1 /*
2 * linux/kernel/exit.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/freezer.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53 #include <linux/oom.h>
54 #include <linux/writeback.h>
55 #include <linux/shm.h>
56 #include <linux/kcov.h>
57 #include <linux/cpufreq_times.h>
58
59 #include "sched/tune.h"
60
61 #include <asm/uaccess.h>
62 #include <asm/unistd.h>
63 #include <asm/pgtable.h>
64 #include <asm/mmu_context.h>
65
__unhash_process(struct task_struct * p,bool group_dead)66 static void __unhash_process(struct task_struct *p, bool group_dead)
67 {
68 nr_threads--;
69 detach_pid(p, PIDTYPE_PID);
70 if (group_dead) {
71 detach_pid(p, PIDTYPE_PGID);
72 detach_pid(p, PIDTYPE_SID);
73
74 list_del_rcu(&p->tasks);
75 list_del_init(&p->sibling);
76 __this_cpu_dec(process_counts);
77 }
78 list_del_rcu(&p->thread_group);
79 list_del_rcu(&p->thread_node);
80 }
81
82 /*
83 * This function expects the tasklist_lock write-locked.
84 */
__exit_signal(struct task_struct * tsk)85 static void __exit_signal(struct task_struct *tsk)
86 {
87 struct signal_struct *sig = tsk->signal;
88 bool group_dead = thread_group_leader(tsk);
89 struct sighand_struct *sighand;
90 struct tty_struct *uninitialized_var(tty);
91 cputime_t utime, stime;
92
93 sighand = rcu_dereference_check(tsk->sighand,
94 lockdep_tasklist_lock_is_held());
95 spin_lock(&sighand->siglock);
96
97 posix_cpu_timers_exit(tsk);
98 if (group_dead) {
99 posix_cpu_timers_exit_group(tsk);
100 tty = sig->tty;
101 sig->tty = NULL;
102 } else {
103 /*
104 * This can only happen if the caller is de_thread().
105 * FIXME: this is the temporary hack, we should teach
106 * posix-cpu-timers to handle this case correctly.
107 */
108 if (unlikely(has_group_leader_pid(tsk)))
109 posix_cpu_timers_exit_group(tsk);
110
111 /*
112 * If there is any task waiting for the group exit
113 * then notify it:
114 */
115 if (sig->notify_count > 0 && !--sig->notify_count)
116 wake_up_process(sig->group_exit_task);
117
118 if (tsk == sig->curr_target)
119 sig->curr_target = next_thread(tsk);
120 }
121
122 /*
123 * Accumulate here the counters for all threads as they die. We could
124 * skip the group leader because it is the last user of signal_struct,
125 * but we want to avoid the race with thread_group_cputime() which can
126 * see the empty ->thread_head list.
127 */
128 task_cputime(tsk, &utime, &stime);
129 write_seqlock(&sig->stats_lock);
130 sig->utime += utime;
131 sig->stime += stime;
132 sig->gtime += task_gtime(tsk);
133 sig->min_flt += tsk->min_flt;
134 sig->maj_flt += tsk->maj_flt;
135 sig->nvcsw += tsk->nvcsw;
136 sig->nivcsw += tsk->nivcsw;
137 sig->inblock += task_io_get_inblock(tsk);
138 sig->oublock += task_io_get_oublock(tsk);
139 task_io_accounting_add(&sig->ioac, &tsk->ioac);
140 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
141 sig->nr_threads--;
142 __unhash_process(tsk, group_dead);
143 write_sequnlock(&sig->stats_lock);
144
145 /*
146 * Do this under ->siglock, we can race with another thread
147 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
148 */
149 flush_sigqueue(&tsk->pending);
150 tsk->sighand = NULL;
151 spin_unlock(&sighand->siglock);
152
153 __cleanup_sighand(sighand);
154 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
155 if (group_dead) {
156 flush_sigqueue(&sig->shared_pending);
157 tty_kref_put(tty);
158 }
159 }
160
delayed_put_task_struct(struct rcu_head * rhp)161 static void delayed_put_task_struct(struct rcu_head *rhp)
162 {
163 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
164
165 perf_event_delayed_put(tsk);
166 trace_sched_process_free(tsk);
167 put_task_struct(tsk);
168 }
169
170
release_task(struct task_struct * p)171 void release_task(struct task_struct *p)
172 {
173 struct task_struct *leader;
174 int zap_leader;
175 #ifdef CONFIG_CPU_FREQ_TIMES
176 cpufreq_task_times_exit(p);
177 #endif
178 repeat:
179 /* don't need to get the RCU readlock here - the process is dead and
180 * can't be modifying its own credentials. But shut RCU-lockdep up */
181 rcu_read_lock();
182 atomic_dec(&__task_cred(p)->user->processes);
183 rcu_read_unlock();
184
185 proc_flush_task(p);
186
187 write_lock_irq(&tasklist_lock);
188 ptrace_release_task(p);
189 __exit_signal(p);
190
191 /*
192 * If we are the last non-leader member of the thread
193 * group, and the leader is zombie, then notify the
194 * group leader's parent process. (if it wants notification.)
195 */
196 zap_leader = 0;
197 leader = p->group_leader;
198 if (leader != p && thread_group_empty(leader)
199 && leader->exit_state == EXIT_ZOMBIE) {
200 /*
201 * If we were the last child thread and the leader has
202 * exited already, and the leader's parent ignores SIGCHLD,
203 * then we are the one who should release the leader.
204 */
205 zap_leader = do_notify_parent(leader, leader->exit_signal);
206 if (zap_leader)
207 leader->exit_state = EXIT_DEAD;
208 }
209
210 write_unlock_irq(&tasklist_lock);
211 release_thread(p);
212 call_rcu(&p->rcu, delayed_put_task_struct);
213
214 p = leader;
215 if (unlikely(zap_leader))
216 goto repeat;
217 }
218
219 /*
220 * Note that if this function returns a valid task_struct pointer (!NULL)
221 * task->usage must remain >0 for the duration of the RCU critical section.
222 */
task_rcu_dereference(struct task_struct ** ptask)223 struct task_struct *task_rcu_dereference(struct task_struct **ptask)
224 {
225 struct sighand_struct *sighand;
226 struct task_struct *task;
227
228 /*
229 * We need to verify that release_task() was not called and thus
230 * delayed_put_task_struct() can't run and drop the last reference
231 * before rcu_read_unlock(). We check task->sighand != NULL,
232 * but we can read the already freed and reused memory.
233 */
234 retry:
235 task = rcu_dereference(*ptask);
236 if (!task)
237 return NULL;
238
239 probe_kernel_address(&task->sighand, sighand);
240
241 /*
242 * Pairs with atomic_dec_and_test() in put_task_struct(). If this task
243 * was already freed we can not miss the preceding update of this
244 * pointer.
