• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Dynamic DMA mapping support.
3  *
4  * This implementation is a fallback for platforms that do not support
5  * I/O TLBs (aka DMA address translation hardware).
6  * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
7  * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
8  * Copyright (C) 2000, 2003 Hewlett-Packard Co
9  *	David Mosberger-Tang <davidm@hpl.hp.com>
10  *
11  * 03/05/07 davidm	Switch from PCI-DMA to generic device DMA API.
12  * 00/12/13 davidm	Rename to swiotlb.c and add mark_clean() to avoid
13  *			unnecessary i-cache flushing.
14  * 04/07/.. ak		Better overflow handling. Assorted fixes.
15  * 05/09/10 linville	Add support for syncing ranges, support syncing for
16  *			DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
17  * 08/12/11 beckyb	Add highmem support
18  */
19 
20 #include <linux/cache.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/mm.h>
23 #include <linux/export.h>
24 #include <linux/spinlock.h>
25 #include <linux/string.h>
26 #include <linux/swiotlb.h>
27 #include <linux/pfn.h>
28 #include <linux/types.h>
29 #include <linux/ctype.h>
30 #include <linux/highmem.h>
31 #include <linux/gfp.h>
32 #include <linux/scatterlist.h>
33 
34 #include <asm/io.h>
35 #include <asm/dma.h>
36 
37 #include <linux/init.h>
38 #include <linux/bootmem.h>
39 #include <linux/iommu-helper.h>
40 
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/swiotlb.h>
43 
44 #define OFFSET(val,align) ((unsigned long)	\
45 	                   ( (val) & ( (align) - 1)))
46 
47 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
48 
49 /*
50  * Minimum IO TLB size to bother booting with.  Systems with mainly
51  * 64bit capable cards will only lightly use the swiotlb.  If we can't
52  * allocate a contiguous 1MB, we're probably in trouble anyway.
53  */
54 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
55 
56 enum swiotlb_force swiotlb_force;
57 
58 /*
59  * Used to do a quick range check in swiotlb_tbl_unmap_single and
60  * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
61  * API.
62  */
63 static phys_addr_t io_tlb_start, io_tlb_end;
64 
65 /*
66  * The number of IO TLB blocks (in groups of 64) between io_tlb_start and
67  * io_tlb_end.  This is command line adjustable via setup_io_tlb_npages.
68  */
69 static unsigned long io_tlb_nslabs;
70 
71 /*
72  * When the IOMMU overflows we return a fallback buffer. This sets the size.
73  */
74 static unsigned long io_tlb_overflow = 32*1024;
75 
76 static phys_addr_t io_tlb_overflow_buffer;
77 
78 /*
79  * This is a free list describing the number of free entries available from
80  * each index
81  */
82 static unsigned int *io_tlb_list;
83 static unsigned int io_tlb_index;
84 
85 /*
86  * We need to save away the original address corresponding to a mapped entry
87  * for the sync operations.
88  */
89 #define INVALID_PHYS_ADDR (~(phys_addr_t)0)
90 static phys_addr_t *io_tlb_orig_addr;
91 
92 /*
93  * Protect the above data structures in the map and unmap calls
94  */
95 static DEFINE_SPINLOCK(io_tlb_lock);
96 
97 static int late_alloc;
98 
99 static int __init
setup_io_tlb_npages(char * str)100 setup_io_tlb_npages(char *str)
101 {
102 	if (isdigit(*str)) {
103 		io_tlb_nslabs = simple_strtoul(str, &str, 0);
104 		/* avoid tail segment of size < IO_TLB_SEGSIZE */
105 		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
106 	}
107 	if (*str == ',')
108 		++str;
109 	if (!strcmp(str, "force")) {
110 		swiotlb_force = SWIOTLB_FORCE;
111 	} else if (!strcmp(str, "noforce")) {
112 		swiotlb_force = SWIOTLB_NO_FORCE;
113 		io_tlb_nslabs = 1;
114 	}
115 
116 	return 0;
117 }
118 early_param("swiotlb", setup_io_tlb_npages);
119 /* make io_tlb_overflow tunable too? */
120 
swiotlb_nr_tbl(void)121 unsigned long swiotlb_nr_tbl(void)
122 {
123 	return io_tlb_nslabs;
