1 /*
2 * linux/mm/compaction.c
3 *
4 * Memory compaction for the reduction of external fragmentation. Note that
5 * this heavily depends upon page migration to do all the real heavy
6 * lifting
7 *
8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9 */
10 #include <linux/cpu.h>
11 #include <linux/swap.h>
12 #include <linux/migrate.h>
13 #include <linux/compaction.h>
14 #include <linux/mm_inline.h>
15 #include <linux/backing-dev.h>
16 #include <linux/sysctl.h>
17 #include <linux/sysfs.h>
18 #include <linux/page-isolation.h>
19 #include <linux/kasan.h>
20 #include <linux/kthread.h>
21 #include <linux/freezer.h>
22 #include <linux/page_owner.h>
23 #include "internal.h"
24
25 #ifdef CONFIG_COMPACTION
count_compact_event(enum vm_event_item item)26 static inline void count_compact_event(enum vm_event_item item)
27 {
28 count_vm_event(item);
29 }
30
count_compact_events(enum vm_event_item item,long delta)31 static inline void count_compact_events(enum vm_event_item item, long delta)
32 {
33 count_vm_events(item, delta);
34 }
35 #else
36 #define count_compact_event(item) do { } while (0)
37 #define count_compact_events(item, delta) do { } while (0)
38 #endif
39
40 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
41
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/compaction.h>
44
45 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order))
46 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order))
47 #define pageblock_start_pfn(pfn) block_start_pfn(pfn, pageblock_order)
48 #define pageblock_end_pfn(pfn) block_end_pfn(pfn, pageblock_order)
49
release_freepages(struct list_head * freelist)50 static unsigned long release_freepages(struct list_head *freelist)
51 {
52 struct page *page, *next;
53 unsigned long high_pfn = 0;
54
55 list_for_each_entry_safe(page, next, freelist, lru) {
56 unsigned long pfn = page_to_pfn(page);
57 list_del(&page->lru);
58 __free_page(page);
59 if (pfn > high_pfn)
60 high_pfn = pfn;
61 }
62
63 return high_pfn;
64 }
65
map_pages(struct list_head * list)66 static void map_pages(struct list_head *list)
67 {
68 unsigned int i, order, nr_pages;
69 struct page *page, *next;
70 LIST_HEAD(tmp_list);
71
72 list_for_each_entry_safe(page, next, list, lru) {
73 list_del(&page->lru);
74
75 order = page_private(page);
76 nr_pages = 1 << order;
77
78 post_alloc_hook(page, order, __GFP_MOVABLE);
79 if (order)
80 split_page(page, order);
81
82 for (i = 0; i < nr_pages; i++) {
83 list_add(&page->lru, &tmp_list);
84 page++;
85 }
86 }
87
88 list_splice(&tmp_list, list);
89 }
90
migrate_async_suitable(int migratetype)91 static inline bool migrate_async_suitable(int migratetype)
92 {
93 return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
94 }
95
96 #ifdef CONFIG_COMPACTION
97
PageMovable(struct page * page)98 int PageMovable(struct page *page)
99 {
100 struct address_space *mapping;
101
102 VM_BUG_ON_PAGE(!PageLocked(page), page);
103 if (!__PageMovable(page))
104 return 0;
105
106 mapping = page_mapping(page);
107 if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
108 return 1;
109
110 return 0;
111 }
112 EXPORT_SYMBOL(PageMovable);
113
__SetPageMovable(struct page * page,struct address_space * mapping)114 void __SetPageMovable(struct page *page, struct address_space *mapping)
115 {
116 VM_BUG_ON_PAGE(!PageLocked(page), page);
117 VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
118 page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
119 }
120 EXPORT_SYMBOL(__SetPageMovable);
121
__ClearPageMovable(struct page * page)122 void __ClearPageMovable(struct page *page)
123 {
124 VM_BUG_ON_PAGE(!PageLocked(page), page);
125 VM_BUG_ON_PAGE(!PageMovable(page), page);
126 /*
127 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
128 * flag so that VM can catch up released page by driver after isolation.
129 * With it, VM migration doesn't try to put it back.
130 */
131 page->mapping = (void *)((unsigned long)page->mapping &
132 PAGE_MAPPING_MOVABLE);
133 }
134 EXPORT_SYMBOL(__ClearPageMovable);
135
136 /* Do not skip compaction more than 64 times */
137 #define COMPACT_MAX_DEFER_SHIFT 6
138
139 /*
140 * Compaction is deferred when compaction fails to result in a page
141 * allocation success. 1 << compact_defer_limit compactions are skipped up
142 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
143 */
defer_compaction(struct zone * zone,int order)144 void defer_compaction(struct zone *zone, int order)
145 {
146 zone->compact_considered = 0;
147 zone->compact_defer_shift++;
148
149 if (order < zone->compact_order_failed)
150 zone->compact_order_failed = order;
151
152 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
153 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
154
155 trace_mm_compaction_defer_compaction(zone, order);
156 }
157
158 /* Returns true if compaction should be skipped this time */
compaction_deferred(struct zone * zone,int order)159 bool compaction_deferred(struct zone *zone, int order)
160 {
161 unsigned long defer_limit = 1UL << zone->compact_defer_shift;
162
163 if (order < zone->compact_order_failed)
164 return false;
165
166 /* Avoid possible overflow */
167 if (++zone->compact_considered > defer_limit)
168 zone->compact_considered = defer_limit;
169
170 if (zone->compact_considered >= defer_limit)
171 return false;
172
173 trace_mm_compaction_deferred(zone, order);
174
175 return true;
176 }
177
178 /*
179 * Update defer tracking counters after successful compaction of given order,
180 * which means an allocation either succeeded (alloc_success == true) or is
181 * expected to succeed.
182 */
compaction_defer_reset(struct zone * zone,int order,bool alloc_success)183 void compaction_defer_reset(struct zone *zone, int order,
184 bool alloc_success)
185 {
186 if (alloc_success) {
187 zone->compact_considered = 0;
188 zone->compact_defer_shift = 0;
189 }
190 if (order >= zone->compact_order_failed)
191 zone->compact_order_failed = order + 1;
192
193 trace_mm_compaction_defer_reset(zone, order);
194 }
195
196 /* Returns true if restarting compaction after many failures */
compaction_restarting(struct zone * zone,int order)197 bool compaction_restarting(struct zone *zone, int order)
198 {
199 if (order < zone->compact_order_failed)
200 return false;
201
202 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
203 zone->compact_considered >= 1UL << zone->compact_defer_shift;
204 }
205
206 /* Returns true if the pageblock should be scanned for pages to isolate. */
isolation_suitable(struct compact_control * cc,struct page * page)207 static inline bool isolation_suitable(struct compact_control *cc,
208 struct page *page)
209 {
210 if (cc->ignore_skip_hint)
211 return true;
212
213 return !get_pageblock_skip(page);
214 }
215
reset_cached_positions(struct zone * zone)216 static void reset_cached_positions(struct zone *zone)
217 {
218 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
219 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
220 zone->compact_cached_free_pfn =
221 pageblock_start_pfn(zone_end_pfn(zone) - 1);
222 }
223
224 /*
225 * This function is called to clear all cached information on pageblocks that
226 * should be skipped for page isolation when the migrate and free page scanner
227 * meet.
228 */
__reset_isolation_suitable(struct zone * zone)229 static void __reset_isolation_suitable(struct zone *zone)
230 {
231 unsigned long start_pfn = zone->zone_start_pfn;
232 unsigned long end_pfn = zone_end_pfn(zone);
233 unsigned long pfn;
234
235 zone->compact_blockskip_flush = false;
236
237 /* Walk the zone and mark every pageblock as suitable for isolation */
238 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
239 struct page *page;
240
241 cond_resched();
242
243 if (!pfn_valid(pfn))
244 continue;
245
246 page = pfn_to_page(pfn);
247 if (zone != page_zone(page))
248 continue;
249
250 clear_pageblock_skip(page);
251 }
252
253 reset_cached_positions(zone);
254 }
255
reset_isolation_suitable(pg_data_t * pgdat)256 void reset_isolation_suitable(pg_data_t *pgdat)
257 {
258 int zoneid;
259
260 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
261 struct zone *zone = &pgdat->node_zones[zoneid];
262 if (!populated_zone(zone))
263 continue;
264
265 /* Only flush if a full compaction finished recently */
266 if (zone->compact_blockskip_flush)
267 __reset_isolation_suitable(zone);
268 }
269 }
270
271 /*
272 * If no pages were isolated then mark this pageblock to be skipped in the
273 * future. The information is later cleared by __reset_isolation_suitable().