245 */
246 smp_rmb();
247 if (unlikely(task != READ_ONCE(*ptask)))
248 goto retry;
249
250 /*
251 * We've re-checked that "task == *ptask", now we have two different
252 * cases:
253 *
254 * 1. This is actually the same task/task_struct. In this case
255 * sighand != NULL tells us it is still alive.
256 *
257 * 2. This is another task which got the same memory for task_struct.
258 * We can't know this of course, and we can not trust
259 * sighand != NULL.
260 *
261 * In this case we actually return a random value, but this is
262 * correct.
263 *
264 * If we return NULL - we can pretend that we actually noticed that
265 * *ptask was updated when the previous task has exited. Or pretend
266 * that probe_slab_address(&sighand) reads NULL.
267 *
268 * If we return the new task (because sighand is not NULL for any
269 * reason) - this is fine too. This (new) task can't go away before
270 * another gp pass.
271 *
272 * And note: We could even eliminate the false positive if re-read
273 * task->sighand once again to avoid the falsely NULL. But this case
274 * is very unlikely so we don't care.
275 */
276 if (!sighand)
277 return NULL;
278
279 return task;
280 }
281
try_get_task_struct(struct task_struct ** ptask)282 struct task_struct *try_get_task_struct(struct task_struct **ptask)
283 {
284 struct task_struct *task;
285
286 rcu_read_lock();
287 task = task_rcu_dereference(ptask);
288 if (task)
289 get_task_struct(task);
290 rcu_read_unlock();
291
292 return task;
293 }
294
295 /*
296 * Determine if a process group is "orphaned", according to the POSIX
297 * definition in 2.2.2.52. Orphaned process groups are not to be affected
298 * by terminal-generated stop signals. Newly orphaned process groups are
299 * to receive a SIGHUP and a SIGCONT.
300 *
301 * "I ask you, have you ever known what it is to be an orphan?"
302 */
will_become_orphaned_pgrp(struct pid * pgrp,struct task_struct * ignored_task)303 static int will_become_orphaned_pgrp(struct pid *pgrp,
304 struct task_struct *ignored_task)
305 {
306 struct task_struct *p;
307
308 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
309 if ((p == ignored_task) ||
310 (p->exit_state && thread_group_empty(p)) ||
311 is_global_init(p->real_parent))
312 continue;
313
314 if (task_pgrp(p->real_parent) != pgrp &&
315 task_session(p->real_parent) == task_session(p))
316 return 0;
317 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
318
319 return 1;
320 }
321
is_current_pgrp_orphaned(void)322 int is_current_pgrp_orphaned(void)
323 {
324 int retval;
325
326 read_lock(&tasklist_lock);
327 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
328 read_unlock(&tasklist_lock);
329
330 return retval;
331 }
332
has_stopped_jobs(struct pid * pgrp)333 static bool has_stopped_jobs(struct pid *pgrp)
334 {
335 struct task_struct *p;
336
337 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
338 if (p->signal->flags & SIGNAL_STOP_STOPPED)
339 return true;
340 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
341
342 return false;
343 }
344
345 /*
346 * Check to see if any process groups have become orphaned as
347 * a result of our exiting, and if they have any stopped jobs,
348 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
349 */
350 static void
kill_orphaned_pgrp(struct task_struct * tsk,struct task_struct * parent)351 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
352 {
353 struct pid *pgrp = task_pgrp(tsk);
354 struct task_struct *ignored_task = tsk;
355
356 if (!parent)
357 /* exit: our father is in a different pgrp than
358 * we are and we were the only connection outside.
359 */
360 parent = tsk->real_parent;
361 else
362 /* reparent: our child is in a different pgrp than
363 * we are, and it was the only connection outside.
364 */
365 ignored_task = NULL;
366
367 if (task_pgrp(parent) != pgrp &&
368 task_session(parent) == task_session(tsk) &&
369 will_become_orphaned_pgrp(pgrp, ignored_task) &&
370 has_stopped_jobs(pgrp)) {
371 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
372 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
373 }
374 }
375
376 #ifdef CONFIG_MEMCG
377 /*
378 * A task is exiting. If it owned this mm, find a new owner for the mm.
379 */
mm_update_next_owner(struct mm_struct * mm)380 void mm_update_next_owner(struct mm_struct *mm)
381 {
382 struct task_struct *c, *g, *p = current;
383
384 retry:
385 /*
386 * If the exiting or execing task is not the owner, it's
387 * someone else's problem.
388 */
389 if (mm->owner != p)
390 return;
391 /*
392 * The current owner is exiting/execing and there are no other
393 * candidates. Do not leave the mm pointing to a possibly
394 * freed task structure.
395 */
396 if (atomic_read(&mm->mm_users) <= 1) {
397 mm->owner = NULL;
398 return;
399 }
400
401 read_lock(&tasklist_lock);
402 /*
403 * Search in the children
404 */
405 list_for_each_entry(c, &p->children, sibling) {
406 if (c->mm == mm)
407 goto assign_new_owner;
408 }
409
410 /*
411 * Search in the siblings
412 */
413 list_for_each_entry(c, &p->real_parent->children, sibling) {
414 if (c->mm == mm)
415 goto assign_new_owner;
416 }
417
418 /*
419 * Search through everything else, we should not get here often.
420 */
421 for_each_process(g) {
422 if (g->flags & PF_KTHREAD)
423 continue;
424 for_each_thread(g, c) {
425 if (c->mm == mm)
426 goto assign_new_owner;
427 if (c->mm)
428 break;
429 }
430 }
431 read_unlock(&tasklist_lock);
432 /*
433 * We found no owner yet mm_users > 1: this implies that we are
434 * most likely racing with swapoff (try_to_unuse()) or /proc or
435 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
436 */
437 mm->owner = NULL;
438 return;
439
440 assign_new_owner:
441 BUG_ON(c == p);
442 get_task_struct(c);
443 /*
444 * The task_lock protects c->mm from changing.
445 * We always want mm->owner->mm == mm
446 */
447 task_lock(c);
448 /*
449 * Delay read_unlock() till we have the task_lock()
450 * to ensure that c does not slip away underneath us
451 */
452 read_unlock(&tasklist_lock);
453 if (c->mm != mm) {
454 task_unlock(c);
455 put_task_struct(c);
456 goto retry;
457 }
458 mm->owner = c;
459 task_unlock(c);
460 put_task_struct(c);
461 }
462 #endif /* CONFIG_MEMCG */
463
464 /*
465 * Turn us into a lazy TLB process if we
466 * aren't already..
467 */
exit_mm(struct task_struct * tsk)468 static void exit_mm(struct task_struct *tsk)
469 {
470 struct mm_struct *mm = tsk->mm;
471 struct core_state *core_state;
472
473 mm_release(tsk, mm);
474 if (!mm)
475 return;
476 sync_mm_rss(mm);
477 /*
478 * Serialize with any possible pending coredump.
