• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/trace_events.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/trace_seq.h>
10 #include <linux/spinlock.h>
11 #include <linux/irq_work.h>
12 #include <linux/uaccess.h>
13 #include <linux/hardirq.h>
14 #include <linux/kthread.h>	/* for self test */
15 #include <linux/kmemcheck.h>
16 #include <linux/module.h>
17 #include <linux/percpu.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/slab.h>
21 #include <linux/init.h>
22 #include <linux/hash.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 
26 #include <asm/local.h>
27 
28 static void update_pages_handler(struct work_struct *work);
29 
30 /*
31  * The ring buffer header is special. We must manually up keep it.
32  */
ring_buffer_print_entry_header(struct trace_seq * s)33 int ring_buffer_print_entry_header(struct trace_seq *s)
34 {
35 	trace_seq_puts(s, "# compressed entry header\n");
36 	trace_seq_puts(s, "\ttype_len    :    5 bits\n");
37 	trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
38 	trace_seq_puts(s, "\tarray       :   32 bits\n");
39 	trace_seq_putc(s, '\n');
40 	trace_seq_printf(s, "\tpadding     : type == %d\n",
41 			 RINGBUF_TYPE_PADDING);
42 	trace_seq_printf(s, "\ttime_extend : type == %d\n",
43 			 RINGBUF_TYPE_TIME_EXTEND);
44 	trace_seq_printf(s, "\tdata max type_len  == %d\n",
45 			 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
46 
47 	return !trace_seq_has_overflowed(s);
48 }
49 
50 /*
51  * The ring buffer is made up of a list of pages. A separate list of pages is
52  * allocated for each CPU. A writer may only write to a buffer that is
53  * associated with the CPU it is currently executing on.  A reader may read
54  * from any per cpu buffer.
55  *
56  * The reader is special. For each per cpu buffer, the reader has its own
57  * reader page. When a reader has read the entire reader page, this reader
58  * page is swapped with another page in the ring buffer.
59  *
60  * Now, as long as the writer is off the reader page, the reader can do what
61  * ever it wants with that page. The writer will never write to that page
62  * again (as long as it is out of the ring buffer).
63  *
64  * Here's some silly ASCII art.
65  *
66  *   +------+
67  *   |reader|          RING BUFFER
68  *   |page  |
69  *   +------+        +---+   +---+   +---+
70  *                   |   |-->|   |-->|   |
71  *                   +---+   +---+   +---+
72  *                     ^               |
73  *                     |               |
74  *                     +---------------+
75  *
76  *
77  *   +------+
78  *   |reader|          RING BUFFER
79  *   |page  |------------------v
80  *   +------+        +---+   +---+   +---+
81  *                   |   |-->|   |-->|   |
82  *                   +---+   +---+   +---+
83  *                     ^               |
84  *                     |               |
85  *                     +---------------+
86  *
87  *
88  *   +------+
89  *   |reader|          RING BUFFER
90  *   |page  |------------------v
91  *   +------+        +---+   +---+   +---+
92  *      ^            |   |-->|   |-->|   |
93  *      |            +---+   +---+   +---+
94  *      |                              |
95  *      |                              |
96  *      +------------------------------+
97  *
98  *
99  *   +------+
100  *   |buffer|          RING BUFFER
101  *   |page  |------------------v
102  *   +------+        +---+   +---+   +---+
103  *      ^            |   |   |   |-->|   |
104  *      |   New      +---+   +---+   +---+
105  *      |  Reader------^               |
106  *      |   page                       |
107  *      +------------------------------+
108  *
109  *
110  * After we make this swap, the reader can hand this page off to the splice
111  * code and be done with it. It can even allocate a new page if it needs to
112  * and swap that into the ring buffer.
113  *
114  * We will be using cmpxchg soon to make all this lockless.
115  *
116  */
117 
118 /* Used for individual buffers (after the counter) */
119 #define RB_BUFFER_OFF		(1 << 20)
120 
121 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
122 
123 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
124 #define RB_ALIGNMENT		4U
125 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
126 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
127 
128 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
129 # define RB_FORCE_8BYTE_ALIGNMENT	0
130 # define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
131 #else
132 # define RB_FORCE_8BYTE_ALIGNMENT	1
133 # define RB_ARCH_ALIGNMENT		8U
134 #endif
135 
136 #define RB_ALIGN_DATA		__aligned(RB_ARCH_ALIGNMENT)
137 
138 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
139 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
140 
141 enum {
142 	RB_LEN_TIME_EXTEND = 8,
143 	RB_LEN_TIME_STAMP = 16,
144 };
145 
146 #define skip_time_extend(event) \
147 	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
148 
rb_null_event(struct ring_buffer_event * event)149 static inline int rb_null_event(struct ring_buffer_event *event)
150 {
151 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
152 }
153 
rb_event_set_padding(struct ring_buffer_event * event)154 static void rb_event_set_padding(struct ring_buffer_event *event)
155 {
156 	/* padding has a NULL time_delta */
157 	event->type_len = RINGBUF_TYPE_PADDING;
158 	event->time_delta = 0;
159 }
160 
161 static unsigned
rb_event_data_length(struct ring_buffer_event * event)162 rb_event_data_length(struct ring_buffer_event *event)
163 {
164 	unsigned length;
165 
166 	if (event->type_len)
167 		length = event->type_len * RB_ALIGNMENT;
168 	else
169 		length = event->array[0];
170 	return length + RB_EVNT_HDR_SIZE;
171 }
172 
173 /*
174  * Return the length of the given event. Will return
175  * the length of the time extend if the event is a
176  * time extend.
177  */
178 static inline unsigned
rb_event_length(struct ring_buffer_event * event)179 rb_event_length(struct ring_buffer_event *event)
180 {
181 	switch (event->type_len) {
182 	case RINGBUF_TYPE_PADDING:
183 		if (rb_null_event(event))
184 			/* undefined */
185 			return -1;
186 		return  event->array[0] + RB_EVNT_HDR_SIZE;
187 
188 	case RINGBUF_TYPE_TIME_EXTEND:
189 		return RB_LEN_TIME_EXTEND;
190 
191 	case RINGBUF_TYPE_TIME_STAMP:
192 		return RB_LEN_TIME_STAMP;
193 
194 	case RINGBUF_TYPE_DATA:
195 		return rb_event_data_length(event);
196 	default:
197 		BUG();
198 	}
199 	/* not hit */
200 	return 0;
201 }
202 
203 /*
204  * Return total length of time extend and data,
205  *   or just the event length for all other events.
206  */
207 static inline unsigned
rb_event_ts_length(struct ring_buffer_event * event)208 rb_event_ts_length(struct ring_buffer_event *event)
209 {
210 	unsigned len = 0;
211 
212 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
213 		/* time extends include the data event after it */
214 		len = RB_LEN_TIME_EXTEND;
215 		event = skip_time_extend(event);
216 	}
217 	return len + rb_event_length(event);
218 }
219 
220 /**
221  * ring_buffer_event_length - return the length of the event
222  * @event: the event to get the length of
223  *
224  * Returns the size of the data load of a data event.
225  * If the event is something other than a data event, it
226  * returns the size of the event itself. With the exception
227  * of a TIME EXTEND, where it still returns the size of the
228  * data load of the data event after it.
229  */
ring_buffer_event_length(struct ring_buffer_event * event)230 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
231 {
232 	unsigned length;
233 
234 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
235 		event = skip_time_extend(event);
236 
237 	length = rb_event_length(event);
238 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
239 		return length;
240 	length -= RB_EVNT_HDR_SIZE;
241 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
242                 length -= sizeof(event->array[0]);
243 	return length;
244 }
245 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
246 
247 /* inline for ring buffer fast paths */
248 static void *
rb_event_data(struct ring_buffer_event * event)249 rb_event_data(struct ring_buffer_event *event)
250 {
251 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
252 		event = skip_time_extend(event);
253 	BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
254 	/* If length is in len field, then array[0] has the data */
255 	if (event->type_len)
256 		return (void *)&event->array[0];
257 	/* Otherwise length is in array[0] and array[1] has the data */
258 	return (void *)&event->array[1];
259 }
260 
261 /**
262  * ring_buffer_event_data - return the data of the event
263  * @event: the event to get the data from
264  */
ring_buffer_event_data(struct ring_buffer_event * event)265 void *ring_buffer_event_data(struct ring_buffer_event *event)
266 {
267 	return rb_event_data(event);
268 }
269 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
270 
271 #define for_each_buffer_cpu(buffer, cpu)		\
272 	for_each_cpu(cpu, buffer->cpumask)
273 
274 #define TS_SHIFT	27
275 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
276 #define TS_DELTA_TEST	(~TS_MASK)
277 
278 /* Flag when events were overwritten */
279 #define RB_MISSED_EVENTS	(1 << 31)
280 /* Missed count stored at end */
281 #define RB_MISSED_STORED	(1 << 30)
282 
283 #define RB_MISSED_FLAGS		(RB_MISSED_EVENTS|RB_MISSED_STORED)
284 
285 struct buffer_data_page {
286 	u64		 time_stamp;	/* page time stamp */
287 	local_t		 commit;	/* write committed index */
288 	unsigned char	 data[] RB_ALIGN_DATA;	/* data of buffer page */
289 };
290 
291 /*
292  * Note, the buffer_page list must be first. The buffer pages
293  * are allocated in cache lines, which means that each buffer
294  * page will be at the beginning of a cache line, and thus
295  * the least significant bits will be zero. We use this to
296  * add flags in the list struct pointers, to make the ring buffer
297  * lockless.
298  */
299 struct buffer_page {
300 	struct list_head list;		/* list of buffer pages */
301 	local_t		 write;		/* index for next write */
302 	unsigned	 read;		/* index for next read */
303 	local_t		 entries;	/* entries on this page */
304 	unsigned long	 real_end;	/* real end of data */
305 	struct buffer_data_page *page;	/* Actual data page */
306 };
307 
308 /*
309  * The buffer page counters, write and entries, must be reset
310  * atomically when crossing page boundaries. To synchronize this
311  * update, two counters are inserted into the number. One is
312  * the actual counter for the write position or count on the page.
313  *
314  * The other is a counter of updaters. Before an update happens
315  * the update partition of the counter is incremented. This will
316  * allow the updater to update the counter atomically.
317  *
318  * The counter is 20 bits, and the state data is 12.
319  */
320 #define RB_WRITE_MASK		0xfffff
321 #define RB_WRITE_INTCNT		(1 << 20)
322 
rb_init_page(struct buffer_data_page * bpage)323 static void rb_init_page(struct buffer_data_page *bpage)
324 {
325 	local_set(&bpage->commit, 0);
326 }
327 
328 /**
329  * ring_buffer_page_len - the size of data on the page.
330  * @page: The page to read
331  *
332  * Returns the amount of data on the page, including buffer page header.
333  */
ring_buffer_page_len(void * page)334 size_t ring_buffer_page_len(void *page)
335 {
336 	struct buffer_data_page *bpage = page;
337 
338 	return (local_read(&bpage->commit) & ~RB_MISSED_FLAGS)
339 		+ BUF_PAGE_HDR_SIZE;
340 }
341 
342 /*
343  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
344  * this issue out.
345  */
free_buffer_page(struct buffer_page * bpage)346 static void free_buffer_page(struct buffer_page *bpage)
347 {
348 	free_page((unsigned long)bpage->page);
349 	kfree(bpage);
350 }
351 
352 /*
353  * We need to fit the time_stamp delta into 27 bits.
354  */
test_time_stamp(u64 delta)355 static inline int test_time_stamp(u64 delta)
356 {
357 	if (delta & TS_DELTA_TEST)
358 		return 1;
359 	return 0;
360 }
361 
362 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
363 
364 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
365 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
366 
ring_buffer_print_page_header(struct trace_seq * s)367 int ring_buffer_print_page_header(struct trace_seq *s)
368 {
369 	struct buffer_data_page field;
370 
371 	trace_seq_printf(s, "\tfield: u64 timestamp;\t"
372 			 "offset:0;\tsize:%u;\tsigned:%u;\n",
373 			 (unsigned int)sizeof(field.time_stamp),
374 			 (unsigned int)is_signed_type(u64));
375 
376 	trace_seq_printf(s, "\tfield: local_t commit;\t"
377 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
378 			 (unsigned int)offsetof(typeof(field), commit),
379 			 (unsigned int)sizeof(field.commit),
380 			 (unsigned int)is_signed_type(long));
381 
382 	trace_seq_printf(s, "\tfield: int overwrite;\t"
383 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
384 			 (unsigned int)offsetof(typeof(field), commit),
385 			 1,
386 			 (unsigned int)is_signed_type(long));
387 
388 	trace_seq_printf(s, "\tfield: char data;\t"
389 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
390 			 (unsigned int)offsetof(typeof(field), data),
391 			 (unsigned int)BUF_PAGE_SIZE,
392 			 (unsigned int)is_signed_type(char));
393 
394 	return !trace_seq_has_overflowed(s);
395 }
396 
397 struct rb_irq_work {
398 	struct irq_work			work;
399 	wait_queue_head_t		waiters;
400 	wait_queue_head_t		full_waiters;
401 	bool				waiters_pending;
402 	bool				full_waiters_pending;
403 	bool				wakeup_full;
404 };
405 
406 /*
407  * Structure to hold event state and handle nested events.
408  */
409 struct rb_event_info {
410 	u64			ts;
411 	u64			delta;
412 	unsigned long		length;
413 	struct buffer_page	*tail_page;
414 	int			add_timestamp;
415 };
416 
417 /*
418  * Used for which event context the event is in.
419  *  NMI     = 0
420  *  IRQ     = 1
421  *  SOFTIRQ = 2
422  *  NORMAL  = 3
423  *
424  * See trace_recursive_lock() comment below for more details.
425  */
426 enum {
427 	RB_CTX_NMI,
428 	RB_CTX_IRQ,
429 	RB_CTX_SOFTIRQ,
430 	RB_CTX_NORMAL,
431 	RB_CTX_MAX
432 };
433 
434 /*
435  * head_page == tail_page && head == tail then buffer is empty.
436  */
437 struct ring_buffer_per_cpu {
438 	int				cpu;
439 	atomic_t			record_disabled;
440 	struct ring_buffer		*buffer;
441 	raw_spinlock_t			reader_lock;	/* serialize readers */
442 	arch_spinlock_t			lock;
443 	struct lock_class_key		lock_key;
444 	unsigned long			nr_pages;
445 	unsigned int			current_context;
446 	struct list_head		*pages;
447 	struct buffer_page		*head_page;	/* read from head */
448 	struct buffer_page		*tail_page;	/* write to tail */
449 	struct buffer_page		*commit_page;	/* committed pages */
450 	struct buffer_page		*reader_page;
451 	unsigned long			lost_events;
452 	unsigned long			last_overrun;
453 	local_t				entries_bytes;
454 	local_t				entries;
455 	local_t				overrun;
456 	local_t				commit_overrun;
457 	local_t				dropped_events;
458 	local_t				committing;
459 	local_t				commits;
460 	unsigned long			read;
461 	unsigned long			read_bytes;
462 	u64				write_stamp;
463 	u64				read_stamp;
464 	/* ring buffer pages to update, > 0 to add, < 0 to remove */
465 	long				nr_pages_to_update;
466 	struct list_head		new_pages; /* new pages to add */
467 	struct work_struct		update_pages_work;
468 	struct completion		update_done;
469 
470 	struct rb_irq_work		irq_work;
471 };
472 
473 struct ring_buffer {
474 	unsigned			flags;
475 	int				cpus;
476 	atomic_t			record_disabled;
477 	atomic_t			resize_disabled;
478 	cpumask_var_t			cpumask;
479 
480 	struct lock_class_key		*reader_lock_key;
481 
482 	struct mutex			mutex;
483 
484 	struct ring_buffer_per_cpu	**buffers;
485 
486 #ifdef CONFIG_HOTPLUG_CPU
487 	struct notifier_block		cpu_notify;
488 #endif
489 	u64				(*clock)(void);
490 
491 	struct rb_irq_work		irq_work;
492 };
493 
494 struct ring_buffer_iter {
495 	struct ring_buffer_per_cpu	*cpu_buffer;
496 	unsigned long			head;
497 	struct buffer_page		*head_page;
498 	struct buffer_page		*cache_reader_page;
499 	unsigned long			cache_read;
500 	u64				read_stamp;
501 };
502 
503 /*
504  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
505  *
506  * Schedules a delayed work to wake up any task that is blocked on the
507  * ring buffer waiters queue.
508  */
rb_wake_up_waiters(struct irq_work * work)509 static void rb_wake_up_waiters(struct irq_work *work)
510 {
511 	struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
512 
513 	wake_up_all(&rbwork->waiters);
514 	if (rbwork->wakeup_full) {
515 		rbwork->wakeup_full = false;
516 		wake_up_all(&rbwork->full_waiters);
517 	}
518 }
519 
520 /**
521  * ring_buffer_wait - wait for input to the ring buffer
522  * @buffer: buffer to wait on
523  * @cpu: the cpu buffer to wait on
524  * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
525  *
526  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
527  * as data is added to any of the @buffer's cpu buffers. Otherwise
528  * it will wait for data to be added to a specific cpu buffer.
529  */
ring_buffer_wait(struct ring_buffer * buffer,int cpu,bool full)530 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
531 {
532 	struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
533 	DEFINE_WAIT(wait);
534 	struct rb_irq_work *work;
535 	int ret = 0;
536 
537 	/*
538 	 * Depending on what the caller is waiting for, either any
539 	 * data in any cpu buffer, or a specific buffer, put the
540 	 * caller on the appropriate wait queue.
541 	 */
542 	if (cpu == RING_BUFFER_ALL_CPUS) {
543 		work = &buffer->irq_work;
544 		/* Full only makes sense on per cpu reads */
545 		full = false;
546 	} else {
547 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
548 			return -ENODEV;
549 		cpu_buffer = buffer->buffers[cpu];
550 		work = &cpu_buffer->irq_work;
551 	}
552 
553 
554 	while (true) {
555 		if (full)
556 			prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
557 		else
558 			prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
559 
560 		/*
561 		 * The events can happen in critical sections where
562 		 * checking a work queue can cause deadlocks.
563 		 * After adding a task to the queue, this flag is set
564 		 * only to notify events to try to wake up the queue
565 		 * using irq_work.
566 		 *
567 		 * We don't clear it even if the buffer is no longer
568 		 * empty. The flag only causes the next event to run
569 		 * irq_work to do the work queue wake up. The worse
570 		 * that can happen if we race with !trace_empty() is that
571 		 * an event will cause an irq_work to try to wake up
572 		 * an empty queue.
573 		 *
574 		 * There's no reason to protect this flag either, as
575 		 * the work queue and irq_work logic will do the necessary
576 		 * synchronization for the wake ups. The only thing
577 		 * that is necessary is that the wake up happens after
578 		 * a task has been queued. It's OK for spurious wake ups.
579 		 */
580 		if (full)
581 			work->full_waiters_pending = true;
582 		else
583 			work->waiters_pending = true;
584 
585 		if (signal_pending(current)) {
586 			ret = -EINTR;
587 			break;
588 		}
589 
590 		if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
591 			break;
592 
593 		if (cpu != RING_BUFFER_ALL_CPUS &&
594 		    !ring_buffer_empty_cpu(buffer, cpu)) {
595 			unsigned long flags;
596 			bool pagebusy;
597 
598 			if (!full)
599 				break;
600 
601 			raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
602 			pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
603 			raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
604 
605 			if (!pagebusy)
606 				break;
607 		}
608 
609 		schedule();
610 	}
611 
612 	if (full)
613 		finish_wait(&work->full_waiters, &wait);
614 	else
615 		finish_wait(&work->waiters, &wait);
616 
617 	return ret;
618 }
619 
620 /**
621  * ring_buffer_poll_wait - poll on buffer input
622  * @buffer: buffer to wait on
623  * @cpu: the cpu buffer to wait on
624  * @filp: the file descriptor
625  * @poll_table: The poll descriptor
626  *
627  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
628  * as data is added to any of the @buffer's cpu buffers. Otherwise
629  * it will wait for data to be added to a specific cpu buffer.
630  *
631  * Returns POLLIN | POLLRDNORM if data exists in the buffers,
632  * zero otherwise.
633  */
ring_buffer_poll_wait(struct ring_buffer * buffer,int cpu,struct file * filp,poll_table * poll_table)634 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
635 			  struct file *filp, poll_table *poll_table)
636 {
637 	struct ring_buffer_per_cpu *cpu_buffer;
638 	struct rb_irq_work *work;
639 
640 	if (cpu == RING_BUFFER_ALL_CPUS)
641 		work = &buffer->irq_work;
642 	else {
643 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
644 			return -EINVAL;
645 
646 		cpu_buffer = buffer->buffers[cpu];
647 		work = &cpu_buffer->irq_work;
648 	}
649 
650 	poll_wait(filp, &work->waiters, poll_table);
651 	work->waiters_pending = true;
652 	/*
653 	 * There's a tight race between setting the waiters_pending and
654 	 * checking if the ring buffer is empty.  Once the waiters_pending bit
655 	 * is set, the next event will wake the task up, but we can get stuck
656 	 * if there's only a single event in.
