
640
641 /*
642 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
643 * control messages.
644 */
audit_netlink_ok(struct sk_buff * skb,u16 msg_type)645 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
646 {
647 int err = 0;
648
649 /* Only support initial user namespace for now. */
650 /*
651 * We return ECONNREFUSED because it tricks userspace into thinking
652 * that audit was not configured into the kernel. Lots of users
653 * configure their PAM stack (because that's what the distro does)
654 * to reject login if unable to send messages to audit. If we return
655 * ECONNREFUSED the PAM stack thinks the kernel does not have audit
656 * configured in and will let login proceed. If we return EPERM
657 * userspace will reject all logins. This should be removed when we
658 * support non init namespaces!!
659 */
660 if (current_user_ns() != &init_user_ns)
661 return -ECONNREFUSED;
662
663 switch (msg_type) {
664 case AUDIT_LIST:
665 case AUDIT_ADD:
666 case AUDIT_DEL:
667 return -EOPNOTSUPP;
668 case AUDIT_GET:
669 case AUDIT_SET:
670 case AUDIT_GET_FEATURE:
671 case AUDIT_SET_FEATURE:
672 case AUDIT_LIST_RULES:
673 case AUDIT_ADD_RULE:
674 case AUDIT_DEL_RULE:
675 case AUDIT_SIGNAL_INFO:
676 case AUDIT_TTY_GET:
677 case AUDIT_TTY_SET:
678 case AUDIT_TRIM:
679 case AUDIT_MAKE_EQUIV:
680 /* Only support auditd and auditctl in initial pid namespace
681 * for now. */
682 if (task_active_pid_ns(current) != &init_pid_ns)
683 return -EPERM;
684
685 if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
686 err = -EPERM;
687 break;
688 case AUDIT_USER:
689 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
690 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
691 if (!netlink_capable(skb, CAP_AUDIT_WRITE))
692 err = -EPERM;
693 break;
694 default: /* bad msg */
695 err = -EINVAL;
696 }
697
698 return err;
699 }
700
audit_log_common_recv_msg(struct audit_buffer ** ab,u16 msg_type)701 static void audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type)
702 {
703 uid_t uid = from_kuid(&init_user_ns, current_uid());
704 pid_t pid = task_tgid_nr(current);
705
706 if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
707 *ab = NULL;
708 return;
709 }
710
711 *ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
712 if (unlikely(!*ab))
713 return;
714 audit_log_format(*ab, "pid=%d uid=%u", pid, uid);
715 audit_log_session_info(*ab);
716 audit_log_task_context(*ab);
717 }
718
is_audit_feature_set(int i)719 int is_audit_feature_set(int i)
720 {
721 return af.features & AUDIT_FEATURE_TO_MASK(i);
722 }
723
724
audit_get_feature(struct sk_buff * skb)725 static int audit_get_feature(struct sk_buff *skb)
726 {
727 u32 seq;
728
729 seq = nlmsg_hdr(skb)->nlmsg_seq;
730
731 audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
732
733 return 0;
734 }
735
audit_log_feature_change(int which,u32 old_feature,u32 new_feature,u32 old_lock,u32 new_lock,int res)736 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
737 u32 old_lock, u32 new_lock, int res)
738 {
739 struct audit_buffer *ab;
740
741 if (audit_enabled == AUDIT_OFF)
742 return;
743
744 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_FEATURE_CHANGE);
745 audit_log_task_info(ab, current);
746 audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
747 audit_feature_names[which], !!old_feature, !!new_feature,
748 !!old_lock, !!new_lock, res);
749 audit_log_end(ab);
750 }
751
audit_set_feature(struct sk_buff * skb)752 static int audit_set_feature(struct sk_buff *skb)
753 {
754 struct audit_features *uaf;
755 int i;
756
757 BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
758 uaf = nlmsg_data(nlmsg_hdr(skb));
759
760 /* if there is ever a version 2 we should handle that here */
761
762 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
763 u32 feature = AUDIT_FEATURE_TO_MASK(i);
764 u32 old_feature, new_feature, old_lock, new_lock;
765
766 /* if we are not changing this feature, move along */
767 if (!(feature & uaf->mask))
768 continue;
769
770 old_feature = af.features & feature;
771 new_feature = uaf->features & feature;
772 new_lock = (uaf->lock | af.lock) & feature;
773 old_lock = af.lock & feature;
774
775 /* are we changing a locked feature? */
776 if (old_lock && (new_feature != old_feature)) {
777 audit_log_feature_change(i, old_feature, new_feature,
778 old_lock, new_lock, 0);
779 return -EPERM;
780 }
781 }
782 /* nothing invalid, do the changes */
783 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
784 u32 feature = AUDIT_FEATURE_TO_MASK(i);
785 u32 old_feature, new_feature, old_lock, new_lock;
786
787 /* if we are not changing this feature, move along */
788 if (!(feature & uaf->mask))
789 continue;
790
791 old_feature = af.features & feature;
792 new_feature = uaf->features & feature;
793 old_lock = af.lock & feature;
794 new_lock = (uaf->lock | af.lock) & feature;
795
796 if (new_feature != old_feature)
797 audit_log_feature_change(i, old_feature, new_feature,
798 old_lock, new_lock, 1);
799
800 if (new_feature)
801 af.features |= feature;
802 else
803 af.features &= ~feature;
804 af.lock |= new_lock;
805 }
806
807 return 0;
808 }
809
audit_replace(pid_t pid)810 static int audit_replace(pid_t pid)
811 {
812 struct sk_buff *skb = audit_make_reply(0, 0, AUDIT_REPLACE, 0, 0,
813 &pid, sizeof(pid));
814
815 if (!skb)
816 return -ENOMEM;
817 return netlink_unicast(audit_sock, skb, audit_nlk_portid, 0);
818 }
819
audit_receive_msg(struct sk_buff * skb,struct nlmsghdr * nlh)820 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
821 {
822 u32 seq;
823 void *data;
824 int err;
825 struct audit_buffer *ab;
826 u16 msg_type = nlh->nlmsg_type;
827 struct audit_sig_info *sig_data;
828 char *ctx = NULL;
829 u32 len;
830
831 err = audit_netlink_ok(skb, msg_type);
832 if (err)