479 * We must hold mmap_sem around checking core_state
480 * and clearing tsk->mm. The core-inducing thread
481 * will increment ->nr_threads for each thread in the
482 * group with ->mm != NULL.
483 */
484 down_read(&mm->mmap_sem);
485 core_state = mm->core_state;
486 if (core_state) {
487 struct core_thread self;
488
489 up_read(&mm->mmap_sem);
490
491 self.task = tsk;
492 self.next = xchg(&core_state->dumper.next, &self);
493 /*
494 * Implies mb(), the result of xchg() must be visible
495 * to core_state->dumper.
496 */
497 if (atomic_dec_and_test(&core_state->nr_threads))
498 complete(&core_state->startup);
499
500 for (;;) {
501 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
502 if (!self.task) /* see coredump_finish() */
503 break;
504 freezable_schedule();
505 }
506 __set_task_state(tsk, TASK_RUNNING);
507 down_read(&mm->mmap_sem);
508 }
509 atomic_inc(&mm->mm_count);
510 BUG_ON(mm != tsk->active_mm);
511 /* more a memory barrier than a real lock */
512 task_lock(tsk);
513 tsk->mm = NULL;
514 up_read(&mm->mmap_sem);
515 enter_lazy_tlb(mm, current);
516 task_unlock(tsk);
517 mm_update_next_owner(mm);
518 mmput(mm);
519 if (test_thread_flag(TIF_MEMDIE))
520 exit_oom_victim();
521 }
522
find_alive_thread(struct task_struct * p)523 static struct task_struct *find_alive_thread(struct task_struct *p)
524 {
525 struct task_struct *t;
526
527 for_each_thread(p, t) {
528 if (!(t->flags & PF_EXITING))
529 return t;
530 }
531 return NULL;
532 }
533
find_child_reaper(struct task_struct * father)534 static struct task_struct *find_child_reaper(struct task_struct *father)
535 __releases(&tasklist_lock)
536 __acquires(&tasklist_lock)
537 {
538 struct pid_namespace *pid_ns = task_active_pid_ns(father);
539 struct task_struct *reaper = pid_ns->child_reaper;
540
541 if (likely(reaper != father))
542 return reaper;
543
544 reaper = find_alive_thread(father);
545 if (reaper) {
546 pid_ns->child_reaper = reaper;
547 return reaper;
548 }
549
550 write_unlock_irq(&tasklist_lock);
551 if (unlikely(pid_ns == &init_pid_ns)) {
552 panic("Attempted to kill init! exitcode=0x%08x\n",
553 father->signal->group_exit_code ?: father->exit_code);
554 }
555 zap_pid_ns_processes(pid_ns);
556 write_lock_irq(&tasklist_lock);
557
558 return father;
559 }
560
561 /*
562 * When we die, we re-parent all our children, and try to:
563 * 1. give them to another thread in our thread group, if such a member exists
564 * 2. give it to the first ancestor process which prctl'd itself as a
565 * child_subreaper for its children (like a service manager)
566 * 3. give it to the init process (PID 1) in our pid namespace
567 */
find_new_reaper(struct task_struct * father,struct task_struct * child_reaper)568 static struct task_struct *find_new_reaper(struct task_struct *father,
569 struct task_struct *child_reaper)
570 {
571 struct task_struct *thread, *reaper;
572
573 thread = find_alive_thread(father);
574 if (thread)
575 return thread;
576
577 if (father->signal->has_child_subreaper) {
578 /*
579 * Find the first ->is_child_subreaper ancestor in our pid_ns.
580 * We start from father to ensure we can not look into another
581 * namespace, this is safe because all its threads are dead.
582 */
583 for (reaper = father;
584 !same_thread_group(reaper, child_reaper);
585 reaper = reaper->real_parent) {
586 /* call_usermodehelper() descendants need this check */
587 if (reaper == &init_task)
588 break;
589 if (!reaper->signal->is_child_subreaper)
590 continue;
591 thread = find_alive_thread(reaper);
592 if (thread)
593 return thread;
594 }
595 }
596
597 return child_reaper;
598 }
599
600 /*
601 * Any that need to be release_task'd are put on the @dead list.
602 */
reparent_leader(struct task_struct * father,struct task_struct * p,struct list_head * dead)603 static void reparent_leader(struct task_struct *father, struct task_struct *p,
604 struct list_head *dead)
605 {
606 if (unlikely(p->exit_state == EXIT_DEAD))
607 return;
608
609 /* We don't want people slaying init. */
610 p->exit_signal = SIGCHLD;
611
612 /* If it has exited notify the new parent about this child's death. */
613 if (!p->ptrace &&
614 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
615 if (do_notify_parent(p, p->exit_signal)) {
616 p->exit_state = EXIT_DEAD;
617 list_add(&p->ptrace_entry, dead);
618 }
619 }
620
621 kill_orphaned_pgrp(p, father);
622 }
623
624 /*
625 * This does two things:
626 *
627 * A. Make init inherit all the child processes
628 * B. Check to see if any process groups have become orphaned
629 * as a result of our exiting, and if they have any stopped
630 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
631 */
forget_original_parent(struct task_struct * father,struct list_head * dead)632 static void forget_original_parent(struct task_struct *father,
633 struct list_head *dead)
634 {
635 struct task_struct *p, *t, *reaper;
636
637 if (unlikely(!list_empty(&father->ptraced)))
638 exit_ptrace(father, dead);
639
640 /* Can drop and reacquire tasklist_lock */
641 reaper = find_child_reaper(father);
642 if (list_empty(&father->children))
643 return;
644
645 reaper = find_new_reaper(father, reaper);
646 list_for_each_entry(p, &father->children, sibling) {
647 for_each_thread(p, t) {
648 t->real_parent = reaper;
649 BUG_ON((!t->ptrace) != (t->parent == father));
650 if (likely(!t->ptrace))
651 t->parent = t->real_parent;
652 if (t->pdeath_signal)
653 group_send_sig_info(t->pdeath_signal,
654 SEND_SIG_NOINFO, t);
655 }
656 /*
657 * If this is a threaded reparent there is no need to
658 * notify anyone anything has happened.
659 */
660 if (!same_thread_group(reaper, father))
661 reparent_leader(father, p, dead);
662 }
663 list_splice_tail_init(&father->children, &reaper->children);
664 }
665
666 /*
667 * Send signals to all our closest relatives so that they know
668 * to properly mourn us..
669 */
exit_notify(struct task_struct * tsk,int group_dead)670 static void exit_notify(struct task_struct *tsk, int group_dead)
671 {
672 bool autoreap;
673 struct task_struct *p, *n;
674 LIST_HEAD(dead);
675
676 write_lock_irq(&tasklist_lock);
677 forget_original_parent(tsk, &dead);
678
679 if (group_dead)
680 kill_orphaned_pgrp(tsk->group_leader, NULL);
681
682 if (unlikely(tsk->ptrace)) {
683 int sig = thread_group_leader(tsk) &&
684 thread_group_empty(tsk) &&
685 !ptrace_reparented(tsk) ?