124 }
125 EXPORT_SYMBOL_GPL(swiotlb_nr_tbl);
126 
127 /* default to 64MB */
128 #define IO_TLB_DEFAULT_SIZE (64UL<<20)
swiotlb_size_or_default(void)129 unsigned long swiotlb_size_or_default(void)
130 {
131 	unsigned long size;
132 
133 	size = io_tlb_nslabs << IO_TLB_SHIFT;
134 
135 	return size ? size : (IO_TLB_DEFAULT_SIZE);
136 }
137 
138 /* Note that this doesn't work with highmem page */
swiotlb_virt_to_bus(struct device * hwdev,volatile void * address)139 static dma_addr_t swiotlb_virt_to_bus(struct device *hwdev,
140 				      volatile void *address)
141 {
142 	return phys_to_dma(hwdev, virt_to_phys(address));
143 }
144 
145 static bool no_iotlb_memory;
146 
swiotlb_print_info(void)147 void swiotlb_print_info(void)
148 {
149 	unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT;
150 	unsigned char *vstart, *vend;
151 
152 	if (no_iotlb_memory) {
153 		pr_warn("software IO TLB: No low mem\n");
154 		return;
155 	}
156 
157 	vstart = phys_to_virt(io_tlb_start);
158 	vend = phys_to_virt(io_tlb_end);
159 
160 	printk(KERN_INFO "software IO TLB [mem %#010llx-%#010llx] (%luMB) mapped at [%p-%p]\n",
161 	       (unsigned long long)io_tlb_start,
162 	       (unsigned long long)io_tlb_end,
163 	       bytes >> 20, vstart, vend - 1);
164 }
165 
swiotlb_init_with_tbl(char * tlb,unsigned long nslabs,int verbose)166 int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
167 {
168 	void *v_overflow_buffer;
169 	unsigned long i, bytes;
170 
171 	bytes = nslabs << IO_TLB_SHIFT;
172 
173 	io_tlb_nslabs = nslabs;
174 	io_tlb_start = __pa(tlb);
175 	io_tlb_end = io_tlb_start + bytes;
176 
177 	/*
178 	 * Get the overflow emergency buffer
179 	 */
180 	v_overflow_buffer = memblock_virt_alloc_low_nopanic(
181 						PAGE_ALIGN(io_tlb_overflow),
182 						PAGE_SIZE);
183 	if (!v_overflow_buffer)
184 		return -ENOMEM;
185 
186 	io_tlb_overflow_buffer = __pa(v_overflow_buffer);
187 
188 	/*
189 	 * Allocate and initialize the free list array.  This array is used
190 	 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
191 	 * between io_tlb_start and io_tlb_end.
192 	 */
193 	io_tlb_list = memblock_virt_alloc(
194 				PAGE_ALIGN(io_tlb_nslabs * sizeof(int)),
195 				PAGE_SIZE);
196 	io_tlb_orig_addr = memblock_virt_alloc(
197 				PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)),
198 				PAGE_SIZE);
199 	for (i = 0; i < io_tlb_nslabs; i++) {
200 		io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
201 		io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
202 	}
203 	io_tlb_index = 0;
204 
205 	if (verbose)
206 		swiotlb_print_info();
207 
208 	return 0;
209 }
210 
211 /*
212  * Statically reserve bounce buffer space and initialize bounce buffer data
213  * structures for the software IO TLB used to implement the DMA API.
214  */
215 void  __init
swiotlb_init(int verbose)216 swiotlb_init(int verbose)
217 {
218 	size_t default_size = IO_TLB_DEFAULT_SIZE;
219 	unsigned char *vstart;
220 	unsigned long bytes;
221 
222 	if (!io_tlb_nslabs) {
223 		io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
224 		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
225 	}
226 
227 	bytes = io_tlb_nslabs << IO_TLB_SHIFT;
228 
229 	/* Get IO TLB memory from the low pages */
230 	vstart = memblock_virt_alloc_low_nopanic(PAGE_ALIGN(bytes), PAGE_SIZE);
231 	if (vstart && !swiotlb_init_with_tbl(vstart, io_tlb_nslabs, verbose))
232 		return;
233 
234 	if (io_tlb_start)
235 		memblock_free_early(io_tlb_start,
236 				    PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
237 	pr_warn("Cannot allocate SWIOTLB buffer");
238 	no_iotlb_memory = true;
239 }
240 
241 /*
242  * Systems with larger DMA zones (those that don't support ISA) can
243  * initialize the swiotlb later using the slab allocator if needed.
244  * This should be just like above, but with some error catching.