833 return err;
834
835 /* As soon as there's any sign of userspace auditd,
836 * start kauditd to talk to it */
837 if (!kauditd_task) {
838 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
839 if (IS_ERR(kauditd_task)) {
840 err = PTR_ERR(kauditd_task);
841 kauditd_task = NULL;
842 return err;
843 }
844 }
845 seq = nlh->nlmsg_seq;
846 data = nlmsg_data(nlh);
847
848 switch (msg_type) {
849 case AUDIT_GET: {
850 struct audit_status s;
851 memset(&s, 0, sizeof(s));
852 s.enabled = audit_enabled;
853 s.failure = audit_failure;
854 s.pid = audit_pid;
855 s.rate_limit = audit_rate_limit;
856 s.backlog_limit = audit_backlog_limit;
857 s.lost = atomic_read(&audit_lost);
858 s.backlog = skb_queue_len(&audit_skb_queue);
859 s.feature_bitmap = AUDIT_FEATURE_BITMAP_ALL;
860 s.backlog_wait_time = audit_backlog_wait_time_master;
861 audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
862 break;
863 }
864 case AUDIT_SET: {
865 struct audit_status s;
866 memset(&s, 0, sizeof(s));
867 /* guard against past and future API changes */
868 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
869 if (s.mask & AUDIT_STATUS_ENABLED) {
870 err = audit_set_enabled(s.enabled);
871 if (err < 0)
872 return err;
873 }
874 if (s.mask & AUDIT_STATUS_FAILURE) {
875 err = audit_set_failure(s.failure);
876 if (err < 0)
877 return err;
878 }
879 if (s.mask & AUDIT_STATUS_PID) {
880 /* NOTE: we are using task_tgid_vnr() below because
881 * the s.pid value is relative to the namespace
882 * of the caller; at present this doesn't matter
883 * much since you can really only run auditd
884 * from the initial pid namespace, but something
885 * to keep in mind if this changes */
886 int new_pid = s.pid;
887 pid_t requesting_pid = task_tgid_vnr(current);
888
889 if ((!new_pid) && (requesting_pid != audit_pid)) {
890 audit_log_config_change("audit_pid", new_pid, audit_pid, 0);
891 return -EACCES;
892 }
893 if (audit_pid && new_pid &&
894 audit_replace(requesting_pid) != -ECONNREFUSED) {
895 audit_log_config_change("audit_pid", new_pid, audit_pid, 0);
896 return -EEXIST;
897 }
898 if (audit_enabled != AUDIT_OFF)
899 audit_log_config_change("audit_pid", new_pid, audit_pid, 1);
900 audit_pid = new_pid;
901 audit_nlk_portid = NETLINK_CB(skb).portid;
902 audit_sock = skb->sk;
903 }
904 if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
905 err = audit_set_rate_limit(s.rate_limit);
906 if (err < 0)
907 return err;
908 }
909 if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
910 err = audit_set_backlog_limit(s.backlog_limit);
911 if (err < 0)
912 return err;
913 }
914 if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
915 if (sizeof(s) > (size_t)nlh->nlmsg_len)
916 return -EINVAL;
917 if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
918 return -EINVAL;
919 err = audit_set_backlog_wait_time(s.backlog_wait_time);
920 if (err < 0)
921 return err;
922 }
923 break;
924 }
925 case AUDIT_GET_FEATURE:
926 err = audit_get_feature(skb);
927 if (err)
928 return err;
929 break;
930 case AUDIT_SET_FEATURE:
931 err = audit_set_feature(skb);
932 if (err)
933 return err;
934 break;
935 case AUDIT_USER:
936 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
937 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
938 if (!audit_enabled && msg_type != AUDIT_USER_AVC)
939 return 0;
940
941 err = audit_filter(msg_type, AUDIT_FILTER_USER);
942 if (err == 1) { /* match or error */
943 err = 0;
944 if (msg_type == AUDIT_USER_TTY) {
945 err = tty_audit_push();
946 if (err)
947 break;
948 }
949 mutex_unlock(&audit_cmd_mutex);
950 audit_log_common_recv_msg(&ab, msg_type);
951 if (msg_type != AUDIT_USER_TTY)
952 audit_log_format(ab, " msg='%.*s'",
953 AUDIT_MESSAGE_TEXT_MAX,
954 (char *)data);
955 else {
956 int size;
957
958 audit_log_format(ab, " data=");
959 size = nlmsg_len(nlh);
960 if (size > 0 &&
961 ((unsigned char *)data)[size - 1] == '\0')
962 size--;
963 audit_log_n_untrustedstring(ab, data, size);
964 }
965 audit_set_portid(ab, NETLINK_CB(skb).portid);
966 audit_log_end(ab);
967 mutex_lock(&audit_cmd_mutex);
968 }
969 break;
970 case AUDIT_ADD_RULE:
971 case AUDIT_DEL_RULE:
972 if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
973 return -EINVAL;
974 if (audit_enabled == AUDIT_LOCKED) {
975 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
976 audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled);
977 audit_log_end(ab);
978 return -EPERM;
979 }
980 err = audit_rule_change(msg_type, NETLINK_CB(skb).portid,
981 seq, data, nlmsg_len(nlh));
982 break;
983 case AUDIT_LIST_RULES:
984 err = audit_list_rules_send(skb, seq);
985 break;
986 case AUDIT_TRIM:
987 audit_trim_trees();
988 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
989 audit_log_format(ab, " op=trim res=1");
990 audit_log_end(ab);
991 break;
992 case AUDIT_MAKE_EQUIV: {
993 void *bufp = data;
994 u32 sizes[2];
995 size_t msglen = nlmsg_len(nlh);
996 char *old, *new;
997
998 err = -EINVAL;
999 if (msglen < 2 * sizeof(u32))
1000 break;
1001 memcpy(sizes, bufp, 2 * sizeof(u32));
1002 bufp += 2 * sizeof(u32);
1003 msglen -= 2 * sizeof(u32);
1004 old = audit_unpack_string(&bufp, &msglen, sizes[0]);
1005 if (IS_ERR(old)) {
1006 err = PTR_ERR(old);
1007 break;
1008 }
1009 new = audit_unpack_string(&bufp, &msglen, sizes[1]);
1010 if (IS_ERR(new)) {
1011 err = PTR_ERR(new);
1012 kfree(old);
1013 break;
1014 }
1015 /* OK, here comes... */
1016 err = audit_tag_tree(old, new);
1017
1018 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1019
1020 audit_log_format(ab, " op=make_equiv old=");
1021 audit_log_untrustedstring(ab, old);
1022 audit_log_format(ab, " new=");
1023 audit_log_untrustedstring(ab, new);
1024 audit_log_format(ab, " res=%d", !err);
1025 audit_log_end(ab);
1026 kfree(old);
1027 kfree(new);
1028 break;