686 tsk->exit_signal : SIGCHLD;
687 autoreap = do_notify_parent(tsk, sig);
688 } else if (thread_group_leader(tsk)) {
689 autoreap = thread_group_empty(tsk) &&
690 do_notify_parent(tsk, tsk->exit_signal);
691 } else {
692 autoreap = true;
693 }
694
695 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
696 if (tsk->exit_state == EXIT_DEAD)
697 list_add(&tsk->ptrace_entry, &dead);
698
699 /* mt-exec, de_thread() is waiting for group leader */
700 if (unlikely(tsk->signal->notify_count < 0))
701 wake_up_process(tsk->signal->group_exit_task);
702 write_unlock_irq(&tasklist_lock);
703
704 list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
705 list_del_init(&p->ptrace_entry);
706 release_task(p);
707 }
708 }
709
710 #ifdef CONFIG_DEBUG_STACK_USAGE
check_stack_usage(void)711 static void check_stack_usage(void)
712 {
713 static DEFINE_SPINLOCK(low_water_lock);
714 static int lowest_to_date = THREAD_SIZE;
715 unsigned long free;
716
717 free = stack_not_used(current);
718
719 if (free >= lowest_to_date)
720 return;
721
722 spin_lock(&low_water_lock);
723 if (free < lowest_to_date) {
724 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
725 current->comm, task_pid_nr(current), free);
726 lowest_to_date = free;
727 }
728 spin_unlock(&low_water_lock);
729 }
730 #else
check_stack_usage(void)731 static inline void check_stack_usage(void) {}
732 #endif
733
do_exit(long code)734 void __noreturn do_exit(long code)
735 {
736 struct task_struct *tsk = current;
737 int group_dead;
738 TASKS_RCU(int tasks_rcu_i);
739
740 profile_task_exit(tsk);
741 kcov_task_exit(tsk);
742
743 WARN_ON(blk_needs_flush_plug(tsk));
744
745 if (unlikely(in_interrupt()))
746 panic("Aiee, killing interrupt handler!");
747 if (unlikely(!tsk->pid))
748 panic("Attempted to kill the idle task!");
749
750 /*
751 * If do_exit is called because this processes oopsed, it's possible
752 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
753 * continuing. Amongst other possible reasons, this is to prevent
754 * mm_release()->clear_child_tid() from writing to a user-controlled
755 * kernel address.
756 */
757 set_fs(USER_DS);
758
759 ptrace_event(PTRACE_EVENT_EXIT, code);
760
761 validate_creds_for_do_exit(tsk);
762
763 /*
764 * We're taking recursive faults here in do_exit. Safest is to just
765 * leave this task alone and wait for reboot.
766 */
767 if (unlikely(tsk->flags & PF_EXITING)) {
768 pr_alert("Fixing recursive fault but reboot is needed!\n");
769 /*
770 * We can do this unlocked here. The futex code uses
771 * this flag just to verify whether the pi state
772 * cleanup has been done or not. In the worst case it
773 * loops once more. We pretend that the cleanup was
774 * done as there is no way to return. Either the
775 * OWNER_DIED bit is set by now or we push the blocked
776 * task into the wait for ever nirwana as well.
777 */
778 tsk->flags |= PF_EXITPIDONE;
779 set_current_state(TASK_UNINTERRUPTIBLE);
780 schedule();
781 }
782
783 exit_signals(tsk); /* sets PF_EXITING */
784
785 schedtune_exit_task(tsk);
786
787 /*
788 * Ensure that all new tsk->pi_lock acquisitions must observe
789 * PF_EXITING. Serializes against futex.c:attach_to_pi_owner().
790 */
791 smp_mb();
792 /*
793 * Ensure that we must observe the pi_state in exit_mm() ->
794 * mm_release() -> exit_pi_state_list().
795 */
796 raw_spin_unlock_wait(&tsk->pi_lock);
797
798 if (unlikely(in_atomic())) {
799 pr_info("note: %s[%d] exited with preempt_count %d\n",
800 current->comm, task_pid_nr(current),
801 preempt_count());
802 preempt_count_set(PREEMPT_ENABLED);
803 }
804
805 /* sync mm's RSS info before statistics gathering */
806 if (tsk->mm)
807 sync_mm_rss(tsk->mm);
808 acct_update_integrals(tsk);
809 group_dead = atomic_dec_and_test(&tsk->signal->live);
810 if (group_dead) {
811 hrtimer_cancel(&tsk->signal->real_timer);
812 exit_itimers(tsk->signal);
813 if (tsk->mm)
814 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
815 }
816 acct_collect(code, group_dead);
817 if (group_dead)
818 tty_audit_exit();
819 audit_free(tsk);
820
821 tsk->exit_code = code;
822 taskstats_exit(tsk, group_dead);
823
824 exit_mm(tsk);
825
826 if (group_dead)
827 acct_process();
828 trace_sched_process_exit(tsk);
829
830 exit_sem(tsk);
831 exit_shm(tsk);
832 exit_files(tsk);
833 exit_fs(tsk);
834 if (group_dead)
835 disassociate_ctty(1);
836 exit_task_namespaces(tsk);
837 exit_task_work(tsk);
838 exit_thread(tsk);
839
840 /*
841 * Flush inherited counters to the parent - before the parent
842 * gets woken up by child-exit notifications.
843 *
844 * because of cgroup mode, must be called before cgroup_exit()
845 */
846 perf_event_exit_task(tsk);
847
848 sched_autogroup_exit_task(tsk);
849 cgroup_exit(tsk);
850
851 /*
852 * FIXME: do that only when needed, using sched_exit tracepoint
853 */
854 flush_ptrace_hw_breakpoint(tsk);
855
856 TASKS_RCU(preempt_disable());
857 TASKS_RCU(tasks_rcu_i = __srcu_read_lock(&tasks_rcu_exit_srcu));
858 TASKS_RCU(preempt_enable());
859 exit_notify(tsk, group_dead);
860 proc_exit_connector(tsk);
861 mpol_put_task_policy(tsk);
862 #ifdef CONFIG_FUTEX
863 if (unlikely(current->pi_state_cache))
864 kfree(current->pi_state_cache);
865 #endif
866 /*
867 * Make sure we are holding no locks:
868 */
869 debug_check_no_locks_held();
870 /*
871 * We can do this unlocked here. The futex code uses this flag
872 * just to verify whether the pi state cleanup has been done
873 * or not. In the worst case it loops once more.