657 	 *
658 	 * FIXME: Ideally, we need a memory barrier on the writer side as well,
659 	 * but adding a memory barrier to all events will cause too much of a
660 	 * performance hit in the fast path.  We only need a memory barrier when
661 	 * the buffer goes from empty to having content.  But as this race is
662 	 * extremely small, and it's not a problem if another event comes in, we
663 	 * will fix it later.
664 	 */
665 	smp_mb();
666 
667 	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
668 	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
669 		return POLLIN | POLLRDNORM;
670 	return 0;
671 }
672 
673 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
674 #define RB_WARN_ON(b, cond)						\
675 	({								\
676 		int _____ret = unlikely(cond);				\
677 		if (_____ret) {						\
678 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
679 				struct ring_buffer_per_cpu *__b =	\
680 					(void *)b;			\
681 				atomic_inc(&__b->buffer->record_disabled); \
682 			} else						\
683 				atomic_inc(&b->record_disabled);	\
684 			WARN_ON(1);					\
685 		}							\
686 		_____ret;						\
687 	})
688 
689 /* Up this if you want to test the TIME_EXTENTS and normalization */
690 #define DEBUG_SHIFT 0
691 
rb_time_stamp(struct ring_buffer * buffer)692 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
693 {
694 	/* shift to debug/test normalization and TIME_EXTENTS */
695 	return buffer->clock() << DEBUG_SHIFT;
696 }
697 
ring_buffer_time_stamp(struct ring_buffer * buffer,int cpu)698 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
699 {
700 	u64 time;
701 
702 	preempt_disable_notrace();
703 	time = rb_time_stamp(buffer);
704 	preempt_enable_no_resched_notrace();
705 
706 	return time;
707 }
708 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
709 
ring_buffer_normalize_time_stamp(struct ring_buffer * buffer,int cpu,u64 * ts)710 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
711 				      int cpu, u64 *ts)
712 {
713 	/* Just stupid testing the normalize function and deltas */
714 	*ts >>= DEBUG_SHIFT;
715 }
716 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
717 
718 /*
719  * Making the ring buffer lockless makes things tricky.
720  * Although writes only happen on the CPU that they are on,
721  * and they only need to worry about interrupts. Reads can
722  * happen on any CPU.
723  *
724  * The reader page is always off the ring buffer, but when the
725  * reader finishes with a page, it needs to swap its page with
726  * a new one from the buffer. The reader needs to take from
727  * the head (writes go to the tail). But if a writer is in overwrite
728  * mode and wraps, it must push the head page forward.
729  *
730  * Here lies the problem.
731  *
732  * The reader must be careful to replace only the head page, and
733  * not another one. As described at the top of the file in the
734  * ASCII art, the reader sets its old page to point to the next
735  * page after head. It then sets the page after head to point to
736  * the old reader page. But if the writer moves the head page
737  * during this operation, the reader could end up with the tail.
738  *
739  * We use cmpxchg to help prevent this race. We also do something
740  * special with the page before head. We set the LSB to 1.
741  *
742  * When the writer must push the page forward, it will clear the
743  * bit that points to the head page, move the head, and then set
744  * the bit that points to the new head page.
745  *
746  * We also don't want an interrupt coming in and moving the head
747  * page on another writer. Thus we use the second LSB to catch
748  * that too. Thus:
749  *
750  * head->list->prev->next        bit 1          bit 0
751  *                              -------        -------
752  * Normal page                     0              0
753  * Points to head page             0              1
754  * New head page                   1              0
755  *
756  * Note we can not trust the prev pointer of the head page, because:
757  *
758  * +----+       +-----+        +-----+
759  * |    |------>|  T  |---X--->|  N  |
760  * |    |<------|     |        |     |
761  * +----+       +-----+        +-----+
762  *   ^                           ^ |
763  *   |          +-----+          | |
764  *   +----------|  R  |----------+ |
765  *              |     |<-----------+
766  *              +-----+
767  *
768  * Key:  ---X-->  HEAD flag set in pointer
769  *         T      Tail page
770  *         R      Reader page
771  *         N      Next page
772  *
773  * (see __rb_reserve_next() to see where this happens)
774  *
775  *  What the above shows is that the reader just swapped out
776  *  the reader page with a page in the buffer, but before it
777  *  could make the new header point back to the new page added
778  *  it was preempted by a writer. The writer moved forward onto
779  *  the new page added by the reader and is about to move forward
780  *  again.
781  *
782  *  You can see, it is legitimate for the previous pointer of
783  *  the head (or any page) not to point back to itself. But only
784  *  temporarially.
785  */
786 
787 #define RB_PAGE_NORMAL		0UL
788 #define RB_PAGE_HEAD		1UL
789 #define RB_PAGE_UPDATE		2UL
790 
791 
792 #define RB_FLAG_MASK		3UL
793 
794 /* PAGE_MOVED is not part of the mask */
795 #define RB_PAGE_MOVED		4UL
796 
797 /*
798  * rb_list_head - remove any bit
799  */
rb_list_head(struct list_head * list)800 static struct list_head *rb_list_head(struct list_head *list)
801 {
802 	unsigned long val = (unsigned long)list;
803 
804 	return (struct list_head *)(val & ~RB_FLAG_MASK);
805 }
806 
807 /*
808  * rb_is_head_page - test if the given page is the head page
809  *
810  * Because the reader may move the head_page pointer, we can
811  * not trust what the head page is (it may be pointing to
812  * the reader page). But if the next page is a header page,
813  * its flags will be non zero.
814  */
815 static inline int
rb_is_head_page(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * page,struct list_head * list)816 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
817 		struct buffer_page *page, struct list_head *list)
818 {
819 	unsigned long val;
820 
821 	val = (unsigned long)list->next;
822 
823 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
824 		return RB_PAGE_MOVED;
825 
826 	return val & RB_FLAG_MASK;
827 }
828 
829 /*
830  * rb_is_reader_page
831  *
832  * The unique thing about the reader page, is that, if the
833  * writer is ever on it, the previous pointer never points
834  * back to the reader page.
835  */
rb_is_reader_page(struct buffer_page * page)836 static bool rb_is_reader_page(struct buffer_page *page)
837 {
838 	struct list_head *list = page->list.prev;
839 
840 	return rb_list_head(list->next) != &page->list;
841 }
842 
843 /*
844  * rb_set_list_to_head - set a list_head to be pointing to head.
845  */
rb_set_list_to_head(struct ring_buffer_per_cpu * cpu_buffer,struct list_head * list)846 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
847 				struct list_head *list)
848 {
849 	unsigned long *ptr;
850 
851 	ptr = (unsigned long *)&list->next;
852 	*ptr |= RB_PAGE_HEAD;
853 	*ptr &= ~RB_PAGE_UPDATE;
854 }
855 
856 /*
857  * rb_head_page_activate - sets up head page
858  */
rb_head_page_activate(struct ring_buffer_per_cpu * cpu_buffer)859 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
860 {
861 	struct buffer_page *head;
862 
863 	head = cpu_buffer->head_page;
864 	if (!head)
865 		return;
866 
867 	/*
868 	 * Set the previous list pointer to have the HEAD flag.
869 	 */
870 	rb_set_list_to_head(cpu_buffer, head->list.prev);
871 }
872 
rb_list_head_clear(struct list_head * list)873 static void rb_list_head_clear(struct list_head *list)
874 {
875 	unsigned long *ptr = (unsigned long *)&list->next;
876 
877 	*ptr &= ~RB_FLAG_MASK;
878 }
879 
880 /*
881  * rb_head_page_dactivate - clears head page ptr (for free list)
882  */
883 static void
rb_head_page_deactivate(struct ring_buffer_per_cpu * cpu_buffer)884 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
885 {
886 	struct list_head *hd;
887 
888 	/* Go through the whole list and clear any pointers found. */
889 	rb_list_head_clear(cpu_buffer->pages);
890 
891 	list_for_each(hd, cpu_buffer->pages)
892 		rb_list_head_clear(hd);
893 }
894 
rb_head_page_set(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag,int new_flag)895 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
896 			    struct buffer_page *head,
897 			    struct buffer_page *prev,
898 			    int old_flag, int new_flag)
899 {
900 	struct list_head *list;
901 	unsigned long val = (unsigned long)&head->list;
902 	unsigned long ret;
903 
904 	list = &prev->list;
905 
906 	val &= ~RB_FLAG_MASK;
907 
908 	ret = cmpxchg((unsigned long *)&list->next,
909 		      val | old_flag, val | new_flag);
910 
911 	/* check if the reader took the page */
912 	if ((ret & ~RB_FLAG_MASK) != val)
913 		return RB_PAGE_MOVED;
914 
915 	return ret & RB_FLAG_MASK;
916 }
917 
rb_head_page_set_update(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)918 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
919 				   struct buffer_page *head,
920 				   struct buffer_page *prev,
921 				   int old_flag)
922 {
923 	return rb_head_page_set(cpu_buffer, head, prev,
924 				old_flag, RB_PAGE_UPDATE);
925 }
926 
rb_head_page_set_head(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)927 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
928 				 struct buffer_page *head,
929 				 struct buffer_page *prev,
930 				 int old_flag)
931 {
932 	return rb_head_page_set(cpu_buffer, head, prev,
933 				old_flag, RB_PAGE_HEAD);
934 }
935 
rb_head_page_set_normal(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)936 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
937 				   struct buffer_page *head,
938 				   struct buffer_page *prev,
939 				   int old_flag)
940 {
941 	return rb_head_page_set(cpu_buffer, head, prev,
942 				old_flag, RB_PAGE_NORMAL);
943 }
944 
rb_inc_page(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page ** bpage)945 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
946 			       struct buffer_page **bpage)
947 {
948 	struct list_head *p = rb_list_head((*bpage)->list.next);
949 
950 	*bpage = list_entry(p, struct buffer_page, list);
951 }
952 
953 static struct buffer_page *
rb_set_head_page(struct ring_buffer_per_cpu * cpu_buffer)954 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
955 {
956 	struct buffer_page *head;
957 	struct buffer_page *page;
958 	struct list_head *list;
959 	int i;
960 
961 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
962 		return NULL;
963 
964 	/* sanity check */
965 	list = cpu_buffer->pages;
966 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
967 		return NULL;
968 
969 	page = head = cpu_buffer->head_page;
970 	/*
971 	 * It is possible that the writer moves the header behind
972 	 * where we started, and we miss in one loop.
973 	 * A second loop should grab the header, but we'll do
974 	 * three loops just because I'm paranoid.
975 	 */
976 	for (i = 0; i < 3; i++) {
977 		do {
978 			if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
979 				cpu_buffer->head_page = page;
980 				return page;
981 			}
982 			rb_inc_page(cpu_buffer, &page);
983 		} while (page != head);
984 	}
985 
986 	RB_WARN_ON(cpu_buffer, 1);
987 
988 	return NULL;
989 }
990 
rb_head_page_replace(struct buffer_page * old,struct buffer_page * new)991 static int rb_head_page_replace(struct buffer_page *old,
992 				struct buffer_page *new)
993 {
994 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
995 	unsigned long val;
996 	unsigned long ret;
997 
998 	val = *ptr & ~RB_FLAG_MASK;
999 	val |= RB_PAGE_HEAD;
1000 
1001 	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1002 
1003 	return ret == val;
1004 }
1005 
1006 /*
1007  * rb_tail_page_update - move the tail page forward
1008  */
rb_tail_page_update(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * tail_page,struct buffer_page * next_page)1009 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1010 			       struct buffer_page *tail_page,
1011 			       struct buffer_page *next_page)
1012 {
1013 	unsigned long old_entries;
1014 	unsigned long old_write;
1015 
1016 	/*
1017 	 * The tail page now needs to be moved forward.
1018 	 *
1019 	 * We need to reset the tail page, but without messing
1020 	 * with possible erasing of data brought in by interrupts
1021 	 * that have moved the tail page and are currently on it.
1022 	 *
1023 	 * We add a counter to the write field to denote this.
1024 	 */
1025 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1026 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1027 
1028 	/*
1029 	 * Just make sure we have seen our old_write and synchronize
1030 	 * with any interrupts that come in.
1031 	 */
1032 	barrier();
1033 
1034 	/*
1035 	 * If the tail page is still the same as what we think
1036 	 * it is, then it is up to us to update the tail
1037 	 * pointer.
1038 	 */
1039 	if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1040 		/* Zero the write counter */
1041 		unsigned long val = old_write & ~RB_WRITE_MASK;
1042 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
1043 
1044 		/*
1045 		 * This will only succeed if an interrupt did
1046 		 * not come in and change it. In which case, we
1047 		 * do not want to modify it.
1048 		 *
1049 		 * We add (void) to let the compiler know that we do not care
1050 		 * about the return value of these functions. We use the
1051 		 * cmpxchg to only update if an interrupt did not already
1052 		 * do it for us. If the cmpxchg fails, we don't care.
1053 		 */
1054 		(void)local_cmpxchg(&next_page->write, old_write, val);
1055 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
1056 
1057 		/*
1058 		 * No need to worry about races with clearing out the commit.
1059 		 * it only can increment when a commit takes place. But that
1060 		 * only happens in the outer most nested commit.
1061 		 */
1062 		local_set(&next_page->page->commit, 0);
1063 
1064 		/* Again, either we update tail_page or an interrupt does */
1065 		(void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1066 	}
1067 }
1068 
rb_check_bpage(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * bpage)1069 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1070 			  struct buffer_page *bpage)
1071 {
1072 	unsigned long val = (unsigned long)bpage;
1073 
1074 	if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1075 		return 1;
1076 
1077 	return 0;
1078 }
1079 
1080 /**
1081  * rb_check_list - make sure a pointer to a list has the last bits zero
1082  */
rb_check_list(struct ring_buffer_per_cpu * cpu_buffer,struct list_head * list)1083 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1084 			 struct list_head *list)
1085 {
1086 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1087 		return 1;
1088 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1089 		return 1;
1090 	return 0;
1091 }
1092 
1093 /**
1094  * rb_check_pages - integrity check of buffer pages
1095  * @cpu_buffer: CPU buffer with pages to test
1096  *
1097  * As a safety measure we check to make sure the data pages have not
1098  * been corrupted.
1099  */
rb_check_pages(struct ring_buffer_per_cpu * cpu_buffer)1100 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1101 {
1102 	struct list_head *head = cpu_buffer->pages;
1103 	struct buffer_page *bpage, *tmp;
1104 
1105 	/* Reset the head page if it exists */
1106 	if (cpu_buffer->head_page)
1107 		rb_set_head_page(cpu_buffer);
1108 
1109 	rb_head_page_deactivate(cpu_buffer);
1110 
1111 	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1112 		return -1;
1113 	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1114 		return -1;
1115 
1116 	if (rb_check_list(cpu_buffer, head))
1117 		return -1;
1118 
1119 	list_for_each_entry_safe(bpage, tmp, head, list) {
1120 		if (RB_WARN_ON(cpu_buffer,
1121 			       bpage->list.next->prev != &bpage->list))
1122 			return -1;
1123 		if (RB_WARN_ON(cpu_buffer,
1124 			       bpage->list.prev->next != &bpage->list))
1125 			return -1;
1126 		if (rb_check_list(cpu_buffer, &bpage->list))
1127 			return -1;
1128 	}
1129 
1130 	rb_head_page_activate(cpu_buffer);
1131 
1132 	return 0;
1133 }
1134 
__rb_allocate_pages(long nr_pages,struct list_head * pages,int cpu)1135 static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
1136 {
1137 	struct buffer_page *bpage, *tmp;
1138 	long i;
1139 
1140 	for (i = 0; i < nr_pages; i++) {
1141 		struct page *page;
1142 		/*
1143 		 * __GFP_NORETRY flag makes sure that the allocation fails
1144 		 * gracefully without invoking oom-killer and the system is
1145 		 * not destabilized.
1146 		 */
1147 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1148 				    GFP_KERNEL | __GFP_NORETRY,
1149 				    cpu_to_node(cpu));
1150 		if (!bpage)
1151 			goto free_pages;
1152 
1153 		list_add(&bpage->list, pages);
1154 
1155 		page = alloc_pages_node(cpu_to_node(cpu),
1156 					GFP_KERNEL | __GFP_NORETRY, 0);
1157 		if (!page)
1158 			goto free_pages;
1159 		bpage->page = page_address(page);
1160 		rb_init_page(bpage->page);
1161 	}
1162 
1163 	return 0;
1164 
1165 free_pages:
1166 	list_for_each_entry_safe(bpage, tmp, pages, list) {
1167 		list_del_init(&bpage->list);
1168 		free_buffer_page(bpage);
1169 	}
1170 
1171 	return -ENOMEM;
1172 }
1173 
rb_allocate_pages(struct ring_buffer_per_cpu * cpu_buffer,unsigned long nr_pages)1174 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1175 			     unsigned long nr_pages)
1176 {
1177 	LIST_HEAD(pages);
1178 
1179 	WARN_ON(!nr_pages);
1180 
1181 	if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1182 		return -ENOMEM;
1183 
1184 	/*
1185 	 * The ring buffer page list is a circular list that does not
1186 	 * start and end with a list head. All page list items point to
1187 	 * other pages.
1188 	 */
1189 	cpu_buffer->pages = pages.next;
1190 	list_del(&pages);
1191 
1192 	cpu_buffer->nr_pages = nr_pages;
1193 
1194 	rb_check_pages(cpu_buffer);
1195 
1196 	return 0;
1197 }
1198 
1199 static struct ring_buffer_per_cpu *
rb_allocate_cpu_buffer(struct ring_buffer * buffer,long nr_pages,int cpu)1200 rb_allocate_cpu_buffer(struct ring_buffer *buffer, long nr_pages, int cpu)
1201 {
1202 	struct ring_buffer_per_cpu *cpu_buffer;
1203 	struct buffer_page *bpage;
1204 	struct page *page;
1205 	int ret;
1206 
1207 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1208 				  GFP_KERNEL, cpu_to_node(cpu));
1209 	if (!cpu_buffer)
1210 		return NULL;
1211 
1212 	cpu_buffer->cpu = cpu;
1213 	cpu_buffer->buffer = buffer;
1214 	raw_spin_lock_init(&cpu_buffer->reader_lock);
1215 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1216 	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1217 	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1218 	init_completion(&cpu_buffer->update_done);
1219 	init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1220 	init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1221 	init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1222 
1223 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1224 			    GFP_KERNEL, cpu_to_node(cpu));
1225 	if (!bpage)
1226 		goto fail_free_buffer;
1227 
1228 	rb_check_bpage(cpu_buffer, bpage);
1229 
1230 	cpu_buffer->reader_page = bpage;
1231 	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1232 	if (!page)
1233 		goto fail_free_reader;
1234 	bpage->page = page_address(page);
1235 	rb_init_page(bpage->page);
1236 
1237 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1238 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
1239 
1240 	ret = rb_allocate_pages(cpu_buffer, nr_pages);
1241 	if (ret < 0)
1242 		goto fail_free_reader;
1243 
1244 	cpu_buffer->head_page
1245 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1246 	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1247 
1248 	rb_head_page_activate(cpu_buffer);
1249 
1250 	return cpu_buffer;
1251 
1252  fail_free_reader:
1253 	free_buffer_page(cpu_buffer->reader_page);
1254 
1255  fail_free_buffer:
1256 	kfree(cpu_buffer);
1257 	return NULL;
1258 }
1259 
rb_free_cpu_buffer(struct ring_buffer_per_cpu * cpu_buffer)1260 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1261 {
1262 	struct list_head *head = cpu_buffer->pages;
1263 	struct buffer_page *bpage, *tmp;
1264 
1265 	free_buffer_page(cpu_buffer->reader_page);
1266 
1267 	rb_head_page_deactivate(cpu_buffer);
1268 
1269 	if (head) {
1270 		list_for_each_entry_safe(bpage, tmp, head, list) {
1271 			list_del_init(&bpage->list);
1272 			free_buffer_page(bpage);
1273 		}
1274 		bpage = list_entry(head, struct buffer_page, list);
1275 		free_buffer_page(bpage);
1276 	}
1277 
1278 	kfree(cpu_buffer);
1279 }
1280 
1281 #ifdef CONFIG_HOTPLUG_CPU
1282 static int rb_cpu_notify(struct notifier_block *self,
1283 			 unsigned long action, void *hcpu);
1284 #endif
1285 
1286 /**
1287  * __ring_buffer_alloc - allocate a new ring_buffer
1288  * @size: the size in bytes per cpu that is needed.
1289  * @flags: attributes to set for the ring buffer.
1290  *
1291  * Currently the only flag that is available is the RB_FL_OVERWRITE
1292  * flag. This flag means that the buffer will overwrite old data
1293  * when the buffer wraps. If this flag is not set, the buffer will
1294  * drop data when the tail hits the head.