1029 }
1030 case AUDIT_SIGNAL_INFO:
1031 len = 0;
1032 if (audit_sig_sid) {
1033 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
1034 if (err)
1035 return err;
1036 }
1037 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
1038 if (!sig_data) {
1039 if (audit_sig_sid)
1040 security_release_secctx(ctx, len);
1041 return -ENOMEM;
1042 }
1043 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
1044 sig_data->pid = audit_sig_pid;
1045 if (audit_sig_sid) {
1046 memcpy(sig_data->ctx, ctx, len);
1047 security_release_secctx(ctx, len);
1048 }
1049 audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1050 sig_data, sizeof(*sig_data) + len);
1051 kfree(sig_data);
1052 break;
1053 case AUDIT_TTY_GET: {
1054 struct audit_tty_status s;
1055 unsigned int t;
1056
1057 t = READ_ONCE(current->signal->audit_tty);
1058 s.enabled = t & AUDIT_TTY_ENABLE;
1059 s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1060
1061 audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1062 break;
1063 }
1064 case AUDIT_TTY_SET: {
1065 struct audit_tty_status s, old;
1066 struct audit_buffer *ab;
1067 unsigned int t;
1068
1069 memset(&s, 0, sizeof(s));
1070 /* guard against past and future API changes */
1071 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
1072 /* check if new data is valid */
1073 if ((s.enabled != 0 && s.enabled != 1) ||
1074 (s.log_passwd != 0 && s.log_passwd != 1))
1075 err = -EINVAL;
1076
1077 if (err)
1078 t = READ_ONCE(current->signal->audit_tty);
1079 else {
1080 t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD);
1081 t = xchg(¤t->signal->audit_tty, t);
1082 }
1083 old.enabled = t & AUDIT_TTY_ENABLE;
1084 old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1085
1086 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1087 audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1088 " old-log_passwd=%d new-log_passwd=%d res=%d",
1089 old.enabled, s.enabled, old.log_passwd,
1090 s.log_passwd, !err);
1091 audit_log_end(ab);
1092 break;
1093 }
1094 default:
1095 err = -EINVAL;
1096 break;
1097 }
1098
1099 return err < 0 ? err : 0;
1100 }
1101
1102 /*
1103 * Get message from skb. Each message is processed by audit_receive_msg.
1104 * Malformed skbs with wrong length are discarded silently.
1105 */
audit_receive_skb(struct sk_buff * skb)1106 static void audit_receive_skb(struct sk_buff *skb)
1107 {
1108 struct nlmsghdr *nlh;
1109 /*
1110 * len MUST be signed for nlmsg_next to be able to dec it below 0
1111 * if the nlmsg_len was not aligned
1112 */
1113 int len;
1114 int err;
1115
1116 nlh = nlmsg_hdr(skb);
1117 len = skb->len;
1118
1119 while (nlmsg_ok(nlh, len)) {
1120 err = audit_receive_msg(skb, nlh);
1121 /* if err or if this message says it wants a response */
1122 if (err || (nlh->nlmsg_flags & NLM_F_ACK))
1123 netlink_ack(skb, nlh, err);
1124
1125 nlh = nlmsg_next(nlh, &len);
1126 }
1127 }
1128
1129 /* Receive messages from netlink socket. */
audit_receive(struct sk_buff * skb)1130 static void audit_receive(struct sk_buff *skb)
1131 {
1132 mutex_lock(&audit_cmd_mutex);
1133 audit_receive_skb(skb);
1134 mutex_unlock(&audit_cmd_mutex);
1135 }
1136
1137 /* Run custom bind function on netlink socket group connect or bind requests. */
audit_bind(struct net * net,int group)1138 static int audit_bind(struct net *net, int group)
1139 {
1140 if (!capable(CAP_AUDIT_READ))
1141 return -EPERM;
1142
1143 return 0;
1144 }
1145
audit_net_init(struct net * net)1146 static int __net_init audit_net_init(struct net *net)
1147 {
1148 struct netlink_kernel_cfg cfg = {
1149 .input = audit_receive,
1150 .bind = audit_bind,
1151 .flags = NL_CFG_F_NONROOT_RECV,
1152 .groups = AUDIT_NLGRP_MAX,
1153 };
1154
1155 struct audit_net *aunet = net_generic(net, audit_net_id);
1156
1157 aunet->nlsk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1158 if (aunet->nlsk == NULL) {
1159 audit_panic("cannot initialize netlink socket in namespace");
1160 return -ENOMEM;
1161 }
1162 aunet->nlsk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1163 return 0;
1164 }
1165
audit_net_exit(struct net * net)1166 static void __net_exit audit_net_exit(struct net *net)
1167 {
1168 struct audit_net *aunet = net_generic(net, audit_net_id);
1169 struct sock *sock = aunet->nlsk;
1170 if (sock == audit_sock) {
1171 audit_pid = 0;
1172 audit_sock = NULL;
1173 }
1174
1175 RCU_INIT_POINTER(aunet->nlsk, NULL);
1176 synchronize_net();
1177 netlink_kernel_release(sock);
1178 }
1179
1180 static struct pernet_operations audit_net_ops __net_initdata = {
1181 .init = audit_net_init,
1182 .exit = audit_net_exit,
1183 .id = &audit_net_id,
1184 .size = sizeof(struct audit_net),
1185 };
1186
1187 /* Initialize audit support at boot time. */
audit_init(void)1188 static int __init audit_init(void)
1189 {
1190 int i;
1191
1192 if (audit_initialized == AUDIT_DISABLED)
1193 return 0;
1194
1195 pr_info("initializing netlink subsys (%s)\n",
1196 audit_default ? "enabled" : "disabled");
1197 register_pernet_subsys(&audit_net_ops);
1198
1199 skb_queue_head_init(&audit_skb_queue);
1200 skb_queue_head_init(&audit_skb_hold_queue);
1201 audit_initialized = AUDIT_INITIALIZED;
1202
1203 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized");
1204
1205 for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1206 INIT_LIST_HEAD(&audit_inode_hash[i]);
1207
1208 return 0;
1209 }
1210 __initcall(audit_init);
1211
1212 /* Process kernel command-line parameter at boot time. audit=0 or audit=1. */
audit_enable(char * str)1213 static int __init audit_enable(char *str)
1214 {
1215 audit_default = !!simple_strtol(str, NULL, 0);
1216 if (!audit_default)
1217 audit_initialized = AUDIT_DISABLED;
1218 audit_enabled = audit_default;
1219 audit_ever_enabled = !!audit_enabled;
1220
1221 pr_info("%s\n", audit_default ?
