• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/freezer.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53 #include <linux/oom.h>
54 #include <linux/writeback.h>
55 #include <linux/shm.h>
56 #include <linux/kcov.h>
57 #include <linux/cpufreq_times.h>
58 
59 #include "sched/tune.h"
60 
61 #include <asm/uaccess.h>
62 #include <asm/unistd.h>
63 #include <asm/pgtable.h>
64 #include <asm/mmu_context.h>
65 
__unhash_process(struct task_struct * p,bool group_dead)66 static void __unhash_process(struct task_struct *p, bool group_dead)
67 {
68 	nr_threads--;
69 	detach_pid(p, PIDTYPE_PID);
70 	if (group_dead) {
71 		detach_pid(p, PIDTYPE_PGID);
72 		detach_pid(p, PIDTYPE_SID);
73 
74 		list_del_rcu(&p->tasks);
75 		list_del_init(&p->sibling);
76 		__this_cpu_dec(process_counts);
77 	}
78 	list_del_rcu(&p->thread_group);
79 	list_del_rcu(&p->thread_node);
80 }
81 
82 /*
83  * This function expects the tasklist_lock write-locked.
84  */
__exit_signal(struct task_struct * tsk)85 static void __exit_signal(struct task_struct *tsk)
86 {
87 	struct signal_struct *sig = tsk->signal;
88 	bool group_dead = thread_group_leader(tsk);
89 	struct sighand_struct *sighand;
90 	struct tty_struct *uninitialized_var(tty);
91 	cputime_t utime, stime;
92 
93 	sighand = rcu_dereference_check(tsk->sighand,
94 					lockdep_tasklist_lock_is_held());
95 	spin_lock(&sighand->siglock);
96 
97 	posix_cpu_timers_exit(tsk);
98 	if (group_dead) {
99 		posix_cpu_timers_exit_group(tsk);
100 		tty = sig->tty;
101 		sig->tty = NULL;
102 	} else {
103 		/*
104 		 * This can only happen if the caller is de_thread().
105 		 * FIXME: this is the temporary hack, we should teach
106 		 * posix-cpu-timers to handle this case correctly.
107 		 */
108 		if (unlikely(has_group_leader_pid(tsk)))
109 			posix_cpu_timers_exit_group(tsk);
110 
111 		/*
112 		 * If there is any task waiting for the group exit
113 		 * then notify it:
114 		 */
115 		if (sig->notify_count > 0 && !--sig->notify_count)
116 			wake_up_process(sig->group_exit_task);
117 
118 		if (tsk == sig->curr_target)
119 			sig->curr_target = next_thread(tsk);
120 	}
121 
122 	/*
123 	 * Accumulate here the counters for all threads as they die. We could
124 	 * skip the group leader because it is the last user of signal_struct,
125 	 * but we want to avoid the race with thread_group_cputime() which can
126 	 * see the empty ->thread_head list.
127 	 */
128 	task_cputime(tsk, &utime, &stime);
129 	write_seqlock(&sig->stats_lock);
130 	sig->utime += utime;
131 	sig->stime += stime;
132 	sig->gtime += task_gtime(tsk);
133 	sig->min_flt += tsk->min_flt;
134 	sig->maj_flt += tsk->maj_flt;
135 	sig->nvcsw += tsk->nvcsw;
136 	sig->nivcsw += tsk->nivcsw;
137 	sig->inblock += task_io_get_inblock(tsk);
138 	sig->oublock += task_io_get_oublock(tsk);
139 	task_io_accounting_add(&sig->ioac, &tsk->ioac);
140 	sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
141 	sig->nr_threads--;
142 	__unhash_process(tsk, group_dead);
143 	write_sequnlock(&sig->stats_lock);
144 
145 	/*
146 	 * Do this under ->siglock, we can race with another thread
147 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
148 	 */
149 	flush_sigqueue(&tsk->pending);
150 	tsk->sighand = NULL;
151 	spin_unlock(&sighand->siglock);
152 
153 	__cleanup_sighand(sighand);
154 	clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
155 	if (group_dead) {
156 		flush_sigqueue(&sig->shared_pending);
157 		tty_kref_put(tty);
158 	}
159 }
160 
delayed_put_task_struct(struct rcu_head * rhp)161 static void delayed_put_task_struct(struct rcu_head *rhp)
162 {
163 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
164 
165 	perf_event_delayed_put(tsk);
166 	trace_sched_process_free(tsk);
167 	put_task_struct(tsk);
168 }
169 
170 
release_task(struct task_struct * p)171 void release_task(struct task_struct *p)
172 {
173 	struct task_struct *leader;
174 	int zap_leader;
175 #ifdef CONFIG_CPU_FREQ_TIMES
176 	cpufreq_task_times_exit(p);
177 #endif
178 repeat:
179 	/* don't need to get the RCU readlock here - the process is dead and
180 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
181 	rcu_read_lock();
182 	atomic_dec(&__task_cred(p)->user->processes);
183 	rcu_read_unlock();
184 
185 	proc_flush_task(p);
186 
187 	write_lock_irq(&tasklist_lock);
188 	ptrace_release_task(p);
189 	__exit_signal(p);
190 
191 	/*
192 	 * If we are the last non-leader member of the thread
193 	 * group, and the leader is zombie, then notify the
194 	 * group leader's parent process. (if it wants notification.)
195 	 */
196 	zap_leader = 0;
197 	leader = p->group_leader;
198 	if (leader != p && thread_group_empty(leader)
199 			&& leader->exit_state == EXIT_ZOMBIE) {
200 		/*
201 		 * If we were the last child thread and the leader has
202 		 * exited already, and the leader's parent ignores SIGCHLD,
203 		 * then we are the one who should release the leader.
204 		 */
205 		zap_leader = do_notify_parent(leader, leader->exit_signal);
206 		if (zap_leader)
207 			leader->exit_state = EXIT_DEAD;
208 	}
209 
210 	write_unlock_irq(&tasklist_lock);
211 	release_thread(p);
212 	call_rcu(&p->rcu, delayed_put_task_struct);
213 
214 	p = leader;
215 	if (unlikely(zap_leader))
216 		goto repeat;
217 }
218 
219 /*
220  * Note that if this function returns a valid task_struct pointer (!NULL)
221  * task->usage must remain >0 for the duration of the RCU critical section.
222  */
task_rcu_dereference(struct task_struct ** ptask)223 struct task_struct *task_rcu_dereference(struct task_struct **ptask)
224 {
225 	struct sighand_struct *sighand;
226 	struct task_struct *task;
227 
228 	/*
229 	 * We need to verify that release_task() was not called and thus
230 	 * delayed_put_task_struct() can't run and drop the last reference
231 	 * before rcu_read_unlock(). We check task->sighand != NULL,
232 	 * but we can read the already freed and reused memory.
233 	 */
234 retry:
235 	task = rcu_dereference(*ptask);
236 	if (!task)
237 		return NULL;
238 
239 	probe_kernel_address(&task->sighand, sighand);
240 
241 	/*
242 	 * Pairs with atomic_dec_and_test() in put_task_struct(). If this task
243 	 * was already freed we can not miss the preceding update of this
244 	 * pointer.
