• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/kernel/hrtimer.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  High-resolution kernel timers
9  *
10  *  In contrast to the low-resolution timeout API implemented in
11  *  kernel/timer.c, hrtimers provide finer resolution and accuracy
12  *  depending on system configuration and capabilities.
13  *
14  *  These timers are currently used for:
15  *   - itimers
16  *   - POSIX timers
17  *   - nanosleep
18  *   - precise in-kernel timing
19  *
20  *  Started by: Thomas Gleixner and Ingo Molnar
21  *
22  *  Credits:
23  *	based on kernel/timer.c
24  *
25  *	Help, testing, suggestions, bugfixes, improvements were
26  *	provided by:
27  *
28  *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29  *	et. al.
30  *
31  *  For licencing details see kernel-base/COPYING
32  */
33 
34 #include <linux/cpu.h>
35 #include <linux/export.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched.h>
47 #include <linux/sched/sysctl.h>
48 #include <linux/sched/rt.h>
49 #include <linux/sched/deadline.h>
50 #include <linux/timer.h>
51 #include <linux/freezer.h>
52 
53 #include <asm/uaccess.h>
54 
55 #include <trace/events/timer.h>
56 
57 #include "tick-internal.h"
58 
59 /*
60  * The timer bases:
61  *
62  * There are more clockids than hrtimer bases. Thus, we index
63  * into the timer bases by the hrtimer_base_type enum. When trying
64  * to reach a base using a clockid, hrtimer_clockid_to_base()
65  * is used to convert from clockid to the proper hrtimer_base_type.
66  */
67 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
68 {
69 	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
70 	.seq = SEQCNT_ZERO(hrtimer_bases.seq),
71 	.clock_base =
72 	{
73 		{
74 			.index = HRTIMER_BASE_MONOTONIC,
75 			.clockid = CLOCK_MONOTONIC,
76 			.get_time = &ktime_get,
77 		},
78 		{
79 			.index = HRTIMER_BASE_REALTIME,
80 			.clockid = CLOCK_REALTIME,
81 			.get_time = &ktime_get_real,
82 		},
83 		{
84 			.index = HRTIMER_BASE_BOOTTIME,
85 			.clockid = CLOCK_BOOTTIME,
86 			.get_time = &ktime_get_boottime,
87 		},
88 		{
89 			.index = HRTIMER_BASE_TAI,
90 			.clockid = CLOCK_TAI,
91 			.get_time = &ktime_get_clocktai,
92 		},
93 	}
94 };
95 
96 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
97 	/* Make sure we catch unsupported clockids */
98 	[0 ... MAX_CLOCKS - 1]	= HRTIMER_MAX_CLOCK_BASES,
99 
100 	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
101 	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
102 	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
103 	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
104 };
105 
106 /*
107  * Functions and macros which are different for UP/SMP systems are kept in a
108  * single place
109  */
110 #ifdef CONFIG_SMP
111 
112 /*
113  * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
114  * such that hrtimer_callback_running() can unconditionally dereference
115  * timer->base->cpu_base
116  */
117 static struct hrtimer_cpu_base migration_cpu_base = {
118 	.seq = SEQCNT_ZERO(migration_cpu_base),
119 	.clock_base = { { .cpu_base = &migration_cpu_base, }, },
120 };
121 
122 #define migration_base	migration_cpu_base.clock_base[0]
123 
124 /*
125  * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
126  * means that all timers which are tied to this base via timer->base are
127  * locked, and the base itself is locked too.
128  *
129  * So __run_timers/migrate_timers can safely modify all timers which could
130  * be found on the lists/queues.
131  *
132  * When the timer's base is locked, and the timer removed from list, it is
133  * possible to set timer->base = &migration_base and drop the lock: the timer
134  * remains locked.
135  */
136 static
lock_hrtimer_base(const struct hrtimer * timer,unsigned long * flags)137 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
138 					     unsigned long *flags)
139 {
140 	struct hrtimer_clock_base *base;
141 
142 	for (;;) {
143 		base = timer->base;
144 		if (likely(base != &migration_base)) {
145 			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
146 			if (likely(base == timer->base))
147 				return base;
148 			/* The timer has migrated to another CPU: */
149 			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
150 		}
151 		cpu_relax();
152 	}
153 }
154 
155 /*
156  * With HIGHRES=y we do not migrate the timer when it is expiring
157  * before the next event on the target cpu because we cannot reprogram
158  * the target cpu hardware and we would cause it to fire late.
159  *
160  * Called with cpu_base->lock of target cpu held.
161  */
162 static int
hrtimer_check_target(struct hrtimer * timer,struct hrtimer_clock_base * new_base)163 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
164 {
165 #ifdef CONFIG_HIGH_RES_TIMERS
166 	ktime_t expires;
167 
168 	if (!new_base->cpu_base->hres_active)
169 		return 0;
170 
171 	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
172 	return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
173 #else
174 	return 0;
175 #endif
176 }
177 
178 #ifdef CONFIG_NO_HZ_COMMON
179 static inline
get_target_base(struct hrtimer_cpu_base * base,int pinned)180 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
181 					 int pinned)
182 {
183 	if (pinned || !base->migration_enabled)
184 		return base;
185 	return &per_cpu(hrtimer_bases, get_nohz_timer_target());
186 }
187 #else
188 static inline
get_target_base(struct hrtimer_cpu_base * base,int pinned)189 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
190 					 int pinned)
191 {
192 	return base;
193 }
194 #endif
195 
196 /*
197  * We switch the timer base to a power-optimized selected CPU target,
198  * if:
199  *	- NO_HZ_COMMON is enabled
200  *	- timer migration is enabled
201  *	- the timer callback is not running
202  *	- the timer is not the first expiring timer on the new target
203  *
204  * If one of the above requirements is not fulfilled we move the timer
205  * to the current CPU or leave it on the previously assigned CPU if
206  * the timer callback is currently running.
207  */
208 static inline struct hrtimer_clock_base *
switch_hrtimer_base(struct hrtimer * timer,struct hrtimer_clock_base * base,int pinned)209 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
210 		    int pinned)
211 {
212 	struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
213 	struct hrtimer_clock_base *new_base;
214 	int basenum = base->index;
215 
216 	this_cpu_base = this_cpu_ptr(&hrtimer_bases);
217 	new_cpu_base = get_target_base(this_cpu_base, pinned);
218 again:
219 	new_base = &new_cpu_base->clock_base[basenum];
220 
221 	if (base != new_base) {
222 		/*
223 		 * We are trying to move timer to new_base.
224 		 * However we can't change timer's base while it is running,
225 		 * so we keep it on the same CPU. No hassle vs. reprogramming
226 		 * the event source in the high resolution case. The softirq
227 		 * code will take care of this when the timer function has
228 		 * completed. There is no conflict as we hold the lock until
229 		 * the timer is enqueued.