1222 "enabled (after initialization)" : "disabled (until reboot)");
1223
1224 return 1;
1225 }
1226 __setup("audit=", audit_enable);
1227
1228 /* Process kernel command-line parameter at boot time.
1229 * audit_backlog_limit=<n> */
audit_backlog_limit_set(char * str)1230 static int __init audit_backlog_limit_set(char *str)
1231 {
1232 u32 audit_backlog_limit_arg;
1233
1234 pr_info("audit_backlog_limit: ");
1235 if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1236 pr_cont("using default of %u, unable to parse %s\n",
1237 audit_backlog_limit, str);
1238 return 1;
1239 }
1240
1241 audit_backlog_limit = audit_backlog_limit_arg;
1242 pr_cont("%d\n", audit_backlog_limit);
1243
1244 return 1;
1245 }
1246 __setup("audit_backlog_limit=", audit_backlog_limit_set);
1247
audit_buffer_free(struct audit_buffer * ab)1248 static void audit_buffer_free(struct audit_buffer *ab)
1249 {
1250 unsigned long flags;
1251
1252 if (!ab)
1253 return;
1254
1255 kfree_skb(ab->skb);
1256 spin_lock_irqsave(&audit_freelist_lock, flags);
1257 if (audit_freelist_count > AUDIT_MAXFREE)
1258 kfree(ab);
1259 else {
1260 audit_freelist_count++;
1261 list_add(&ab->list, &audit_freelist);
1262 }
1263 spin_unlock_irqrestore(&audit_freelist_lock, flags);
1264 }
1265
audit_buffer_alloc(struct audit_context * ctx,gfp_t gfp_mask,int type)1266 static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx,
1267 gfp_t gfp_mask, int type)
1268 {
1269 unsigned long flags;
1270 struct audit_buffer *ab = NULL;
1271 struct nlmsghdr *nlh;
1272
1273 spin_lock_irqsave(&audit_freelist_lock, flags);
1274 if (!list_empty(&audit_freelist)) {
1275 ab = list_entry(audit_freelist.next,
1276 struct audit_buffer, list);
1277 list_del(&ab->list);
1278 --audit_freelist_count;
1279 }
1280 spin_unlock_irqrestore(&audit_freelist_lock, flags);
1281
1282 if (!ab) {
1283 ab = kmalloc(sizeof(*ab), gfp_mask);
1284 if (!ab)
1285 goto err;
1286 }
1287
1288 ab->ctx = ctx;
1289 ab->gfp_mask = gfp_mask;
1290
1291 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1292 if (!ab->skb)
1293 goto err;
1294
1295 nlh = nlmsg_put(ab->skb, 0, 0, type, 0, 0);
1296 if (!nlh)
1297 goto out_kfree_skb;
1298
1299 return ab;
1300
1301 out_kfree_skb:
1302 kfree_skb(ab->skb);
1303 ab->skb = NULL;
1304 err:
1305 audit_buffer_free(ab);
1306 return NULL;
1307 }
1308
1309 /**
1310 * audit_serial - compute a serial number for the audit record
1311 *
1312 * Compute a serial number for the audit record. Audit records are
1313 * written to user-space as soon as they are generated, so a complete
1314 * audit record may be written in several pieces. The timestamp of the
1315 * record and this serial number are used by the user-space tools to
1316 * determine which pieces belong to the same audit record. The
1317 * (timestamp,serial) tuple is unique for each syscall and is live from
1318 * syscall entry to syscall exit.
1319 *
1320 * NOTE: Another possibility is to store the formatted records off the
1321 * audit context (for those records that have a context), and emit them
1322 * all at syscall exit. However, this could delay the reporting of
1323 * significant errors until syscall exit (or never, if the system
1324 * halts).
1325 */
audit_serial(void)1326 unsigned int audit_serial(void)
1327 {
1328 static atomic_t serial = ATOMIC_INIT(0);
1329
1330 return atomic_add_return(1, &serial);
1331 }
1332
audit_get_stamp(struct audit_context * ctx,struct timespec * t,unsigned int * serial)1333 static inline void audit_get_stamp(struct audit_context *ctx,
1334 struct timespec *t, unsigned int *serial)
1335 {
1336 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1337 *t = CURRENT_TIME;
1338 *serial = audit_serial();
1339 }
1340 }
1341
1342 /*
1343 * Wait for auditd to drain the queue a little
1344 */
wait_for_auditd(long sleep_time)1345 static long wait_for_auditd(long sleep_time)
1346 {
1347 DECLARE_WAITQUEUE(wait, current);
1348
1349 if (audit_backlog_limit &&
1350 skb_queue_len(&audit_skb_queue) > audit_backlog_limit) {
1351 add_wait_queue_exclusive(&audit_backlog_wait, &wait);
1352 set_current_state(TASK_UNINTERRUPTIBLE);
1353 sleep_time = schedule_timeout(sleep_time);
1354 remove_wait_queue(&audit_backlog_wait, &wait);
1355 }
1356
1357 return sleep_time;
1358 }
1359
1360 /**
1361 * audit_log_start - obtain an audit buffer
1362 * @ctx: audit_context (may be NULL)
1363 * @gfp_mask: type of allocation
1364 * @type: audit message type
1365 *
1366 * Returns audit_buffer pointer on success or NULL on error.
1367 *
1368 * Obtain an audit buffer. This routine does locking to obtain the
1369 * audit buffer, but then no locking is required for calls to
1370 * audit_log_*format. If the task (ctx) is a task that is currently in a
1371 * syscall, then the syscall is marked as auditable and an audit record
1372 * will be written at syscall exit. If there is no associated task, then
1373 * task context (ctx) should be NULL.