274 */
update_pageblock_skip(struct compact_control * cc,struct page * page,unsigned long nr_isolated,bool migrate_scanner)275 static void update_pageblock_skip(struct compact_control *cc,
276 struct page *page, unsigned long nr_isolated,
277 bool migrate_scanner)
278 {
279 struct zone *zone = cc->zone;
280 unsigned long pfn;
281
282 if (cc->ignore_skip_hint)
283 return;
284
285 if (!page)
286 return;
287
288 if (nr_isolated)
289 return;
290
291 set_pageblock_skip(page);
292
293 pfn = page_to_pfn(page);
294
295 /* Update where async and sync compaction should restart */
296 if (migrate_scanner) {
297 if (pfn > zone->compact_cached_migrate_pfn[0])
298 zone->compact_cached_migrate_pfn[0] = pfn;
299 if (cc->mode != MIGRATE_ASYNC &&
300 pfn > zone->compact_cached_migrate_pfn[1])
301 zone->compact_cached_migrate_pfn[1] = pfn;
302 } else {
303 if (pfn < zone->compact_cached_free_pfn)
304 zone->compact_cached_free_pfn = pfn;
305 }
306 }
307 #else
isolation_suitable(struct compact_control * cc,struct page * page)308 static inline bool isolation_suitable(struct compact_control *cc,
309 struct page *page)
310 {
311 return true;
312 }
313
update_pageblock_skip(struct compact_control * cc,struct page * page,unsigned long nr_isolated,bool migrate_scanner)314 static void update_pageblock_skip(struct compact_control *cc,
315 struct page *page, unsigned long nr_isolated,
316 bool migrate_scanner)
317 {
318 }
319 #endif /* CONFIG_COMPACTION */
320
321 /*
322 * Compaction requires the taking of some coarse locks that are potentially
323 * very heavily contended. For async compaction, back out if the lock cannot
324 * be taken immediately. For sync compaction, spin on the lock if needed.
325 *
326 * Returns true if the lock is held
327 * Returns false if the lock is not held and compaction should abort
328 */
compact_trylock_irqsave(spinlock_t * lock,unsigned long * flags,struct compact_control * cc)329 static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
330 struct compact_control *cc)
331 {
332 if (cc->mode == MIGRATE_ASYNC) {
333 if (!spin_trylock_irqsave(lock, *flags)) {
334 cc->contended = true;
335 return false;
336 }
337 } else {
338 spin_lock_irqsave(lock, *flags);
339 }
340
341 return true;
342 }
343
344 /*
345 * Compaction requires the taking of some coarse locks that are potentially
346 * very heavily contended. The lock should be periodically unlocked to avoid
347 * having disabled IRQs for a long time, even when there is nobody waiting on
348 * the lock. It might also be that allowing the IRQs will result in
349 * need_resched() becoming true. If scheduling is needed, async compaction
350 * aborts. Sync compaction schedules.
351 * Either compaction type will also abort if a fatal signal is pending.
352 * In either case if the lock was locked, it is dropped and not regained.
353 *
354 * Returns true if compaction should abort due to fatal signal pending, or
355 * async compaction due to need_resched()
356 * Returns false when compaction can continue (sync compaction might have
357 * scheduled)
358 */
compact_unlock_should_abort(spinlock_t * lock,unsigned long flags,bool * locked,struct compact_control * cc)359 static bool compact_unlock_should_abort(spinlock_t *lock,
360 unsigned long flags, bool *locked, struct compact_control *cc)
361 {
362 if (*locked) {
363 spin_unlock_irqrestore(lock, flags);
364 *locked = false;
365 }
366
367 if (fatal_signal_pending(current)) {
368 cc->contended = true;
369 return true;
370 }
371
372 if (need_resched()) {
373 if (cc->mode == MIGRATE_ASYNC) {
374 cc->contended = true;
375 return true;
376 }
377 cond_resched();
378 }
379
380 return false;
381 }
382
383 /*
384 * Aside from avoiding lock contention, compaction also periodically checks
385 * need_resched() and either schedules in sync compaction or aborts async
386 * compaction. This is similar to what compact_unlock_should_abort() does, but
387 * is used where no lock is concerned.
388 *
389 * Returns false when no scheduling was needed, or sync compaction scheduled.
390 * Returns true when async compaction should abort.
391 */
compact_should_abort(struct compact_control * cc)392 static inline bool compact_should_abort(struct compact_control *cc)
393 {
394 /* async compaction aborts if contended */
395 if (need_resched()) {
396 if (cc->mode == MIGRATE_ASYNC) {
397 cc->contended = true;
398 return true;
399 }
400
401 cond_resched();
402 }
403
404 return false;
405 }
406
407 /*
408 * Isolate free pages onto a private freelist. If @strict is true, will abort
409 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
410 * (even though it may still end up isolating some pages).
411 */
isolate_freepages_block(struct compact_control * cc,unsigned long * start_pfn,unsigned long end_pfn,struct list_head * freelist,bool strict)412 static unsigned long isolate_freepages_block(struct compact_control *cc,
413 unsigned long *start_pfn,
414 unsigned long end_pfn,
415 struct list_head *freelist,
416 bool strict)
417 {
418 int nr_scanned = 0, total_isolated = 0;
419 struct page *cursor, *valid_page = NULL;
420 unsigned long flags = 0;
421 bool locked = false;
422 unsigned long blockpfn = *start_pfn;
423 unsigned int order;
424
425 cursor = pfn_to_page(blockpfn);
426
427 /* Isolate free pages. */
428 for (; blockpfn < end_pfn; blockpfn++, cursor++) {
429 int isolated;
430 struct page *page = cursor;
431
432 /*
433 * Periodically drop the lock (if held) regardless of its
434 * contention, to give chance to IRQs. Abort if fatal signal
435 * pending or async compaction detects need_resched()
436 */
437 if (!(blockpfn % SWAP_CLUSTER_MAX)
438 && compact_unlock_should_abort(&cc->zone->lock, flags,
439 &locked, cc))
440 break;
441
442 nr_scanned++;
443 if (!pfn_valid_within(blockpfn))
444 goto isolate_fail;
445
446 if (!valid_page)
447 valid_page = page;
448
449 /*
450 * For compound pages such as THP and hugetlbfs, we can save
451 * potentially a lot of iterations if we skip them at once.
452 * The check is racy, but we can consider only valid values
453 * and the only danger is skipping too much.
454 */
455 if (PageCompound(page)) {
456 unsigned int comp_order = compound_order(page);
457
458 if (likely(comp_order < MAX_ORDER)) {
459 blockpfn += (1UL << comp_order) - 1;
460 cursor += (1UL << comp_order) - 1;
461 }
462
463 goto isolate_fail;
464 }
465
466 if (!PageBuddy(page))
467 goto isolate_fail;
468
469 /*
470 * If we already hold the lock, we can skip some rechecking.
471 * Note that if we hold the lock now, checked_pageblock was
472 * already set in some previous iteration (or strict is true),
473 * so it is correct to skip the suitable migration target
474 * recheck as well.
475 */
476 if (!locked) {
477 /*
478 * The zone lock must be held to isolate freepages.
479 * Unfortunately this is a very coarse lock and can be
480 * heavily contended if there are parallel allocations
481 * or parallel compactions. For async compaction do not
482 * spin on the lock and we acquire the lock as late as
483 * possible.
484 */
485 locked = compact_trylock_irqsave(&cc->zone->lock,
486 &flags, cc);
487 if (!locked)
488 break;
489
490 /* Recheck this is a buddy page under lock */
491 if (!PageBuddy(page))
492 goto isolate_fail;
493 }
494
495 /* Found a free page, will break it into order-0 pages */
496 order = page_order(page);
497 isolated = __isolate_free_page(page, order);
498 if (!isolated)
499 break;
500 set_page_private(page, order);
501
502 total_isolated += isolated;
503 cc->nr_freepages += isolated;
504 list_add_tail(&page->lru, freelist);
505
506 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
507 blockpfn += isolated;
508 break;
509 }
510 /* Advance to the end of split page */
511 blockpfn += isolated - 1;
512 cursor += isolated - 1;
513 continue;
514
515 isolate_fail:
516 if (strict)
517 break;
518 else
519 continue;
520
521 }
522
523 if (locked)
524 spin_unlock_irqrestore(&cc->zone->lock, flags);
525
526 /*
527 * There is a tiny chance that we have read bogus compound_order(),
528 * so be careful to not go outside of the pageblock.