1295  */
__ring_buffer_alloc(unsigned long size,unsigned flags,struct lock_class_key * key)1296 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1297 					struct lock_class_key *key)
1298 {
1299 	struct ring_buffer *buffer;
1300 	long nr_pages;
1301 	int bsize;
1302 	int cpu;
1303 
1304 	/* keep it in its own cache line */
1305 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1306 			 GFP_KERNEL);
1307 	if (!buffer)
1308 		return NULL;
1309 
1310 	if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1311 		goto fail_free_buffer;
1312 
1313 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1314 	buffer->flags = flags;
1315 	buffer->clock = trace_clock_local;
1316 	buffer->reader_lock_key = key;
1317 
1318 	init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1319 	init_waitqueue_head(&buffer->irq_work.waiters);
1320 
1321 	/* need at least two pages */
1322 	if (nr_pages < 2)
1323 		nr_pages = 2;
1324 
1325 	/*
1326 	 * In case of non-hotplug cpu, if the ring-buffer is allocated
1327 	 * in early initcall, it will not be notified of secondary cpus.
1328 	 * In that off case, we need to allocate for all possible cpus.
1329 	 */
1330 #ifdef CONFIG_HOTPLUG_CPU
1331 	cpu_notifier_register_begin();
1332 	cpumask_copy(buffer->cpumask, cpu_online_mask);
1333 #else
1334 	cpumask_copy(buffer->cpumask, cpu_possible_mask);
1335 #endif
1336 	buffer->cpus = nr_cpu_ids;
1337 
1338 	bsize = sizeof(void *) * nr_cpu_ids;
1339 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1340 				  GFP_KERNEL);
1341 	if (!buffer->buffers)
1342 		goto fail_free_cpumask;
1343 
1344 	for_each_buffer_cpu(buffer, cpu) {
1345 		buffer->buffers[cpu] =
1346 			rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1347 		if (!buffer->buffers[cpu])
1348 			goto fail_free_buffers;
1349 	}
1350 
1351 #ifdef CONFIG_HOTPLUG_CPU
1352 	buffer->cpu_notify.notifier_call = rb_cpu_notify;
1353 	buffer->cpu_notify.priority = 0;
1354 	__register_cpu_notifier(&buffer->cpu_notify);
1355 	cpu_notifier_register_done();
1356 #endif
1357 
1358 	mutex_init(&buffer->mutex);
1359 
1360 	return buffer;
1361 
1362  fail_free_buffers:
1363 	for_each_buffer_cpu(buffer, cpu) {
1364 		if (buffer->buffers[cpu])
1365 			rb_free_cpu_buffer(buffer->buffers[cpu]);
1366 	}
1367 	kfree(buffer->buffers);
1368 
1369  fail_free_cpumask:
1370 	free_cpumask_var(buffer->cpumask);
1371 #ifdef CONFIG_HOTPLUG_CPU
1372 	cpu_notifier_register_done();
1373 #endif
1374 
1375  fail_free_buffer:
1376 	kfree(buffer);
1377 	return NULL;
1378 }
1379 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1380 
1381 /**
1382  * ring_buffer_free - free a ring buffer.
1383  * @buffer: the buffer to free.
1384  */
1385 void
ring_buffer_free(struct ring_buffer * buffer)1386 ring_buffer_free(struct ring_buffer *buffer)
1387 {
1388 	int cpu;
1389 
1390 #ifdef CONFIG_HOTPLUG_CPU
1391 	cpu_notifier_register_begin();
1392 	__unregister_cpu_notifier(&buffer->cpu_notify);
1393 #endif
1394 
1395 	for_each_buffer_cpu(buffer, cpu)
1396 		rb_free_cpu_buffer(buffer->buffers[cpu]);
1397 
1398 #ifdef CONFIG_HOTPLUG_CPU
1399 	cpu_notifier_register_done();
1400 #endif
1401 
1402 	kfree(buffer->buffers);
1403 	free_cpumask_var(buffer->cpumask);
1404 
1405 	kfree(buffer);
1406 }
1407 EXPORT_SYMBOL_GPL(ring_buffer_free);
1408 
ring_buffer_set_clock(struct ring_buffer * buffer,u64 (* clock)(void))1409 void ring_buffer_set_clock(struct ring_buffer *buffer,
1410 			   u64 (*clock)(void))
1411 {
1412 	buffer->clock = clock;
1413 }
1414 
1415 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1416 
rb_page_entries(struct buffer_page * bpage)1417 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1418 {
1419 	return local_read(&bpage->entries) & RB_WRITE_MASK;
1420 }
1421 
rb_page_write(struct buffer_page * bpage)1422 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1423 {
1424 	return local_read(&bpage->write) & RB_WRITE_MASK;
1425 }
1426 
1427 static int
rb_remove_pages(struct ring_buffer_per_cpu * cpu_buffer,unsigned long nr_pages)1428 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1429 {
1430 	struct list_head *tail_page, *to_remove, *next_page;
1431 	struct buffer_page *to_remove_page, *tmp_iter_page;
1432 	struct buffer_page *last_page, *first_page;
1433 	unsigned long nr_removed;
1434 	unsigned long head_bit;
1435 	int page_entries;
1436 
1437 	head_bit = 0;
1438 
1439 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1440 	atomic_inc(&cpu_buffer->record_disabled);
1441 	/*
1442 	 * We don't race with the readers since we have acquired the reader
1443 	 * lock. We also don't race with writers after disabling recording.
1444 	 * This makes it easy to figure out the first and the last page to be
1445 	 * removed from the list. We unlink all the pages in between including
1446 	 * the first and last pages. This is done in a busy loop so that we
1447 	 * lose the least number of traces.
1448 	 * The pages are freed after we restart recording and unlock readers.
1449 	 */
1450 	tail_page = &cpu_buffer->tail_page->list;
1451 
1452 	/*
1453 	 * tail page might be on reader page, we remove the next page
1454 	 * from the ring buffer
1455 	 */
1456 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1457 		tail_page = rb_list_head(tail_page->next);
1458 	to_remove = tail_page;
1459 
1460 	/* start of pages to remove */
1461 	first_page = list_entry(rb_list_head(to_remove->next),
1462 				struct buffer_page, list);
1463 
1464 	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1465 		to_remove = rb_list_head(to_remove)->next;
1466 		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1467 	}
1468 
1469 	next_page = rb_list_head(to_remove)->next;
1470 
1471 	/*
1472 	 * Now we remove all pages between tail_page and next_page.
1473 	 * Make sure that we have head_bit value preserved for the
1474 	 * next page
1475 	 */
1476 	tail_page->next = (struct list_head *)((unsigned long)next_page |
1477 						head_bit);
1478 	next_page = rb_list_head(next_page);
1479 	next_page->prev = tail_page;
1480 
1481 	/* make sure pages points to a valid page in the ring buffer */
1482 	cpu_buffer->pages = next_page;
1483 
1484 	/* update head page */
1485 	if (head_bit)
1486 		cpu_buffer->head_page = list_entry(next_page,
1487 						struct buffer_page, list);
1488 
1489 	/*
1490 	 * change read pointer to make sure any read iterators reset
1491 	 * themselves
1492 	 */
1493 	cpu_buffer->read = 0;
1494 
1495 	/* pages are removed, resume tracing and then free the pages */
1496 	atomic_dec(&cpu_buffer->record_disabled);
1497 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1498 
1499 	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1500 
1501 	/* last buffer page to remove */
1502 	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1503 				list);
1504 	tmp_iter_page = first_page;
1505 
1506 	do {
1507 		to_remove_page = tmp_iter_page;
1508 		rb_inc_page(cpu_buffer, &tmp_iter_page);
1509 
1510 		/* update the counters */
1511 		page_entries = rb_page_entries(to_remove_page);
1512 		if (page_entries) {
1513 			/*
1514 			 * If something was added to this page, it was full
1515 			 * since it is not the tail page. So we deduct the
1516 			 * bytes consumed in ring buffer from here.
1517 			 * Increment overrun to account for the lost events.
1518 			 */
1519 			local_add(page_entries, &cpu_buffer->overrun);
1520 			local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1521 		}
1522 
1523 		/*
1524 		 * We have already removed references to this list item, just
1525 		 * free up the buffer_page and its page
1526 		 */
1527 		free_buffer_page(to_remove_page);
1528 		nr_removed--;
1529 
1530 	} while (to_remove_page != last_page);
1531 
1532 	RB_WARN_ON(cpu_buffer, nr_removed);
1533 
1534 	return nr_removed == 0;
1535 }
1536 
1537 static int
rb_insert_pages(struct ring_buffer_per_cpu * cpu_buffer)1538 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1539 {
1540 	struct list_head *pages = &cpu_buffer->new_pages;
1541 	int retries, success;
1542 
1543 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1544 	/*
1545 	 * We are holding the reader lock, so the reader page won't be swapped
1546 	 * in the ring buffer. Now we are racing with the writer trying to
1547 	 * move head page and the tail page.
1548 	 * We are going to adapt the reader page update process where:
1549 	 * 1. We first splice the start and end of list of new pages between
1550 	 *    the head page and its previous page.
1551 	 * 2. We cmpxchg the prev_page->next to point from head page to the
1552 	 *    start of new pages list.
1553 	 * 3. Finally, we update the head->prev to the end of new list.
1554 	 *
1555 	 * We will try this process 10 times, to make sure that we don't keep
1556 	 * spinning.
1557 	 */
1558 	retries = 10;
1559 	success = 0;
1560 	while (retries--) {
1561 		struct list_head *head_page, *prev_page, *r;
1562 		struct list_head *last_page, *first_page;
1563 		struct list_head *head_page_with_bit;
1564 
1565 		head_page = &rb_set_head_page(cpu_buffer)->list;
1566 		if (!head_page)
1567 			break;
1568 		prev_page = head_page->prev;
1569 
1570 		first_page = pages->next;
1571 		last_page  = pages->prev;
1572 
1573 		head_page_with_bit = (struct list_head *)
1574 				     ((unsigned long)head_page | RB_PAGE_HEAD);
1575 
1576 		last_page->next = head_page_with_bit;
1577 		first_page->prev = prev_page;
1578 
1579 		r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1580 
1581 		if (r == head_page_with_bit) {
1582 			/*
1583 			 * yay, we replaced the page pointer to our new list,
1584 			 * now, we just have to update to head page's prev
1585 			 * pointer to point to end of list
1586 			 */
1587 			head_page->prev = last_page;
1588 			success = 1;
1589 			break;
1590 		}
1591 	}
1592 
1593 	if (success)
1594 		INIT_LIST_HEAD(pages);
1595 	/*
1596 	 * If we weren't successful in adding in new pages, warn and stop
1597 	 * tracing
1598 	 */
1599 	RB_WARN_ON(cpu_buffer, !success);
1600 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1601 
1602 	/* free pages if they weren't inserted */
1603 	if (!success) {
1604 		struct buffer_page *bpage, *tmp;
1605 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1606 					 list) {
1607 			list_del_init(&bpage->list);
1608 			free_buffer_page(bpage);
1609 		}
1610 	}
1611 	return success;
1612 }
1613 
rb_update_pages(struct ring_buffer_per_cpu * cpu_buffer)1614 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1615 {
1616 	int success;
1617 
1618 	if (cpu_buffer->nr_pages_to_update > 0)
1619 		success = rb_insert_pages(cpu_buffer);
1620 	else
1621 		success = rb_remove_pages(cpu_buffer,
1622 					-cpu_buffer->nr_pages_to_update);
1623 
1624 	if (success)
1625 		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1626 }
1627 
update_pages_handler(struct work_struct * work)1628 static void update_pages_handler(struct work_struct *work)
1629 {
1630 	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1631 			struct ring_buffer_per_cpu, update_pages_work);
1632 	rb_update_pages(cpu_buffer);
1633 	complete(&cpu_buffer->update_done);
1634 }
1635 
1636 /**
1637  * ring_buffer_resize - resize the ring buffer
1638  * @buffer: the buffer to resize.
1639  * @size: the new size.
1640  * @cpu_id: the cpu buffer to resize
1641  *
1642  * Minimum size is 2 * BUF_PAGE_SIZE.
1643  *
1644  * Returns 0 on success and < 0 on failure.
1645  */
ring_buffer_resize(struct ring_buffer * buffer,unsigned long size,int cpu_id)1646 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1647 			int cpu_id)
1648 {
1649 	struct ring_buffer_per_cpu *cpu_buffer;
1650 	unsigned long nr_pages;
1651 	int cpu, err = 0;
1652 
1653 	/*
1654 	 * Always succeed at resizing a non-existent buffer:
1655 	 */
1656 	if (!buffer)
1657 		return size;
1658 
1659 	/* Make sure the requested buffer exists */
1660 	if (cpu_id != RING_BUFFER_ALL_CPUS &&
1661 	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
1662 		return size;
1663 
1664 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1665 
1666 	/* we need a minimum of two pages */
1667 	if (nr_pages < 2)
1668 		nr_pages = 2;
1669 
1670 	size = nr_pages * BUF_PAGE_SIZE;
1671 
1672 	/*
1673 	 * Don't succeed if resizing is disabled, as a reader might be
1674 	 * manipulating the ring buffer and is expecting a sane state while
1675 	 * this is true.
1676 	 */
1677 	if (atomic_read(&buffer->resize_disabled))
1678 		return -EBUSY;
1679 
1680 	/* prevent another thread from changing buffer sizes */
1681 	mutex_lock(&buffer->mutex);
1682 
1683 	if (cpu_id == RING_BUFFER_ALL_CPUS) {
1684 		/* calculate the pages to update */
1685 		for_each_buffer_cpu(buffer, cpu) {
1686 			cpu_buffer = buffer->buffers[cpu];
1687 
1688 			cpu_buffer->nr_pages_to_update = nr_pages -
1689 							cpu_buffer->nr_pages;
1690 			/*
1691 			 * nothing more to do for removing pages or no update
1692 			 */
1693 			if (cpu_buffer->nr_pages_to_update <= 0)
1694 				continue;
1695 			/*
1696 			 * to add pages, make sure all new pages can be
1697 			 * allocated without receiving ENOMEM
1698 			 */
1699 			INIT_LIST_HEAD(&cpu_buffer->new_pages);
1700 			if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1701 						&cpu_buffer->new_pages, cpu)) {
1702 				/* not enough memory for new pages */
1703 				err = -ENOMEM;
1704 				goto out_err;
1705 			}
1706 		}
1707 
1708 		get_online_cpus();
1709 		/*
1710 		 * Fire off all the required work handlers
1711 		 * We can't schedule on offline CPUs, but it's not necessary
1712 		 * since we can change their buffer sizes without any race.
1713 		 */
1714 		for_each_buffer_cpu(buffer, cpu) {
1715 			cpu_buffer = buffer->buffers[cpu];
1716 			if (!cpu_buffer->nr_pages_to_update)
1717 				continue;
1718 
1719 			/* Can't run something on an offline CPU. */
1720 			if (!cpu_online(cpu)) {
1721 				rb_update_pages(cpu_buffer);
1722 				cpu_buffer->nr_pages_to_update = 0;
1723 			} else {
1724 				schedule_work_on(cpu,
1725 						&cpu_buffer->update_pages_work);
1726 			}
1727 		}
1728 
1729 		/* wait for all the updates to complete */
1730 		for_each_buffer_cpu(buffer, cpu) {
1731 			cpu_buffer = buffer->buffers[cpu];
1732 			if (!cpu_buffer->nr_pages_to_update)
1733 				continue;
1734 
1735 			if (cpu_online(cpu))
1736 				wait_for_completion(&cpu_buffer->update_done);
1737 			cpu_buffer->nr_pages_to_update = 0;
1738 		}
1739 
1740 		put_online_cpus();
1741 	} else {
1742 		/* Make sure this CPU has been intitialized */
1743 		if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1744 			goto out;
1745 
1746 		cpu_buffer = buffer->buffers[cpu_id];
1747 
1748 		if (nr_pages == cpu_buffer->nr_pages)
1749 			goto out;
1750 
1751 		cpu_buffer->nr_pages_to_update = nr_pages -
1752 						cpu_buffer->nr_pages;
1753 
1754 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
1755 		if (cpu_buffer->nr_pages_to_update > 0 &&
1756 			__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1757 					    &cpu_buffer->new_pages, cpu_id)) {
1758 			err = -ENOMEM;
1759 			goto out_err;
1760 		}
1761 
1762 		get_online_cpus();
1763 
1764 		/* Can't run something on an offline CPU. */
1765 		if (!cpu_online(cpu_id))
1766 			rb_update_pages(cpu_buffer);
1767 		else {
1768 			schedule_work_on(cpu_id,
1769 					 &cpu_buffer->update_pages_work);
1770 			wait_for_completion(&cpu_buffer->update_done);
1771 		}
1772 
1773 		cpu_buffer->nr_pages_to_update = 0;
1774 		put_online_cpus();
1775 	}
1776 
1777  out:
1778 	/*
1779 	 * The ring buffer resize can happen with the ring buffer
1780 	 * enabled, so that the update disturbs the tracing as little
1781 	 * as possible. But if the buffer is disabled, we do not need
1782 	 * to worry about that, and we can take the time to verify
1783 	 * that the buffer is not corrupt.
1784 	 */
1785 	if (atomic_read(&buffer->record_disabled)) {
1786 		atomic_inc(&buffer->record_disabled);
1787 		/*
1788 		 * Even though the buffer was disabled, we must make sure
1789 		 * that it is truly disabled before calling rb_check_pages.
1790 		 * There could have been a race between checking
1791 		 * record_disable and incrementing it.
1792 		 */
1793 		synchronize_sched();
1794 		for_each_buffer_cpu(buffer, cpu) {
1795 			cpu_buffer = buffer->buffers[cpu];
1796 			rb_check_pages(cpu_buffer);
1797 		}
1798 		atomic_dec(&buffer->record_disabled);
1799 	}
1800 
1801 	mutex_unlock(&buffer->mutex);
1802 	return size;
1803 
1804  out_err:
1805 	for_each_buffer_cpu(buffer, cpu) {
1806 		struct buffer_page *bpage, *tmp;
1807 
1808 		cpu_buffer = buffer->buffers[cpu];
1809 		cpu_buffer->nr_pages_to_update = 0;
1810 
1811 		if (list_empty(&cpu_buffer->new_pages))
1812 			continue;
1813 
1814 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1815 					list) {
1816 			list_del_init(&bpage->list);
1817 			free_buffer_page(bpage);
1818 		}
1819 	}
1820 	mutex_unlock(&buffer->mutex);
1821 	return err;
1822 }
1823 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1824 
ring_buffer_change_overwrite(struct ring_buffer * buffer,int val)1825 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1826 {
1827 	mutex_lock(&buffer->mutex);
1828 	if (val)
1829 		buffer->flags |= RB_FL_OVERWRITE;
1830 	else
1831 		buffer->flags &= ~RB_FL_OVERWRITE;
1832 	mutex_unlock(&buffer->mutex);
1833 }
1834 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1835 
1836 static inline void *
__rb_data_page_index(struct buffer_data_page * bpage,unsigned index)1837 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1838 {
1839 	return bpage->data + index;
1840 }
1841 
__rb_page_index(struct buffer_page * bpage,unsigned index)1842 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1843 {
1844 	return bpage->page->data + index;
1845 }
1846 
1847 static inline struct ring_buffer_event *
rb_reader_event(struct ring_buffer_per_cpu * cpu_buffer)1848 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1849 {
1850 	return __rb_page_index(cpu_buffer->reader_page,
1851 			       cpu_buffer->reader_page->read);
1852 }
1853 
1854 static inline struct ring_buffer_event *
rb_iter_head_event(struct ring_buffer_iter * iter)1855 rb_iter_head_event(struct ring_buffer_iter *iter)
1856 {
1857 	return __rb_page_index(iter->head_page, iter->head);
1858 }
1859 
rb_page_commit(struct buffer_page * bpage)1860 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1861 {
1862 	return local_read(&bpage->page->commit);
1863 }
1864 
1865 /* Size is determined by what has been committed */
rb_page_size(struct buffer_page * bpage)1866 static inline unsigned rb_page_size(struct buffer_page *bpage)
1867 {
1868 	return rb_page_commit(bpage);
1869 }
1870 
1871 static inline unsigned
rb_commit_index(struct ring_buffer_per_cpu * cpu_buffer)1872 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1873 {
1874 	return rb_page_commit(cpu_buffer->commit_page);
1875 }
1876 
1877 static inline unsigned
rb_event_index(struct ring_buffer_event * event)1878 rb_event_index(struct ring_buffer_event *event)
1879 {
1880 	unsigned long addr = (unsigned long)event;
1881 
1882 	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1883 }
1884 
rb_inc_iter(struct ring_buffer_iter * iter)1885 static void rb_inc_iter(struct ring_buffer_iter *iter)
1886 {
1887 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1888 
1889 	/*
1890 	 * The iterator could be on the reader page (it starts there).
1891 	 * But the head could have moved, since the reader was
1892 	 * found. Check for this case and assign the iterator
1893 	 * to the head page instead of next.
