• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/kernel/time/timekeeping.c
3  *
4  *  Kernel timekeeping code and accessor functions
5  *
6  *  This code was moved from linux/kernel/timer.c.
7  *  Please see that file for copyright and history logs.
8  *
9  */
10 
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/syscore_ops.h>
19 #include <linux/clocksource.h>
20 #include <linux/jiffies.h>
21 #include <linux/time.h>
22 #include <linux/tick.h>
23 #include <linux/stop_machine.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/compiler.h>
26 
27 #include "tick-internal.h"
28 #include "ntp_internal.h"
29 #include "timekeeping_internal.h"
30 
31 #define TK_CLEAR_NTP		(1 << 0)
32 #define TK_MIRROR		(1 << 1)
33 #define TK_CLOCK_WAS_SET	(1 << 2)
34 
35 /*
36  * The most important data for readout fits into a single 64 byte
37  * cache line.
38  */
39 static struct {
40 	seqcount_t		seq;
41 	struct timekeeper	timekeeper;
42 } tk_core ____cacheline_aligned;
43 
44 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45 static struct timekeeper shadow_timekeeper;
46 
47 /**
48  * struct tk_fast - NMI safe timekeeper
49  * @seq:	Sequence counter for protecting updates. The lowest bit
50  *		is the index for the tk_read_base array
51  * @base:	tk_read_base array. Access is indexed by the lowest bit of
52  *		@seq.
53  *
54  * See @update_fast_timekeeper() below.
55  */
56 struct tk_fast {
57 	seqcount_t		seq;
58 	struct tk_read_base	base[2];
59 };
60 
61 static struct tk_fast tk_fast_mono ____cacheline_aligned;
62 static struct tk_fast tk_fast_raw  ____cacheline_aligned;
63 
64 /* flag for if timekeeping is suspended */
65 int __read_mostly timekeeping_suspended;
66 
tk_normalize_xtime(struct timekeeper * tk)67 static inline void tk_normalize_xtime(struct timekeeper *tk)
68 {
69 	while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
70 		tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
71 		tk->xtime_sec++;
72 	}
73 	while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
74 		tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
75 		tk->raw_sec++;
76 	}
77 }
78 
tk_xtime(struct timekeeper * tk)79 static inline struct timespec64 tk_xtime(struct timekeeper *tk)
80 {
81 	struct timespec64 ts;
82 
83 	ts.tv_sec = tk->xtime_sec;
84 	ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
85 	return ts;
86 }
87 
tk_set_xtime(struct timekeeper * tk,const struct timespec64 * ts)88 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
89 {
90 	tk->xtime_sec = ts->tv_sec;
91 	tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
92 }
93 
tk_xtime_add(struct timekeeper * tk,const struct timespec64 * ts)94 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
95 {
96 	tk->xtime_sec += ts->tv_sec;
97 	tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
98 	tk_normalize_xtime(tk);
99 }
100 
tk_set_wall_to_mono(struct timekeeper * tk,struct timespec64 wtm)101 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
102 {
103 	struct timespec64 tmp;
104 
105 	/*
106 	 * Verify consistency of: offset_real = -wall_to_monotonic
107 	 * before modifying anything
108 	 */
109 	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
110 					-tk->wall_to_monotonic.tv_nsec);
111 	WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
112 	tk->wall_to_monotonic = wtm;
113 	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
114 	tk->offs_real = timespec64_to_ktime(tmp);
115 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
116 }
117 
tk_update_sleep_time(struct timekeeper * tk,ktime_t delta)118 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
119 {
120 	tk->offs_boot = ktime_add(tk->offs_boot, delta);
121 }
122 
123 /*
124  * tk_clock_read - atomic clocksource read() helper
125  *
126  * This helper is necessary to use in the read paths because, while the
127  * seqlock ensures we don't return a bad value while structures are updated,
128  * it doesn't protect from potential crashes. There is the possibility that
129  * the tkr's clocksource may change between the read reference, and the
130  * clock reference passed to the read function.  This can cause crashes if
131  * the wrong clocksource is passed to the wrong read function.
132  * This isn't necessary to use when holding the timekeeper_lock or doing
133  * a read of the fast-timekeeper tkrs (which is protected by its own locking
134  * and update logic).
135  */
tk_clock_read(struct tk_read_base * tkr)136 static inline u64 tk_clock_read(struct tk_read_base *tkr)
137 {
138 	struct clocksource *clock = READ_ONCE(tkr->clock);
139 
140 	return clock->read(clock);
141 }
142 
143 #ifdef CONFIG_DEBUG_TIMEKEEPING
144 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
145 
timekeeping_check_update(struct timekeeper * tk,cycle_t offset)146 static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
147 {
148 
149 	cycle_t max_cycles = tk->tkr_mono.clock->max_cycles;
150 	const char *name = tk->tkr_mono.clock->name;
151 
152 	if (offset > max_cycles) {
153 		printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
154 				offset, name, max_cycles);
155 		printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
156 	} else {
157 		if (offset > (max_cycles >> 1)) {
158 			printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
159 					offset, name, max_cycles >> 1);
160 			printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
161 		}
162 	}
163 
164 	if (tk->underflow_seen) {
165 		if (jiffies - tk->last_warning > WARNING_FREQ) {
166 			printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
167 			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
168 			printk_deferred("         Your kernel is probably still fine.\n");
169 			tk->last_warning = jiffies;
170 		}
171 		tk->underflow_seen = 0;
172 	}
173 
174 	if (tk->overflow_seen) {
175 		if (jiffies - tk->last_warning > WARNING_FREQ) {
176 			printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
177 			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
178 			printk_deferred("         Your kernel is probably still fine.\n");
179 			tk->last_warning = jiffies;
180 		}
181 		tk->overflow_seen = 0;
182 	}
183 }
184 
timekeeping_get_delta(struct tk_read_base * tkr)185 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
186 {
187 	struct timekeeper *tk = &tk_core.timekeeper;
188 	cycle_t now, last, mask, max, delta;
189 	unsigned int seq;
190 
191 	/*
192 	 * Since we're called holding a seqlock, the data may shift
193 	 * under us while we're doing the calculation. This can cause
194 	 * false positives, since we'd note a problem but throw the
195 	 * results away. So nest another seqlock here to atomically
196 	 * grab the points we are checking with.
197 	 */
198 	do {
199 		seq = read_seqcount_begin(&tk_core.seq);
200 		now = tk_clock_read(tkr);
201 		last = tkr->cycle_last;
202 		mask = tkr->mask;
203 		max = tkr->clock->max_cycles;
204 	} while (read_seqcount_retry(&tk_core.seq, seq));
205 
206 	delta = clocksource_delta(now, last, mask);
207 
208 	/*
209 	 * Try to catch underflows by checking if we are seeing small
210 	 * mask-relative negative values.
211 	 */
212 	if (unlikely((~delta & mask) < (mask >> 3))) {
213 		tk->underflow_seen = 1;
214 		delta = 0;
215 	}
216 
217 	/* Cap delta value to the max_cycles values to avoid mult overflows */
218 	if (unlikely(delta > max)) {
219 		tk->overflow_seen = 1;
220 		delta = tkr->clock->max_cycles;
221 	}
222 
223 	return delta;
224 }
225 #else
timekeeping_check_update(struct timekeeper * tk,cycle_t offset)226 static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
227 {
228 }
timekeeping_get_delta(struct tk_read_base * tkr)229 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
230 {
231 	cycle_t cycle_now, delta;
232 
233 	/* read clocksource */
234 	cycle_now = tk_clock_read(tkr);
235 
236 	/* calculate the delta since the last update_wall_time */
237 	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
238 
239 	return delta;
240 }
241 #endif
242 
243 /**
244  * tk_setup_internals - Set up internals to use clocksource clock.
245  *
246  * @tk:		The target timekeeper to setup.
247  * @clock:		Pointer to clocksource.
248  *
249  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
250  * pair and interval request.
251  *
252  * Unless you're the timekeeping code, you should not be using this!
253  */
tk_setup_internals(struct timekeeper * tk,struct clocksource * clock)254 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
255 {
256 	cycle_t interval;
257 	u64 tmp, ntpinterval;
258 	struct clocksource *old_clock;
259 
260 	++tk->cs_was_changed_seq;
261 	old_clock = tk->tkr_mono.clock;
262 	tk->tkr_mono.clock = clock;
263 	tk->tkr_mono.mask = clock->mask;
264 	tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
265 
266 	tk->tkr_raw.clock = clock;
267 	tk->tkr_raw.mask = clock->mask;
268 	tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
269 
270 	/* Do the ns -> cycle conversion first, using original mult */
271 	tmp = NTP_INTERVAL_LENGTH;
272 	tmp <<= clock->shift;
273 	ntpinterval = tmp;
274 	tmp += clock->mult/2;
275 	do_div(tmp, clock->mult);
276 	if (tmp == 0)
277 		tmp = 1;
278 
279 	interval = (cycle_t) tmp;
280 	tk->cycle_interval = interval;
281 
282 	/* Go back from cycles -> shifted ns */
283 	tk->xtime_interval = (u64) interval * clock->mult;
284 	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
285 	tk->raw_interval = interval * clock->mult;
286 
287 	 /* if changing clocks, convert xtime_nsec shift units */
288 	if (old_clock) {
289 		int shift_change = clock->shift - old_clock->shift;
290 		if (shift_change < 0) {
291 			tk->tkr_mono.xtime_nsec >>= -shift_change;
292 			tk->tkr_raw.xtime_nsec >>= -shift_change;
293 		} else {
294 			tk->tkr_mono.xtime_nsec <<= shift_change;
295 			tk->tkr_raw.xtime_nsec <<= shift_change;
296 		}
297 	}
298 
299 	tk->tkr_mono.shift = clock->shift;
300 	tk->tkr_raw.shift = clock->shift;
301 
302 	tk->ntp_error = 0;
303 	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
304 	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
305 
306 	/*
307 	 * The timekeeper keeps its own mult values for the currently
308 	 * active clocksource. These value will be adjusted via NTP
309 	 * to counteract clock drifting.