874 */
875 tsk->flags |= PF_EXITPIDONE;
876
877 if (tsk->io_context)
878 exit_io_context(tsk);
879
880 if (tsk->splice_pipe)
881 free_pipe_info(tsk->splice_pipe);
882
883 if (tsk->task_frag.page)
884 put_page(tsk->task_frag.page);
885
886 validate_creds_for_do_exit(tsk);
887
888 check_stack_usage();
889 preempt_disable();
890 if (tsk->nr_dirtied)
891 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
892 exit_rcu();
893 TASKS_RCU(__srcu_read_unlock(&tasks_rcu_exit_srcu, tasks_rcu_i));
894
895 do_task_dead();
896 }
897 EXPORT_SYMBOL_GPL(do_exit);
898
complete_and_exit(struct completion * comp,long code)899 void complete_and_exit(struct completion *comp, long code)
900 {
901 if (comp)
902 complete(comp);
903
904 do_exit(code);
905 }
906 EXPORT_SYMBOL(complete_and_exit);
907
SYSCALL_DEFINE1(exit,int,error_code)908 SYSCALL_DEFINE1(exit, int, error_code)
909 {
910 do_exit((error_code&0xff)<<8);
911 }
912
913 /*
914 * Take down every thread in the group. This is called by fatal signals
915 * as well as by sys_exit_group (below).
916 */
917 void
do_group_exit(int exit_code)918 do_group_exit(int exit_code)
919 {
920 struct signal_struct *sig = current->signal;
921
922 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
923
924 if (signal_group_exit(sig))
925 exit_code = sig->group_exit_code;
926 else if (!thread_group_empty(current)) {
927 struct sighand_struct *const sighand = current->sighand;
928
929 spin_lock_irq(&sighand->siglock);
930 if (signal_group_exit(sig))
931 /* Another thread got here before we took the lock. */
932 exit_code = sig->group_exit_code;
933 else {
934 sig->group_exit_code = exit_code;
935 sig->flags = SIGNAL_GROUP_EXIT;
936 zap_other_threads(current);
937 }
938 spin_unlock_irq(&sighand->siglock);
939 }
940
941 do_exit(exit_code);
942 /* NOTREACHED */
943 }
944
945 /*
946 * this kills every thread in the thread group. Note that any externally
947 * wait4()-ing process will get the correct exit code - even if this
948 * thread is not the thread group leader.
949 */
SYSCALL_DEFINE1(exit_group,int,error_code)950 SYSCALL_DEFINE1(exit_group, int, error_code)
951 {
952 do_group_exit((error_code & 0xff) << 8);
953 /* NOTREACHED */
954 return 0;
955 }
956
957 struct wait_opts {
958 enum pid_type wo_type;
959 int wo_flags;
960 struct pid *wo_pid;
961
962 struct siginfo __user *wo_info;
963 int __user *wo_stat;
964 struct rusage __user *wo_rusage;
965
966 wait_queue_t child_wait;
967 int notask_error;
968 };
969
970 static inline
task_pid_type(struct task_struct * task,enum pid_type type)971 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
972 {
973 if (type != PIDTYPE_PID)
974 task = task->group_leader;
975 return task->pids[type].pid;
976 }
977
eligible_pid(struct wait_opts * wo,struct task_struct * p)978 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
979 {
980 return wo->wo_type == PIDTYPE_MAX ||
981 task_pid_type(p, wo->wo_type) == wo->wo_pid;
982 }
983
984 static int
eligible_child(struct wait_opts * wo,bool ptrace,struct task_struct * p)985 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
986 {
987 if (!eligible_pid(wo, p))
988 return 0;
989
990 /*
991 * Wait for all children (clone and not) if __WALL is set or
992 * if it is traced by us.
993 */
994 if (ptrace || (wo->wo_flags & __WALL))
995 return 1;
996
997 /*
998 * Otherwise, wait for clone children *only* if __WCLONE is set;
999 * otherwise, wait for non-clone children *only*.
1000 *
1001 * Note: a "clone" child here is one that reports to its parent
1002 * using a signal other than SIGCHLD, or a non-leader thread which
1003 * we can only see if it is traced by us.
1004 */
1005 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1006 return 0;
1007
1008 return 1;
1009 }
1010
wait_noreap_copyout(struct wait_opts * wo,struct task_struct * p,pid_t pid,uid_t uid,int why,int status)1011 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
1012 pid_t pid, uid_t uid, int why, int status)
1013 {
1014 struct siginfo __user *infop;
1015 int retval = wo->wo_rusage
1016 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1017
1018 put_task_struct(p);
1019 infop = wo->wo_info;
1020 if (infop) {
1021 if (!retval)
1022 retval = put_user(SIGCHLD, &infop->si_signo);
1023 if (!retval)
1024 retval = put_user(0, &infop->si_errno);
1025 if (!retval)
1026 retval = put_user((short)why, &infop->si_code);
1027 if (!retval)
1028 retval = put_user(pid, &infop->si_pid);
1029 if (!retval)
1030 retval = put_user(uid, &infop->si_uid);
1031 if (!retval)
1032 retval = put_user(status, &infop->si_status);
1033 }
1034 if (!retval)
1035 retval = pid;
1036 return retval;
1037 }
1038
1039 /*
1040 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1041 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1042 * the lock and this task is uninteresting. If we return nonzero, we have
1043 * released the lock and the system call should return.
1044 */
wait_task_zombie(struct wait_opts * wo,struct task_struct * p)1045 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1046 {
1047 int state, retval, status;
1048 pid_t pid = task_pid_vnr(p);
1049 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1050 struct siginfo __user *infop;
1051
1052 if (!likely(wo->wo_flags & WEXITED))
1053 return 0;
1054
1055 if (unlikely(wo->wo_flags & WNOWAIT)) {
1056 int exit_code = p->exit_code;
1057 int why;
1058
1059 get_task_struct(p);
1060 read_unlock(&tasklist_lock);
1061 sched_annotate_sleep();
1062
1063 if ((exit_code & 0x7f) == 0) {
1064 why = CLD_EXITED;
1065 status = exit_code >> 8;
1066 } else {
1067 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1068 status = exit_code & 0x7f;
1069 }
1070 return wait_noreap_copyout(wo, p, pid, uid, why, status);
1071 }
1072 /*
1073 * Move the task's state to DEAD/TRACE, only one thread can do this.
1074 */
1075 state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1076 EXIT_TRACE : EXIT_DEAD;
1077 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1078 return 0;
1079 /*
1080 * We own this thread, nobody else can reap it.
1081 */
1082 read_unlock(&tasklist_lock);
1083 sched_annotate_sleep();
1084
1085 /*
1086 * Check thread_group_leader() to exclude the traced sub-threads.
1087 */
1088 if (state == EXIT_DEAD && thread_group_leader(p)) {
1089 struct signal_struct *sig = p->signal;
1090 struct signal_struct *psig = current->signal;
1091 unsigned long maxrss;
1092 cputime_t tgutime, tgstime;
1093
1094 /*
1095 * The resource counters for the group leader are in its
1096 * own task_struct. Those for dead threads in the group
1097 * are in its signal_struct, as are those for the child
1098 * processes it has previously reaped. All these
1099 * accumulate in the parent's signal_struct c* fields.