1894 	 */
1895 	if (iter->head_page == cpu_buffer->reader_page)
1896 		iter->head_page = rb_set_head_page(cpu_buffer);
1897 	else
1898 		rb_inc_page(cpu_buffer, &iter->head_page);
1899 
1900 	iter->read_stamp = iter->head_page->page->time_stamp;
1901 	iter->head = 0;
1902 }
1903 
1904 /*
1905  * rb_handle_head_page - writer hit the head page
1906  *
1907  * Returns: +1 to retry page
1908  *           0 to continue
1909  *          -1 on error
1910  */
1911 static int
rb_handle_head_page(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * tail_page,struct buffer_page * next_page)1912 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1913 		    struct buffer_page *tail_page,
1914 		    struct buffer_page *next_page)
1915 {
1916 	struct buffer_page *new_head;
1917 	int entries;
1918 	int type;
1919 	int ret;
1920 
1921 	entries = rb_page_entries(next_page);
1922 
1923 	/*
1924 	 * The hard part is here. We need to move the head
1925 	 * forward, and protect against both readers on
1926 	 * other CPUs and writers coming in via interrupts.
1927 	 */
1928 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1929 				       RB_PAGE_HEAD);
1930 
1931 	/*
1932 	 * type can be one of four:
1933 	 *  NORMAL - an interrupt already moved it for us
1934 	 *  HEAD   - we are the first to get here.
1935 	 *  UPDATE - we are the interrupt interrupting
1936 	 *           a current move.
1937 	 *  MOVED  - a reader on another CPU moved the next
1938 	 *           pointer to its reader page. Give up
1939 	 *           and try again.
1940 	 */
1941 
1942 	switch (type) {
1943 	case RB_PAGE_HEAD:
1944 		/*
1945 		 * We changed the head to UPDATE, thus
1946 		 * it is our responsibility to update
1947 		 * the counters.
1948 		 */
1949 		local_add(entries, &cpu_buffer->overrun);
1950 		local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1951 
1952 		/*
1953 		 * The entries will be zeroed out when we move the
1954 		 * tail page.
1955 		 */
1956 
1957 		/* still more to do */
1958 		break;
1959 
1960 	case RB_PAGE_UPDATE:
1961 		/*
1962 		 * This is an interrupt that interrupt the
1963 		 * previous update. Still more to do.
1964 		 */
1965 		break;
1966 	case RB_PAGE_NORMAL:
1967 		/*
1968 		 * An interrupt came in before the update
1969 		 * and processed this for us.
1970 		 * Nothing left to do.
1971 		 */
1972 		return 1;
1973 	case RB_PAGE_MOVED:
1974 		/*
1975 		 * The reader is on another CPU and just did
1976 		 * a swap with our next_page.
1977 		 * Try again.
1978 		 */
1979 		return 1;
1980 	default:
1981 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1982 		return -1;
1983 	}
1984 
1985 	/*
1986 	 * Now that we are here, the old head pointer is
1987 	 * set to UPDATE. This will keep the reader from
1988 	 * swapping the head page with the reader page.
1989 	 * The reader (on another CPU) will spin till
1990 	 * we are finished.
1991 	 *
1992 	 * We just need to protect against interrupts
1993 	 * doing the job. We will set the next pointer
1994 	 * to HEAD. After that, we set the old pointer
1995 	 * to NORMAL, but only if it was HEAD before.
1996 	 * otherwise we are an interrupt, and only
1997 	 * want the outer most commit to reset it.
1998 	 */
1999 	new_head = next_page;
2000 	rb_inc_page(cpu_buffer, &new_head);
2001 
2002 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2003 				    RB_PAGE_NORMAL);
2004 
2005 	/*
2006 	 * Valid returns are:
2007 	 *  HEAD   - an interrupt came in and already set it.
2008 	 *  NORMAL - One of two things:
2009 	 *            1) We really set it.
2010 	 *            2) A bunch of interrupts came in and moved
2011 	 *               the page forward again.
2012 	 */
2013 	switch (ret) {
2014 	case RB_PAGE_HEAD:
2015 	case RB_PAGE_NORMAL:
2016 		/* OK */
2017 		break;
2018 	default:
2019 		RB_WARN_ON(cpu_buffer, 1);
2020 		return -1;
2021 	}
2022 
2023 	/*
2024 	 * It is possible that an interrupt came in,
2025 	 * set the head up, then more interrupts came in
2026 	 * and moved it again. When we get back here,
2027 	 * the page would have been set to NORMAL but we
2028 	 * just set it back to HEAD.
2029 	 *
2030 	 * How do you detect this? Well, if that happened
2031 	 * the tail page would have moved.
2032 	 */
2033 	if (ret == RB_PAGE_NORMAL) {
2034 		struct buffer_page *buffer_tail_page;
2035 
2036 		buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2037 		/*
2038 		 * If the tail had moved passed next, then we need
2039 		 * to reset the pointer.
2040 		 */
2041 		if (buffer_tail_page != tail_page &&
2042 		    buffer_tail_page != next_page)
2043 			rb_head_page_set_normal(cpu_buffer, new_head,
2044 						next_page,
2045 						RB_PAGE_HEAD);
2046 	}
2047 
2048 	/*
2049 	 * If this was the outer most commit (the one that
2050 	 * changed the original pointer from HEAD to UPDATE),
2051 	 * then it is up to us to reset it to NORMAL.
2052 	 */
2053 	if (type == RB_PAGE_HEAD) {
2054 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
2055 					      tail_page,
2056 					      RB_PAGE_UPDATE);
2057 		if (RB_WARN_ON(cpu_buffer,
2058 			       ret != RB_PAGE_UPDATE))
2059 			return -1;
2060 	}
2061 
2062 	return 0;
2063 }
2064 
2065 static inline void
rb_reset_tail(struct ring_buffer_per_cpu * cpu_buffer,unsigned long tail,struct rb_event_info * info)2066 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2067 	      unsigned long tail, struct rb_event_info *info)
2068 {
2069 	struct buffer_page *tail_page = info->tail_page;
2070 	struct ring_buffer_event *event;
2071 	unsigned long length = info->length;
2072 
2073 	/*
2074 	 * Only the event that crossed the page boundary
2075 	 * must fill the old tail_page with padding.
2076 	 */
2077 	if (tail >= BUF_PAGE_SIZE) {
2078 		/*
2079 		 * If the page was filled, then we still need
2080 		 * to update the real_end. Reset it to zero
2081 		 * and the reader will ignore it.
2082 		 */
2083 		if (tail == BUF_PAGE_SIZE)
2084 			tail_page->real_end = 0;
2085 
2086 		local_sub(length, &tail_page->write);
2087 		return;
2088 	}
2089 
2090 	event = __rb_page_index(tail_page, tail);
2091 	kmemcheck_annotate_bitfield(event, bitfield);
2092 
2093 	/* account for padding bytes */
2094 	local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2095 
2096 	/*
2097 	 * Save the original length to the meta data.
2098 	 * This will be used by the reader to add lost event
2099 	 * counter.
2100 	 */
2101 	tail_page->real_end = tail;
2102 
2103 	/*
2104 	 * If this event is bigger than the minimum size, then
2105 	 * we need to be careful that we don't subtract the
2106 	 * write counter enough to allow another writer to slip
2107 	 * in on this page.
2108 	 * We put in a discarded commit instead, to make sure
2109 	 * that this space is not used again.
2110 	 *
2111 	 * If we are less than the minimum size, we don't need to
2112 	 * worry about it.
2113 	 */
2114 	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2115 		/* No room for any events */
2116 
2117 		/* Mark the rest of the page with padding */
2118 		rb_event_set_padding(event);
2119 
2120 		/* Set the write back to the previous setting */
2121 		local_sub(length, &tail_page->write);
2122 		return;
2123 	}
2124 
2125 	/* Put in a discarded event */
2126 	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2127 	event->type_len = RINGBUF_TYPE_PADDING;
2128 	/* time delta must be non zero */
2129 	event->time_delta = 1;
2130 
2131 	/* Set write to end of buffer */
2132 	length = (tail + length) - BUF_PAGE_SIZE;
2133 	local_sub(length, &tail_page->write);
2134 }
2135 
2136 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2137 
2138 /*
2139  * This is the slow path, force gcc not to inline it.
2140  */
2141 static noinline struct ring_buffer_event *
rb_move_tail(struct ring_buffer_per_cpu * cpu_buffer,unsigned long tail,struct rb_event_info * info)2142 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2143 	     unsigned long tail, struct rb_event_info *info)
2144 {
2145 	struct buffer_page *tail_page = info->tail_page;
2146 	struct buffer_page *commit_page = cpu_buffer->commit_page;
2147 	struct ring_buffer *buffer = cpu_buffer->buffer;
2148 	struct buffer_page *next_page;
2149 	int ret;
2150 
2151 	next_page = tail_page;
2152 
2153 	rb_inc_page(cpu_buffer, &next_page);
2154 
2155 	/*
2156 	 * If for some reason, we had an interrupt storm that made
2157 	 * it all the way around the buffer, bail, and warn
2158 	 * about it.
2159 	 */
2160 	if (unlikely(next_page == commit_page)) {
2161 		local_inc(&cpu_buffer->commit_overrun);
2162 		goto out_reset;
2163 	}
2164 
2165 	/*
2166 	 * This is where the fun begins!
2167 	 *
2168 	 * We are fighting against races between a reader that
2169 	 * could be on another CPU trying to swap its reader
2170 	 * page with the buffer head.
2171 	 *
2172 	 * We are also fighting against interrupts coming in and
2173 	 * moving the head or tail on us as well.
2174 	 *
2175 	 * If the next page is the head page then we have filled
2176 	 * the buffer, unless the commit page is still on the
2177 	 * reader page.
2178 	 */
2179 	if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2180 
2181 		/*
2182 		 * If the commit is not on the reader page, then
2183 		 * move the header page.
2184 		 */
2185 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2186 			/*
2187 			 * If we are not in overwrite mode,
2188 			 * this is easy, just stop here.
2189 			 */
2190 			if (!(buffer->flags & RB_FL_OVERWRITE)) {
2191 				local_inc(&cpu_buffer->dropped_events);
2192 				goto out_reset;
2193 			}
2194 
2195 			ret = rb_handle_head_page(cpu_buffer,
2196 						  tail_page,
2197 						  next_page);
2198 			if (ret < 0)
2199 				goto out_reset;
2200 			if (ret)
2201 				goto out_again;
2202 		} else {
2203 			/*
2204 			 * We need to be careful here too. The
2205 			 * commit page could still be on the reader
2206 			 * page. We could have a small buffer, and
2207 			 * have filled up the buffer with events
2208 			 * from interrupts and such, and wrapped.
2209 			 *
2210 			 * Note, if the tail page is also the on the
2211 			 * reader_page, we let it move out.
2212 			 */
2213 			if (unlikely((cpu_buffer->commit_page !=
2214 				      cpu_buffer->tail_page) &&
2215 				     (cpu_buffer->commit_page ==
2216 				      cpu_buffer->reader_page))) {
2217 				local_inc(&cpu_buffer->commit_overrun);
2218 				goto out_reset;
2219 			}
2220 		}
2221 	}
2222 
2223 	rb_tail_page_update(cpu_buffer, tail_page, next_page);
2224 
2225  out_again:
2226 
2227 	rb_reset_tail(cpu_buffer, tail, info);
2228 
2229 	/* Commit what we have for now. */
2230 	rb_end_commit(cpu_buffer);
2231 	/* rb_end_commit() decs committing */
2232 	local_inc(&cpu_buffer->committing);
2233 
2234 	/* fail and let the caller try again */
2235 	return ERR_PTR(-EAGAIN);
2236 
2237  out_reset:
2238 	/* reset write */
2239 	rb_reset_tail(cpu_buffer, tail, info);
2240 
2241 	return NULL;
2242 }
2243 
2244 /* Slow path, do not inline */
2245 static noinline struct ring_buffer_event *
rb_add_time_stamp(struct ring_buffer_event * event,u64 delta)2246 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
2247 {
2248 	event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2249 
2250 	/* Not the first event on the page? */
2251 	if (rb_event_index(event)) {
2252 		event->time_delta = delta & TS_MASK;
2253 		event->array[0] = delta >> TS_SHIFT;
2254 	} else {
2255 		/* nope, just zero it */
2256 		event->time_delta = 0;
2257 		event->array[0] = 0;
2258 	}
2259 
2260 	return skip_time_extend(event);
2261 }
2262 
2263 static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2264 				     struct ring_buffer_event *event);
2265 
2266 /**
2267  * rb_update_event - update event type and data
2268  * @event: the event to update
2269  * @type: the type of event
2270  * @length: the size of the event field in the ring buffer
2271  *
2272  * Update the type and data fields of the event. The length
2273  * is the actual size that is written to the ring buffer,
2274  * and with this, we can determine what to place into the
2275  * data field.
2276  */
2277 static void
rb_update_event(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event,struct rb_event_info * info)2278 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2279 		struct ring_buffer_event *event,
2280 		struct rb_event_info *info)
2281 {
2282 	unsigned length = info->length;
2283 	u64 delta = info->delta;
2284 
2285 	/* Only a commit updates the timestamp */
2286 	if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2287 		delta = 0;
2288 
2289 	/*
2290 	 * If we need to add a timestamp, then we
2291 	 * add it to the start of the resevered space.
2292 	 */
2293 	if (unlikely(info->add_timestamp)) {
2294 		event = rb_add_time_stamp(event, delta);
2295 		length -= RB_LEN_TIME_EXTEND;
2296 		delta = 0;
2297 	}
2298 
2299 	event->time_delta = delta;
2300 	length -= RB_EVNT_HDR_SIZE;
2301 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2302 		event->type_len = 0;
2303 		event->array[0] = length;
2304 	} else
2305 		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2306 }
2307 
rb_calculate_event_length(unsigned length)2308 static unsigned rb_calculate_event_length(unsigned length)
2309 {
2310 	struct ring_buffer_event event; /* Used only for sizeof array */
2311 
2312 	/* zero length can cause confusions */
2313 	if (!length)
2314 		length++;
2315 
2316 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2317 		length += sizeof(event.array[0]);
2318 
2319 	length += RB_EVNT_HDR_SIZE;
2320 	length = ALIGN(length, RB_ARCH_ALIGNMENT);
2321 
2322 	/*
2323 	 * In case the time delta is larger than the 27 bits for it
2324 	 * in the header, we need to add a timestamp. If another
2325 	 * event comes in when trying to discard this one to increase
2326 	 * the length, then the timestamp will be added in the allocated
2327 	 * space of this event. If length is bigger than the size needed
2328 	 * for the TIME_EXTEND, then padding has to be used. The events
2329 	 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2330 	 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2331 	 * As length is a multiple of 4, we only need to worry if it
2332 	 * is 12 (RB_LEN_TIME_EXTEND + 4).
2333 	 */
2334 	if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2335 		length += RB_ALIGNMENT;
2336 
2337 	return length;
2338 }
2339 
2340 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
sched_clock_stable(void)2341 static inline bool sched_clock_stable(void)
2342 {
2343 	return true;
2344 }
2345 #endif
2346 
2347 static inline int
rb_try_to_discard(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)2348 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2349 		  struct ring_buffer_event *event)
2350 {
2351 	unsigned long new_index, old_index;
2352 	struct buffer_page *bpage;
2353 	unsigned long index;
2354 	unsigned long addr;
2355 
2356 	new_index = rb_event_index(event);
2357 	old_index = new_index + rb_event_ts_length(event);
2358 	addr = (unsigned long)event;
2359 	addr &= PAGE_MASK;
2360 
2361 	bpage = READ_ONCE(cpu_buffer->tail_page);
2362 
2363 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2364 		unsigned long write_mask =
2365 			local_read(&bpage->write) & ~RB_WRITE_MASK;
2366 		unsigned long event_length = rb_event_length(event);
2367 		/*
2368 		 * This is on the tail page. It is possible that
2369 		 * a write could come in and move the tail page
2370 		 * and write to the next page. That is fine
2371 		 * because we just shorten what is on this page.
2372 		 */
2373 		old_index += write_mask;
2374 		new_index += write_mask;
2375 		index = local_cmpxchg(&bpage->write, old_index, new_index);
2376 		if (index == old_index) {
2377 			/* update counters */
2378 			local_sub(event_length, &cpu_buffer->entries_bytes);
2379 			return 1;
2380 		}
2381 	}
2382 
2383 	/* could not discard */
2384 	return 0;
2385 }
2386 
rb_start_commit(struct ring_buffer_per_cpu * cpu_buffer)2387 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2388 {
2389 	local_inc(&cpu_buffer->committing);
2390 	local_inc(&cpu_buffer->commits);
2391 }
2392 
2393 static void
rb_set_commit_to_write(struct ring_buffer_per_cpu * cpu_buffer)2394 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2395 {
2396 	unsigned long max_count;
2397 
2398 	/*
2399 	 * We only race with interrupts and NMIs on this CPU.
2400 	 * If we own the commit event, then we can commit
2401 	 * all others that interrupted us, since the interruptions
2402 	 * are in stack format (they finish before they come
2403 	 * back to us). This allows us to do a simple loop to
2404 	 * assign the commit to the tail.
2405 	 */
2406  again:
2407 	max_count = cpu_buffer->nr_pages * 100;
2408 
2409 	while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2410 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2411 			return;
2412 		if (RB_WARN_ON(cpu_buffer,
2413 			       rb_is_reader_page(cpu_buffer->tail_page)))
2414 			return;
2415 		local_set(&cpu_buffer->commit_page->page->commit,
2416 			  rb_page_write(cpu_buffer->commit_page));
2417 		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2418 		/* Only update the write stamp if the page has an event */
2419 		if (rb_page_write(cpu_buffer->commit_page))
2420 			cpu_buffer->write_stamp =
2421 				cpu_buffer->commit_page->page->time_stamp;
2422 		/* add barrier to keep gcc from optimizing too much */
2423 		barrier();
2424 	}
2425 	while (rb_commit_index(cpu_buffer) !=
2426 	       rb_page_write(cpu_buffer->commit_page)) {
2427 
2428 		local_set(&cpu_buffer->commit_page->page->commit,
2429 			  rb_page_write(cpu_buffer->commit_page));
2430 		RB_WARN_ON(cpu_buffer,
2431 			   local_read(&cpu_buffer->commit_page->page->commit) &
2432 			   ~RB_WRITE_MASK);
2433 		barrier();
2434 	}
2435 
2436 	/* again, keep gcc from optimizing */
2437 	barrier();
2438 
2439 	/*
2440 	 * If an interrupt came in just after the first while loop
2441 	 * and pushed the tail page forward, we will be left with
2442 	 * a dangling commit that will never go forward.
2443 	 */
2444 	if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
2445 		goto again;
2446 }
2447 
rb_end_commit(struct ring_buffer_per_cpu * cpu_buffer)2448 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2449 {
2450 	unsigned long commits;
2451 
2452 	if (RB_WARN_ON(cpu_buffer,
2453 		       !local_read(&cpu_buffer->committing)))
2454 		return;
2455 
2456  again:
2457 	commits = local_read(&cpu_buffer->commits);
2458 	/* synchronize with interrupts */
2459 	barrier();
2460 	if (local_read(&cpu_buffer->committing) == 1)
2461 		rb_set_commit_to_write(cpu_buffer);
2462 
2463 	local_dec(&cpu_buffer->committing);
2464 
2465 	/* synchronize with interrupts */
2466 	barrier();
2467 
2468 	/*
2469 	 * Need to account for interrupts coming in between the
2470 	 * updating of the commit page and the clearing of the
2471 	 * committing counter.
2472 	 */
2473 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2474 	    !local_read(&cpu_buffer->committing)) {
2475 		local_inc(&cpu_buffer->committing);
2476 		goto again;
2477 	}
2478 }
2479 
rb_event_discard(struct ring_buffer_event * event)2480 static inline void rb_event_discard(struct ring_buffer_event *event)
2481 {
2482 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2483 		event = skip_time_extend(event);
2484 
2485 	/* array[0] holds the actual length for the discarded event */
2486 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2487 	event->type_len = RINGBUF_TYPE_PADDING;
2488 	/* time delta must be non zero */
2489 	if (!event->time_delta)
2490 		event->time_delta = 1;
2491 }
2492 
2493 static inline bool
rb_event_is_commit(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)2494 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2495 		   struct ring_buffer_event *event)
2496 {
2497 	unsigned long addr = (unsigned long)event;
2498 	unsigned long index;
2499 
2500 	index = rb_event_index(event);
2501 	addr &= PAGE_MASK;
2502 
2503 	return cpu_buffer->commit_page->page == (void *)addr &&
2504 		rb_commit_index(cpu_buffer) == index;
2505 }
2506 
2507 static void
rb_update_write_stamp(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)2508 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2509 		      struct ring_buffer_event *event)
2510 {
2511 	u64 delta;
2512 
2513 	/*
2514 	 * The event first in the commit queue updates the
2515 	 * time stamp.
