• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Sleepable Read-Copy Update mechanism for mutual exclusion.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, you can access it online at
16  * http://www.gnu.org/licenses/gpl-2.0.html.
17  *
18  * Copyright (C) IBM Corporation, 2006
19  * Copyright (C) Fujitsu, 2012
20  *
21  * Author: Paul McKenney <paulmck@us.ibm.com>
22  *	   Lai Jiangshan <laijs@cn.fujitsu.com>
23  *
24  * For detailed explanation of Read-Copy Update mechanism see -
25  * 		Documentation/RCU/ *.txt
26  *
27  */
28 
29 #include <linux/export.h>
30 #include <linux/mutex.h>
31 #include <linux/percpu.h>
32 #include <linux/preempt.h>
33 #include <linux/rcupdate.h>
34 #include <linux/sched.h>
35 #include <linux/smp.h>
36 #include <linux/delay.h>
37 #include <linux/srcu.h>
38 
39 #include "rcu.h"
40 
41 /*
42  * Initialize an rcu_batch structure to empty.
43  */
rcu_batch_init(struct rcu_batch * b)44 static inline void rcu_batch_init(struct rcu_batch *b)
45 {
46 	b->head = NULL;
47 	b->tail = &b->head;
48 }
49 
50 /*
51  * Enqueue a callback onto the tail of the specified rcu_batch structure.
52  */
rcu_batch_queue(struct rcu_batch * b,struct rcu_head * head)53 static inline void rcu_batch_queue(struct rcu_batch *b, struct rcu_head *head)
54 {
55 	*b->tail = head;
56 	b->tail = &head->next;
57 }
58 
59 /*
60  * Is the specified rcu_batch structure empty?
61  */
rcu_batch_empty(struct rcu_batch * b)62 static inline bool rcu_batch_empty(struct rcu_batch *b)
63 {
64 	return b->tail == &b->head;
65 }
66 
67 /*
68  * Remove the callback at the head of the specified rcu_batch structure
69  * and return a pointer to it, or return NULL if the structure is empty.
70  */
rcu_batch_dequeue(struct rcu_batch * b)71 static inline struct rcu_head *rcu_batch_dequeue(struct rcu_batch *b)
72 {
73 	struct rcu_head *head;
74 
75 	if (rcu_batch_empty(b))
76 		return NULL;
77 
78 	head = b->head;
79 	b->head = head->next;
80 	if (b->tail == &head->next)
81 		rcu_batch_init(b);
82 
83 	return head;
84 }
85 
86 /*
87  * Move all callbacks from the rcu_batch structure specified by "from" to
88  * the structure specified by "to".
89  */
rcu_batch_move(struct rcu_batch * to,struct rcu_batch * from)90 static inline void rcu_batch_move(struct rcu_batch *to, struct rcu_batch *from)
91 {
92 	if (!rcu_batch_empty(from)) {
93 		*to->tail = from->head;
94 		to->tail = from->tail;
95 		rcu_batch_init(from);
96 	}
97 }
98 
init_srcu_struct_fields(struct srcu_struct * sp)99 static int init_srcu_struct_fields(struct srcu_struct *sp)
100 {
101 	sp->completed = 0;
102 	spin_lock_init(&sp->queue_lock);
103 	sp->running = false;
104 	rcu_batch_init(&sp->batch_queue);
105 	rcu_batch_init(&sp->batch_check0);
106 	rcu_batch_init(&sp->batch_check1);
107 	rcu_batch_init(&sp->batch_done);
108 	INIT_DELAYED_WORK(&sp->work, process_srcu);
109 	sp->per_cpu_ref = alloc_percpu(struct srcu_struct_array);
110 	return sp->per_cpu_ref ? 0 : -ENOMEM;
111 }
112 
113 #ifdef CONFIG_DEBUG_LOCK_ALLOC
114 
__init_srcu_struct(struct srcu_struct * sp,const char * name,struct lock_class_key * key)115 int __init_srcu_struct(struct srcu_struct *sp, const char *name,
116 		       struct lock_class_key *key)
117 {
118 	/* Don't re-initialize a lock while it is held. */
119 	debug_check_no_locks_freed((void *)sp, sizeof(*sp));
120 	lockdep_init_map(&sp->dep_map, name, key, 0);
121 	return init_srcu_struct_fields(sp);
122 }
123 EXPORT_SYMBOL_GPL(__init_srcu_struct);
124 
125 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
126 
127 /**
128  * init_srcu_struct - initialize a sleep-RCU structure
129  * @sp: structure to initialize.