1100 *
1101 * We don't bother to take a lock here to protect these
1102 * p->signal fields because the whole thread group is dead
1103 * and nobody can change them.
1104 *
1105 * psig->stats_lock also protects us from our sub-theads
1106 * which can reap other children at the same time. Until
1107 * we change k_getrusage()-like users to rely on this lock
1108 * we have to take ->siglock as well.
1109 *
1110 * We use thread_group_cputime_adjusted() to get times for
1111 * the thread group, which consolidates times for all threads
1112 * in the group including the group leader.
1113 */
1114 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1115 spin_lock_irq(¤t->sighand->siglock);
1116 write_seqlock(&psig->stats_lock);
1117 psig->cutime += tgutime + sig->cutime;
1118 psig->cstime += tgstime + sig->cstime;
1119 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1120 psig->cmin_flt +=
1121 p->min_flt + sig->min_flt + sig->cmin_flt;
1122 psig->cmaj_flt +=
1123 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1124 psig->cnvcsw +=
1125 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1126 psig->cnivcsw +=
1127 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1128 psig->cinblock +=
1129 task_io_get_inblock(p) +
1130 sig->inblock + sig->cinblock;
1131 psig->coublock +=
1132 task_io_get_oublock(p) +
1133 sig->oublock + sig->coublock;
1134 maxrss = max(sig->maxrss, sig->cmaxrss);
1135 if (psig->cmaxrss < maxrss)
1136 psig->cmaxrss = maxrss;
1137 task_io_accounting_add(&psig->ioac, &p->ioac);
1138 task_io_accounting_add(&psig->ioac, &sig->ioac);
1139 write_sequnlock(&psig->stats_lock);
1140 spin_unlock_irq(¤t->sighand->siglock);
1141 }
1142
1143 retval = wo->wo_rusage
1144 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1145 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1146 ? p->signal->group_exit_code : p->exit_code;
1147 if (!retval && wo->wo_stat)
1148 retval = put_user(status, wo->wo_stat);
1149
1150 infop = wo->wo_info;
1151 if (!retval && infop)
1152 retval = put_user(SIGCHLD, &infop->si_signo);
1153 if (!retval && infop)
1154 retval = put_user(0, &infop->si_errno);
1155 if (!retval && infop) {
1156 int why;
1157
1158 if ((status & 0x7f) == 0) {
1159 why = CLD_EXITED;
1160 status >>= 8;
1161 } else {
1162 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1163 status &= 0x7f;
1164 }
1165 retval = put_user((short)why, &infop->si_code);
1166 if (!retval)
1167 retval = put_user(status, &infop->si_status);
1168 }
1169 if (!retval && infop)
1170 retval = put_user(pid, &infop->si_pid);
1171 if (!retval && infop)
1172 retval = put_user(uid, &infop->si_uid);
1173 if (!retval)
1174 retval = pid;
1175
1176 if (state == EXIT_TRACE) {
1177 write_lock_irq(&tasklist_lock);
1178 /* We dropped tasklist, ptracer could die and untrace */
1179 ptrace_unlink(p);
1180
1181 /* If parent wants a zombie, don't release it now */
1182 state = EXIT_ZOMBIE;
1183 if (do_notify_parent(p, p->exit_signal))
1184 state = EXIT_DEAD;
1185 p->exit_state = state;
1186 write_unlock_irq(&tasklist_lock);
1187 }
1188 if (state == EXIT_DEAD)
1189 release_task(p);
1190
1191 return retval;
1192 }
1193
task_stopped_code(struct task_struct * p,bool ptrace)1194 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1195 {
1196 if (ptrace) {
1197 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1198 return &p->exit_code;
1199 } else {
1200 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1201 return &p->signal->group_exit_code;
1202 }
1203 return NULL;
1204 }
1205
1206 /**
1207 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1208 * @wo: wait options
1209 * @ptrace: is the wait for ptrace
1210 * @p: task to wait for
1211 *
1212 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1213 *
1214 * CONTEXT:
1215 * read_lock(&tasklist_lock), which is released if return value is
1216 * non-zero. Also, grabs and releases @p->sighand->siglock.
1217 *
1218 * RETURNS:
1219 * 0 if wait condition didn't exist and search for other wait conditions
1220 * should continue. Non-zero return, -errno on failure and @p's pid on
1221 * success, implies that tasklist_lock is released and wait condition
1222 * search should terminate.
1223 */
wait_task_stopped(struct wait_opts * wo,int ptrace,struct task_struct * p)1224 static int wait_task_stopped(struct wait_opts *wo,
1225 int ptrace, struct task_struct *p)
1226 {
1227 struct siginfo __user *infop;
1228 int retval, exit_code, *p_code, why;
1229 uid_t uid = 0; /* unneeded, required by compiler */
1230 pid_t pid;
1231
1232 /*
1233 * Traditionally we see ptrace'd stopped tasks regardless of options.
1234 */
1235 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1236 return 0;
1237
1238 if (!task_stopped_code(p, ptrace))
1239 return 0;
1240
1241 exit_code = 0;
1242 spin_lock_irq(&p->sighand->siglock);
1243
1244 p_code = task_stopped_code(p, ptrace);
1245 if (unlikely(!p_code))
1246 goto unlock_sig;
1247
1248 exit_code = *p_code;
1249 if (!exit_code)
1250 goto unlock_sig;
1251
1252 if (!unlikely(wo->wo_flags & WNOWAIT))
1253 *p_code = 0;
1254
1255 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1256 unlock_sig:
1257 spin_unlock_irq(&p->sighand->siglock);
1258 if (!exit_code)
1259 return 0;
1260
1261 /*
1262 * Now we are pretty sure this task is interesting.
1263 * Make sure it doesn't get reaped out from under us while we
1264 * give up the lock and then examine it below. We don't want to
1265 * keep holding onto the tasklist_lock while we call getrusage and
1266 * possibly take page faults for user memory.
1267 */
1268 get_task_struct(p);
1269 pid = task_pid_vnr(p);
1270 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1271 read_unlock(&tasklist_lock);
1272 sched_annotate_sleep();
1273
1274 if (unlikely(wo->wo_flags & WNOWAIT))
1275 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1276
1277 retval = wo->wo_rusage
1278 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1279 if (!retval && wo->wo_stat)
1280 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1281
1282 infop = wo->wo_info;
1283 if (!retval && infop)
1284 retval = put_user(SIGCHLD, &infop->si_signo);
1285 if (!retval && infop)
1286 retval = put_user(0, &infop->si_errno);
1287 if (!retval && infop)
1288 retval = put_user((short)why, &infop->si_code);
1289 if (!retval && infop)
1290 retval = put_user(exit_code, &infop->si_status);
1291 if (!retval && infop)
1292 retval = put_user(pid, &infop->si_pid);
1293 if (!retval && infop)
1294 retval = put_user(uid, &infop->si_uid);
1295 if (!retval)
1296 retval = pid;
1297 put_task_struct(p);
1298
1299 BUG_ON(!retval);
1300 return retval;
1301 }
1302
1303 /*
1304 * Handle do_wait work for one task in a live, non-stopped state.