245 	 */
246 	smp_rmb();
247 	if (unlikely(task != READ_ONCE(*ptask)))
248 		goto retry;
249 
250 	/*
251 	 * We've re-checked that "task == *ptask", now we have two different
252 	 * cases:
253 	 *
254 	 * 1. This is actually the same task/task_struct. In this case
255 	 *    sighand != NULL tells us it is still alive.
256 	 *
257 	 * 2. This is another task which got the same memory for task_struct.
258 	 *    We can't know this of course, and we can not trust
259 	 *    sighand != NULL.
260 	 *
261 	 *    In this case we actually return a random value, but this is
262 	 *    correct.
263 	 *
264 	 *    If we return NULL - we can pretend that we actually noticed that
265 	 *    *ptask was updated when the previous task has exited. Or pretend
266 	 *    that probe_slab_address(&sighand) reads NULL.
267 	 *
268 	 *    If we return the new task (because sighand is not NULL for any
269 	 *    reason) - this is fine too. This (new) task can't go away before
270 	 *    another gp pass.
271 	 *
272 	 *    And note: We could even eliminate the false positive if re-read
273 	 *    task->sighand once again to avoid the falsely NULL. But this case
274 	 *    is very unlikely so we don't care.
275 	 */
276 	if (!sighand)
277 		return NULL;
278 
279 	return task;
280 }
281 
try_get_task_struct(struct task_struct ** ptask)282 struct task_struct *try_get_task_struct(struct task_struct **ptask)
283 {
284 	struct task_struct *task;
285 
286 	rcu_read_lock();
287 	task = task_rcu_dereference(ptask);
288 	if (task)
289 		get_task_struct(task);
290 	rcu_read_unlock();
291 
292 	return task;
293 }
294 
295 /*
296  * Determine if a process group is "orphaned", according to the POSIX
297  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
298  * by terminal-generated stop signals.  Newly orphaned process groups are
299  * to receive a SIGHUP and a SIGCONT.
300  *
301  * "I ask you, have you ever known what it is to be an orphan?"
302  */
will_become_orphaned_pgrp(struct pid * pgrp,struct task_struct * ignored_task)303 static int will_become_orphaned_pgrp(struct pid *pgrp,
304 					struct task_struct *ignored_task)
305 {
306 	struct task_struct *p;
307 
308 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
309 		if ((p == ignored_task) ||
310 		    (p->exit_state && thread_group_empty(p)) ||
311 		    is_global_init(p->real_parent))
312 			continue;
313 
314 		if (task_pgrp(p->real_parent) != pgrp &&
315 		    task_session(p->real_parent) == task_session(p))
316 			return 0;
317 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
318 
319 	return 1;
320 }
321 
is_current_pgrp_orphaned(void)322 int is_current_pgrp_orphaned(void)
323 {
324 	int retval;
325 
326 	read_lock(&tasklist_lock);
327 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
328 	read_unlock(&tasklist_lock);
329 
330 	return retval;
331 }
332 
has_stopped_jobs(struct pid * pgrp)333 static bool has_stopped_jobs(struct pid *pgrp)
334 {
335 	struct task_struct *p;
336 
337 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
338 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
339 			return true;
340 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
341 
342 	return false;
343 }
344 
345 /*
346  * Check to see if any process groups have become orphaned as
347  * a result of our exiting, and if they have any stopped jobs,
348  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
349  */
350 static void
kill_orphaned_pgrp(struct task_struct * tsk,struct task_struct * parent)351 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
352 {
353 	struct pid *pgrp = task_pgrp(tsk);
354 	struct task_struct *ignored_task = tsk;
355 
356 	if (!parent)
357 		/* exit: our father is in a different pgrp than
358 		 * we are and we were the only connection outside.
359 		 */
360 		parent = tsk->real_parent;
361 	else
362 		/* reparent: our child is in a different pgrp than
363 		 * we are, and it was the only connection outside.
364 		 */
365 		ignored_task = NULL;
366 
367 	if (task_pgrp(parent) != pgrp &&
368 	    task_session(parent) == task_session(tsk) &&
369 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
370 	    has_stopped_jobs(pgrp)) {
371 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
372 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
373 	}
374 }
375 
376 #ifdef CONFIG_MEMCG
377 /*
378  * A task is exiting.   If it owned this mm, find a new owner for the mm.
379  */
mm_update_next_owner(struct mm_struct * mm)380 void mm_update_next_owner(struct mm_struct *mm)
381 {
382 	struct task_struct *c, *g, *p = current;
383 
384 retry:
385 	/*
386 	 * If the exiting or execing task is not the owner, it's
387 	 * someone else's problem.
388 	 */
389 	if (mm->owner != p)
390 		return;
391 	/*
392 	 * The current owner is exiting/execing and there are no other
393 	 * candidates.  Do not leave the mm pointing to a possibly
394 	 * freed task structure.
395 	 */
396 	if (atomic_read(&mm->mm_users) <= 1) {
397 		mm->owner = NULL;
398 		return;
399 	}
400 
401 	read_lock(&tasklist_lock);
402 	/*
403 	 * Search in the children
404 	 */
405 	list_for_each_entry(c, &p->children, sibling) {
406 		if (c->mm == mm)
407 			goto assign_new_owner;
408 	}
409 
410 	/*
411 	 * Search in the siblings
412 	 */
413 	list_for_each_entry(c, &p->real_parent->children, sibling) {
414 		if (c->mm == mm)
415 			goto assign_new_owner;
416 	}
417 
418 	/*
419 	 * Search through everything else, we should not get here often.
420 	 */
421 	for_each_process(g) {
422 		if (g->flags & PF_KTHREAD)
423 			continue;
424 		for_each_thread(g, c) {
425 			if (c->mm == mm)
426 				goto assign_new_owner;
427 			if (c->mm)
428 				break;
429 		}
430 	}
431 	read_unlock(&tasklist_lock);
432 	/*
433 	 * We found no owner yet mm_users > 1: this implies that we are
434 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
435 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
436 	 */
437 	mm->owner = NULL;
438 	return;
439 
440 assign_new_owner:
441 	BUG_ON(c == p);
442 	get_task_struct(c);
443 	/*
444 	 * The task_lock protects c->mm from changing.
445 	 * We always want mm->owner->mm == mm
446 	 */
447 	task_lock(c);
448 	/*
449 	 * Delay read_unlock() till we have the task_lock()
450 	 * to ensure that c does not slip away underneath us
451 	 */
452 	read_unlock(&tasklist_lock);
453 	if (c->mm != mm) {
454 		task_unlock(c);
455 		put_task_struct(c);
456 		goto retry;
457 	}
458 	mm->owner = c;
459 	task_unlock(c);
460 	put_task_struct(c);
461 }
462 #endif /* CONFIG_MEMCG */
463 
464 /*
465  * Turn us into a lazy TLB process if we
466  * aren't already..
467  */
exit_mm(struct task_struct * tsk)468 static void exit_mm(struct task_struct *tsk)
469 {
470 	struct mm_struct *mm = tsk->mm;
471 	struct core_state *core_state;
472 
473 	mm_release(tsk, mm);
474 	if (!mm)
475 		return;
476 	sync_mm_rss(mm);
477 	/*
478 	 * Serialize with any possible pending coredump.
