• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * linux/kernel/posix-timers.c
3  *
4  *
5  * 2002-10-15  Posix Clocks & timers
6  *                           by George Anzinger george@mvista.com
7  *
8  *			     Copyright (C) 2002 2003 by MontaVista Software.
9  *
10  * 2004-06-01  Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11  *			     Copyright (C) 2004 Boris Hu
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or (at
16  * your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful, but
19  * WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21  * General Public License for more details.
22 
23  * You should have received a copy of the GNU General Public License
24  * along with this program; if not, write to the Free Software
25  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26  *
27  * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
28  */
29 
30 /* These are all the functions necessary to implement
31  * POSIX clocks & timers
32  */
33 #include <linux/mm.h>
34 #include <linux/interrupt.h>
35 #include <linux/slab.h>
36 #include <linux/time.h>
37 #include <linux/mutex.h>
38 
39 #include <asm/uaccess.h>
40 #include <linux/list.h>
41 #include <linux/init.h>
42 #include <linux/compiler.h>
43 #include <linux/hash.h>
44 #include <linux/posix-clock.h>
45 #include <linux/posix-timers.h>
46 #include <linux/syscalls.h>
47 #include <linux/wait.h>
48 #include <linux/workqueue.h>
49 #include <linux/export.h>
50 #include <linux/hashtable.h>
51 
52 #include "timekeeping.h"
53 
54 /*
55  * Management arrays for POSIX timers. Timers are now kept in static hash table
56  * with 512 entries.
57  * Timer ids are allocated by local routine, which selects proper hash head by
58  * key, constructed from current->signal address and per signal struct counter.
59  * This keeps timer ids unique per process, but now they can intersect between
60  * processes.
61  */
62 
63 /*
64  * Lets keep our timers in a slab cache :-)
65  */
66 static struct kmem_cache *posix_timers_cache;
67 
68 static DEFINE_HASHTABLE(posix_timers_hashtable, 9);
69 static DEFINE_SPINLOCK(hash_lock);
70 
71 /*
72  * we assume that the new SIGEV_THREAD_ID shares no bits with the other
73  * SIGEV values.  Here we put out an error if this assumption fails.
74  */
75 #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
76                        ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
77 #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
78 #endif
79 
80 /*
81  * parisc wants ENOTSUP instead of EOPNOTSUPP
82  */
83 #ifndef ENOTSUP
84 # define ENANOSLEEP_NOTSUP EOPNOTSUPP
85 #else
86 # define ENANOSLEEP_NOTSUP ENOTSUP
87 #endif
88 
89 /*
90  * The timer ID is turned into a timer address by idr_find().
91  * Verifying a valid ID consists of:
92  *
93  * a) checking that idr_find() returns other than -1.
94  * b) checking that the timer id matches the one in the timer itself.
95  * c) that the timer owner is in the callers thread group.
96  */
97 
98 /*
99  * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
100  *	    to implement others.  This structure defines the various
101  *	    clocks.
102  *
103  * RESOLUTION: Clock resolution is used to round up timer and interval
104  *	    times, NOT to report clock times, which are reported with as
105  *	    much resolution as the system can muster.  In some cases this
106  *	    resolution may depend on the underlying clock hardware and
107  *	    may not be quantifiable until run time, and only then is the
108  *	    necessary code is written.	The standard says we should say
109  *	    something about this issue in the documentation...
110  *
111  * FUNCTIONS: The CLOCKs structure defines possible functions to
112  *	    handle various clock functions.
113  *
114  *	    The standard POSIX timer management code assumes the
115  *	    following: 1.) The k_itimer struct (sched.h) is used for
116  *	    the timer.  2.) The list, it_lock, it_clock, it_id and
117  *	    it_pid fields are not modified by timer code.
118  *
119  * Permissions: It is assumed that the clock_settime() function defined
120  *	    for each clock will take care of permission checks.	 Some
121  *	    clocks may be set able by any user (i.e. local process
122  *	    clocks) others not.	 Currently the only set able clock we
123  *	    have is CLOCK_REALTIME and its high res counter part, both of
124  *	    which we beg off on and pass to do_sys_settimeofday().
125  */
126 
127 static struct k_clock posix_clocks[MAX_CLOCKS];
128 
129 /*
130  * These ones are defined below.