1374 */
audit_log_start(struct audit_context * ctx,gfp_t gfp_mask,int type)1375 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1376 int type)
1377 {
1378 struct audit_buffer *ab = NULL;
1379 struct timespec t;
1380 unsigned int uninitialized_var(serial);
1381 int reserve = 5; /* Allow atomic callers to go up to five
1382 entries over the normal backlog limit */
1383 unsigned long timeout_start = jiffies;
1384
1385 if (audit_initialized != AUDIT_INITIALIZED)
1386 return NULL;
1387
1388 if (unlikely(!audit_filter(type, AUDIT_FILTER_TYPE)))
1389 return NULL;
1390
1391 if (gfp_mask & __GFP_DIRECT_RECLAIM) {
1392 if (audit_pid && audit_pid == current->tgid)
1393 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
1394 else
1395 reserve = 0;
1396 }
1397
1398 while (audit_backlog_limit
1399 && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) {
1400 if (gfp_mask & __GFP_DIRECT_RECLAIM && audit_backlog_wait_time) {
1401 long sleep_time;
1402
1403 sleep_time = timeout_start + audit_backlog_wait_time - jiffies;
1404 if (sleep_time > 0) {
1405 sleep_time = wait_for_auditd(sleep_time);
1406 if (sleep_time > 0)
1407 continue;
1408 }
1409 }
1410 if (audit_rate_check() && printk_ratelimit())
1411 pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1412 skb_queue_len(&audit_skb_queue),
1413 audit_backlog_limit);
1414 audit_log_lost("backlog limit exceeded");
1415 audit_backlog_wait_time = 0;
1416 wake_up(&audit_backlog_wait);
1417 return NULL;
1418 }
1419
1420 if (!reserve && !audit_backlog_wait_time)
1421 audit_backlog_wait_time = audit_backlog_wait_time_master;
1422
1423 ab = audit_buffer_alloc(ctx, gfp_mask, type);
1424 if (!ab) {
1425 audit_log_lost("out of memory in audit_log_start");
1426 return NULL;
1427 }
1428
1429 audit_get_stamp(ab->ctx, &t, &serial);
1430
1431 audit_log_format(ab, "audit(%lu.%03lu:%u): ",
1432 t.tv_sec, t.tv_nsec/1000000, serial);
1433 return ab;
1434 }
1435
1436 /**
1437 * audit_expand - expand skb in the audit buffer
1438 * @ab: audit_buffer
1439 * @extra: space to add at tail of the skb
1440 *
1441 * Returns 0 (no space) on failed expansion, or available space if
1442 * successful.
1443 */
audit_expand(struct audit_buffer * ab,int extra)1444 static inline int audit_expand(struct audit_buffer *ab, int extra)
1445 {
1446 struct sk_buff *skb = ab->skb;
1447 int oldtail = skb_tailroom(skb);
1448 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1449 int newtail = skb_tailroom(skb);
1450
1451 if (ret < 0) {
1452 audit_log_lost("out of memory in audit_expand");
1453 return 0;
1454 }
1455
1456 skb->truesize += newtail - oldtail;
1457 return newtail;
1458 }
1459
1460 /*
1461 * Format an audit message into the audit buffer. If there isn't enough
1462 * room in the audit buffer, more room will be allocated and vsnprint
1463 * will be called a second time. Currently, we assume that a printk
1464 * can't format message larger than 1024 bytes, so we don't either.
1465 */
audit_log_vformat(struct audit_buffer * ab,const char * fmt,va_list args)1466 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1467 va_list args)
1468 {
1469 int len, avail;
1470 struct sk_buff *skb;
1471 va_list args2;
1472
1473 if (!ab)
1474 return;
1475
1476 BUG_ON(!ab->skb);
1477 skb = ab->skb;
1478 avail = skb_tailroom(skb);
1479 if (avail == 0) {
1480 avail = audit_expand(ab, AUDIT_BUFSIZ);
1481 if (!avail)
1482 goto out;
1483 }
1484 va_copy(args2, args);
1485 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1486 if (len >= avail) {
1487 /* The printk buffer is 1024 bytes long, so if we get
1488 * here and AUDIT_BUFSIZ is at least 1024, then we can
1489 * log everything that printk could have logged. */
1490 avail = audit_expand(ab,
1491 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1492 if (!avail)
1493 goto out_va_end;
1494 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1495 }
1496 if (len > 0)
1497 skb_put(skb, len);
1498 out_va_end:
1499 va_end(args2);
1500 out:
1501 return;
1502 }
1503
1504 /**
1505 * audit_log_format - format a message into the audit buffer.
1506 * @ab: audit_buffer
1507 * @fmt: format string
1508 * @...: optional parameters matching @fmt string
1509 *
1510 * All the work is done in audit_log_vformat.
1511 */
audit_log_format(struct audit_buffer * ab,const char * fmt,...)1512 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1513 {
1514 va_list args;
1515
1516 if (!ab)
1517 return;
1518 va_start(args, fmt);
1519 audit_log_vformat(ab, fmt, args);
1520 va_end(args);
1521 }
1522
1523 /**
1524 * audit_log_hex - convert a buffer to hex and append it to the audit skb
1525 * @ab: the audit_buffer
1526 * @buf: buffer to convert to hex
1527 * @len: length of @buf to be converted
1528 *
1529 * No return value; failure to expand is silently ignored.
1530 *
1531 * This function will take the passed buf and convert it into a string of
1532 * ascii hex digits. The new string is placed onto the skb.
1533 */
audit_log_n_hex(struct audit_buffer * ab,const unsigned char * buf,size_t len)1534 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1535 size_t len)
1536 {
1537 int i, avail, new_len;
1538 unsigned char *ptr;
1539 struct sk_buff *skb;
1540
1541 if (!ab)
1542 return;
1543
1544 BUG_ON(!ab->skb);
1545 skb = ab->skb;
1546 avail = skb_tailroom(skb);
1547 new_len = len<<1;
1548 if (new_len >= avail) {
1549 /* Round the buffer request up to the next multiple */
1550 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1551 avail = audit_expand(ab, new_len);
1552 if (!avail)
1553 return;
1554 }
1555
1556 ptr = skb_tail_pointer(skb);
1557 for (i = 0; i < len; i++)
1558 ptr = hex_byte_pack_upper(ptr, buf[i]);
1559 *ptr = 0;
1560 skb_put(skb, len << 1); /* new string is twice the old string */
1561 }
1562
1563 /*
1564 * Format a string of no more than slen characters into the audit buffer,
1565 * enclosed in quote marks.
