• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * linux/mm/compaction.c
3  *
4  * Memory compaction for the reduction of external fragmentation. Note that
5  * this heavily depends upon page migration to do all the real heavy
6  * lifting
7  *
8  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9  */
10 #include <linux/cpu.h>
11 #include <linux/swap.h>
12 #include <linux/migrate.h>
13 #include <linux/compaction.h>
14 #include <linux/mm_inline.h>
15 #include <linux/backing-dev.h>
16 #include <linux/sysctl.h>
17 #include <linux/sysfs.h>
18 #include <linux/page-isolation.h>
19 #include <linux/kasan.h>
20 #include <linux/kthread.h>
21 #include <linux/freezer.h>
22 #include <linux/page_owner.h>
23 #include "internal.h"
24 
25 #ifdef CONFIG_COMPACTION
count_compact_event(enum vm_event_item item)26 static inline void count_compact_event(enum vm_event_item item)
27 {
28 	count_vm_event(item);
29 }
30 
count_compact_events(enum vm_event_item item,long delta)31 static inline void count_compact_events(enum vm_event_item item, long delta)
32 {
33 	count_vm_events(item, delta);
34 }
35 #else
36 #define count_compact_event(item) do { } while (0)
37 #define count_compact_events(item, delta) do { } while (0)
38 #endif
39 
40 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
41 
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/compaction.h>
44 
45 #define block_start_pfn(pfn, order)	round_down(pfn, 1UL << (order))
46 #define block_end_pfn(pfn, order)	ALIGN((pfn) + 1, 1UL << (order))
47 #define pageblock_start_pfn(pfn)	block_start_pfn(pfn, pageblock_order)
48 #define pageblock_end_pfn(pfn)		block_end_pfn(pfn, pageblock_order)
49 
release_freepages(struct list_head * freelist)50 static unsigned long release_freepages(struct list_head *freelist)
51 {
52 	struct page *page, *next;
53 	unsigned long high_pfn = 0;
54 
55 	list_for_each_entry_safe(page, next, freelist, lru) {
56 		unsigned long pfn = page_to_pfn(page);
57 		list_del(&page->lru);
58 		__free_page(page);
59 		if (pfn > high_pfn)
60 			high_pfn = pfn;
61 	}
62 
63 	return high_pfn;
64 }
65 
map_pages(struct list_head * list)66 static void map_pages(struct list_head *list)
67 {
68 	unsigned int i, order, nr_pages;
69 	struct page *page, *next;
70 	LIST_HEAD(tmp_list);
71 
72 	list_for_each_entry_safe(page, next, list, lru) {
73 		list_del(&page->lru);
74 
75 		order = page_private(page);
76 		nr_pages = 1 << order;
77 
78 		post_alloc_hook(page, order, __GFP_MOVABLE);
79 		if (order)
80 			split_page(page, order);
81 
82 		for (i = 0; i < nr_pages; i++) {
83 			list_add(&page->lru, &tmp_list);
84 			page++;
85 		}
86 	}
87 
88 	list_splice(&tmp_list, list);
89 }
90 
migrate_async_suitable(int migratetype)91 static inline bool migrate_async_suitable(int migratetype)
92 {
93 	return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
94 }
95 
96 #ifdef CONFIG_COMPACTION
97 
PageMovable(struct page * page)98 int PageMovable(struct page *page)
99 {
100 	struct address_space *mapping;
101 
102 	VM_BUG_ON_PAGE(!PageLocked(page), page);
103 	if (!__PageMovable(page))
104 		return 0;
105 
106 	mapping = page_mapping(page);
107 	if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
108 		return 1;
109 
110 	return 0;
111 }
112 EXPORT_SYMBOL(PageMovable);
113 
__SetPageMovable(struct page * page,struct address_space * mapping)114 void __SetPageMovable(struct page *page, struct address_space *mapping)
115 {
116 	VM_BUG_ON_PAGE(!PageLocked(page), page);
117 	VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
118 	page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
119 }
120 EXPORT_SYMBOL(__SetPageMovable);
121 
__ClearPageMovable(struct page * page)122 void __ClearPageMovable(struct page *page)
123 {
124 	VM_BUG_ON_PAGE(!PageLocked(page), page);
125 	VM_BUG_ON_PAGE(!PageMovable(page), page);
126 	/*
127 	 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
128 	 * flag so that VM can catch up released page by driver after isolation.
129 	 * With it, VM migration doesn't try to put it back.
130 	 */
131 	page->mapping = (void *)((unsigned long)page->mapping &
132 				PAGE_MAPPING_MOVABLE);
133 }
134 EXPORT_SYMBOL(__ClearPageMovable);
135 
136 /* Do not skip compaction more than 64 times */
137 #define COMPACT_MAX_DEFER_SHIFT 6
138 
139 /*
140  * Compaction is deferred when compaction fails to result in a page
141  * allocation success. 1 << compact_defer_limit compactions are skipped up
142  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
143  */
defer_compaction(struct zone * zone,int order)144 void defer_compaction(struct zone *zone, int order)
145 {
146 	zone->compact_considered = 0;
147 	zone->compact_defer_shift++;
148 
149 	if (order < zone->compact_order_failed)
150 		zone->compact_order_failed = order;
151 
152 	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
153 		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
154 
155 	trace_mm_compaction_defer_compaction(zone, order);
156 }
157 
158 /* Returns true if compaction should be skipped this time */
compaction_deferred(struct zone * zone,int order)159 bool compaction_deferred(struct zone *zone, int order)
160 {
161 	unsigned long defer_limit = 1UL << zone->compact_defer_shift;
162 
163 	if (order < zone->compact_order_failed)
164 		return false;
165 
166 	/* Avoid possible overflow */
167 	if (++zone->compact_considered > defer_limit)
168 		zone->compact_considered = defer_limit;
169 
170 	if (zone->compact_considered >= defer_limit)
171 		return false;
172 
173 	trace_mm_compaction_deferred(zone, order);
174 
175 	return true;
176 }
177 
178 /*
179  * Update defer tracking counters after successful compaction of given order,
180  * which means an allocation either succeeded (alloc_success == true) or is
181  * expected to succeed.