245  */
246 int
swiotlb_late_init_with_default_size(size_t default_size)247 swiotlb_late_init_with_default_size(size_t default_size)
248 {
249 	unsigned long bytes, req_nslabs = io_tlb_nslabs;
250 	unsigned char *vstart = NULL;
251 	unsigned int order;
252 	int rc = 0;
253 
254 	if (!io_tlb_nslabs) {
255 		io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
256 		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
257 	}
258 
259 	/*
260 	 * Get IO TLB memory from the low pages
261 	 */
262 	order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
263 	io_tlb_nslabs = SLABS_PER_PAGE << order;
264 	bytes = io_tlb_nslabs << IO_TLB_SHIFT;
265 
266 	while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
267 		vstart = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
268 						  order);
269 		if (vstart)
270 			break;
271 		order--;
272 	}
273 
274 	if (!vstart) {
275 		io_tlb_nslabs = req_nslabs;
276 		return -ENOMEM;
277 	}
278 	if (order != get_order(bytes)) {
279 		printk(KERN_WARNING "Warning: only able to allocate %ld MB "
280 		       "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
281 		io_tlb_nslabs = SLABS_PER_PAGE << order;
282 	}
283 	rc = swiotlb_late_init_with_tbl(vstart, io_tlb_nslabs);
284 	if (rc)
285 		free_pages((unsigned long)vstart, order);
286 	return rc;
287 }
288 
289 int
swiotlb_late_init_with_tbl(char * tlb,unsigned long nslabs)290 swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs)
291 {
292 	unsigned long i, bytes;
293 	unsigned char *v_overflow_buffer;
294 
295 	bytes = nslabs << IO_TLB_SHIFT;
296 
297 	io_tlb_nslabs = nslabs;
298 	io_tlb_start = virt_to_phys(tlb);
299 	io_tlb_end = io_tlb_start + bytes;
300 
301 	memset(tlb, 0, bytes);
302 
303 	/*
304 	 * Get the overflow emergency buffer
305 	 */
306 	v_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
307 						     get_order(io_tlb_overflow));
308 	if (!v_overflow_buffer)
309 		goto cleanup2;
310 
311 	io_tlb_overflow_buffer = virt_to_phys(v_overflow_buffer);
312 
313 	/*
314 	 * Allocate and initialize the free list array.  This array is used
315 	 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
316 	 * between io_tlb_start and io_tlb_end.
317 	 */
318 	io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
319 	                              get_order(io_tlb_nslabs * sizeof(int)));
320 	if (!io_tlb_list)
321 		goto cleanup3;
322 
323 	io_tlb_orig_addr = (phys_addr_t *)
324 		__get_free_pages(GFP_KERNEL,
325 				 get_order(io_tlb_nslabs *
326 					   sizeof(phys_addr_t)));
327 	if (!io_tlb_orig_addr)
328 		goto cleanup4;
329 
330 	for (i = 0; i < io_tlb_nslabs; i++) {
331 		io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
332 		io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
333 	}
334 	io_tlb_index = 0;
335 
336 	swiotlb_print_info();
337 
338 	late_alloc = 1;
339 
340 	return 0;
341 
342 cleanup4:
343 	free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
344 	                                                 sizeof(int)));
345 	io_tlb_list = NULL;
346 cleanup3:
347 	free_pages((unsigned long)v_overflow_buffer,
348 		   get_order(io_tlb_overflow));
349 	io_tlb_overflow_buffer = 0;
350 cleanup2:
351 	io_tlb_end = 0;
352 	io_tlb_start = 0;
353 	io_tlb_nslabs = 0;
354 	return -ENOMEM;
355 }
356 
swiotlb_free(void)357 void __init swiotlb_free(void)
358 {
359 	if (!io_tlb_orig_addr)
360 		return;
361 
362 	if (late_alloc) {
363 		free_pages((unsigned long)phys_to_virt(io_tlb_overflow_buffer),
364 			   get_order(io_tlb_overflow));
365 		free_pages((unsigned long)io_tlb_orig_addr,
366 			   get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
367 		free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
368 								 sizeof(int)));
369 		free_pages((unsigned long)phys_to_virt(io_tlb_start),
370 			   get_order(io_tlb_nslabs << IO_TLB_SHIFT));
371 	} else {
372 		memblock_free_late(io_tlb_overflow_buffer,
373 				   PAGE_ALIGN(io_tlb_overflow));
374 		memblock_free_late(__pa(io_tlb_orig_addr),
375 				   PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
376 		memblock_free_late(__pa(io_tlb_list),
377 				   PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
378 		memblock_free_late(io_tlb_start,
379 				   PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
380 	}
381 	io_tlb_nslabs = 0;
382 }
383 
is_swiotlb_buffer(phys_addr_t paddr)384 int is_swiotlb_buffer(phys_addr_t paddr)
385 {
386 	return paddr >= io_tlb_start && paddr < io_tlb_end;
387 }
388 
389 /*
390  * Bounce: copy the swiotlb buffer back to the original dma location
391  */
swiotlb_bounce(phys_addr_t orig_addr,phys_addr_t tlb_addr,size_t size,enum dma_data_direction dir)392 static void swiotlb_bounce(phys_addr_t orig_addr, phys_addr_t tlb_addr,