230 		 */
231 		if (unlikely(hrtimer_callback_running(timer)))
232 			return base;
233 
234 		/* See the comment in lock_hrtimer_base() */
235 		timer->base = &migration_base;
236 		raw_spin_unlock(&base->cpu_base->lock);
237 		raw_spin_lock(&new_base->cpu_base->lock);
238 
239 		if (new_cpu_base != this_cpu_base &&
240 		    hrtimer_check_target(timer, new_base)) {
241 			raw_spin_unlock(&new_base->cpu_base->lock);
242 			raw_spin_lock(&base->cpu_base->lock);
243 			new_cpu_base = this_cpu_base;
244 			timer->base = base;
245 			goto again;
246 		}
247 		timer->base = new_base;
248 	} else {
249 		if (new_cpu_base != this_cpu_base &&
250 		    hrtimer_check_target(timer, new_base)) {
251 			new_cpu_base = this_cpu_base;
252 			goto again;
253 		}
254 	}
255 	return new_base;
256 }
257 
258 #else /* CONFIG_SMP */
259 
260 static inline struct hrtimer_clock_base *
lock_hrtimer_base(const struct hrtimer * timer,unsigned long * flags)261 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
262 {
263 	struct hrtimer_clock_base *base = timer->base;
264 
265 	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
266 
267 	return base;
268 }
269 
270 # define switch_hrtimer_base(t, b, p)	(b)
271 
272 #endif	/* !CONFIG_SMP */
273 
274 /*
275  * Functions for the union type storage format of ktime_t which are
276  * too large for inlining:
277  */
278 #if BITS_PER_LONG < 64
279 /*
280  * Divide a ktime value by a nanosecond value
281  */
__ktime_divns(const ktime_t kt,s64 div)282 s64 __ktime_divns(const ktime_t kt, s64 div)
283 {
284 	int sft = 0;
285 	s64 dclc;
286 	u64 tmp;
287 
288 	dclc = ktime_to_ns(kt);
289 	tmp = dclc < 0 ? -dclc : dclc;
290 
291 	/* Make sure the divisor is less than 2^32: */
292 	while (div >> 32) {
293 		sft++;
294 		div >>= 1;
295 	}
296 	tmp >>= sft;
297 	do_div(tmp, (unsigned long) div);
298 	return dclc < 0 ? -tmp : tmp;
299 }
300 EXPORT_SYMBOL_GPL(__ktime_divns);
301 #endif /* BITS_PER_LONG >= 64 */
302 
303 /*
304  * Add two ktime values and do a safety check for overflow:
305  */
ktime_add_safe(const ktime_t lhs,const ktime_t rhs)306 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
307 {
308 	ktime_t res = ktime_add_unsafe(lhs, rhs);
309 
310 	/*
311 	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
312 	 * return to user space in a timespec:
313 	 */
314 	if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
315 		res = ktime_set(KTIME_SEC_MAX, 0);
316 
317 	return res;
318 }
319 
320 EXPORT_SYMBOL_GPL(ktime_add_safe);
321 
322 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
323 
324 static struct debug_obj_descr hrtimer_debug_descr;
325 
hrtimer_debug_hint(void * addr)326 static void *hrtimer_debug_hint(void *addr)
327 {
328 	return ((struct hrtimer *) addr)->function;
329 }
330 
331 /*
332  * fixup_init is called when:
333  * - an active object is initialized
334  */
hrtimer_fixup_init(void * addr,enum debug_obj_state state)335 static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
336 {
337 	struct hrtimer *timer = addr;
338 
339 	switch (state) {
340 	case ODEBUG_STATE_ACTIVE:
341 		hrtimer_cancel(timer);
342 		debug_object_init(timer, &hrtimer_debug_descr);
343 		return true;
344 	default:
345 		return false;
346 	}
347 }
348 
349 /*
350  * fixup_activate is called when:
351  * - an active object is activated
352  * - an unknown non-static object is activated
353  */
hrtimer_fixup_activate(void * addr,enum debug_obj_state state)354 static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
355 {
356 	switch (state) {
357 	case ODEBUG_STATE_ACTIVE:
358 		WARN_ON(1);
359 
360 	default:
361 		return false;
362 	}
363 }
364 
365 /*
366  * fixup_free is called when:
367  * - an active object is freed
368  */
hrtimer_fixup_free(void * addr,enum debug_obj_state state)369 static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
370 {
371 	struct hrtimer *timer = addr;
372 
373 	switch (state) {
374 	case ODEBUG_STATE_ACTIVE:
375 		hrtimer_cancel(timer);
376 		debug_object_free(timer, &hrtimer_debug_descr);
377 		return true;
378 	default:
379 		return false;
380 	}
381 }
382 
383 static struct debug_obj_descr hrtimer_debug_descr = {
384 	.name		= "hrtimer",
385 	.debug_hint	= hrtimer_debug_hint,
386 	.fixup_init	= hrtimer_fixup_init,
387 	.fixup_activate	= hrtimer_fixup_activate,
388 	.fixup_free	= hrtimer_fixup_free,
389 };
390 
debug_hrtimer_init(struct hrtimer * timer)391 static inline void debug_hrtimer_init(struct hrtimer *timer)
392 {
393 	debug_object_init(timer, &hrtimer_debug_descr);
394 }
395 
debug_hrtimer_activate(struct hrtimer * timer)396 static inline void debug_hrtimer_activate(struct hrtimer *timer)
397 {
398 	debug_object_activate(timer, &hrtimer_debug_descr);
399 }
400 
debug_hrtimer_deactivate(struct hrtimer * timer)401 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
402 {
403 	debug_object_deactivate(timer, &hrtimer_debug_descr);
404 }
405 
debug_hrtimer_free(struct hrtimer * timer)406 static inline void debug_hrtimer_free(struct hrtimer *timer)
407 {
408 	debug_object_free(timer, &hrtimer_debug_descr);
409 }
410 
411 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
412 			   enum hrtimer_mode mode);
413 
hrtimer_init_on_stack(struct hrtimer * timer,clockid_t clock_id,enum hrtimer_mode mode)414 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
415 			   enum hrtimer_mode mode)
416 {
417 	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
418 	__hrtimer_init(timer, clock_id, mode);
419 }
420 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
421 
destroy_hrtimer_on_stack(struct hrtimer * timer)422 void destroy_hrtimer_on_stack(struct hrtimer *timer)
423 {
424 	debug_object_free(timer, &hrtimer_debug_descr);
425 }
426 EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
427 
428 #else
debug_hrtimer_init(struct hrtimer * timer)429 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
debug_hrtimer_activate(struct hrtimer * timer)430 static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
debug_hrtimer_deactivate(struct hrtimer * timer)431 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
432 #endif
433 
434 static inline void
debug_init(struct hrtimer * timer,clockid_t clockid,enum hrtimer_mode mode)435 debug_init(struct hrtimer *timer, clockid_t clockid,
436 	   enum hrtimer_mode mode)
437 {
438 	debug_hrtimer_init(timer);
439 	trace_hrtimer_init(timer, clockid, mode);
440 }
441 
debug_activate(struct hrtimer * timer)442 static inline void debug_activate(struct hrtimer *timer)
443 {
444 	debug_hrtimer_activate(timer);
445 	trace_hrtimer_start(timer);
446 }
447 
debug_deactivate(struct hrtimer * timer)448 static inline void debug_deactivate(struct hrtimer *timer)
449 {
450 	debug_hrtimer_deactivate(timer);
451 	trace_hrtimer_cancel(timer);
452 }
453 
454 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
hrtimer_update_next_timer(struct hrtimer_cpu_base * cpu_base,struct hrtimer * timer)455 static inline void hrtimer_update_next_timer(struct hrtimer_cpu_base *cpu_base,
456 					     struct hrtimer *timer)
457 {
458 #ifdef CONFIG_HIGH_RES_TIMERS
459 	cpu_base->next_timer = timer;
460 #endif
461 }
462 
__hrtimer_get_next_event(struct hrtimer_cpu_base * cpu_base)463 static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
464 {
465 	struct hrtimer_clock_base *base = cpu_base->clock_base;
466 	ktime_t expires, expires_next = { .tv64 = KTIME_MAX };
467 	unsigned int active = cpu_base->active_bases;
468 
469 	hrtimer_update_next_timer(cpu_base, NULL);
470 	for (; active; base++, active >>= 1) {
471 		struct timerqueue_node *next;
472 		struct hrtimer *timer;
473 
474 		if (!(active & 0x01))
475 			continue;
476 
477 		next = timerqueue_getnext(&base->active);
478 		timer = container_of(next, struct hrtimer, node);
479 		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
480 		if (expires.tv64 < expires_next.tv64) {
481 			expires_next = expires;
482 			hrtimer_update_next_timer(cpu_base, timer);
483 		}
484 	}
485 	/*
486 	 * clock_was_set() might have changed base->offset of any of
487 	 * the clock bases so the result might be negative. Fix it up
488 	 * to prevent a false positive in clockevents_program_event().