131  */
132 static int common_nsleep(const clockid_t, int flags, struct timespec *t,
133 			 struct timespec __user *rmtp);
134 static int common_timer_create(struct k_itimer *new_timer);
135 static void common_timer_get(struct k_itimer *, struct itimerspec *);
136 static int common_timer_set(struct k_itimer *, int,
137 			    struct itimerspec *, struct itimerspec *);
138 static int common_timer_del(struct k_itimer *timer);
139 
140 static enum hrtimer_restart posix_timer_fn(struct hrtimer *data);
141 
142 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags);
143 
144 #define lock_timer(tid, flags)						   \
145 ({	struct k_itimer *__timr;					   \
146 	__cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags));  \
147 	__timr;								   \
148 })
149 
hash(struct signal_struct * sig,unsigned int nr)150 static int hash(struct signal_struct *sig, unsigned int nr)
151 {
152 	return hash_32(hash32_ptr(sig) ^ nr, HASH_BITS(posix_timers_hashtable));
153 }
154 
__posix_timers_find(struct hlist_head * head,struct signal_struct * sig,timer_t id)155 static struct k_itimer *__posix_timers_find(struct hlist_head *head,
156 					    struct signal_struct *sig,
157 					    timer_t id)
158 {
159 	struct k_itimer *timer;
160 
161 	hlist_for_each_entry_rcu(timer, head, t_hash) {
162 		if ((timer->it_signal == sig) && (timer->it_id == id))
163 			return timer;
164 	}
165 	return NULL;
166 }
167 
posix_timer_by_id(timer_t id)168 static struct k_itimer *posix_timer_by_id(timer_t id)
169 {
170 	struct signal_struct *sig = current->signal;
171 	struct hlist_head *head = &posix_timers_hashtable[hash(sig, id)];
172 
173 	return __posix_timers_find(head, sig, id);
174 }
175 
posix_timer_add(struct k_itimer * timer)176 static int posix_timer_add(struct k_itimer *timer)
177 {
178 	struct signal_struct *sig = current->signal;
179 	int first_free_id = sig->posix_timer_id;
180 	struct hlist_head *head;
181 	int ret = -ENOENT;
182 
183 	do {
184 		spin_lock(&hash_lock);
185 		head = &posix_timers_hashtable[hash(sig, sig->posix_timer_id)];
186 		if (!__posix_timers_find(head, sig, sig->posix_timer_id)) {
187 			hlist_add_head_rcu(&timer->t_hash, head);
188 			ret = sig->posix_timer_id;
189 		}
190 		if (++sig->posix_timer_id < 0)
191 			sig->posix_timer_id = 0;
192 		if ((sig->posix_timer_id == first_free_id) && (ret == -ENOENT))
193 			/* Loop over all possible ids completed */
194 			ret = -EAGAIN;
195 		spin_unlock(&hash_lock);
196 	} while (ret == -ENOENT);
197 	return ret;
198 }
199 
unlock_timer(struct k_itimer * timr,unsigned long flags)200 static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
201 {
202 	spin_unlock_irqrestore(&timr->it_lock, flags);
203 }
204 
205 /* Get clock_realtime */
posix_clock_realtime_get(clockid_t which_clock,struct timespec * tp)206 static int posix_clock_realtime_get(clockid_t which_clock, struct timespec *tp)
207 {
208 	ktime_get_real_ts(tp);
209 	return 0;
210 }
211 
212 /* Set clock_realtime */
posix_clock_realtime_set(const clockid_t which_clock,const struct timespec * tp)213 static int posix_clock_realtime_set(const clockid_t which_clock,
214 				    const struct timespec *tp)
215 {
216 	return do_sys_settimeofday(tp, NULL);
217 }
218 
posix_clock_realtime_adj(const clockid_t which_clock,struct timex * t)219 static int posix_clock_realtime_adj(const clockid_t which_clock,
220 				    struct timex *t)
221 {
222 	return do_adjtimex(t);
223 }
224 
225 /*
226  * Get monotonic time for posix timers
227  */
posix_ktime_get_ts(clockid_t which_clock,struct timespec * tp)228 static int posix_ktime_get_ts(clockid_t which_clock, struct timespec *tp)
229 {
230 	ktime_get_ts(tp);
231 	return 0;
232 }
233 
234 /*
235  * Get monotonic-raw time for posix timers
236  */
posix_get_monotonic_raw(clockid_t which_clock,struct timespec * tp)237 static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec *tp)
238 {
239 	getrawmonotonic(tp);
240 	return 0;
241 }
242 
243 
posix_get_realtime_coarse(clockid_t which_clock,struct timespec * tp)244 static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec *tp)
245 {
246 	*tp = current_kernel_time();
247 	return 0;
248 }
249 
posix_get_monotonic_coarse(clockid_t which_clock,struct timespec * tp)250 static int posix_get_monotonic_coarse(clockid_t which_clock,
251 						struct timespec *tp)
252 {
253 	*tp = get_monotonic_coarse();
254 	return 0;
255 }
256 
posix_get_coarse_res(const clockid_t which_clock,struct timespec * tp)257 static int posix_get_coarse_res(const clockid_t which_clock, struct timespec *tp)
258 {
259 	*tp = ktime_to_timespec(KTIME_LOW_RES);
260 	return 0;
261 }
262 
posix_get_boottime(const clockid_t which_clock,struct timespec * tp)263 static int posix_get_boottime(const clockid_t which_clock, struct timespec *tp)
264 {
265 	get_monotonic_boottime(tp);
266 	return 0;
267 }
268 
posix_get_tai(clockid_t which_clock,struct timespec * tp)269 static int posix_get_tai(clockid_t which_clock, struct timespec *tp)
270 {
271 	timekeeping_clocktai(tp);
272 	return 0;
273 }
274 
posix_get_hrtimer_res(clockid_t which_clock,struct timespec * tp)275 static int posix_get_hrtimer_res(clockid_t which_clock, struct timespec *tp)