1566 */
audit_log_n_string(struct audit_buffer * ab,const char * string,size_t slen)1567 void audit_log_n_string(struct audit_buffer *ab, const char *string,
1568 size_t slen)
1569 {
1570 int avail, new_len;
1571 unsigned char *ptr;
1572 struct sk_buff *skb;
1573
1574 if (!ab)
1575 return;
1576
1577 BUG_ON(!ab->skb);
1578 skb = ab->skb;
1579 avail = skb_tailroom(skb);
1580 new_len = slen + 3; /* enclosing quotes + null terminator */
1581 if (new_len > avail) {
1582 avail = audit_expand(ab, new_len);
1583 if (!avail)
1584 return;
1585 }
1586 ptr = skb_tail_pointer(skb);
1587 *ptr++ = '"';
1588 memcpy(ptr, string, slen);
1589 ptr += slen;
1590 *ptr++ = '"';
1591 *ptr = 0;
1592 skb_put(skb, slen + 2); /* don't include null terminator */
1593 }
1594
1595 /**
1596 * audit_string_contains_control - does a string need to be logged in hex
1597 * @string: string to be checked
1598 * @len: max length of the string to check
1599 */
audit_string_contains_control(const char * string,size_t len)1600 bool audit_string_contains_control(const char *string, size_t len)
1601 {
1602 const unsigned char *p;
1603 for (p = string; p < (const unsigned char *)string + len; p++) {
1604 if (*p == '"' || *p < 0x21 || *p > 0x7e)
1605 return true;
1606 }
1607 return false;
1608 }
1609
1610 /**
1611 * audit_log_n_untrustedstring - log a string that may contain random characters
1612 * @ab: audit_buffer
1613 * @len: length of string (not including trailing null)
1614 * @string: string to be logged
1615 *
1616 * This code will escape a string that is passed to it if the string
1617 * contains a control character, unprintable character, double quote mark,
1618 * or a space. Unescaped strings will start and end with a double quote mark.
1619 * Strings that are escaped are printed in hex (2 digits per char).
1620 *
1621 * The caller specifies the number of characters in the string to log, which may
1622 * or may not be the entire string.
1623 */
audit_log_n_untrustedstring(struct audit_buffer * ab,const char * string,size_t len)1624 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
1625 size_t len)
1626 {
1627 if (audit_string_contains_control(string, len))
1628 audit_log_n_hex(ab, string, len);
1629 else
1630 audit_log_n_string(ab, string, len);
1631 }
1632
1633 /**
1634 * audit_log_untrustedstring - log a string that may contain random characters
1635 * @ab: audit_buffer
1636 * @string: string to be logged
1637 *
1638 * Same as audit_log_n_untrustedstring(), except that strlen is used to
1639 * determine string length.
1640 */
audit_log_untrustedstring(struct audit_buffer * ab,const char * string)1641 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
1642 {
1643 audit_log_n_untrustedstring(ab, string, strlen(string));
1644 }
1645
1646 /* This is a helper-function to print the escaped d_path */
audit_log_d_path(struct audit_buffer * ab,const char * prefix,const struct path * path)1647 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
1648 const struct path *path)
1649 {
1650 char *p, *pathname;
1651
1652 if (prefix)
1653 audit_log_format(ab, "%s", prefix);
1654
1655 /* We will allow 11 spaces for ' (deleted)' to be appended */
1656 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
1657 if (!pathname) {
1658 audit_log_string(ab, "<no_memory>");
1659 return;
1660 }
1661 p = d_path(path, pathname, PATH_MAX+11);
1662 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
1663 /* FIXME: can we save some information here? */
1664 audit_log_string(ab, "<too_long>");
1665 } else
1666 audit_log_untrustedstring(ab, p);
1667 kfree(pathname);
1668 }
1669
audit_log_session_info(struct audit_buffer * ab)1670 void audit_log_session_info(struct audit_buffer *ab)
1671 {
1672 unsigned int sessionid = audit_get_sessionid(current);
1673 uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
1674
1675 audit_log_format(ab, " auid=%u ses=%u", auid, sessionid);
1676 }
1677
audit_log_key(struct audit_buffer * ab,char * key)1678 void audit_log_key(struct audit_buffer *ab, char *key)
1679 {
1680 audit_log_format(ab, " key=");
1681 if (key)
1682 audit_log_untrustedstring(ab, key);
1683 else
1684 audit_log_format(ab, "(null)");
1685 }
1686
audit_log_cap(struct audit_buffer * ab,char * prefix,kernel_cap_t * cap)1687 void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1688 {
1689 int i;
1690
1691 audit_log_format(ab, " %s=", prefix);
1692 CAP_FOR_EACH_U32(i) {
1693 audit_log_format(ab, "%08x",
1694 cap->cap[CAP_LAST_U32 - i]);
1695 }
1696 }
1697
audit_log_fcaps(struct audit_buffer * ab,struct audit_names * name)1698 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1699 {
1700 kernel_cap_t *perm = &name->fcap.permitted;
1701 kernel_cap_t *inh = &name->fcap.inheritable;
1702 int log = 0;
1703
1704 if (!cap_isclear(*perm)) {
1705 audit_log_cap(ab, "cap_fp", perm);
1706 log = 1;
1707 }
1708 if (!cap_isclear(*inh)) {
1709 audit_log_cap(ab, "cap_fi", inh);
1710 log = 1;
1711 }
1712
1713 if (log)
1714 audit_log_format(ab, " cap_fe=%d cap_fver=%x",
1715 name->fcap.fE, name->fcap_ver);
1716 }
1717
audit_copy_fcaps(struct audit_names * name,const struct dentry * dentry)1718 static inline int audit_copy_fcaps(struct audit_names *name,
1719 const struct dentry *dentry)
1720 {
1721 struct cpu_vfs_cap_data caps;
1722 int rc;
1723
1724 if (!dentry)
1725 return 0;
1726
1727 rc = get_vfs_caps_from_disk(dentry, &caps);
1728 if (rc)
1729 return rc;
1730
1731 name->fcap.permitted = caps.permitted;
