1 /*
2 * linux/kernel/hrtimer.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
31 * For licencing details see kernel-base/COPYING
32 */
33
34 #include <linux/cpu.h>
35 #include <linux/export.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched.h>
47 #include <linux/sched/sysctl.h>
48 #include <linux/sched/rt.h>
49 #include <linux/sched/deadline.h>
50 #include <linux/timer.h>
51 #include <linux/freezer.h>
52
53 #include <asm/uaccess.h>
54
55 #include <trace/events/timer.h>
56
57 #include "tick-internal.h"
58
59 /*
60 * The timer bases:
61 *
62 * There are more clockids than hrtimer bases. Thus, we index
63 * into the timer bases by the hrtimer_base_type enum. When trying
64 * to reach a base using a clockid, hrtimer_clockid_to_base()
65 * is used to convert from clockid to the proper hrtimer_base_type.
66 */
67 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
68 {
69 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
70 .seq = SEQCNT_ZERO(hrtimer_bases.seq),
71 .clock_base =
72 {
73 {
74 .index = HRTIMER_BASE_MONOTONIC,
75 .clockid = CLOCK_MONOTONIC,
76 .get_time = &ktime_get,
77 },
78 {
79 .index = HRTIMER_BASE_REALTIME,
80 .clockid = CLOCK_REALTIME,
81 .get_time = &ktime_get_real,
82 },
83 {
84 .index = HRTIMER_BASE_BOOTTIME,
85 .clockid = CLOCK_BOOTTIME,
86 .get_time = &ktime_get_boottime,
87 },
88 {
89 .index = HRTIMER_BASE_TAI,
90 .clockid = CLOCK_TAI,
91 .get_time = &ktime_get_clocktai,
92 },
93 }
94 };
95
96 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
97 /* Make sure we catch unsupported clockids */
98 [0 ... MAX_CLOCKS - 1] = HRTIMER_MAX_CLOCK_BASES,
99
100 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME,
101 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC,
102 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME,
103 [CLOCK_TAI] = HRTIMER_BASE_TAI,
104 };
105
106 /*
107 * Functions and macros which are different for UP/SMP systems are kept in a
108 * single place
109 */
110 #ifdef CONFIG_SMP
111
112 /*
113 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
114 * such that hrtimer_callback_running() can unconditionally dereference
115 * timer->base->cpu_base
116 */
117 static struct hrtimer_cpu_base migration_cpu_base = {
118 .seq = SEQCNT_ZERO(migration_cpu_base),
119 .clock_base = { { .cpu_base = &migration_cpu_base, }, },
120 };
121
122 #define migration_base migration_cpu_base.clock_base[0]
123
124 /*
125 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
126 * means that all timers which are tied to this base via timer->base are
127 * locked, and the base itself is locked too.
128 *
129 * So __run_timers/migrate_timers can safely modify all timers which could
130 * be found on the lists/queues.
131 *
132 * When the timer's base is locked, and the timer removed from list, it is
133 * possible to set timer->base = &migration_base and drop the lock: the timer
134 * remains locked.
135 */
136 static
lock_hrtimer_base(const struct hrtimer * timer,unsigned long * flags)137 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
138 unsigned long *flags)
139 {
140 struct hrtimer_clock_base *base;
141
142 for (;;) {
143 base = timer->base;
144 if (likely(base != &migration_base)) {
145 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
146 if (likely(base == timer->base))
147 return base;
148 /* The timer has migrated to another CPU: */
149 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
150 }
151 cpu_relax();
152 }
153 }
154
155 /*
156 * With HIGHRES=y we do not migrate the timer when it is expiring
157 * before the next event on the target cpu because we cannot reprogram
158 * the target cpu hardware and we would cause it to fire late.
159 *
160 * Called with cpu_base->lock of target cpu held.
161 */
162 static int
hrtimer_check_target(struct hrtimer * timer,struct hrtimer_clock_base * new_base)163 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
164 {
165 #ifdef CONFIG_HIGH_RES_TIMERS
166 ktime_t expires;
167
168 if (!new_base->cpu_base->hres_active)
169 return 0;
170
171 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
172 return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
173 #else
174 return 0;
175 #endif
176 }
177
178 #ifdef CONFIG_NO_HZ_COMMON
179 static inline
get_target_base(struct hrtimer_cpu_base * base,int pinned)180 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
181 int pinned)
182 {
183 if (pinned || !base->migration_enabled)
184 return base;
185 return &per_cpu(hrtimer_bases, get_nohz_timer_target());
186 }
187 #else
188 static inline
get_target_base(struct hrtimer_cpu_base * base,int pinned)189 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
190 int pinned)
191 {
192 return base;
193 }
194 #endif
195
196 /*
197 * We switch the timer base to a power-optimized selected CPU target,
198 * if:
199 * - NO_HZ_COMMON is enabled
200 * - timer migration is enabled
201 * - the timer callback is not running
202 * - the timer is not the first expiring timer on the new target
203 *
204 * If one of the above requirements is not fulfilled we move the timer
205 * to the current CPU or leave it on the previously assigned CPU if
206 * the timer callback is currently running.
207 */
208 static inline struct hrtimer_clock_base *
switch_hrtimer_base(struct hrtimer * timer,struct hrtimer_clock_base * base,int pinned)209 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
210 int pinned)
211 {
212 struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
213 struct hrtimer_clock_base *new_base;
214 int basenum = base->index;
215
216 this_cpu_base = this_cpu_ptr(&hrtimer_bases);
217 new_cpu_base = get_target_base(this_cpu_base, pinned);
218 again:
219 new_base = &new_cpu_base->clock_base[basenum];
220
221 if (base != new_base) {
222 /*
223 * We are trying to move timer to new_base.
224 * However we can't change timer's base while it is running,
225 * so we keep it on the same CPU. No hassle vs. reprogramming
226 * the event source in the high resolution case. The softirq
227 * code will take care of this when the timer function has
228 * completed. There is no conflict as we hold the lock until
229 * the timer is enqueued.