310 	 */
311 	tk->tkr_mono.mult = clock->mult;
312 	tk->tkr_raw.mult = clock->mult;
313 	tk->ntp_err_mult = 0;
314 }
315 
316 /* Timekeeper helper functions. */
317 
318 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
default_arch_gettimeoffset(void)319 static u32 default_arch_gettimeoffset(void) { return 0; }
320 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
321 #else
arch_gettimeoffset(void)322 static inline u32 arch_gettimeoffset(void) { return 0; }
323 #endif
324 
timekeeping_delta_to_ns(struct tk_read_base * tkr,cycle_t delta)325 static inline u64 timekeeping_delta_to_ns(struct tk_read_base *tkr,
326 					  cycle_t delta)
327 {
328 	u64 nsec;
329 
330 	nsec = delta * tkr->mult + tkr->xtime_nsec;
331 	nsec >>= tkr->shift;
332 
333 	/* If arch requires, add in get_arch_timeoffset() */
334 	return nsec + arch_gettimeoffset();
335 }
336 
timekeeping_get_ns(struct tk_read_base * tkr)337 static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
338 {
339 	cycle_t delta;
340 
341 	delta = timekeeping_get_delta(tkr);
342 	return timekeeping_delta_to_ns(tkr, delta);
343 }
344 
timekeeping_cycles_to_ns(struct tk_read_base * tkr,cycle_t cycles)345 static inline s64 timekeeping_cycles_to_ns(struct tk_read_base *tkr,
346 					    cycle_t cycles)
347 {
348 	cycle_t delta;
349 
350 	/* calculate the delta since the last update_wall_time */
351 	delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
352 	return timekeeping_delta_to_ns(tkr, delta);
353 }
354 
355 /**
356  * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
357  * @tkr: Timekeeping readout base from which we take the update
358  *
359  * We want to use this from any context including NMI and tracing /
360  * instrumenting the timekeeping code itself.
361  *
362  * Employ the latch technique; see @raw_write_seqcount_latch.
363  *
364  * So if a NMI hits the update of base[0] then it will use base[1]
365  * which is still consistent. In the worst case this can result is a
366  * slightly wrong timestamp (a few nanoseconds). See
367  * @ktime_get_mono_fast_ns.
368  */
update_fast_timekeeper(struct tk_read_base * tkr,struct tk_fast * tkf)369 static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
370 {
371 	struct tk_read_base *base = tkf->base;
372 
373 	/* Force readers off to base[1] */
374 	raw_write_seqcount_latch(&tkf->seq);
375 
376 	/* Update base[0] */
377 	memcpy(base, tkr, sizeof(*base));
378 
379 	/* Force readers back to base[0] */
380 	raw_write_seqcount_latch(&tkf->seq);
381 
382 	/* Update base[1] */
383 	memcpy(base + 1, base, sizeof(*base));
384 }
385 
386 /**
387  * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
388  *
389  * This timestamp is not guaranteed to be monotonic across an update.
390  * The timestamp is calculated by:
391  *
392  *	now = base_mono + clock_delta * slope
393  *
394  * So if the update lowers the slope, readers who are forced to the
395  * not yet updated second array are still using the old steeper slope.
396  *
397  * tmono
398  * ^
399  * |    o  n
400  * |   o n
401  * |  u
402  * | o
403  * |o
404  * |12345678---> reader order
405  *
406  * o = old slope
407  * u = update
408  * n = new slope
409  *
410  * So reader 6 will observe time going backwards versus reader 5.
411  *
412  * While other CPUs are likely to be able observe that, the only way
413  * for a CPU local observation is when an NMI hits in the middle of
414  * the update. Timestamps taken from that NMI context might be ahead
415  * of the following timestamps. Callers need to be aware of that and
416  * deal with it.
417  */
__ktime_get_fast_ns(struct tk_fast * tkf)418 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
419 {
420 	struct tk_read_base *tkr;
421 	unsigned int seq;
422 	u64 now;
423 
424 	do {
425 		seq = raw_read_seqcount_latch(&tkf->seq);
426 		tkr = tkf->base + (seq & 0x01);
427 		now = ktime_to_ns(tkr->base);
428 
429 		now += timekeeping_delta_to_ns(tkr,
430 				clocksource_delta(
431 					tk_clock_read(tkr),
432 					tkr->cycle_last,
433 					tkr->mask));
434 	} while (read_seqcount_retry(&tkf->seq, seq));
435 
436 	return now;
437 }
438 
ktime_get_mono_fast_ns(void)439 u64 ktime_get_mono_fast_ns(void)
440 {
441 	return __ktime_get_fast_ns(&tk_fast_mono);
442 }
443 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
444 
ktime_get_raw_fast_ns(void)445 u64 ktime_get_raw_fast_ns(void)
446 {
447 	return __ktime_get_fast_ns(&tk_fast_raw);
448 }
449 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
450 
451 /**
452  * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
453  *
454  * To keep it NMI safe since we're accessing from tracing, we're not using a
455  * separate timekeeper with updates to monotonic clock and boot offset
456  * protected with seqlocks. This has the following minor side effects:
457  *
458  * (1) Its possible that a timestamp be taken after the boot offset is updated
459  * but before the timekeeper is updated. If this happens, the new boot offset
460  * is added to the old timekeeping making the clock appear to update slightly
461  * earlier:
462  *    CPU 0                                        CPU 1
463  *    timekeeping_inject_sleeptime64()
464  *    __timekeeping_inject_sleeptime(tk, delta);
465  *                                                 timestamp();
466  *    timekeeping_update(tk, TK_CLEAR_NTP...);
467  *
468  * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
469  * partially updated.  Since the tk->offs_boot update is a rare event, this
470  * should be a rare occurrence which postprocessing should be able to handle.
471  */
ktime_get_boot_fast_ns(void)472 u64 notrace ktime_get_boot_fast_ns(void)
473 {
474 	struct timekeeper *tk = &tk_core.timekeeper;
475 
476 	return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot));
477 }
478 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
479 
480 /* Suspend-time cycles value for halted fast timekeeper. */
481 static cycle_t cycles_at_suspend;
482 
dummy_clock_read(struct clocksource * cs)483 static cycle_t dummy_clock_read(struct clocksource *cs)
484 {
485 	return cycles_at_suspend;
486 }
487 
488 static struct clocksource dummy_clock = {
489 	.read = dummy_clock_read,
490 };
491 
492 /**
493  * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
494  * @tk: Timekeeper to snapshot.
495  *
496  * It generally is unsafe to access the clocksource after timekeeping has been
497  * suspended, so take a snapshot of the readout base of @tk and use it as the
498  * fast timekeeper's readout base while suspended.  It will return the same
499  * number of cycles every time until timekeeping is resumed at which time the
500  * proper readout base for the fast timekeeper will be restored automatically.
501  */
halt_fast_timekeeper(struct timekeeper * tk)502 static void halt_fast_timekeeper(struct timekeeper *tk)
503 {
504 	static struct tk_read_base tkr_dummy;
505 	struct tk_read_base *tkr = &tk->tkr_mono;
506 
507 	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
508 	cycles_at_suspend = tk_clock_read(tkr);
509 	tkr_dummy.clock = &dummy_clock;
510 	update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
511 
512 	tkr = &tk->tkr_raw;
513 	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
514 	tkr_dummy.clock = &dummy_clock;
515 	update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
516 }
517 
518 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
519 
update_vsyscall(struct timekeeper * tk)520 static inline void update_vsyscall(struct timekeeper *tk)
521 {
522 	struct timespec xt, wm;
523 
524 	xt = timespec64_to_timespec(tk_xtime(tk));
525 	wm = timespec64_to_timespec(tk->wall_to_monotonic);
526 	update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
527 			    tk->tkr_mono.cycle_last);
528 }
529 
old_vsyscall_fixup(struct timekeeper * tk)530 static inline void old_vsyscall_fixup(struct timekeeper *tk)
531 {
532 	s64 remainder;
533 
534 	/*
535 	* Store only full nanoseconds into xtime_nsec after rounding
536 	* it up and add the remainder to the error difference.
537 	* XXX - This is necessary to avoid small 1ns inconsistnecies caused
538 	* by truncating the remainder in vsyscalls. However, it causes
539 	* additional work to be done in timekeeping_adjust(). Once
540 	* the vsyscall implementations are converted to use xtime_nsec
541 	* (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
542 	* users are removed, this can be killed.
543 	*/
544 	remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
545 	if (remainder != 0) {
546 		tk->tkr_mono.xtime_nsec -= remainder;
547 		tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
548 		tk->ntp_error += remainder << tk->ntp_error_shift;
549 		tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
550 	}
551 }
552 #else
553 #define old_vsyscall_fixup(tk)
554 #endif
555 
556 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
557 
update_pvclock_gtod(struct timekeeper * tk,bool was_set)558 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
559 {
560 	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
561 }
562 
563 /**
564  * pvclock_gtod_register_notifier - register a pvclock timedata update listener
565  */
pvclock_gtod_register_notifier(struct notifier_block * nb)566 int pvclock_gtod_register_notifier(struct notifier_block *nb)
567 {
568 	struct timekeeper *tk = &tk_core.timekeeper;
569 	unsigned long flags;
570 	int ret;
571 
572 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
573 	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
574 	update_pvclock_gtod(tk, true);
575 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
576 
577 	return ret;
578 }
579 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
580 
581 /**
582  * pvclock_gtod_unregister_notifier - unregister a pvclock
583  * timedata update listener
584  */
pvclock_gtod_unregister_notifier(struct notifier_block * nb)585 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
586 {
587 	unsigned long flags;
588 	int ret;
589 
590 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
591 	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
592 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
593 
594 	return ret;
595 }
596 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
597 
598 /*
599  * tk_update_leap_state - helper to update the next_leap_ktime
600  */
tk_update_leap_state(struct timekeeper * tk)601 static inline void tk_update_leap_state(struct timekeeper *tk)
602 {
603 	tk->next_leap_ktime = ntp_get_next_leap();
604 	if (tk->next_leap_ktime.tv64 != KTIME_MAX)
605 		/* Convert to monotonic time */
606 		tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
607 }
608 
609 /*
610  * Update the ktime_t based scalar nsec members of the timekeeper
611  */
tk_update_ktime_data(struct timekeeper * tk)612 static inline void tk_update_ktime_data(struct timekeeper *tk)
613 {
614 	u64 seconds;
615 	u32 nsec;
616 
617 	/*
618 	 * The xtime based monotonic readout is:
619 	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
620 	 * The ktime based monotonic readout is:
621 	 *	nsec = base_mono + now();
622 	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
623 	 */
624 	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
625 	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
626 	tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
627 
628 	/*
629 	 * The sum of the nanoseconds portions of xtime and
630 	 * wall_to_monotonic can be greater/equal one second. Take
631 	 * this into account before updating tk->ktime_sec.