393 			   size_t size, enum dma_data_direction dir)
394 {
395 	unsigned long pfn = PFN_DOWN(orig_addr);
396 	unsigned char *vaddr = phys_to_virt(tlb_addr);
397 
398 	if (PageHighMem(pfn_to_page(pfn))) {
399 		/* The buffer does not have a mapping.  Map it in and copy */
400 		unsigned int offset = orig_addr & ~PAGE_MASK;
401 		char *buffer;
402 		unsigned int sz = 0;
403 		unsigned long flags;
404 
405 		while (size) {
406 			sz = min_t(size_t, PAGE_SIZE - offset, size);
407 
408 			local_irq_save(flags);
409 			buffer = kmap_atomic(pfn_to_page(pfn));
410 			if (dir == DMA_TO_DEVICE)
411 				memcpy(vaddr, buffer + offset, sz);
412 			else
413 				memcpy(buffer + offset, vaddr, sz);
414 			kunmap_atomic(buffer);
415 			local_irq_restore(flags);
416 
417 			size -= sz;
418 			pfn++;
419 			vaddr += sz;
420 			offset = 0;
421 		}
422 	} else if (dir == DMA_TO_DEVICE) {
423 		memcpy(vaddr, phys_to_virt(orig_addr), size);
424 	} else {
425 		memcpy(phys_to_virt(orig_addr), vaddr, size);
426 	}
427 }
428 
swiotlb_tbl_map_single(struct device * hwdev,dma_addr_t tbl_dma_addr,phys_addr_t orig_addr,size_t size,enum dma_data_direction dir)429 phys_addr_t swiotlb_tbl_map_single(struct device *hwdev,
430 				   dma_addr_t tbl_dma_addr,
431 				   phys_addr_t orig_addr, size_t size,
432 				   enum dma_data_direction dir)
433 {
434 	unsigned long flags;
435 	phys_addr_t tlb_addr;
436 	unsigned int nslots, stride, index, wrap;
437 	int i;
438 	unsigned long mask;
439 	unsigned long offset_slots;
440 	unsigned long max_slots;
441 
442 	if (no_iotlb_memory)
443 		panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
444 
445 	mask = dma_get_seg_boundary(hwdev);
446 
447 	tbl_dma_addr &= mask;
448 
449 	offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
450 
451 	/*
452  	 * Carefully handle integer overflow which can occur when mask == ~0UL.
453  	 */
454 	max_slots = mask + 1
455 		    ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
456 		    : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
457 
458 	/*
459 	 * For mappings greater than or equal to a page, we limit the stride
460 	 * (and hence alignment) to a page size.
461 	 */
462 	nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
463 	if (size >= PAGE_SIZE)
464 		stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
465 	else
466 		stride = 1;
467 
468 	BUG_ON(!nslots);
469 
470 	/*
471 	 * Find suitable number of IO TLB entries size that will fit this
472 	 * request and allocate a buffer from that IO TLB pool.
473 	 */
474 	spin_lock_irqsave(&io_tlb_lock, flags);
475 	index = ALIGN(io_tlb_index, stride);
476 	if (index >= io_tlb_nslabs)
477 		index = 0;
478 	wrap = index;
479 
480 	do {
481 		while (iommu_is_span_boundary(index, nslots, offset_slots,
482 					      max_slots)) {
483 			index += stride;
484 			if (index >= io_tlb_nslabs)
485 				index = 0;
486 			if (index == wrap)
487 				goto not_found;
488 		}
489 
490 		/*
491 		 * If we find a slot that indicates we have 'nslots' number of
492 		 * contiguous buffers, we allocate the buffers from that slot
493 		 * and mark the entries as '0' indicating unavailable.
494 		 */
495 		if (io_tlb_list[index] >= nslots) {
496 			int count = 0;
497 
498 			for (i = index; i < (int) (index + nslots); i++)
499 				io_tlb_list[i] = 0;
500 			for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
501 				io_tlb_list[i] = ++count;
502 			tlb_addr = io_tlb_start + (index << IO_TLB_SHIFT);
503 
504 			/*
505 			 * Update the indices to avoid searching in the next
506 			 * round.
507 			 */
508 			io_tlb_index = ((index + nslots) < io_tlb_nslabs
509 					? (index + nslots) : 0);
510 
511 			goto found;
512 		}
513 		index += stride;
514 		if (index >= io_tlb_nslabs)
515 			index = 0;
516 	} while (index != wrap);
517 
518 not_found:
519 	spin_unlock_irqrestore(&io_tlb_lock, flags);
520 	if (printk_ratelimit())
521 		dev_warn(hwdev, "swiotlb buffer is full (sz: %zd bytes)\n", size);
522 	return SWIOTLB_MAP_ERROR;
523 found:
524 	spin_unlock_irqrestore(&io_tlb_lock, flags);
525 
526 	/*
527 	 * Save away the mapping from the original address to the DMA address.
528 	 * This is needed when we sync the memory.  Then we sync the buffer if
529 	 * needed.
530 	 */
531 	for (i = 0; i < nslots; i++)
532 		io_tlb_orig_addr[index+i] = orig_addr + (i << IO_TLB_SHIFT);
533 	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
534 		swiotlb_bounce(orig_addr, tlb_addr, size, DMA_TO_DEVICE);
535 
536 	return tlb_addr;
537 }
538 EXPORT_SYMBOL_GPL(swiotlb_tbl_map_single);
539 
540 /*
541  * Allocates bounce buffer and returns its kernel virtual address.