2516 	 */
2517 	if (rb_event_is_commit(cpu_buffer, event)) {
2518 		/*
2519 		 * A commit event that is first on a page
2520 		 * updates the write timestamp with the page stamp
2521 		 */
2522 		if (!rb_event_index(event))
2523 			cpu_buffer->write_stamp =
2524 				cpu_buffer->commit_page->page->time_stamp;
2525 		else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2526 			delta = event->array[0];
2527 			delta <<= TS_SHIFT;
2528 			delta += event->time_delta;
2529 			cpu_buffer->write_stamp += delta;
2530 		} else
2531 			cpu_buffer->write_stamp += event->time_delta;
2532 	}
2533 }
2534 
rb_commit(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)2535 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2536 		      struct ring_buffer_event *event)
2537 {
2538 	local_inc(&cpu_buffer->entries);
2539 	rb_update_write_stamp(cpu_buffer, event);
2540 	rb_end_commit(cpu_buffer);
2541 }
2542 
2543 static __always_inline void
rb_wakeups(struct ring_buffer * buffer,struct ring_buffer_per_cpu * cpu_buffer)2544 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2545 {
2546 	bool pagebusy;
2547 
2548 	if (buffer->irq_work.waiters_pending) {
2549 		buffer->irq_work.waiters_pending = false;
2550 		/* irq_work_queue() supplies it's own memory barriers */
2551 		irq_work_queue(&buffer->irq_work.work);
2552 	}
2553 
2554 	if (cpu_buffer->irq_work.waiters_pending) {
2555 		cpu_buffer->irq_work.waiters_pending = false;
2556 		/* irq_work_queue() supplies it's own memory barriers */
2557 		irq_work_queue(&cpu_buffer->irq_work.work);
2558 	}
2559 
2560 	pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
2561 
2562 	if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) {
2563 		cpu_buffer->irq_work.wakeup_full = true;
2564 		cpu_buffer->irq_work.full_waiters_pending = false;
2565 		/* irq_work_queue() supplies it's own memory barriers */
2566 		irq_work_queue(&cpu_buffer->irq_work.work);
2567 	}
2568 }
2569 
2570 /*
2571  * The lock and unlock are done within a preempt disable section.
2572  * The current_context per_cpu variable can only be modified
2573  * by the current task between lock and unlock. But it can
2574  * be modified more than once via an interrupt. To pass this
2575  * information from the lock to the unlock without having to
2576  * access the 'in_interrupt()' functions again (which do show
2577  * a bit of overhead in something as critical as function tracing,
2578  * we use a bitmask trick.
2579  *
2580  *  bit 0 =  NMI context
2581  *  bit 1 =  IRQ context
2582  *  bit 2 =  SoftIRQ context
2583  *  bit 3 =  normal context.
2584  *
2585  * This works because this is the order of contexts that can
2586  * preempt other contexts. A SoftIRQ never preempts an IRQ
2587  * context.
2588  *
2589  * When the context is determined, the corresponding bit is
2590  * checked and set (if it was set, then a recursion of that context
2591  * happened).
2592  *
2593  * On unlock, we need to clear this bit. To do so, just subtract
2594  * 1 from the current_context and AND it to itself.
2595  *
2596  * (binary)
2597  *  101 - 1 = 100
2598  *  101 & 100 = 100 (clearing bit zero)
2599  *
2600  *  1010 - 1 = 1001
2601  *  1010 & 1001 = 1000 (clearing bit 1)
2602  *
2603  * The least significant bit can be cleared this way, and it
2604  * just so happens that it is the same bit corresponding to
2605  * the current context.
2606  */
2607 
2608 static __always_inline int
trace_recursive_lock(struct ring_buffer_per_cpu * cpu_buffer)2609 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2610 {
2611 	unsigned int val = cpu_buffer->current_context;
2612 	int bit;
2613 
2614 	if (in_interrupt()) {
2615 		if (in_nmi())
2616 			bit = RB_CTX_NMI;
2617 		else if (in_irq())
2618 			bit = RB_CTX_IRQ;
2619 		else
2620 			bit = RB_CTX_SOFTIRQ;
2621 	} else
2622 		bit = RB_CTX_NORMAL;
2623 
2624 	if (unlikely(val & (1 << bit)))
2625 		return 1;
2626 
2627 	val |= (1 << bit);
2628 	cpu_buffer->current_context = val;
2629 
2630 	return 0;
2631 }
2632 
2633 static __always_inline void
trace_recursive_unlock(struct ring_buffer_per_cpu * cpu_buffer)2634 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2635 {
2636 	cpu_buffer->current_context &= cpu_buffer->current_context - 1;
2637 }
2638 
2639 /**
2640  * ring_buffer_unlock_commit - commit a reserved
2641  * @buffer: The buffer to commit to
2642  * @event: The event pointer to commit.
2643  *
2644  * This commits the data to the ring buffer, and releases any locks held.
2645  *
2646  * Must be paired with ring_buffer_lock_reserve.
2647  */
ring_buffer_unlock_commit(struct ring_buffer * buffer,struct ring_buffer_event * event)2648 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2649 			      struct ring_buffer_event *event)
2650 {
2651 	struct ring_buffer_per_cpu *cpu_buffer;
2652 	int cpu = raw_smp_processor_id();
2653 
2654 	cpu_buffer = buffer->buffers[cpu];
2655 
2656 	rb_commit(cpu_buffer, event);
2657 
2658 	rb_wakeups(buffer, cpu_buffer);
2659 
2660 	trace_recursive_unlock(cpu_buffer);
2661 
2662 	preempt_enable_notrace();
2663 
2664 	return 0;
2665 }
2666 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2667 
2668 static noinline void
rb_handle_timestamp(struct ring_buffer_per_cpu * cpu_buffer,struct rb_event_info * info)2669 rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2670 		    struct rb_event_info *info)
2671 {
2672 	WARN_ONCE(info->delta > (1ULL << 59),
2673 		  KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2674 		  (unsigned long long)info->delta,
2675 		  (unsigned long long)info->ts,
2676 		  (unsigned long long)cpu_buffer->write_stamp,
2677 		  sched_clock_stable() ? "" :
2678 		  "If you just came from a suspend/resume,\n"
2679 		  "please switch to the trace global clock:\n"
2680 		  "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
2681 	info->add_timestamp = 1;
2682 }
2683 
2684 static struct ring_buffer_event *
__rb_reserve_next(struct ring_buffer_per_cpu * cpu_buffer,struct rb_event_info * info)2685 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2686 		  struct rb_event_info *info)
2687 {
2688 	struct ring_buffer_event *event;
2689 	struct buffer_page *tail_page;
2690 	unsigned long tail, write;
2691 
2692 	/*
2693 	 * If the time delta since the last event is too big to
2694 	 * hold in the time field of the event, then we append a
2695 	 * TIME EXTEND event ahead of the data event.
2696 	 */
2697 	if (unlikely(info->add_timestamp))
2698 		info->length += RB_LEN_TIME_EXTEND;
2699 
2700 	/* Don't let the compiler play games with cpu_buffer->tail_page */
2701 	tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
2702 	write = local_add_return(info->length, &tail_page->write);
2703 
2704 	/* set write to only the index of the write */
2705 	write &= RB_WRITE_MASK;
2706 	tail = write - info->length;
2707 
2708 	/*
2709 	 * If this is the first commit on the page, then it has the same
2710 	 * timestamp as the page itself.
2711 	 */
2712 	if (!tail)
2713 		info->delta = 0;
2714 
2715 	/* See if we shot pass the end of this buffer page */
2716 	if (unlikely(write > BUF_PAGE_SIZE))
2717 		return rb_move_tail(cpu_buffer, tail, info);
2718 
2719 	/* We reserved something on the buffer */
2720 
2721 	event = __rb_page_index(tail_page, tail);
2722 	kmemcheck_annotate_bitfield(event, bitfield);
2723 	rb_update_event(cpu_buffer, event, info);
2724 
2725 	local_inc(&tail_page->entries);
2726 
2727 	/*
2728 	 * If this is the first commit on the page, then update
2729 	 * its timestamp.
2730 	 */
2731 	if (!tail)
2732 		tail_page->page->time_stamp = info->ts;
2733 
2734 	/* account for these added bytes */
2735 	local_add(info->length, &cpu_buffer->entries_bytes);
2736 
2737 	return event;
2738 }
2739 
2740 static struct ring_buffer_event *
rb_reserve_next_event(struct ring_buffer * buffer,struct ring_buffer_per_cpu * cpu_buffer,unsigned long length)2741 rb_reserve_next_event(struct ring_buffer *buffer,
2742 		      struct ring_buffer_per_cpu *cpu_buffer,
2743 		      unsigned long length)
2744 {
2745 	struct ring_buffer_event *event;
2746 	struct rb_event_info info;
2747 	int nr_loops = 0;
2748 	u64 diff;
2749 
2750 	rb_start_commit(cpu_buffer);
2751 
2752 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2753 	/*
2754 	 * Due to the ability to swap a cpu buffer from a buffer
2755 	 * it is possible it was swapped before we committed.
2756 	 * (committing stops a swap). We check for it here and
2757 	 * if it happened, we have to fail the write.
2758 	 */
2759 	barrier();
2760 	if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2761 		local_dec(&cpu_buffer->committing);
2762 		local_dec(&cpu_buffer->commits);
2763 		return NULL;
2764 	}
2765 #endif
2766 
2767 	info.length = rb_calculate_event_length(length);
2768  again:
2769 	info.add_timestamp = 0;
2770 	info.delta = 0;
2771 
2772 	/*
2773 	 * We allow for interrupts to reenter here and do a trace.
2774 	 * If one does, it will cause this original code to loop
2775 	 * back here. Even with heavy interrupts happening, this
2776 	 * should only happen a few times in a row. If this happens
2777 	 * 1000 times in a row, there must be either an interrupt
2778 	 * storm or we have something buggy.
2779 	 * Bail!
2780 	 */
2781 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2782 		goto out_fail;
2783 
2784 	info.ts = rb_time_stamp(cpu_buffer->buffer);
2785 	diff = info.ts - cpu_buffer->write_stamp;
2786 
2787 	/* make sure this diff is calculated here */
2788 	barrier();
2789 
2790 	/* Did the write stamp get updated already? */
2791 	if (likely(info.ts >= cpu_buffer->write_stamp)) {
2792 		info.delta = diff;
2793 		if (unlikely(test_time_stamp(info.delta)))
2794 			rb_handle_timestamp(cpu_buffer, &info);
2795 	}
2796 
2797 	event = __rb_reserve_next(cpu_buffer, &info);
2798 
2799 	if (unlikely(PTR_ERR(event) == -EAGAIN)) {
2800 		if (info.add_timestamp)
2801 			info.length -= RB_LEN_TIME_EXTEND;
2802 		goto again;
2803 	}
2804 
2805 	if (!event)
2806 		goto out_fail;
2807 
2808 	return event;
2809 
2810  out_fail:
2811 	rb_end_commit(cpu_buffer);
2812 	return NULL;
2813 }
2814 
2815 /**
2816  * ring_buffer_lock_reserve - reserve a part of the buffer
2817  * @buffer: the ring buffer to reserve from
2818  * @length: the length of the data to reserve (excluding event header)
2819  *
2820  * Returns a reseverd event on the ring buffer to copy directly to.
2821  * The user of this interface will need to get the body to write into
2822  * and can use the ring_buffer_event_data() interface.
2823  *
2824  * The length is the length of the data needed, not the event length
2825  * which also includes the event header.
2826  *
2827  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2828  * If NULL is returned, then nothing has been allocated or locked.
2829  */
2830 struct ring_buffer_event *
ring_buffer_lock_reserve(struct ring_buffer * buffer,unsigned long length)2831 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2832 {
2833 	struct ring_buffer_per_cpu *cpu_buffer;
2834 	struct ring_buffer_event *event;
2835 	int cpu;
2836 
2837 	/* If we are tracing schedule, we don't want to recurse */
2838 	preempt_disable_notrace();
2839 
2840 	if (unlikely(atomic_read(&buffer->record_disabled)))
2841 		goto out;
2842 
2843 	cpu = raw_smp_processor_id();
2844 
2845 	if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
2846 		goto out;
2847 
2848 	cpu_buffer = buffer->buffers[cpu];
2849 
2850 	if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
2851 		goto out;
2852 
2853 	if (unlikely(length > BUF_MAX_DATA_SIZE))
2854 		goto out;
2855 
2856 	if (unlikely(trace_recursive_lock(cpu_buffer)))
2857 		goto out;
2858 
2859 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2860 	if (!event)
2861 		goto out_unlock;
2862 
2863 	return event;
2864 
2865  out_unlock:
2866 	trace_recursive_unlock(cpu_buffer);
2867  out:
2868 	preempt_enable_notrace();
2869 	return NULL;
2870 }
2871 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2872 
2873 /*
2874  * Decrement the entries to the page that an event is on.
2875  * The event does not even need to exist, only the pointer
2876  * to the page it is on. This may only be called before the commit
2877  * takes place.
2878  */
2879 static inline void
rb_decrement_entry(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)2880 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2881 		   struct ring_buffer_event *event)
2882 {
2883 	unsigned long addr = (unsigned long)event;
2884 	struct buffer_page *bpage = cpu_buffer->commit_page;
2885 	struct buffer_page *start;
2886 
2887 	addr &= PAGE_MASK;
2888 
2889 	/* Do the likely case first */
2890 	if (likely(bpage->page == (void *)addr)) {
2891 		local_dec(&bpage->entries);
2892 		return;
2893 	}
2894 
2895 	/*
2896 	 * Because the commit page may be on the reader page we
2897 	 * start with the next page and check the end loop there.
2898 	 */
2899 	rb_inc_page(cpu_buffer, &bpage);
2900 	start = bpage;
2901 	do {
2902 		if (bpage->page == (void *)addr) {
2903 			local_dec(&bpage->entries);
2904 			return;
2905 		}
2906 		rb_inc_page(cpu_buffer, &bpage);
2907 	} while (bpage != start);
2908 
2909 	/* commit not part of this buffer?? */
2910 	RB_WARN_ON(cpu_buffer, 1);
2911 }
2912 
2913 /**
2914  * ring_buffer_commit_discard - discard an event that has not been committed
2915  * @buffer: the ring buffer
2916  * @event: non committed event to discard
2917  *
2918  * Sometimes an event that is in the ring buffer needs to be ignored.
2919  * This function lets the user discard an event in the ring buffer
2920  * and then that event will not be read later.
2921  *
2922  * This function only works if it is called before the the item has been
2923  * committed. It will try to free the event from the ring buffer
2924  * if another event has not been added behind it.
2925  *
2926  * If another event has been added behind it, it will set the event
2927  * up as discarded, and perform the commit.
2928  *
2929  * If this function is called, do not call ring_buffer_unlock_commit on
2930  * the event.
2931  */
ring_buffer_discard_commit(struct ring_buffer * buffer,struct ring_buffer_event * event)2932 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2933 				struct ring_buffer_event *event)
2934 {
2935 	struct ring_buffer_per_cpu *cpu_buffer;
2936 	int cpu;
2937 
2938 	/* The event is discarded regardless */
2939 	rb_event_discard(event);
2940 
2941 	cpu = smp_processor_id();
2942 	cpu_buffer = buffer->buffers[cpu];
2943 
2944 	/*
2945 	 * This must only be called if the event has not been
2946 	 * committed yet. Thus we can assume that preemption
2947 	 * is still disabled.
2948 	 */
2949 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2950 
2951 	rb_decrement_entry(cpu_buffer, event);
2952 	if (rb_try_to_discard(cpu_buffer, event))
2953 		goto out;
2954 
2955 	/*
2956 	 * The commit is still visible by the reader, so we
2957 	 * must still update the timestamp.
2958 	 */
2959 	rb_update_write_stamp(cpu_buffer, event);
2960  out:
2961 	rb_end_commit(cpu_buffer);
2962 
2963 	trace_recursive_unlock(cpu_buffer);
2964 
2965 	preempt_enable_notrace();
2966 
2967 }
2968 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2969 
2970 /**
2971  * ring_buffer_write - write data to the buffer without reserving
2972  * @buffer: The ring buffer to write to.
2973  * @length: The length of the data being written (excluding the event header)
2974  * @data: The data to write to the buffer.
2975  *
2976  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2977  * one function. If you already have the data to write to the buffer, it
2978  * may be easier to simply call this function.
2979  *
2980  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2981  * and not the length of the event which would hold the header.
2982  */
ring_buffer_write(struct ring_buffer * buffer,unsigned long length,void * data)2983 int ring_buffer_write(struct ring_buffer *buffer,
2984 		      unsigned long length,
2985 		      void *data)
2986 {
2987 	struct ring_buffer_per_cpu *cpu_buffer;
2988 	struct ring_buffer_event *event;
2989 	void *body;
2990 	int ret = -EBUSY;
2991 	int cpu;
2992 
2993 	preempt_disable_notrace();
2994 
2995 	if (atomic_read(&buffer->record_disabled))
2996 		goto out;
2997 
2998 	cpu = raw_smp_processor_id();
2999 
3000 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3001 		goto out;
3002 
3003 	cpu_buffer = buffer->buffers[cpu];
3004 
3005 	if (atomic_read(&cpu_buffer->record_disabled))
3006 		goto out;
3007 
3008 	if (length > BUF_MAX_DATA_SIZE)
3009 		goto out;
3010 
3011 	if (unlikely(trace_recursive_lock(cpu_buffer)))
3012 		goto out;
3013 
3014 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3015 	if (!event)
3016 		goto out_unlock;
3017 
3018 	body = rb_event_data(event);
3019 
3020 	memcpy(body, data, length);
3021 
3022 	rb_commit(cpu_buffer, event);
3023 
3024 	rb_wakeups(buffer, cpu_buffer);
3025 
3026 	ret = 0;
3027 
3028  out_unlock:
3029 	trace_recursive_unlock(cpu_buffer);
3030 
3031  out:
3032 	preempt_enable_notrace();
3033 
3034 	return ret;
3035 }
3036 EXPORT_SYMBOL_GPL(ring_buffer_write);
3037 
rb_per_cpu_empty(struct ring_buffer_per_cpu * cpu_buffer)3038 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3039 {
3040 	struct buffer_page *reader = cpu_buffer->reader_page;
3041 	struct buffer_page *head = rb_set_head_page(cpu_buffer);
3042 	struct buffer_page *commit = cpu_buffer->commit_page;
3043 
3044 	/* In case of error, head will be NULL */
3045 	if (unlikely(!head))
3046 		return true;
3047 
3048 	return reader->read == rb_page_commit(reader) &&
3049 		(commit == reader ||
3050 		 (commit == head &&
3051 		  head->read == rb_page_commit(commit)));
3052 }
3053 
3054 /**
3055  * ring_buffer_record_disable - stop all writes into the buffer
3056  * @buffer: The ring buffer to stop writes to.
3057  *
3058  * This prevents all writes to the buffer. Any attempt to write
3059  * to the buffer after this will fail and return NULL.
3060  *
3061  * The caller should call synchronize_sched() after this.
3062  */
ring_buffer_record_disable(struct ring_buffer * buffer)3063 void ring_buffer_record_disable(struct ring_buffer *buffer)
3064 {
3065 	atomic_inc(&buffer->record_disabled);
3066 }
3067 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3068 
3069 /**
3070  * ring_buffer_record_enable - enable writes to the buffer
3071  * @buffer: The ring buffer to enable writes
3072  *
3073  * Note, multiple disables will need the same number of enables
3074  * to truly enable the writing (much like preempt_disable).
3075  */
ring_buffer_record_enable(struct ring_buffer * buffer)3076 void ring_buffer_record_enable(struct ring_buffer *buffer)
3077 {
3078 	atomic_dec(&buffer->record_disabled);
3079 }
3080 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3081 
3082 /**
3083  * ring_buffer_record_off - stop all writes into the buffer
3084  * @buffer: The ring buffer to stop writes to.
3085  *
3086  * This prevents all writes to the buffer. Any attempt to write
3087  * to the buffer after this will fail and return NULL.
3088  *
3089  * This is different than ring_buffer_record_disable() as
3090  * it works like an on/off switch, where as the disable() version
3091  * must be paired with a enable().
3092  */
ring_buffer_record_off(struct ring_buffer * buffer)3093 void ring_buffer_record_off(struct ring_buffer *buffer)
3094 {
3095 	unsigned int rd;
3096 	unsigned int new_rd;
3097 
3098 	do {
3099 		rd = atomic_read(&buffer->record_disabled);
3100 		new_rd = rd | RB_BUFFER_OFF;
3101 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3102 }
3103 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3104 
3105 /**
3106  * ring_buffer_record_on - restart writes into the buffer
3107  * @buffer: The ring buffer to start writes to.
3108  *
3109  * This enables all writes to the buffer that was disabled by
3110  * ring_buffer_record_off().
3111  *
3112  * This is different than ring_buffer_record_enable() as
3113  * it works like an on/off switch, where as the enable() version
3114  * must be paired with a disable().
3115  */
ring_buffer_record_on(struct ring_buffer * buffer)3116 void ring_buffer_record_on(struct ring_buffer *buffer)
3117 {
3118 	unsigned int rd;
3119 	unsigned int new_rd;
3120 
3121 	do {
3122 		rd = atomic_read(&buffer->record_disabled);
3123 		new_rd = rd & ~RB_BUFFER_OFF;
3124 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3125 }
3126 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3127 
3128 /**
3129  * ring_buffer_record_is_on - return true if the ring buffer can write
3130  * @buffer: The ring buffer to see if write is enabled
3131  *
3132  * Returns true if the ring buffer is in a state that it accepts writes.