529 */
530 if (unlikely(blockpfn > end_pfn))
531 blockpfn = end_pfn;
532
533 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
534 nr_scanned, total_isolated);
535
536 /* Record how far we have got within the block */
537 *start_pfn = blockpfn;
538
539 /*
540 * If strict isolation is requested by CMA then check that all the
541 * pages requested were isolated. If there were any failures, 0 is
542 * returned and CMA will fail.
543 */
544 if (strict && blockpfn < end_pfn)
545 total_isolated = 0;
546
547 /* Update the pageblock-skip if the whole pageblock was scanned */
548 if (blockpfn == end_pfn)
549 update_pageblock_skip(cc, valid_page, total_isolated, false);
550
551 count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
552 if (total_isolated)
553 count_compact_events(COMPACTISOLATED, total_isolated);
554 return total_isolated;
555 }
556
557 /**
558 * isolate_freepages_range() - isolate free pages.
559 * @start_pfn: The first PFN to start isolating.
560 * @end_pfn: The one-past-last PFN.
561 *
562 * Non-free pages, invalid PFNs, or zone boundaries within the
563 * [start_pfn, end_pfn) range are considered errors, cause function to
564 * undo its actions and return zero.
565 *
566 * Otherwise, function returns one-past-the-last PFN of isolated page
567 * (which may be greater then end_pfn if end fell in a middle of
568 * a free page).
569 */
570 unsigned long
isolate_freepages_range(struct compact_control * cc,unsigned long start_pfn,unsigned long end_pfn)571 isolate_freepages_range(struct compact_control *cc,
572 unsigned long start_pfn, unsigned long end_pfn)
573 {
574 unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
575 LIST_HEAD(freelist);
576
577 pfn = start_pfn;
578 block_start_pfn = pageblock_start_pfn(pfn);
579 if (block_start_pfn < cc->zone->zone_start_pfn)
580 block_start_pfn = cc->zone->zone_start_pfn;
581 block_end_pfn = pageblock_end_pfn(pfn);
582
583 for (; pfn < end_pfn; pfn += isolated,
584 block_start_pfn = block_end_pfn,
585 block_end_pfn += pageblock_nr_pages) {
586 /* Protect pfn from changing by isolate_freepages_block */
587 unsigned long isolate_start_pfn = pfn;
588
589 block_end_pfn = min(block_end_pfn, end_pfn);
590
591 /*
592 * pfn could pass the block_end_pfn if isolated freepage
593 * is more than pageblock order. In this case, we adjust
594 * scanning range to right one.
595 */
596 if (pfn >= block_end_pfn) {
597 block_start_pfn = pageblock_start_pfn(pfn);
598 block_end_pfn = pageblock_end_pfn(pfn);
599 block_end_pfn = min(block_end_pfn, end_pfn);
600 }
601
602 if (!pageblock_pfn_to_page(block_start_pfn,
603 block_end_pfn, cc->zone))
604 break;
605
606 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
607 block_end_pfn, &freelist, true);
608
609 /*
610 * In strict mode, isolate_freepages_block() returns 0 if
611 * there are any holes in the block (ie. invalid PFNs or
612 * non-free pages).
613 */
614 if (!isolated)
615 break;
616
617 /*
618 * If we managed to isolate pages, it is always (1 << n) *
619 * pageblock_nr_pages for some non-negative n. (Max order
620 * page may span two pageblocks).
621 */
622 }
623
624 /* __isolate_free_page() does not map the pages */
625 map_pages(&freelist);
626
627 if (pfn < end_pfn) {
628 /* Loop terminated early, cleanup. */
629 release_freepages(&freelist);
630 return 0;
631 }
632
633 /* We don't use freelists for anything. */
634 return pfn;
635 }
636
637 /* Similar to reclaim, but different enough that they don't share logic */
too_many_isolated(struct zone * zone)638 static bool too_many_isolated(struct zone *zone)
639 {
640 unsigned long active, inactive, isolated;
641
642 inactive = node_page_state(zone->zone_pgdat, NR_INACTIVE_FILE) +
643 node_page_state(zone->zone_pgdat, NR_INACTIVE_ANON);
644 active = node_page_state(zone->zone_pgdat, NR_ACTIVE_FILE) +
645 node_page_state(zone->zone_pgdat, NR_ACTIVE_ANON);
646 isolated = node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE) +
647 node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON);
648
649 return isolated > (inactive + active) / 2;
650 }
651
652 /**
653 * isolate_migratepages_block() - isolate all migrate-able pages within
654 * a single pageblock
655 * @cc: Compaction control structure.
656 * @low_pfn: The first PFN to isolate
657 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
658 * @isolate_mode: Isolation mode to be used.
659 *
660 * Isolate all pages that can be migrated from the range specified by
661 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
662 * Returns zero if there is a fatal signal pending, otherwise PFN of the
663 * first page that was not scanned (which may be both less, equal to or more
664 * than end_pfn).
665 *
666 * The pages are isolated on cc->migratepages list (not required to be empty),
667 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
668 * is neither read nor updated.
669 */
670 static unsigned long
isolate_migratepages_block(struct compact_control * cc,unsigned long low_pfn,unsigned long end_pfn,isolate_mode_t isolate_mode)671 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
672 unsigned long end_pfn, isolate_mode_t isolate_mode)
673 {
674 struct zone *zone = cc->zone;
675 unsigned long nr_scanned = 0, nr_isolated = 0;
676 struct lruvec *lruvec;
677 unsigned long flags = 0;
678 bool locked = false;
679 struct page *page = NULL, *valid_page = NULL;
680 unsigned long start_pfn = low_pfn;
681 bool skip_on_failure = false;
682 unsigned long next_skip_pfn = 0;
683
684 /*
685 * Ensure that there are not too many pages isolated from the LRU
686 * list by either parallel reclaimers or compaction. If there are,
687 * delay for some time until fewer pages are isolated
688 */
689 while (unlikely(too_many_isolated(zone))) {
690 /* async migration should just abort */
691 if (cc->mode == MIGRATE_ASYNC)
692 return 0;
693
694 congestion_wait(BLK_RW_ASYNC, HZ/10);
695
696 if (fatal_signal_pending(current))
697 return 0;
698 }
699
700 if (compact_should_abort(cc))
701 return 0;
702
703 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
704 skip_on_failure = true;
705 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
706 }
707
708 /* Time to isolate some pages for migration */
709 for (; low_pfn < end_pfn; low_pfn++) {
710
711 if (skip_on_failure && low_pfn >= next_skip_pfn) {
712 /*
713 * We have isolated all migration candidates in the
714 * previous order-aligned block, and did not skip it due
715 * to failure. We should migrate the pages now and
716 * hopefully succeed compaction.
717 */
718 if (nr_isolated)
719 break;
720
721 /*
722 * We failed to isolate in the previous order-aligned
723 * block. Set the new boundary to the end of the
724 * current block. Note we can't simply increase
725 * next_skip_pfn by 1 << order, as low_pfn might have
726 * been incremented by a higher number due to skipping
727 * a compound or a high-order buddy page in the
728 * previous loop iteration.
729 */
730 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
731 }
732
733 /*
734 * Periodically drop the lock (if held) regardless of its
735 * contention, to give chance to IRQs. Abort async compaction
736 * if contended.
737 */
738 if (!(low_pfn % SWAP_CLUSTER_MAX)
739 && compact_unlock_should_abort(zone_lru_lock(zone), flags,
740 &locked, cc))
741 break;
742
743 if (!pfn_valid_within(low_pfn))
744 goto isolate_fail;
745 nr_scanned++;
746
747 page = pfn_to_page(low_pfn);
748
749 if (!valid_page)
750 valid_page = page;
751
752 /*
753 * Skip if free. We read page order here without zone lock
754 * which is generally unsafe, but the race window is small and
755 * the worst thing that can happen is that we skip some
756 * potential isolation targets.
757 */
758 if (PageBuddy(page)) {
759 unsigned long freepage_order = page_order_unsafe(page);
760
761 /*
762 * Without lock, we cannot be sure that what we got is
763 * a valid page order. Consider only values in the
764 * valid order range to prevent low_pfn overflow.
765 */
766 if (freepage_order > 0 && freepage_order < MAX_ORDER)
767 low_pfn += (1UL << freepage_order) - 1;
768 continue;
769 }
770
771 /*
772 * Regardless of being on LRU, compound pages such as THP and
773 * hugetlbfs are not to be compacted. We can potentially save
774 * a lot of iterations if we skip them at once. The check is
775 * racy, but we can consider only valid values and the only
776 * danger is skipping too much.