542  */
543 
544 static phys_addr_t
map_single(struct device * hwdev,phys_addr_t phys,size_t size,enum dma_data_direction dir)545 map_single(struct device *hwdev, phys_addr_t phys, size_t size,
546 	   enum dma_data_direction dir)
547 {
548 	dma_addr_t start_dma_addr;
549 
550 	if (swiotlb_force == SWIOTLB_NO_FORCE) {
551 		dev_warn_ratelimited(hwdev, "Cannot do DMA to address %pa\n",
552 				     &phys);
553 		return SWIOTLB_MAP_ERROR;
554 	}
555 
556 	start_dma_addr = phys_to_dma(hwdev, io_tlb_start);
557 	return swiotlb_tbl_map_single(hwdev, start_dma_addr, phys, size, dir);
558 }
559 
560 /*
561  * dma_addr is the kernel virtual address of the bounce buffer to unmap.
562  */
swiotlb_tbl_unmap_single(struct device * hwdev,phys_addr_t tlb_addr,size_t size,enum dma_data_direction dir)563 void swiotlb_tbl_unmap_single(struct device *hwdev, phys_addr_t tlb_addr,
564 			      size_t size, enum dma_data_direction dir)
565 {
566 	unsigned long flags;
567 	int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
568 	int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
569 	phys_addr_t orig_addr = io_tlb_orig_addr[index];
570 
571 	/*
572 	 * First, sync the memory before unmapping the entry
573 	 */
574 	if (orig_addr != INVALID_PHYS_ADDR &&
575 	    ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
576 		swiotlb_bounce(orig_addr, tlb_addr, size, DMA_FROM_DEVICE);
577 
578 	/*
579 	 * Return the buffer to the free list by setting the corresponding
580 	 * entries to indicate the number of contiguous entries available.
581 	 * While returning the entries to the free list, we merge the entries
582 	 * with slots below and above the pool being returned.
583 	 */
584 	spin_lock_irqsave(&io_tlb_lock, flags);
585 	{
586 		count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
587 			 io_tlb_list[index + nslots] : 0);
588 		/*
589 		 * Step 1: return the slots to the free list, merging the
590 		 * slots with superceeding slots
591 		 */
592 		for (i = index + nslots - 1; i >= index; i--) {
593 			io_tlb_list[i] = ++count;
594 			io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
595 		}
596 		/*
597 		 * Step 2: merge the returned slots with the preceding slots,
598 		 * if available (non zero)
599 		 */
600 		for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
601 			io_tlb_list[i] = ++count;
602 	}
603 	spin_unlock_irqrestore(&io_tlb_lock, flags);
604 }
605 EXPORT_SYMBOL_GPL(swiotlb_tbl_unmap_single);
606 
swiotlb_tbl_sync_single(struct device * hwdev,phys_addr_t tlb_addr,size_t size,enum dma_data_direction dir,enum dma_sync_target target)607 void swiotlb_tbl_sync_single(struct device *hwdev, phys_addr_t tlb_addr,
608 			     size_t size, enum dma_data_direction dir,
609 			     enum dma_sync_target target)
610 {
611 	int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
612 	phys_addr_t orig_addr = io_tlb_orig_addr[index];
613 
614 	if (orig_addr == INVALID_PHYS_ADDR)
615 		return;
616 	orig_addr += (unsigned long)tlb_addr & ((1 << IO_TLB_SHIFT) - 1);
617 
618 	switch (target) {
619 	case SYNC_FOR_CPU:
620 		if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
621 			swiotlb_bounce(orig_addr, tlb_addr,
622 				       size, DMA_FROM_DEVICE);
623 		else
624 			BUG_ON(dir != DMA_TO_DEVICE);
625 		break;
626 	case SYNC_FOR_DEVICE:
627 		if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
628 			swiotlb_bounce(orig_addr, tlb_addr,
629 				       size, DMA_TO_DEVICE);
630 		else
631 			BUG_ON(dir != DMA_FROM_DEVICE);
632 		break;
633 	default:
634 		BUG();
635 	}
636 }
637 EXPORT_SYMBOL_GPL(swiotlb_tbl_sync_single);
638 
639 void *
swiotlb_alloc_coherent(struct device * hwdev,size_t size,dma_addr_t * dma_handle,gfp_t flags)640 swiotlb_alloc_coherent(struct device *hwdev, size_t size,
641 		       dma_addr_t *dma_handle, gfp_t flags)
642 {
643 	dma_addr_t dev_addr;
644 	void *ret;
645 	int order = get_order(size);
646 	u64 dma_mask = DMA_BIT_MASK(32);
647 
648 	if (hwdev && hwdev->coherent_dma_mask)
649 		dma_mask = hwdev->coherent_dma_mask;
650 
651 	ret = (void *)__get_free_pages(flags, order);
652 	if (ret) {
653 		dev_addr = swiotlb_virt_to_bus(hwdev, ret);
654 		if (dev_addr + size - 1 > dma_mask) {
655 			/*
656 			 * The allocated memory isn't reachable by the device.