3133  */
ring_buffer_record_is_on(struct ring_buffer * buffer)3134 int ring_buffer_record_is_on(struct ring_buffer *buffer)
3135 {
3136 	return !atomic_read(&buffer->record_disabled);
3137 }
3138 
3139 /**
3140  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3141  * @buffer: The ring buffer to stop writes to.
3142  * @cpu: The CPU buffer to stop
3143  *
3144  * This prevents all writes to the buffer. Any attempt to write
3145  * to the buffer after this will fail and return NULL.
3146  *
3147  * The caller should call synchronize_sched() after this.
3148  */
ring_buffer_record_disable_cpu(struct ring_buffer * buffer,int cpu)3149 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3150 {
3151 	struct ring_buffer_per_cpu *cpu_buffer;
3152 
3153 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3154 		return;
3155 
3156 	cpu_buffer = buffer->buffers[cpu];
3157 	atomic_inc(&cpu_buffer->record_disabled);
3158 }
3159 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3160 
3161 /**
3162  * ring_buffer_record_enable_cpu - enable writes to the buffer
3163  * @buffer: The ring buffer to enable writes
3164  * @cpu: The CPU to enable.
3165  *
3166  * Note, multiple disables will need the same number of enables
3167  * to truly enable the writing (much like preempt_disable).
3168  */
ring_buffer_record_enable_cpu(struct ring_buffer * buffer,int cpu)3169 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3170 {
3171 	struct ring_buffer_per_cpu *cpu_buffer;
3172 
3173 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3174 		return;
3175 
3176 	cpu_buffer = buffer->buffers[cpu];
3177 	atomic_dec(&cpu_buffer->record_disabled);
3178 }
3179 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3180 
3181 /*
3182  * The total entries in the ring buffer is the running counter
3183  * of entries entered into the ring buffer, minus the sum of
3184  * the entries read from the ring buffer and the number of
3185  * entries that were overwritten.
3186  */
3187 static inline unsigned long
rb_num_of_entries(struct ring_buffer_per_cpu * cpu_buffer)3188 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3189 {
3190 	return local_read(&cpu_buffer->entries) -
3191 		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3192 }
3193 
3194 /**
3195  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3196  * @buffer: The ring buffer
3197  * @cpu: The per CPU buffer to read from.
3198  */
ring_buffer_oldest_event_ts(struct ring_buffer * buffer,int cpu)3199 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3200 {
3201 	unsigned long flags;
3202 	struct ring_buffer_per_cpu *cpu_buffer;
3203 	struct buffer_page *bpage;
3204 	u64 ret = 0;
3205 
3206 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3207 		return 0;
3208 
3209 	cpu_buffer = buffer->buffers[cpu];
3210 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3211 	/*
3212 	 * if the tail is on reader_page, oldest time stamp is on the reader
3213 	 * page
3214 	 */
3215 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3216 		bpage = cpu_buffer->reader_page;
3217 	else
3218 		bpage = rb_set_head_page(cpu_buffer);
3219 	if (bpage)
3220 		ret = bpage->page->time_stamp;
3221 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3222 
3223 	return ret;
3224 }
3225 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3226 
3227 /**
3228  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3229  * @buffer: The ring buffer
3230  * @cpu: The per CPU buffer to read from.
3231  */
ring_buffer_bytes_cpu(struct ring_buffer * buffer,int cpu)3232 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3233 {
3234 	struct ring_buffer_per_cpu *cpu_buffer;
3235 	unsigned long ret;
3236 
3237 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3238 		return 0;
3239 
3240 	cpu_buffer = buffer->buffers[cpu];
3241 	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3242 
3243 	return ret;
3244 }
3245 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3246 
3247 /**
3248  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3249  * @buffer: The ring buffer
3250  * @cpu: The per CPU buffer to get the entries from.
3251  */
ring_buffer_entries_cpu(struct ring_buffer * buffer,int cpu)3252 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3253 {
3254 	struct ring_buffer_per_cpu *cpu_buffer;
3255 
3256 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3257 		return 0;
3258 
3259 	cpu_buffer = buffer->buffers[cpu];
3260 
3261 	return rb_num_of_entries(cpu_buffer);
3262 }
3263 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3264 
3265 /**
3266  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3267  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3268  * @buffer: The ring buffer
3269  * @cpu: The per CPU buffer to get the number of overruns from
3270  */
ring_buffer_overrun_cpu(struct ring_buffer * buffer,int cpu)3271 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3272 {
3273 	struct ring_buffer_per_cpu *cpu_buffer;
3274 	unsigned long ret;
3275 
3276 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3277 		return 0;
3278 
3279 	cpu_buffer = buffer->buffers[cpu];
3280 	ret = local_read(&cpu_buffer->overrun);
3281 
3282 	return ret;
3283 }
3284 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3285 
3286 /**
3287  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3288  * commits failing due to the buffer wrapping around while there are uncommitted
3289  * events, such as during an interrupt storm.
3290  * @buffer: The ring buffer
3291  * @cpu: The per CPU buffer to get the number of overruns from
3292  */
3293 unsigned long
ring_buffer_commit_overrun_cpu(struct ring_buffer * buffer,int cpu)3294 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3295 {
3296 	struct ring_buffer_per_cpu *cpu_buffer;
3297 	unsigned long ret;
3298 
3299 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3300 		return 0;
3301 
3302 	cpu_buffer = buffer->buffers[cpu];
3303 	ret = local_read(&cpu_buffer->commit_overrun);
3304 
3305 	return ret;
3306 }
3307 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3308 
3309 /**
3310  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3311  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3312  * @buffer: The ring buffer
3313  * @cpu: The per CPU buffer to get the number of overruns from
3314  */
3315 unsigned long
ring_buffer_dropped_events_cpu(struct ring_buffer * buffer,int cpu)3316 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3317 {
3318 	struct ring_buffer_per_cpu *cpu_buffer;
3319 	unsigned long ret;
3320 
3321 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3322 		return 0;
3323 
3324 	cpu_buffer = buffer->buffers[cpu];
3325 	ret = local_read(&cpu_buffer->dropped_events);
3326 
3327 	return ret;
3328 }
3329 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3330 
3331 /**
3332  * ring_buffer_read_events_cpu - get the number of events successfully read
3333  * @buffer: The ring buffer
3334  * @cpu: The per CPU buffer to get the number of events read
3335  */
3336 unsigned long
ring_buffer_read_events_cpu(struct ring_buffer * buffer,int cpu)3337 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3338 {
3339 	struct ring_buffer_per_cpu *cpu_buffer;
3340 
3341 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3342 		return 0;
3343 
3344 	cpu_buffer = buffer->buffers[cpu];
3345 	return cpu_buffer->read;
3346 }
3347 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3348 
3349 /**
3350  * ring_buffer_entries - get the number of entries in a buffer
3351  * @buffer: The ring buffer
3352  *
3353  * Returns the total number of entries in the ring buffer
3354  * (all CPU entries)
3355  */
ring_buffer_entries(struct ring_buffer * buffer)3356 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3357 {
3358 	struct ring_buffer_per_cpu *cpu_buffer;
3359 	unsigned long entries = 0;
3360 	int cpu;
3361 
3362 	/* if you care about this being correct, lock the buffer */
3363 	for_each_buffer_cpu(buffer, cpu) {
3364 		cpu_buffer = buffer->buffers[cpu];
3365 		entries += rb_num_of_entries(cpu_buffer);
3366 	}
3367 
3368 	return entries;
3369 }
3370 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3371 
3372 /**
3373  * ring_buffer_overruns - get the number of overruns in buffer
3374  * @buffer: The ring buffer
3375  *
3376  * Returns the total number of overruns in the ring buffer
3377  * (all CPU entries)
3378  */
ring_buffer_overruns(struct ring_buffer * buffer)3379 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3380 {
3381 	struct ring_buffer_per_cpu *cpu_buffer;
3382 	unsigned long overruns = 0;
3383 	int cpu;
3384 
3385 	/* if you care about this being correct, lock the buffer */
3386 	for_each_buffer_cpu(buffer, cpu) {
3387 		cpu_buffer = buffer->buffers[cpu];
3388 		overruns += local_read(&cpu_buffer->overrun);
3389 	}
3390 
3391 	return overruns;
3392 }
3393 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3394 
rb_iter_reset(struct ring_buffer_iter * iter)3395 static void rb_iter_reset(struct ring_buffer_iter *iter)
3396 {
3397 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3398 
3399 	/* Iterator usage is expected to have record disabled */
3400 	iter->head_page = cpu_buffer->reader_page;
3401 	iter->head = cpu_buffer->reader_page->read;
3402 
3403 	iter->cache_reader_page = iter->head_page;
3404 	iter->cache_read = cpu_buffer->read;
3405 
3406 	if (iter->head)
3407 		iter->read_stamp = cpu_buffer->read_stamp;
3408 	else
3409 		iter->read_stamp = iter->head_page->page->time_stamp;
3410 }
3411 
3412 /**
3413  * ring_buffer_iter_reset - reset an iterator
3414  * @iter: The iterator to reset
3415  *
3416  * Resets the iterator, so that it will start from the beginning
3417  * again.
3418  */
ring_buffer_iter_reset(struct ring_buffer_iter * iter)3419 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3420 {
3421 	struct ring_buffer_per_cpu *cpu_buffer;
3422 	unsigned long flags;
3423 
3424 	if (!iter)
3425 		return;
3426 
3427 	cpu_buffer = iter->cpu_buffer;
3428 
3429 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3430 	rb_iter_reset(iter);
3431 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3432 }
3433 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3434 
3435 /**
3436  * ring_buffer_iter_empty - check if an iterator has no more to read
3437  * @iter: The iterator to check
3438  */
ring_buffer_iter_empty(struct ring_buffer_iter * iter)3439 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3440 {
3441 	struct ring_buffer_per_cpu *cpu_buffer;
3442 	struct buffer_page *reader;
3443 	struct buffer_page *head_page;
3444 	struct buffer_page *commit_page;
3445 	unsigned commit;
3446 
3447 	cpu_buffer = iter->cpu_buffer;
3448 
3449 	/* Remember, trace recording is off when iterator is in use */
3450 	reader = cpu_buffer->reader_page;
3451 	head_page = cpu_buffer->head_page;
3452 	commit_page = cpu_buffer->commit_page;
3453 	commit = rb_page_commit(commit_page);
3454 
3455 	return ((iter->head_page == commit_page && iter->head == commit) ||
3456 		(iter->head_page == reader && commit_page == head_page &&
3457 		 head_page->read == commit &&
3458 		 iter->head == rb_page_commit(cpu_buffer->reader_page)));
3459 }
3460 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3461 
3462 static void
rb_update_read_stamp(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)3463 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3464 		     struct ring_buffer_event *event)
3465 {
3466 	u64 delta;
3467 
3468 	switch (event->type_len) {
3469 	case RINGBUF_TYPE_PADDING:
3470 		return;
3471 
3472 	case RINGBUF_TYPE_TIME_EXTEND:
3473 		delta = event->array[0];
3474 		delta <<= TS_SHIFT;
3475 		delta += event->time_delta;
3476 		cpu_buffer->read_stamp += delta;
3477 		return;
3478 
3479 	case RINGBUF_TYPE_TIME_STAMP:
3480 		/* FIXME: not implemented */
3481 		return;
3482 
3483 	case RINGBUF_TYPE_DATA:
3484 		cpu_buffer->read_stamp += event->time_delta;
3485 		return;
3486 
3487 	default:
3488 		BUG();
3489 	}
3490 	return;
3491 }
3492 
3493 static void
rb_update_iter_read_stamp(struct ring_buffer_iter * iter,struct ring_buffer_event * event)3494 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3495 			  struct ring_buffer_event *event)
3496 {
3497 	u64 delta;
3498 
3499 	switch (event->type_len) {
3500 	case RINGBUF_TYPE_PADDING:
3501 		return;
3502 
3503 	case RINGBUF_TYPE_TIME_EXTEND:
3504 		delta = event->array[0];
3505 		delta <<= TS_SHIFT;
3506 		delta += event->time_delta;
3507 		iter->read_stamp += delta;
3508 		return;
3509 
3510 	case RINGBUF_TYPE_TIME_STAMP:
3511 		/* FIXME: not implemented */
3512 		return;
3513 
3514 	case RINGBUF_TYPE_DATA:
3515 		iter->read_stamp += event->time_delta;
3516 		return;
3517 
3518 	default:
3519 		BUG();
3520 	}
3521 	return;
3522 }
3523 
3524 static struct buffer_page *
rb_get_reader_page(struct ring_buffer_per_cpu * cpu_buffer)3525 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3526 {
3527 	struct buffer_page *reader = NULL;
3528 	unsigned long overwrite;
3529 	unsigned long flags;
3530 	int nr_loops = 0;
3531 	int ret;
3532 
3533 	local_irq_save(flags);
3534 	arch_spin_lock(&cpu_buffer->lock);
3535 
3536  again:
3537 	/*
3538 	 * This should normally only loop twice. But because the
3539 	 * start of the reader inserts an empty page, it causes
3540 	 * a case where we will loop three times. There should be no
3541 	 * reason to loop four times (that I know of).
3542 	 */
3543 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3544 		reader = NULL;
3545 		goto out;
3546 	}
3547 
3548 	reader = cpu_buffer->reader_page;
3549 
3550 	/* If there's more to read, return this page */
3551 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
3552 		goto out;
3553 
3554 	/* Never should we have an index greater than the size */
3555 	if (RB_WARN_ON(cpu_buffer,
3556 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
3557 		goto out;
3558 
3559 	/* check if we caught up to the tail */
3560 	reader = NULL;
3561 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3562 		goto out;
3563 
3564 	/* Don't bother swapping if the ring buffer is empty */
3565 	if (rb_num_of_entries(cpu_buffer) == 0)
3566 		goto out;
3567 
3568 	/*
3569 	 * Reset the reader page to size zero.
3570 	 */
3571 	local_set(&cpu_buffer->reader_page->write, 0);
3572 	local_set(&cpu_buffer->reader_page->entries, 0);
3573 	local_set(&cpu_buffer->reader_page->page->commit, 0);
3574 	cpu_buffer->reader_page->real_end = 0;
3575 
3576  spin:
3577 	/*
3578 	 * Splice the empty reader page into the list around the head.
3579 	 */
3580 	reader = rb_set_head_page(cpu_buffer);
3581 	if (!reader)
3582 		goto out;
3583 	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3584 	cpu_buffer->reader_page->list.prev = reader->list.prev;
3585 
3586 	/*
3587 	 * cpu_buffer->pages just needs to point to the buffer, it
3588 	 *  has no specific buffer page to point to. Lets move it out
3589 	 *  of our way so we don't accidentally swap it.
3590 	 */
3591 	cpu_buffer->pages = reader->list.prev;
3592 
3593 	/* The reader page will be pointing to the new head */
3594 	rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3595 
3596 	/*
3597 	 * We want to make sure we read the overruns after we set up our
3598 	 * pointers to the next object. The writer side does a
3599 	 * cmpxchg to cross pages which acts as the mb on the writer
3600 	 * side. Note, the reader will constantly fail the swap
3601 	 * while the writer is updating the pointers, so this
3602 	 * guarantees that the overwrite recorded here is the one we
3603 	 * want to compare with the last_overrun.
3604 	 */
3605 	smp_mb();
3606 	overwrite = local_read(&(cpu_buffer->overrun));
3607 
3608 	/*
3609 	 * Here's the tricky part.
3610 	 *
3611 	 * We need to move the pointer past the header page.
3612 	 * But we can only do that if a writer is not currently
3613 	 * moving it. The page before the header page has the
3614 	 * flag bit '1' set if it is pointing to the page we want.
3615 	 * but if the writer is in the process of moving it
3616 	 * than it will be '2' or already moved '0'.
3617 	 */
3618 
3619 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3620 
3621 	/*
3622 	 * If we did not convert it, then we must try again.
3623 	 */
3624 	if (!ret)
3625 		goto spin;
3626 
3627 	/*
3628 	 * Yeah! We succeeded in replacing the page.
3629 	 *
3630 	 * Now make the new head point back to the reader page.
3631 	 */
3632 	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3633 	rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3634 
3635 	/* Finally update the reader page to the new head */
3636 	cpu_buffer->reader_page = reader;
3637 	cpu_buffer->reader_page->read = 0;
3638 
3639 	if (overwrite != cpu_buffer->last_overrun) {
3640 		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3641 		cpu_buffer->last_overrun = overwrite;
3642 	}
3643 
3644 	goto again;
3645 
3646  out:
3647 	/* Update the read_stamp on the first event */
3648 	if (reader && reader->read == 0)
3649 		cpu_buffer->read_stamp = reader->page->time_stamp;
3650 
3651 	arch_spin_unlock(&cpu_buffer->lock);
3652 	local_irq_restore(flags);
3653 
3654 	return reader;
3655 }
3656 
rb_advance_reader(struct ring_buffer_per_cpu * cpu_buffer)3657 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3658 {
3659 	struct ring_buffer_event *event;
3660 	struct buffer_page *reader;
3661 	unsigned length;
3662 
3663 	reader = rb_get_reader_page(cpu_buffer);
3664 
3665 	/* This function should not be called when buffer is empty */
3666 	if (RB_WARN_ON(cpu_buffer, !reader))
3667 		return;
3668 
3669 	event = rb_reader_event(cpu_buffer);
3670 
3671 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3672 		cpu_buffer->read++;
3673 
3674 	rb_update_read_stamp(cpu_buffer, event);
3675 
3676 	length = rb_event_length(event);
3677 	cpu_buffer->reader_page->read += length;
3678 }
3679 
rb_advance_iter(struct ring_buffer_iter * iter)3680 static void rb_advance_iter(struct ring_buffer_iter *iter)
3681 {
3682 	struct ring_buffer_per_cpu *cpu_buffer;
3683 	struct ring_buffer_event *event;
3684 	unsigned length;
3685 
3686 	cpu_buffer = iter->cpu_buffer;
3687 
3688 	/*
3689 	 * Check if we are at the end of the buffer.
3690 	 */
3691 	if (iter->head >= rb_page_size(iter->head_page)) {
3692 		/* discarded commits can make the page empty */
3693 		if (iter->head_page == cpu_buffer->commit_page)
3694 			return;
3695 		rb_inc_iter(iter);
3696 		return;
3697 	}
3698 
3699 	event = rb_iter_head_event(iter);
3700 
3701 	length = rb_event_length(event);
3702 
3703 	/*
3704 	 * This should not be called to advance the header if we are
3705 	 * at the tail of the buffer.
3706 	 */
3707 	if (RB_WARN_ON(cpu_buffer,
3708 		       (iter->head_page == cpu_buffer->commit_page) &&
3709 		       (iter->head + length > rb_commit_index(cpu_buffer))))
3710 		return;
3711 
3712 	rb_update_iter_read_stamp(iter, event);
3713 
3714 	iter->head += length;
3715 
3716 	/* check for end of page padding */
3717 	if ((iter->head >= rb_page_size(iter->head_page)) &&
3718 	    (iter->head_page != cpu_buffer->commit_page))
3719 		rb_inc_iter(iter);
3720 }
3721 
rb_lost_events(struct ring_buffer_per_cpu * cpu_buffer)3722 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3723 {
3724 	return cpu_buffer->lost_events;
3725 }
3726 
3727 static struct ring_buffer_event *
rb_buffer_peek(struct ring_buffer_per_cpu * cpu_buffer,u64 * ts,unsigned long * lost_events)3728 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3729 	       unsigned long *lost_events)
3730 {
3731 	struct ring_buffer_event *event;
3732 	struct buffer_page *reader;
3733 	int nr_loops = 0;
3734 
3735  again:
3736 	/*
3737 	 * We repeat when a time extend is encountered.
3738 	 * Since the time extend is always attached to a data event,
3739 	 * we should never loop more than once.
3740 	 * (We never hit the following condition more than twice).
3741 	 */
3742 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3743 		return NULL;
3744 
3745 	reader = rb_get_reader_page(cpu_buffer);
3746 	if (!reader)
3747 		return NULL;
3748 
3749 	event = rb_reader_event(cpu_buffer);
3750 
3751 	switch (event->type_len) {
3752 	case RINGBUF_TYPE_PADDING:
3753 		if (rb_null_event(event))
3754 			RB_WARN_ON(cpu_buffer, 1);
3755 		/*
3756 		 * Because the writer could be discarding every
3757 		 * event it creates (which would probably be bad)
3758 		 * if we were to go back to "again" then we may never
3759 		 * catch up, and will trigger the warn on, or lock
3760 		 * the box. Return the padding, and we will release
3761 		 * the current locks, and try again.