130  *
131  * Must invoke this on a given srcu_struct before passing that srcu_struct
132  * to any other function.  Each srcu_struct represents a separate domain
133  * of SRCU protection.
134  */
init_srcu_struct(struct srcu_struct * sp)135 int init_srcu_struct(struct srcu_struct *sp)
136 {
137 	return init_srcu_struct_fields(sp);
138 }
139 EXPORT_SYMBOL_GPL(init_srcu_struct);
140 
141 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
142 
143 /*
144  * Returns approximate total of the readers' ->seq[] values for the
145  * rank of per-CPU counters specified by idx.
146  */
srcu_readers_seq_idx(struct srcu_struct * sp,int idx)147 static unsigned long srcu_readers_seq_idx(struct srcu_struct *sp, int idx)
148 {
149 	int cpu;
150 	unsigned long sum = 0;
151 	unsigned long t;
152 
153 	for_each_possible_cpu(cpu) {
154 		t = READ_ONCE(per_cpu_ptr(sp->per_cpu_ref, cpu)->seq[idx]);
155 		sum += t;
156 	}
157 	return sum;
158 }
159 
160 /*
161  * Returns approximate number of readers active on the specified rank
162  * of the per-CPU ->c[] counters.
163  */
srcu_readers_active_idx(struct srcu_struct * sp,int idx)164 static unsigned long srcu_readers_active_idx(struct srcu_struct *sp, int idx)
165 {
166 	int cpu;
167 	unsigned long sum = 0;
168 	unsigned long t;
169 
170 	for_each_possible_cpu(cpu) {
171 		t = READ_ONCE(per_cpu_ptr(sp->per_cpu_ref, cpu)->c[idx]);
172 		sum += t;
173 	}
174 	return sum;
175 }
176 
177 /*
178  * Return true if the number of pre-existing readers is determined to
179  * be stably zero.  An example unstable zero can occur if the call
180  * to srcu_readers_active_idx() misses an __srcu_read_lock() increment,
181  * but due to task migration, sees the corresponding __srcu_read_unlock()
182  * decrement.  This can happen because srcu_readers_active_idx() takes
183  * time to sum the array, and might in fact be interrupted or preempted
184  * partway through the summation.
185  */
srcu_readers_active_idx_check(struct srcu_struct * sp,int idx)186 static bool srcu_readers_active_idx_check(struct srcu_struct *sp, int idx)
187 {
188 	unsigned long seq;
189 
190 	seq = srcu_readers_seq_idx(sp, idx);
191 
192 	/*
193 	 * The following smp_mb() A pairs with the smp_mb() B located in
194 	 * __srcu_read_lock().  This pairing ensures that if an
195 	 * __srcu_read_lock() increments its counter after the summation
196 	 * in srcu_readers_active_idx(), then the corresponding SRCU read-side
197 	 * critical section will see any changes made prior to the start
198 	 * of the current SRCU grace period.
199 	 *
200 	 * Also, if the above call to srcu_readers_seq_idx() saw the
201 	 * increment of ->seq[], then the call to srcu_readers_active_idx()
202 	 * must see the increment of ->c[].
203 	 */
204 	smp_mb(); /* A */
205 
206 	/*
207 	 * Note that srcu_readers_active_idx() can incorrectly return
208 	 * zero even though there is a pre-existing reader throughout.
209 	 * To see this, suppose that task A is in a very long SRCU
210 	 * read-side critical section that started on CPU 0, and that
211 	 * no other reader exists, so that the sum of the counters
212 	 * is equal to one.  Then suppose that task B starts executing
213 	 * srcu_readers_active_idx(), summing up to CPU 1, and then that
214 	 * task C starts reading on CPU 0, so that its increment is not
215 	 * summed, but finishes reading on CPU 2, so that its decrement
216 	 * -is- summed.  Then when task B completes its sum, it will
217 	 * incorrectly get zero, despite the fact that task A has been
218 	 * in its SRCU read-side critical section the whole time.