657 			 */
658 			free_pages((unsigned long) ret, order);
659 			ret = NULL;
660 		}
661 	}
662 	if (!ret) {
663 		/*
664 		 * We are either out of memory or the device can't DMA to
665 		 * GFP_DMA memory; fall back on map_single(), which
666 		 * will grab memory from the lowest available address range.
667 		 */
668 		phys_addr_t paddr = map_single(hwdev, 0, size, DMA_FROM_DEVICE);
669 		if (paddr == SWIOTLB_MAP_ERROR)
670 			goto err_warn;
671 
672 		ret = phys_to_virt(paddr);
673 		dev_addr = phys_to_dma(hwdev, paddr);
674 
675 		/* Confirm address can be DMA'd by device */
676 		if (dev_addr + size - 1 > dma_mask) {
677 			printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
678 			       (unsigned long long)dma_mask,
679 			       (unsigned long long)dev_addr);
680 
681 			/* DMA_TO_DEVICE to avoid memcpy in unmap_single */
682 			swiotlb_tbl_unmap_single(hwdev, paddr,
683 						 size, DMA_TO_DEVICE);
684 			goto err_warn;
685 		}
686 	}
687 
688 	*dma_handle = dev_addr;
689 	memset(ret, 0, size);
690 
691 	return ret;
692 
693 err_warn:
694 	pr_warn("swiotlb: coherent allocation failed for device %s size=%zu\n",
695 		dev_name(hwdev), size);
696 	dump_stack();
697 
698 	return NULL;
699 }
700 EXPORT_SYMBOL(swiotlb_alloc_coherent);
701 
702 void
swiotlb_free_coherent(struct device * hwdev,size_t size,void * vaddr,dma_addr_t dev_addr)703 swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
704 		      dma_addr_t dev_addr)
705 {
706 	phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
707 
708 	WARN_ON(irqs_disabled());
709 	if (!is_swiotlb_buffer(paddr))
710 		free_pages((unsigned long)vaddr, get_order(size));
711 	else
712 		/* DMA_TO_DEVICE to avoid memcpy in swiotlb_tbl_unmap_single */
713 		swiotlb_tbl_unmap_single(hwdev, paddr, size, DMA_TO_DEVICE);
714 }
715 EXPORT_SYMBOL(swiotlb_free_coherent);
716 
717 static void
swiotlb_full(struct device * dev,size_t size,enum dma_data_direction dir,int do_panic)718 swiotlb_full(struct device *dev, size_t size, enum dma_data_direction dir,
719 	     int do_panic)
720 {
721 	if (swiotlb_force == SWIOTLB_NO_FORCE)
722 		return;
723 
724 	/*
725 	 * Ran out of IOMMU space for this operation. This is very bad.
726 	 * Unfortunately the drivers cannot handle this operation properly.
727 	 * unless they check for dma_mapping_error (most don't)
728 	 * When the mapping is small enough return a static buffer to limit
729 	 * the damage, or panic when the transfer is too big.
730 	 */
731 	printk(KERN_ERR "DMA: Out of SW-IOMMU space for %zu bytes at "
732 	       "device %s\n", size, dev ? dev_name(dev) : "?");
733 
734 	if (size <= io_tlb_overflow || !do_panic)
735 		return;
736 
737 	if (dir == DMA_BIDIRECTIONAL)
738 		panic("DMA: Random memory could be DMA accessed\n");
739 	if (dir == DMA_FROM_DEVICE)
740 		panic("DMA: Random memory could be DMA written\n");
741 	if (dir == DMA_TO_DEVICE)
742 		panic("DMA: Random memory could be DMA read\n");
743 }
744 
745 /*
746  * Map a single buffer of the indicated size for DMA in streaming mode.  The
747  * physical address to use is returned.
748  *
749  * Once the device is given the dma address, the device owns this memory until
750  * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
751  */
swiotlb_map_page(struct device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction dir,unsigned long attrs)752 dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
753 			    unsigned long offset, size_t size,
754 			    enum dma_data_direction dir,
755 			    unsigned long attrs)
756 {
757 	phys_addr_t map, phys = page_to_phys(page) + offset;
758 	dma_addr_t dev_addr = phys_to_dma(dev, phys);
759 
760 	BUG_ON(dir == DMA_NONE);
761 	/*
762 	 * If the address happens to be in the device's DMA window,
763 	 * we can safely return the device addr and not worry about bounce
764 	 * buffering it.