489 	 */
490 	if (expires_next.tv64 < 0)
491 		expires_next.tv64 = 0;
492 	return expires_next;
493 }
494 #endif
495 
hrtimer_update_base(struct hrtimer_cpu_base * base)496 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
497 {
498 	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
499 	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
500 	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
501 
502 	return ktime_get_update_offsets_now(&base->clock_was_set_seq,
503 					    offs_real, offs_boot, offs_tai);
504 }
505 
506 /* High resolution timer related functions */
507 #ifdef CONFIG_HIGH_RES_TIMERS
508 
509 /*
510  * High resolution timer enabled ?
511  */
512 static bool hrtimer_hres_enabled __read_mostly  = true;
513 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
514 EXPORT_SYMBOL_GPL(hrtimer_resolution);
515 
516 /*
517  * Enable / Disable high resolution mode
518  */
setup_hrtimer_hres(char * str)519 static int __init setup_hrtimer_hres(char *str)
520 {
521 	return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
522 }
523 
524 __setup("highres=", setup_hrtimer_hres);
525 
526 /*
527  * hrtimer_high_res_enabled - query, if the highres mode is enabled
528  */
hrtimer_is_hres_enabled(void)529 static inline int hrtimer_is_hres_enabled(void)
530 {
531 	return hrtimer_hres_enabled;
532 }
533 
534 /*
535  * Is the high resolution mode active ?
536  */
__hrtimer_hres_active(struct hrtimer_cpu_base * cpu_base)537 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
538 {
539 	return cpu_base->hres_active;
540 }
541 
hrtimer_hres_active(void)542 static inline int hrtimer_hres_active(void)
543 {
544 	return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
545 }
546 
547 /*
548  * Reprogram the event source with checking both queues for the
549  * next event
550  * Called with interrupts disabled and base->lock held
551  */
552 static void
hrtimer_force_reprogram(struct hrtimer_cpu_base * cpu_base,int skip_equal)553 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
554 {
555 	ktime_t expires_next;
556 
557 	if (!cpu_base->hres_active)
558 		return;
559 
560 	expires_next = __hrtimer_get_next_event(cpu_base);
561 
562 	if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
563 		return;
564 
565 	cpu_base->expires_next.tv64 = expires_next.tv64;
566 
567 	/*
568 	 * If a hang was detected in the last timer interrupt then we
569 	 * leave the hang delay active in the hardware. We want the
570 	 * system to make progress. That also prevents the following
571 	 * scenario:
572 	 * T1 expires 50ms from now
573 	 * T2 expires 5s from now
574 	 *
575 	 * T1 is removed, so this code is called and would reprogram
576 	 * the hardware to 5s from now. Any hrtimer_start after that
577 	 * will not reprogram the hardware due to hang_detected being
578 	 * set. So we'd effectivly block all timers until the T2 event
579 	 * fires.
580 	 */
581 	if (cpu_base->hang_detected)
582 		return;
583 
584 	tick_program_event(cpu_base->expires_next, 1);
585 }
586 
587 /*
588  * When a timer is enqueued and expires earlier than the already enqueued
589  * timers, we have to check, whether it expires earlier than the timer for
590  * which the clock event device was armed.
591  *
592  * Called with interrupts disabled and base->cpu_base.lock held
593  */
hrtimer_reprogram(struct hrtimer * timer,struct hrtimer_clock_base * base)594 static void hrtimer_reprogram(struct hrtimer *timer,
595 			      struct hrtimer_clock_base *base)
596 {
597 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
598 	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
599 
600 	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
601 
602 	/*
603 	 * If the timer is not on the current cpu, we cannot reprogram
604 	 * the other cpus clock event device.
605 	 */
606 	if (base->cpu_base != cpu_base)
607 		return;
608 
609 	/*
610 	 * If the hrtimer interrupt is running, then it will
611 	 * reevaluate the clock bases and reprogram the clock event
612 	 * device. The callbacks are always executed in hard interrupt
613 	 * context so we don't need an extra check for a running
614 	 * callback.
615 	 */
616 	if (cpu_base->in_hrtirq)
617 		return;
618 
619 	/*
620 	 * CLOCK_REALTIME timer might be requested with an absolute
621 	 * expiry time which is less than base->offset. Set it to 0.
622 	 */
623 	if (expires.tv64 < 0)
624 		expires.tv64 = 0;
625 
626 	if (expires.tv64 >= cpu_base->expires_next.tv64)
627 		return;
628 
629 	/* Update the pointer to the next expiring timer */
630 	cpu_base->next_timer = timer;
631 
632 	/*
633 	 * If a hang was detected in the last timer interrupt then we
634 	 * do not schedule a timer which is earlier than the expiry
635 	 * which we enforced in the hang detection. We want the system
636 	 * to make progress.
637 	 */
638 	if (cpu_base->hang_detected)
639 		return;
640 
641 	/*
642 	 * Program the timer hardware. We enforce the expiry for
643 	 * events which are already in the past.
644 	 */
645 	cpu_base->expires_next = expires;
646 	tick_program_event(expires, 1);
647 }
648 
649 /*
650  * Initialize the high resolution related parts of cpu_base
651  */
hrtimer_init_hres(struct hrtimer_cpu_base * base)652 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
653 {
654 	base->expires_next.tv64 = KTIME_MAX;
655 	base->hang_detected = 0;
656 	base->hres_active = 0;
657 	base->next_timer = NULL;
658 }
659 
660 /*
661  * Retrigger next event is called after clock was set
662  *
663  * Called with interrupts disabled via on_each_cpu()
664  */
retrigger_next_event(void * arg)665 static void retrigger_next_event(void *arg)
666 {
667 	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
668 
669 	if (!base->hres_active)
670 		return;
671 
672 	raw_spin_lock(&base->lock);
673 	hrtimer_update_base(base);
674 	hrtimer_force_reprogram(base, 0);
675 	raw_spin_unlock(&base->lock);
676 }
677 
678 /*
679  * Switch to high resolution mode
680  */
hrtimer_switch_to_hres(void)681 static void hrtimer_switch_to_hres(void)
682 {
683 	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
684 
685 	if (tick_init_highres()) {
686 		printk(KERN_WARNING "Could not switch to high resolution "
687 				    "mode on CPU %d\n", base->cpu);
688 		return;
689 	}
690 	base->hres_active = 1;
691 	hrtimer_resolution = HIGH_RES_NSEC;
692 
693 	tick_setup_sched_timer();
694 	/* "Retrigger" the interrupt to get things going */
695 	retrigger_next_event(NULL);
696 }
697 
clock_was_set_work(struct work_struct * work)698 static void clock_was_set_work(struct work_struct *work)
699 {
700 	clock_was_set();
701 }
702 
703 static DECLARE_WORK(hrtimer_work, clock_was_set_work);
704 
705 /*
706  * Called from timekeeping and resume code to reprogram the hrtimer
707  * interrupt device on all cpus.
708  */
clock_was_set_delayed(void)709 void clock_was_set_delayed(void)
710 {
711 	schedule_work(&hrtimer_work);
712 }
713 
714 #else
715 
__hrtimer_hres_active(struct hrtimer_cpu_base * b)716 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *b) { return 0; }
hrtimer_hres_active(void)717 static inline int hrtimer_hres_active(void) { return 0; }
hrtimer_is_hres_enabled(void)718 static inline int hrtimer_is_hres_enabled(void) { return 0; }
hrtimer_switch_to_hres(void)719 static inline void hrtimer_switch_to_hres(void) { }
720 static inline void
hrtimer_force_reprogram(struct hrtimer_cpu_base * base,int skip_equal)721 hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
hrtimer_reprogram(struct hrtimer * timer,struct hrtimer_clock_base * base)722 static inline int hrtimer_reprogram(struct hrtimer *timer,
723 				    struct hrtimer_clock_base *base)
724 {
725 	return 0;
726 }
hrtimer_init_hres(struct hrtimer_cpu_base * base)727 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
retrigger_next_event(void * arg)728 static inline void retrigger_next_event(void *arg) { }
729 
730 #endif /* CONFIG_HIGH_RES_TIMERS */
731 
732 /*
733  * Clock realtime was set
734  *
735  * Change the offset of the realtime clock vs. the monotonic
736  * clock.