632 	 */
633 	nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
634 	if (nsec >= NSEC_PER_SEC)
635 		seconds++;
636 	tk->ktime_sec = seconds;
637 
638 	/* Update the monotonic raw base */
639 	tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
640 }
641 
642 /* must hold timekeeper_lock */
timekeeping_update(struct timekeeper * tk,unsigned int action)643 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
644 {
645 	if (action & TK_CLEAR_NTP) {
646 		tk->ntp_error = 0;
647 		ntp_clear();
648 	}
649 
650 	tk_update_leap_state(tk);
651 	tk_update_ktime_data(tk);
652 
653 	update_vsyscall(tk);
654 	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
655 
656 	update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
657 	update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
658 
659 	if (action & TK_CLOCK_WAS_SET)
660 		tk->clock_was_set_seq++;
661 	/*
662 	 * The mirroring of the data to the shadow-timekeeper needs
663 	 * to happen last here to ensure we don't over-write the
664 	 * timekeeper structure on the next update with stale data
665 	 */
666 	if (action & TK_MIRROR)
667 		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
668 		       sizeof(tk_core.timekeeper));
669 }
670 
671 /**
672  * timekeeping_forward_now - update clock to the current time
673  *
674  * Forward the current clock to update its state since the last call to
675  * update_wall_time(). This is useful before significant clock changes,
676  * as it avoids having to deal with this time offset explicitly.
677  */
timekeeping_forward_now(struct timekeeper * tk)678 static void timekeeping_forward_now(struct timekeeper *tk)
679 {
680 	cycle_t cycle_now, delta;
681 
682 	cycle_now = tk_clock_read(&tk->tkr_mono);
683 	delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
684 	tk->tkr_mono.cycle_last = cycle_now;
685 	tk->tkr_raw.cycle_last  = cycle_now;
686 
687 	tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
688 
689 	/* If arch requires, add in get_arch_timeoffset() */
690 	tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
691 
692 
693 	tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult;
694 
695 	/* If arch requires, add in get_arch_timeoffset() */
696 	tk->tkr_raw.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_raw.shift;
697 
698 	tk_normalize_xtime(tk);
699 }
700 
701 /**
702  * __getnstimeofday64 - Returns the time of day in a timespec64.
703  * @ts:		pointer to the timespec to be set
704  *
705  * Updates the time of day in the timespec.
706  * Returns 0 on success, or -ve when suspended (timespec will be undefined).
707  */
__getnstimeofday64(struct timespec64 * ts)708 int __getnstimeofday64(struct timespec64 *ts)
709 {
710 	struct timekeeper *tk = &tk_core.timekeeper;
711 	unsigned long seq;
712 	s64 nsecs = 0;
713 
714 	do {
715 		seq = read_seqcount_begin(&tk_core.seq);
716 
717 		ts->tv_sec = tk->xtime_sec;
718 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
719 
720 	} while (read_seqcount_retry(&tk_core.seq, seq));
721 
722 	ts->tv_nsec = 0;
723 	timespec64_add_ns(ts, nsecs);
724 
725 	/*
726 	 * Do not bail out early, in case there were callers still using
727 	 * the value, even in the face of the WARN_ON.
728 	 */
729 	if (unlikely(timekeeping_suspended))
730 		return -EAGAIN;
731 	return 0;
732 }
733 EXPORT_SYMBOL(__getnstimeofday64);
734 
735 /**
736  * getnstimeofday64 - Returns the time of day in a timespec64.
737  * @ts:		pointer to the timespec64 to be set
738  *
739  * Returns the time of day in a timespec64 (WARN if suspended).
740  */
getnstimeofday64(struct timespec64 * ts)741 void getnstimeofday64(struct timespec64 *ts)
742 {
743 	WARN_ON(__getnstimeofday64(ts));
744 }
745 EXPORT_SYMBOL(getnstimeofday64);
746 
ktime_get(void)747 ktime_t ktime_get(void)
748 {
749 	struct timekeeper *tk = &tk_core.timekeeper;
750 	unsigned int seq;
751 	ktime_t base;
752 	s64 nsecs;
753 
754 	WARN_ON(timekeeping_suspended);
755 
756 	do {
757 		seq = read_seqcount_begin(&tk_core.seq);
758 		base = tk->tkr_mono.base;
759 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
760 
761 	} while (read_seqcount_retry(&tk_core.seq, seq));
762 
763 	return ktime_add_ns(base, nsecs);
764 }
765 EXPORT_SYMBOL_GPL(ktime_get);
766 
ktime_get_resolution_ns(void)767 u32 ktime_get_resolution_ns(void)
768 {
769 	struct timekeeper *tk = &tk_core.timekeeper;
770 	unsigned int seq;
771 	u32 nsecs;
772 
773 	WARN_ON(timekeeping_suspended);
774 
775 	do {
776 		seq = read_seqcount_begin(&tk_core.seq);
777 		nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
778 	} while (read_seqcount_retry(&tk_core.seq, seq));
779 
780 	return nsecs;
781 }
782 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
783 
784 static ktime_t *offsets[TK_OFFS_MAX] = {
785 	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
786 	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
787 	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
788 };
789 
ktime_get_with_offset(enum tk_offsets offs)790 ktime_t ktime_get_with_offset(enum tk_offsets offs)
791 {
792 	struct timekeeper *tk = &tk_core.timekeeper;
793 	unsigned int seq;
794 	ktime_t base, *offset = offsets[offs];
795 	s64 nsecs;
796 
797 	WARN_ON(timekeeping_suspended);
798 
799 	do {
800 		seq = read_seqcount_begin(&tk_core.seq);
801 		base = ktime_add(tk->tkr_mono.base, *offset);
802 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
803 
804 	} while (read_seqcount_retry(&tk_core.seq, seq));
805 
806 	return ktime_add_ns(base, nsecs);
807 
808 }
809 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
810 
811 /**
812  * ktime_mono_to_any() - convert mononotic time to any other time
813  * @tmono:	time to convert.
814  * @offs:	which offset to use
815  */
ktime_mono_to_any(ktime_t tmono,enum tk_offsets offs)816 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
817 {
818 	ktime_t *offset = offsets[offs];
819 	unsigned long seq;
820 	ktime_t tconv;
821 
822 	do {
823 		seq = read_seqcount_begin(&tk_core.seq);
824 		tconv = ktime_add(tmono, *offset);
825 	} while (read_seqcount_retry(&tk_core.seq, seq));
826 
827 	return tconv;
828 }
829 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
830 
831 /**
832  * ktime_get_raw - Returns the raw monotonic time in ktime_t format
833  */
ktime_get_raw(void)834 ktime_t ktime_get_raw(void)
835 {
836 	struct timekeeper *tk = &tk_core.timekeeper;
837 	unsigned int seq;
838 	ktime_t base;
839 	s64 nsecs;
840 
841 	do {
842 		seq = read_seqcount_begin(&tk_core.seq);
843 		base = tk->tkr_raw.base;
844 		nsecs = timekeeping_get_ns(&tk->tkr_raw);
845 
846 	} while (read_seqcount_retry(&tk_core.seq, seq));
847 
848 	return ktime_add_ns(base, nsecs);
849 }
850 EXPORT_SYMBOL_GPL(ktime_get_raw);
851 
852 /**
853  * ktime_get_ts64 - get the monotonic clock in timespec64 format
854  * @ts:		pointer to timespec variable
855  *
856  * The function calculates the monotonic clock from the realtime
857  * clock and the wall_to_monotonic offset and stores the result
858  * in normalized timespec64 format in the variable pointed to by @ts.
859  */
ktime_get_ts64(struct timespec64 * ts)860 void ktime_get_ts64(struct timespec64 *ts)
861 {
862 	struct timekeeper *tk = &tk_core.timekeeper;
863 	struct timespec64 tomono;
864 	s64 nsec;
865 	unsigned int seq;
866 
867 	WARN_ON(timekeeping_suspended);
868 
869 	do {
870 		seq = read_seqcount_begin(&tk_core.seq);
871 		ts->tv_sec = tk->xtime_sec;
872 		nsec = timekeeping_get_ns(&tk->tkr_mono);
873 		tomono = tk->wall_to_monotonic;
874 
875 	} while (read_seqcount_retry(&tk_core.seq, seq));
876 
877 	ts->tv_sec += tomono.tv_sec;
878 	ts->tv_nsec = 0;
879 	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
880 }
881 EXPORT_SYMBOL_GPL(ktime_get_ts64);
882 
883 /**
884  * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
885  *
886  * Returns the seconds portion of CLOCK_MONOTONIC with a single non
887  * serialized read. tk->ktime_sec is of type 'unsigned long' so this
888  * works on both 32 and 64 bit systems. On 32 bit systems the readout
889  * covers ~136 years of uptime which should be enough to prevent
890  * premature wrap arounds.
891  */
ktime_get_seconds(void)892 time64_t ktime_get_seconds(void)
893 {
894 	struct timekeeper *tk = &tk_core.timekeeper;
895 
896 	WARN_ON(timekeeping_suspended);
897 	return tk->ktime_sec;
898 }
899 EXPORT_SYMBOL_GPL(ktime_get_seconds);
900 
901 /**
902  * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
903  *
904  * Returns the wall clock seconds since 1970. This replaces the
905  * get_seconds() interface which is not y2038 safe on 32bit systems.
906  *
907  * For 64bit systems the fast access to tk->xtime_sec is preserved. On
908  * 32bit systems the access must be protected with the sequence
909  * counter to provide "atomic" access to the 64bit tk->xtime_sec
910  * value.
911  */
ktime_get_real_seconds(void)912 time64_t ktime_get_real_seconds(void)
913 {
914 	struct timekeeper *tk = &tk_core.timekeeper;
915 	time64_t seconds;
916 	unsigned int seq;
917 
918 	if (IS_ENABLED(CONFIG_64BIT))
919 		return tk->xtime_sec;
920 
921 	do {
922 		seq = read_seqcount_begin(&tk_core.seq);
923 		seconds = tk->xtime_sec;
924 
925 	} while (read_seqcount_retry(&tk_core.seq, seq));
926 
927 	return seconds;
928 }
929 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
930 
931 /**
932  * __ktime_get_real_seconds - The same as ktime_get_real_seconds
933  * but without the sequence counter protect. This internal function
934  * is called just when timekeeping lock is already held.