777 */
778 if (PageCompound(page)) {
779 unsigned int comp_order = compound_order(page);
780
781 if (likely(comp_order < MAX_ORDER))
782 low_pfn += (1UL << comp_order) - 1;
783
784 goto isolate_fail;
785 }
786
787 /*
788 * Check may be lockless but that's ok as we recheck later.
789 * It's possible to migrate LRU and non-lru movable pages.
790 * Skip any other type of page
791 */
792 if (!PageLRU(page)) {
793 /*
794 * __PageMovable can return false positive so we need
795 * to verify it under page_lock.
796 */
797 if (unlikely(__PageMovable(page)) &&
798 !PageIsolated(page)) {
799 if (locked) {
800 spin_unlock_irqrestore(zone_lru_lock(zone),
801 flags);
802 locked = false;
803 }
804
805 if (isolate_movable_page(page, isolate_mode))
806 goto isolate_success;
807 }
808
809 goto isolate_fail;
810 }
811
812 /*
813 * Migration will fail if an anonymous page is pinned in memory,
814 * so avoid taking lru_lock and isolating it unnecessarily in an
815 * admittedly racy check.
816 */
817 if (!page_mapping(page) &&
818 page_count(page) > page_mapcount(page))
819 goto isolate_fail;
820
821 /* If we already hold the lock, we can skip some rechecking */
822 if (!locked) {
823 locked = compact_trylock_irqsave(zone_lru_lock(zone),
824 &flags, cc);
825 if (!locked)
826 break;
827
828 /* Recheck PageLRU and PageCompound under lock */
829 if (!PageLRU(page))
830 goto isolate_fail;
831
832 /*
833 * Page become compound since the non-locked check,
834 * and it's on LRU. It can only be a THP so the order
835 * is safe to read and it's 0 for tail pages.
836 */
837 if (unlikely(PageCompound(page))) {
838 low_pfn += (1UL << compound_order(page)) - 1;
839 goto isolate_fail;
840 }
841 }
842
843 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
844
845 /* Try isolate the page */
846 if (__isolate_lru_page(page, isolate_mode) != 0)
847 goto isolate_fail;
848
849 VM_BUG_ON_PAGE(PageCompound(page), page);
850
851 /* Successfully isolated */
852 del_page_from_lru_list(page, lruvec, page_lru(page));
853 inc_node_page_state(page,
854 NR_ISOLATED_ANON + page_is_file_cache(page));
855
856 isolate_success:
857 list_add(&page->lru, &cc->migratepages);
858 cc->nr_migratepages++;
859 nr_isolated++;
860
861 /*
862 * Record where we could have freed pages by migration and not
863 * yet flushed them to buddy allocator.
864 * - this is the lowest page that was isolated and likely be
865 * then freed by migration.
866 */
867 if (!cc->last_migrated_pfn)
868 cc->last_migrated_pfn = low_pfn;
869
870 /* Avoid isolating too much */
871 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
872 ++low_pfn;
873 break;
874 }
875
876 continue;
877 isolate_fail:
878 if (!skip_on_failure)
879 continue;
880
881 /*
882 * We have isolated some pages, but then failed. Release them
883 * instead of migrating, as we cannot form the cc->order buddy
884 * page anyway.
885 */
886 if (nr_isolated) {
887 if (locked) {
888 spin_unlock_irqrestore(zone_lru_lock(zone), flags);
889 locked = false;
890 }
891 putback_movable_pages(&cc->migratepages);
892 cc->nr_migratepages = 0;
893 cc->last_migrated_pfn = 0;
894 nr_isolated = 0;
895 }
896
897 if (low_pfn < next_skip_pfn) {
898 low_pfn = next_skip_pfn - 1;
899 /*
900 * The check near the loop beginning would have updated
901 * next_skip_pfn too, but this is a bit simpler.
902 */
903 next_skip_pfn += 1UL << cc->order;
904 }
905 }
906
907 /*
908 * The PageBuddy() check could have potentially brought us outside
909 * the range to be scanned.
910 */
911 if (unlikely(low_pfn > end_pfn))
912 low_pfn = end_pfn;
913
914 if (locked)
915 spin_unlock_irqrestore(zone_lru_lock(zone), flags);
916
917 /*
918 * Update the pageblock-skip information and cached scanner pfn,
919 * if the whole pageblock was scanned without isolating any page.
920 */
921 if (low_pfn == end_pfn)
922 update_pageblock_skip(cc, valid_page, nr_isolated, true);
923
924 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
925 nr_scanned, nr_isolated);
926
927 count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
928 if (nr_isolated)
929 count_compact_events(COMPACTISOLATED, nr_isolated);
930
931 return low_pfn;
932 }
933
934 /**
935 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
936 * @cc: Compaction control structure.
937 * @start_pfn: The first PFN to start isolating.
938 * @end_pfn: The one-past-last PFN.
939 *
940 * Returns zero if isolation fails fatally due to e.g. pending signal.
941 * Otherwise, function returns one-past-the-last PFN of isolated page
942 * (which may be greater than end_pfn if end fell in a middle of a THP page).
943 */
944 unsigned long
isolate_migratepages_range(struct compact_control * cc,unsigned long start_pfn,unsigned long end_pfn)945 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
946 unsigned long end_pfn)
947 {
948 unsigned long pfn, block_start_pfn, block_end_pfn;
949
950 /* Scan block by block. First and last block may be incomplete */
951 pfn = start_pfn;
952 block_start_pfn = pageblock_start_pfn(pfn);
953 if (block_start_pfn < cc->zone->zone_start_pfn)
954 block_start_pfn = cc->zone->zone_start_pfn;
955 block_end_pfn = pageblock_end_pfn(pfn);
956
957 for (; pfn < end_pfn; pfn = block_end_pfn,
958 block_start_pfn = block_end_pfn,
959 block_end_pfn += pageblock_nr_pages) {
960
961 block_end_pfn = min(block_end_pfn, end_pfn);
962
963 if (!pageblock_pfn_to_page(block_start_pfn,
964 block_end_pfn, cc->zone))
965 continue;
966
967 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
968 ISOLATE_UNEVICTABLE);
969
970 if (!pfn)
971 break;
972
973 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
974 break;
975 }
976
977 return pfn;
978 }
979
980 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
981 #ifdef CONFIG_COMPACTION
982
983 /* Returns true if the page is within a block suitable for migration to */
suitable_migration_target(struct compact_control * cc,struct page * page)984 static bool suitable_migration_target(struct compact_control *cc,
985 struct page *page)
986 {
987 if (cc->ignore_block_suitable)
988 return true;
989
990 /* If the page is a large free page, then disallow migration */
991 if (PageBuddy(page)) {
992 /*
993 * We are checking page_order without zone->lock taken. But
994 * the only small danger is that we skip a potentially suitable
995 * pageblock, so it's not worth to check order for valid range.
996 */
997 if (page_order_unsafe(page) >= pageblock_order)
998 return false;
999 }
1000
1001 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1002 if (migrate_async_suitable(get_pageblock_migratetype(page)))
1003 return true;
1004
1005 /* Otherwise skip the block */
1006 return false;
1007 }
1008
1009 /*
1010 * Test whether the free scanner has reached the same or lower pageblock than
1011 * the migration scanner, and compaction should thus terminate.
1012 */
compact_scanners_met(struct compact_control * cc)1013 static inline bool compact_scanners_met(struct compact_control *cc)
1014 {
1015 return (cc->free_pfn >> pageblock_order)
1016 <= (cc->migrate_pfn >> pageblock_order);
1017 }
1018
1019 /*
1020 * Based on information in the current compact_control, find blocks
1021 * suitable for isolating free pages from and then isolate them.
1022 */
isolate_freepages(struct compact_control * cc)1023 static void isolate_freepages(struct compact_control *cc)
1024 {
1025 struct zone *zone = cc->zone;
1026 struct page *page;
1027 unsigned long block_start_pfn; /* start of current pageblock */
1028 unsigned long isolate_start_pfn; /* exact pfn we start at */
1029 unsigned long block_end_pfn; /* end of current pageblock */
1030 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
1031 struct list_head *freelist = &cc->freepages;
1032
1033 /*
1034 * Initialise the free scanner. The starting point is where we last
1035 * successfully isolated from, zone-cached value, or the end of the
1036 * zone when isolating for the first time. For looping we also need
1037 * this pfn aligned down to the pageblock boundary, because we do
1038 * block_start_pfn -= pageblock_nr_pages in the for loop.
1039 * For ending point, take care when isolating in last pageblock of a
1040 * a zone which ends in the middle of a pageblock.
1041 * The low boundary is the end of the pageblock the migration scanner
1042 * is using.