1305 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1306 * the lock and this task is uninteresting. If we return nonzero, we have
1307 * released the lock and the system call should return.
1308 */
wait_task_continued(struct wait_opts * wo,struct task_struct * p)1309 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1310 {
1311 int retval;
1312 pid_t pid;
1313 uid_t uid;
1314
1315 if (!unlikely(wo->wo_flags & WCONTINUED))
1316 return 0;
1317
1318 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1319 return 0;
1320
1321 spin_lock_irq(&p->sighand->siglock);
1322 /* Re-check with the lock held. */
1323 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1324 spin_unlock_irq(&p->sighand->siglock);
1325 return 0;
1326 }
1327 if (!unlikely(wo->wo_flags & WNOWAIT))
1328 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1329 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1330 spin_unlock_irq(&p->sighand->siglock);
1331
1332 pid = task_pid_vnr(p);
1333 get_task_struct(p);
1334 read_unlock(&tasklist_lock);
1335 sched_annotate_sleep();
1336
1337 if (!wo->wo_info) {
1338 retval = wo->wo_rusage
1339 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1340 put_task_struct(p);
1341 if (!retval && wo->wo_stat)
1342 retval = put_user(0xffff, wo->wo_stat);
1343 if (!retval)
1344 retval = pid;
1345 } else {
1346 retval = wait_noreap_copyout(wo, p, pid, uid,
1347 CLD_CONTINUED, SIGCONT);
1348 BUG_ON(retval == 0);
1349 }
1350
1351 return retval;
1352 }
1353
1354 /*
1355 * Consider @p for a wait by @parent.
1356 *
1357 * -ECHILD should be in ->notask_error before the first call.
1358 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1359 * Returns zero if the search for a child should continue;
1360 * then ->notask_error is 0 if @p is an eligible child,
1361 * or another error from security_task_wait(), or still -ECHILD.
1362 */
wait_consider_task(struct wait_opts * wo,int ptrace,struct task_struct * p)1363 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1364 struct task_struct *p)
1365 {
1366 /*
1367 * We can race with wait_task_zombie() from another thread.
1368 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1369 * can't confuse the checks below.
1370 */
1371 int exit_state = ACCESS_ONCE(p->exit_state);
1372 int ret;
1373
1374 if (unlikely(exit_state == EXIT_DEAD))
1375 return 0;
1376
1377 ret = eligible_child(wo, ptrace, p);
1378 if (!ret)
1379 return ret;
1380
1381 ret = security_task_wait(p);
1382 if (unlikely(ret < 0)) {
1383 /*
1384 * If we have not yet seen any eligible child,
1385 * then let this error code replace -ECHILD.
1386 * A permission error will give the user a clue
1387 * to look for security policy problems, rather
1388 * than for mysterious wait bugs.
1389 */
1390 if (wo->notask_error)
1391 wo->notask_error = ret;
1392 return 0;
1393 }
1394
1395 if (unlikely(exit_state == EXIT_TRACE)) {
1396 /*
1397 * ptrace == 0 means we are the natural parent. In this case
1398 * we should clear notask_error, debugger will notify us.
1399 */
1400 if (likely(!ptrace))
1401 wo->notask_error = 0;
1402 return 0;
1403 }
1404
1405 if (likely(!ptrace) && unlikely(p->ptrace)) {
1406 /*
1407 * If it is traced by its real parent's group, just pretend
1408 * the caller is ptrace_do_wait() and reap this child if it
1409 * is zombie.
1410 *
1411 * This also hides group stop state from real parent; otherwise
1412 * a single stop can be reported twice as group and ptrace stop.
1413 * If a ptracer wants to distinguish these two events for its
1414 * own children it should create a separate process which takes
1415 * the role of real parent.
1416 */
1417 if (!ptrace_reparented(p))
1418 ptrace = 1;
1419 }
1420
1421 /* slay zombie? */
1422 if (exit_state == EXIT_ZOMBIE) {
1423 /* we don't reap group leaders with subthreads */
1424 if (!delay_group_leader(p)) {
1425 /*
1426 * A zombie ptracee is only visible to its ptracer.
1427 * Notification and reaping will be cascaded to the
1428 * real parent when the ptracer detaches.
1429 */
1430 if (unlikely(ptrace) || likely(!p->ptrace))
1431 return wait_task_zombie(wo, p);
1432 }
1433
1434 /*
1435 * Allow access to stopped/continued state via zombie by
1436 * falling through. Clearing of notask_error is complex.
1437 *
1438 * When !@ptrace:
1439 *
1440 * If WEXITED is set, notask_error should naturally be
1441 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1442 * so, if there are live subthreads, there are events to
1443 * wait for. If all subthreads are dead, it's still safe
1444 * to clear - this function will be called again in finite
1445 * amount time once all the subthreads are released and
1446 * will then return without clearing.
1447 *
1448 * When @ptrace:
1449 *
1450 * Stopped state is per-task and thus can't change once the
1451 * target task dies. Only continued and exited can happen.
1452 * Clear notask_error if WCONTINUED | WEXITED.
1453 */
1454 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1455 wo->notask_error = 0;
1456 } else {
1457 /*
1458 * @p is alive and it's gonna stop, continue or exit, so
1459 * there always is something to wait for.
1460 */
1461 wo->notask_error = 0;
1462 }
1463
1464 /*
1465 * Wait for stopped. Depending on @ptrace, different stopped state
1466 * is used and the two don't interact with each other.
1467 */
1468 ret = wait_task_stopped(wo, ptrace, p);
1469 if (ret)
1470 return ret;
1471
1472 /*
1473 * Wait for continued. There's only one continued state and the
1474 * ptracer can consume it which can confuse the real parent. Don't
1475 * use WCONTINUED from ptracer. You don't need or want it.
1476 */
1477 return wait_task_continued(wo, p);
1478 }
1479
1480 /*
1481 * Do the work of do_wait() for one thread in the group, @tsk.
1482 *
1483 * -ECHILD should be in ->notask_error before the first call.
1484 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1485 * Returns zero if the search for a child should continue; then
1486 * ->notask_error is 0 if there were any eligible children,
1487 * or another error from security_task_wait(), or still -ECHILD.