935  */
__ktime_get_real_seconds(void)936 time64_t __ktime_get_real_seconds(void)
937 {
938 	struct timekeeper *tk = &tk_core.timekeeper;
939 
940 	return tk->xtime_sec;
941 }
942 
943 /**
944  * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
945  * @systime_snapshot:	pointer to struct receiving the system time snapshot
946  */
ktime_get_snapshot(struct system_time_snapshot * systime_snapshot)947 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
948 {
949 	struct timekeeper *tk = &tk_core.timekeeper;
950 	unsigned long seq;
951 	ktime_t base_raw;
952 	ktime_t base_real;
953 	s64 nsec_raw;
954 	s64 nsec_real;
955 	cycle_t now;
956 
957 	WARN_ON_ONCE(timekeeping_suspended);
958 
959 	do {
960 		seq = read_seqcount_begin(&tk_core.seq);
961 		now = tk_clock_read(&tk->tkr_mono);
962 		systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
963 		systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
964 		base_real = ktime_add(tk->tkr_mono.base,
965 				      tk_core.timekeeper.offs_real);
966 		base_raw = tk->tkr_raw.base;
967 		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
968 		nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
969 	} while (read_seqcount_retry(&tk_core.seq, seq));
970 
971 	systime_snapshot->cycles = now;
972 	systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
973 	systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
974 }
975 EXPORT_SYMBOL_GPL(ktime_get_snapshot);
976 
977 /* Scale base by mult/div checking for overflow */
scale64_check_overflow(u64 mult,u64 div,u64 * base)978 static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
979 {
980 	u64 tmp, rem;
981 
982 	tmp = div64_u64_rem(*base, div, &rem);
983 
984 	if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
985 	    ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
986 		return -EOVERFLOW;
987 	tmp *= mult;
988 	rem *= mult;
989 
990 	do_div(rem, div);
991 	*base = tmp + rem;
992 	return 0;
993 }
994 
995 /**
996  * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
997  * @history:			Snapshot representing start of history
998  * @partial_history_cycles:	Cycle offset into history (fractional part)
999  * @total_history_cycles:	Total history length in cycles
1000  * @discontinuity:		True indicates clock was set on history period
1001  * @ts:				Cross timestamp that should be adjusted using
1002  *	partial/total ratio
1003  *
1004  * Helper function used by get_device_system_crosststamp() to correct the
1005  * crosstimestamp corresponding to the start of the current interval to the
1006  * system counter value (timestamp point) provided by the driver. The
1007  * total_history_* quantities are the total history starting at the provided
1008  * reference point and ending at the start of the current interval. The cycle
1009  * count between the driver timestamp point and the start of the current
1010  * interval is partial_history_cycles.
1011  */
adjust_historical_crosststamp(struct system_time_snapshot * history,cycle_t partial_history_cycles,cycle_t total_history_cycles,bool discontinuity,struct system_device_crosststamp * ts)1012 static int adjust_historical_crosststamp(struct system_time_snapshot *history,
1013 					 cycle_t partial_history_cycles,
1014 					 cycle_t total_history_cycles,
1015 					 bool discontinuity,
1016 					 struct system_device_crosststamp *ts)
1017 {
1018 	struct timekeeper *tk = &tk_core.timekeeper;
1019 	u64 corr_raw, corr_real;
1020 	bool interp_forward;
1021 	int ret;
1022 
1023 	if (total_history_cycles == 0 || partial_history_cycles == 0)
1024 		return 0;
1025 
1026 	/* Interpolate shortest distance from beginning or end of history */
1027 	interp_forward = partial_history_cycles > total_history_cycles/2 ?
1028 		true : false;
1029 	partial_history_cycles = interp_forward ?
1030 		total_history_cycles - partial_history_cycles :
1031 		partial_history_cycles;
1032 
1033 	/*
1034 	 * Scale the monotonic raw time delta by:
1035 	 *	partial_history_cycles / total_history_cycles
1036 	 */
1037 	corr_raw = (u64)ktime_to_ns(
1038 		ktime_sub(ts->sys_monoraw, history->raw));
1039 	ret = scale64_check_overflow(partial_history_cycles,
1040 				     total_history_cycles, &corr_raw);
1041 	if (ret)
1042 		return ret;
1043 
1044 	/*
1045 	 * If there is a discontinuity in the history, scale monotonic raw
1046 	 *	correction by:
1047 	 *	mult(real)/mult(raw) yielding the realtime correction
1048 	 * Otherwise, calculate the realtime correction similar to monotonic
1049 	 *	raw calculation
1050 	 */
1051 	if (discontinuity) {
1052 		corr_real = mul_u64_u32_div
1053 			(corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
1054 	} else {
1055 		corr_real = (u64)ktime_to_ns(
1056 			ktime_sub(ts->sys_realtime, history->real));
1057 		ret = scale64_check_overflow(partial_history_cycles,
1058 					     total_history_cycles, &corr_real);
1059 		if (ret)
1060 			return ret;
1061 	}
1062 
1063 	/* Fixup monotonic raw and real time time values */
1064 	if (interp_forward) {
1065 		ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1066 		ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1067 	} else {
1068 		ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1069 		ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1070 	}
1071 
1072 	return 0;
1073 }
1074 
1075 /*
1076  * cycle_between - true if test occurs chronologically between before and after
1077  */
cycle_between(cycle_t before,cycle_t test,cycle_t after)1078 static bool cycle_between(cycle_t before, cycle_t test, cycle_t after)
1079 {
1080 	if (test > before && test < after)
1081 		return true;
1082 	if (test < before && before > after)
1083 		return true;
1084 	return false;
1085 }
1086 
1087 /**
1088  * get_device_system_crosststamp - Synchronously capture system/device timestamp
1089  * @get_time_fn:	Callback to get simultaneous device time and
1090  *	system counter from the device driver
1091  * @ctx:		Context passed to get_time_fn()
1092  * @history_begin:	Historical reference point used to interpolate system
1093  *	time when counter provided by the driver is before the current interval
1094  * @xtstamp:		Receives simultaneously captured system and device time
1095  *
1096  * Reads a timestamp from a device and correlates it to system time
1097  */
get_device_system_crosststamp(int (* get_time_fn)(ktime_t * device_time,struct system_counterval_t * sys_counterval,void * ctx),void * ctx,struct system_time_snapshot * history_begin,struct system_device_crosststamp * xtstamp)1098 int get_device_system_crosststamp(int (*get_time_fn)
1099 				  (ktime_t *device_time,
1100 				   struct system_counterval_t *sys_counterval,
1101 				   void *ctx),
1102 				  void *ctx,
1103 				  struct system_time_snapshot *history_begin,
1104 				  struct system_device_crosststamp *xtstamp)
1105 {
1106 	struct system_counterval_t system_counterval;
1107 	struct timekeeper *tk = &tk_core.timekeeper;
1108 	cycle_t cycles, now, interval_start;
1109 	unsigned int clock_was_set_seq = 0;
1110 	ktime_t base_real, base_raw;
1111 	s64 nsec_real, nsec_raw;
1112 	u8 cs_was_changed_seq;
1113 	unsigned long seq;
1114 	bool do_interp;
1115 	int ret;
1116 
1117 	do {
1118 		seq = read_seqcount_begin(&tk_core.seq);
1119 		/*
1120 		 * Try to synchronously capture device time and a system
1121 		 * counter value calling back into the device driver
1122 		 */
1123 		ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1124 		if (ret)
1125 			return ret;
1126 
1127 		/*
1128 		 * Verify that the clocksource associated with the captured
1129 		 * system counter value is the same as the currently installed
1130 		 * timekeeper clocksource
1131 		 */
1132 		if (tk->tkr_mono.clock != system_counterval.cs)
1133 			return -ENODEV;
1134 		cycles = system_counterval.cycles;
1135 
1136 		/*
1137 		 * Check whether the system counter value provided by the
1138 		 * device driver is on the current timekeeping interval.
1139 		 */
1140 		now = tk_clock_read(&tk->tkr_mono);
1141 		interval_start = tk->tkr_mono.cycle_last;
1142 		if (!cycle_between(interval_start, cycles, now)) {
1143 			clock_was_set_seq = tk->clock_was_set_seq;
1144 			cs_was_changed_seq = tk->cs_was_changed_seq;
1145 			cycles = interval_start;
1146 			do_interp = true;
1147 		} else {
1148 			do_interp = false;
1149 		}
1150 
1151 		base_real = ktime_add(tk->tkr_mono.base,
1152 				      tk_core.timekeeper.offs_real);
1153 		base_raw = tk->tkr_raw.base;
1154 
1155 		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1156 						     system_counterval.cycles);
1157 		nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1158 						    system_counterval.cycles);
1159 	} while (read_seqcount_retry(&tk_core.seq, seq));
1160 
1161 	xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1162 	xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1163 
1164 	/*
1165 	 * Interpolate if necessary, adjusting back from the start of the
1166 	 * current interval
1167 	 */
1168 	if (do_interp) {
1169 		cycle_t partial_history_cycles, total_history_cycles;
1170 		bool discontinuity;
1171 
1172 		/*
1173 		 * Check that the counter value occurs after the provided
1174 		 * history reference and that the history doesn't cross a
1175 		 * clocksource change
1176 		 */
1177 		if (!history_begin ||
1178 		    !cycle_between(history_begin->cycles,
1179 				   system_counterval.cycles, cycles) ||
1180 		    history_begin->cs_was_changed_seq != cs_was_changed_seq)
1181 			return -EINVAL;
1182 		partial_history_cycles = cycles - system_counterval.cycles;
1183 		total_history_cycles = cycles - history_begin->cycles;
1184 		discontinuity =
1185 			history_begin->clock_was_set_seq != clock_was_set_seq;
1186 
1187 		ret = adjust_historical_crosststamp(history_begin,
1188 						    partial_history_cycles,
1189 						    total_history_cycles,
1190 						    discontinuity, xtstamp);
1191 		if (ret)
1192 			return ret;
1193 	}
1194 
1195 	return 0;
1196 }
1197 EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1198 
1199 /**
1200  * do_gettimeofday - Returns the time of day in a timeval
1201  * @tv:		pointer to the timeval to be set
1202  *
1203  * NOTE: Users should be converted to using getnstimeofday()
1204  */
do_gettimeofday(struct timeval * tv)1205 void do_gettimeofday(struct timeval *tv)
1206 {
1207 	struct timespec64 now;
1208 
1209 	getnstimeofday64(&now);
1210 	tv->tv_sec = now.tv_sec;
1211 	tv->tv_usec = now.tv_nsec/1000;
1212 }
1213 EXPORT_SYMBOL(do_gettimeofday);
1214 
1215 /**
1216  * do_settimeofday64 - Sets the time of day.