1043 */
1044 isolate_start_pfn = cc->free_pfn;
1045 block_start_pfn = pageblock_start_pfn(cc->free_pfn);
1046 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1047 zone_end_pfn(zone));
1048 low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1049
1050 /*
1051 * Isolate free pages until enough are available to migrate the
1052 * pages on cc->migratepages. We stop searching if the migrate
1053 * and free page scanners meet or enough free pages are isolated.
1054 */
1055 for (; block_start_pfn >= low_pfn;
1056 block_end_pfn = block_start_pfn,
1057 block_start_pfn -= pageblock_nr_pages,
1058 isolate_start_pfn = block_start_pfn) {
1059 /*
1060 * This can iterate a massively long zone without finding any
1061 * suitable migration targets, so periodically check if we need
1062 * to schedule, or even abort async compaction.
1063 */
1064 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1065 && compact_should_abort(cc))
1066 break;
1067
1068 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1069 zone);
1070 if (!page)
1071 continue;
1072
1073 /* Check the block is suitable for migration */
1074 if (!suitable_migration_target(cc, page))
1075 continue;
1076
1077 /* If isolation recently failed, do not retry */
1078 if (!isolation_suitable(cc, page))
1079 continue;
1080
1081 /* Found a block suitable for isolating free pages from. */
1082 isolate_freepages_block(cc, &isolate_start_pfn, block_end_pfn,
1083 freelist, false);
1084
1085 /*
1086 * If we isolated enough freepages, or aborted due to lock
1087 * contention, terminate.
1088 */
1089 if ((cc->nr_freepages >= cc->nr_migratepages)
1090 || cc->contended) {
1091 if (isolate_start_pfn >= block_end_pfn) {
1092 /*
1093 * Restart at previous pageblock if more
1094 * freepages can be isolated next time.
1095 */
1096 isolate_start_pfn =
1097 block_start_pfn - pageblock_nr_pages;
1098 }
1099 break;
1100 } else if (isolate_start_pfn < block_end_pfn) {
1101 /*
1102 * If isolation failed early, do not continue
1103 * needlessly.
1104 */
1105 break;
1106 }
1107 }
1108
1109 /* __isolate_free_page() does not map the pages */
1110 map_pages(freelist);
1111
1112 /*
1113 * Record where the free scanner will restart next time. Either we
1114 * broke from the loop and set isolate_start_pfn based on the last
1115 * call to isolate_freepages_block(), or we met the migration scanner
1116 * and the loop terminated due to isolate_start_pfn < low_pfn
1117 */
1118 cc->free_pfn = isolate_start_pfn;
1119 }
1120
1121 /*
1122 * This is a migrate-callback that "allocates" freepages by taking pages
1123 * from the isolated freelists in the block we are migrating to.
1124 */
compaction_alloc(struct page * migratepage,unsigned long data,int ** result)1125 static struct page *compaction_alloc(struct page *migratepage,
1126 unsigned long data,
1127 int **result)
1128 {
1129 struct compact_control *cc = (struct compact_control *)data;
1130 struct page *freepage;
1131
1132 /*
1133 * Isolate free pages if necessary, and if we are not aborting due to
1134 * contention.
1135 */
1136 if (list_empty(&cc->freepages)) {
1137 if (!cc->contended)
1138 isolate_freepages(cc);
1139
1140 if (list_empty(&cc->freepages))
1141 return NULL;
1142 }
1143
1144 freepage = list_entry(cc->freepages.next, struct page, lru);
1145 list_del(&freepage->lru);
1146 cc->nr_freepages--;
1147
1148 return freepage;
1149 }
1150
1151 /*
1152 * This is a migrate-callback that "frees" freepages back to the isolated
1153 * freelist. All pages on the freelist are from the same zone, so there is no
1154 * special handling needed for NUMA.
1155 */
compaction_free(struct page * page,unsigned long data)1156 static void compaction_free(struct page *page, unsigned long data)
1157 {
1158 struct compact_control *cc = (struct compact_control *)data;
1159
1160 list_add(&page->lru, &cc->freepages);
1161 cc->nr_freepages++;
1162 }
1163
1164 /* possible outcome of isolate_migratepages */
1165 typedef enum {
1166 ISOLATE_ABORT, /* Abort compaction now */
1167 ISOLATE_NONE, /* No pages isolated, continue scanning */
1168 ISOLATE_SUCCESS, /* Pages isolated, migrate */
1169 } isolate_migrate_t;
1170
1171 /*
1172 * Allow userspace to control policy on scanning the unevictable LRU for
1173 * compactable pages.
1174 */
1175 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1176
1177 /*
1178 * Isolate all pages that can be migrated from the first suitable block,
1179 * starting at the block pointed to by the migrate scanner pfn within
1180 * compact_control.
1181 */
isolate_migratepages(struct zone * zone,struct compact_control * cc)1182 static isolate_migrate_t isolate_migratepages(struct zone *zone,
1183 struct compact_control *cc)
1184 {
1185 unsigned long block_start_pfn;
1186 unsigned long block_end_pfn;
1187 unsigned long low_pfn;
1188 struct page *page;
1189 const isolate_mode_t isolate_mode =
1190 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1191 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1192
1193 /*
1194 * Start at where we last stopped, or beginning of the zone as
1195 * initialized by compact_zone()
1196 */
1197 low_pfn = cc->migrate_pfn;
1198 block_start_pfn = pageblock_start_pfn(low_pfn);
1199 if (block_start_pfn < zone->zone_start_pfn)
1200 block_start_pfn = zone->zone_start_pfn;
1201
1202 /* Only scan within a pageblock boundary */
1203 block_end_pfn = pageblock_end_pfn(low_pfn);
1204
1205 /*
1206 * Iterate over whole pageblocks until we find the first suitable.
1207 * Do not cross the free scanner.
1208 */
1209 for (; block_end_pfn <= cc->free_pfn;
1210 low_pfn = block_end_pfn,
1211 block_start_pfn = block_end_pfn,
1212 block_end_pfn += pageblock_nr_pages) {
1213
1214 /*
1215 * This can potentially iterate a massively long zone with
1216 * many pageblocks unsuitable, so periodically check if we
1217 * need to schedule, or even abort async compaction.
1218 */
1219 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1220 && compact_should_abort(cc))
1221 break;
1222
1223 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1224 zone);
1225 if (!page)
1226 continue;
1227
1228 /* If isolation recently failed, do not retry */
1229 if (!isolation_suitable(cc, page))
1230 continue;
1231
1232 /*
1233 * For async compaction, also only scan in MOVABLE blocks.
1234 * Async compaction is optimistic to see if the minimum amount
1235 * of work satisfies the allocation.
1236 */
1237 if (cc->mode == MIGRATE_ASYNC &&
1238 !migrate_async_suitable(get_pageblock_migratetype(page)))
1239 continue;
1240
1241 /* Perform the isolation */
1242 low_pfn = isolate_migratepages_block(cc, low_pfn,
1243 block_end_pfn, isolate_mode);
1244
1245 if (!low_pfn || cc->contended)
1246 return ISOLATE_ABORT;
1247
1248 /*
1249 * Either we isolated something and proceed with migration. Or
1250 * we failed and compact_zone should decide if we should
1251 * continue or not.
1252 */
1253 break;
1254 }
1255
1256 /* Record where migration scanner will be restarted. */
1257 cc->migrate_pfn = low_pfn;
1258
1259 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1260 }
1261
1262 /*
1263 * order == -1 is expected when compacting via
1264 * /proc/sys/vm/compact_memory
1265 */
is_via_compact_memory(int order)1266 static inline bool is_via_compact_memory(int order)
1267 {
1268 return order == -1;
1269 }
1270
__compact_finished(struct zone * zone,struct compact_control * cc,const int migratetype)1271 static enum compact_result __compact_finished(struct zone *zone, struct compact_control *cc,
1272 const int migratetype)
1273 {
1274 unsigned int order;
1275 unsigned long watermark;
1276
1277 if (cc->contended || fatal_signal_pending(current))
1278 return COMPACT_CONTENDED;
1279
1280 /* Compaction run completes if the migrate and free scanner meet */
1281 if (compact_scanners_met(cc)) {
1282 /* Let the next compaction start anew. */
1283 reset_cached_positions(zone);
1284
1285 /*
1286 * Mark that the PG_migrate_skip information should be cleared
1287 * by kswapd when it goes to sleep. kcompactd does not set the
1288 * flag itself as the decision to be clear should be directly
1289 * based on an allocation request.