230 */
231 if (unlikely(hrtimer_callback_running(timer)))
232 return base;
233
234 /* See the comment in lock_hrtimer_base() */
235 timer->base = &migration_base;
236 raw_spin_unlock(&base->cpu_base->lock);
237 raw_spin_lock(&new_base->cpu_base->lock);
238
239 if (new_cpu_base != this_cpu_base &&
240 hrtimer_check_target(timer, new_base)) {
241 raw_spin_unlock(&new_base->cpu_base->lock);
242 raw_spin_lock(&base->cpu_base->lock);
243 new_cpu_base = this_cpu_base;
244 timer->base = base;
245 goto again;
246 }
247 timer->base = new_base;
248 } else {
249 if (new_cpu_base != this_cpu_base &&
250 hrtimer_check_target(timer, new_base)) {
251 new_cpu_base = this_cpu_base;
252 goto again;
253 }
254 }
255 return new_base;
256 }
257
258 #else /* CONFIG_SMP */
259
260 static inline struct hrtimer_clock_base *
lock_hrtimer_base(const struct hrtimer * timer,unsigned long * flags)261 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
262 {
263 struct hrtimer_clock_base *base = timer->base;
264
265 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
266
267 return base;
268 }
269
270 # define switch_hrtimer_base(t, b, p) (b)
271
272 #endif /* !CONFIG_SMP */
273
274 /*
275 * Functions for the union type storage format of ktime_t which are
276 * too large for inlining:
277 */
278 #if BITS_PER_LONG < 64
279 /*
280 * Divide a ktime value by a nanosecond value
281 */
__ktime_divns(const ktime_t kt,s64 div)282 s64 __ktime_divns(const ktime_t kt, s64 div)
283 {
284 int sft = 0;
285 s64 dclc;
286 u64 tmp;
287
288 dclc = ktime_to_ns(kt);
289 tmp = dclc < 0 ? -dclc : dclc;
290
291 /* Make sure the divisor is less than 2^32: */
292 while (div >> 32) {
293 sft++;
294 div >>= 1;
295 }
296 tmp >>= sft;
297 do_div(tmp, (unsigned long) div);
298 return dclc < 0 ? -tmp : tmp;
299 }
300 EXPORT_SYMBOL_GPL(__ktime_divns);
301 #endif /* BITS_PER_LONG >= 64 */
302
303 /*
304 * Add two ktime values and do a safety check for overflow:
305 */
ktime_add_safe(const ktime_t lhs,const ktime_t rhs)306 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
307 {
308 ktime_t res = ktime_add_unsafe(lhs, rhs);
309
310 /*
311 * We use KTIME_SEC_MAX here, the maximum timeout which we can
312 * return to user space in a timespec:
313 */
314 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
315 res = ktime_set(KTIME_SEC_MAX, 0);
316
317 return res;
318 }
319
320 EXPORT_SYMBOL_GPL(ktime_add_safe);
321
322 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
323
324 static struct debug_obj_descr hrtimer_debug_descr;
325
hrtimer_debug_hint(void * addr)326 static void *hrtimer_debug_hint(void *addr)
327 {
328 return ((struct hrtimer *) addr)->function;
329 }
330
331 /*
332 * fixup_init is called when:
333 * - an active object is initialized
334 */
hrtimer_fixup_init(void * addr,enum debug_obj_state state)335 static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
336 {
337 struct hrtimer *timer = addr;
338
339 switch (state) {
340 case ODEBUG_STATE_ACTIVE:
341 hrtimer_cancel(timer);
342 debug_object_init(timer, &hrtimer_debug_descr);
343 return true;
344 default:
345 return false;
346 }
347 }
348
349 /*
350 * fixup_activate is called when:
351 * - an active object is activated
352 * - an unknown non-static object is activated
353 */
hrtimer_fixup_activate(void * addr,enum debug_obj_state state)354 static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
355 {
356 switch (state) {
357 case ODEBUG_STATE_ACTIVE:
358 WARN_ON(1);
359
360 default:
361 return false;
362 }
363 }
364
365 /*
366 * fixup_free is called when:
367 * - an active object is freed
368 */
hrtimer_fixup_free(void * addr,enum debug_obj_state state)369 static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
370 {
371 struct hrtimer *timer = addr;
372
373 switch (state) {
374 case ODEBUG_STATE_ACTIVE:
375 hrtimer_cancel(timer);
376 debug_object_free(timer, &hrtimer_debug_descr);
377 return true;
378 default:
379 return false;
380 }
381 }
382
383 static struct debug_obj_descr hrtimer_debug_descr = {
384 .name = "hrtimer",
385 .debug_hint = hrtimer_debug_hint,
386 .fixup_init = hrtimer_fixup_init,
387 .fixup_activate = hrtimer_fixup_activate,
388 .fixup_free = hrtimer_fixup_free,
389 };
390
debug_hrtimer_init(struct hrtimer * timer)391 static inline void debug_hrtimer_init(struct hrtimer *timer)
392 {
393 debug_object_init(timer, &hrtimer_debug_descr);
394 }
395
debug_hrtimer_activate(struct hrtimer * timer)396 static inline void debug_hrtimer_activate(struct hrtimer *timer)
397 {
398 debug_object_activate(timer, &hrtimer_debug_descr);
399 }
400
debug_hrtimer_deactivate(struct hrtimer * timer)401 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
402 {
403 debug_object_deactivate(timer, &hrtimer_debug_descr);
404 }
405
debug_hrtimer_free(struct hrtimer * timer)406 static inline void debug_hrtimer_free(struct hrtimer *timer)
407 {
408 debug_object_free(timer, &hrtimer_debug_descr);
409 }
410
411 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
412 enum hrtimer_mode mode);
413
hrtimer_init_on_stack(struct hrtimer * timer,clockid_t clock_id,enum hrtimer_mode mode)414 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
415 enum hrtimer_mode mode)
416 {
417 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
418 __hrtimer_init(timer, clock_id, mode);
419 }
420 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
421
destroy_hrtimer_on_stack(struct hrtimer * timer)422 void destroy_hrtimer_on_stack(struct hrtimer *timer)
423 {
424 debug_object_free(timer, &hrtimer_debug_descr);
425 }
426 EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
427
428 #else
debug_hrtimer_init(struct hrtimer * timer)429 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
debug_hrtimer_activate(struct hrtimer * timer)430 static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
debug_hrtimer_deactivate(struct hrtimer * timer)431 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
432 #endif
433
434 static inline void
debug_init(struct hrtimer * timer,clockid_t clockid,enum hrtimer_mode mode)435 debug_init(struct hrtimer *timer, clockid_t clockid,
436 enum hrtimer_mode mode)
437 {
438 debug_hrtimer_init(timer);
439 trace_hrtimer_init(timer, clockid, mode);
440 }
441
debug_activate(struct hrtimer * timer)442 static inline void debug_activate(struct hrtimer *timer)
443 {
444 debug_hrtimer_activate(timer);
445 trace_hrtimer_start(timer);
446 }
447
debug_deactivate(struct hrtimer * timer)448 static inline void debug_deactivate(struct hrtimer *timer)
449 {
450 debug_hrtimer_deactivate(timer);
451 trace_hrtimer_cancel(timer);
452 }
453
454 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
hrtimer_update_next_timer(struct hrtimer_cpu_base * cpu_base,struct hrtimer * timer)455 static inline void hrtimer_update_next_timer(struct hrtimer_cpu_base *cpu_base,
456 struct hrtimer *timer)
457 {
458 #ifdef CONFIG_HIGH_RES_TIMERS
459 cpu_base->next_timer = timer;
460 #endif
461 }
462
__hrtimer_get_next_event(struct hrtimer_cpu_base * cpu_base)463 static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
464 {
465 struct hrtimer_clock_base *base = cpu_base->clock_base;
466 ktime_t expires, expires_next = { .tv64 = KTIME_MAX };
467 unsigned int active = cpu_base->active_bases;
468
469 hrtimer_update_next_timer(cpu_base, NULL);
470 for (; active; base++, active >>= 1) {
471 struct timerqueue_node *next;
472 struct hrtimer *timer;
473
474 if (!(active & 0x01))
475 continue;
476
477 next = timerqueue_getnext(&base->active);
478 timer = container_of(next, struct hrtimer, node);
479 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
480 if (expires.tv64 < expires_next.tv64) {
481 expires_next = expires;
482 hrtimer_update_next_timer(cpu_base, timer);
483 }
484 }
485 /*
486 * clock_was_set() might have changed base->offset of any of
487 * the clock bases so the result might be negative. Fix it up
488 * to prevent a false positive in clockevents_program_event().