1488 */
do_wait_thread(struct wait_opts * wo,struct task_struct * tsk)1489 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1490 {
1491 struct task_struct *p;
1492
1493 list_for_each_entry(p, &tsk->children, sibling) {
1494 int ret = wait_consider_task(wo, 0, p);
1495
1496 if (ret)
1497 return ret;
1498 }
1499
1500 return 0;
1501 }
1502
ptrace_do_wait(struct wait_opts * wo,struct task_struct * tsk)1503 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1504 {
1505 struct task_struct *p;
1506
1507 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1508 int ret = wait_consider_task(wo, 1, p);
1509
1510 if (ret)
1511 return ret;
1512 }
1513
1514 return 0;
1515 }
1516
child_wait_callback(wait_queue_t * wait,unsigned mode,int sync,void * key)1517 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1518 int sync, void *key)
1519 {
1520 struct wait_opts *wo = container_of(wait, struct wait_opts,
1521 child_wait);
1522 struct task_struct *p = key;
1523
1524 if (!eligible_pid(wo, p))
1525 return 0;
1526
1527 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1528 return 0;
1529
1530 return default_wake_function(wait, mode, sync, key);
1531 }
1532
__wake_up_parent(struct task_struct * p,struct task_struct * parent)1533 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1534 {
1535 __wake_up_sync_key(&parent->signal->wait_chldexit,
1536 TASK_INTERRUPTIBLE, 1, p);
1537 }
1538
do_wait(struct wait_opts * wo)1539 static long do_wait(struct wait_opts *wo)
1540 {
1541 struct task_struct *tsk;
1542 int retval;
1543
1544 trace_sched_process_wait(wo->wo_pid);
1545
1546 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1547 wo->child_wait.private = current;
1548 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
1549 repeat:
1550 /*
1551 * If there is nothing that can match our criteria, just get out.
1552 * We will clear ->notask_error to zero if we see any child that
1553 * might later match our criteria, even if we are not able to reap
1554 * it yet.
1555 */
1556 wo->notask_error = -ECHILD;
1557 if ((wo->wo_type < PIDTYPE_MAX) &&
1558 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1559 goto notask;
1560
1561 set_current_state(TASK_INTERRUPTIBLE);
1562 read_lock(&tasklist_lock);
1563 tsk = current;
1564 do {
1565 retval = do_wait_thread(wo, tsk);
1566 if (retval)
1567 goto end;
1568
1569 retval = ptrace_do_wait(wo, tsk);
1570 if (retval)
1571 goto end;
1572
1573 if (wo->wo_flags & __WNOTHREAD)
1574 break;
1575 } while_each_thread(current, tsk);
1576 read_unlock(&tasklist_lock);
1577
1578 notask:
1579 retval = wo->notask_error;
1580 if (!retval && !(wo->wo_flags & WNOHANG)) {
1581 retval = -ERESTARTSYS;
1582 if (!signal_pending(current)) {
1583 schedule();
1584 goto repeat;
1585 }
1586 }
1587 end:
1588 __set_current_state(TASK_RUNNING);
1589 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
1590 return retval;
1591 }
1592
SYSCALL_DEFINE5(waitid,int,which,pid_t,upid,struct siginfo __user *,infop,int,options,struct rusage __user *,ru)1593 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1594 infop, int, options, struct rusage __user *, ru)
1595 {
1596 struct wait_opts wo;
1597 struct pid *pid = NULL;
1598 enum pid_type type;
1599 long ret;
1600
1601 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1602 __WNOTHREAD|__WCLONE|__WALL))
1603 return -EINVAL;
1604 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1605 return -EINVAL;
1606
1607 switch (which) {
1608 case P_ALL:
1609 type = PIDTYPE_MAX;
1610 break;
1611 case P_PID:
1612 type = PIDTYPE_PID;
1613 if (upid <= 0)
1614 return -EINVAL;
1615 break;
1616 case P_PGID:
1617 type = PIDTYPE_PGID;
1618 if (upid <= 0)
1619 return -EINVAL;
1620 break;
1621 default:
1622 return -EINVAL;
1623 }
1624
1625 if (type < PIDTYPE_MAX)
1626 pid = find_get_pid(upid);
1627
1628 wo.wo_type = type;
1629 wo.wo_pid = pid;
1630 wo.wo_flags = options;
1631 wo.wo_info = infop;
1632 wo.wo_stat = NULL;
1633 wo.wo_rusage = ru;
1634 ret = do_wait(&wo);
1635
1636 if (ret > 0) {
1637 ret = 0;
1638 } else if (infop) {
1639 /*
1640 * For a WNOHANG return, clear out all the fields
1641 * we would set so the user can easily tell the
1642 * difference.
1643 */
1644 if (!ret)
1645 ret = put_user(0, &infop->si_signo);
1646 if (!ret)
1647 ret = put_user(0, &infop->si_errno);
1648 if (!ret)
1649 ret = put_user(0, &infop->si_code);
1650 if (!ret)
1651 ret = put_user(0, &infop->si_pid);
1652 if (!ret)
1653 ret = put_user(0, &infop->si_uid);
1654 if (!ret)
1655 ret = put_user(0, &infop->si_status);
1656 }
1657
1658 put_pid(pid);
1659 return ret;
1660 }
1661
SYSCALL_DEFINE4(wait4,pid_t,upid,int __user *,stat_addr,int,options,struct rusage __user *,ru)1662 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1663 int, options, struct rusage __user *, ru)
1664 {
1665 struct wait_opts wo;
1666 struct pid *pid = NULL;
1667 enum pid_type type;
1668 long ret;
1669
1670 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1671 __WNOTHREAD|__WCLONE|__WALL))
1672 return -EINVAL;
1673
1674 if (upid == -1)
1675 type = PIDTYPE_MAX;
1676 else if (upid < 0) {
1677 type = PIDTYPE_PGID;
1678 pid = find_get_pid(-upid);
1679 } else if (upid == 0) {
1680 type = PIDTYPE_PGID;
1681 pid = get_task_pid(current, PIDTYPE_PGID);
1682 } else /* upid > 0 */ {
1683 type = PIDTYPE_PID;
1684 pid = find_get_pid(upid);
1685 }
1686
1687 wo.wo_type = type;
1688 wo.wo_pid = pid;
1689 wo.wo_flags = options | WEXITED;
1690 wo.wo_info = NULL;
1691 wo.wo_stat = stat_addr;
1692 wo.wo_rusage = ru;
1693 ret = do_wait(&wo);
1694 put_pid(pid);
1695
1696 return ret;
1697 }
1698
1699 #ifdef __ARCH_WANT_SYS_WAITPID
1700
1701 /*
1702 * sys_waitpid() remains for compatibility. waitpid() should be
1703 * implemented by calling sys_wait4() from libc.a.
1704 */
SYSCALL_DEFINE3(waitpid,pid_t,pid,int __user *,stat_addr,int,options)1705 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1706 {
1707 return sys_wait4(pid, stat_addr, options, NULL);
1708 }
1709
1710 #endif
1711