1217  * @ts:     pointer to the timespec64 variable containing the new time
1218  *
1219  * Sets the time of day to the new time and update NTP and notify hrtimers
1220  */
do_settimeofday64(const struct timespec64 * ts)1221 int do_settimeofday64(const struct timespec64 *ts)
1222 {
1223 	struct timekeeper *tk = &tk_core.timekeeper;
1224 	struct timespec64 ts_delta, xt;
1225 	unsigned long flags;
1226 	int ret = 0;
1227 
1228 	if (!timespec64_valid_strict(ts))
1229 		return -EINVAL;
1230 
1231 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1232 	write_seqcount_begin(&tk_core.seq);
1233 
1234 	timekeeping_forward_now(tk);
1235 
1236 	xt = tk_xtime(tk);
1237 	ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
1238 	ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1239 
1240 	if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1241 		ret = -EINVAL;
1242 		goto out;
1243 	}
1244 
1245 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1246 
1247 	tk_set_xtime(tk, ts);
1248 out:
1249 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1250 
1251 	write_seqcount_end(&tk_core.seq);
1252 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1253 
1254 	/* signal hrtimers about time change */
1255 	clock_was_set();
1256 
1257 	return ret;
1258 }
1259 EXPORT_SYMBOL(do_settimeofday64);
1260 
1261 /**
1262  * timekeeping_inject_offset - Adds or subtracts from the current time.
1263  * @tv:		pointer to the timespec variable containing the offset
1264  *
1265  * Adds or subtracts an offset value from the current time.
1266  */
timekeeping_inject_offset(struct timespec * ts)1267 int timekeeping_inject_offset(struct timespec *ts)
1268 {
1269 	struct timekeeper *tk = &tk_core.timekeeper;
1270 	unsigned long flags;
1271 	struct timespec64 ts64, tmp;
1272 	int ret = 0;
1273 
1274 	if (!timespec_inject_offset_valid(ts))
1275 		return -EINVAL;
1276 
1277 	ts64 = timespec_to_timespec64(*ts);
1278 
1279 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1280 	write_seqcount_begin(&tk_core.seq);
1281 
1282 	timekeeping_forward_now(tk);
1283 
1284 	/* Make sure the proposed value is valid */
1285 	tmp = timespec64_add(tk_xtime(tk),  ts64);
1286 	if (timespec64_compare(&tk->wall_to_monotonic, &ts64) > 0 ||
1287 	    !timespec64_valid_strict(&tmp)) {
1288 		ret = -EINVAL;
1289 		goto error;
1290 	}
1291 
1292 	tk_xtime_add(tk, &ts64);
1293 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
1294 
1295 error: /* even if we error out, we forwarded the time, so call update */
1296 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1297 
1298 	write_seqcount_end(&tk_core.seq);
1299 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1300 
1301 	/* signal hrtimers about time change */
1302 	clock_was_set();
1303 
1304 	return ret;
1305 }
1306 EXPORT_SYMBOL(timekeeping_inject_offset);
1307 
1308 
1309 /**
1310  * timekeeping_get_tai_offset - Returns current TAI offset from UTC
1311  *
1312  */
timekeeping_get_tai_offset(void)1313 s32 timekeeping_get_tai_offset(void)
1314 {
1315 	struct timekeeper *tk = &tk_core.timekeeper;
1316 	unsigned int seq;
1317 	s32 ret;
1318 
1319 	do {
1320 		seq = read_seqcount_begin(&tk_core.seq);
1321 		ret = tk->tai_offset;
1322 	} while (read_seqcount_retry(&tk_core.seq, seq));
1323 
1324 	return ret;
1325 }
1326 
1327 /**
1328  * __timekeeping_set_tai_offset - Lock free worker function
1329  *
1330  */
__timekeeping_set_tai_offset(struct timekeeper * tk,s32 tai_offset)1331 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1332 {
1333 	tk->tai_offset = tai_offset;
1334 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1335 }
1336 
1337 /**
1338  * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
1339  *
1340  */
timekeeping_set_tai_offset(s32 tai_offset)1341 void timekeeping_set_tai_offset(s32 tai_offset)
1342 {
1343 	struct timekeeper *tk = &tk_core.timekeeper;
1344 	unsigned long flags;
1345 
1346 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1347 	write_seqcount_begin(&tk_core.seq);
1348 	__timekeeping_set_tai_offset(tk, tai_offset);
1349 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1350 	write_seqcount_end(&tk_core.seq);
1351 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1352 	clock_was_set();
1353 }
1354 
1355 /**
1356  * change_clocksource - Swaps clocksources if a new one is available
1357  *
1358  * Accumulates current time interval and initializes new clocksource
1359  */
change_clocksource(void * data)1360 static int change_clocksource(void *data)
1361 {
1362 	struct timekeeper *tk = &tk_core.timekeeper;
1363 	struct clocksource *new, *old;
1364 	unsigned long flags;
1365 
1366 	new = (struct clocksource *) data;
1367 
1368 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1369 	write_seqcount_begin(&tk_core.seq);
1370 
1371 	timekeeping_forward_now(tk);
1372 	/*
1373 	 * If the cs is in module, get a module reference. Succeeds
1374 	 * for built-in code (owner == NULL) as well.
1375 	 */
1376 	if (try_module_get(new->owner)) {
1377 		if (!new->enable || new->enable(new) == 0) {
1378 			old = tk->tkr_mono.clock;
1379 			tk_setup_internals(tk, new);
1380 			if (old->disable)
1381 				old->disable(old);
1382 			module_put(old->owner);
1383 		} else {
1384 			module_put(new->owner);
1385 		}
1386 	}
1387 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1388 
1389 	write_seqcount_end(&tk_core.seq);
1390 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1391 
1392 	return 0;
1393 }
1394 
1395 /**
1396  * timekeeping_notify - Install a new clock source
1397  * @clock:		pointer to the clock source
1398  *
1399  * This function is called from clocksource.c after a new, better clock
1400  * source has been registered. The caller holds the clocksource_mutex.
1401  */
timekeeping_notify(struct clocksource * clock)1402 int timekeeping_notify(struct clocksource *clock)
1403 {
1404 	struct timekeeper *tk = &tk_core.timekeeper;
1405 
1406 	if (tk->tkr_mono.clock == clock)
1407 		return 0;
1408 	stop_machine(change_clocksource, clock, NULL);
1409 	tick_clock_notify();
1410 	return tk->tkr_mono.clock == clock ? 0 : -1;
1411 }
1412 
1413 /**
1414  * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1415  * @ts:		pointer to the timespec64 to be set
1416  *
1417  * Returns the raw monotonic time (completely un-modified by ntp)
1418  */
getrawmonotonic64(struct timespec64 * ts)1419 void getrawmonotonic64(struct timespec64 *ts)
1420 {
1421 	struct timekeeper *tk = &tk_core.timekeeper;
1422 	unsigned long seq;
1423 	s64 nsecs;
1424 
1425 	do {
1426 		seq = read_seqcount_begin(&tk_core.seq);
1427 		ts->tv_sec = tk->raw_sec;
1428 		nsecs = timekeeping_get_ns(&tk->tkr_raw);
1429 
1430 	} while (read_seqcount_retry(&tk_core.seq, seq));
1431 
1432 	ts->tv_nsec = 0;
1433 	timespec64_add_ns(ts, nsecs);
1434 }
1435 EXPORT_SYMBOL(getrawmonotonic64);
1436 
1437 
1438 /**
1439  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1440  */
timekeeping_valid_for_hres(void)1441 int timekeeping_valid_for_hres(void)
1442 {
1443 	struct timekeeper *tk = &tk_core.timekeeper;
1444 	unsigned long seq;
1445 	int ret;
1446 
1447 	do {
1448 		seq = read_seqcount_begin(&tk_core.seq);
1449 
1450 		ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1451 
1452 	} while (read_seqcount_retry(&tk_core.seq, seq));
1453 
1454 	return ret;
1455 }
1456 
1457 /**
1458  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1459  */
timekeeping_max_deferment(void)1460 u64 timekeeping_max_deferment(void)
1461 {
1462 	struct timekeeper *tk = &tk_core.timekeeper;
1463 	unsigned long seq;
1464 	u64 ret;
1465 
1466 	do {
1467 		seq = read_seqcount_begin(&tk_core.seq);
1468 
1469 		ret = tk->tkr_mono.clock->max_idle_ns;
1470 
1471 	} while (read_seqcount_retry(&tk_core.seq, seq));
1472 
1473 	return ret;
1474 }
1475 
1476 /**
1477  * read_persistent_clock -  Return time from the persistent clock.
1478  *
1479  * Weak dummy function for arches that do not yet support it.
1480  * Reads the time from the battery backed persistent clock.
1481  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1482  *
1483  *  XXX - Do be sure to remove it once all arches implement it.
1484  */
read_persistent_clock(struct timespec * ts)1485 void __weak read_persistent_clock(struct timespec *ts)
1486 {
1487 	ts->tv_sec = 0;
1488 	ts->tv_nsec = 0;
1489 }
1490 
read_persistent_clock64(struct timespec64 * ts64)1491 void __weak read_persistent_clock64(struct timespec64 *ts64)
1492 {
1493 	struct timespec ts;
1494 
1495 	read_persistent_clock(&ts);
1496 	*ts64 = timespec_to_timespec64(ts);
1497 }
1498 
1499 /**
1500  * read_boot_clock64 -  Return time of the system start.
1501  *
1502  * Weak dummy function for arches that do not yet support it.
1503  * Function to read the exact time the system has been started.
1504  * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
1505  *
1506  *  XXX - Do be sure to remove it once all arches implement it.