489 */
490 if (expires_next.tv64 < 0)
491 expires_next.tv64 = 0;
492 return expires_next;
493 }
494 #endif
495
hrtimer_update_base(struct hrtimer_cpu_base * base)496 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
497 {
498 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
499 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
500 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
501
502 return ktime_get_update_offsets_now(&base->clock_was_set_seq,
503 offs_real, offs_boot, offs_tai);
504 }
505
506 /* High resolution timer related functions */
507 #ifdef CONFIG_HIGH_RES_TIMERS
508
509 /*
510 * High resolution timer enabled ?
511 */
512 static bool hrtimer_hres_enabled __read_mostly = true;
513 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
514 EXPORT_SYMBOL_GPL(hrtimer_resolution);
515
516 /*
517 * Enable / Disable high resolution mode
518 */
setup_hrtimer_hres(char * str)519 static int __init setup_hrtimer_hres(char *str)
520 {
521 return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
522 }
523
524 __setup("highres=", setup_hrtimer_hres);
525
526 /*
527 * hrtimer_high_res_enabled - query, if the highres mode is enabled
528 */
hrtimer_is_hres_enabled(void)529 static inline int hrtimer_is_hres_enabled(void)
530 {
531 return hrtimer_hres_enabled;
532 }
533
534 /*
535 * Is the high resolution mode active ?
536 */
__hrtimer_hres_active(struct hrtimer_cpu_base * cpu_base)537 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
538 {
539 return cpu_base->hres_active;
540 }
541
hrtimer_hres_active(void)542 static inline int hrtimer_hres_active(void)
543 {
544 return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
545 }
546
547 /*
548 * Reprogram the event source with checking both queues for the
549 * next event
550 * Called with interrupts disabled and base->lock held
551 */
552 static void
hrtimer_force_reprogram(struct hrtimer_cpu_base * cpu_base,int skip_equal)553 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
554 {
555 ktime_t expires_next;
556
557 if (!cpu_base->hres_active)
558 return;
559
560 expires_next = __hrtimer_get_next_event(cpu_base);
561
562 if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
563 return;
564
565 cpu_base->expires_next.tv64 = expires_next.tv64;
566
567 /*
568 * If a hang was detected in the last timer interrupt then we
569 * leave the hang delay active in the hardware. We want the
570 * system to make progress. That also prevents the following
571 * scenario:
572 * T1 expires 50ms from now
573 * T2 expires 5s from now
574 *
575 * T1 is removed, so this code is called and would reprogram
576 * the hardware to 5s from now. Any hrtimer_start after that
577 * will not reprogram the hardware due to hang_detected being
578 * set. So we'd effectivly block all timers until the T2 event
579 * fires.
580 */
581 if (cpu_base->hang_detected)
582 return;
583
584 tick_program_event(cpu_base->expires_next, 1);
585 }
586
587 /*
588 * When a timer is enqueued and expires earlier than the already enqueued
589 * timers, we have to check, whether it expires earlier than the timer for
590 * which the clock event device was armed.
591 *
592 * Called with interrupts disabled and base->cpu_base.lock held
593 */
hrtimer_reprogram(struct hrtimer * timer,struct hrtimer_clock_base * base)594 static void hrtimer_reprogram(struct hrtimer *timer,
595 struct hrtimer_clock_base *base)
596 {
597 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
598 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
599
600 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
601
602 /*
603 * If the timer is not on the current cpu, we cannot reprogram
604 * the other cpus clock event device.
605 */
606 if (base->cpu_base != cpu_base)
607 return;
608
609 /*
610 * If the hrtimer interrupt is running, then it will
611 * reevaluate the clock bases and reprogram the clock event
612 * device. The callbacks are always executed in hard interrupt
613 * context so we don't need an extra check for a running
614 * callback.
615 */
616 if (cpu_base->in_hrtirq)
617 return;
618
619 /*
620 * CLOCK_REALTIME timer might be requested with an absolute
621 * expiry time which is less than base->offset. Set it to 0.
622 */
623 if (expires.tv64 < 0)
624 expires.tv64 = 0;
625
626 if (expires.tv64 >= cpu_base->expires_next.tv64)
627 return;
628
629 /* Update the pointer to the next expiring timer */
630 cpu_base->next_timer = timer;
631
632 /*
633 * If a hang was detected in the last timer interrupt then we
634 * do not schedule a timer which is earlier than the expiry
635 * which we enforced in the hang detection. We want the system
636 * to make progress.
637 */
638 if (cpu_base->hang_detected)
639 return;
640
641 /*
642 * Program the timer hardware. We enforce the expiry for
643 * events which are already in the past.
644 */
645 cpu_base->expires_next = expires;
646 tick_program_event(expires, 1);
647 }
648
649 /*
650 * Initialize the high resolution related parts of cpu_base
651 */
hrtimer_init_hres(struct hrtimer_cpu_base * base)652 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
653 {
654 base->expires_next.tv64 = KTIME_MAX;
655 base->hang_detected = 0;
656 base->hres_active = 0;
657 base->next_timer = NULL;
658 }
659
660 /*
661 * Retrigger next event is called after clock was set
662 *
663 * Called with interrupts disabled via on_each_cpu()
664 */
retrigger_next_event(void * arg)665 static void retrigger_next_event(void *arg)
666 {
667 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
668
669 if (!base->hres_active)
670 return;
671
672 raw_spin_lock(&base->lock);
673 hrtimer_update_base(base);
674 hrtimer_force_reprogram(base, 0);
675 raw_spin_unlock(&base->lock);
676 }
677
678 /*
679 * Switch to high resolution mode
680 */
hrtimer_switch_to_hres(void)681 static void hrtimer_switch_to_hres(void)
682 {
683 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
684
685 if (tick_init_highres()) {
686 printk(KERN_WARNING "Could not switch to high resolution "
687 "mode on CPU %d\n", base->cpu);
688 return;
689 }
690 base->hres_active = 1;
691 hrtimer_resolution = HIGH_RES_NSEC;
692
693 tick_setup_sched_timer();
694 /* "Retrigger" the interrupt to get things going */
695 retrigger_next_event(NULL);
696 }
697
clock_was_set_work(struct work_struct * work)698 static void clock_was_set_work(struct work_struct *work)
699 {
700 clock_was_set();
701 }
702
703 static DECLARE_WORK(hrtimer_work, clock_was_set_work);
704
705 /*
706 * Called from timekeeping and resume code to reprogram the hrtimer
707 * interrupt device on all cpus.
708 */
clock_was_set_delayed(void)709 void clock_was_set_delayed(void)
710 {
711 schedule_work(&hrtimer_work);
712 }
713
714 #else
715
__hrtimer_hres_active(struct hrtimer_cpu_base * b)716 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *b) { return 0; }
hrtimer_hres_active(void)717 static inline int hrtimer_hres_active(void) { return 0; }
hrtimer_is_hres_enabled(void)718 static inline int hrtimer_is_hres_enabled(void) { return 0; }
hrtimer_switch_to_hres(void)719 static inline void hrtimer_switch_to_hres(void) { }
720 static inline void
hrtimer_force_reprogram(struct hrtimer_cpu_base * base,int skip_equal)721 hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
hrtimer_reprogram(struct hrtimer * timer,struct hrtimer_clock_base * base)722 static inline int hrtimer_reprogram(struct hrtimer *timer,
723 struct hrtimer_clock_base *base)
724 {
725 return 0;
726 }
hrtimer_init_hres(struct hrtimer_cpu_base * base)727 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
retrigger_next_event(void * arg)728 static inline void retrigger_next_event(void *arg) { }
729
730 #endif /* CONFIG_HIGH_RES_TIMERS */
731
732 /*
733 * Clock realtime was set
734 *
735 * Change the offset of the realtime clock vs. the monotonic
736 * clock.