479 	 * We must hold mmap_sem around checking core_state
480 	 * and clearing tsk->mm.  The core-inducing thread
481 	 * will increment ->nr_threads for each thread in the
482 	 * group with ->mm != NULL.
483 	 */
484 	down_read(&mm->mmap_sem);
485 	core_state = mm->core_state;
486 	if (core_state) {
487 		struct core_thread self;
488 
489 		up_read(&mm->mmap_sem);
490 
491 		self.task = tsk;
492 		self.next = xchg(&core_state->dumper.next, &self);
493 		/*
494 		 * Implies mb(), the result of xchg() must be visible
495 		 * to core_state->dumper.
496 		 */
497 		if (atomic_dec_and_test(&core_state->nr_threads))
498 			complete(&core_state->startup);
499 
500 		for (;;) {
501 			set_task_state(tsk, TASK_UNINTERRUPTIBLE);
502 			if (!self.task) /* see coredump_finish() */
503 				break;
504 			freezable_schedule();
505 		}
506 		__set_task_state(tsk, TASK_RUNNING);
507 		down_read(&mm->mmap_sem);
508 	}
509 	atomic_inc(&mm->mm_count);
510 	BUG_ON(mm != tsk->active_mm);
511 	/* more a memory barrier than a real lock */
512 	task_lock(tsk);
513 	tsk->mm = NULL;
514 	up_read(&mm->mmap_sem);
515 	enter_lazy_tlb(mm, current);
516 	task_unlock(tsk);
517 	mm_update_next_owner(mm);
518 	mmput(mm);
519 	if (test_thread_flag(TIF_MEMDIE))
520 		exit_oom_victim();
521 }
522 
find_alive_thread(struct task_struct * p)523 static struct task_struct *find_alive_thread(struct task_struct *p)
524 {
525 	struct task_struct *t;
526 
527 	for_each_thread(p, t) {
528 		if (!(t->flags & PF_EXITING))
529 			return t;
530 	}
531 	return NULL;
532 }
533 
find_child_reaper(struct task_struct * father)534 static struct task_struct *find_child_reaper(struct task_struct *father)
535 	__releases(&tasklist_lock)
536 	__acquires(&tasklist_lock)
537 {
538 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
539 	struct task_struct *reaper = pid_ns->child_reaper;
540 
541 	if (likely(reaper != father))
542 		return reaper;
543 
544 	reaper = find_alive_thread(father);
545 	if (reaper) {
546 		pid_ns->child_reaper = reaper;
547 		return reaper;
548 	}
549 
550 	write_unlock_irq(&tasklist_lock);
551 	if (unlikely(pid_ns == &init_pid_ns)) {
552 		panic("Attempted to kill init! exitcode=0x%08x\n",
553 			father->signal->group_exit_code ?: father->exit_code);
554 	}
555 	zap_pid_ns_processes(pid_ns);
556 	write_lock_irq(&tasklist_lock);
557 
558 	return father;
559 }
560 
561 /*
562  * When we die, we re-parent all our children, and try to:
563  * 1. give them to another thread in our thread group, if such a member exists
564  * 2. give it to the first ancestor process which prctl'd itself as a
565  *    child_subreaper for its children (like a service manager)
566  * 3. give it to the init process (PID 1) in our pid namespace
567  */
find_new_reaper(struct task_struct * father,struct task_struct * child_reaper)568 static struct task_struct *find_new_reaper(struct task_struct *father,
569 					   struct task_struct *child_reaper)
570 {
571 	struct task_struct *thread, *reaper;
572 
573 	thread = find_alive_thread(father);
574 	if (thread)
575 		return thread;
576 
577 	if (father->signal->has_child_subreaper) {
578 		/*
579 		 * Find the first ->is_child_subreaper ancestor in our pid_ns.
580 		 * We start from father to ensure we can not look into another
581 		 * namespace, this is safe because all its threads are dead.
582 		 */
583 		for (reaper = father;
584 		     !same_thread_group(reaper, child_reaper);
585 		     reaper = reaper->real_parent) {
586 			/* call_usermodehelper() descendants need this check */
587 			if (reaper == &init_task)
588 				break;
589 			if (!reaper->signal->is_child_subreaper)
590 				continue;
591 			thread = find_alive_thread(reaper);
592 			if (thread)
593 				return thread;
594 		}
595 	}
596 
597 	return child_reaper;
598 }
599 
600 /*
601 * Any that need to be release_task'd are put on the @dead list.
602  */
reparent_leader(struct task_struct * father,struct task_struct * p,struct list_head * dead)603 static void reparent_leader(struct task_struct *father, struct task_struct *p,
604 				struct list_head *dead)
605 {
606 	if (unlikely(p->exit_state == EXIT_DEAD))
607 		return;
608 
609 	/* We don't want people slaying init. */
610 	p->exit_signal = SIGCHLD;
611 
612 	/* If it has exited notify the new parent about this child's death. */
613 	if (!p->ptrace &&
614 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
615 		if (do_notify_parent(p, p->exit_signal)) {
616 			p->exit_state = EXIT_DEAD;
617 			list_add(&p->ptrace_entry, dead);
618 		}
619 	}
620 
621 	kill_orphaned_pgrp(p, father);
622 }
623 
624 /*
625  * This does two things:
626  *
627  * A.  Make init inherit all the child processes
628  * B.  Check to see if any process groups have become orphaned
629  *	as a result of our exiting, and if they have any stopped
630  *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
631  */
forget_original_parent(struct task_struct * father,struct list_head * dead)632 static void forget_original_parent(struct task_struct *father,
633 					struct list_head *dead)
634 {
635 	struct task_struct *p, *t, *reaper;
636 
637 	if (unlikely(!list_empty(&father->ptraced)))
638 		exit_ptrace(father, dead);
639 
640 	/* Can drop and reacquire tasklist_lock */
641 	reaper = find_child_reaper(father);
642 	if (list_empty(&father->children))
643 		return;
644 
645 	reaper = find_new_reaper(father, reaper);
646 	list_for_each_entry(p, &father->children, sibling) {
647 		for_each_thread(p, t) {
648 			t->real_parent = reaper;
649 			BUG_ON((!t->ptrace) != (t->parent == father));
650 			if (likely(!t->ptrace))
651 				t->parent = t->real_parent;
652 			if (t->pdeath_signal)
653 				group_send_sig_info(t->pdeath_signal,
654 						    SEND_SIG_NOINFO, t);
655 		}
656 		/*
657 		 * If this is a threaded reparent there is no need to
658 		 * notify anyone anything has happened.
659 		 */
660 		if (!same_thread_group(reaper, father))
661 			reparent_leader(father, p, dead);
662 	}
663 	list_splice_tail_init(&father->children, &reaper->children);
664 }
665 
666 /*
667  * Send signals to all our closest relatives so that they know
668  * to properly mourn us..
669  */
exit_notify(struct task_struct * tsk,int group_dead)670 static void exit_notify(struct task_struct *tsk, int group_dead)
671 {
672 	bool autoreap;
673 	struct task_struct *p, *n;
674 	LIST_HEAD(dead);
675 
676 	write_lock_irq(&tasklist_lock);
677 	forget_original_parent(tsk, &dead);
678 
679 	if (group_dead)
680 		kill_orphaned_pgrp(tsk->group_leader, NULL);
681 
682 	if (unlikely(tsk->ptrace)) {
683 		int sig = thread_group_leader(tsk) &&
684 				thread_group_empty(tsk) &&
685 				!ptrace_reparented(tsk) ?