1290 */
1291 if (cc->direct_compaction)
1292 zone->compact_blockskip_flush = true;
1293
1294 if (cc->whole_zone)
1295 return COMPACT_COMPLETE;
1296 else
1297 return COMPACT_PARTIAL_SKIPPED;
1298 }
1299
1300 if (is_via_compact_memory(cc->order))
1301 return COMPACT_CONTINUE;
1302
1303 /* Compaction run is not finished if the watermark is not met */
1304 watermark = zone->watermark[cc->alloc_flags & ALLOC_WMARK_MASK];
1305
1306 if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx,
1307 cc->alloc_flags))
1308 return COMPACT_CONTINUE;
1309
1310 /* Direct compactor: Is a suitable page free? */
1311 for (order = cc->order; order < MAX_ORDER; order++) {
1312 struct free_area *area = &zone->free_area[order];
1313 bool can_steal;
1314
1315 /* Job done if page is free of the right migratetype */
1316 if (!list_empty(&area->free_list[migratetype]))
1317 return COMPACT_SUCCESS;
1318
1319 #ifdef CONFIG_CMA
1320 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1321 if (migratetype == MIGRATE_MOVABLE &&
1322 !list_empty(&area->free_list[MIGRATE_CMA]))
1323 return COMPACT_SUCCESS;
1324 #endif
1325 /*
1326 * Job done if allocation would steal freepages from
1327 * other migratetype buddy lists.
1328 */
1329 if (find_suitable_fallback(area, order, migratetype,
1330 true, &can_steal) != -1)
1331 return COMPACT_SUCCESS;
1332 }
1333
1334 return COMPACT_NO_SUITABLE_PAGE;
1335 }
1336
compact_finished(struct zone * zone,struct compact_control * cc,const int migratetype)1337 static enum compact_result compact_finished(struct zone *zone,
1338 struct compact_control *cc,
1339 const int migratetype)
1340 {
1341 int ret;
1342
1343 ret = __compact_finished(zone, cc, migratetype);
1344 trace_mm_compaction_finished(zone, cc->order, ret);
1345 if (ret == COMPACT_NO_SUITABLE_PAGE)
1346 ret = COMPACT_CONTINUE;
1347
1348 return ret;
1349 }
1350
1351 /*
1352 * compaction_suitable: Is this suitable to run compaction on this zone now?
1353 * Returns
1354 * COMPACT_SKIPPED - If there are too few free pages for compaction
1355 * COMPACT_SUCCESS - If the allocation would succeed without compaction
1356 * COMPACT_CONTINUE - If compaction should run now
1357 */
__compaction_suitable(struct zone * zone,int order,unsigned int alloc_flags,int classzone_idx,unsigned long wmark_target)1358 static enum compact_result __compaction_suitable(struct zone *zone, int order,
1359 unsigned int alloc_flags,
1360 int classzone_idx,
1361 unsigned long wmark_target)
1362 {
1363 unsigned long watermark;
1364
1365 if (is_via_compact_memory(order))
1366 return COMPACT_CONTINUE;
1367
1368 watermark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1369 /*
1370 * If watermarks for high-order allocation are already met, there
1371 * should be no need for compaction at all.
1372 */
1373 if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1374 alloc_flags))
1375 return COMPACT_SUCCESS;
1376
1377 /*
1378 * Watermarks for order-0 must be met for compaction to be able to
1379 * isolate free pages for migration targets. This means that the
1380 * watermark and alloc_flags have to match, or be more pessimistic than
1381 * the check in __isolate_free_page(). We don't use the direct
1382 * compactor's alloc_flags, as they are not relevant for freepage
1383 * isolation. We however do use the direct compactor's classzone_idx to
1384 * skip over zones where lowmem reserves would prevent allocation even
1385 * if compaction succeeds.
1386 * For costly orders, we require low watermark instead of min for
1387 * compaction to proceed to increase its chances.
1388 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
1389 * suitable migration targets
1390 */
1391 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
1392 low_wmark_pages(zone) : min_wmark_pages(zone);
1393 watermark += compact_gap(order);
1394 if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx,
1395 ALLOC_CMA, wmark_target))
1396 return COMPACT_SKIPPED;
1397
1398 return COMPACT_CONTINUE;
1399 }
1400
compaction_suitable(struct zone * zone,int order,unsigned int alloc_flags,int classzone_idx)1401 enum compact_result compaction_suitable(struct zone *zone, int order,
1402 unsigned int alloc_flags,
1403 int classzone_idx)
1404 {
1405 enum compact_result ret;
1406 int fragindex;
1407
1408 ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx,
1409 zone_page_state(zone, NR_FREE_PAGES));
1410 /*
1411 * fragmentation index determines if allocation failures are due to
1412 * low memory or external fragmentation
1413 *
1414 * index of -1000 would imply allocations might succeed depending on
1415 * watermarks, but we already failed the high-order watermark check
1416 * index towards 0 implies failure is due to lack of memory
1417 * index towards 1000 implies failure is due to fragmentation
1418 *
1419 * Only compact if a failure would be due to fragmentation. Also
1420 * ignore fragindex for non-costly orders where the alternative to
1421 * a successful reclaim/compaction is OOM. Fragindex and the
1422 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
1423 * excessive compaction for costly orders, but it should not be at the
1424 * expense of system stability.
1425 */
1426 if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
1427 fragindex = fragmentation_index(zone, order);
1428 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1429 ret = COMPACT_NOT_SUITABLE_ZONE;
1430 }
1431
1432 trace_mm_compaction_suitable(zone, order, ret);
1433 if (ret == COMPACT_NOT_SUITABLE_ZONE)
1434 ret = COMPACT_SKIPPED;
1435
1436 return ret;
1437 }
1438
compaction_zonelist_suitable(struct alloc_context * ac,int order,int alloc_flags)1439 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
1440 int alloc_flags)
1441 {
1442 struct zone *zone;
1443 struct zoneref *z;
1444
1445 /*
1446 * Make sure at least one zone would pass __compaction_suitable if we continue
1447 * retrying the reclaim.
1448 */
1449 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1450 ac->nodemask) {
1451 unsigned long available;
1452 enum compact_result compact_result;
1453
1454 /*
1455 * Do not consider all the reclaimable memory because we do not
1456 * want to trash just for a single high order allocation which
1457 * is even not guaranteed to appear even if __compaction_suitable
1458 * is happy about the watermark check.
1459 */
1460 available = zone_reclaimable_pages(zone) / order;
1461 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
1462 compact_result = __compaction_suitable(zone, order, alloc_flags,
1463 ac_classzone_idx(ac), available);
1464 if (compact_result != COMPACT_SKIPPED)
1465 return true;
1466 }
1467
1468 return false;
1469 }
1470
compact_zone(struct zone * zone,struct compact_control * cc)1471 static enum compact_result compact_zone(struct zone *zone, struct compact_control *cc)
1472 {
1473 enum compact_result ret;
1474 unsigned long start_pfn = zone->zone_start_pfn;
1475 unsigned long end_pfn = zone_end_pfn(zone);
1476 const int migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1477 const bool sync = cc->mode != MIGRATE_ASYNC;
1478
1479 ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
1480 cc->classzone_idx);
1481 /* Compaction is likely to fail */
1482 if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
1483 return ret;
1484
1485 /* huh, compaction_suitable is returning something unexpected */
1486 VM_BUG_ON(ret != COMPACT_CONTINUE);
1487
1488 /*
1489 * Clear pageblock skip if there were failures recently and compaction
1490 * is about to be retried after being deferred.
1491 */
1492 if (compaction_restarting(zone, cc->order))
1493 __reset_isolation_suitable(zone);
1494
1495 /*
1496 * Setup to move all movable pages to the end of the zone. Used cached
1497 * information on where the scanners should start (unless we explicitly
1498 * want to compact the whole zone), but check that it is initialised
1499 * by ensuring the values are within zone boundaries.
1500 */
1501 if (cc->whole_zone) {
1502 cc->migrate_pfn = start_pfn;
1503 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
1504 } else {
1505 cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1506 cc->free_pfn = zone->compact_cached_free_pfn;
1507 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
1508 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
1509 zone->compact_cached_free_pfn = cc->free_pfn;
1510 }
1511 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
1512 cc->migrate_pfn = start_pfn;
1513 zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1514 zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1515 }
1516
1517 if (cc->migrate_pfn == start_pfn)
1518 cc->whole_zone = true;
1519 }
1520
1521 cc->last_migrated_pfn = 0;
1522
1523 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
1524 cc->free_pfn, end_pfn, sync);
1525
1526 migrate_prep_local();
1527
1528 while ((ret = compact_finished(zone, cc, migratetype)) ==
1529 COMPACT_CONTINUE) {
1530 int err;
1531
1532 switch (isolate_migratepages(zone, cc)) {
1533 case ISOLATE_ABORT:
1534 ret = COMPACT_CONTENDED;
1535 putback_movable_pages(&cc->migratepages);
1536 cc->nr_migratepages = 0;
1537 goto out;
1538 case ISOLATE_NONE:
1539 /*
1540 * We haven't isolated and migrated anything, but
1541 * there might still be unflushed migrations from
1542 * previous cc->order aligned block.