219 	 *
220 	 * We therefore do a validation step should srcu_readers_active_idx()
221 	 * return zero.
222 	 */
223 	if (srcu_readers_active_idx(sp, idx) != 0)
224 		return false;
225 
226 	/*
227 	 * The remainder of this function is the validation step.
228 	 * The following smp_mb() D pairs with the smp_mb() C in
229 	 * __srcu_read_unlock().  If the __srcu_read_unlock() was seen
230 	 * by srcu_readers_active_idx() above, then any destructive
231 	 * operation performed after the grace period will happen after
232 	 * the corresponding SRCU read-side critical section.
233 	 *
234 	 * Note that there can be at most NR_CPUS worth of readers using
235 	 * the old index, which is not enough to overflow even a 32-bit
236 	 * integer.  (Yes, this does mean that systems having more than
237 	 * a billion or so CPUs need to be 64-bit systems.)  Therefore,
238 	 * the sum of the ->seq[] counters cannot possibly overflow.
239 	 * Therefore, the only way that the return values of the two
240 	 * calls to srcu_readers_seq_idx() can be equal is if there were
241 	 * no increments of the corresponding rank of ->seq[] counts
242 	 * in the interim.  But the missed-increment scenario laid out
243 	 * above includes an increment of the ->seq[] counter by
244 	 * the corresponding __srcu_read_lock().  Therefore, if this
245 	 * scenario occurs, the return values from the two calls to
246 	 * srcu_readers_seq_idx() will differ, and thus the validation
247 	 * step below suffices.
248 	 */
249 	smp_mb(); /* D */
250 
251 	return srcu_readers_seq_idx(sp, idx) == seq;
252 }
253 
254 /**
255  * srcu_readers_active - returns true if there are readers. and false
256  *                       otherwise
257  * @sp: which srcu_struct to count active readers (holding srcu_read_lock).
258  *
259  * Note that this is not an atomic primitive, and can therefore suffer
260  * severe errors when invoked on an active srcu_struct.  That said, it
261  * can be useful as an error check at cleanup time.
262  */
srcu_readers_active(struct srcu_struct * sp)263 static bool srcu_readers_active(struct srcu_struct *sp)
264 {
265 	int cpu;
266 	unsigned long sum = 0;
267 
268 	for_each_possible_cpu(cpu) {
269 		sum += READ_ONCE(per_cpu_ptr(sp->per_cpu_ref, cpu)->c[0]);
270 		sum += READ_ONCE(per_cpu_ptr(sp->per_cpu_ref, cpu)->c[1]);
271 	}
272 	return sum;
273 }
274 
275 /**
276  * cleanup_srcu_struct - deconstruct a sleep-RCU structure
277  * @sp: structure to clean up.
278  *
279  * Must invoke this after you are finished using a given srcu_struct that
280  * was initialized via init_srcu_struct(), else you leak memory.
281  */
cleanup_srcu_struct(struct srcu_struct * sp)282 void cleanup_srcu_struct(struct srcu_struct *sp)
283 {
284 	if (WARN_ON(srcu_readers_active(sp)))
285 		return; /* Leakage unless caller handles error. */
286 	free_percpu(sp->per_cpu_ref);
287 	sp->per_cpu_ref = NULL;
288 }
289 EXPORT_SYMBOL_GPL(cleanup_srcu_struct);
290 
291 /*
292  * Counts the new reader in the appropriate per-CPU element of the
293  * srcu_struct.  Must be called from process context.
294  * Returns an index that must be passed to the matching srcu_read_unlock().
295  */
__srcu_read_lock(struct srcu_struct * sp)296 int __srcu_read_lock(struct srcu_struct *sp)
297 {
298 	int idx;
299 
300 	idx = READ_ONCE(sp->completed) & 0x1;
301 	__this_cpu_inc(sp->per_cpu_ref->c[idx]);
302 	smp_mb(); /* B */  /* Avoid leaking the critical section. */
303 	__this_cpu_inc(sp->per_cpu_ref->seq[idx]);
304 	return idx;
305 }
306 EXPORT_SYMBOL_GPL(__srcu_read_lock);
307 
308 /*
309  * Removes the count for the old reader from the appropriate per-CPU
310  * element of the srcu_struct.  Note that this may well be a different
311  * CPU than that which was incremented by the corresponding srcu_read_lock().