686 			tsk->exit_signal : SIGCHLD;
687 		autoreap = do_notify_parent(tsk, sig);
688 	} else if (thread_group_leader(tsk)) {
689 		autoreap = thread_group_empty(tsk) &&
690 			do_notify_parent(tsk, tsk->exit_signal);
691 	} else {
692 		autoreap = true;
693 	}
694 
695 	tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
696 	if (tsk->exit_state == EXIT_DEAD)
697 		list_add(&tsk->ptrace_entry, &dead);
698 
699 	/* mt-exec, de_thread() is waiting for group leader */
700 	if (unlikely(tsk->signal->notify_count < 0))
701 		wake_up_process(tsk->signal->group_exit_task);
702 	write_unlock_irq(&tasklist_lock);
703 
704 	list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
705 		list_del_init(&p->ptrace_entry);
706 		release_task(p);
707 	}
708 }
709 
710 #ifdef CONFIG_DEBUG_STACK_USAGE
check_stack_usage(void)711 static void check_stack_usage(void)
712 {
713 	static DEFINE_SPINLOCK(low_water_lock);
714 	static int lowest_to_date = THREAD_SIZE;
715 	unsigned long free;
716 
717 	free = stack_not_used(current);
718 
719 	if (free >= lowest_to_date)
720 		return;
721 
722 	spin_lock(&low_water_lock);
723 	if (free < lowest_to_date) {
724 		pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
725 			current->comm, task_pid_nr(current), free);
726 		lowest_to_date = free;
727 	}
728 	spin_unlock(&low_water_lock);
729 }
730 #else
check_stack_usage(void)731 static inline void check_stack_usage(void) {}
732 #endif
733 
do_exit(long code)734 void __noreturn do_exit(long code)
735 {
736 	struct task_struct *tsk = current;
737 	int group_dead;
738 	TASKS_RCU(int tasks_rcu_i);
739 
740 	profile_task_exit(tsk);
741 	kcov_task_exit(tsk);
742 
743 	WARN_ON(blk_needs_flush_plug(tsk));
744 
745 	if (unlikely(in_interrupt()))
746 		panic("Aiee, killing interrupt handler!");
747 	if (unlikely(!tsk->pid))
748 		panic("Attempted to kill the idle task!");
749 
750 	/*
751 	 * If do_exit is called because this processes oopsed, it's possible
752 	 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
753 	 * continuing. Amongst other possible reasons, this is to prevent
754 	 * mm_release()->clear_child_tid() from writing to a user-controlled
755 	 * kernel address.
756 	 */
757 	set_fs(USER_DS);
758 
759 	ptrace_event(PTRACE_EVENT_EXIT, code);
760 
761 	validate_creds_for_do_exit(tsk);
762 
763 	/*
764 	 * We're taking recursive faults here in do_exit. Safest is to just
765 	 * leave this task alone and wait for reboot.
766 	 */
767 	if (unlikely(tsk->flags & PF_EXITING)) {
768 		pr_alert("Fixing recursive fault but reboot is needed!\n");
769 		/*
770 		 * We can do this unlocked here. The futex code uses
771 		 * this flag just to verify whether the pi state
772 		 * cleanup has been done or not. In the worst case it
773 		 * loops once more. We pretend that the cleanup was
774 		 * done as there is no way to return. Either the
775 		 * OWNER_DIED bit is set by now or we push the blocked
776 		 * task into the wait for ever nirwana as well.
777 		 */
778 		tsk->flags |= PF_EXITPIDONE;
779 		set_current_state(TASK_UNINTERRUPTIBLE);
780 		schedule();
781 	}
782 
783 	exit_signals(tsk);  /* sets PF_EXITING */
784 
785 	schedtune_exit_task(tsk);
786 
787 	/*
788 	 * Ensure that all new tsk->pi_lock acquisitions must observe
789 	 * PF_EXITING. Serializes against futex.c:attach_to_pi_owner().
790 	 */
791 	smp_mb();
792 	/*
793 	 * Ensure that we must observe the pi_state in exit_mm() ->
794 	 * mm_release() -> exit_pi_state_list().
795 	 */
796 	raw_spin_unlock_wait(&tsk->pi_lock);
797 
798 	if (unlikely(in_atomic())) {
799 		pr_info("note: %s[%d] exited with preempt_count %d\n",
800 			current->comm, task_pid_nr(current),
801 			preempt_count());
802 		preempt_count_set(PREEMPT_ENABLED);
803 	}
804 
805 	/* sync mm's RSS info before statistics gathering */
806 	if (tsk->mm)
807 		sync_mm_rss(tsk->mm);
808 	acct_update_integrals(tsk);
809 	group_dead = atomic_dec_and_test(&tsk->signal->live);
810 	if (group_dead) {
811 		hrtimer_cancel(&tsk->signal->real_timer);
812 		exit_itimers(tsk->signal);
813 		if (tsk->mm)
814 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
815 	}
816 	acct_collect(code, group_dead);
817 	if (group_dead)
818 		tty_audit_exit();
819 	audit_free(tsk);
820 
821 	tsk->exit_code = code;
822 	taskstats_exit(tsk, group_dead);
823 
824 	exit_mm(tsk);
825 
826 	if (group_dead)
827 		acct_process();
828 	trace_sched_process_exit(tsk);
829 
830 	exit_sem(tsk);
831 	exit_shm(tsk);
832 	exit_files(tsk);
833 	exit_fs(tsk);
834 	if (group_dead)
835 		disassociate_ctty(1);
836 	exit_task_namespaces(tsk);
837 	exit_task_work(tsk);
838 	exit_thread(tsk);
839 
840 	/*
841 	 * Flush inherited counters to the parent - before the parent
842 	 * gets woken up by child-exit notifications.
843 	 *
844 	 * because of cgroup mode, must be called before cgroup_exit()
845 	 */
846 	perf_event_exit_task(tsk);
847 
848 	sched_autogroup_exit_task(tsk);
849 	cgroup_exit(tsk);
850 
851 	/*
852 	 * FIXME: do that only when needed, using sched_exit tracepoint
853 	 */
854 	flush_ptrace_hw_breakpoint(tsk);
855 
856 	TASKS_RCU(preempt_disable());
857 	TASKS_RCU(tasks_rcu_i = __srcu_read_lock(&tasks_rcu_exit_srcu));
858 	TASKS_RCU(preempt_enable());
859 	exit_notify(tsk, group_dead);
860 	proc_exit_connector(tsk);
861 	mpol_put_task_policy(tsk);
862 #ifdef CONFIG_FUTEX
863 	if (unlikely(current->pi_state_cache))
864 		kfree(current->pi_state_cache);
865 #endif
866 	/*
867 	 * Make sure we are holding no locks:
868 	 */
869 	debug_check_no_locks_held();
870 	/*
871 	 * We can do this unlocked here. The futex code uses this flag
872 	 * just to verify whether the pi state cleanup has been done
873 	 * or not. In the worst case it loops once more.