1543 */
1544 goto check_drain;
1545 case ISOLATE_SUCCESS:
1546 ;
1547 }
1548
1549 err = migrate_pages(&cc->migratepages, compaction_alloc,
1550 compaction_free, (unsigned long)cc, cc->mode,
1551 MR_COMPACTION);
1552
1553 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1554 &cc->migratepages);
1555
1556 /* All pages were either migrated or will be released */
1557 cc->nr_migratepages = 0;
1558 if (err) {
1559 putback_movable_pages(&cc->migratepages);
1560 /*
1561 * migrate_pages() may return -ENOMEM when scanners meet
1562 * and we want compact_finished() to detect it
1563 */
1564 if (err == -ENOMEM && !compact_scanners_met(cc)) {
1565 ret = COMPACT_CONTENDED;
1566 goto out;
1567 }
1568 /*
1569 * We failed to migrate at least one page in the current
1570 * order-aligned block, so skip the rest of it.
1571 */
1572 if (cc->direct_compaction &&
1573 (cc->mode == MIGRATE_ASYNC)) {
1574 cc->migrate_pfn = block_end_pfn(
1575 cc->migrate_pfn - 1, cc->order);
1576 /* Draining pcplists is useless in this case */
1577 cc->last_migrated_pfn = 0;
1578
1579 }
1580 }
1581
1582 check_drain:
1583 /*
1584 * Has the migration scanner moved away from the previous
1585 * cc->order aligned block where we migrated from? If yes,
1586 * flush the pages that were freed, so that they can merge and
1587 * compact_finished() can detect immediately if allocation
1588 * would succeed.
1589 */
1590 if (cc->order > 0 && cc->last_migrated_pfn) {
1591 int cpu;
1592 unsigned long current_block_start =
1593 block_start_pfn(cc->migrate_pfn, cc->order);
1594
1595 if (cc->last_migrated_pfn < current_block_start) {
1596 cpu = get_cpu();
1597 lru_add_drain_cpu(cpu);
1598 drain_local_pages(zone);
1599 put_cpu();
1600 /* No more flushing until we migrate again */
1601 cc->last_migrated_pfn = 0;
1602 }
1603 }
1604
1605 }
1606
1607 out:
1608 /*
1609 * Release free pages and update where the free scanner should restart,
1610 * so we don't leave any returned pages behind in the next attempt.
1611 */
1612 if (cc->nr_freepages > 0) {
1613 unsigned long free_pfn = release_freepages(&cc->freepages);
1614
1615 cc->nr_freepages = 0;
1616 VM_BUG_ON(free_pfn == 0);
1617 /* The cached pfn is always the first in a pageblock */
1618 free_pfn = pageblock_start_pfn(free_pfn);
1619 /*
1620 * Only go back, not forward. The cached pfn might have been
1621 * already reset to zone end in compact_finished()
1622 */
1623 if (free_pfn > zone->compact_cached_free_pfn)
1624 zone->compact_cached_free_pfn = free_pfn;
1625 }
1626
1627 trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
1628 cc->free_pfn, end_pfn, sync, ret);
1629
1630 return ret;
1631 }
1632
compact_zone_order(struct zone * zone,int order,gfp_t gfp_mask,enum compact_priority prio,unsigned int alloc_flags,int classzone_idx)1633 static enum compact_result compact_zone_order(struct zone *zone, int order,
1634 gfp_t gfp_mask, enum compact_priority prio,
1635 unsigned int alloc_flags, int classzone_idx)
1636 {
1637 enum compact_result ret;
1638 struct compact_control cc = {
1639 .nr_freepages = 0,
1640 .nr_migratepages = 0,
1641 .order = order,
1642 .gfp_mask = gfp_mask,
1643 .zone = zone,
1644 .mode = (prio == COMPACT_PRIO_ASYNC) ?
1645 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
1646 .alloc_flags = alloc_flags,
1647 .classzone_idx = classzone_idx,
1648 .direct_compaction = true,
1649 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
1650 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
1651 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
1652 };
1653 INIT_LIST_HEAD(&cc.freepages);
1654 INIT_LIST_HEAD(&cc.migratepages);
1655
1656 ret = compact_zone(zone, &cc);
1657
1658 VM_BUG_ON(!list_empty(&cc.freepages));
1659 VM_BUG_ON(!list_empty(&cc.migratepages));
1660
1661 return ret;
1662 }
1663
1664 int sysctl_extfrag_threshold = 500;
1665
1666 /**
1667 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1668 * @gfp_mask: The GFP mask of the current allocation
1669 * @order: The order of the current allocation
1670 * @alloc_flags: The allocation flags of the current allocation
1671 * @ac: The context of current allocation
1672 * @mode: The migration mode for async, sync light, or sync migration
1673 *
1674 * This is the main entry point for direct page compaction.
1675 */
try_to_compact_pages(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio)1676 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
1677 unsigned int alloc_flags, const struct alloc_context *ac,
1678 enum compact_priority prio)
1679 {
1680 int may_enter_fs = gfp_mask & __GFP_FS;
1681 int may_perform_io = gfp_mask & __GFP_IO;
1682 struct zoneref *z;
1683 struct zone *zone;
1684 enum compact_result rc = COMPACT_SKIPPED;
1685
1686 /* Check if the GFP flags allow compaction */
1687 if (!may_enter_fs || !may_perform_io)
1688 return COMPACT_SKIPPED;
1689
1690 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
1691
1692 /* Compact each zone in the list */
1693 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1694 ac->nodemask) {
1695 enum compact_result status;
1696
1697 if (prio > MIN_COMPACT_PRIORITY
1698 && compaction_deferred(zone, order)) {
1699 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
1700 continue;
1701 }
1702
1703 status = compact_zone_order(zone, order, gfp_mask, prio,
1704 alloc_flags, ac_classzone_idx(ac));
1705 rc = max(status, rc);
1706
1707 /* The allocation should succeed, stop compacting */
1708 if (status == COMPACT_SUCCESS) {
1709 /*
1710 * We think the allocation will succeed in this zone,
1711 * but it is not certain, hence the false. The caller
1712 * will repeat this with true if allocation indeed
1713 * succeeds in this zone.
1714 */
1715 compaction_defer_reset(zone, order, false);
1716
1717 break;
1718 }
1719
1720 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
1721 status == COMPACT_PARTIAL_SKIPPED))
1722 /*
1723 * We think that allocation won't succeed in this zone
1724 * so we defer compaction there. If it ends up
1725 * succeeding after all, it will be reset.