312  * Must be called from process context.
313  */
__srcu_read_unlock(struct srcu_struct * sp,int idx)314 void __srcu_read_unlock(struct srcu_struct *sp, int idx)
315 {
316 	smp_mb(); /* C */  /* Avoid leaking the critical section. */
317 	this_cpu_dec(sp->per_cpu_ref->c[idx]);
318 }
319 EXPORT_SYMBOL_GPL(__srcu_read_unlock);
320 
321 /*
322  * We use an adaptive strategy for synchronize_srcu() and especially for
323  * synchronize_srcu_expedited().  We spin for a fixed time period
324  * (defined below) to allow SRCU readers to exit their read-side critical
325  * sections.  If there are still some readers after 10 microseconds,
326  * we repeatedly block for 1-millisecond time periods.  This approach
327  * has done well in testing, so there is no need for a config parameter.
328  */
329 #define SRCU_RETRY_CHECK_DELAY		5
330 #define SYNCHRONIZE_SRCU_TRYCOUNT	2
331 #define SYNCHRONIZE_SRCU_EXP_TRYCOUNT	12
332 
333 /*
334  * @@@ Wait until all pre-existing readers complete.  Such readers
335  * will have used the index specified by "idx".
336  * the caller should ensures the ->completed is not changed while checking
337  * and idx = (->completed & 1) ^ 1
338  */
try_check_zero(struct srcu_struct * sp,int idx,int trycount)339 static bool try_check_zero(struct srcu_struct *sp, int idx, int trycount)
340 {
341 	for (;;) {
342 		if (srcu_readers_active_idx_check(sp, idx))
343 			return true;
344 		if (--trycount <= 0)
345 			return false;
346 		udelay(SRCU_RETRY_CHECK_DELAY);
347 	}
348 }
349 
350 /*
351  * Increment the ->completed counter so that future SRCU readers will
352  * use the other rank of the ->c[] and ->seq[] arrays.  This allows
353  * us to wait for pre-existing readers in a starvation-free manner.
354  */
srcu_flip(struct srcu_struct * sp)355 static void srcu_flip(struct srcu_struct *sp)
356 {
357 	sp->completed++;
358 }
359 
360 /*
361  * Enqueue an SRCU callback on the specified srcu_struct structure,
362  * initiating grace-period processing if it is not already running.
363  *
364  * Note that all CPUs must agree that the grace period extended beyond
365  * all pre-existing SRCU read-side critical section.  On systems with
366  * more than one CPU, this means that when "func()" is invoked, each CPU
367  * is guaranteed to have executed a full memory barrier since the end of
368  * its last corresponding SRCU read-side critical section whose beginning
369  * preceded the call to call_rcu().  It also means that each CPU executing
370  * an SRCU read-side critical section that continues beyond the start of
371  * "func()" must have executed a memory barrier after the call_rcu()
372  * but before the beginning of that SRCU read-side critical section.
373  * Note that these guarantees include CPUs that are offline, idle, or
374  * executing in user mode, as well as CPUs that are executing in the kernel.
375  *
376  * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
377  * resulting SRCU callback function "func()", then both CPU A and CPU
378  * B are guaranteed to execute a full memory barrier during the time
379  * interval between the call to call_rcu() and the invocation of "func()".
380  * This guarantee applies even if CPU A and CPU B are the same CPU (but
381  * again only if the system has more than one CPU).
382  *
383  * Of course, these guarantees apply only for invocations of call_srcu(),
384  * srcu_read_lock(), and srcu_read_unlock() that are all passed the same
385  * srcu_struct structure.