874 	 */
875 	tsk->flags |= PF_EXITPIDONE;
876 
877 	if (tsk->io_context)
878 		exit_io_context(tsk);
879 
880 	if (tsk->splice_pipe)
881 		free_pipe_info(tsk->splice_pipe);
882 
883 	if (tsk->task_frag.page)
884 		put_page(tsk->task_frag.page);
885 
886 	validate_creds_for_do_exit(tsk);
887 
888 	check_stack_usage();
889 	preempt_disable();
890 	if (tsk->nr_dirtied)
891 		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
892 	exit_rcu();
893 	TASKS_RCU(__srcu_read_unlock(&tasks_rcu_exit_srcu, tasks_rcu_i));
894 
895 	do_task_dead();
896 }
897 EXPORT_SYMBOL_GPL(do_exit);
898 
complete_and_exit(struct completion * comp,long code)899 void complete_and_exit(struct completion *comp, long code)
900 {
901 	if (comp)
902 		complete(comp);
903 
904 	do_exit(code);
905 }
906 EXPORT_SYMBOL(complete_and_exit);
907 
SYSCALL_DEFINE1(exit,int,error_code)908 SYSCALL_DEFINE1(exit, int, error_code)
909 {
910 	do_exit((error_code&0xff)<<8);
911 }
912 
913 /*
914  * Take down every thread in the group.  This is called by fatal signals
915  * as well as by sys_exit_group (below).
916  */
917 void
do_group_exit(int exit_code)918 do_group_exit(int exit_code)
919 {
920 	struct signal_struct *sig = current->signal;
921 
922 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
923 
924 	if (signal_group_exit(sig))
925 		exit_code = sig->group_exit_code;
926 	else if (!thread_group_empty(current)) {
927 		struct sighand_struct *const sighand = current->sighand;
928 
929 		spin_lock_irq(&sighand->siglock);
930 		if (signal_group_exit(sig))
931 			/* Another thread got here before we took the lock.  */
932 			exit_code = sig->group_exit_code;
933 		else {
934 			sig->group_exit_code = exit_code;
935 			sig->flags = SIGNAL_GROUP_EXIT;
936 			zap_other_threads(current);
937 		}
938 		spin_unlock_irq(&sighand->siglock);
939 	}
940 
941 	do_exit(exit_code);
942 	/* NOTREACHED */
943 }
944 
945 /*
946  * this kills every thread in the thread group. Note that any externally
947  * wait4()-ing process will get the correct exit code - even if this
948  * thread is not the thread group leader.
949  */
SYSCALL_DEFINE1(exit_group,int,error_code)950 SYSCALL_DEFINE1(exit_group, int, error_code)
951 {
952 	do_group_exit((error_code & 0xff) << 8);
953 	/* NOTREACHED */
954 	return 0;
955 }
956 
957 struct wait_opts {
958 	enum pid_type		wo_type;
959 	int			wo_flags;
960 	struct pid		*wo_pid;
961 
962 	struct siginfo __user	*wo_info;
963 	int __user		*wo_stat;
964 	struct rusage __user	*wo_rusage;
965 
966 	wait_queue_t		child_wait;
967 	int			notask_error;
968 };
969 
970 static inline
task_pid_type(struct task_struct * task,enum pid_type type)971 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
972 {
973 	if (type != PIDTYPE_PID)
974 		task = task->group_leader;
975 	return task->pids[type].pid;
976 }
977 
eligible_pid(struct wait_opts * wo,struct task_struct * p)978 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
979 {
980 	return	wo->wo_type == PIDTYPE_MAX ||
981 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
982 }
983 
984 static int
eligible_child(struct wait_opts * wo,bool ptrace,struct task_struct * p)985 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
986 {
987 	if (!eligible_pid(wo, p))
988 		return 0;
989 
990 	/*
991 	 * Wait for all children (clone and not) if __WALL is set or
992 	 * if it is traced by us.
993 	 */
994 	if (ptrace || (wo->wo_flags & __WALL))
995 		return 1;
996 
997 	/*
998 	 * Otherwise, wait for clone children *only* if __WCLONE is set;
999 	 * otherwise, wait for non-clone children *only*.
1000 	 *
1001 	 * Note: a "clone" child here is one that reports to its parent
1002 	 * using a signal other than SIGCHLD, or a non-leader thread which
1003 	 * we can only see if it is traced by us.
1004 	 */
1005 	if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1006 		return 0;
1007 
1008 	return 1;
1009 }
1010 
wait_noreap_copyout(struct wait_opts * wo,struct task_struct * p,pid_t pid,uid_t uid,int why,int status)1011 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
1012 				pid_t pid, uid_t uid, int why, int status)
1013 {
1014 	struct siginfo __user *infop;
1015 	int retval = wo->wo_rusage
1016 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1017 
1018 	put_task_struct(p);
1019 	infop = wo->wo_info;
1020 	if (infop) {
1021 		if (!retval)
1022 			retval = put_user(SIGCHLD, &infop->si_signo);
1023 		if (!retval)
1024 			retval = put_user(0, &infop->si_errno);
1025 		if (!retval)
1026 			retval = put_user((short)why, &infop->si_code);
1027 		if (!retval)
1028 			retval = put_user(pid, &infop->si_pid);
1029 		if (!retval)
1030 			retval = put_user(uid, &infop->si_uid);
1031 		if (!retval)
1032 			retval = put_user(status, &infop->si_status);
1033 	}
1034 	if (!retval)
1035 		retval = pid;
1036 	return retval;
1037 }
1038 
1039 /*
1040  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1041  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1042  * the lock and this task is uninteresting.  If we return nonzero, we have
1043  * released the lock and the system call should return.
1044  */
wait_task_zombie(struct wait_opts * wo,struct task_struct * p)1045 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1046 {
1047 	int state, retval, status;
1048 	pid_t pid = task_pid_vnr(p);
1049 	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1050 	struct siginfo __user *infop;
1051 
1052 	if (!likely(wo->wo_flags & WEXITED))
1053 		return 0;
1054 
1055 	if (unlikely(wo->wo_flags & WNOWAIT)) {
1056 		int exit_code = p->exit_code;
1057 		int why;
1058 
1059 		get_task_struct(p);
1060 		read_unlock(&tasklist_lock);
1061 		sched_annotate_sleep();
1062 
1063 		if ((exit_code & 0x7f) == 0) {
1064 			why = CLD_EXITED;
1065 			status = exit_code >> 8;
1066 		} else {
1067 			why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1068 			status = exit_code & 0x7f;
1069 		}
1070 		return wait_noreap_copyout(wo, p, pid, uid, why, status);
1071 	}
1072 	/*
1073 	 * Move the task's state to DEAD/TRACE, only one thread can do this.
1074 	 */
1075 	state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1076 		EXIT_TRACE : EXIT_DEAD;
1077 	if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1078 		return 0;
1079 	/*
1080 	 * We own this thread, nobody else can reap it.
1081 	 */
1082 	read_unlock(&tasklist_lock);
1083 	sched_annotate_sleep();
1084 
1085 	/*
1086 	 * Check thread_group_leader() to exclude the traced sub-threads.