1732 name->fcap.inheritable = caps.inheritable;
1733 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1734 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
1735 VFS_CAP_REVISION_SHIFT;
1736
1737 return 0;
1738 }
1739
1740 /* Copy inode data into an audit_names. */
audit_copy_inode(struct audit_names * name,const struct dentry * dentry,struct inode * inode)1741 void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1742 struct inode *inode)
1743 {
1744 name->ino = inode->i_ino;
1745 name->dev = inode->i_sb->s_dev;
1746 name->mode = inode->i_mode;
1747 name->uid = inode->i_uid;
1748 name->gid = inode->i_gid;
1749 name->rdev = inode->i_rdev;
1750 security_inode_getsecid(inode, &name->osid);
1751 audit_copy_fcaps(name, dentry);
1752 }
1753
1754 /**
1755 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1756 * @context: audit_context for the task
1757 * @n: audit_names structure with reportable details
1758 * @path: optional path to report instead of audit_names->name
1759 * @record_num: record number to report when handling a list of names
1760 * @call_panic: optional pointer to int that will be updated if secid fails
1761 */
audit_log_name(struct audit_context * context,struct audit_names * n,struct path * path,int record_num,int * call_panic)1762 void audit_log_name(struct audit_context *context, struct audit_names *n,
1763 struct path *path, int record_num, int *call_panic)
1764 {
1765 struct audit_buffer *ab;
1766 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1767 if (!ab)
1768 return;
1769
1770 audit_log_format(ab, "item=%d", record_num);
1771
1772 if (path)
1773 audit_log_d_path(ab, " name=", path);
1774 else if (n->name) {
1775 switch (n->name_len) {
1776 case AUDIT_NAME_FULL:
1777 /* log the full path */
1778 audit_log_format(ab, " name=");
1779 audit_log_untrustedstring(ab, n->name->name);
1780 break;
1781 case 0:
1782 /* name was specified as a relative path and the
1783 * directory component is the cwd */
1784 audit_log_d_path(ab, " name=", &context->pwd);
1785 break;
1786 default:
1787 /* log the name's directory component */
1788 audit_log_format(ab, " name=");
1789 audit_log_n_untrustedstring(ab, n->name->name,
1790 n->name_len);
1791 }
1792 } else
1793 audit_log_format(ab, " name=(null)");
1794
1795 if (n->ino != AUDIT_INO_UNSET)
1796 audit_log_format(ab, " inode=%lu"
1797 " dev=%02x:%02x mode=%#ho"
1798 " ouid=%u ogid=%u rdev=%02x:%02x",
1799 n->ino,
1800 MAJOR(n->dev),
1801 MINOR(n->dev),
1802 n->mode,
1803 from_kuid(&init_user_ns, n->uid),
1804 from_kgid(&init_user_ns, n->gid),
1805 MAJOR(n->rdev),
1806 MINOR(n->rdev));
1807 if (n->osid != 0) {
1808 char *ctx = NULL;
1809 u32 len;
1810 if (security_secid_to_secctx(
1811 n->osid, &ctx, &len)) {
1812 audit_log_format(ab, " osid=%u", n->osid);
1813 if (call_panic)
1814 *call_panic = 2;
1815 } else {
1816 audit_log_format(ab, " obj=%s", ctx);
1817 security_release_secctx(ctx, len);
1818 }
1819 }
1820
1821 /* log the audit_names record type */
1822 audit_log_format(ab, " nametype=");
1823 switch(n->type) {
1824 case AUDIT_TYPE_NORMAL:
1825 audit_log_format(ab, "NORMAL");
1826 break;
1827 case AUDIT_TYPE_PARENT:
1828 audit_log_format(ab, "PARENT");
1829 break;
1830 case AUDIT_TYPE_CHILD_DELETE:
1831 audit_log_format(ab, "DELETE");
1832 break;
1833 case AUDIT_TYPE_CHILD_CREATE:
1834 audit_log_format(ab, "CREATE");
1835 break;
1836 default:
1837 audit_log_format(ab, "UNKNOWN");
1838 break;
1839 }
1840
1841 audit_log_fcaps(ab, n);
1842 audit_log_end(ab);
1843 }
1844
audit_log_task_context(struct audit_buffer * ab)1845 int audit_log_task_context(struct audit_buffer *ab)
1846 {
1847 char *ctx = NULL;
1848 unsigned len;
1849 int error;
1850 u32 sid;
1851
1852 security_task_getsecid(current, &sid);
1853 if (!sid)
1854 return 0;
1855
1856 error = security_secid_to_secctx(sid, &ctx, &len);
1857 if (error) {
1858 if (error != -EINVAL)
1859 goto error_path;
1860 return 0;
1861 }
1862
1863 audit_log_format(ab, " subj=%s", ctx);
1864 security_release_secctx(ctx, len);
1865 return 0;
1866
1867 error_path:
1868 audit_panic("error in audit_log_task_context");
1869 return error;
1870 }
1871 EXPORT_SYMBOL(audit_log_task_context);
1872
audit_log_d_path_exe(struct audit_buffer * ab,struct mm_struct * mm)1873 void audit_log_d_path_exe(struct audit_buffer *ab,
1874 struct mm_struct *mm)
1875 {
1876 struct file *exe_file;
1877
1878 if (!mm)
1879 goto out_null;
1880
1881 exe_file = get_mm_exe_file(mm);
1882 if (!exe_file)
1883 goto out_null;
1884
1885 audit_log_d_path(ab, " exe=", &exe_file->f_path);
1886 fput(exe_file);
1887 return;
1888 out_null:
1889 audit_log_format(ab, " exe=(null)");
1890 }
1891
audit_get_tty(struct task_struct * tsk)1892 struct tty_struct *audit_get_tty(struct task_struct *tsk)
1893 {
1894 struct tty_struct *tty = NULL;
1895 unsigned long flags;
1896
1897 spin_lock_irqsave(&tsk->sighand->siglock, flags);
1898 if (tsk->signal)
1899 tty = tty_kref_get(tsk->signal->tty);
1900 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1901 return tty;
1902 }
1903
audit_put_tty(struct tty_struct * tty)1904 void audit_put_tty(struct tty_struct *tty)
1905 {
1906 tty_kref_put(tty);
1907 }
1908
audit_log_task_info(struct audit_buffer * ab,struct task_struct * tsk)1909 void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
1910 {
1911 const struct cred *cred;
1912 char comm[sizeof(tsk->comm)];
1913 struct tty_struct *tty;
1914
1915 if (!ab)
1916 return;
1917
1918 /* tsk == current */