737  *
738  * We might have to reprogram the high resolution timer interrupt. On
739  * SMP we call the architecture specific code to retrigger _all_ high
740  * resolution timer interrupts. On UP we just disable interrupts and
741  * call the high resolution interrupt code.
742  */
clock_was_set(void)743 void clock_was_set(void)
744 {
745 #ifdef CONFIG_HIGH_RES_TIMERS
746 	/* Retrigger the CPU local events everywhere */
747 	on_each_cpu(retrigger_next_event, NULL, 1);
748 #endif
749 	timerfd_clock_was_set();
750 }
751 
752 /*
753  * During resume we might have to reprogram the high resolution timer
754  * interrupt on all online CPUs.  However, all other CPUs will be
755  * stopped with IRQs interrupts disabled so the clock_was_set() call
756  * must be deferred.
757  */
hrtimers_resume(void)758 void hrtimers_resume(void)
759 {
760 	WARN_ONCE(!irqs_disabled(),
761 		  KERN_INFO "hrtimers_resume() called with IRQs enabled!");
762 
763 	/* Retrigger on the local CPU */
764 	retrigger_next_event(NULL);
765 	/* And schedule a retrigger for all others */
766 	clock_was_set_delayed();
767 }
768 
timer_stats_hrtimer_set_start_info(struct hrtimer * timer)769 static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
770 {
771 #ifdef CONFIG_TIMER_STATS
772 	if (timer->start_site)
773 		return;
774 	timer->start_site = __builtin_return_address(0);
775 	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
776 	timer->start_pid = current->pid;
777 #endif
778 }
779 
timer_stats_hrtimer_clear_start_info(struct hrtimer * timer)780 static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
781 {
782 #ifdef CONFIG_TIMER_STATS
783 	timer->start_site = NULL;
784 #endif
785 }
786 
timer_stats_account_hrtimer(struct hrtimer * timer)787 static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
788 {
789 #ifdef CONFIG_TIMER_STATS
790 	if (likely(!timer_stats_active))
791 		return;
792 	timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
793 				 timer->function, timer->start_comm, 0);
794 #endif
795 }
796 
797 /*
798  * Counterpart to lock_hrtimer_base above:
799  */
800 static inline
unlock_hrtimer_base(const struct hrtimer * timer,unsigned long * flags)801 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
802 {
803 	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
804 }
805 
806 /**
807  * hrtimer_forward - forward the timer expiry
808  * @timer:	hrtimer to forward
809  * @now:	forward past this time
810  * @interval:	the interval to forward
811  *
812  * Forward the timer expiry so it will expire in the future.
813  * Returns the number of overruns.
814  *
815  * Can be safely called from the callback function of @timer. If
816  * called from other contexts @timer must neither be enqueued nor
817  * running the callback and the caller needs to take care of
818  * serialization.
819  *
820  * Note: This only updates the timer expiry value and does not requeue
821  * the timer.
822  */
hrtimer_forward(struct hrtimer * timer,ktime_t now,ktime_t interval)823 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
824 {
825 	u64 orun = 1;
826 	ktime_t delta;
827 
828 	delta = ktime_sub(now, hrtimer_get_expires(timer));
829 
830 	if (delta.tv64 < 0)
831 		return 0;
832 
833 	if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
834 		return 0;
835 
836 	if (interval.tv64 < hrtimer_resolution)
837 		interval.tv64 = hrtimer_resolution;
838 
839 	if (unlikely(delta.tv64 >= interval.tv64)) {
840 		s64 incr = ktime_to_ns(interval);
841 
842 		orun = ktime_divns(delta, incr);
843 		hrtimer_add_expires_ns(timer, incr * orun);
844 		if (hrtimer_get_expires_tv64(timer) > now.tv64)
845 			return orun;
846 		/*
847 		 * This (and the ktime_add() below) is the
848 		 * correction for exact:
849 		 */
850 		orun++;
851 	}
852 	hrtimer_add_expires(timer, interval);
853 
854 	return orun;
855 }
856 EXPORT_SYMBOL_GPL(hrtimer_forward);
857 
858 /*
859  * enqueue_hrtimer - internal function to (re)start a timer
860  *
861  * The timer is inserted in expiry order. Insertion into the
862  * red black tree is O(log(n)). Must hold the base lock.
863  *
864  * Returns 1 when the new timer is the leftmost timer in the tree.
865  */
enqueue_hrtimer(struct hrtimer * timer,struct hrtimer_clock_base * base)866 static int enqueue_hrtimer(struct hrtimer *timer,
867 			   struct hrtimer_clock_base *base)
868 {
869 	debug_activate(timer);
870 
871 	base->cpu_base->active_bases |= 1 << base->index;
872 
873 	timer->state = HRTIMER_STATE_ENQUEUED;
874 
875 	return timerqueue_add(&base->active, &timer->node);
876 }
877 
878 /*
879  * __remove_hrtimer - internal function to remove a timer
880  *
881  * Caller must hold the base lock.
882  *
883  * High resolution timer mode reprograms the clock event device when the
884  * timer is the one which expires next. The caller can disable this by setting
885  * reprogram to zero. This is useful, when the context does a reprogramming
886  * anyway (e.g. timer interrupt)
887  */
__remove_hrtimer(struct hrtimer * timer,struct hrtimer_clock_base * base,u8 newstate,int reprogram)888 static void __remove_hrtimer(struct hrtimer *timer,
889 			     struct hrtimer_clock_base *base,
890 			     u8 newstate, int reprogram)
891 {
892 	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
893 	u8 state = timer->state;
894 
895 	timer->state = newstate;
896 	if (!(state & HRTIMER_STATE_ENQUEUED))
897 		return;
898 
899 	if (!timerqueue_del(&base->active, &timer->node))
900 		cpu_base->active_bases &= ~(1 << base->index);
901 
902 #ifdef CONFIG_HIGH_RES_TIMERS
903 	/*
904 	 * Note: If reprogram is false we do not update
905 	 * cpu_base->next_timer. This happens when we remove the first
906 	 * timer on a remote cpu. No harm as we never dereference
907 	 * cpu_base->next_timer. So the worst thing what can happen is
908 	 * an superflous call to hrtimer_force_reprogram() on the
909 	 * remote cpu later on if the same timer gets enqueued again.
910 	 */
911 	if (reprogram && timer == cpu_base->next_timer)
912 		hrtimer_force_reprogram(cpu_base, 1);
913 #endif
914 }
915 
916 /*
917  * remove hrtimer, called with base lock held
918  */
919 static inline int
remove_hrtimer(struct hrtimer * timer,struct hrtimer_clock_base * base,bool restart)920 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
921 {
922 	if (hrtimer_is_queued(timer)) {
923 		u8 state = timer->state;
924 		int reprogram;
925 
926 		/*
927 		 * Remove the timer and force reprogramming when high
928 		 * resolution mode is active and the timer is on the current
929 		 * CPU. If we remove a timer on another CPU, reprogramming is
930 		 * skipped. The interrupt event on this CPU is fired and
931 		 * reprogramming happens in the interrupt handler. This is a
932 		 * rare case and less expensive than a smp call.
933 		 */
934 		debug_deactivate(timer);
935 		timer_stats_hrtimer_clear_start_info(timer);
936 		reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
937 
938 		if (!restart)
939 			state = HRTIMER_STATE_INACTIVE;
940 
941 		__remove_hrtimer(timer, base, state, reprogram);
942 		return 1;
943 	}
944 	return 0;
945 }
946 
hrtimer_update_lowres(struct hrtimer * timer,ktime_t tim,const enum hrtimer_mode mode)947 static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
948 					    const enum hrtimer_mode mode)
949 {
950 #ifdef CONFIG_TIME_LOW_RES
951 	/*
952 	 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
953 	 * granular time values. For relative timers we add hrtimer_resolution
954 	 * (i.e. one jiffie) to prevent short timeouts.