1087 	 */
1088 	if (state == EXIT_DEAD && thread_group_leader(p)) {
1089 		struct signal_struct *sig = p->signal;
1090 		struct signal_struct *psig = current->signal;
1091 		unsigned long maxrss;
1092 		cputime_t tgutime, tgstime;
1093 
1094 		/*
1095 		 * The resource counters for the group leader are in its
1096 		 * own task_struct.  Those for dead threads in the group
1097 		 * are in its signal_struct, as are those for the child
1098 		 * processes it has previously reaped.  All these
1099 		 * accumulate in the parent's signal_struct c* fields.
1100 		 *
1101 		 * We don't bother to take a lock here to protect these
1102 		 * p->signal fields because the whole thread group is dead
1103 		 * and nobody can change them.
1104 		 *
1105 		 * psig->stats_lock also protects us from our sub-theads
1106 		 * which can reap other children at the same time. Until
1107 		 * we change k_getrusage()-like users to rely on this lock
1108 		 * we have to take ->siglock as well.
1109 		 *
1110 		 * We use thread_group_cputime_adjusted() to get times for
1111 		 * the thread group, which consolidates times for all threads
1112 		 * in the group including the group leader.
1113 		 */
1114 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1115 		spin_lock_irq(&current->sighand->siglock);
1116 		write_seqlock(&psig->stats_lock);
1117 		psig->cutime += tgutime + sig->cutime;
1118 		psig->cstime += tgstime + sig->cstime;
1119 		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1120 		psig->cmin_flt +=
1121 			p->min_flt + sig->min_flt + sig->cmin_flt;
1122 		psig->cmaj_flt +=
1123 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1124 		psig->cnvcsw +=
1125 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1126 		psig->cnivcsw +=
1127 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1128 		psig->cinblock +=
1129 			task_io_get_inblock(p) +
1130 			sig->inblock + sig->cinblock;
1131 		psig->coublock +=
1132 			task_io_get_oublock(p) +
1133 			sig->oublock + sig->coublock;
1134 		maxrss = max(sig->maxrss, sig->cmaxrss);
1135 		if (psig->cmaxrss < maxrss)
1136 			psig->cmaxrss = maxrss;
1137 		task_io_accounting_add(&psig->ioac, &p->ioac);
1138 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1139 		write_sequnlock(&psig->stats_lock);
1140 		spin_unlock_irq(&current->sighand->siglock);
1141 	}
1142 
1143 	retval = wo->wo_rusage
1144 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1145 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1146 		? p->signal->group_exit_code : p->exit_code;
1147 	if (!retval && wo->wo_stat)
1148 		retval = put_user(status, wo->wo_stat);
1149 
1150 	infop = wo->wo_info;
1151 	if (!retval && infop)
1152 		retval = put_user(SIGCHLD, &infop->si_signo);
1153 	if (!retval && infop)
1154 		retval = put_user(0, &infop->si_errno);
1155 	if (!retval && infop) {
1156 		int why;
1157 
1158 		if ((status & 0x7f) == 0) {
1159 			why = CLD_EXITED;
1160 			status >>= 8;
1161 		} else {
1162 			why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1163 			status &= 0x7f;
1164 		}
1165 		retval = put_user((short)why, &infop->si_code);
1166 		if (!retval)
1167 			retval = put_user(status, &infop->si_status);
1168 	}
1169 	if (!retval && infop)
1170 		retval = put_user(pid, &infop->si_pid);
1171 	if (!retval && infop)
1172 		retval = put_user(uid, &infop->si_uid);
1173 	if (!retval)
1174 		retval = pid;
1175 
1176 	if (state == EXIT_TRACE) {
1177 		write_lock_irq(&tasklist_lock);
1178 		/* We dropped tasklist, ptracer could die and untrace */
1179 		ptrace_unlink(p);
1180 
1181 		/* If parent wants a zombie, don't release it now */
1182 		state = EXIT_ZOMBIE;
1183 		if (do_notify_parent(p, p->exit_signal))
1184 			state = EXIT_DEAD;
1185 		p->exit_state = state;
1186 		write_unlock_irq(&tasklist_lock);
1187 	}
1188 	if (state == EXIT_DEAD)
1189 		release_task(p);
1190 
1191 	return retval;
1192 }
1193 
task_stopped_code(struct task_struct * p,bool ptrace)1194 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1195 {
1196 	if (ptrace) {
1197 		if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1198 			return &p->exit_code;
1199 	} else {
1200 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1201 			return &p->signal->group_exit_code;
1202 	}
1203 	return NULL;
1204 }
1205 
1206 /**
1207  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1208  * @wo: wait options
1209  * @ptrace: is the wait for ptrace
1210  * @p: task to wait for
1211  *
1212  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1213  *
1214  * CONTEXT:
1215  * read_lock(&tasklist_lock), which is released if return value is
1216  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1217  *
1218  * RETURNS:
1219  * 0 if wait condition didn't exist and search for other wait conditions
1220  * should continue.  Non-zero return, -errno on failure and @p's pid on
1221  * success, implies that tasklist_lock is released and wait condition
1222  * search should terminate.
1223  */
wait_task_stopped(struct wait_opts * wo,int ptrace,struct task_struct * p)1224 static int wait_task_stopped(struct wait_opts *wo,
1225 				int ptrace, struct task_struct *p)
1226 {
1227 	struct siginfo __user *infop;
1228 	int retval, exit_code, *p_code, why;
1229 	uid_t uid = 0; /* unneeded, required by compiler */
1230 	pid_t pid;
1231 
1232 	/*
1233 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1234 	 */
1235 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1236 		return 0;
1237 
1238 	if (!task_stopped_code(p, ptrace))
1239 		return 0;
1240 
1241 	exit_code = 0;
1242 	spin_lock_irq(&p->sighand->siglock);
1243 
1244 	p_code = task_stopped_code(p, ptrace);
1245 	if (unlikely(!p_code))
1246 		goto unlock_sig;
1247 
1248 	exit_code = *p_code;
1249 	if (!exit_code)
1250 		goto unlock_sig;
1251 
1252 	if (!unlikely(wo->wo_flags & WNOWAIT))
1253 		*p_code = 0;
1254 
1255 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1256 unlock_sig:
1257 	spin_unlock_irq(&p->sighand->siglock);
1258 	if (!exit_code)
1259 		return 0;
1260 
1261 	/*
1262 	 * Now we are pretty sure this task is interesting.
1263 	 * Make sure it doesn't get reaped out from under us while we
1264 	 * give up the lock and then examine it below.  We don't want to
1265 	 * keep holding onto the tasklist_lock while we call getrusage and
1266 	 * possibly take page faults for user memory.
1267 	 */
1268 	get_task_struct(p);
1269 	pid = task_pid_vnr(p);
1270 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1271 	read_unlock(&tasklist_lock);
1272 	sched_annotate_sleep();
1273 
1274 	if (unlikely(wo->wo_flags & WNOWAIT))
1275 		return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1276 
1277 	retval = wo->wo_rusage
1278 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1279 	if (!retval && wo->wo_stat)
1280 		retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1281 
1282 	infop = wo->wo_info;
1283 	if (!retval && infop)
1284 		retval = put_user(SIGCHLD, &infop->si_signo);
1285 	if (!retval && infop)
1286 		retval = put_user(0, &infop->si_errno);
1287 	if (!retval && infop)
1288 		retval = put_user((short)why, &infop->si_code);
1289 	if (!retval && infop)
1290 		retval = put_user(exit_code, &infop->si_status);
1291 	if (!retval && infop)
1292 		retval = put_user(pid, &infop->si_pid);
1293 	if (!retval && infop)
1294 		retval = put_user(uid, &infop->si_uid);
1295 	if (!retval)
1296 		retval = pid;
1297 	put_task_struct(p);
1298 
1299 	BUG_ON(!retval);
1300 	return retval;
1301 }
1302 
1303 /*
1304  * Handle do_wait work for one task in a live, non-stopped state.