276 {
277 	tp->tv_sec = 0;
278 	tp->tv_nsec = hrtimer_resolution;
279 	return 0;
280 }
281 
282 /*
283  * Initialize everything, well, just everything in Posix clocks/timers ;)
284  */
init_posix_timers(void)285 static __init int init_posix_timers(void)
286 {
287 	struct k_clock clock_realtime = {
288 		.clock_getres	= posix_get_hrtimer_res,
289 		.clock_get	= posix_clock_realtime_get,
290 		.clock_set	= posix_clock_realtime_set,
291 		.clock_adj	= posix_clock_realtime_adj,
292 		.nsleep		= common_nsleep,
293 		.nsleep_restart	= hrtimer_nanosleep_restart,
294 		.timer_create	= common_timer_create,
295 		.timer_set	= common_timer_set,
296 		.timer_get	= common_timer_get,
297 		.timer_del	= common_timer_del,
298 	};
299 	struct k_clock clock_monotonic = {
300 		.clock_getres	= posix_get_hrtimer_res,
301 		.clock_get	= posix_ktime_get_ts,
302 		.nsleep		= common_nsleep,
303 		.nsleep_restart	= hrtimer_nanosleep_restart,
304 		.timer_create	= common_timer_create,
305 		.timer_set	= common_timer_set,
306 		.timer_get	= common_timer_get,
307 		.timer_del	= common_timer_del,
308 	};
309 	struct k_clock clock_monotonic_raw = {
310 		.clock_getres	= posix_get_hrtimer_res,
311 		.clock_get	= posix_get_monotonic_raw,
312 	};
313 	struct k_clock clock_realtime_coarse = {
314 		.clock_getres	= posix_get_coarse_res,
315 		.clock_get	= posix_get_realtime_coarse,
316 	};
317 	struct k_clock clock_monotonic_coarse = {
318 		.clock_getres	= posix_get_coarse_res,
319 		.clock_get	= posix_get_monotonic_coarse,
320 	};
321 	struct k_clock clock_tai = {
322 		.clock_getres	= posix_get_hrtimer_res,
323 		.clock_get	= posix_get_tai,
324 		.nsleep		= common_nsleep,
325 		.nsleep_restart	= hrtimer_nanosleep_restart,
326 		.timer_create	= common_timer_create,
327 		.timer_set	= common_timer_set,
328 		.timer_get	= common_timer_get,
329 		.timer_del	= common_timer_del,
330 	};
331 	struct k_clock clock_boottime = {
332 		.clock_getres	= posix_get_hrtimer_res,
333 		.clock_get	= posix_get_boottime,
334 		.nsleep		= common_nsleep,
335 		.nsleep_restart	= hrtimer_nanosleep_restart,
336 		.timer_create	= common_timer_create,
337 		.timer_set	= common_timer_set,
338 		.timer_get	= common_timer_get,
339 		.timer_del	= common_timer_del,
340 	};
341 
342 	posix_timers_register_clock(CLOCK_REALTIME, &clock_realtime);
343 	posix_timers_register_clock(CLOCK_MONOTONIC, &clock_monotonic);
344 	posix_timers_register_clock(CLOCK_MONOTONIC_RAW, &clock_monotonic_raw);
345 	posix_timers_register_clock(CLOCK_REALTIME_COARSE, &clock_realtime_coarse);
346 	posix_timers_register_clock(CLOCK_MONOTONIC_COARSE, &clock_monotonic_coarse);
347 	posix_timers_register_clock(CLOCK_BOOTTIME, &clock_boottime);
348 	posix_timers_register_clock(CLOCK_TAI, &clock_tai);
349 
350 	posix_timers_cache = kmem_cache_create("posix_timers_cache",
351 					sizeof (struct k_itimer), 0, SLAB_PANIC,
352 					NULL);
353 	return 0;
354 }
355 
356 __initcall(init_posix_timers);
357 
schedule_next_timer(struct k_itimer * timr)358 static void schedule_next_timer(struct k_itimer *timr)
359 {
360 	struct hrtimer *timer = &timr->it.real.timer;
361 
362 	if (timr->it.real.interval.tv64 == 0)
363 		return;
364 
365 	timr->it_overrun += (unsigned int) hrtimer_forward(timer,
366 						timer->base->get_time(),
367 						timr->it.real.interval);
368 
369 	timr->it_overrun_last = timr->it_overrun;
370 	timr->it_overrun = -1;
371 	++timr->it_requeue_pending;
372 	hrtimer_restart(timer);
373 }
374 
375 /*
376  * This function is exported for use by the signal deliver code.  It is
377  * called just prior to the info block being released and passes that
378  * block to us.  It's function is to update the overrun entry AND to
379  * restart the timer.  It should only be called if the timer is to be
380  * restarted (i.e. we have flagged this in the sys_private entry of the
381  * info block).
382  *
383  * To protect against the timer going away while the interrupt is queued,
384  * we require that the it_requeue_pending flag be set.
385  */
do_schedule_next_timer(struct siginfo * info)386 void do_schedule_next_timer(struct siginfo *info)
387 {
388 	struct k_itimer *timr;
389 	unsigned long flags;
390 
391 	timr = lock_timer(info->si_tid, &flags);
392 
393 	if (timr && timr->it_requeue_pending == info->si_sys_private) {
394 		if (timr->it_clock < 0)
395 			posix_cpu_timer_schedule(timr);
396 		else
397 			schedule_next_timer(timr);
398 
399 		info->si_overrun += timr->it_overrun_last;
400 	}
401 
402 	if (timr)
403 		unlock_timer(timr, flags);
404 }
405 
posix_timer_event(struct k_itimer * timr,int si_private)406 int posix_timer_event(struct k_itimer *timr, int si_private)
407 {
408 	struct task_struct *task;
409 	int shared, ret = -1;
410 	/*
411 	 * FIXME: if ->sigq is queued we can race with
412 	 * dequeue_signal()->do_schedule_next_timer().
413 	 *
414 	 * If dequeue_signal() sees the "right" value of
415 	 * si_sys_private it calls do_schedule_next_timer().
416 	 * We re-queue ->sigq and drop ->it_lock().
417 	 * do_schedule_next_timer() locks the timer
418 	 * and re-schedules it while ->sigq is pending.