386  */
call_srcu(struct srcu_struct * sp,struct rcu_head * head,rcu_callback_t func)387 void call_srcu(struct srcu_struct *sp, struct rcu_head *head,
388 	       rcu_callback_t func)
389 {
390 	unsigned long flags;
391 
392 	head->next = NULL;
393 	head->func = func;
394 	spin_lock_irqsave(&sp->queue_lock, flags);
395 	rcu_batch_queue(&sp->batch_queue, head);
396 	if (!sp->running) {
397 		sp->running = true;
398 		queue_delayed_work(system_power_efficient_wq, &sp->work, 0);
399 	}
400 	spin_unlock_irqrestore(&sp->queue_lock, flags);
401 }
402 EXPORT_SYMBOL_GPL(call_srcu);
403 
404 static void srcu_advance_batches(struct srcu_struct *sp, int trycount);
405 static void srcu_reschedule(struct srcu_struct *sp);
406 
407 /*
408  * Helper function for synchronize_srcu() and synchronize_srcu_expedited().
409  */
__synchronize_srcu(struct srcu_struct * sp,int trycount)410 static void __synchronize_srcu(struct srcu_struct *sp, int trycount)
411 {
412 	struct rcu_synchronize rcu;
413 	struct rcu_head *head = &rcu.head;
414 	bool done = false;
415 
416 	RCU_LOCKDEP_WARN(lock_is_held(&sp->dep_map) ||
417 			 lock_is_held(&rcu_bh_lock_map) ||
418 			 lock_is_held(&rcu_lock_map) ||
419 			 lock_is_held(&rcu_sched_lock_map),
420 			 "Illegal synchronize_srcu() in same-type SRCU (or in RCU) read-side critical section");
421 
422 	might_sleep();
423 	init_completion(&rcu.completion);
424 
425 	head->next = NULL;
426 	head->func = wakeme_after_rcu;
427 	spin_lock_irq(&sp->queue_lock);
428 	if (!sp->running) {
429 		/* steal the processing owner */
430 		sp->running = true;
431 		rcu_batch_queue(&sp->batch_check0, head);
432 		spin_unlock_irq(&sp->queue_lock);
433 
434 		srcu_advance_batches(sp, trycount);
435 		if (!rcu_batch_empty(&sp->batch_done)) {
436 			BUG_ON(sp->batch_done.head != head);
437 			rcu_batch_dequeue(&sp->batch_done);
438 			done = true;
439 		}
440 		/* give the processing owner to work_struct */
441 		srcu_reschedule(sp);
442 	} else {
443 		rcu_batch_queue(&sp->batch_queue, head);
444 		spin_unlock_irq(&sp->queue_lock);
445 	}
446 
447 	if (!done)
448 		wait_for_completion(&rcu.completion);
449 }
450 
451 /**
452  * synchronize_srcu - wait for prior SRCU read-side critical-section completion
453  * @sp: srcu_struct with which to synchronize.
454  *
455  * Wait for the count to drain to zero of both indexes. To avoid the
456  * possible starvation of synchronize_srcu(), it waits for the count of
457  * the index=((->completed & 1) ^ 1) to drain to zero at first,
458  * and then flip the completed and wait for the count of the other index.
459  *
460  * Can block; must be called from process context.
461  *
462  * Note that it is illegal to call synchronize_srcu() from the corresponding
463  * SRCU read-side critical section; doing so will result in deadlock.
464  * However, it is perfectly legal to call synchronize_srcu() on one
465  * srcu_struct from some other srcu_struct's read-side critical section,
466  * as long as the resulting graph of srcu_structs is acyclic.
467  *
468  * There are memory-ordering constraints implied by synchronize_srcu().
469  * On systems with more than one CPU, when synchronize_srcu() returns,
470  * each CPU is guaranteed to have executed a full memory barrier since
471  * the end of its last corresponding SRCU-sched read-side critical section
472  * whose beginning preceded the call to synchronize_srcu().  In addition,
473  * each CPU having an SRCU read-side critical section that extends beyond
474  * the return from synchronize_srcu() is guaranteed to have executed a
475  * full memory barrier after the beginning of synchronize_srcu() and before
476  * the beginning of that SRCU read-side critical section.  Note that these
477  * guarantees include CPUs that are offline, idle, or executing in user mode,
478  * as well as CPUs that are executing in the kernel.
479  *
480  * Furthermore, if CPU A invoked synchronize_srcu(), which returned
481  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
482  * to have executed a full memory barrier during the execution of
483  * synchronize_srcu().  This guarantee applies even if CPU A and CPU B
484  * are the same CPU, but again only if the system has more than one CPU.