955 	 */
956 	timer->is_rel = mode & HRTIMER_MODE_REL;
957 	if (timer->is_rel)
958 		tim = ktime_add_safe(tim, ktime_set(0, hrtimer_resolution));
959 #endif
960 	return tim;
961 }
962 
963 /**
964  * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
965  * @timer:	the timer to be added
966  * @tim:	expiry time
967  * @delta_ns:	"slack" range for the timer
968  * @mode:	expiry mode: absolute (HRTIMER_MODE_ABS) or
969  *		relative (HRTIMER_MODE_REL)
970  */
hrtimer_start_range_ns(struct hrtimer * timer,ktime_t tim,u64 delta_ns,const enum hrtimer_mode mode)971 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
972 			    u64 delta_ns, const enum hrtimer_mode mode)
973 {
974 	struct hrtimer_clock_base *base, *new_base;
975 	unsigned long flags;
976 	int leftmost;
977 
978 	base = lock_hrtimer_base(timer, &flags);
979 
980 	/* Remove an active timer from the queue: */
981 	remove_hrtimer(timer, base, true);
982 
983 	if (mode & HRTIMER_MODE_REL)
984 		tim = ktime_add_safe(tim, base->get_time());
985 
986 	tim = hrtimer_update_lowres(timer, tim, mode);
987 
988 	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
989 
990 	/* Switch the timer base, if necessary: */
991 	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
992 
993 	timer_stats_hrtimer_set_start_info(timer);
994 
995 	leftmost = enqueue_hrtimer(timer, new_base);
996 	if (!leftmost)
997 		goto unlock;
998 
999 	if (!hrtimer_is_hres_active(timer)) {
1000 		/*
1001 		 * Kick to reschedule the next tick to handle the new timer
1002 		 * on dynticks target.
1003 		 */
1004 		if (new_base->cpu_base->nohz_active)
1005 			wake_up_nohz_cpu(new_base->cpu_base->cpu);
1006 	} else {
1007 		hrtimer_reprogram(timer, new_base);
1008 	}
1009 unlock:
1010 	unlock_hrtimer_base(timer, &flags);
1011 }
1012 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1013 
1014 /**
1015  * hrtimer_try_to_cancel - try to deactivate a timer
1016  * @timer:	hrtimer to stop
1017  *
1018  * Returns:
1019  *  0 when the timer was not active
1020  *  1 when the timer was active
1021  * -1 when the timer is currently excuting the callback function and
1022  *    cannot be stopped
1023  */
hrtimer_try_to_cancel(struct hrtimer * timer)1024 int hrtimer_try_to_cancel(struct hrtimer *timer)
1025 {
1026 	struct hrtimer_clock_base *base;
1027 	unsigned long flags;
1028 	int ret = -1;
1029 
1030 	/*
1031 	 * Check lockless first. If the timer is not active (neither
1032 	 * enqueued nor running the callback, nothing to do here.  The
1033 	 * base lock does not serialize against a concurrent enqueue,
1034 	 * so we can avoid taking it.
1035 	 */
1036 	if (!hrtimer_active(timer))
1037 		return 0;
1038 
1039 	base = lock_hrtimer_base(timer, &flags);
1040 
1041 	if (!hrtimer_callback_running(timer))
1042 		ret = remove_hrtimer(timer, base, false);
1043 
1044 	unlock_hrtimer_base(timer, &flags);
1045 
1046 	return ret;
1047 
1048 }
1049 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1050 
1051 /**
1052  * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1053  * @timer:	the timer to be cancelled
1054  *
1055  * Returns:
1056  *  0 when the timer was not active
1057  *  1 when the timer was active
1058  */
hrtimer_cancel(struct hrtimer * timer)1059 int hrtimer_cancel(struct hrtimer *timer)
1060 {
1061 	for (;;) {
1062 		int ret = hrtimer_try_to_cancel(timer);
1063 
1064 		if (ret >= 0)
1065 			return ret;
1066 		cpu_relax();
1067 	}
1068 }
1069 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1070 
1071 /**
1072  * hrtimer_get_remaining - get remaining time for the timer
1073  * @timer:	the timer to read
1074  * @adjust:	adjust relative timers when CONFIG_TIME_LOW_RES=y
1075  */
__hrtimer_get_remaining(const struct hrtimer * timer,bool adjust)1076 ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1077 {
1078 	unsigned long flags;
1079 	ktime_t rem;
1080 
1081 	lock_hrtimer_base(timer, &flags);
1082 	if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1083 		rem = hrtimer_expires_remaining_adjusted(timer);
1084 	else
1085 		rem = hrtimer_expires_remaining(timer);
1086 	unlock_hrtimer_base(timer, &flags);
1087 
1088 	return rem;
1089 }
1090 EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1091 
1092 #ifdef CONFIG_NO_HZ_COMMON
1093 /**
1094  * hrtimer_get_next_event - get the time until next expiry event
1095  *
1096  * Returns the next expiry time or KTIME_MAX if no timer is pending.
1097  */
hrtimer_get_next_event(void)1098 u64 hrtimer_get_next_event(void)
1099 {
1100 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1101 	u64 expires = KTIME_MAX;
1102 	unsigned long flags;
1103 
1104 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1105 
1106 	if (!__hrtimer_hres_active(cpu_base))
1107 		expires = __hrtimer_get_next_event(cpu_base).tv64;
1108 
1109 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1110 
1111 	return expires;
1112 }
1113 #endif
1114 
hrtimer_clockid_to_base(clockid_t clock_id)1115 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
1116 {
1117 	if (likely(clock_id < MAX_CLOCKS)) {
1118 		int base = hrtimer_clock_to_base_table[clock_id];
1119 
1120 		if (likely(base != HRTIMER_MAX_CLOCK_BASES))
1121 			return base;
1122 	}
1123 	WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
1124 	return HRTIMER_BASE_MONOTONIC;
1125 }
1126 
__hrtimer_init(struct hrtimer * timer,clockid_t clock_id,enum hrtimer_mode mode)1127 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1128 			   enum hrtimer_mode mode)
1129 {
1130 	struct hrtimer_cpu_base *cpu_base;
1131 	int base;
1132 
1133 	memset(timer, 0, sizeof(struct hrtimer));
1134 
1135 	cpu_base = raw_cpu_ptr(&hrtimer_bases);
1136 
1137 	/*
1138 	 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
1139 	 * clock modifications, so they needs to become CLOCK_MONOTONIC to
1140 	 * ensure POSIX compliance.
1141 	 */
1142 	if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
1143 		clock_id = CLOCK_MONOTONIC;
1144 
1145 	base = hrtimer_clockid_to_base(clock_id);
1146 	timer->base = &cpu_base->clock_base[base];
1147 	timerqueue_init(&timer->node);
1148 
1149 #ifdef CONFIG_TIMER_STATS
1150 	timer->start_site = NULL;
1151 	timer->start_pid = -1;
1152 	memset(timer->start_comm, 0, TASK_COMM_LEN);
1153 #endif
1154 }
1155 
1156 /**
1157  * hrtimer_init - initialize a timer to the given clock
1158  * @timer:	the timer to be initialized
1159  * @clock_id:	the clock to be used
1160  * @mode:	timer mode abs/rel
1161  */
hrtimer_init(struct hrtimer * timer,clockid_t clock_id,enum hrtimer_mode mode)1162 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1163 		  enum hrtimer_mode mode)
1164 {
1165 	debug_init(timer, clock_id, mode);
1166 	__hrtimer_init(timer, clock_id, mode);
1167 }
1168 EXPORT_SYMBOL_GPL(hrtimer_init);
1169 
1170 /*
1171  * A timer is active, when it is enqueued into the rbtree or the
1172  * callback function is running or it's in the state of being migrated
1173  * to another cpu.