1726 */
1727 defer_compaction(zone, order);
1728
1729 /*
1730 * We might have stopped compacting due to need_resched() in
1731 * async compaction, or due to a fatal signal detected. In that
1732 * case do not try further zones
1733 */
1734 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
1735 || fatal_signal_pending(current))
1736 break;
1737 }
1738
1739 return rc;
1740 }
1741
1742
1743 /* Compact all zones within a node */
compact_node(int nid)1744 static void compact_node(int nid)
1745 {
1746 pg_data_t *pgdat = NODE_DATA(nid);
1747 int zoneid;
1748 struct zone *zone;
1749 struct compact_control cc = {
1750 .order = -1,
1751 .mode = MIGRATE_SYNC,
1752 .ignore_skip_hint = true,
1753 .whole_zone = true,
1754 };
1755
1756
1757 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1758
1759 zone = &pgdat->node_zones[zoneid];
1760 if (!populated_zone(zone))
1761 continue;
1762
1763 cc.nr_freepages = 0;
1764 cc.nr_migratepages = 0;
1765 cc.zone = zone;
1766 INIT_LIST_HEAD(&cc.freepages);
1767 INIT_LIST_HEAD(&cc.migratepages);
1768
1769 compact_zone(zone, &cc);
1770
1771 VM_BUG_ON(!list_empty(&cc.freepages));
1772 VM_BUG_ON(!list_empty(&cc.migratepages));
1773 }
1774 }
1775
1776 /* Compact all nodes in the system */
compact_nodes(void)1777 static void compact_nodes(void)
1778 {
1779 int nid;
1780
1781 /* Flush pending updates to the LRU lists */
1782 lru_add_drain_all();
1783
1784 for_each_online_node(nid)
1785 compact_node(nid);
1786 }
1787
1788 /* The written value is actually unused, all memory is compacted */
1789 int sysctl_compact_memory;
1790
1791 /*
1792 * This is the entry point for compacting all nodes via
1793 * /proc/sys/vm/compact_memory
1794 */
sysctl_compaction_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)1795 int sysctl_compaction_handler(struct ctl_table *table, int write,
1796 void __user *buffer, size_t *length, loff_t *ppos)
1797 {
1798 if (write)
1799 compact_nodes();
1800
1801 return 0;
1802 }
1803
sysctl_extfrag_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)1804 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1805 void __user *buffer, size_t *length, loff_t *ppos)
1806 {
1807 proc_dointvec_minmax(table, write, buffer, length, ppos);
1808
1809 return 0;
1810 }
1811
1812 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
sysfs_compact_node(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1813 static ssize_t sysfs_compact_node(struct device *dev,
1814 struct device_attribute *attr,
1815 const char *buf, size_t count)
1816 {
1817 int nid = dev->id;
1818
1819 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1820 /* Flush pending updates to the LRU lists */
1821 lru_add_drain_all();
1822
1823 compact_node(nid);
1824 }
1825
1826 return count;
1827 }
1828 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1829
compaction_register_node(struct node * node)1830 int compaction_register_node(struct node *node)
1831 {
1832 return device_create_file(&node->dev, &dev_attr_compact);
1833 }
1834
compaction_unregister_node(struct node * node)1835 void compaction_unregister_node(struct node *node)
1836 {
1837 return device_remove_file(&node->dev, &dev_attr_compact);
1838 }
1839 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1840
kcompactd_work_requested(pg_data_t * pgdat)1841 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
1842 {
1843 return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
1844 }
1845
kcompactd_node_suitable(pg_data_t * pgdat)1846 static bool kcompactd_node_suitable(pg_data_t *pgdat)
1847 {
1848 int zoneid;
1849 struct zone *zone;
1850 enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx;
1851
1852 for (zoneid = 0; zoneid <= classzone_idx; zoneid++) {
1853 zone = &pgdat->node_zones[zoneid];
1854
1855 if (!populated_zone(zone))
1856 continue;
1857
1858 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
1859 classzone_idx) == COMPACT_CONTINUE)
1860 return true;
1861 }
1862
1863 return false;
1864 }
1865
kcompactd_do_work(pg_data_t * pgdat)1866 static void kcompactd_do_work(pg_data_t *pgdat)
1867 {
1868 /*
1869 * With no special task, compact all zones so that a page of requested
1870 * order is allocatable.
1871 */
1872 int zoneid;
1873 struct zone *zone;
1874 struct compact_control cc = {
1875 .order = pgdat->kcompactd_max_order,
1876 .classzone_idx = pgdat->kcompactd_classzone_idx,
1877 .mode = MIGRATE_SYNC_LIGHT,
1878 .ignore_skip_hint = true,
1879
1880 };
1881 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
1882 cc.classzone_idx);
1883 count_vm_event(KCOMPACTD_WAKE);
1884
1885 for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) {
1886 int status;
1887
1888 zone = &pgdat->node_zones[zoneid];
1889 if (!populated_zone(zone))
1890 continue;
1891
1892 if (compaction_deferred(zone, cc.order))
1893 continue;
1894
1895 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
1896 COMPACT_CONTINUE)
1897 continue;
1898
1899 cc.nr_freepages = 0;
1900 cc.nr_migratepages = 0;
1901 cc.zone = zone;
1902 INIT_LIST_HEAD(&cc.freepages);
1903 INIT_LIST_HEAD(&cc.migratepages);
1904
1905 if (kthread_should_stop())
1906 return;
1907 status = compact_zone(zone, &cc);
1908
1909 if (status == COMPACT_SUCCESS) {
1910 compaction_defer_reset(zone, cc.order, false);
1911 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
1912 /*
1913 * We use sync migration mode here, so we defer like
1914 * sync direct compaction does.
1915 */
1916 defer_compaction(zone, cc.order);
1917 }
1918
1919 VM_BUG_ON(!list_empty(&cc.freepages));
1920 VM_BUG_ON(!list_empty(&cc.migratepages));
1921 }
1922
1923 /*
1924 * Regardless of success, we are done until woken up next. But remember
1925 * the requested order/classzone_idx in case it was higher/tighter than
1926 * our current ones
1927 */
1928 if (pgdat->kcompactd_max_order <= cc.order)
1929 pgdat->kcompactd_max_order = 0;
1930 if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx)
1931 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
1932 }
1933
wakeup_kcompactd(pg_data_t * pgdat,int order,int classzone_idx)1934 void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx)
1935 {
1936 if (!order)
1937 return;
1938
1939 if (pgdat->kcompactd_max_order < order)
1940 pgdat->kcompactd_max_order = order;
1941
1942 if (pgdat->kcompactd_classzone_idx > classzone_idx)
1943 pgdat->kcompactd_classzone_idx = classzone_idx;
1944
1945 if (!waitqueue_active(&pgdat->kcompactd_wait))
1946 return;
1947
1948 if (!kcompactd_node_suitable(pgdat))
1949 return;
1950
1951 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
1952 classzone_idx);
1953 wake_up_interruptible(&pgdat->kcompactd_wait);
1954 }
1955
1956 /*
1957 * The background compaction daemon, started as a kernel thread
1958 * from the init process.
1959 */
kcompactd(void * p)1960 static int kcompactd(void *p)
1961 {
1962 pg_data_t *pgdat = (pg_data_t*)p;
1963 struct task_struct *tsk = current;
1964
1965 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1966
1967 if (!cpumask_empty(cpumask))
1968 set_cpus_allowed_ptr(tsk, cpumask);
1969
1970 set_freezable();
1971
1972 pgdat->kcompactd_max_order = 0;
1973 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
1974
1975 while (!kthread_should_stop()) {
1976 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
1977 wait_event_freezable(pgdat->kcompactd_wait,
1978 kcompactd_work_requested(pgdat));
1979
1980 kcompactd_do_work(pgdat);
1981 }
1982
1983 return 0;
1984 }
1985
1986 /*
1987 * This kcompactd start function will be called by init and node-hot-add.
1988 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
1989 */
kcompactd_run(int nid)1990 int kcompactd_run(int nid)
1991 {
1992 pg_data_t *pgdat = NODE_DATA(nid);
1993 int ret = 0;
1994
1995 if (pgdat->kcompactd)
1996 return 0;
1997
1998 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
1999 if (IS_ERR(pgdat->kcompactd)) {
2000 pr_err("Failed to start kcompactd on node %d\n", nid);
2001 ret = PTR_ERR(pgdat->kcompactd);
2002 pgdat->kcompactd = NULL;
2003 }
2004 return ret;
2005 }
2006
2007 /*
2008 * Called by memory hotplug when all memory in a node is offlined. Caller must
2009 * hold mem_hotplug_begin/end().
2010 */
kcompactd_stop(int nid)2011 void kcompactd_stop(int nid)
2012 {
2013 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2014
2015 if (kcompactd) {
2016 kthread_stop(kcompactd);
2017 NODE_DATA(nid)->kcompactd = NULL;
2018 }
2019 }
2020
2021 /*
2022 * It's optimal to keep kcompactd on the same CPUs as their memory, but
2023 * not required for correctness. So if the last cpu in a node goes
2024 * away, we get changed to run anywhere: as the first one comes back,
2025 * restore their cpu bindings.
2026 */
cpu_callback(struct notifier_block * nfb,unsigned long action,void * hcpu)2027 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
2028 void *hcpu)
2029 {
2030 int nid;
2031
2032 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2033 for_each_node_state(nid, N_MEMORY) {
2034 pg_data_t *pgdat = NODE_DATA(nid);
2035 const struct cpumask *mask;
2036
2037 mask = cpumask_of_node(pgdat->node_id);
2038
2039 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2040 /* One of our CPUs online: restore mask */
2041 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2042 }
2043 }
2044 return NOTIFY_OK;
2045 }
2046
kcompactd_init(void)2047 static int __init kcompactd_init(void)
2048 {
2049 int nid;
2050
2051 for_each_node_state(nid, N_MEMORY)
2052 kcompactd_run(nid);
2053 hotcpu_notifier(cpu_callback, 0);
2054 return 0;
2055 }
2056 subsys_initcall(kcompactd_init)
2057
2058 #endif /* CONFIG_COMPACTION */
2059