3762 		 */
3763 		return event;
3764 
3765 	case RINGBUF_TYPE_TIME_EXTEND:
3766 		/* Internal data, OK to advance */
3767 		rb_advance_reader(cpu_buffer);
3768 		goto again;
3769 
3770 	case RINGBUF_TYPE_TIME_STAMP:
3771 		/* FIXME: not implemented */
3772 		rb_advance_reader(cpu_buffer);
3773 		goto again;
3774 
3775 	case RINGBUF_TYPE_DATA:
3776 		if (ts) {
3777 			*ts = cpu_buffer->read_stamp + event->time_delta;
3778 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3779 							 cpu_buffer->cpu, ts);
3780 		}
3781 		if (lost_events)
3782 			*lost_events = rb_lost_events(cpu_buffer);
3783 		return event;
3784 
3785 	default:
3786 		BUG();
3787 	}
3788 
3789 	return NULL;
3790 }
3791 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3792 
3793 static struct ring_buffer_event *
rb_iter_peek(struct ring_buffer_iter * iter,u64 * ts)3794 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3795 {
3796 	struct ring_buffer *buffer;
3797 	struct ring_buffer_per_cpu *cpu_buffer;
3798 	struct ring_buffer_event *event;
3799 	int nr_loops = 0;
3800 
3801 	cpu_buffer = iter->cpu_buffer;
3802 	buffer = cpu_buffer->buffer;
3803 
3804 	/*
3805 	 * Check if someone performed a consuming read to
3806 	 * the buffer. A consuming read invalidates the iterator
3807 	 * and we need to reset the iterator in this case.
3808 	 */
3809 	if (unlikely(iter->cache_read != cpu_buffer->read ||
3810 		     iter->cache_reader_page != cpu_buffer->reader_page))
3811 		rb_iter_reset(iter);
3812 
3813  again:
3814 	if (ring_buffer_iter_empty(iter))
3815 		return NULL;
3816 
3817 	/*
3818 	 * We repeat when a time extend is encountered or we hit
3819 	 * the end of the page. Since the time extend is always attached
3820 	 * to a data event, we should never loop more than three times.
3821 	 * Once for going to next page, once on time extend, and
3822 	 * finally once to get the event.
3823 	 * (We never hit the following condition more than thrice).
3824 	 */
3825 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3826 		return NULL;
3827 
3828 	if (rb_per_cpu_empty(cpu_buffer))
3829 		return NULL;
3830 
3831 	if (iter->head >= rb_page_size(iter->head_page)) {
3832 		rb_inc_iter(iter);
3833 		goto again;
3834 	}
3835 
3836 	event = rb_iter_head_event(iter);
3837 
3838 	switch (event->type_len) {
3839 	case RINGBUF_TYPE_PADDING:
3840 		if (rb_null_event(event)) {
3841 			rb_inc_iter(iter);
3842 			goto again;
3843 		}
3844 		rb_advance_iter(iter);
3845 		return event;
3846 
3847 	case RINGBUF_TYPE_TIME_EXTEND:
3848 		/* Internal data, OK to advance */
3849 		rb_advance_iter(iter);
3850 		goto again;
3851 
3852 	case RINGBUF_TYPE_TIME_STAMP:
3853 		/* FIXME: not implemented */
3854 		rb_advance_iter(iter);
3855 		goto again;
3856 
3857 	case RINGBUF_TYPE_DATA:
3858 		if (ts) {
3859 			*ts = iter->read_stamp + event->time_delta;
3860 			ring_buffer_normalize_time_stamp(buffer,
3861 							 cpu_buffer->cpu, ts);
3862 		}
3863 		return event;
3864 
3865 	default:
3866 		BUG();
3867 	}
3868 
3869 	return NULL;
3870 }
3871 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3872 
rb_reader_lock(struct ring_buffer_per_cpu * cpu_buffer)3873 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
3874 {
3875 	if (likely(!in_nmi())) {
3876 		raw_spin_lock(&cpu_buffer->reader_lock);
3877 		return true;
3878 	}
3879 
3880 	/*
3881 	 * If an NMI die dumps out the content of the ring buffer
3882 	 * trylock must be used to prevent a deadlock if the NMI
3883 	 * preempted a task that holds the ring buffer locks. If
3884 	 * we get the lock then all is fine, if not, then continue
3885 	 * to do the read, but this can corrupt the ring buffer,
3886 	 * so it must be permanently disabled from future writes.
3887 	 * Reading from NMI is a oneshot deal.
3888 	 */
3889 	if (raw_spin_trylock(&cpu_buffer->reader_lock))
3890 		return true;
3891 
3892 	/* Continue without locking, but disable the ring buffer */
3893 	atomic_inc(&cpu_buffer->record_disabled);
3894 	return false;
3895 }
3896 
3897 static inline void
rb_reader_unlock(struct ring_buffer_per_cpu * cpu_buffer,bool locked)3898 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
3899 {
3900 	if (likely(locked))
3901 		raw_spin_unlock(&cpu_buffer->reader_lock);
3902 	return;
3903 }
3904 
3905 /**
3906  * ring_buffer_peek - peek at the next event to be read
3907  * @buffer: The ring buffer to read
3908  * @cpu: The cpu to peak at
3909  * @ts: The timestamp counter of this event.
3910  * @lost_events: a variable to store if events were lost (may be NULL)
3911  *
3912  * This will return the event that will be read next, but does
3913  * not consume the data.
3914  */
3915 struct ring_buffer_event *
ring_buffer_peek(struct ring_buffer * buffer,int cpu,u64 * ts,unsigned long * lost_events)3916 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3917 		 unsigned long *lost_events)
3918 {
3919 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3920 	struct ring_buffer_event *event;
3921 	unsigned long flags;
3922 	bool dolock;
3923 
3924 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3925 		return NULL;
3926 
3927  again:
3928 	local_irq_save(flags);
3929 	dolock = rb_reader_lock(cpu_buffer);
3930 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3931 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3932 		rb_advance_reader(cpu_buffer);
3933 	rb_reader_unlock(cpu_buffer, dolock);
3934 	local_irq_restore(flags);
3935 
3936 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3937 		goto again;
3938 
3939 	return event;
3940 }
3941 
3942 /**
3943  * ring_buffer_iter_peek - peek at the next event to be read
3944  * @iter: The ring buffer iterator
3945  * @ts: The timestamp counter of this event.
3946  *
3947  * This will return the event that will be read next, but does
3948  * not increment the iterator.
3949  */
3950 struct ring_buffer_event *
ring_buffer_iter_peek(struct ring_buffer_iter * iter,u64 * ts)3951 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3952 {
3953 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3954 	struct ring_buffer_event *event;
3955 	unsigned long flags;
3956 
3957  again:
3958 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3959 	event = rb_iter_peek(iter, ts);
3960 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3961 
3962 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3963 		goto again;
3964 
3965 	return event;
3966 }
3967 
3968 /**
3969  * ring_buffer_consume - return an event and consume it
3970  * @buffer: The ring buffer to get the next event from
3971  * @cpu: the cpu to read the buffer from
3972  * @ts: a variable to store the timestamp (may be NULL)
3973  * @lost_events: a variable to store if events were lost (may be NULL)
3974  *
3975  * Returns the next event in the ring buffer, and that event is consumed.
3976  * Meaning, that sequential reads will keep returning a different event,
3977  * and eventually empty the ring buffer if the producer is slower.
3978  */
3979 struct ring_buffer_event *
ring_buffer_consume(struct ring_buffer * buffer,int cpu,u64 * ts,unsigned long * lost_events)3980 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3981 		    unsigned long *lost_events)
3982 {
3983 	struct ring_buffer_per_cpu *cpu_buffer;
3984 	struct ring_buffer_event *event = NULL;
3985 	unsigned long flags;
3986 	bool dolock;
3987 
3988  again:
3989 	/* might be called in atomic */
3990 	preempt_disable();
3991 
3992 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3993 		goto out;
3994 
3995 	cpu_buffer = buffer->buffers[cpu];
3996 	local_irq_save(flags);
3997 	dolock = rb_reader_lock(cpu_buffer);
3998 
3999 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4000 	if (event) {
4001 		cpu_buffer->lost_events = 0;
4002 		rb_advance_reader(cpu_buffer);
4003 	}
4004 
4005 	rb_reader_unlock(cpu_buffer, dolock);
4006 	local_irq_restore(flags);
4007 
4008  out:
4009 	preempt_enable();
4010 
4011 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4012 		goto again;
4013 
4014 	return event;
4015 }
4016 EXPORT_SYMBOL_GPL(ring_buffer_consume);
4017 
4018 /**
4019  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4020  * @buffer: The ring buffer to read from
4021  * @cpu: The cpu buffer to iterate over
4022  *
4023  * This performs the initial preparations necessary to iterate
4024  * through the buffer.  Memory is allocated, buffer recording
4025  * is disabled, and the iterator pointer is returned to the caller.
4026  *
4027  * Disabling buffer recordng prevents the reading from being
4028  * corrupted. This is not a consuming read, so a producer is not
4029  * expected.
4030  *
4031  * After a sequence of ring_buffer_read_prepare calls, the user is
4032  * expected to make at least one call to ring_buffer_read_prepare_sync.
4033  * Afterwards, ring_buffer_read_start is invoked to get things going
4034  * for real.
4035  *
4036  * This overall must be paired with ring_buffer_read_finish.
4037  */
4038 struct ring_buffer_iter *
ring_buffer_read_prepare(struct ring_buffer * buffer,int cpu)4039 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
4040 {
4041 	struct ring_buffer_per_cpu *cpu_buffer;
4042 	struct ring_buffer_iter *iter;
4043 
4044 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4045 		return NULL;
4046 
4047 	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
4048 	if (!iter)
4049 		return NULL;
4050 
4051 	cpu_buffer = buffer->buffers[cpu];
4052 
4053 	iter->cpu_buffer = cpu_buffer;
4054 
4055 	atomic_inc(&buffer->resize_disabled);
4056 	atomic_inc(&cpu_buffer->record_disabled);
4057 
4058 	return iter;
4059 }
4060 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4061 
4062 /**
4063  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4064  *
4065  * All previously invoked ring_buffer_read_prepare calls to prepare
4066  * iterators will be synchronized.  Afterwards, read_buffer_read_start
4067  * calls on those iterators are allowed.
4068  */
4069 void
ring_buffer_read_prepare_sync(void)4070 ring_buffer_read_prepare_sync(void)
4071 {
4072 	synchronize_sched();
4073 }
4074 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4075 
4076 /**
4077  * ring_buffer_read_start - start a non consuming read of the buffer
4078  * @iter: The iterator returned by ring_buffer_read_prepare
4079  *
4080  * This finalizes the startup of an iteration through the buffer.
4081  * The iterator comes from a call to ring_buffer_read_prepare and
4082  * an intervening ring_buffer_read_prepare_sync must have been
4083  * performed.
4084  *
4085  * Must be paired with ring_buffer_read_finish.
4086  */
4087 void
ring_buffer_read_start(struct ring_buffer_iter * iter)4088 ring_buffer_read_start(struct ring_buffer_iter *iter)
4089 {
4090 	struct ring_buffer_per_cpu *cpu_buffer;
4091 	unsigned long flags;
4092 
4093 	if (!iter)
4094 		return;
4095 
4096 	cpu_buffer = iter->cpu_buffer;
4097 
4098 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4099 	arch_spin_lock(&cpu_buffer->lock);
4100 	rb_iter_reset(iter);
4101 	arch_spin_unlock(&cpu_buffer->lock);
4102 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4103 }
4104 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4105 
4106 /**
4107  * ring_buffer_read_finish - finish reading the iterator of the buffer
4108  * @iter: The iterator retrieved by ring_buffer_start
4109  *
4110  * This re-enables the recording to the buffer, and frees the
4111  * iterator.
4112  */
4113 void
ring_buffer_read_finish(struct ring_buffer_iter * iter)4114 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4115 {
4116 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4117 	unsigned long flags;
4118 
4119 	/*
4120 	 * Ring buffer is disabled from recording, here's a good place
4121 	 * to check the integrity of the ring buffer.
4122 	 * Must prevent readers from trying to read, as the check
4123 	 * clears the HEAD page and readers require it.
4124 	 */
4125 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4126 	rb_check_pages(cpu_buffer);
4127 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4128 
4129 	atomic_dec(&cpu_buffer->record_disabled);
4130 	atomic_dec(&cpu_buffer->buffer->resize_disabled);
4131 	kfree(iter);
4132 }
4133 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4134 
4135 /**
4136  * ring_buffer_read - read the next item in the ring buffer by the iterator
4137  * @iter: The ring buffer iterator
4138  * @ts: The time stamp of the event read.
4139  *
4140  * This reads the next event in the ring buffer and increments the iterator.
4141  */
4142 struct ring_buffer_event *
ring_buffer_read(struct ring_buffer_iter * iter,u64 * ts)4143 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4144 {
4145 	struct ring_buffer_event *event;
4146 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4147 	unsigned long flags;
4148 
4149 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4150  again:
4151 	event = rb_iter_peek(iter, ts);
4152 	if (!event)
4153 		goto out;
4154 
4155 	if (event->type_len == RINGBUF_TYPE_PADDING)
4156 		goto again;
4157 
4158 	rb_advance_iter(iter);
4159  out:
4160 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4161 
4162 	return event;
4163 }
4164 EXPORT_SYMBOL_GPL(ring_buffer_read);
4165 
4166 /**
4167  * ring_buffer_size - return the size of the ring buffer (in bytes)
4168  * @buffer: The ring buffer.
4169  */
ring_buffer_size(struct ring_buffer * buffer,int cpu)4170 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4171 {
4172 	/*
4173 	 * Earlier, this method returned
4174 	 *	BUF_PAGE_SIZE * buffer->nr_pages
4175 	 * Since the nr_pages field is now removed, we have converted this to
4176 	 * return the per cpu buffer value.
4177 	 */
4178 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4179 		return 0;
4180 
4181 	return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4182 }
4183 EXPORT_SYMBOL_GPL(ring_buffer_size);
4184 
4185 static void
rb_reset_cpu(struct ring_buffer_per_cpu * cpu_buffer)4186 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4187 {
4188 	rb_head_page_deactivate(cpu_buffer);
4189 
4190 	cpu_buffer->head_page
4191 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
4192 	local_set(&cpu_buffer->head_page->write, 0);
4193 	local_set(&cpu_buffer->head_page->entries, 0);
4194 	local_set(&cpu_buffer->head_page->page->commit, 0);
4195 
4196 	cpu_buffer->head_page->read = 0;
4197 
4198 	cpu_buffer->tail_page = cpu_buffer->head_page;
4199 	cpu_buffer->commit_page = cpu_buffer->head_page;
4200 
4201 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4202 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
4203 	local_set(&cpu_buffer->reader_page->write, 0);
4204 	local_set(&cpu_buffer->reader_page->entries, 0);
4205 	local_set(&cpu_buffer->reader_page->page->commit, 0);
4206 	cpu_buffer->reader_page->read = 0;
4207 
4208 	local_set(&cpu_buffer->entries_bytes, 0);
4209 	local_set(&cpu_buffer->overrun, 0);
4210 	local_set(&cpu_buffer->commit_overrun, 0);
4211 	local_set(&cpu_buffer->dropped_events, 0);
4212 	local_set(&cpu_buffer->entries, 0);
4213 	local_set(&cpu_buffer->committing, 0);
4214 	local_set(&cpu_buffer->commits, 0);
4215 	cpu_buffer->read = 0;
4216 	cpu_buffer->read_bytes = 0;
4217 
4218 	cpu_buffer->write_stamp = 0;
4219 	cpu_buffer->read_stamp = 0;
4220 
4221 	cpu_buffer->lost_events = 0;
4222 	cpu_buffer->last_overrun = 0;
4223 
4224 	rb_head_page_activate(cpu_buffer);
4225 }
4226 
4227 /**
4228  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4229  * @buffer: The ring buffer to reset a per cpu buffer of
4230  * @cpu: The CPU buffer to be reset
4231  */
ring_buffer_reset_cpu(struct ring_buffer * buffer,int cpu)4232 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4233 {
4234 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4235 	unsigned long flags;
4236 
4237 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4238 		return;
4239 
4240 	atomic_inc(&buffer->resize_disabled);
4241 	atomic_inc(&cpu_buffer->record_disabled);
4242 
4243 	/* Make sure all commits have finished */
4244 	synchronize_sched();
4245 
4246 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4247 
4248 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4249 		goto out;
4250 
4251 	arch_spin_lock(&cpu_buffer->lock);
4252 
4253 	rb_reset_cpu(cpu_buffer);
4254 
4255 	arch_spin_unlock(&cpu_buffer->lock);
4256 
4257  out:
4258 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4259 
4260 	atomic_dec(&cpu_buffer->record_disabled);
4261 	atomic_dec(&buffer->resize_disabled);
4262 }
4263 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4264 
4265 /**
4266  * ring_buffer_reset - reset a ring buffer
4267  * @buffer: The ring buffer to reset all cpu buffers
4268  */
ring_buffer_reset(struct ring_buffer * buffer)4269 void ring_buffer_reset(struct ring_buffer *buffer)
4270 {
4271 	int cpu;
4272 
4273 	for_each_buffer_cpu(buffer, cpu)
4274 		ring_buffer_reset_cpu(buffer, cpu);
4275 }
4276 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4277 
4278 /**
4279  * rind_buffer_empty - is the ring buffer empty?
4280  * @buffer: The ring buffer to test
4281  */
ring_buffer_empty(struct ring_buffer * buffer)4282 bool ring_buffer_empty(struct ring_buffer *buffer)
4283 {
4284 	struct ring_buffer_per_cpu *cpu_buffer;
4285 	unsigned long flags;
4286 	bool dolock;
4287 	int cpu;
4288 	int ret;
4289 
4290 	/* yes this is racy, but if you don't like the race, lock the buffer */
4291 	for_each_buffer_cpu(buffer, cpu) {
4292 		cpu_buffer = buffer->buffers[cpu];
4293 		local_irq_save(flags);
4294 		dolock = rb_reader_lock(cpu_buffer);
4295 		ret = rb_per_cpu_empty(cpu_buffer);
4296 		rb_reader_unlock(cpu_buffer, dolock);
4297 		local_irq_restore(flags);
4298 
4299 		if (!ret)
4300 			return false;
4301 	}
4302 
4303 	return true;
4304 }
4305 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4306 
4307 /**
4308  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4309  * @buffer: The ring buffer
4310  * @cpu: The CPU buffer to test
4311  */
ring_buffer_empty_cpu(struct ring_buffer * buffer,int cpu)4312 bool ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4313 {
4314 	struct ring_buffer_per_cpu *cpu_buffer;
4315 	unsigned long flags;
4316 	bool dolock;
4317 	int ret;
4318 
4319 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4320 		return true;
4321 
4322 	cpu_buffer = buffer->buffers[cpu];
4323 	local_irq_save(flags);
4324 	dolock = rb_reader_lock(cpu_buffer);
4325 	ret = rb_per_cpu_empty(cpu_buffer);
4326 	rb_reader_unlock(cpu_buffer, dolock);
4327 	local_irq_restore(flags);
4328 
4329 	return ret;
4330 }
4331 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4332 
4333 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4334 /**
4335  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4336  * @buffer_a: One buffer to swap with
4337  * @buffer_b: The other buffer to swap with
4338  *
4339  * This function is useful for tracers that want to take a "snapshot"
4340  * of a CPU buffer and has another back up buffer lying around.
4341  * it is expected that the tracer handles the cpu buffer not being
4342  * used at the moment.
4343  */
ring_buffer_swap_cpu(struct ring_buffer * buffer_a,struct ring_buffer * buffer_b,int cpu)4344 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4345 			 struct ring_buffer *buffer_b, int cpu)
4346 {
4347 	struct ring_buffer_per_cpu *cpu_buffer_a;
4348 	struct ring_buffer_per_cpu *cpu_buffer_b;
4349 	int ret = -EINVAL;
4350 
4351 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4352 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
4353 		goto out;
4354 
4355 	cpu_buffer_a = buffer_a->buffers[cpu];
4356 	cpu_buffer_b = buffer_b->buffers[cpu];
4357 
4358 	/* At least make sure the two buffers are somewhat the same */
4359 	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4360 		goto out;
4361 
4362 	ret = -EAGAIN;
4363 
4364 	if (atomic_read(&buffer_a->record_disabled))
4365 		goto out;
4366 
4367 	if (atomic_read(&buffer_b->record_disabled))
4368 		goto out;
4369 
4370 	if (atomic_read(&cpu_buffer_a->record_disabled))
4371 		goto out;
4372 
4373 	if (atomic_read(&cpu_buffer_b->record_disabled))
4374 		goto out;
4375 
4376 	/*
4377 	 * We can't do a synchronize_sched here because this
4378 	 * function can be called in atomic context.
4379 	 * Normally this will be called from the same CPU as cpu.
4380 	 * If not it's up to the caller to protect this.
4381 	 */
4382 	atomic_inc(&cpu_buffer_a->record_disabled);
4383 	atomic_inc(&cpu_buffer_b->record_disabled);
4384 
4385 	ret = -EBUSY;
4386 	if (local_read(&cpu_buffer_a->committing))
4387 		goto out_dec;
4388 	if (local_read(&cpu_buffer_b->committing))
4389 		goto out_dec;
4390 
4391 	buffer_a->buffers[cpu] = cpu_buffer_b;
4392 	buffer_b->buffers[cpu] = cpu_buffer_a;
4393 
4394 	cpu_buffer_b->buffer = buffer_a;
4395 	cpu_buffer_a->buffer = buffer_b;
4396 
4397 	ret = 0;
4398 
4399 out_dec:
4400 	atomic_dec(&cpu_buffer_a->record_disabled);
4401 	atomic_dec(&cpu_buffer_b->record_disabled);
4402 out:
4403 	return ret;
4404 }
4405 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4406 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4407 
4408 /**
4409  * ring_buffer_alloc_read_page - allocate a page to read from buffer
4410  * @buffer: the buffer to allocate for.