1507  */
read_boot_clock64(struct timespec64 * ts)1508 void __weak read_boot_clock64(struct timespec64 *ts)
1509 {
1510 	ts->tv_sec = 0;
1511 	ts->tv_nsec = 0;
1512 }
1513 
1514 /* Flag for if timekeeping_resume() has injected sleeptime */
1515 static bool sleeptime_injected;
1516 
1517 /* Flag for if there is a persistent clock on this platform */
1518 static bool persistent_clock_exists;
1519 
1520 /*
1521  * timekeeping_init - Initializes the clocksource and common timekeeping values
1522  */
timekeeping_init(void)1523 void __init timekeeping_init(void)
1524 {
1525 	struct timekeeper *tk = &tk_core.timekeeper;
1526 	struct clocksource *clock;
1527 	unsigned long flags;
1528 	struct timespec64 now, boot, tmp;
1529 
1530 	read_persistent_clock64(&now);
1531 	if (!timespec64_valid_strict(&now)) {
1532 		pr_warn("WARNING: Persistent clock returned invalid value!\n"
1533 			"         Check your CMOS/BIOS settings.\n");
1534 		now.tv_sec = 0;
1535 		now.tv_nsec = 0;
1536 	} else if (now.tv_sec || now.tv_nsec)
1537 		persistent_clock_exists = true;
1538 
1539 	read_boot_clock64(&boot);
1540 	if (!timespec64_valid_strict(&boot)) {
1541 		pr_warn("WARNING: Boot clock returned invalid value!\n"
1542 			"         Check your CMOS/BIOS settings.\n");
1543 		boot.tv_sec = 0;
1544 		boot.tv_nsec = 0;
1545 	}
1546 
1547 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1548 	write_seqcount_begin(&tk_core.seq);
1549 	ntp_init();
1550 
1551 	clock = clocksource_default_clock();
1552 	if (clock->enable)
1553 		clock->enable(clock);
1554 	tk_setup_internals(tk, clock);
1555 
1556 	tk_set_xtime(tk, &now);
1557 	tk->raw_sec = 0;
1558 	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1559 		boot = tk_xtime(tk);
1560 
1561 	set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1562 	tk_set_wall_to_mono(tk, tmp);
1563 
1564 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1565 
1566 	write_seqcount_end(&tk_core.seq);
1567 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1568 }
1569 
1570 /* time in seconds when suspend began for persistent clock */
1571 static struct timespec64 timekeeping_suspend_time;
1572 
1573 /**
1574  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1575  * @delta: pointer to a timespec delta value
1576  *
1577  * Takes a timespec offset measuring a suspend interval and properly
1578  * adds the sleep offset to the timekeeping variables.
1579  */
__timekeeping_inject_sleeptime(struct timekeeper * tk,struct timespec64 * delta)1580 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1581 					   struct timespec64 *delta)
1582 {
1583 	if (!timespec64_valid_strict(delta)) {
1584 		printk_deferred(KERN_WARNING
1585 				"__timekeeping_inject_sleeptime: Invalid "
1586 				"sleep delta value!\n");
1587 		return;
1588 	}
1589 	tk_xtime_add(tk, delta);
1590 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1591 	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1592 	tk_debug_account_sleep_time(delta);
1593 }
1594 
1595 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1596 /**
1597  * We have three kinds of time sources to use for sleep time
1598  * injection, the preference order is:
1599  * 1) non-stop clocksource
1600  * 2) persistent clock (ie: RTC accessible when irqs are off)
1601  * 3) RTC
1602  *
1603  * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1604  * If system has neither 1) nor 2), 3) will be used finally.
1605  *
1606  *
1607  * If timekeeping has injected sleeptime via either 1) or 2),
1608  * 3) becomes needless, so in this case we don't need to call
1609  * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1610  * means.
1611  */
timekeeping_rtc_skipresume(void)1612 bool timekeeping_rtc_skipresume(void)
1613 {
1614 	return sleeptime_injected;
1615 }
1616 
1617 /**
1618  * 1) can be determined whether to use or not only when doing
1619  * timekeeping_resume() which is invoked after rtc_suspend(),
1620  * so we can't skip rtc_suspend() surely if system has 1).
1621  *
1622  * But if system has 2), 2) will definitely be used, so in this
1623  * case we don't need to call rtc_suspend(), and this is what
1624  * timekeeping_rtc_skipsuspend() means.
1625  */
timekeeping_rtc_skipsuspend(void)1626 bool timekeeping_rtc_skipsuspend(void)
1627 {
1628 	return persistent_clock_exists;
1629 }
1630 
1631 /**
1632  * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1633  * @delta: pointer to a timespec64 delta value
1634  *
1635  * This hook is for architectures that cannot support read_persistent_clock64
1636  * because their RTC/persistent clock is only accessible when irqs are enabled.
1637  * and also don't have an effective nonstop clocksource.
1638  *
1639  * This function should only be called by rtc_resume(), and allows
1640  * a suspend offset to be injected into the timekeeping values.
1641  */
timekeeping_inject_sleeptime64(struct timespec64 * delta)1642 void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1643 {
1644 	struct timekeeper *tk = &tk_core.timekeeper;
1645 	unsigned long flags;
1646 
1647 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1648 	write_seqcount_begin(&tk_core.seq);
1649 
1650 	timekeeping_forward_now(tk);
1651 
1652 	__timekeeping_inject_sleeptime(tk, delta);
1653 
1654 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1655 
1656 	write_seqcount_end(&tk_core.seq);
1657 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1658 
1659 	/* signal hrtimers about time change */
1660 	clock_was_set();
1661 }
1662 #endif
1663 
1664 /**
1665  * timekeeping_resume - Resumes the generic timekeeping subsystem.
1666  */
timekeeping_resume(void)1667 void timekeeping_resume(void)
1668 {
1669 	struct timekeeper *tk = &tk_core.timekeeper;
1670 	struct clocksource *clock = tk->tkr_mono.clock;
1671 	unsigned long flags;
1672 	struct timespec64 ts_new, ts_delta;
1673 	cycle_t cycle_now, cycle_delta;
1674 
1675 	sleeptime_injected = false;
1676 	read_persistent_clock64(&ts_new);
1677 
1678 	clockevents_resume();
1679 	clocksource_resume();
1680 
1681 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1682 	write_seqcount_begin(&tk_core.seq);
1683 
1684 	/*
1685 	 * After system resumes, we need to calculate the suspended time and
1686 	 * compensate it for the OS time. There are 3 sources that could be
1687 	 * used: Nonstop clocksource during suspend, persistent clock and rtc
1688 	 * device.
1689 	 *
1690 	 * One specific platform may have 1 or 2 or all of them, and the
1691 	 * preference will be:
1692 	 *	suspend-nonstop clocksource -> persistent clock -> rtc
1693 	 * The less preferred source will only be tried if there is no better
1694 	 * usable source. The rtc part is handled separately in rtc core code.
1695 	 */
1696 	cycle_now = tk_clock_read(&tk->tkr_mono);
1697 	if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1698 		cycle_now > tk->tkr_mono.cycle_last) {
1699 		u64 num, max = ULLONG_MAX;
1700 		u32 mult = clock->mult;
1701 		u32 shift = clock->shift;
1702 		s64 nsec = 0;
1703 
1704 		cycle_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
1705 						tk->tkr_mono.mask);
1706 
1707 		/*
1708 		 * "cycle_delta * mutl" may cause 64 bits overflow, if the
1709 		 * suspended time is too long. In that case we need do the
1710 		 * 64 bits math carefully
1711 		 */
1712 		do_div(max, mult);
1713 		if (cycle_delta > max) {
1714 			num = div64_u64(cycle_delta, max);
1715 			nsec = (((u64) max * mult) >> shift) * num;
1716 			cycle_delta -= num * max;
1717 		}
1718 		nsec += ((u64) cycle_delta * mult) >> shift;
1719 
1720 		ts_delta = ns_to_timespec64(nsec);
1721 		sleeptime_injected = true;
1722 	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1723 		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1724 		sleeptime_injected = true;
1725 	}
1726 
1727 	if (sleeptime_injected)
1728 		__timekeeping_inject_sleeptime(tk, &ts_delta);
1729 
1730 	/* Re-base the last cycle value */
1731 	tk->tkr_mono.cycle_last = cycle_now;
1732 	tk->tkr_raw.cycle_last  = cycle_now;
1733 
1734 	tk->ntp_error = 0;
1735 	timekeeping_suspended = 0;
1736 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1737 	write_seqcount_end(&tk_core.seq);
1738 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1739 
1740 	touch_softlockup_watchdog();
1741 
1742 	tick_resume();
1743 	hrtimers_resume();
1744 }
1745 
timekeeping_suspend(void)1746 int timekeeping_suspend(void)
1747 {
1748 	struct timekeeper *tk = &tk_core.timekeeper;
1749 	unsigned long flags;
1750 	struct timespec64		delta, delta_delta;
1751 	static struct timespec64	old_delta;
1752 
1753 	read_persistent_clock64(&timekeeping_suspend_time);
1754 
1755 	/*
1756 	 * On some systems the persistent_clock can not be detected at
1757 	 * timekeeping_init by its return value, so if we see a valid
1758 	 * value returned, update the persistent_clock_exists flag.
1759 	 */
1760 	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1761 		persistent_clock_exists = true;
1762 
1763 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1764 	write_seqcount_begin(&tk_core.seq);
1765 	timekeeping_forward_now(tk);
1766 	timekeeping_suspended = 1;
1767 
1768 	if (persistent_clock_exists) {
1769 		/*
1770 		 * To avoid drift caused by repeated suspend/resumes,
1771 		 * which each can add ~1 second drift error,
1772 		 * try to compensate so the difference in system time
1773 		 * and persistent_clock time stays close to constant.
1774 		 */
1775 		delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1776 		delta_delta = timespec64_sub(delta, old_delta);
1777 		if (abs(delta_delta.tv_sec) >= 2) {
1778 			/*
1779 			 * if delta_delta is too large, assume time correction
1780 			 * has occurred and set old_delta to the current delta.
1781 			 */
1782 			old_delta = delta;
1783 		} else {
1784 			/* Otherwise try to adjust old_system to compensate */
1785 			timekeeping_suspend_time =
1786 				timespec64_add(timekeeping_suspend_time, delta_delta);
1787 		}
1788 	}
1789 
1790 	timekeeping_update(tk, TK_MIRROR);
1791 	halt_fast_timekeeper(tk);
1792 	write_seqcount_end(&tk_core.seq);
1793 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1794 
1795 	tick_suspend();
1796 	clocksource_suspend();
1797 	clockevents_suspend();
1798 
1799 	return 0;
1800 }
1801 
1802 /* sysfs resume/suspend bits for timekeeping */
1803 static struct syscore_ops timekeeping_syscore_ops = {
1804 	.resume		= timekeeping_resume,
1805 	.suspend	= timekeeping_suspend,
1806 };
1807 
timekeeping_init_ops(void)1808 static int __init timekeeping_init_ops(void)
1809 {
1810 	register_syscore_ops(&timekeeping_syscore_ops);
1811 	return 0;
1812 }
1813 device_initcall(timekeeping_init_ops);
1814 
1815 /*
1816  * Apply a multiplier adjustment to the timekeeper
1817  */
timekeeping_apply_adjustment(struct timekeeper * tk,s64 offset,bool negative,int adj_scale)1818 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1819 							 s64 offset,
1820 							 bool negative,
1821 							 int adj_scale)
1822 {
1823 	s64 interval = tk->cycle_interval;
1824 	s32 mult_adj = 1;
1825 
1826 	if (negative) {
1827 		mult_adj = -mult_adj;
1828 		interval = -interval;
1829 		offset  = -offset;
1830 	}
1831 	mult_adj <<= adj_scale;
1832 	interval <<= adj_scale;
1833 	offset <<= adj_scale;
1834 
1835 	/*
1836 	 * So the following can be confusing.