737 *
738 * We might have to reprogram the high resolution timer interrupt. On
739 * SMP we call the architecture specific code to retrigger _all_ high
740 * resolution timer interrupts. On UP we just disable interrupts and
741 * call the high resolution interrupt code.
742 */
clock_was_set(void)743 void clock_was_set(void)
744 {
745 #ifdef CONFIG_HIGH_RES_TIMERS
746 /* Retrigger the CPU local events everywhere */
747 on_each_cpu(retrigger_next_event, NULL, 1);
748 #endif
749 timerfd_clock_was_set();
750 }
751
752 /*
753 * During resume we might have to reprogram the high resolution timer
754 * interrupt on all online CPUs. However, all other CPUs will be
755 * stopped with IRQs interrupts disabled so the clock_was_set() call
756 * must be deferred.
757 */
hrtimers_resume(void)758 void hrtimers_resume(void)
759 {
760 WARN_ONCE(!irqs_disabled(),
761 KERN_INFO "hrtimers_resume() called with IRQs enabled!");
762
763 /* Retrigger on the local CPU */
764 retrigger_next_event(NULL);
765 /* And schedule a retrigger for all others */
766 clock_was_set_delayed();
767 }
768
timer_stats_hrtimer_set_start_info(struct hrtimer * timer)769 static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
770 {
771 #ifdef CONFIG_TIMER_STATS
772 if (timer->start_site)
773 return;
774 timer->start_site = __builtin_return_address(0);
775 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
776 timer->start_pid = current->pid;
777 #endif
778 }
779
timer_stats_hrtimer_clear_start_info(struct hrtimer * timer)780 static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
781 {
782 #ifdef CONFIG_TIMER_STATS
783 timer->start_site = NULL;
784 #endif
785 }
786
timer_stats_account_hrtimer(struct hrtimer * timer)787 static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
788 {
789 #ifdef CONFIG_TIMER_STATS
790 if (likely(!timer_stats_active))
791 return;
792 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
793 timer->function, timer->start_comm, 0);
794 #endif
795 }
796
797 /*
798 * Counterpart to lock_hrtimer_base above:
799 */
800 static inline
unlock_hrtimer_base(const struct hrtimer * timer,unsigned long * flags)801 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
802 {
803 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
804 }
805
806 /**
807 * hrtimer_forward - forward the timer expiry
808 * @timer: hrtimer to forward
809 * @now: forward past this time
810 * @interval: the interval to forward
811 *
812 * Forward the timer expiry so it will expire in the future.
813 * Returns the number of overruns.
814 *
815 * Can be safely called from the callback function of @timer. If
816 * called from other contexts @timer must neither be enqueued nor
817 * running the callback and the caller needs to take care of
818 * serialization.
819 *
820 * Note: This only updates the timer expiry value and does not requeue
821 * the timer.
822 */
hrtimer_forward(struct hrtimer * timer,ktime_t now,ktime_t interval)823 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
824 {
825 u64 orun = 1;
826 ktime_t delta;
827
828 delta = ktime_sub(now, hrtimer_get_expires(timer));
829
830 if (delta.tv64 < 0)
831 return 0;
832
833 if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
834 return 0;
835
836 if (interval.tv64 < hrtimer_resolution)
837 interval.tv64 = hrtimer_resolution;
838
839 if (unlikely(delta.tv64 >= interval.tv64)) {
840 s64 incr = ktime_to_ns(interval);
841
842 orun = ktime_divns(delta, incr);
843 hrtimer_add_expires_ns(timer, incr * orun);
844 if (hrtimer_get_expires_tv64(timer) > now.tv64)
845 return orun;
846 /*
847 * This (and the ktime_add() below) is the
848 * correction for exact:
849 */
850 orun++;
851 }
852 hrtimer_add_expires(timer, interval);
853
854 return orun;
855 }
856 EXPORT_SYMBOL_GPL(hrtimer_forward);
857
858 /*
859 * enqueue_hrtimer - internal function to (re)start a timer
860 *
861 * The timer is inserted in expiry order. Insertion into the
862 * red black tree is O(log(n)). Must hold the base lock.
863 *
864 * Returns 1 when the new timer is the leftmost timer in the tree.
865 */
enqueue_hrtimer(struct hrtimer * timer,struct hrtimer_clock_base * base)866 static int enqueue_hrtimer(struct hrtimer *timer,
867 struct hrtimer_clock_base *base)
868 {
869 debug_activate(timer);
870
871 base->cpu_base->active_bases |= 1 << base->index;
872
873 timer->state = HRTIMER_STATE_ENQUEUED;
874
875 return timerqueue_add(&base->active, &timer->node);
876 }
877
878 /*
879 * __remove_hrtimer - internal function to remove a timer
880 *
881 * Caller must hold the base lock.
882 *
883 * High resolution timer mode reprograms the clock event device when the
884 * timer is the one which expires next. The caller can disable this by setting
885 * reprogram to zero. This is useful, when the context does a reprogramming
886 * anyway (e.g. timer interrupt)
887 */
__remove_hrtimer(struct hrtimer * timer,struct hrtimer_clock_base * base,u8 newstate,int reprogram)888 static void __remove_hrtimer(struct hrtimer *timer,
889 struct hrtimer_clock_base *base,
890 u8 newstate, int reprogram)
891 {
892 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
893 u8 state = timer->state;
894
895 timer->state = newstate;
896 if (!(state & HRTIMER_STATE_ENQUEUED))
897 return;
898
899 if (!timerqueue_del(&base->active, &timer->node))
900 cpu_base->active_bases &= ~(1 << base->index);
901
902 #ifdef CONFIG_HIGH_RES_TIMERS
903 /*
904 * Note: If reprogram is false we do not update
905 * cpu_base->next_timer. This happens when we remove the first
906 * timer on a remote cpu. No harm as we never dereference
907 * cpu_base->next_timer. So the worst thing what can happen is
908 * an superflous call to hrtimer_force_reprogram() on the
909 * remote cpu later on if the same timer gets enqueued again.
910 */
911 if (reprogram && timer == cpu_base->next_timer)
912 hrtimer_force_reprogram(cpu_base, 1);
913 #endif
914 }
915
916 /*
917 * remove hrtimer, called with base lock held
918 */
919 static inline int
remove_hrtimer(struct hrtimer * timer,struct hrtimer_clock_base * base,bool restart)920 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
921 {
922 if (hrtimer_is_queued(timer)) {
923 u8 state = timer->state;
924 int reprogram;
925
926 /*
927 * Remove the timer and force reprogramming when high
928 * resolution mode is active and the timer is on the current
929 * CPU. If we remove a timer on another CPU, reprogramming is
930 * skipped. The interrupt event on this CPU is fired and
931 * reprogramming happens in the interrupt handler. This is a
932 * rare case and less expensive than a smp call.
933 */
934 debug_deactivate(timer);
935 timer_stats_hrtimer_clear_start_info(timer);
936 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
937
938 if (!restart)
939 state = HRTIMER_STATE_INACTIVE;
940
941 __remove_hrtimer(timer, base, state, reprogram);
942 return 1;
943 }
944 return 0;
945 }
946
hrtimer_update_lowres(struct hrtimer * timer,ktime_t tim,const enum hrtimer_mode mode)947 static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
948 const enum hrtimer_mode mode)
949 {
950 #ifdef CONFIG_TIME_LOW_RES
951 /*
952 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
953 * granular time values. For relative timers we add hrtimer_resolution
954 * (i.e. one jiffie) to prevent short timeouts.