485  *
486  * Of course, these memory-ordering guarantees apply only when
487  * synchronize_srcu(), srcu_read_lock(), and srcu_read_unlock() are
488  * passed the same srcu_struct structure.
489  */
synchronize_srcu(struct srcu_struct * sp)490 void synchronize_srcu(struct srcu_struct *sp)
491 {
492 	__synchronize_srcu(sp, (rcu_gp_is_expedited() && !rcu_gp_is_normal())
493 			   ? SYNCHRONIZE_SRCU_EXP_TRYCOUNT
494 			   : SYNCHRONIZE_SRCU_TRYCOUNT);
495 }
496 EXPORT_SYMBOL_GPL(synchronize_srcu);
497 
498 /**
499  * synchronize_srcu_expedited - Brute-force SRCU grace period
500  * @sp: srcu_struct with which to synchronize.
501  *
502  * Wait for an SRCU grace period to elapse, but be more aggressive about
503  * spinning rather than blocking when waiting.
504  *
505  * Note that synchronize_srcu_expedited() has the same deadlock and
506  * memory-ordering properties as does synchronize_srcu().
507  */
synchronize_srcu_expedited(struct srcu_struct * sp)508 void synchronize_srcu_expedited(struct srcu_struct *sp)
509 {
510 	__synchronize_srcu(sp, SYNCHRONIZE_SRCU_EXP_TRYCOUNT);
511 }
512 EXPORT_SYMBOL_GPL(synchronize_srcu_expedited);
513 
514 /**
515  * srcu_barrier - Wait until all in-flight call_srcu() callbacks complete.
516  * @sp: srcu_struct on which to wait for in-flight callbacks.
517  */
srcu_barrier(struct srcu_struct * sp)518 void srcu_barrier(struct srcu_struct *sp)
519 {
520 	synchronize_srcu(sp);
521 }
522 EXPORT_SYMBOL_GPL(srcu_barrier);
523 
524 /**
525  * srcu_batches_completed - return batches completed.
526  * @sp: srcu_struct on which to report batch completion.
527  *
528  * Report the number of batches, correlated with, but not necessarily
529  * precisely the same as, the number of grace periods that have elapsed.
530  */
srcu_batches_completed(struct srcu_struct * sp)531 unsigned long srcu_batches_completed(struct srcu_struct *sp)
532 {
533 	return sp->completed;
534 }
535 EXPORT_SYMBOL_GPL(srcu_batches_completed);
536 
537 #define SRCU_CALLBACK_BATCH	10
538 #define SRCU_INTERVAL		1
539 
540 /*
541  * Move any new SRCU callbacks to the first stage of the SRCU grace
542  * period pipeline.
543  */
srcu_collect_new(struct srcu_struct * sp)544 static void srcu_collect_new(struct srcu_struct *sp)
545 {
546 	if (!rcu_batch_empty(&sp->batch_queue)) {
547 		spin_lock_irq(&sp->queue_lock);
548 		rcu_batch_move(&sp->batch_check0, &sp->batch_queue);
549 		spin_unlock_irq(&sp->queue_lock);
550 	}
551 }
552 
553 /*
554  * Core SRCU state machine.  Advance callbacks from ->batch_check0 to
555  * ->batch_check1 and then to ->batch_done as readers drain.
556  */
srcu_advance_batches(struct srcu_struct * sp,int trycount)557 static void srcu_advance_batches(struct srcu_struct *sp, int trycount)
558 {
559 	int idx = 1 ^ (sp->completed & 1);
560 
561 	/*
562 	 * Because readers might be delayed for an extended period after
563 	 * fetching ->completed for their index, at any point in time there
564 	 * might well be readers using both idx=0 and idx=1.  We therefore
565 	 * need to wait for readers to clear from both index values before
566 	 * invoking a callback.
567 	 */
568 
569 	if (rcu_batch_empty(&sp->batch_check0) &&
570 	    rcu_batch_empty(&sp->batch_check1))
571 		return; /* no callbacks need to be advanced */
572 
573 	if (!try_check_zero(sp, idx, trycount))
574 		return; /* failed to advance, will try after SRCU_INTERVAL */
575 
576 	/*
577 	 * The callbacks in ->batch_check1 have already done with their
578 	 * first zero check and flip back when they were enqueued on
579 	 * ->batch_check0 in a previous invocation of srcu_advance_batches().