1837 	 *
1838 	 * To keep things simple, lets assume mult_adj == 1 for now.
1839 	 *
1840 	 * When mult_adj != 1, remember that the interval and offset values
1841 	 * have been appropriately scaled so the math is the same.
1842 	 *
1843 	 * The basic idea here is that we're increasing the multiplier
1844 	 * by one, this causes the xtime_interval to be incremented by
1845 	 * one cycle_interval. This is because:
1846 	 *	xtime_interval = cycle_interval * mult
1847 	 * So if mult is being incremented by one:
1848 	 *	xtime_interval = cycle_interval * (mult + 1)
1849 	 * Its the same as:
1850 	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
1851 	 * Which can be shortened to:
1852 	 *	xtime_interval += cycle_interval
1853 	 *
1854 	 * So offset stores the non-accumulated cycles. Thus the current
1855 	 * time (in shifted nanoseconds) is:
1856 	 *	now = (offset * adj) + xtime_nsec
1857 	 * Now, even though we're adjusting the clock frequency, we have
1858 	 * to keep time consistent. In other words, we can't jump back
1859 	 * in time, and we also want to avoid jumping forward in time.
1860 	 *
1861 	 * So given the same offset value, we need the time to be the same
1862 	 * both before and after the freq adjustment.
1863 	 *	now = (offset * adj_1) + xtime_nsec_1
1864 	 *	now = (offset * adj_2) + xtime_nsec_2
1865 	 * So:
1866 	 *	(offset * adj_1) + xtime_nsec_1 =
1867 	 *		(offset * adj_2) + xtime_nsec_2
1868 	 * And we know:
1869 	 *	adj_2 = adj_1 + 1
1870 	 * So:
1871 	 *	(offset * adj_1) + xtime_nsec_1 =
1872 	 *		(offset * (adj_1+1)) + xtime_nsec_2
1873 	 *	(offset * adj_1) + xtime_nsec_1 =
1874 	 *		(offset * adj_1) + offset + xtime_nsec_2
1875 	 * Canceling the sides:
1876 	 *	xtime_nsec_1 = offset + xtime_nsec_2
1877 	 * Which gives us:
1878 	 *	xtime_nsec_2 = xtime_nsec_1 - offset
1879 	 * Which simplfies to:
1880 	 *	xtime_nsec -= offset
1881 	 *
1882 	 * XXX - TODO: Doc ntp_error calculation.
1883 	 */
1884 	if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1885 		/* NTP adjustment caused clocksource mult overflow */
1886 		WARN_ON_ONCE(1);
1887 		return;
1888 	}
1889 
1890 	tk->tkr_mono.mult += mult_adj;
1891 	tk->xtime_interval += interval;
1892 	tk->tkr_mono.xtime_nsec -= offset;
1893 	tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1894 }
1895 
1896 /*
1897  * Calculate the multiplier adjustment needed to match the frequency
1898  * specified by NTP
1899  */
timekeeping_freqadjust(struct timekeeper * tk,s64 offset)1900 static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1901 							s64 offset)
1902 {
1903 	s64 interval = tk->cycle_interval;
1904 	s64 xinterval = tk->xtime_interval;
1905 	u32 base = tk->tkr_mono.clock->mult;
1906 	u32 max = tk->tkr_mono.clock->maxadj;
1907 	u32 cur_adj = tk->tkr_mono.mult;
1908 	s64 tick_error;
1909 	bool negative;
1910 	u32 adj_scale;
1911 
1912 	/* Remove any current error adj from freq calculation */
1913 	if (tk->ntp_err_mult)
1914 		xinterval -= tk->cycle_interval;
1915 
1916 	tk->ntp_tick = ntp_tick_length();
1917 
1918 	/* Calculate current error per tick */
1919 	tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1920 	tick_error -= (xinterval + tk->xtime_remainder);
1921 
1922 	/* Don't worry about correcting it if its small */
1923 	if (likely((tick_error >= 0) && (tick_error <= interval)))
1924 		return;
1925 
1926 	/* preserve the direction of correction */
1927 	negative = (tick_error < 0);
1928 
1929 	/* If any adjustment would pass the max, just return */
1930 	if (negative && (cur_adj - 1) <= (base - max))
1931 		return;
1932 	if (!negative && (cur_adj + 1) >= (base + max))
1933 		return;
1934 	/*
1935 	 * Sort out the magnitude of the correction, but
1936 	 * avoid making so large a correction that we go
1937 	 * over the max adjustment.
1938 	 */
1939 	adj_scale = 0;
1940 	tick_error = abs(tick_error);
1941 	while (tick_error > interval) {
1942 		u32 adj = 1 << (adj_scale + 1);
1943 
1944 		/* Check if adjustment gets us within 1 unit from the max */
1945 		if (negative && (cur_adj - adj) <= (base - max))
1946 			break;
1947 		if (!negative && (cur_adj + adj) >= (base + max))
1948 			break;
1949 
1950 		adj_scale++;
1951 		tick_error >>= 1;
1952 	}
1953 
1954 	/* scale the corrections */
1955 	timekeeping_apply_adjustment(tk, offset, negative, adj_scale);
1956 }
1957 
1958 /*
1959  * Adjust the timekeeper's multiplier to the correct frequency
1960  * and also to reduce the accumulated error value.
1961  */
timekeeping_adjust(struct timekeeper * tk,s64 offset)1962 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1963 {
1964 	/* Correct for the current frequency error */
1965 	timekeeping_freqadjust(tk, offset);
1966 
1967 	/* Next make a small adjustment to fix any cumulative error */
1968 	if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1969 		tk->ntp_err_mult = 1;
1970 		timekeeping_apply_adjustment(tk, offset, 0, 0);
1971 	} else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1972 		/* Undo any existing error adjustment */
1973 		timekeeping_apply_adjustment(tk, offset, 1, 0);
1974 		tk->ntp_err_mult = 0;
1975 	}
1976 
1977 	if (unlikely(tk->tkr_mono.clock->maxadj &&
1978 		(abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1979 			> tk->tkr_mono.clock->maxadj))) {
1980 		printk_once(KERN_WARNING
1981 			"Adjusting %s more than 11%% (%ld vs %ld)\n",
1982 			tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1983 			(long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1984 	}
1985 
1986 	/*
1987 	 * It may be possible that when we entered this function, xtime_nsec
1988 	 * was very small.  Further, if we're slightly speeding the clocksource
1989 	 * in the code above, its possible the required corrective factor to
1990 	 * xtime_nsec could cause it to underflow.
1991 	 *
1992 	 * Now, since we already accumulated the second, cannot simply roll
1993 	 * the accumulated second back, since the NTP subsystem has been
1994 	 * notified via second_overflow. So instead we push xtime_nsec forward
1995 	 * by the amount we underflowed, and add that amount into the error.
1996 	 *
1997 	 * We'll correct this error next time through this function, when
1998 	 * xtime_nsec is not as small.
1999 	 */
2000 	if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
2001 		s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
2002 		tk->tkr_mono.xtime_nsec = 0;
2003 		tk->ntp_error += neg << tk->ntp_error_shift;
2004 	}
2005 }
2006 
2007 /**
2008  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
2009  *
2010  * Helper function that accumulates the nsecs greater than a second
2011  * from the xtime_nsec field to the xtime_secs field.
2012  * It also calls into the NTP code to handle leapsecond processing.
2013  *
2014  */
accumulate_nsecs_to_secs(struct timekeeper * tk)2015 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
2016 {
2017 	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
2018 	unsigned int clock_set = 0;
2019 
2020 	while (tk->tkr_mono.xtime_nsec >= nsecps) {
2021 		int leap;
2022 
2023 		tk->tkr_mono.xtime_nsec -= nsecps;
2024 		tk->xtime_sec++;
2025 
2026 		/* Figure out if its a leap sec and apply if needed */
2027 		leap = second_overflow(tk->xtime_sec);
2028 		if (unlikely(leap)) {
2029 			struct timespec64 ts;
2030 
2031 			tk->xtime_sec += leap;
2032 
2033 			ts.tv_sec = leap;
2034 			ts.tv_nsec = 0;
2035 			tk_set_wall_to_mono(tk,
2036 				timespec64_sub(tk->wall_to_monotonic, ts));
2037 
2038 			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
2039 
2040 			clock_set = TK_CLOCK_WAS_SET;
2041 		}
2042 	}
2043 	return clock_set;
2044 }
2045 
2046 /**
2047  * logarithmic_accumulation - shifted accumulation of cycles
2048  *
2049  * This functions accumulates a shifted interval of cycles into
2050  * into a shifted interval nanoseconds. Allows for O(log) accumulation
2051  * loop.
2052  *
2053  * Returns the unconsumed cycles.
2054  */
logarithmic_accumulation(struct timekeeper * tk,cycle_t offset,u32 shift,unsigned int * clock_set)2055 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
2056 						u32 shift,
2057 						unsigned int *clock_set)
2058 {
2059 	cycle_t interval = tk->cycle_interval << shift;
2060 	u64 snsec_per_sec;
2061 
2062 	/* If the offset is smaller than a shifted interval, do nothing */
2063 	if (offset < interval)
2064 		return offset;
2065 
2066 	/* Accumulate one shifted interval */
2067 	offset -= interval;
2068 	tk->tkr_mono.cycle_last += interval;
2069 	tk->tkr_raw.cycle_last  += interval;
2070 
2071 	tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2072 	*clock_set |= accumulate_nsecs_to_secs(tk);
2073 
2074 	/* Accumulate raw time */
2075 	tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
2076 	snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
2077 	while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
2078 		tk->tkr_raw.xtime_nsec -= snsec_per_sec;
2079 		tk->raw_sec++;
2080 	}
2081 
2082 	/* Accumulate error between NTP and clock interval */
2083 	tk->ntp_error += tk->ntp_tick << shift;
2084 	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2085 						(tk->ntp_error_shift + shift);
2086 
2087 	return offset;
2088 }
2089 
2090 /**
2091  * update_wall_time - Uses the current clocksource to increment the wall time
2092  *
2093  */
update_wall_time(void)2094 void update_wall_time(void)
2095 {
2096 	struct timekeeper *real_tk = &tk_core.timekeeper;
2097 	struct timekeeper *tk = &shadow_timekeeper;
2098 	cycle_t offset;
2099 	int shift = 0, maxshift;
2100 	unsigned int clock_set = 0;
2101 	unsigned long flags;
2102 
2103 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2104 
2105 	/* Make sure we're fully resumed: */
2106 	if (unlikely(timekeeping_suspended))
2107 		goto out;
2108 
2109 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2110 	offset = real_tk->cycle_interval;
2111 #else
2112 	offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
2113 				   tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2114 #endif
2115 
2116 	/* Check if there's really nothing to do */
2117 	if (offset < real_tk->cycle_interval)
2118 		goto out;
2119 
2120 	/* Do some additional sanity checking */
2121 	timekeeping_check_update(real_tk, offset);
2122 
2123 	/*
2124 	 * With NO_HZ we may have to accumulate many cycle_intervals
2125 	 * (think "ticks") worth of time at once. To do this efficiently,
2126 	 * we calculate the largest doubling multiple of cycle_intervals
2127 	 * that is smaller than the offset.  We then accumulate that
2128 	 * chunk in one go, and then try to consume the next smaller
2129 	 * doubled multiple.