955 */
956 timer->is_rel = mode & HRTIMER_MODE_REL;
957 if (timer->is_rel)
958 tim = ktime_add_safe(tim, ktime_set(0, hrtimer_resolution));
959 #endif
960 return tim;
961 }
962
963 /**
964 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
965 * @timer: the timer to be added
966 * @tim: expiry time
967 * @delta_ns: "slack" range for the timer
968 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
969 * relative (HRTIMER_MODE_REL)
970 */
hrtimer_start_range_ns(struct hrtimer * timer,ktime_t tim,u64 delta_ns,const enum hrtimer_mode mode)971 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
972 u64 delta_ns, const enum hrtimer_mode mode)
973 {
974 struct hrtimer_clock_base *base, *new_base;
975 unsigned long flags;
976 int leftmost;
977
978 base = lock_hrtimer_base(timer, &flags);
979
980 /* Remove an active timer from the queue: */
981 remove_hrtimer(timer, base, true);
982
983 if (mode & HRTIMER_MODE_REL)
984 tim = ktime_add_safe(tim, base->get_time());
985
986 tim = hrtimer_update_lowres(timer, tim, mode);
987
988 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
989
990 /* Switch the timer base, if necessary: */
991 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
992
993 timer_stats_hrtimer_set_start_info(timer);
994
995 leftmost = enqueue_hrtimer(timer, new_base);
996 if (!leftmost)
997 goto unlock;
998
999 if (!hrtimer_is_hres_active(timer)) {
1000 /*
1001 * Kick to reschedule the next tick to handle the new timer
1002 * on dynticks target.
1003 */
1004 if (new_base->cpu_base->nohz_active)
1005 wake_up_nohz_cpu(new_base->cpu_base->cpu);
1006 } else {
1007 hrtimer_reprogram(timer, new_base);
1008 }
1009 unlock:
1010 unlock_hrtimer_base(timer, &flags);
1011 }
1012 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1013
1014 /**
1015 * hrtimer_try_to_cancel - try to deactivate a timer
1016 * @timer: hrtimer to stop
1017 *
1018 * Returns:
1019 * 0 when the timer was not active
1020 * 1 when the timer was active
1021 * -1 when the timer is currently excuting the callback function and
1022 * cannot be stopped
1023 */
hrtimer_try_to_cancel(struct hrtimer * timer)1024 int hrtimer_try_to_cancel(struct hrtimer *timer)
1025 {
1026 struct hrtimer_clock_base *base;
1027 unsigned long flags;
1028 int ret = -1;
1029
1030 /*
1031 * Check lockless first. If the timer is not active (neither
1032 * enqueued nor running the callback, nothing to do here. The
1033 * base lock does not serialize against a concurrent enqueue,
1034 * so we can avoid taking it.
1035 */
1036 if (!hrtimer_active(timer))
1037 return 0;
1038
1039 base = lock_hrtimer_base(timer, &flags);
1040
1041 if (!hrtimer_callback_running(timer))
1042 ret = remove_hrtimer(timer, base, false);
1043
1044 unlock_hrtimer_base(timer, &flags);
1045
1046 return ret;
1047
1048 }
1049 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1050
1051 /**
1052 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1053 * @timer: the timer to be cancelled
1054 *
1055 * Returns:
1056 * 0 when the timer was not active
1057 * 1 when the timer was active
1058 */
hrtimer_cancel(struct hrtimer * timer)1059 int hrtimer_cancel(struct hrtimer *timer)
1060 {
1061 for (;;) {
1062 int ret = hrtimer_try_to_cancel(timer);
1063
1064 if (ret >= 0)
1065 return ret;
1066 cpu_relax();
1067 }
1068 }
1069 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1070
1071 /**
1072 * hrtimer_get_remaining - get remaining time for the timer
1073 * @timer: the timer to read
1074 * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y
1075 */
__hrtimer_get_remaining(const struct hrtimer * timer,bool adjust)1076 ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1077 {
1078 unsigned long flags;
1079 ktime_t rem;
1080
1081 lock_hrtimer_base(timer, &flags);
1082 if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1083 rem = hrtimer_expires_remaining_adjusted(timer);
1084 else
1085 rem = hrtimer_expires_remaining(timer);
1086 unlock_hrtimer_base(timer, &flags);
1087
1088 return rem;
1089 }
1090 EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1091
1092 #ifdef CONFIG_NO_HZ_COMMON
1093 /**
1094 * hrtimer_get_next_event - get the time until next expiry event
1095 *
1096 * Returns the next expiry time or KTIME_MAX if no timer is pending.
1097 */
hrtimer_get_next_event(void)1098 u64 hrtimer_get_next_event(void)
1099 {
1100 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1101 u64 expires = KTIME_MAX;
1102 unsigned long flags;
1103
1104 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1105
1106 if (!__hrtimer_hres_active(cpu_base))
1107 expires = __hrtimer_get_next_event(cpu_base).tv64;
1108
1109 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1110
1111 return expires;
1112 }
1113 #endif
1114
hrtimer_clockid_to_base(clockid_t clock_id)1115 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
1116 {
1117 if (likely(clock_id < MAX_CLOCKS)) {
1118 int base = hrtimer_clock_to_base_table[clock_id];
1119
1120 if (likely(base != HRTIMER_MAX_CLOCK_BASES))
1121 return base;
1122 }
1123 WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
1124 return HRTIMER_BASE_MONOTONIC;
1125 }
1126
__hrtimer_init(struct hrtimer * timer,clockid_t clock_id,enum hrtimer_mode mode)1127 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1128 enum hrtimer_mode mode)
1129 {
1130 struct hrtimer_cpu_base *cpu_base;
1131 int base;
1132
1133 memset(timer, 0, sizeof(struct hrtimer));
1134
1135 cpu_base = raw_cpu_ptr(&hrtimer_bases);
1136
1137 /*
1138 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
1139 * clock modifications, so they needs to become CLOCK_MONOTONIC to
1140 * ensure POSIX compliance.
1141 */
1142 if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
1143 clock_id = CLOCK_MONOTONIC;
1144
1145 base = hrtimer_clockid_to_base(clock_id);
1146 timer->base = &cpu_base->clock_base[base];
1147 timerqueue_init(&timer->node);
1148
1149 #ifdef CONFIG_TIMER_STATS
1150 timer->start_site = NULL;
1151 timer->start_pid = -1;
1152 memset(timer->start_comm, 0, TASK_COMM_LEN);
1153 #endif
1154 }
1155
1156 /**
1157 * hrtimer_init - initialize a timer to the given clock
1158 * @timer: the timer to be initialized
1159 * @clock_id: the clock to be used
1160 * @mode: timer mode abs/rel
1161 */
hrtimer_init(struct hrtimer * timer,clockid_t clock_id,enum hrtimer_mode mode)1162 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1163 enum hrtimer_mode mode)
1164 {
1165 debug_init(timer, clock_id, mode);
1166 __hrtimer_init(timer, clock_id, mode);
1167 }
1168 EXPORT_SYMBOL_GPL(hrtimer_init);
1169
1170 /*
1171 * A timer is active, when it is enqueued into the rbtree or the
1172 * callback function is running or it's in the state of being migrated
1173 * to another cpu.