1174  *
1175  * It is important for this function to not return a false negative.
1176  */
hrtimer_active(const struct hrtimer * timer)1177 bool hrtimer_active(const struct hrtimer *timer)
1178 {
1179 	struct hrtimer_cpu_base *cpu_base;
1180 	unsigned int seq;
1181 
1182 	do {
1183 		cpu_base = READ_ONCE(timer->base->cpu_base);
1184 		seq = raw_read_seqcount_begin(&cpu_base->seq);
1185 
1186 		if (timer->state != HRTIMER_STATE_INACTIVE ||
1187 		    cpu_base->running == timer)
1188 			return true;
1189 
1190 	} while (read_seqcount_retry(&cpu_base->seq, seq) ||
1191 		 cpu_base != READ_ONCE(timer->base->cpu_base));
1192 
1193 	return false;
1194 }
1195 EXPORT_SYMBOL_GPL(hrtimer_active);
1196 
1197 /*
1198  * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1199  * distinct sections:
1200  *
1201  *  - queued:	the timer is queued
1202  *  - callback:	the timer is being ran
1203  *  - post:	the timer is inactive or (re)queued
1204  *
1205  * On the read side we ensure we observe timer->state and cpu_base->running
1206  * from the same section, if anything changed while we looked at it, we retry.
1207  * This includes timer->base changing because sequence numbers alone are
1208  * insufficient for that.
1209  *
1210  * The sequence numbers are required because otherwise we could still observe
1211  * a false negative if the read side got smeared over multiple consequtive
1212  * __run_hrtimer() invocations.
1213  */
1214 
__run_hrtimer(struct hrtimer_cpu_base * cpu_base,struct hrtimer_clock_base * base,struct hrtimer * timer,ktime_t * now)1215 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1216 			  struct hrtimer_clock_base *base,
1217 			  struct hrtimer *timer, ktime_t *now)
1218 {
1219 	enum hrtimer_restart (*fn)(struct hrtimer *);
1220 	int restart;
1221 
1222 	lockdep_assert_held(&cpu_base->lock);
1223 
1224 	debug_deactivate(timer);
1225 	cpu_base->running = timer;
1226 
1227 	/*
1228 	 * Separate the ->running assignment from the ->state assignment.
1229 	 *
1230 	 * As with a regular write barrier, this ensures the read side in
1231 	 * hrtimer_active() cannot observe cpu_base->running == NULL &&
1232 	 * timer->state == INACTIVE.
1233 	 */
1234 	raw_write_seqcount_barrier(&cpu_base->seq);
1235 
1236 	__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1237 	timer_stats_account_hrtimer(timer);
1238 	fn = timer->function;
1239 
1240 	/*
1241 	 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1242 	 * timer is restarted with a period then it becomes an absolute
1243 	 * timer. If its not restarted it does not matter.
1244 	 */
1245 	if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1246 		timer->is_rel = false;
1247 
1248 	/*
1249 	 * Because we run timers from hardirq context, there is no chance
1250 	 * they get migrated to another cpu, therefore its safe to unlock
1251 	 * the timer base.
1252 	 */
1253 	raw_spin_unlock(&cpu_base->lock);
1254 	trace_hrtimer_expire_entry(timer, now);
1255 	restart = fn(timer);
1256 	trace_hrtimer_expire_exit(timer);
1257 	raw_spin_lock(&cpu_base->lock);
1258 
1259 	/*
1260 	 * Note: We clear the running state after enqueue_hrtimer and
1261 	 * we do not reprogram the event hardware. Happens either in
1262 	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1263 	 *
1264 	 * Note: Because we dropped the cpu_base->lock above,
1265 	 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1266 	 * for us already.
1267 	 */
1268 	if (restart != HRTIMER_NORESTART &&
1269 	    !(timer->state & HRTIMER_STATE_ENQUEUED))
1270 		enqueue_hrtimer(timer, base);
1271 
1272 	/*
1273 	 * Separate the ->running assignment from the ->state assignment.
1274 	 *
1275 	 * As with a regular write barrier, this ensures the read side in
1276 	 * hrtimer_active() cannot observe cpu_base->running == NULL &&
1277 	 * timer->state == INACTIVE.
1278 	 */
1279 	raw_write_seqcount_barrier(&cpu_base->seq);
1280 
1281 	WARN_ON_ONCE(cpu_base->running != timer);
1282 	cpu_base->running = NULL;
1283 }
1284 
__hrtimer_run_queues(struct hrtimer_cpu_base * cpu_base,ktime_t now)1285 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now)
1286 {
1287 	struct hrtimer_clock_base *base = cpu_base->clock_base;
1288 	unsigned int active = cpu_base->active_bases;
1289 
1290 	for (; active; base++, active >>= 1) {
1291 		struct timerqueue_node *node;
1292 		ktime_t basenow;
1293 
1294 		if (!(active & 0x01))
1295 			continue;
1296 
1297 		basenow = ktime_add(now, base->offset);
1298 
1299 		while ((node = timerqueue_getnext(&base->active))) {
1300 			struct hrtimer *timer;
1301 
1302 			timer = container_of(node, struct hrtimer, node);
1303 
1304 			/*
1305 			 * The immediate goal for using the softexpires is
1306 			 * minimizing wakeups, not running timers at the
1307 			 * earliest interrupt after their soft expiration.
1308 			 * This allows us to avoid using a Priority Search
1309 			 * Tree, which can answer a stabbing querry for
1310 			 * overlapping intervals and instead use the simple
1311 			 * BST we already have.
1312 			 * We don't add extra wakeups by delaying timers that
1313 			 * are right-of a not yet expired timer, because that
1314 			 * timer will have to trigger a wakeup anyway.
1315 			 */
1316 			if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer))
1317 				break;
1318 
1319 			__run_hrtimer(cpu_base, base, timer, &basenow);
1320 		}
1321 	}
1322 }
1323 
1324 #ifdef CONFIG_HIGH_RES_TIMERS
1325 
1326 /*
1327  * High resolution timer interrupt
1328  * Called with interrupts disabled
1329  */
hrtimer_interrupt(struct clock_event_device * dev)1330 void hrtimer_interrupt(struct clock_event_device *dev)
1331 {
1332 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1333 	ktime_t expires_next, now, entry_time, delta;
1334 	int retries = 0;
1335 
1336 	BUG_ON(!cpu_base->hres_active);
1337 	cpu_base->nr_events++;
1338 	dev->next_event.tv64 = KTIME_MAX;
1339 
1340 	raw_spin_lock(&cpu_base->lock);
1341 	entry_time = now = hrtimer_update_base(cpu_base);
1342 retry:
1343 	cpu_base->in_hrtirq = 1;
1344 	/*
1345 	 * We set expires_next to KTIME_MAX here with cpu_base->lock
1346 	 * held to prevent that a timer is enqueued in our queue via
1347 	 * the migration code. This does not affect enqueueing of
1348 	 * timers which run their callback and need to be requeued on
1349 	 * this CPU.
1350 	 */
1351 	cpu_base->expires_next.tv64 = KTIME_MAX;
1352 
1353 	__hrtimer_run_queues(cpu_base, now);
1354 
1355 	/* Reevaluate the clock bases for the next expiry */
1356 	expires_next = __hrtimer_get_next_event(cpu_base);
1357 	/*
1358 	 * Store the new expiry value so the migration code can verify
1359 	 * against it.
1360 	 */
1361 	cpu_base->expires_next = expires_next;
1362 	cpu_base->in_hrtirq = 0;
1363 	raw_spin_unlock(&cpu_base->lock);
1364 
1365 	/* Reprogramming necessary ? */
1366 	if (!tick_program_event(expires_next, 0)) {
1367 		cpu_base->hang_detected = 0;
1368 		return;
1369 	}
1370 
1371 	/*
1372 	 * The next timer was already expired due to:
1373 	 * - tracing
1374 	 * - long lasting callbacks
1375 	 * - being scheduled away when running in a VM
1376 	 *
1377 	 * We need to prevent that we loop forever in the hrtimer
1378 	 * interrupt routine. We give it 3 attempts to avoid
1379 	 * overreacting on some spurious event.