2130 	 */
2131 	shift = ilog2(offset) - ilog2(tk->cycle_interval);
2132 	shift = max(0, shift);
2133 	/* Bound shift to one less than what overflows tick_length */
2134 	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2135 	shift = min(shift, maxshift);
2136 	while (offset >= tk->cycle_interval) {
2137 		offset = logarithmic_accumulation(tk, offset, shift,
2138 							&clock_set);
2139 		if (offset < tk->cycle_interval<<shift)
2140 			shift--;
2141 	}
2142 
2143 	/* correct the clock when NTP error is too big */
2144 	timekeeping_adjust(tk, offset);
2145 
2146 	/*
2147 	 * XXX This can be killed once everyone converts
2148 	 * to the new update_vsyscall.
2149 	 */
2150 	old_vsyscall_fixup(tk);
2151 
2152 	/*
2153 	 * Finally, make sure that after the rounding
2154 	 * xtime_nsec isn't larger than NSEC_PER_SEC
2155 	 */
2156 	clock_set |= accumulate_nsecs_to_secs(tk);
2157 
2158 	write_seqcount_begin(&tk_core.seq);
2159 	/*
2160 	 * Update the real timekeeper.
2161 	 *
2162 	 * We could avoid this memcpy by switching pointers, but that
2163 	 * requires changes to all other timekeeper usage sites as
2164 	 * well, i.e. move the timekeeper pointer getter into the
2165 	 * spinlocked/seqcount protected sections. And we trade this
2166 	 * memcpy under the tk_core.seq against one before we start
2167 	 * updating.
2168 	 */
2169 	timekeeping_update(tk, clock_set);
2170 	memcpy(real_tk, tk, sizeof(*tk));
2171 	/* The memcpy must come last. Do not put anything here! */
2172 	write_seqcount_end(&tk_core.seq);
2173 out:
2174 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2175 	if (clock_set)
2176 		/* Have to call _delayed version, since in irq context*/
2177 		clock_was_set_delayed();
2178 }
2179 
2180 /**
2181  * getboottime64 - Return the real time of system boot.
2182  * @ts:		pointer to the timespec64 to be set
2183  *
2184  * Returns the wall-time of boot in a timespec64.
2185  *
2186  * This is based on the wall_to_monotonic offset and the total suspend
2187  * time. Calls to settimeofday will affect the value returned (which
2188  * basically means that however wrong your real time clock is at boot time,
2189  * you get the right time here).
2190  */
getboottime64(struct timespec64 * ts)2191 void getboottime64(struct timespec64 *ts)
2192 {
2193 	struct timekeeper *tk = &tk_core.timekeeper;
2194 	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2195 
2196 	*ts = ktime_to_timespec64(t);
2197 }
2198 EXPORT_SYMBOL_GPL(getboottime64);
2199 
get_seconds(void)2200 unsigned long get_seconds(void)
2201 {
2202 	struct timekeeper *tk = &tk_core.timekeeper;
2203 
2204 	return tk->xtime_sec;
2205 }
2206 EXPORT_SYMBOL(get_seconds);
2207 
__current_kernel_time(void)2208 struct timespec __current_kernel_time(void)
2209 {
2210 	struct timekeeper *tk = &tk_core.timekeeper;
2211 
2212 	return timespec64_to_timespec(tk_xtime(tk));
2213 }
2214 
current_kernel_time64(void)2215 struct timespec64 current_kernel_time64(void)
2216 {
2217 	struct timekeeper *tk = &tk_core.timekeeper;
2218 	struct timespec64 now;
2219 	unsigned long seq;
2220 
2221 	do {
2222 		seq = read_seqcount_begin(&tk_core.seq);
2223 
2224 		now = tk_xtime(tk);
2225 	} while (read_seqcount_retry(&tk_core.seq, seq));
2226 
2227 	return now;
2228 }
2229 EXPORT_SYMBOL(current_kernel_time64);
2230 
get_monotonic_coarse64(void)2231 struct timespec64 get_monotonic_coarse64(void)
2232 {
2233 	struct timekeeper *tk = &tk_core.timekeeper;
2234 	struct timespec64 now, mono;
2235 	unsigned long seq;
2236 
2237 	do {
2238 		seq = read_seqcount_begin(&tk_core.seq);
2239 
2240 		now = tk_xtime(tk);
2241 		mono = tk->wall_to_monotonic;
2242 	} while (read_seqcount_retry(&tk_core.seq, seq));
2243 
2244 	set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
2245 				now.tv_nsec + mono.tv_nsec);
2246 
2247 	return now;
2248 }
2249 EXPORT_SYMBOL(get_monotonic_coarse64);
2250 
2251 /*
2252  * Must hold jiffies_lock
2253  */
do_timer(unsigned long ticks)2254 void do_timer(unsigned long ticks)
2255 {
2256 	jiffies_64 += ticks;
2257 	calc_global_load(ticks);
2258 }
2259 
2260 /**
2261  * ktime_get_update_offsets_now - hrtimer helper
2262  * @cwsseq:	pointer to check and store the clock was set sequence number
2263  * @offs_real:	pointer to storage for monotonic -> realtime offset
2264  * @offs_boot:	pointer to storage for monotonic -> boottime offset
2265  * @offs_tai:	pointer to storage for monotonic -> clock tai offset
2266  *
2267  * Returns current monotonic time and updates the offsets if the
2268  * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2269  * different.
2270  *
2271  * Called from hrtimer_interrupt() or retrigger_next_event()
2272  */
ktime_get_update_offsets_now(unsigned int * cwsseq,ktime_t * offs_real,ktime_t * offs_boot,ktime_t * offs_tai)2273 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2274 				     ktime_t *offs_boot, ktime_t *offs_tai)
2275 {
2276 	struct timekeeper *tk = &tk_core.timekeeper;
2277 	unsigned int seq;
2278 	ktime_t base;
2279 	u64 nsecs;
2280 
2281 	do {
2282 		seq = read_seqcount_begin(&tk_core.seq);
2283 
2284 		base = tk->tkr_mono.base;
2285 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
2286 		base = ktime_add_ns(base, nsecs);
2287 
2288 		if (*cwsseq != tk->clock_was_set_seq) {
2289 			*cwsseq = tk->clock_was_set_seq;
2290 			*offs_real = tk->offs_real;
2291 			*offs_boot = tk->offs_boot;
2292 			*offs_tai = tk->offs_tai;
2293 		}
2294 
2295 		/* Handle leapsecond insertion adjustments */
2296 		if (unlikely(base.tv64 >= tk->next_leap_ktime.tv64))
2297 			*offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2298 
2299 	} while (read_seqcount_retry(&tk_core.seq, seq));
2300 
2301 	return base;
2302 }
2303 
2304 /**
2305  * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2306  */
do_adjtimex(struct timex * txc)2307 int do_adjtimex(struct timex *txc)
2308 {
2309 	struct timekeeper *tk = &tk_core.timekeeper;
2310 	unsigned long flags;
2311 	struct timespec64 ts;
2312 	s32 orig_tai, tai;
2313 	int ret;
2314 
2315 	/* Validate the data before disabling interrupts */
2316 	ret = ntp_validate_timex(txc);
2317 	if (ret)
2318 		return ret;
2319 
2320 	if (txc->modes & ADJ_SETOFFSET) {
2321 		struct timespec delta;
2322 		delta.tv_sec  = txc->time.tv_sec;
2323 		delta.tv_nsec = txc->time.tv_usec;
2324 		if (!(txc->modes & ADJ_NANO))
2325 			delta.tv_nsec *= 1000;
2326 		ret = timekeeping_inject_offset(&delta);
2327 		if (ret)
2328 			return ret;
2329 	}
2330 
2331 	getnstimeofday64(&ts);
2332 
2333 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2334 	write_seqcount_begin(&tk_core.seq);
2335 
2336 	orig_tai = tai = tk->tai_offset;
2337 	ret = __do_adjtimex(txc, &ts, &tai);
2338 
2339 	if (tai != orig_tai) {
2340 		__timekeeping_set_tai_offset(tk, tai);
2341 		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2342 	}
2343 	tk_update_leap_state(tk);
2344 
2345 	write_seqcount_end(&tk_core.seq);
2346 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2347 
2348 	if (tai != orig_tai)
2349 		clock_was_set();
2350 
2351 	ntp_notify_cmos_timer();
2352 
2353 	return ret;
2354 }
2355 
2356 #ifdef CONFIG_NTP_PPS
2357 /**
2358  * hardpps() - Accessor function to NTP __hardpps function
2359  */
hardpps(const struct timespec64 * phase_ts,const struct timespec64 * raw_ts)2360 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2361 {
2362 	unsigned long flags;
2363 
2364 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2365 	write_seqcount_begin(&tk_core.seq);
2366 
2367 	__hardpps(phase_ts, raw_ts);
2368 
2369 	write_seqcount_end(&tk_core.seq);
2370 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2371 }
2372 EXPORT_SYMBOL(hardpps);
2373 #endif
2374 
2375 /**
2376  * xtime_update() - advances the timekeeping infrastructure
2377  * @ticks:	number of ticks, that have elapsed since the last call.
2378  *
2379  * Must be called with interrupts disabled.
2380  */
xtime_update(unsigned long ticks)2381 void xtime_update(unsigned long ticks)
2382 {
2383 	write_seqlock(&jiffies_lock);
2384 	do_timer(ticks);
2385 	write_sequnlock(&jiffies_lock);
2386 	update_wall_time();
2387 }
2388