765 	 */
766 	if (dma_capable(dev, dev_addr, size) && swiotlb_force != SWIOTLB_FORCE)
767 		return dev_addr;
768 
769 	trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
770 
771 	/* Oh well, have to allocate and map a bounce buffer. */
772 	map = map_single(dev, phys, size, dir);
773 	if (map == SWIOTLB_MAP_ERROR) {
774 		swiotlb_full(dev, size, dir, 1);
775 		return phys_to_dma(dev, io_tlb_overflow_buffer);
776 	}
777 
778 	dev_addr = phys_to_dma(dev, map);
779 
780 	/* Ensure that the address returned is DMA'ble */
781 	if (!dma_capable(dev, dev_addr, size)) {
782 		swiotlb_tbl_unmap_single(dev, map, size, dir);
783 		return phys_to_dma(dev, io_tlb_overflow_buffer);
784 	}
785 
786 	return dev_addr;
787 }
788 EXPORT_SYMBOL_GPL(swiotlb_map_page);
789 
790 /*
791  * Unmap a single streaming mode DMA translation.  The dma_addr and size must
792  * match what was provided for in a previous swiotlb_map_page call.  All
793  * other usages are undefined.
794  *
795  * After this call, reads by the cpu to the buffer are guaranteed to see
796  * whatever the device wrote there.
797  */
unmap_single(struct device * hwdev,dma_addr_t dev_addr,size_t size,enum dma_data_direction dir)798 static void unmap_single(struct device *hwdev, dma_addr_t dev_addr,
799 			 size_t size, enum dma_data_direction dir)
800 {
801 	phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
802 
803 	BUG_ON(dir == DMA_NONE);
804 
805 	if (is_swiotlb_buffer(paddr)) {
806 		swiotlb_tbl_unmap_single(hwdev, paddr, size, dir);
807 		return;
808 	}
809 
810 	if (dir != DMA_FROM_DEVICE)
811 		return;
812 
813 	/*
814 	 * phys_to_virt doesn't work with hihgmem page but we could
815 	 * call dma_mark_clean() with hihgmem page here. However, we
816 	 * are fine since dma_mark_clean() is null on POWERPC. We can
817 	 * make dma_mark_clean() take a physical address if necessary.
818 	 */
819 	dma_mark_clean(phys_to_virt(paddr), size);
820 }
821 
swiotlb_unmap_page(struct device * hwdev,dma_addr_t dev_addr,size_t size,enum dma_data_direction dir,unsigned long attrs)822 void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
823 			size_t size, enum dma_data_direction dir,
824 			unsigned long attrs)
825 {
826 	unmap_single(hwdev, dev_addr, size, dir);
827 }
828 EXPORT_SYMBOL_GPL(swiotlb_unmap_page);
829 
830 /*
831  * Make physical memory consistent for a single streaming mode DMA translation
832  * after a transfer.
833  *
834  * If you perform a swiotlb_map_page() but wish to interrogate the buffer
835  * using the cpu, yet do not wish to teardown the dma mapping, you must
836  * call this function before doing so.  At the next point you give the dma
837  * address back to the card, you must first perform a
838  * swiotlb_dma_sync_for_device, and then the device again owns the buffer
839  */
840 static void
swiotlb_sync_single(struct device * hwdev,dma_addr_t dev_addr,size_t size,enum dma_data_direction dir,enum dma_sync_target target)841 swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
842 		    size_t size, enum dma_data_direction dir,
843 		    enum dma_sync_target target)
844 {
845 	phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
846 
847 	BUG_ON(dir == DMA_NONE);
848 
849 	if (is_swiotlb_buffer(paddr)) {
850 		swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
851 		return;
852 	}
853 
854 	if (dir != DMA_FROM_DEVICE)
855 		return;
856 
857 	dma_mark_clean(phys_to_virt(paddr), size);
858 }
859 
860 void
swiotlb_sync_single_for_cpu(struct device * hwdev,dma_addr_t dev_addr,size_t size,enum dma_data_direction dir)861 swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
862 			    size_t size, enum dma_data_direction dir)
863 {
864 	swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
865 }
866 EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
867 
868 void
swiotlb_sync_single_for_device(struct device * hwdev,dma_addr_t dev_addr,size_t size,enum dma_data_direction dir)869 swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
870 			       size_t size, enum dma_data_direction dir)
871 {
872 	swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
873 }
874 EXPORT_SYMBOL(swiotlb_sync_single_for_device);
875 
876 /*
877  * Map a set of buffers described by scatterlist in streaming mode for DMA.
878  * This is the scatter-gather version of the above swiotlb_map_page
879  * interface.  Here the scatter gather list elements are each tagged with the
880  * appropriate dma address and length.  They are obtained via
881  * sg_dma_{address,length}(SG).
882  *
883  * NOTE: An implementation may be able to use a smaller number of
884  *       DMA address/length pairs than there are SG table elements.
885  *       (for example via virtual mapping capabilities)
886  *       The routine returns the number of addr/length pairs actually
887  *       used, at most nents.