1174 *
1175 * It is important for this function to not return a false negative.
1176 */
hrtimer_active(const struct hrtimer * timer)1177 bool hrtimer_active(const struct hrtimer *timer)
1178 {
1179 struct hrtimer_cpu_base *cpu_base;
1180 unsigned int seq;
1181
1182 do {
1183 cpu_base = READ_ONCE(timer->base->cpu_base);
1184 seq = raw_read_seqcount_begin(&cpu_base->seq);
1185
1186 if (timer->state != HRTIMER_STATE_INACTIVE ||
1187 cpu_base->running == timer)
1188 return true;
1189
1190 } while (read_seqcount_retry(&cpu_base->seq, seq) ||
1191 cpu_base != READ_ONCE(timer->base->cpu_base));
1192
1193 return false;
1194 }
1195 EXPORT_SYMBOL_GPL(hrtimer_active);
1196
1197 /*
1198 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1199 * distinct sections:
1200 *
1201 * - queued: the timer is queued
1202 * - callback: the timer is being ran
1203 * - post: the timer is inactive or (re)queued
1204 *
1205 * On the read side we ensure we observe timer->state and cpu_base->running
1206 * from the same section, if anything changed while we looked at it, we retry.
1207 * This includes timer->base changing because sequence numbers alone are
1208 * insufficient for that.
1209 *
1210 * The sequence numbers are required because otherwise we could still observe
1211 * a false negative if the read side got smeared over multiple consequtive
1212 * __run_hrtimer() invocations.
1213 */
1214
__run_hrtimer(struct hrtimer_cpu_base * cpu_base,struct hrtimer_clock_base * base,struct hrtimer * timer,ktime_t * now)1215 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1216 struct hrtimer_clock_base *base,
1217 struct hrtimer *timer, ktime_t *now)
1218 {
1219 enum hrtimer_restart (*fn)(struct hrtimer *);
1220 int restart;
1221
1222 lockdep_assert_held(&cpu_base->lock);
1223
1224 debug_deactivate(timer);
1225 cpu_base->running = timer;
1226
1227 /*
1228 * Separate the ->running assignment from the ->state assignment.
1229 *
1230 * As with a regular write barrier, this ensures the read side in
1231 * hrtimer_active() cannot observe cpu_base->running == NULL &&
1232 * timer->state == INACTIVE.
1233 */
1234 raw_write_seqcount_barrier(&cpu_base->seq);
1235
1236 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1237 timer_stats_account_hrtimer(timer);
1238 fn = timer->function;
1239
1240 /*
1241 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1242 * timer is restarted with a period then it becomes an absolute
1243 * timer. If its not restarted it does not matter.
1244 */
1245 if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1246 timer->is_rel = false;
1247
1248 /*
1249 * Because we run timers from hardirq context, there is no chance
1250 * they get migrated to another cpu, therefore its safe to unlock
1251 * the timer base.
1252 */
1253 raw_spin_unlock(&cpu_base->lock);
1254 trace_hrtimer_expire_entry(timer, now);
1255 restart = fn(timer);
1256 trace_hrtimer_expire_exit(timer);
1257 raw_spin_lock(&cpu_base->lock);
1258
1259 /*
1260 * Note: We clear the running state after enqueue_hrtimer and
1261 * we do not reprogram the event hardware. Happens either in
1262 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1263 *
1264 * Note: Because we dropped the cpu_base->lock above,
1265 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1266 * for us already.
1267 */
1268 if (restart != HRTIMER_NORESTART &&
1269 !(timer->state & HRTIMER_STATE_ENQUEUED))
1270 enqueue_hrtimer(timer, base);
1271
1272 /*
1273 * Separate the ->running assignment from the ->state assignment.
1274 *
1275 * As with a regular write barrier, this ensures the read side in
1276 * hrtimer_active() cannot observe cpu_base->running == NULL &&
1277 * timer->state == INACTIVE.
1278 */
1279 raw_write_seqcount_barrier(&cpu_base->seq);
1280
1281 WARN_ON_ONCE(cpu_base->running != timer);
1282 cpu_base->running = NULL;
1283 }
1284
__hrtimer_run_queues(struct hrtimer_cpu_base * cpu_base,ktime_t now)1285 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now)
1286 {
1287 struct hrtimer_clock_base *base = cpu_base->clock_base;
1288 unsigned int active = cpu_base->active_bases;
1289
1290 for (; active; base++, active >>= 1) {
1291 struct timerqueue_node *node;
1292 ktime_t basenow;
1293
1294 if (!(active & 0x01))
1295 continue;
1296
1297 basenow = ktime_add(now, base->offset);
1298
1299 while ((node = timerqueue_getnext(&base->active))) {
1300 struct hrtimer *timer;
1301
1302 timer = container_of(node, struct hrtimer, node);
1303
1304 /*
1305 * The immediate goal for using the softexpires is
1306 * minimizing wakeups, not running timers at the
1307 * earliest interrupt after their soft expiration.
1308 * This allows us to avoid using a Priority Search
1309 * Tree, which can answer a stabbing querry for
1310 * overlapping intervals and instead use the simple
1311 * BST we already have.
1312 * We don't add extra wakeups by delaying timers that
1313 * are right-of a not yet expired timer, because that
1314 * timer will have to trigger a wakeup anyway.
1315 */
1316 if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer))
1317 break;
1318
1319 __run_hrtimer(cpu_base, base, timer, &basenow);
1320 }
1321 }
1322 }
1323
1324 #ifdef CONFIG_HIGH_RES_TIMERS
1325
1326 /*
1327 * High resolution timer interrupt
1328 * Called with interrupts disabled
1329 */
hrtimer_interrupt(struct clock_event_device * dev)1330 void hrtimer_interrupt(struct clock_event_device *dev)
1331 {
1332 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1333 ktime_t expires_next, now, entry_time, delta;
1334 int retries = 0;
1335
1336 BUG_ON(!cpu_base->hres_active);
1337 cpu_base->nr_events++;
1338 dev->next_event.tv64 = KTIME_MAX;
1339
1340 raw_spin_lock(&cpu_base->lock);
1341 entry_time = now = hrtimer_update_base(cpu_base);
1342 retry:
1343 cpu_base->in_hrtirq = 1;
1344 /*
1345 * We set expires_next to KTIME_MAX here with cpu_base->lock
1346 * held to prevent that a timer is enqueued in our queue via
1347 * the migration code. This does not affect enqueueing of
1348 * timers which run their callback and need to be requeued on
1349 * this CPU.
1350 */
1351 cpu_base->expires_next.tv64 = KTIME_MAX;
1352
1353 __hrtimer_run_queues(cpu_base, now);
1354
1355 /* Reevaluate the clock bases for the next expiry */
1356 expires_next = __hrtimer_get_next_event(cpu_base);
1357 /*
1358 * Store the new expiry value so the migration code can verify
1359 * against it.
1360 */
1361 cpu_base->expires_next = expires_next;
1362 cpu_base->in_hrtirq = 0;
1363 raw_spin_unlock(&cpu_base->lock);
1364
1365 /* Reprogramming necessary ? */
1366 if (!tick_program_event(expires_next, 0)) {
1367 cpu_base->hang_detected = 0;
1368 return;
1369 }
1370
1371 /*
1372 * The next timer was already expired due to:
1373 * - tracing
1374 * - long lasting callbacks
1375 * - being scheduled away when running in a VM
1376 *
1377 * We need to prevent that we loop forever in the hrtimer
1378 * interrupt routine. We give it 3 attempts to avoid
1379 * overreacting on some spurious event.