580 	 * (Presumably try_check_zero() returned false during that
581 	 * invocation, leaving the callbacks stranded on ->batch_check1.)
582 	 * They are therefore ready to invoke, so move them to ->batch_done.
583 	 */
584 	rcu_batch_move(&sp->batch_done, &sp->batch_check1);
585 
586 	if (rcu_batch_empty(&sp->batch_check0))
587 		return; /* no callbacks need to be advanced */
588 	srcu_flip(sp);
589 
590 	/*
591 	 * The callbacks in ->batch_check0 just finished their
592 	 * first check zero and flip, so move them to ->batch_check1
593 	 * for future checking on the other idx.
594 	 */
595 	rcu_batch_move(&sp->batch_check1, &sp->batch_check0);
596 
597 	/*
598 	 * SRCU read-side critical sections are normally short, so check
599 	 * at least twice in quick succession after a flip.
600 	 */
601 	trycount = trycount < 2 ? 2 : trycount;
602 	if (!try_check_zero(sp, idx^1, trycount))
603 		return; /* failed to advance, will try after SRCU_INTERVAL */
604 
605 	/*
606 	 * The callbacks in ->batch_check1 have now waited for all
607 	 * pre-existing readers using both idx values.  They are therefore
608 	 * ready to invoke, so move them to ->batch_done.
609 	 */
610 	rcu_batch_move(&sp->batch_done, &sp->batch_check1);
611 }
612 
613 /*
614  * Invoke a limited number of SRCU callbacks that have passed through
615  * their grace period.  If there are more to do, SRCU will reschedule
616  * the workqueue.
617  */
srcu_invoke_callbacks(struct srcu_struct * sp)618 static void srcu_invoke_callbacks(struct srcu_struct *sp)
619 {
620 	int i;
621 	struct rcu_head *head;
622 
623 	for (i = 0; i < SRCU_CALLBACK_BATCH; i++) {
624 		head = rcu_batch_dequeue(&sp->batch_done);
625 		if (!head)
626 			break;
627 		local_bh_disable();
628 		head->func(head);
629 		local_bh_enable();
630 	}
631 }
632 
633 /*
634  * Finished one round of SRCU grace period.  Start another if there are
635  * more SRCU callbacks queued, otherwise put SRCU into not-running state.
636  */
srcu_reschedule(struct srcu_struct * sp)637 static void srcu_reschedule(struct srcu_struct *sp)
638 {
639 	bool pending = true;
640 
641 	if (rcu_batch_empty(&sp->batch_done) &&
642 	    rcu_batch_empty(&sp->batch_check1) &&
643 	    rcu_batch_empty(&sp->batch_check0) &&
644 	    rcu_batch_empty(&sp->batch_queue)) {
645 		spin_lock_irq(&sp->queue_lock);
646 		if (rcu_batch_empty(&sp->batch_done) &&
647 		    rcu_batch_empty(&sp->batch_check1) &&
648 		    rcu_batch_empty(&sp->batch_check0) &&
649 		    rcu_batch_empty(&sp->batch_queue)) {
650 			sp->running = false;
651 			pending = false;
652 		}
653 		spin_unlock_irq(&sp->queue_lock);
654 	}
655 
656 	if (pending)
657 		queue_delayed_work(system_power_efficient_wq,
658 				   &sp->work, SRCU_INTERVAL);
659 }
660 
661 /*
662  * This is the work-queue function that handles SRCU grace periods.
663  */
process_srcu(struct work_struct * work)664 void process_srcu(struct work_struct *work)
665 {
666 	struct srcu_struct *sp;
667 
668 	sp = container_of(work, struct srcu_struct, work.work);
669 
670 	srcu_collect_new(sp);
671 	srcu_advance_batches(sp, 1);
672 	srcu_invoke_callbacks(sp);
673 	srcu_reschedule(sp);
674 }
675 EXPORT_SYMBOL_GPL(process_srcu);
676