419 	 * Not really bad, but not that we want.
420 	 */
421 	timr->sigq->info.si_sys_private = si_private;
422 
423 	rcu_read_lock();
424 	task = pid_task(timr->it_pid, PIDTYPE_PID);
425 	if (task) {
426 		shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID);
427 		ret = send_sigqueue(timr->sigq, task, shared);
428 	}
429 	rcu_read_unlock();
430 	/* If we failed to send the signal the timer stops. */
431 	return ret > 0;
432 }
433 EXPORT_SYMBOL_GPL(posix_timer_event);
434 
435 /*
436  * This function gets called when a POSIX.1b interval timer expires.  It
437  * is used as a callback from the kernel internal timer.  The
438  * run_timer_list code ALWAYS calls with interrupts on.
439 
440  * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
441  */
posix_timer_fn(struct hrtimer * timer)442 static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
443 {
444 	struct k_itimer *timr;
445 	unsigned long flags;
446 	int si_private = 0;
447 	enum hrtimer_restart ret = HRTIMER_NORESTART;
448 
449 	timr = container_of(timer, struct k_itimer, it.real.timer);
450 	spin_lock_irqsave(&timr->it_lock, flags);
451 
452 	if (timr->it.real.interval.tv64 != 0)
453 		si_private = ++timr->it_requeue_pending;
454 
455 	if (posix_timer_event(timr, si_private)) {
456 		/*
457 		 * signal was not sent because of sig_ignor
458 		 * we will not get a call back to restart it AND
459 		 * it should be restarted.
460 		 */
461 		if (timr->it.real.interval.tv64 != 0) {
462 			ktime_t now = hrtimer_cb_get_time(timer);
463 
464 			/*
465 			 * FIXME: What we really want, is to stop this
466 			 * timer completely and restart it in case the
467 			 * SIG_IGN is removed. This is a non trivial
468 			 * change which involves sighand locking
469 			 * (sigh !), which we don't want to do late in
470 			 * the release cycle.
471 			 *
472 			 * For now we just let timers with an interval
473 			 * less than a jiffie expire every jiffie to
474 			 * avoid softirq starvation in case of SIG_IGN
475 			 * and a very small interval, which would put
476 			 * the timer right back on the softirq pending
477 			 * list. By moving now ahead of time we trick
478 			 * hrtimer_forward() to expire the timer
479 			 * later, while we still maintain the overrun
480 			 * accuracy, but have some inconsistency in
481 			 * the timer_gettime() case. This is at least
482 			 * better than a starved softirq. A more
483 			 * complex fix which solves also another related
484 			 * inconsistency is already in the pipeline.
485 			 */
486 #ifdef CONFIG_HIGH_RES_TIMERS
487 			{
488 				ktime_t kj = ktime_set(0, NSEC_PER_SEC / HZ);
489 
490 				if (timr->it.real.interval.tv64 < kj.tv64)
491 					now = ktime_add(now, kj);
492 			}
493 #endif
494 			timr->it_overrun += (unsigned int)
495 				hrtimer_forward(timer, now,
496 						timr->it.real.interval);
497 			ret = HRTIMER_RESTART;
498 			++timr->it_requeue_pending;
499 		}
500 	}
501 
502 	unlock_timer(timr, flags);
503 	return ret;
504 }
505 
good_sigevent(sigevent_t * event)506 static struct pid *good_sigevent(sigevent_t * event)
507 {
508 	struct task_struct *rtn = current->group_leader;
509 
510 	switch (event->sigev_notify) {
511 	case SIGEV_SIGNAL | SIGEV_THREAD_ID:
512 		rtn = find_task_by_vpid(event->sigev_notify_thread_id);
513 		if (!rtn || !same_thread_group(rtn, current))
514 			return NULL;
515 		/* FALLTHRU */
516 	case SIGEV_SIGNAL:
517 	case SIGEV_THREAD:
518 		if (event->sigev_signo <= 0 || event->sigev_signo > SIGRTMAX)
519 			return NULL;
520 		/* FALLTHRU */
521 	case SIGEV_NONE:
522 		return task_pid(rtn);
523 	default:
524 		return NULL;
525 	}
526 }
527 
posix_timers_register_clock(const clockid_t clock_id,struct k_clock * new_clock)528 void posix_timers_register_clock(const clockid_t clock_id,
529 				 struct k_clock *new_clock)
530 {
531 	if ((unsigned) clock_id >= MAX_CLOCKS) {
532 		printk(KERN_WARNING "POSIX clock register failed for clock_id %d\n",
533 		       clock_id);
534 		return;
535 	}
536 
537 	if (!new_clock->clock_get) {
538 		printk(KERN_WARNING "POSIX clock id %d lacks clock_get()\n",
539 		       clock_id);
540 		return;
541 	}
542 	if (!new_clock->clock_getres) {
543 		printk(KERN_WARNING "POSIX clock id %d lacks clock_getres()\n",
544 		       clock_id);
545 		return;
546 	}
547 
548 	posix_clocks[clock_id] = *new_clock;
549 }
550 EXPORT_SYMBOL_GPL(posix_timers_register_clock);
551 
alloc_posix_timer(void)552 static struct k_itimer * alloc_posix_timer(void)
553 {
554 	struct k_itimer *tmr;
555 	tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
556 	if (!tmr)
557 		return tmr;
558 	if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
559 		kmem_cache_free(posix_timers_cache, tmr);
560 		return NULL;
561 	}
562 	memset(&tmr->sigq->info, 0, sizeof(siginfo_t));
563 	return tmr;
564 }
565 
k_itimer_rcu_free(struct rcu_head * head)566 static void k_itimer_rcu_free(struct rcu_head *head)
567 {
568 	struct k_itimer *tmr = container_of(head, struct k_itimer, it.rcu);
569 
570 	kmem_cache_free(posix_timers_cache, tmr);
571 }
572 
573 #define IT_ID_SET	1
574 #define IT_ID_NOT_SET	0
release_posix_timer(struct k_itimer * tmr,int it_id_set)575 static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
576 {
577 	if (it_id_set) {
578 		unsigned long flags;
579 		spin_lock_irqsave(&hash_lock, flags);
580 		hlist_del_rcu(&tmr->t_hash);
581 		spin_unlock_irqrestore(&hash_lock, flags);
582 	}
583 	put_pid(tmr->it_pid);
584 	sigqueue_free(tmr->sigq);
585 	call_rcu(&tmr->it.rcu, k_itimer_rcu_free);
586 }
587 
clockid_to_kclock(const clockid_t id)588 static struct k_clock *clockid_to_kclock(const clockid_t id)
589 {
590 	if (id < 0)
591 		return (id & CLOCKFD_MASK) == CLOCKFD ?