1305  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1306  * the lock and this task is uninteresting.  If we return nonzero, we have
1307  * released the lock and the system call should return.
1308  */
wait_task_continued(struct wait_opts * wo,struct task_struct * p)1309 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1310 {
1311 	int retval;
1312 	pid_t pid;
1313 	uid_t uid;
1314 
1315 	if (!unlikely(wo->wo_flags & WCONTINUED))
1316 		return 0;
1317 
1318 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1319 		return 0;
1320 
1321 	spin_lock_irq(&p->sighand->siglock);
1322 	/* Re-check with the lock held.  */
1323 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1324 		spin_unlock_irq(&p->sighand->siglock);
1325 		return 0;
1326 	}
1327 	if (!unlikely(wo->wo_flags & WNOWAIT))
1328 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1329 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1330 	spin_unlock_irq(&p->sighand->siglock);
1331 
1332 	pid = task_pid_vnr(p);
1333 	get_task_struct(p);
1334 	read_unlock(&tasklist_lock);
1335 	sched_annotate_sleep();
1336 
1337 	if (!wo->wo_info) {
1338 		retval = wo->wo_rusage
1339 			? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1340 		put_task_struct(p);
1341 		if (!retval && wo->wo_stat)
1342 			retval = put_user(0xffff, wo->wo_stat);
1343 		if (!retval)
1344 			retval = pid;
1345 	} else {
1346 		retval = wait_noreap_copyout(wo, p, pid, uid,
1347 					     CLD_CONTINUED, SIGCONT);
1348 		BUG_ON(retval == 0);
1349 	}
1350 
1351 	return retval;
1352 }
1353 
1354 /*
1355  * Consider @p for a wait by @parent.
1356  *
1357  * -ECHILD should be in ->notask_error before the first call.
1358  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1359  * Returns zero if the search for a child should continue;
1360  * then ->notask_error is 0 if @p is an eligible child,
1361  * or another error from security_task_wait(), or still -ECHILD.
1362  */
wait_consider_task(struct wait_opts * wo,int ptrace,struct task_struct * p)1363 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1364 				struct task_struct *p)
1365 {
1366 	/*
1367 	 * We can race with wait_task_zombie() from another thread.
1368 	 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1369 	 * can't confuse the checks below.
1370 	 */
1371 	int exit_state = ACCESS_ONCE(p->exit_state);
1372 	int ret;
1373 
1374 	if (unlikely(exit_state == EXIT_DEAD))
1375 		return 0;
1376 
1377 	ret = eligible_child(wo, ptrace, p);
1378 	if (!ret)
1379 		return ret;
1380 
1381 	ret = security_task_wait(p);
1382 	if (unlikely(ret < 0)) {
1383 		/*
1384 		 * If we have not yet seen any eligible child,
1385 		 * then let this error code replace -ECHILD.
1386 		 * A permission error will give the user a clue
1387 		 * to look for security policy problems, rather
1388 		 * than for mysterious wait bugs.
1389 		 */
1390 		if (wo->notask_error)
1391 			wo->notask_error = ret;
1392 		return 0;
1393 	}
1394 
1395 	if (unlikely(exit_state == EXIT_TRACE)) {
1396 		/*
1397 		 * ptrace == 0 means we are the natural parent. In this case
1398 		 * we should clear notask_error, debugger will notify us.
1399 		 */
1400 		if (likely(!ptrace))
1401 			wo->notask_error = 0;
1402 		return 0;
1403 	}
1404 
1405 	if (likely(!ptrace) && unlikely(p->ptrace)) {
1406 		/*
1407 		 * If it is traced by its real parent's group, just pretend
1408 		 * the caller is ptrace_do_wait() and reap this child if it
1409 		 * is zombie.
1410 		 *
1411 		 * This also hides group stop state from real parent; otherwise
1412 		 * a single stop can be reported twice as group and ptrace stop.
1413 		 * If a ptracer wants to distinguish these two events for its
1414 		 * own children it should create a separate process which takes
1415 		 * the role of real parent.
1416 		 */
1417 		if (!ptrace_reparented(p))
1418 			ptrace = 1;
1419 	}
1420 
1421 	/* slay zombie? */
1422 	if (exit_state == EXIT_ZOMBIE) {
1423 		/* we don't reap group leaders with subthreads */
1424 		if (!delay_group_leader(p)) {
1425 			/*
1426 			 * A zombie ptracee is only visible to its ptracer.
1427 			 * Notification and reaping will be cascaded to the
1428 			 * real parent when the ptracer detaches.
1429 			 */
1430 			if (unlikely(ptrace) || likely(!p->ptrace))
1431 				return wait_task_zombie(wo, p);
1432 		}
1433 
1434 		/*
1435 		 * Allow access to stopped/continued state via zombie by
1436 		 * falling through.  Clearing of notask_error is complex.
1437 		 *
1438 		 * When !@ptrace:
1439 		 *
1440 		 * If WEXITED is set, notask_error should naturally be
1441 		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1442 		 * so, if there are live subthreads, there are events to
1443 		 * wait for.  If all subthreads are dead, it's still safe
1444 		 * to clear - this function will be called again in finite
1445 		 * amount time once all the subthreads are released and
1446 		 * will then return without clearing.
1447 		 *
1448 		 * When @ptrace:
1449 		 *
1450 		 * Stopped state is per-task and thus can't change once the
1451 		 * target task dies.  Only continued and exited can happen.
1452 		 * Clear notask_error if WCONTINUED | WEXITED.
1453 		 */
1454 		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1455 			wo->notask_error = 0;
1456 	} else {
1457 		/*
1458 		 * @p is alive and it's gonna stop, continue or exit, so
1459 		 * there always is something to wait for.
1460 		 */
1461 		wo->notask_error = 0;
1462 	}
1463 
1464 	/*
1465 	 * Wait for stopped.  Depending on @ptrace, different stopped state
1466 	 * is used and the two don't interact with each other.
1467 	 */
1468 	ret = wait_task_stopped(wo, ptrace, p);
1469 	if (ret)
1470 		return ret;
1471 
1472 	/*
1473 	 * Wait for continued.  There's only one continued state and the
1474 	 * ptracer can consume it which can confuse the real parent.  Don't
1475 	 * use WCONTINUED from ptracer.  You don't need or want it.
1476 	 */
1477 	return wait_task_continued(wo, p);
1478 }
1479 
1480 /*
1481  * Do the work of do_wait() for one thread in the group, @tsk.
1482  *
1483  * -ECHILD should be in ->notask_error before the first call.
1484  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1485  * Returns zero if the search for a child should continue; then
1486  * ->notask_error is 0 if there were any eligible children,
1487  * or another error from security_task_wait(), or still -ECHILD.