888  *
889  * Device ownership issues as mentioned above for swiotlb_map_page are the
890  * same here.
891  */
892 int
swiotlb_map_sg_attrs(struct device * hwdev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir,unsigned long attrs)893 swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
894 		     enum dma_data_direction dir, unsigned long attrs)
895 {
896 	struct scatterlist *sg;
897 	int i;
898 
899 	BUG_ON(dir == DMA_NONE);
900 
901 	for_each_sg(sgl, sg, nelems, i) {
902 		phys_addr_t paddr = sg_phys(sg);
903 		dma_addr_t dev_addr = phys_to_dma(hwdev, paddr);
904 
905 		if (swiotlb_force == SWIOTLB_FORCE ||
906 		    !dma_capable(hwdev, dev_addr, sg->length)) {
907 			phys_addr_t map = map_single(hwdev, sg_phys(sg),
908 						     sg->length, dir);
909 			if (map == SWIOTLB_MAP_ERROR) {
910 				/* Don't panic here, we expect map_sg users
911 				   to do proper error handling. */
912 				swiotlb_full(hwdev, sg->length, dir, 0);
913 				swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
914 						       attrs);
915 				sg_dma_len(sgl) = 0;
916 				return 0;
917 			}
918 			sg->dma_address = phys_to_dma(hwdev, map);
919 		} else
920 			sg->dma_address = dev_addr;
921 		sg_dma_len(sg) = sg->length;
922 	}
923 	return nelems;
924 }
925 EXPORT_SYMBOL(swiotlb_map_sg_attrs);
926 
927 int
swiotlb_map_sg(struct device * hwdev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir)928 swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
929 	       enum dma_data_direction dir)
930 {
931 	return swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, 0);
932 }
933 EXPORT_SYMBOL(swiotlb_map_sg);
934 
935 /*
936  * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
937  * concerning calls here are the same as for swiotlb_unmap_page() above.
938  */
939 void
swiotlb_unmap_sg_attrs(struct device * hwdev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir,unsigned long attrs)940 swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
941 		       int nelems, enum dma_data_direction dir,
942 		       unsigned long attrs)
943 {
944 	struct scatterlist *sg;
945 	int i;
946 
947 	BUG_ON(dir == DMA_NONE);
948 
949 	for_each_sg(sgl, sg, nelems, i)
950 		unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir);
951 
952 }
953 EXPORT_SYMBOL(swiotlb_unmap_sg_attrs);
954 
955 void
swiotlb_unmap_sg(struct device * hwdev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir)956 swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
957 		 enum dma_data_direction dir)
958 {
959 	return swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, 0);
960 }
961 EXPORT_SYMBOL(swiotlb_unmap_sg);
962 
963 /*
964  * Make physical memory consistent for a set of streaming mode DMA translations
965  * after a transfer.
966  *
967  * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
968  * and usage.
969  */
970 static void
swiotlb_sync_sg(struct device * hwdev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir,enum dma_sync_target target)971 swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
972 		int nelems, enum dma_data_direction dir,
973 		enum dma_sync_target target)
974 {
975 	struct scatterlist *sg;
976 	int i;
977 
978 	for_each_sg(sgl, sg, nelems, i)
979 		swiotlb_sync_single(hwdev, sg->dma_address,
980 				    sg_dma_len(sg), dir, target);
981 }
982 
983 void
swiotlb_sync_sg_for_cpu(struct device * hwdev,struct scatterlist * sg,int nelems,enum dma_data_direction dir)984 swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
985 			int nelems, enum dma_data_direction dir)
986 {
987 	swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
988 }
989 EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
990 
991 void
swiotlb_sync_sg_for_device(struct device * hwdev,struct scatterlist * sg,int nelems,enum dma_data_direction dir)992 swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
993 			   int nelems, enum dma_data_direction dir)
994 {
995 	swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
996 }
997 EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
998 
999 int
swiotlb_dma_mapping_error(struct device * hwdev,dma_addr_t dma_addr)1000 swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
1001 {
1002 	return (dma_addr == phys_to_dma(hwdev, io_tlb_overflow_buffer));
1003 }
1004 EXPORT_SYMBOL(swiotlb_dma_mapping_error);
1005 
1006 /*
1007  * Return whether the given device DMA address mask can be supported
1008  * properly.  For example, if your device can only drive the low 24-bits
1009  * during bus mastering, then you would pass 0x00ffffff as the mask to
1010  * this function.
1011  */
1012 int
swiotlb_dma_supported(struct device * hwdev,u64 mask)1013 swiotlb_dma_supported(struct device *hwdev, u64 mask)
1014 {
1015 	return phys_to_dma(hwdev, io_tlb_end - 1) <= mask;
1016 }
1017 EXPORT_SYMBOL(swiotlb_dma_supported);
1018