592 			&clock_posix_dynamic : &clock_posix_cpu;
593 
594 	if (id >= MAX_CLOCKS || !posix_clocks[id].clock_getres)
595 		return NULL;
596 	return &posix_clocks[id];
597 }
598 
common_timer_create(struct k_itimer * new_timer)599 static int common_timer_create(struct k_itimer *new_timer)
600 {
601 	hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
602 	return 0;
603 }
604 
605 /* Create a POSIX.1b interval timer. */
606 
SYSCALL_DEFINE3(timer_create,const clockid_t,which_clock,struct sigevent __user *,timer_event_spec,timer_t __user *,created_timer_id)607 SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
608 		struct sigevent __user *, timer_event_spec,
609 		timer_t __user *, created_timer_id)
610 {
611 	struct k_clock *kc = clockid_to_kclock(which_clock);
612 	struct k_itimer *new_timer;
613 	int error, new_timer_id;
614 	sigevent_t event;
615 	int it_id_set = IT_ID_NOT_SET;
616 
617 	if (!kc)
618 		return -EINVAL;
619 	if (!kc->timer_create)
620 		return -EOPNOTSUPP;
621 
622 	new_timer = alloc_posix_timer();
623 	if (unlikely(!new_timer))
624 		return -EAGAIN;
625 
626 	spin_lock_init(&new_timer->it_lock);
627 	new_timer_id = posix_timer_add(new_timer);
628 	if (new_timer_id < 0) {
629 		error = new_timer_id;
630 		goto out;
631 	}
632 
633 	it_id_set = IT_ID_SET;
634 	new_timer->it_id = (timer_t) new_timer_id;
635 	new_timer->it_clock = which_clock;
636 	new_timer->it_overrun = -1;
637 
638 	if (timer_event_spec) {
639 		if (copy_from_user(&event, timer_event_spec, sizeof (event))) {
640 			error = -EFAULT;
641 			goto out;
642 		}
643 		rcu_read_lock();
644 		new_timer->it_pid = get_pid(good_sigevent(&event));
645 		rcu_read_unlock();
646 		if (!new_timer->it_pid) {
647 			error = -EINVAL;
648 			goto out;
649 		}
650 	} else {
651 		memset(&event.sigev_value, 0, sizeof(event.sigev_value));
652 		event.sigev_notify = SIGEV_SIGNAL;
653 		event.sigev_signo = SIGALRM;
654 		event.sigev_value.sival_int = new_timer->it_id;
655 		new_timer->it_pid = get_pid(task_tgid(current));
656 	}
657 
658 	new_timer->it_sigev_notify     = event.sigev_notify;
659 	new_timer->sigq->info.si_signo = event.sigev_signo;
660 	new_timer->sigq->info.si_value = event.sigev_value;
661 	new_timer->sigq->info.si_tid   = new_timer->it_id;
662 	new_timer->sigq->info.si_code  = SI_TIMER;
663 
664 	if (copy_to_user(created_timer_id,
665 			 &new_timer_id, sizeof (new_timer_id))) {
666 		error = -EFAULT;
667 		goto out;
668 	}
669 
670 	error = kc->timer_create(new_timer);
671 	if (error)
672 		goto out;
673 
674 	spin_lock_irq(&current->sighand->siglock);
675 	new_timer->it_signal = current->signal;
676 	list_add(&new_timer->list, &current->signal->posix_timers);
677 	spin_unlock_irq(&current->sighand->siglock);
678 
679 	return 0;
680 	/*
681 	 * In the case of the timer belonging to another task, after
682 	 * the task is unlocked, the timer is owned by the other task
683 	 * and may cease to exist at any time.  Don't use or modify
684 	 * new_timer after the unlock call.
685 	 */
686 out:
687 	release_posix_timer(new_timer, it_id_set);
688 	return error;
689 }
690 
691 /*
692  * Locking issues: We need to protect the result of the id look up until
693  * we get the timer locked down so it is not deleted under us.  The
694  * removal is done under the idr spinlock so we use that here to bridge
695  * the find to the timer lock.  To avoid a dead lock, the timer id MUST
696  * be release with out holding the timer lock.