1380 	 *
1381 	 * Acquire base lock for updating the offsets and retrieving
1382 	 * the current time.
1383 	 */
1384 	raw_spin_lock(&cpu_base->lock);
1385 	now = hrtimer_update_base(cpu_base);
1386 	cpu_base->nr_retries++;
1387 	if (++retries < 3)
1388 		goto retry;
1389 	/*
1390 	 * Give the system a chance to do something else than looping
1391 	 * here. We stored the entry time, so we know exactly how long
1392 	 * we spent here. We schedule the next event this amount of
1393 	 * time away.
1394 	 */
1395 	cpu_base->nr_hangs++;
1396 	cpu_base->hang_detected = 1;
1397 	raw_spin_unlock(&cpu_base->lock);
1398 	delta = ktime_sub(now, entry_time);
1399 	if ((unsigned int)delta.tv64 > cpu_base->max_hang_time)
1400 		cpu_base->max_hang_time = (unsigned int) delta.tv64;
1401 	/*
1402 	 * Limit it to a sensible value as we enforce a longer
1403 	 * delay. Give the CPU at least 100ms to catch up.
1404 	 */
1405 	if (delta.tv64 > 100 * NSEC_PER_MSEC)
1406 		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1407 	else
1408 		expires_next = ktime_add(now, delta);
1409 	tick_program_event(expires_next, 1);
1410 	printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1411 		    ktime_to_ns(delta));
1412 }
1413 
1414 /*
1415  * local version of hrtimer_peek_ahead_timers() called with interrupts
1416  * disabled.
1417  */
__hrtimer_peek_ahead_timers(void)1418 static inline void __hrtimer_peek_ahead_timers(void)
1419 {
1420 	struct tick_device *td;
1421 
1422 	if (!hrtimer_hres_active())
1423 		return;
1424 
1425 	td = this_cpu_ptr(&tick_cpu_device);
1426 	if (td && td->evtdev)
1427 		hrtimer_interrupt(td->evtdev);
1428 }
1429 
1430 #else /* CONFIG_HIGH_RES_TIMERS */
1431 
__hrtimer_peek_ahead_timers(void)1432 static inline void __hrtimer_peek_ahead_timers(void) { }
1433 
1434 #endif	/* !CONFIG_HIGH_RES_TIMERS */
1435 
1436 /*
1437  * Called from run_local_timers in hardirq context every jiffy
1438  */
hrtimer_run_queues(void)1439 void hrtimer_run_queues(void)
1440 {
1441 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1442 	ktime_t now;
1443 
1444 	if (__hrtimer_hres_active(cpu_base))
1445 		return;
1446 
1447 	/*
1448 	 * This _is_ ugly: We have to check periodically, whether we
1449 	 * can switch to highres and / or nohz mode. The clocksource
1450 	 * switch happens with xtime_lock held. Notification from
1451 	 * there only sets the check bit in the tick_oneshot code,
1452 	 * otherwise we might deadlock vs. xtime_lock.
1453 	 */
1454 	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1455 		hrtimer_switch_to_hres();
1456 		return;
1457 	}
1458 
1459 	raw_spin_lock(&cpu_base->lock);
1460 	now = hrtimer_update_base(cpu_base);
1461 	__hrtimer_run_queues(cpu_base, now);
1462 	raw_spin_unlock(&cpu_base->lock);
1463 }
1464 
1465 /*
1466  * Sleep related functions:
1467  */
hrtimer_wakeup(struct hrtimer * timer)1468 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1469 {
1470 	struct hrtimer_sleeper *t =
1471 		container_of(timer, struct hrtimer_sleeper, timer);
1472 	struct task_struct *task = t->task;
1473 
1474 	t->task = NULL;
1475 	if (task)
1476 		wake_up_process(task);
1477 
1478 	return HRTIMER_NORESTART;
1479 }
1480 
hrtimer_init_sleeper(struct hrtimer_sleeper * sl,struct task_struct * task)1481 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1482 {
1483 	sl->timer.function = hrtimer_wakeup;
1484 	sl->task = task;
1485 }
1486 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1487 
do_nanosleep(struct hrtimer_sleeper * t,enum hrtimer_mode mode)1488 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1489 {
1490 	hrtimer_init_sleeper(t, current);
1491 
1492 	do {
1493 		set_current_state(TASK_INTERRUPTIBLE);
1494 		hrtimer_start_expires(&t->timer, mode);
1495 
1496 		if (likely(t->task))
1497 			freezable_schedule();
1498 
1499 		hrtimer_cancel(&t->timer);
1500 		mode = HRTIMER_MODE_ABS;
1501 
1502 	} while (t->task && !signal_pending(current));
1503 
1504 	__set_current_state(TASK_RUNNING);
1505 
1506 	return t->task == NULL;
1507 }
1508 
update_rmtp(struct hrtimer * timer,struct timespec __user * rmtp)1509 static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1510 {
1511 	struct timespec rmt;
1512 	ktime_t rem;
1513 
1514 	rem = hrtimer_expires_remaining(timer);
1515 	if (rem.tv64 <= 0)
1516 		return 0;
1517 	rmt = ktime_to_timespec(rem);
1518 
1519 	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1520 		return -EFAULT;
1521 
1522 	return 1;
1523 }
1524 
hrtimer_nanosleep_restart(struct restart_block * restart)1525 long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1526 {
1527 	struct hrtimer_sleeper t;
1528 	struct timespec __user  *rmtp;
1529 	int ret = 0;
1530 
1531 	hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1532 				HRTIMER_MODE_ABS);
1533 	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1534 
1535 	if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1536 		goto out;
1537 
1538 	rmtp = restart->nanosleep.rmtp;
1539 	if (rmtp) {
1540 		ret = update_rmtp(&t.timer, rmtp);
1541 		if (ret <= 0)
1542 			goto out;
1543 	}
1544 
1545 	/* The other values in restart are already filled in */
1546 	ret = -ERESTART_RESTARTBLOCK;
1547 out:
1548 	destroy_hrtimer_on_stack(&t.timer);
1549 	return ret;
1550 }
1551 
hrtimer_nanosleep(struct timespec * rqtp,struct timespec __user * rmtp,const enum hrtimer_mode mode,const clockid_t clockid)1552 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1553 		       const enum hrtimer_mode mode, const clockid_t clockid)
1554 {
1555 	struct restart_block *restart;
1556 	struct hrtimer_sleeper t;
1557 	int ret = 0;
1558 	u64 slack;
1559 
1560 	slack = current->timer_slack_ns;
1561 	if (dl_task(current) || rt_task(current))
1562 		slack = 0;
1563 
1564 	hrtimer_init_on_stack(&t.timer, clockid, mode);
1565 	hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1566 	if (do_nanosleep(&t, mode))
1567 		goto out;
1568 
1569 	/* Absolute timers do not update the rmtp value and restart: */
1570 	if (mode == HRTIMER_MODE_ABS) {
1571 		ret = -ERESTARTNOHAND;
1572 		goto out;
1573 	}
1574 
1575 	if (rmtp) {
1576 		ret = update_rmtp(&t.timer, rmtp);
1577 		if (ret <= 0)
1578 			goto out;
1579 	}
1580 
1581 	restart = &current->restart_block;
1582 	restart->fn = hrtimer_nanosleep_restart;
1583 	restart->nanosleep.clockid = t.timer.base->clockid;
1584 	restart->nanosleep.rmtp = rmtp;
1585 	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1586 
1587 	ret = -ERESTART_RESTARTBLOCK;
1588 out:
1589 	destroy_hrtimer_on_stack(&t.timer);
1590 	return ret;
1591 }
1592 
SYSCALL_DEFINE2(nanosleep,struct timespec __user *,rqtp,struct timespec __user *,rmtp)1593 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1594 		struct timespec __user *, rmtp)
1595 {
1596 	struct timespec tu;
1597 
1598 	if (copy_from_user(&tu, rqtp, sizeof(tu)))
1599 		return -EFAULT;
1600 
1601 	if (!timespec_valid(&tu))
1602 		return -EINVAL;
1603 
1604 	return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1605 }
1606 
1607 /*
1608  * Functions related to boot-time initialization:
1609  */
hrtimers_prepare_cpu(unsigned int cpu)1610 int hrtimers_prepare_cpu(unsigned int cpu)
1611 {
1612 	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1613 	int i;
1614 
1615 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1616 		cpu_base->clock_base[i].cpu_base = cpu_base;
1617 		timerqueue_init_head(&cpu_base->clock_base[i].active);
1618 	}
1619 
1620 	cpu_base->active_bases = 0;
1621 	cpu_base->cpu = cpu;
1622 	hrtimer_init_hres(cpu_base);
1623 	return 0;
1624 }
1625 
1626 #ifdef CONFIG_HOTPLUG_CPU
1627 
migrate_hrtimer_list(struct hrtimer_clock_base * old_base,struct hrtimer_clock_base * new_base)1628 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1629 				struct hrtimer_clock_base *new_base)
1630 {
1631 	struct hrtimer *timer;
1632 	struct timerqueue_node *node;
1633 
1634 	while ((node = timerqueue_getnext(&old_base->active))) {
1635 		timer = container_of(node, struct hrtimer, node);
1636 		BUG_ON(hrtimer_callback_running(timer));
1637 		debug_deactivate(timer);
1638 
1639 		/*
1640 		 * Mark it as ENQUEUED not INACTIVE otherwise the
1641 		 * timer could be seen as !active and just vanish away
1642 		 * under us on another CPU
1643 		 */
1644 		__remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
1645 		timer->base = new_base;
1646 		/*
1647 		 * Enqueue the timers on the new cpu. This does not
1648 		 * reprogram the event device in case the timer
1649 		 * expires before the earliest on this CPU, but we run
1650 		 * hrtimer_interrupt after we migrated everything to
1651 		 * sort out already expired timers and reprogram the
1652 		 * event device.