4411  * @cpu: the cpu buffer to allocate.
4412  *
4413  * This function is used in conjunction with ring_buffer_read_page.
4414  * When reading a full page from the ring buffer, these functions
4415  * can be used to speed up the process. The calling function should
4416  * allocate a few pages first with this function. Then when it
4417  * needs to get pages from the ring buffer, it passes the result
4418  * of this function into ring_buffer_read_page, which will swap
4419  * the page that was allocated, with the read page of the buffer.
4420  *
4421  * Returns:
4422  *  The page allocated, or NULL on error.
4423  */
ring_buffer_alloc_read_page(struct ring_buffer * buffer,int cpu)4424 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4425 {
4426 	struct buffer_data_page *bpage;
4427 	struct page *page;
4428 
4429 	page = alloc_pages_node(cpu_to_node(cpu),
4430 				GFP_KERNEL | __GFP_NORETRY, 0);
4431 	if (!page)
4432 		return NULL;
4433 
4434 	bpage = page_address(page);
4435 
4436 	rb_init_page(bpage);
4437 
4438 	return bpage;
4439 }
4440 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4441 
4442 /**
4443  * ring_buffer_free_read_page - free an allocated read page
4444  * @buffer: the buffer the page was allocate for
4445  * @data: the page to free
4446  *
4447  * Free a page allocated from ring_buffer_alloc_read_page.
4448  */
ring_buffer_free_read_page(struct ring_buffer * buffer,void * data)4449 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4450 {
4451 	free_page((unsigned long)data);
4452 }
4453 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4454 
4455 /**
4456  * ring_buffer_read_page - extract a page from the ring buffer
4457  * @buffer: buffer to extract from
4458  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4459  * @len: amount to extract
4460  * @cpu: the cpu of the buffer to extract
4461  * @full: should the extraction only happen when the page is full.
4462  *
4463  * This function will pull out a page from the ring buffer and consume it.
4464  * @data_page must be the address of the variable that was returned
4465  * from ring_buffer_alloc_read_page. This is because the page might be used
4466  * to swap with a page in the ring buffer.
4467  *
4468  * for example:
4469  *	rpage = ring_buffer_alloc_read_page(buffer, cpu);
4470  *	if (!rpage)
4471  *		return error;
4472  *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4473  *	if (ret >= 0)
4474  *		process_page(rpage, ret);
4475  *
4476  * When @full is set, the function will not return true unless
4477  * the writer is off the reader page.
4478  *
4479  * Note: it is up to the calling functions to handle sleeps and wakeups.
4480  *  The ring buffer can be used anywhere in the kernel and can not
4481  *  blindly call wake_up. The layer that uses the ring buffer must be
4482  *  responsible for that.
4483  *
4484  * Returns:
4485  *  >=0 if data has been transferred, returns the offset of consumed data.
4486  *  <0 if no data has been transferred.
4487  */
ring_buffer_read_page(struct ring_buffer * buffer,void ** data_page,size_t len,int cpu,int full)4488 int ring_buffer_read_page(struct ring_buffer *buffer,
4489 			  void **data_page, size_t len, int cpu, int full)
4490 {
4491 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4492 	struct ring_buffer_event *event;
4493 	struct buffer_data_page *bpage;
4494 	struct buffer_page *reader;
4495 	unsigned long missed_events;
4496 	unsigned long flags;
4497 	unsigned int commit;
4498 	unsigned int read;
4499 	u64 save_timestamp;
4500 	int ret = -1;
4501 
4502 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4503 		goto out;
4504 
4505 	/*
4506 	 * If len is not big enough to hold the page header, then
4507 	 * we can not copy anything.
4508 	 */
4509 	if (len <= BUF_PAGE_HDR_SIZE)
4510 		goto out;
4511 
4512 	len -= BUF_PAGE_HDR_SIZE;
4513 
4514 	if (!data_page)
4515 		goto out;
4516 
4517 	bpage = *data_page;
4518 	if (!bpage)
4519 		goto out;
4520 
4521 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4522 
4523 	reader = rb_get_reader_page(cpu_buffer);
4524 	if (!reader)
4525 		goto out_unlock;
4526 
4527 	event = rb_reader_event(cpu_buffer);
4528 
4529 	read = reader->read;
4530 	commit = rb_page_commit(reader);
4531 
4532 	/* Check if any events were dropped */
4533 	missed_events = cpu_buffer->lost_events;
4534 
4535 	/*
4536 	 * If this page has been partially read or
4537 	 * if len is not big enough to read the rest of the page or
4538 	 * a writer is still on the page, then
4539 	 * we must copy the data from the page to the buffer.
4540 	 * Otherwise, we can simply swap the page with the one passed in.
4541 	 */
4542 	if (read || (len < (commit - read)) ||
4543 	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
4544 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4545 		unsigned int rpos = read;
4546 		unsigned int pos = 0;
4547 		unsigned int size;
4548 
4549 		if (full)
4550 			goto out_unlock;
4551 
4552 		if (len > (commit - read))
4553 			len = (commit - read);
4554 
4555 		/* Always keep the time extend and data together */
4556 		size = rb_event_ts_length(event);
4557 
4558 		if (len < size)
4559 			goto out_unlock;
4560 
4561 		/* save the current timestamp, since the user will need it */
4562 		save_timestamp = cpu_buffer->read_stamp;
4563 
4564 		/* Need to copy one event at a time */
4565 		do {
4566 			/* We need the size of one event, because
4567 			 * rb_advance_reader only advances by one event,
4568 			 * whereas rb_event_ts_length may include the size of
4569 			 * one or two events.
4570 			 * We have already ensured there's enough space if this
4571 			 * is a time extend. */
4572 			size = rb_event_length(event);
4573 			memcpy(bpage->data + pos, rpage->data + rpos, size);
4574 
4575 			len -= size;
4576 
4577 			rb_advance_reader(cpu_buffer);
4578 			rpos = reader->read;
4579 			pos += size;
4580 
4581 			if (rpos >= commit)
4582 				break;
4583 
4584 			event = rb_reader_event(cpu_buffer);
4585 			/* Always keep the time extend and data together */
4586 			size = rb_event_ts_length(event);
4587 		} while (len >= size);
4588 
4589 		/* update bpage */
4590 		local_set(&bpage->commit, pos);
4591 		bpage->time_stamp = save_timestamp;
4592 
4593 		/* we copied everything to the beginning */
4594 		read = 0;
4595 	} else {
4596 		/* update the entry counter */
4597 		cpu_buffer->read += rb_page_entries(reader);
4598 		cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4599 
4600 		/* swap the pages */
4601 		rb_init_page(bpage);
4602 		bpage = reader->page;
4603 		reader->page = *data_page;
4604 		local_set(&reader->write, 0);
4605 		local_set(&reader->entries, 0);
4606 		reader->read = 0;
4607 		*data_page = bpage;
4608 
4609 		/*
4610 		 * Use the real_end for the data size,
4611 		 * This gives us a chance to store the lost events
4612 		 * on the page.
4613 		 */
4614 		if (reader->real_end)
4615 			local_set(&bpage->commit, reader->real_end);
4616 	}
4617 	ret = read;
4618 
4619 	cpu_buffer->lost_events = 0;
4620 
4621 	commit = local_read(&bpage->commit);
4622 	/*
4623 	 * Set a flag in the commit field if we lost events
4624 	 */
4625 	if (missed_events) {
4626 		/* If there is room at the end of the page to save the
4627 		 * missed events, then record it there.
4628 		 */
4629 		if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4630 			memcpy(&bpage->data[commit], &missed_events,
4631 			       sizeof(missed_events));
4632 			local_add(RB_MISSED_STORED, &bpage->commit);
4633 			commit += sizeof(missed_events);
4634 		}
4635 		local_add(RB_MISSED_EVENTS, &bpage->commit);
4636 	}
4637 
4638 	/*
4639 	 * This page may be off to user land. Zero it out here.
4640 	 */
4641 	if (commit < BUF_PAGE_SIZE)
4642 		memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4643 
4644  out_unlock:
4645 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4646 
4647  out:
4648 	return ret;
4649 }
4650 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4651 
4652 #ifdef CONFIG_HOTPLUG_CPU
rb_cpu_notify(struct notifier_block * self,unsigned long action,void * hcpu)4653 static int rb_cpu_notify(struct notifier_block *self,
4654 			 unsigned long action, void *hcpu)
4655 {
4656 	struct ring_buffer *buffer =
4657 		container_of(self, struct ring_buffer, cpu_notify);
4658 	long cpu = (long)hcpu;
4659 	long nr_pages_same;
4660 	int cpu_i;
4661 	unsigned long nr_pages;
4662 
4663 	switch (action) {
4664 	case CPU_UP_PREPARE:
4665 	case CPU_UP_PREPARE_FROZEN:
4666 		if (cpumask_test_cpu(cpu, buffer->cpumask))
4667 			return NOTIFY_OK;
4668 
4669 		nr_pages = 0;
4670 		nr_pages_same = 1;
4671 		/* check if all cpu sizes are same */
4672 		for_each_buffer_cpu(buffer, cpu_i) {
4673 			/* fill in the size from first enabled cpu */
4674 			if (nr_pages == 0)
4675 				nr_pages = buffer->buffers[cpu_i]->nr_pages;
4676 			if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4677 				nr_pages_same = 0;
4678 				break;
4679 			}
4680 		}
4681 		/* allocate minimum pages, user can later expand it */
4682 		if (!nr_pages_same)
4683 			nr_pages = 2;
4684 		buffer->buffers[cpu] =
4685 			rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4686 		if (!buffer->buffers[cpu]) {
4687 			WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4688 			     cpu);
4689 			return NOTIFY_OK;
4690 		}
4691 		smp_wmb();
4692 		cpumask_set_cpu(cpu, buffer->cpumask);
4693 		break;
4694 	case CPU_DOWN_PREPARE:
4695 	case CPU_DOWN_PREPARE_FROZEN:
4696 		/*
4697 		 * Do nothing.
4698 		 *  If we were to free the buffer, then the user would
4699 		 *  lose any trace that was in the buffer.
4700 		 */
4701 		break;
4702 	default:
4703 		break;
4704 	}
4705 	return NOTIFY_OK;
4706 }
4707 #endif
4708 
4709 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4710 /*
4711  * This is a basic integrity check of the ring buffer.
4712  * Late in the boot cycle this test will run when configured in.
4713  * It will kick off a thread per CPU that will go into a loop
4714  * writing to the per cpu ring buffer various sizes of data.
4715  * Some of the data will be large items, some small.
4716  *
4717  * Another thread is created that goes into a spin, sending out
4718  * IPIs to the other CPUs to also write into the ring buffer.
4719  * this is to test the nesting ability of the buffer.
4720  *
4721  * Basic stats are recorded and reported. If something in the
4722  * ring buffer should happen that's not expected, a big warning
4723  * is displayed and all ring buffers are disabled.
4724  */
4725 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4726 
4727 struct rb_test_data {
4728 	struct ring_buffer	*buffer;
4729 	unsigned long		events;
4730 	unsigned long		bytes_written;
4731 	unsigned long		bytes_alloc;
4732 	unsigned long		bytes_dropped;
4733 	unsigned long		events_nested;
4734 	unsigned long		bytes_written_nested;
4735 	unsigned long		bytes_alloc_nested;
4736 	unsigned long		bytes_dropped_nested;
4737 	int			min_size_nested;
4738 	int			max_size_nested;
4739 	int			max_size;
4740 	int			min_size;
4741 	int			cpu;
4742 	int			cnt;
4743 };
4744 
4745 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4746 
4747 /* 1 meg per cpu */
4748 #define RB_TEST_BUFFER_SIZE	1048576
4749 
4750 static char rb_string[] __initdata =
4751 	"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4752 	"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4753 	"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4754 
4755 static bool rb_test_started __initdata;
4756 
4757 struct rb_item {
4758 	int size;
4759 	char str[];
4760 };
4761 
rb_write_something(struct rb_test_data * data,bool nested)4762 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4763 {
4764 	struct ring_buffer_event *event;
4765 	struct rb_item *item;
4766 	bool started;
4767 	int event_len;
4768 	int size;
4769 	int len;
4770 	int cnt;
4771 
4772 	/* Have nested writes different that what is written */
4773 	cnt = data->cnt + (nested ? 27 : 0);
4774 
4775 	/* Multiply cnt by ~e, to make some unique increment */
4776 	size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4777 
4778 	len = size + sizeof(struct rb_item);
4779 
4780 	started = rb_test_started;
4781 	/* read rb_test_started before checking buffer enabled */
4782 	smp_rmb();
4783 
4784 	event = ring_buffer_lock_reserve(data->buffer, len);
4785 	if (!event) {
4786 		/* Ignore dropped events before test starts. */
4787 		if (started) {
4788 			if (nested)
4789 				data->bytes_dropped += len;
4790 			else
4791 				data->bytes_dropped_nested += len;
4792 		}
4793 		return len;
4794 	}
4795 
4796 	event_len = ring_buffer_event_length(event);
4797 
4798 	if (RB_WARN_ON(data->buffer, event_len < len))
4799 		goto out;
4800 
4801 	item = ring_buffer_event_data(event);
4802 	item->size = size;
4803 	memcpy(item->str, rb_string, size);
4804 
4805 	if (nested) {
4806 		data->bytes_alloc_nested += event_len;
4807 		data->bytes_written_nested += len;
4808 		data->events_nested++;
4809 		if (!data->min_size_nested || len < data->min_size_nested)
4810 			data->min_size_nested = len;
4811 		if (len > data->max_size_nested)
4812 			data->max_size_nested = len;
4813 	} else {
4814 		data->bytes_alloc += event_len;
4815 		data->bytes_written += len;
4816 		data->events++;
4817 		if (!data->min_size || len < data->min_size)
4818 			data->max_size = len;
4819 		if (len > data->max_size)
4820 			data->max_size = len;
4821 	}
4822 
4823  out:
4824 	ring_buffer_unlock_commit(data->buffer, event);
4825 
4826 	return 0;
4827 }
4828 
rb_test(void * arg)4829 static __init int rb_test(void *arg)
4830 {
4831 	struct rb_test_data *data = arg;
4832 
4833 	while (!kthread_should_stop()) {
4834 		rb_write_something(data, false);
4835 		data->cnt++;
4836 
4837 		set_current_state(TASK_INTERRUPTIBLE);
4838 		/* Now sleep between a min of 100-300us and a max of 1ms */
4839 		usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4840 	}
4841 
4842 	return 0;
4843 }
4844 
rb_ipi(void * ignore)4845 static __init void rb_ipi(void *ignore)
4846 {
4847 	struct rb_test_data *data;
4848 	int cpu = smp_processor_id();
4849 
4850 	data = &rb_data[cpu];
4851 	rb_write_something(data, true);
4852 }
4853 
rb_hammer_test(void * arg)4854 static __init int rb_hammer_test(void *arg)
4855 {
4856 	while (!kthread_should_stop()) {
4857 
4858 		/* Send an IPI to all cpus to write data! */
4859 		smp_call_function(rb_ipi, NULL, 1);
4860 		/* No sleep, but for non preempt, let others run */
4861 		schedule();
4862 	}
4863 
4864 	return 0;
4865 }
4866 
test_ringbuffer(void)4867 static __init int test_ringbuffer(void)
4868 {
4869 	struct task_struct *rb_hammer;
4870 	struct ring_buffer *buffer;
4871 	int cpu;
4872 	int ret = 0;
4873 
4874 	pr_info("Running ring buffer tests...\n");
4875 
4876 	buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4877 	if (WARN_ON(!buffer))
4878 		return 0;
4879 
4880 	/* Disable buffer so that threads can't write to it yet */
4881 	ring_buffer_record_off(buffer);
4882 
4883 	for_each_online_cpu(cpu) {
4884 		rb_data[cpu].buffer = buffer;
4885 		rb_data[cpu].cpu = cpu;
4886 		rb_data[cpu].cnt = cpu;
4887 		rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4888 						 "rbtester/%d", cpu);
4889 		if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
4890 			pr_cont("FAILED\n");
4891 			ret = PTR_ERR(rb_threads[cpu]);
4892 			goto out_free;
4893 		}
4894 
4895 		kthread_bind(rb_threads[cpu], cpu);
4896  		wake_up_process(rb_threads[cpu]);
4897 	}
4898 
4899 	/* Now create the rb hammer! */
4900 	rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4901 	if (WARN_ON(IS_ERR(rb_hammer))) {
4902 		pr_cont("FAILED\n");
4903 		ret = PTR_ERR(rb_hammer);
4904 		goto out_free;
4905 	}
4906 
4907 	ring_buffer_record_on(buffer);
4908 	/*
4909 	 * Show buffer is enabled before setting rb_test_started.
4910 	 * Yes there's a small race window where events could be
4911 	 * dropped and the thread wont catch it. But when a ring
4912 	 * buffer gets enabled, there will always be some kind of
4913 	 * delay before other CPUs see it. Thus, we don't care about
4914 	 * those dropped events. We care about events dropped after
4915 	 * the threads see that the buffer is active.
4916 	 */
4917 	smp_wmb();
4918 	rb_test_started = true;
4919 
4920 	set_current_state(TASK_INTERRUPTIBLE);
4921 	/* Just run for 10 seconds */;
4922 	schedule_timeout(10 * HZ);
4923 
4924 	kthread_stop(rb_hammer);
4925 
4926  out_free:
4927 	for_each_online_cpu(cpu) {
4928 		if (!rb_threads[cpu])
4929 			break;
4930 		kthread_stop(rb_threads[cpu]);
4931 	}
4932 	if (ret) {
4933 		ring_buffer_free(buffer);
4934 		return ret;
4935 	}
4936 
4937 	/* Report! */
4938 	pr_info("finished\n");
4939 	for_each_online_cpu(cpu) {
4940 		struct ring_buffer_event *event;
4941 		struct rb_test_data *data = &rb_data[cpu];
4942 		struct rb_item *item;
4943 		unsigned long total_events;
4944 		unsigned long total_dropped;
4945 		unsigned long total_written;
4946 		unsigned long total_alloc;
4947 		unsigned long total_read = 0;
4948 		unsigned long total_size = 0;
4949 		unsigned long total_len = 0;
4950 		unsigned long total_lost = 0;
4951 		unsigned long lost;
4952 		int big_event_size;
4953 		int small_event_size;
4954 
4955 		ret = -1;
4956 
4957 		total_events = data->events + data->events_nested;
4958 		total_written = data->bytes_written + data->bytes_written_nested;
4959 		total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4960 		total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4961 
4962 		big_event_size = data->max_size + data->max_size_nested;
4963 		small_event_size = data->min_size + data->min_size_nested;
4964 
4965 		pr_info("CPU %d:\n", cpu);
4966 		pr_info("              events:    %ld\n", total_events);
4967 		pr_info("       dropped bytes:    %ld\n", total_dropped);
4968 		pr_info("       alloced bytes:    %ld\n", total_alloc);
4969 		pr_info("       written bytes:    %ld\n", total_written);
4970 		pr_info("       biggest event:    %d\n", big_event_size);
4971 		pr_info("      smallest event:    %d\n", small_event_size);
4972 
4973 		if (RB_WARN_ON(buffer, total_dropped))
4974 			break;
4975 
4976 		ret = 0;
4977 
4978 		while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4979 			total_lost += lost;
4980 			item = ring_buffer_event_data(event);
4981 			total_len += ring_buffer_event_length(event);
4982 			total_size += item->size + sizeof(struct rb_item);
4983 			if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4984 				pr_info("FAILED!\n");
4985 				pr_info("buffer had: %.*s\n", item->size, item->str);
4986 				pr_info("expected:   %.*s\n", item->size, rb_string);
4987 				RB_WARN_ON(buffer, 1);
4988 				ret = -1;
4989 				break;
4990 			}
4991 			total_read++;
4992 		}
4993 		if (ret)
4994 			break;
4995 
4996 		ret = -1;
4997 
4998 		pr_info("         read events:   %ld\n", total_read);
4999 		pr_info("         lost events:   %ld\n", total_lost);
5000 		pr_info("        total events:   %ld\n", total_lost + total_read);
5001 		pr_info("  recorded len bytes:   %ld\n", total_len);
5002 		pr_info(" recorded size bytes:   %ld\n", total_size);
5003 		if (total_lost)
5004 			pr_info(" With dropped events, record len and size may not match\n"
5005 				" alloced and written from above\n");
5006 		if (!total_lost) {
5007 			if (RB_WARN_ON(buffer, total_len != total_alloc ||
5008 				       total_size != total_written))
5009 				break;
5010 		}
5011 		if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5012 			break;
5013 
5014 		ret = 0;
5015 	}
5016 	if (!ret)
5017 		pr_info("Ring buffer PASSED!\n");
5018 
5019 	ring_buffer_free(buffer);
5020 	return 0;
5021 }
5022 
5023 late_initcall(test_ringbuffer);
5024 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
5025