1380 *
1381 * Acquire base lock for updating the offsets and retrieving
1382 * the current time.
1383 */
1384 raw_spin_lock(&cpu_base->lock);
1385 now = hrtimer_update_base(cpu_base);
1386 cpu_base->nr_retries++;
1387 if (++retries < 3)
1388 goto retry;
1389 /*
1390 * Give the system a chance to do something else than looping
1391 * here. We stored the entry time, so we know exactly how long
1392 * we spent here. We schedule the next event this amount of
1393 * time away.
1394 */
1395 cpu_base->nr_hangs++;
1396 cpu_base->hang_detected = 1;
1397 raw_spin_unlock(&cpu_base->lock);
1398 delta = ktime_sub(now, entry_time);
1399 if ((unsigned int)delta.tv64 > cpu_base->max_hang_time)
1400 cpu_base->max_hang_time = (unsigned int) delta.tv64;
1401 /*
1402 * Limit it to a sensible value as we enforce a longer
1403 * delay. Give the CPU at least 100ms to catch up.
1404 */
1405 if (delta.tv64 > 100 * NSEC_PER_MSEC)
1406 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1407 else
1408 expires_next = ktime_add(now, delta);
1409 tick_program_event(expires_next, 1);
1410 printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1411 ktime_to_ns(delta));
1412 }
1413
1414 /*
1415 * local version of hrtimer_peek_ahead_timers() called with interrupts
1416 * disabled.
1417 */
__hrtimer_peek_ahead_timers(void)1418 static inline void __hrtimer_peek_ahead_timers(void)
1419 {
1420 struct tick_device *td;
1421
1422 if (!hrtimer_hres_active())
1423 return;
1424
1425 td = this_cpu_ptr(&tick_cpu_device);
1426 if (td && td->evtdev)
1427 hrtimer_interrupt(td->evtdev);
1428 }
1429
1430 #else /* CONFIG_HIGH_RES_TIMERS */
1431
__hrtimer_peek_ahead_timers(void)1432 static inline void __hrtimer_peek_ahead_timers(void) { }
1433
1434 #endif /* !CONFIG_HIGH_RES_TIMERS */
1435
1436 /*
1437 * Called from run_local_timers in hardirq context every jiffy
1438 */
hrtimer_run_queues(void)1439 void hrtimer_run_queues(void)
1440 {
1441 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1442 ktime_t now;
1443
1444 if (__hrtimer_hres_active(cpu_base))
1445 return;
1446
1447 /*
1448 * This _is_ ugly: We have to check periodically, whether we
1449 * can switch to highres and / or nohz mode. The clocksource
1450 * switch happens with xtime_lock held. Notification from
1451 * there only sets the check bit in the tick_oneshot code,
1452 * otherwise we might deadlock vs. xtime_lock.
1453 */
1454 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1455 hrtimer_switch_to_hres();
1456 return;
1457 }
1458
1459 raw_spin_lock(&cpu_base->lock);
1460 now = hrtimer_update_base(cpu_base);
1461 __hrtimer_run_queues(cpu_base, now);
1462 raw_spin_unlock(&cpu_base->lock);
1463 }
1464
1465 /*
1466 * Sleep related functions:
1467 */
hrtimer_wakeup(struct hrtimer * timer)1468 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1469 {
1470 struct hrtimer_sleeper *t =
1471 container_of(timer, struct hrtimer_sleeper, timer);
1472 struct task_struct *task = t->task;
1473
1474 t->task = NULL;
1475 if (task)
1476 wake_up_process(task);
1477
1478 return HRTIMER_NORESTART;
1479 }
1480
hrtimer_init_sleeper(struct hrtimer_sleeper * sl,struct task_struct * task)1481 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1482 {
1483 sl->timer.function = hrtimer_wakeup;
1484 sl->task = task;
1485 }
1486 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1487
do_nanosleep(struct hrtimer_sleeper * t,enum hrtimer_mode mode)1488 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1489 {
1490 hrtimer_init_sleeper(t, current);
1491
1492 do {
1493 set_current_state(TASK_INTERRUPTIBLE);
1494 hrtimer_start_expires(&t->timer, mode);
1495
1496 if (likely(t->task))
1497 freezable_schedule();
1498
1499 hrtimer_cancel(&t->timer);
1500 mode = HRTIMER_MODE_ABS;
1501
1502 } while (t->task && !signal_pending(current));
1503
1504 __set_current_state(TASK_RUNNING);
1505
1506 return t->task == NULL;
1507 }
1508
update_rmtp(struct hrtimer * timer,struct timespec __user * rmtp)1509 static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1510 {
1511 struct timespec rmt;
1512 ktime_t rem;
1513
1514 rem = hrtimer_expires_remaining(timer);
1515 if (rem.tv64 <= 0)
1516 return 0;
1517 rmt = ktime_to_timespec(rem);
1518
1519 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1520 return -EFAULT;
1521
1522 return 1;
1523 }
1524
hrtimer_nanosleep_restart(struct restart_block * restart)1525 long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1526 {
1527 struct hrtimer_sleeper t;
1528 struct timespec __user *rmtp;
1529 int ret = 0;
1530
1531 hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1532 HRTIMER_MODE_ABS);
1533 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1534
1535 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1536 goto out;
1537
1538 rmtp = restart->nanosleep.rmtp;
1539 if (rmtp) {
1540 ret = update_rmtp(&t.timer, rmtp);
1541 if (ret <= 0)
1542 goto out;
1543 }
1544
1545 /* The other values in restart are already filled in */
1546 ret = -ERESTART_RESTARTBLOCK;
1547 out:
1548 destroy_hrtimer_on_stack(&t.timer);
1549 return ret;
1550 }
1551
hrtimer_nanosleep(struct timespec * rqtp,struct timespec __user * rmtp,const enum hrtimer_mode mode,const clockid_t clockid)1552 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1553 const enum hrtimer_mode mode, const clockid_t clockid)
1554 {
1555 struct restart_block *restart;
1556 struct hrtimer_sleeper t;
1557 int ret = 0;
1558 u64 slack;
1559
1560 slack = current->timer_slack_ns;
1561 if (dl_task(current) || rt_task(current))
1562 slack = 0;
1563
1564 hrtimer_init_on_stack(&t.timer, clockid, mode);
1565 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1566 if (do_nanosleep(&t, mode))
1567 goto out;
1568
1569 /* Absolute timers do not update the rmtp value and restart: */
1570 if (mode == HRTIMER_MODE_ABS) {
1571 ret = -ERESTARTNOHAND;
1572 goto out;
1573 }
1574
1575 if (rmtp) {
1576 ret = update_rmtp(&t.timer, rmtp);
1577 if (ret <= 0)
1578 goto out;
1579 }
1580
1581 restart = ¤t->restart_block;
1582 restart->fn = hrtimer_nanosleep_restart;
1583 restart->nanosleep.clockid = t.timer.base->clockid;
1584 restart->nanosleep.rmtp = rmtp;
1585 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1586
1587 ret = -ERESTART_RESTARTBLOCK;
1588 out:
1589 destroy_hrtimer_on_stack(&t.timer);
1590 return ret;
1591 }
1592
SYSCALL_DEFINE2(nanosleep,struct timespec __user *,rqtp,struct timespec __user *,rmtp)1593 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1594 struct timespec __user *, rmtp)
1595 {
1596 struct timespec tu;
1597
1598 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1599 return -EFAULT;
1600
1601 if (!timespec_valid(&tu))
1602 return -EINVAL;
1603
1604 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1605 }
1606
1607 /*
1608 * Functions related to boot-time initialization:
1609 */
hrtimers_prepare_cpu(unsigned int cpu)1610 int hrtimers_prepare_cpu(unsigned int cpu)
1611 {
1612 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1613 int i;
1614
1615 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1616 cpu_base->clock_base[i].cpu_base = cpu_base;
1617 timerqueue_init_head(&cpu_base->clock_base[i].active);
1618 }
1619
1620 cpu_base->active_bases = 0;
1621 cpu_base->cpu = cpu;
1622 hrtimer_init_hres(cpu_base);
1623 return 0;
1624 }
1625
1626 #ifdef CONFIG_HOTPLUG_CPU
1627
migrate_hrtimer_list(struct hrtimer_clock_base * old_base,struct hrtimer_clock_base * new_base)1628 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1629 struct hrtimer_clock_base *new_base)
1630 {
1631 struct hrtimer *timer;
1632 struct timerqueue_node *node;
1633
1634 while ((node = timerqueue_getnext(&old_base->active))) {
1635 timer = container_of(node, struct hrtimer, node);
1636 BUG_ON(hrtimer_callback_running(timer));
1637 debug_deactivate(timer);
1638
1639 /*
1640 * Mark it as ENQUEUED not INACTIVE otherwise the
1641 * timer could be seen as !active and just vanish away
1642 * under us on another CPU
1643 */
1644 __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
1645 timer->base = new_base;
1646 /*
1647 * Enqueue the timers on the new cpu. This does not
1648 * reprogram the event device in case the timer
1649 * expires before the earliest on this CPU, but we run
1650 * hrtimer_interrupt after we migrated everything to
1651 * sort out already expired timers and reprogram the
1652 * event device.