697  */
__lock_timer(timer_t timer_id,unsigned long * flags)698 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags)
699 {
700 	struct k_itimer *timr;
701 
702 	/*
703 	 * timer_t could be any type >= int and we want to make sure any
704 	 * @timer_id outside positive int range fails lookup.
705 	 */
706 	if ((unsigned long long)timer_id > INT_MAX)
707 		return NULL;
708 
709 	rcu_read_lock();
710 	timr = posix_timer_by_id(timer_id);
711 	if (timr) {
712 		spin_lock_irqsave(&timr->it_lock, *flags);
713 		if (timr->it_signal == current->signal) {
714 			rcu_read_unlock();
715 			return timr;
716 		}
717 		spin_unlock_irqrestore(&timr->it_lock, *flags);
718 	}
719 	rcu_read_unlock();
720 
721 	return NULL;
722 }
723 
724 /*
725  * Get the time remaining on a POSIX.1b interval timer.  This function
726  * is ALWAYS called with spin_lock_irq on the timer, thus it must not
727  * mess with irq.
728  *
729  * We have a couple of messes to clean up here.  First there is the case
730  * of a timer that has a requeue pending.  These timers should appear to
731  * be in the timer list with an expiry as if we were to requeue them
732  * now.
733  *
734  * The second issue is the SIGEV_NONE timer which may be active but is
735  * not really ever put in the timer list (to save system resources).
736  * This timer may be expired, and if so, we will do it here.  Otherwise
737  * it is the same as a requeue pending timer WRT to what we should
738  * report.
739  */
740 static void
common_timer_get(struct k_itimer * timr,struct itimerspec * cur_setting)741 common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
742 {
743 	ktime_t now, remaining, iv;
744 	struct hrtimer *timer = &timr->it.real.timer;
745 
746 	memset(cur_setting, 0, sizeof(struct itimerspec));
747 
748 	iv = timr->it.real.interval;
749 
750 	/* interval timer ? */
751 	if (iv.tv64)
752 		cur_setting->it_interval = ktime_to_timespec(iv);
753 	else if (!hrtimer_active(timer) && timr->it_sigev_notify != SIGEV_NONE)
754 		return;
755 
756 	now = timer->base->get_time();
757 
758 	/*
759 	 * When a requeue is pending or this is a SIGEV_NONE
760 	 * timer move the expiry time forward by intervals, so
761 	 * expiry is > now.
762 	 */
763 	if (iv.tv64 && (timr->it_requeue_pending & REQUEUE_PENDING ||
764 			timr->it_sigev_notify == SIGEV_NONE))
765 		timr->it_overrun += (unsigned int) hrtimer_forward(timer, now, iv);
766 
767 	remaining = __hrtimer_expires_remaining_adjusted(timer, now);
768 	/* Return 0 only, when the timer is expired and not pending */
769 	if (remaining.tv64 <= 0) {
770 		/*
771 		 * A single shot SIGEV_NONE timer must return 0, when
772 		 * it is expired !
773 		 */
774 		if (timr->it_sigev_notify != SIGEV_NONE)
775 			cur_setting->it_value.tv_nsec = 1;
776 	} else
777 		cur_setting->it_value = ktime_to_timespec(remaining);
778 }
779 
780 /* Get the time remaining on a POSIX.1b interval timer. */
SYSCALL_DEFINE2(timer_gettime,timer_t,timer_id,struct itimerspec __user *,setting)781 SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
782 		struct itimerspec __user *, setting)
783 {
784 	struct itimerspec cur_setting;
785 	struct k_itimer *timr;
786 	struct k_clock *kc;
787 	unsigned long flags;
788 	int ret = 0;
789 
790 	timr = lock_timer(timer_id, &flags);
791 	if (!timr)
792 		return -EINVAL;
793 
794 	kc = clockid_to_kclock(timr->it_clock);
795 	if (WARN_ON_ONCE(!kc || !kc->timer_get))
796 		ret = -EINVAL;
797 	else
798 		kc->timer_get(timr, &cur_setting);
799 
800 	unlock_timer(timr, flags);
801 
802 	if (!ret && copy_to_user(setting, &cur_setting, sizeof (cur_setting)))
803 		return -EFAULT;
804 
805 	return ret;
806 }
807 
808 /*
809  * Get the number of overruns of a POSIX.1b interval timer.  This is to
810  * be the overrun of the timer last delivered.  At the same time we are
811  * accumulating overruns on the next timer.  The overrun is frozen when
812  * the signal is delivered, either at the notify time (if the info block
813  * is not queued) or at the actual delivery time (as we are informed by
814  * the call back to do_schedule_next_timer().  So all we need to do is
815  * to pick up the frozen overrun.
816  */
SYSCALL_DEFINE1(timer_getoverrun,timer_t,timer_id)817 SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
818 {
819 	struct k_itimer *timr;
820 	int overrun;
821 	unsigned long flags;
822 
823 	timr = lock_timer(timer_id, &flags);
824 	if (!timr)
825 		return -EINVAL;
826 
827 	overrun = timr->it_overrun_last;
828 	unlock_timer(timr, flags);
829 
830 	return overrun;
831 }
832 
833 /* Set a POSIX.1b interval timer. */
834 /* timr->it_lock is taken. */
835 static int
common_timer_set(struct k_itimer * timr,int flags,struct itimerspec * new_setting,struct itimerspec * old_setting)836 common_timer_set(struct k_itimer *timr, int flags,
837 		 struct itimerspec *new_setting, struct itimerspec *old_setting)
838 {
839 	struct hrtimer *timer = &timr->it.real.timer;
840 	enum hrtimer_mode mode;
841 
842 	if (old_setting)
843 		common_timer_get(timr, old_setting);
844 
845 	/* disable the timer */
846 	timr->it.real.interval.tv64 = 0;
847 	/*
848 	 * careful here.  If smp we could be in the "fire" routine which will
849 	 * be spinning as we hold the lock.  But this is ONLY an SMP issue.