1653 		 */
1654 		enqueue_hrtimer(timer, new_base);
1655 	}
1656 }
1657 
hrtimers_dead_cpu(unsigned int scpu)1658 int hrtimers_dead_cpu(unsigned int scpu)
1659 {
1660 	struct hrtimer_cpu_base *old_base, *new_base;
1661 	int i;
1662 
1663 	BUG_ON(cpu_online(scpu));
1664 	tick_cancel_sched_timer(scpu);
1665 
1666 	local_irq_disable();
1667 	old_base = &per_cpu(hrtimer_bases, scpu);
1668 	new_base = this_cpu_ptr(&hrtimer_bases);
1669 	/*
1670 	 * The caller is globally serialized and nobody else
1671 	 * takes two locks at once, deadlock is not possible.
1672 	 */
1673 	raw_spin_lock(&new_base->lock);
1674 	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1675 
1676 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1677 		migrate_hrtimer_list(&old_base->clock_base[i],
1678 				     &new_base->clock_base[i]);
1679 	}
1680 
1681 	raw_spin_unlock(&old_base->lock);
1682 	raw_spin_unlock(&new_base->lock);
1683 
1684 	/* Check, if we got expired work to do */
1685 	__hrtimer_peek_ahead_timers();
1686 	local_irq_enable();
1687 	return 0;
1688 }
1689 
1690 #endif /* CONFIG_HOTPLUG_CPU */
1691 
hrtimers_init(void)1692 void __init hrtimers_init(void)
1693 {
1694 	hrtimers_prepare_cpu(smp_processor_id());
1695 }
1696 
1697 /**
1698  * schedule_hrtimeout_range_clock - sleep until timeout
1699  * @expires:	timeout value (ktime_t)
1700  * @delta:	slack in expires timeout (ktime_t)
1701  * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1702  * @clock:	timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1703  */
1704 int __sched
schedule_hrtimeout_range_clock(ktime_t * expires,u64 delta,const enum hrtimer_mode mode,int clock)1705 schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
1706 			       const enum hrtimer_mode mode, int clock)
1707 {
1708 	struct hrtimer_sleeper t;
1709 
1710 	/*
1711 	 * Optimize when a zero timeout value is given. It does not
1712 	 * matter whether this is an absolute or a relative time.
1713 	 */
1714 	if (expires && !expires->tv64) {
1715 		__set_current_state(TASK_RUNNING);
1716 		return 0;
1717 	}
1718 
1719 	/*
1720 	 * A NULL parameter means "infinite"
1721 	 */
1722 	if (!expires) {
1723 		schedule();
1724 		return -EINTR;
1725 	}
1726 
1727 	hrtimer_init_on_stack(&t.timer, clock, mode);
1728 	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1729 
1730 	hrtimer_init_sleeper(&t, current);
1731 
1732 	hrtimer_start_expires(&t.timer, mode);
1733 
1734 	if (likely(t.task))
1735 		schedule();
1736 
1737 	hrtimer_cancel(&t.timer);
1738 	destroy_hrtimer_on_stack(&t.timer);
1739 
1740 	__set_current_state(TASK_RUNNING);
1741 
1742 	return !t.task ? 0 : -EINTR;
1743 }
1744 
1745 /**
1746  * schedule_hrtimeout_range - sleep until timeout
1747  * @expires:	timeout value (ktime_t)
1748  * @delta:	slack in expires timeout (ktime_t)
1749  * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1750  *
1751  * Make the current task sleep until the given expiry time has
1752  * elapsed. The routine will return immediately unless
1753  * the current task state has been set (see set_current_state()).
1754  *
1755  * The @delta argument gives the kernel the freedom to schedule the
1756  * actual wakeup to a time that is both power and performance friendly.
1757  * The kernel give the normal best effort behavior for "@expires+@delta",
1758  * but may decide to fire the timer earlier, but no earlier than @expires.
1759  *
1760  * You can set the task state as follows -
1761  *
1762  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1763  * pass before the routine returns.
1764  *
1765  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1766  * delivered to the current task.
1767  *
1768  * The current task state is guaranteed to be TASK_RUNNING when this
1769  * routine returns.
1770  *
1771  * Returns 0 when the timer has expired otherwise -EINTR
1772  */
schedule_hrtimeout_range(ktime_t * expires,u64 delta,const enum hrtimer_mode mode)1773 int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
1774 				     const enum hrtimer_mode mode)
1775 {
1776 	return schedule_hrtimeout_range_clock(expires, delta, mode,
1777 					      CLOCK_MONOTONIC);
1778 }
1779 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1780 
1781 /**
1782  * schedule_hrtimeout - sleep until timeout
1783  * @expires:	timeout value (ktime_t)
1784  * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1785  *
1786  * Make the current task sleep until the given expiry time has
1787  * elapsed. The routine will return immediately unless
1788  * the current task state has been set (see set_current_state()).
1789  *
1790  * You can set the task state as follows -
1791  *
1792  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1793  * pass before the routine returns.
1794  *
1795  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1796  * delivered to the current task.
1797  *
1798  * The current task state is guaranteed to be TASK_RUNNING when this
1799  * routine returns.
1800  *
1801  * Returns 0 when the timer has expired otherwise -EINTR
1802  */
schedule_hrtimeout(ktime_t * expires,const enum hrtimer_mode mode)1803 int __sched schedule_hrtimeout(ktime_t *expires,
1804 			       const enum hrtimer_mode mode)
1805 {
1806 	return schedule_hrtimeout_range(expires, 0, mode);
1807 }
1808 EXPORT_SYMBOL_GPL(schedule_hrtimeout);
1809