1919 cred = current_cred();
1920 tty = audit_get_tty(tsk);
1921 audit_log_format(ab,
1922 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1923 " euid=%u suid=%u fsuid=%u"
1924 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1925 task_ppid_nr(tsk),
1926 task_tgid_nr(tsk),
1927 from_kuid(&init_user_ns, audit_get_loginuid(tsk)),
1928 from_kuid(&init_user_ns, cred->uid),
1929 from_kgid(&init_user_ns, cred->gid),
1930 from_kuid(&init_user_ns, cred->euid),
1931 from_kuid(&init_user_ns, cred->suid),
1932 from_kuid(&init_user_ns, cred->fsuid),
1933 from_kgid(&init_user_ns, cred->egid),
1934 from_kgid(&init_user_ns, cred->sgid),
1935 from_kgid(&init_user_ns, cred->fsgid),
1936 tty ? tty_name(tty) : "(none)",
1937 audit_get_sessionid(tsk));
1938 audit_put_tty(tty);
1939 audit_log_format(ab, " comm=");
1940 audit_log_untrustedstring(ab, get_task_comm(comm, tsk));
1941 audit_log_d_path_exe(ab, tsk->mm);
1942 audit_log_task_context(ab);
1943 }
1944 EXPORT_SYMBOL(audit_log_task_info);
1945
1946 /**
1947 * audit_log_link_denied - report a link restriction denial
1948 * @operation: specific link operation
1949 * @link: the path that triggered the restriction
1950 */
audit_log_link_denied(const char * operation,struct path * link)1951 void audit_log_link_denied(const char *operation, struct path *link)
1952 {
1953 struct audit_buffer *ab;
1954 struct audit_names *name;
1955
1956 name = kzalloc(sizeof(*name), GFP_NOFS);
1957 if (!name)
1958 return;
1959
1960 /* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */
1961 ab = audit_log_start(current->audit_context, GFP_KERNEL,
1962 AUDIT_ANOM_LINK);
1963 if (!ab)
1964 goto out;
1965 audit_log_format(ab, "op=%s", operation);
1966 audit_log_task_info(ab, current);
1967 audit_log_format(ab, " res=0");
1968 audit_log_end(ab);
1969
1970 /* Generate AUDIT_PATH record with object. */
1971 name->type = AUDIT_TYPE_NORMAL;
1972 audit_copy_inode(name, link->dentry, d_backing_inode(link->dentry));
1973 audit_log_name(current->audit_context, name, link, 0, NULL);
1974 out:
1975 kfree(name);
1976 }
1977
1978 /**
1979 * audit_log_end - end one audit record
1980 * @ab: the audit_buffer
1981 *
1982 * netlink_unicast() cannot be called inside an irq context because it blocks
1983 * (last arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed
1984 * on a queue and a tasklet is scheduled to remove them from the queue outside
1985 * the irq context. May be called in any context.
1986 */
audit_log_end(struct audit_buffer * ab)1987 void audit_log_end(struct audit_buffer *ab)
1988 {
1989 if (!ab)
1990 return;
1991 if (!audit_rate_check()) {
1992 audit_log_lost("rate limit exceeded");
1993 } else {
1994 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
1995
1996 nlh->nlmsg_len = ab->skb->len;
1997 kauditd_send_multicast_skb(ab->skb, ab->gfp_mask);
1998
1999 /*
2000 * The original kaudit unicast socket sends up messages with
2001 * nlmsg_len set to the payload length rather than the entire
2002 * message length. This breaks the standard set by netlink.
2003 * The existing auditd daemon assumes this breakage. Fixing
2004 * this would require co-ordinating a change in the established
2005 * protocol between the kaudit kernel subsystem and the auditd
2006 * userspace code.
2007 */
2008 nlh->nlmsg_len -= NLMSG_HDRLEN;
2009
2010 if (audit_pid) {
2011 skb_queue_tail(&audit_skb_queue, ab->skb);
2012 wake_up_interruptible(&kauditd_wait);
2013 } else {
2014 audit_printk_skb(ab->skb);
2015 }
2016 ab->skb = NULL;
2017 }
2018 audit_buffer_free(ab);
2019 }
2020
2021 /**
2022 * audit_log - Log an audit record
2023 * @ctx: audit context
2024 * @gfp_mask: type of allocation
2025 * @type: audit message type
2026 * @fmt: format string to use
2027 * @...: variable parameters matching the format string
2028 *
2029 * This is a convenience function that calls audit_log_start,
2030 * audit_log_vformat, and audit_log_end. It may be called
2031 * in any context.
2032 */
audit_log(struct audit_context * ctx,gfp_t gfp_mask,int type,const char * fmt,...)2033 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
2034 const char *fmt, ...)
2035 {
2036 struct audit_buffer *ab;
2037 va_list args;
2038
2039 ab = audit_log_start(ctx, gfp_mask, type);
2040 if (ab) {
2041 va_start(args, fmt);
2042 audit_log_vformat(ab, fmt, args);
2043 va_end(args);
2044 audit_log_end(ab);
2045 }
2046 }
2047
2048 #ifdef CONFIG_SECURITY
2049 /**
2050 * audit_log_secctx - Converts and logs SELinux context
2051 * @ab: audit_buffer
2052 * @secid: security number
2053 *
2054 * This is a helper function that calls security_secid_to_secctx to convert
2055 * secid to secctx and then adds the (converted) SELinux context to the audit
2056 * log by calling audit_log_format, thus also preventing leak of internal secid
2057 * to userspace. If secid cannot be converted audit_panic is called.
2058 */
audit_log_secctx(struct audit_buffer * ab,u32 secid)2059 void audit_log_secctx(struct audit_buffer *ab, u32 secid)
2060 {
2061 u32 len;
2062 char *secctx;
2063
2064 if (security_secid_to_secctx(secid, &secctx, &len)) {
2065 audit_panic("Cannot convert secid to context");
2066 } else {
2067 audit_log_format(ab, " obj=%s", secctx);
2068 security_release_secctx(secctx, len);
2069 }
2070 }
2071 EXPORT_SYMBOL(audit_log_secctx);
2072 #endif
2073
2074 EXPORT_SYMBOL(audit_log_start);
2075 EXPORT_SYMBOL(audit_log_end);
2076 EXPORT_SYMBOL(audit_log_format);
2077 EXPORT_SYMBOL(audit_log);
2078