850 	 */
851 	if (hrtimer_try_to_cancel(timer) < 0)
852 		return TIMER_RETRY;
853 
854 	timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
855 		~REQUEUE_PENDING;
856 	timr->it_overrun_last = 0;
857 
858 	/* switch off the timer when it_value is zero */
859 	if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
860 		return 0;
861 
862 	mode = flags & TIMER_ABSTIME ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
863 	hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
864 	timr->it.real.timer.function = posix_timer_fn;
865 
866 	hrtimer_set_expires(timer, timespec_to_ktime(new_setting->it_value));
867 
868 	/* Convert interval */
869 	timr->it.real.interval = timespec_to_ktime(new_setting->it_interval);
870 
871 	/* SIGEV_NONE timers are not queued ! See common_timer_get */
872 	if (timr->it_sigev_notify == SIGEV_NONE) {
873 		/* Setup correct expiry time for relative timers */
874 		if (mode == HRTIMER_MODE_REL) {
875 			hrtimer_add_expires(timer, timer->base->get_time());
876 		}
877 		return 0;
878 	}
879 
880 	hrtimer_start_expires(timer, mode);
881 	return 0;
882 }
883 
884 /* Set a POSIX.1b interval timer */
SYSCALL_DEFINE4(timer_settime,timer_t,timer_id,int,flags,const struct itimerspec __user *,new_setting,struct itimerspec __user *,old_setting)885 SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
886 		const struct itimerspec __user *, new_setting,
887 		struct itimerspec __user *, old_setting)
888 {
889 	struct k_itimer *timr;
890 	struct itimerspec new_spec, old_spec;
891 	int error = 0;
892 	unsigned long flag;
893 	struct itimerspec *rtn = old_setting ? &old_spec : NULL;
894 	struct k_clock *kc;
895 
896 	if (!new_setting)
897 		return -EINVAL;
898 
899 	if (copy_from_user(&new_spec, new_setting, sizeof (new_spec)))
900 		return -EFAULT;
901 
902 	if (!timespec_valid(&new_spec.it_interval) ||
903 	    !timespec_valid(&new_spec.it_value))
904 		return -EINVAL;
905 retry:
906 	timr = lock_timer(timer_id, &flag);
907 	if (!timr)
908 		return -EINVAL;
909 
910 	kc = clockid_to_kclock(timr->it_clock);
911 	if (WARN_ON_ONCE(!kc || !kc->timer_set))
912 		error = -EINVAL;
913 	else
914 		error = kc->timer_set(timr, flags, &new_spec, rtn);
915 
916 	unlock_timer(timr, flag);
917 	if (error == TIMER_RETRY) {
918 		rtn = NULL;	// We already got the old time...
919 		goto retry;
920 	}
921 
922 	if (old_setting && !error &&
923 	    copy_to_user(old_setting, &old_spec, sizeof (old_spec)))
924 		error = -EFAULT;
925 
926 	return error;
927 }
928 
common_timer_del(struct k_itimer * timer)929 static int common_timer_del(struct k_itimer *timer)
930 {
931 	timer->it.real.interval.tv64 = 0;
932 
933 	if (hrtimer_try_to_cancel(&timer->it.real.timer) < 0)
934 		return TIMER_RETRY;
935 	return 0;
936 }
937 
timer_delete_hook(struct k_itimer * timer)938 static inline int timer_delete_hook(struct k_itimer *timer)
939 {
940 	struct k_clock *kc = clockid_to_kclock(timer->it_clock);
941 
942 	if (WARN_ON_ONCE(!kc || !kc->timer_del))
943 		return -EINVAL;
944 	return kc->timer_del(timer);
945 }
946 
947 /* Delete a POSIX.1b interval timer. */
SYSCALL_DEFINE1(timer_delete,timer_t,timer_id)948 SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
949 {
950 	struct k_itimer *timer;
951 	unsigned long flags;
952 
953 retry_delete:
954 	timer = lock_timer(timer_id, &flags);
955 	if (!timer)
956 		return -EINVAL;
957 
958 	if (timer_delete_hook(timer) == TIMER_RETRY) {
959 		unlock_timer(timer, flags);
960 		goto retry_delete;
961 	}
962 
963 	spin_lock(&current->sighand->siglock);
964 	list_del(&timer->list);
965 	spin_unlock(&current->sighand->siglock);
966 	/*
967 	 * This keeps any tasks waiting on the spin lock from thinking
968 	 * they got something (see the lock code above).
969 	 */
970 	timer->it_signal = NULL;
971 
972 	unlock_timer(timer, flags);
973 	release_posix_timer(timer, IT_ID_SET);
974 	return 0;
975 }
976 
977 /*
978  * return timer owned by the process, used by exit_itimers
979  */
itimer_delete(struct k_itimer * timer)980 static void itimer_delete(struct k_itimer *timer)
981 {
982 	unsigned long flags;
983 
984 retry_delete:
985 	spin_lock_irqsave(&timer->it_lock, flags);
986 
987 	if (timer_delete_hook(timer) == TIMER_RETRY) {
988 		unlock_timer(timer, flags);
989 		goto retry_delete;
990 	}
991 	list_del(&timer->list);
992 	/*
993 	 * This keeps any tasks waiting on the spin lock from thinking
994 	 * they got something (see the lock code above).