1488  */
do_wait_thread(struct wait_opts * wo,struct task_struct * tsk)1489 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1490 {
1491 	struct task_struct *p;
1492 
1493 	list_for_each_entry(p, &tsk->children, sibling) {
1494 		int ret = wait_consider_task(wo, 0, p);
1495 
1496 		if (ret)
1497 			return ret;
1498 	}
1499 
1500 	return 0;
1501 }
1502 
ptrace_do_wait(struct wait_opts * wo,struct task_struct * tsk)1503 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1504 {
1505 	struct task_struct *p;
1506 
1507 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1508 		int ret = wait_consider_task(wo, 1, p);
1509 
1510 		if (ret)
1511 			return ret;
1512 	}
1513 
1514 	return 0;
1515 }
1516 
child_wait_callback(wait_queue_t * wait,unsigned mode,int sync,void * key)1517 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1518 				int sync, void *key)
1519 {
1520 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1521 						child_wait);
1522 	struct task_struct *p = key;
1523 
1524 	if (!eligible_pid(wo, p))
1525 		return 0;
1526 
1527 	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1528 		return 0;
1529 
1530 	return default_wake_function(wait, mode, sync, key);
1531 }
1532 
__wake_up_parent(struct task_struct * p,struct task_struct * parent)1533 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1534 {
1535 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1536 				TASK_INTERRUPTIBLE, 1, p);
1537 }
1538 
do_wait(struct wait_opts * wo)1539 static long do_wait(struct wait_opts *wo)
1540 {
1541 	struct task_struct *tsk;
1542 	int retval;
1543 
1544 	trace_sched_process_wait(wo->wo_pid);
1545 
1546 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1547 	wo->child_wait.private = current;
1548 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1549 repeat:
1550 	/*
1551 	 * If there is nothing that can match our criteria, just get out.
1552 	 * We will clear ->notask_error to zero if we see any child that
1553 	 * might later match our criteria, even if we are not able to reap
1554 	 * it yet.
1555 	 */
1556 	wo->notask_error = -ECHILD;
1557 	if ((wo->wo_type < PIDTYPE_MAX) &&
1558 	   (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1559 		goto notask;
1560 
1561 	set_current_state(TASK_INTERRUPTIBLE);
1562 	read_lock(&tasklist_lock);
1563 	tsk = current;
1564 	do {
1565 		retval = do_wait_thread(wo, tsk);
1566 		if (retval)
1567 			goto end;
1568 
1569 		retval = ptrace_do_wait(wo, tsk);
1570 		if (retval)
1571 			goto end;
1572 
1573 		if (wo->wo_flags & __WNOTHREAD)
1574 			break;
1575 	} while_each_thread(current, tsk);
1576 	read_unlock(&tasklist_lock);
1577 
1578 notask:
1579 	retval = wo->notask_error;
1580 	if (!retval && !(wo->wo_flags & WNOHANG)) {
1581 		retval = -ERESTARTSYS;
1582 		if (!signal_pending(current)) {
1583 			schedule();
1584 			goto repeat;
1585 		}
1586 	}
1587 end:
1588 	__set_current_state(TASK_RUNNING);
1589 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1590 	return retval;
1591 }
1592 
SYSCALL_DEFINE5(waitid,int,which,pid_t,upid,struct siginfo __user *,infop,int,options,struct rusage __user *,ru)1593 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1594 		infop, int, options, struct rusage __user *, ru)
1595 {
1596 	struct wait_opts wo;
1597 	struct pid *pid = NULL;
1598 	enum pid_type type;
1599 	long ret;
1600 
1601 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1602 			__WNOTHREAD|__WCLONE|__WALL))
1603 		return -EINVAL;
1604 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1605 		return -EINVAL;
1606 
1607 	switch (which) {
1608 	case P_ALL:
1609 		type = PIDTYPE_MAX;
1610 		break;
1611 	case P_PID:
1612 		type = PIDTYPE_PID;
1613 		if (upid <= 0)
1614 			return -EINVAL;
1615 		break;
1616 	case P_PGID:
1617 		type = PIDTYPE_PGID;
1618 		if (upid <= 0)
1619 			return -EINVAL;
1620 		break;
1621 	default:
1622 		return -EINVAL;
1623 	}
1624 
1625 	if (type < PIDTYPE_MAX)
1626 		pid = find_get_pid(upid);
1627 
1628 	wo.wo_type	= type;
1629 	wo.wo_pid	= pid;
1630 	wo.wo_flags	= options;
1631 	wo.wo_info	= infop;
1632 	wo.wo_stat	= NULL;
1633 	wo.wo_rusage	= ru;
1634 	ret = do_wait(&wo);
1635 
1636 	if (ret > 0) {
1637 		ret = 0;
1638 	} else if (infop) {
1639 		/*
1640 		 * For a WNOHANG return, clear out all the fields
1641 		 * we would set so the user can easily tell the
1642 		 * difference.
1643 		 */
1644 		if (!ret)
1645 			ret = put_user(0, &infop->si_signo);
1646 		if (!ret)
1647 			ret = put_user(0, &infop->si_errno);
1648 		if (!ret)
1649 			ret = put_user(0, &infop->si_code);
1650 		if (!ret)
1651 			ret = put_user(0, &infop->si_pid);
1652 		if (!ret)
1653 			ret = put_user(0, &infop->si_uid);
1654 		if (!ret)
1655 			ret = put_user(0, &infop->si_status);
1656 	}
1657 
1658 	put_pid(pid);
1659 	return ret;
1660 }
1661 
SYSCALL_DEFINE4(wait4,pid_t,upid,int __user *,stat_addr,int,options,struct rusage __user *,ru)1662 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1663 		int, options, struct rusage __user *, ru)
1664 {
1665 	struct wait_opts wo;
1666 	struct pid *pid = NULL;
1667 	enum pid_type type;
1668 	long ret;
1669 
1670 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1671 			__WNOTHREAD|__WCLONE|__WALL))
1672 		return -EINVAL;
1673 
1674 	if (upid == -1)
1675 		type = PIDTYPE_MAX;
1676 	else if (upid < 0) {
1677 		type = PIDTYPE_PGID;
1678 		pid = find_get_pid(-upid);
1679 	} else if (upid == 0) {
1680 		type = PIDTYPE_PGID;
1681 		pid = get_task_pid(current, PIDTYPE_PGID);
1682 	} else /* upid > 0 */ {
1683 		type = PIDTYPE_PID;
1684 		pid = find_get_pid(upid);
1685 	}
1686 
1687 	wo.wo_type	= type;
1688 	wo.wo_pid	= pid;
1689 	wo.wo_flags	= options | WEXITED;
1690 	wo.wo_info	= NULL;
1691 	wo.wo_stat	= stat_addr;
1692 	wo.wo_rusage	= ru;
1693 	ret = do_wait(&wo);
1694 	put_pid(pid);
1695 
1696 	return ret;
1697 }
1698 
1699 #ifdef __ARCH_WANT_SYS_WAITPID
1700 
1701 /*
1702  * sys_waitpid() remains for compatibility. waitpid() should be
1703  * implemented by calling sys_wait4() from libc.a.
1704  */
SYSCALL_DEFINE3(waitpid,pid_t,pid,int __user *,stat_addr,int,options)1705 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1706 {
1707 	return sys_wait4(pid, stat_addr, options, NULL);
1708 }
1709 
1710 #endif
1711