1653 */
1654 enqueue_hrtimer(timer, new_base);
1655 }
1656 }
1657
hrtimers_dead_cpu(unsigned int scpu)1658 int hrtimers_dead_cpu(unsigned int scpu)
1659 {
1660 struct hrtimer_cpu_base *old_base, *new_base;
1661 int i;
1662
1663 BUG_ON(cpu_online(scpu));
1664 tick_cancel_sched_timer(scpu);
1665
1666 local_irq_disable();
1667 old_base = &per_cpu(hrtimer_bases, scpu);
1668 new_base = this_cpu_ptr(&hrtimer_bases);
1669 /*
1670 * The caller is globally serialized and nobody else
1671 * takes two locks at once, deadlock is not possible.
1672 */
1673 raw_spin_lock(&new_base->lock);
1674 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1675
1676 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1677 migrate_hrtimer_list(&old_base->clock_base[i],
1678 &new_base->clock_base[i]);
1679 }
1680
1681 raw_spin_unlock(&old_base->lock);
1682 raw_spin_unlock(&new_base->lock);
1683
1684 /* Check, if we got expired work to do */
1685 __hrtimer_peek_ahead_timers();
1686 local_irq_enable();
1687 return 0;
1688 }
1689
1690 #endif /* CONFIG_HOTPLUG_CPU */
1691
hrtimers_init(void)1692 void __init hrtimers_init(void)
1693 {
1694 hrtimers_prepare_cpu(smp_processor_id());
1695 }
1696
1697 /**
1698 * schedule_hrtimeout_range_clock - sleep until timeout
1699 * @expires: timeout value (ktime_t)
1700 * @delta: slack in expires timeout (ktime_t)
1701 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1702 * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1703 */
1704 int __sched
schedule_hrtimeout_range_clock(ktime_t * expires,u64 delta,const enum hrtimer_mode mode,int clock)1705 schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
1706 const enum hrtimer_mode mode, int clock)
1707 {
1708 struct hrtimer_sleeper t;
1709
1710 /*
1711 * Optimize when a zero timeout value is given. It does not
1712 * matter whether this is an absolute or a relative time.
1713 */
1714 if (expires && !expires->tv64) {
1715 __set_current_state(TASK_RUNNING);
1716 return 0;
1717 }
1718
1719 /*
1720 * A NULL parameter means "infinite"
1721 */
1722 if (!expires) {
1723 schedule();
1724 return -EINTR;
1725 }
1726
1727 hrtimer_init_on_stack(&t.timer, clock, mode);
1728 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1729
1730 hrtimer_init_sleeper(&t, current);
1731
1732 hrtimer_start_expires(&t.timer, mode);
1733
1734 if (likely(t.task))
1735 schedule();
1736
1737 hrtimer_cancel(&t.timer);
1738 destroy_hrtimer_on_stack(&t.timer);
1739
1740 __set_current_state(TASK_RUNNING);
1741
1742 return !t.task ? 0 : -EINTR;
1743 }
1744
1745 /**
1746 * schedule_hrtimeout_range - sleep until timeout
1747 * @expires: timeout value (ktime_t)
1748 * @delta: slack in expires timeout (ktime_t)
1749 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1750 *
1751 * Make the current task sleep until the given expiry time has
1752 * elapsed. The routine will return immediately unless
1753 * the current task state has been set (see set_current_state()).
1754 *
1755 * The @delta argument gives the kernel the freedom to schedule the
1756 * actual wakeup to a time that is both power and performance friendly.
1757 * The kernel give the normal best effort behavior for "@expires+@delta",
1758 * but may decide to fire the timer earlier, but no earlier than @expires.
1759 *
1760 * You can set the task state as follows -
1761 *
1762 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1763 * pass before the routine returns.
1764 *
1765 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1766 * delivered to the current task.
1767 *
1768 * The current task state is guaranteed to be TASK_RUNNING when this
1769 * routine returns.
1770 *
1771 * Returns 0 when the timer has expired otherwise -EINTR
1772 */
schedule_hrtimeout_range(ktime_t * expires,u64 delta,const enum hrtimer_mode mode)1773 int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
1774 const enum hrtimer_mode mode)
1775 {
1776 return schedule_hrtimeout_range_clock(expires, delta, mode,
1777 CLOCK_MONOTONIC);
1778 }
1779 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1780
1781 /**
1782 * schedule_hrtimeout - sleep until timeout
1783 * @expires: timeout value (ktime_t)
1784 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1785 *
1786 * Make the current task sleep until the given expiry time has
1787 * elapsed. The routine will return immediately unless
1788 * the current task state has been set (see set_current_state()).
1789 *
1790 * You can set the task state as follows -
1791 *
1792 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1793 * pass before the routine returns.
1794 *
1795 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1796 * delivered to the current task.
1797 *
1798 * The current task state is guaranteed to be TASK_RUNNING when this
1799 * routine returns.
1800 *
1801 * Returns 0 when the timer has expired otherwise -EINTR
1802 */
schedule_hrtimeout(ktime_t * expires,const enum hrtimer_mode mode)1803 int __sched schedule_hrtimeout(ktime_t *expires,
1804 const enum hrtimer_mode mode)
1805 {
1806 return schedule_hrtimeout_range(expires, 0, mode);
1807 }
1808 EXPORT_SYMBOL_GPL(schedule_hrtimeout);
1809