995 	 */
996 	timer->it_signal = NULL;
997 
998 	unlock_timer(timer, flags);
999 	release_posix_timer(timer, IT_ID_SET);
1000 }
1001 
1002 /*
1003  * This is called by do_exit or de_thread, only when there are no more
1004  * references to the shared signal_struct.
1005  */
exit_itimers(struct signal_struct * sig)1006 void exit_itimers(struct signal_struct *sig)
1007 {
1008 	struct k_itimer *tmr;
1009 
1010 	while (!list_empty(&sig->posix_timers)) {
1011 		tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
1012 		itimer_delete(tmr);
1013 	}
1014 }
1015 
SYSCALL_DEFINE2(clock_settime,const clockid_t,which_clock,const struct timespec __user *,tp)1016 SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
1017 		const struct timespec __user *, tp)
1018 {
1019 	struct k_clock *kc = clockid_to_kclock(which_clock);
1020 	struct timespec new_tp;
1021 
1022 	if (!kc || !kc->clock_set)
1023 		return -EINVAL;
1024 
1025 	if (copy_from_user(&new_tp, tp, sizeof (*tp)))
1026 		return -EFAULT;
1027 
1028 	return kc->clock_set(which_clock, &new_tp);
1029 }
1030 
SYSCALL_DEFINE2(clock_gettime,const clockid_t,which_clock,struct timespec __user *,tp)1031 SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
1032 		struct timespec __user *,tp)
1033 {
1034 	struct k_clock *kc = clockid_to_kclock(which_clock);
1035 	struct timespec kernel_tp;
1036 	int error;
1037 
1038 	if (!kc)
1039 		return -EINVAL;
1040 
1041 	error = kc->clock_get(which_clock, &kernel_tp);
1042 
1043 	if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp)))
1044 		error = -EFAULT;
1045 
1046 	return error;
1047 }
1048 
SYSCALL_DEFINE2(clock_adjtime,const clockid_t,which_clock,struct timex __user *,utx)1049 SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock,
1050 		struct timex __user *, utx)
1051 {
1052 	struct k_clock *kc = clockid_to_kclock(which_clock);
1053 	struct timex ktx;
1054 	int err;
1055 
1056 	if (!kc)
1057 		return -EINVAL;
1058 	if (!kc->clock_adj)
1059 		return -EOPNOTSUPP;
1060 
1061 	if (copy_from_user(&ktx, utx, sizeof(ktx)))
1062 		return -EFAULT;
1063 
1064 	err = kc->clock_adj(which_clock, &ktx);
1065 
1066 	if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx)))
1067 		return -EFAULT;
1068 
1069 	return err;
1070 }
1071 
SYSCALL_DEFINE2(clock_getres,const clockid_t,which_clock,struct timespec __user *,tp)1072 SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
1073 		struct timespec __user *, tp)
1074 {
1075 	struct k_clock *kc = clockid_to_kclock(which_clock);
1076 	struct timespec rtn_tp;
1077 	int error;
1078 
1079 	if (!kc)
1080 		return -EINVAL;
1081 
1082 	error = kc->clock_getres(which_clock, &rtn_tp);
1083 
1084 	if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp)))
1085 		error = -EFAULT;
1086 
1087 	return error;
1088 }
1089 
1090 /*
1091  * nanosleep for monotonic and realtime clocks
1092  */
common_nsleep(const clockid_t which_clock,int flags,struct timespec * tsave,struct timespec __user * rmtp)1093 static int common_nsleep(const clockid_t which_clock, int flags,
1094 			 struct timespec *tsave, struct timespec __user *rmtp)
1095 {
1096 	return hrtimer_nanosleep(tsave, rmtp, flags & TIMER_ABSTIME ?
1097 				 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
1098 				 which_clock);
1099 }
1100 
SYSCALL_DEFINE4(clock_nanosleep,const clockid_t,which_clock,int,flags,const struct timespec __user *,rqtp,struct timespec __user *,rmtp)1101 SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
1102 		const struct timespec __user *, rqtp,
1103 		struct timespec __user *, rmtp)
1104 {
1105 	struct k_clock *kc = clockid_to_kclock(which_clock);
1106 	struct timespec t;
1107 
1108 	if (!kc)
1109 		return -EINVAL;
1110 	if (!kc->nsleep)
1111 		return -ENANOSLEEP_NOTSUP;
1112 
1113 	if (copy_from_user(&t, rqtp, sizeof (struct timespec)))
1114 		return -EFAULT;
1115 
1116 	if (!timespec_valid(&t))
1117 		return -EINVAL;
1118 
1119 	return kc->nsleep(which_clock, flags, &t, rmtp);
1120 }
1121 
1122 /*
1123  * This will restart clock_nanosleep. This is required only by
1124  * compat_clock_nanosleep_restart for now.
1125  */
clock_nanosleep_restart(struct restart_block * restart_block)1126 long clock_nanosleep_restart(struct restart_block *restart_block)
1127 {
1128 	clockid_t which_clock = restart_block->nanosleep.clockid;
1129 	struct k_clock *kc = clockid_to_kclock(which_clock);
1130 
1131 	if (WARN_ON_ONCE(!kc || !kc->nsleep_restart))
1132 		return -EINVAL;
1133 
1134 	return kc->nsleep_restart(restart_block);
1135 }
1136