182  */
compaction_defer_reset(struct zone * zone,int order,bool alloc_success)183 void compaction_defer_reset(struct zone *zone, int order,
184 		bool alloc_success)
185 {
186 	if (alloc_success) {
187 		zone->compact_considered = 0;
188 		zone->compact_defer_shift = 0;
189 	}
190 	if (order >= zone->compact_order_failed)
191 		zone->compact_order_failed = order + 1;
192 
193 	trace_mm_compaction_defer_reset(zone, order);
194 }
195 
196 /* Returns true if restarting compaction after many failures */
compaction_restarting(struct zone * zone,int order)197 bool compaction_restarting(struct zone *zone, int order)
198 {
199 	if (order < zone->compact_order_failed)
200 		return false;
201 
202 	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
203 		zone->compact_considered >= 1UL << zone->compact_defer_shift;
204 }
205 
206 /* Returns true if the pageblock should be scanned for pages to isolate. */
isolation_suitable(struct compact_control * cc,struct page * page)207 static inline bool isolation_suitable(struct compact_control *cc,
208 					struct page *page)
209 {
210 	if (cc->ignore_skip_hint)
211 		return true;
212 
213 	return !get_pageblock_skip(page);
214 }
215 
reset_cached_positions(struct zone * zone)216 static void reset_cached_positions(struct zone *zone)
217 {
218 	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
219 	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
220 	zone->compact_cached_free_pfn =
221 				pageblock_start_pfn(zone_end_pfn(zone) - 1);
222 }
223 
224 /*
225  * This function is called to clear all cached information on pageblocks that
226  * should be skipped for page isolation when the migrate and free page scanner
227  * meet.
228  */
__reset_isolation_suitable(struct zone * zone)229 static void __reset_isolation_suitable(struct zone *zone)
230 {
231 	unsigned long start_pfn = zone->zone_start_pfn;
232 	unsigned long end_pfn = zone_end_pfn(zone);
233 	unsigned long pfn;
234 
235 	zone->compact_blockskip_flush = false;
236 
237 	/* Walk the zone and mark every pageblock as suitable for isolation */
238 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
239 		struct page *page;
240 
241 		cond_resched();
242 
243 		if (!pfn_valid(pfn))
244 			continue;
245 
246 		page = pfn_to_page(pfn);
247 		if (zone != page_zone(page))
248 			continue;
249 
250 		clear_pageblock_skip(page);
251 	}
252 
253 	reset_cached_positions(zone);
254 }
255 
reset_isolation_suitable(pg_data_t * pgdat)256 void reset_isolation_suitable(pg_data_t *pgdat)
257 {
258 	int zoneid;
259 
260 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
261 		struct zone *zone = &pgdat->node_zones[zoneid];
262 		if (!populated_zone(zone))
263 			continue;
264 
265 		/* Only flush if a full compaction finished recently */
266 		if (zone->compact_blockskip_flush)
267 			__reset_isolation_suitable(zone);
268 	}
269 }
270 
271 /*
272  * If no pages were isolated then mark this pageblock to be skipped in the
273  * future. The information is later cleared by __reset_isolation_suitable().
274  */
update_pageblock_skip(struct compact_control * cc,struct page * page,unsigned long nr_isolated,bool migrate_scanner)275 static void update_pageblock_skip(struct compact_control *cc,
276 			struct page *page, unsigned long nr_isolated,
277 			bool migrate_scanner)
278 {
279 	struct zone *zone = cc->zone;
280 	unsigned long pfn;
281 
282 	if (cc->ignore_skip_hint)
283 		return;
284 
285 	if (!page)
286 		return;
287 
288 	if (nr_isolated)
289 		return;
290 
291 	set_pageblock_skip(page);
292 
293 	pfn = page_to_pfn(page);
294 
295 	/* Update where async and sync compaction should restart */
296 	if (migrate_scanner) {
297 		if (pfn > zone->compact_cached_migrate_pfn[0])
298 			zone->compact_cached_migrate_pfn[0] = pfn;
299 		if (cc->mode != MIGRATE_ASYNC &&
300 		    pfn > zone->compact_cached_migrate_pfn[1])
301 			zone->compact_cached_migrate_pfn[1] = pfn;
302 	} else {
303 		if (pfn < zone->compact_cached_free_pfn)
304 			zone->compact_cached_free_pfn = pfn;
305 	}
306 }
307 #else
isolation_suitable(struct compact_control * cc,struct page * page)308 static inline bool isolation_suitable(struct compact_control *cc,
309 					struct page *page)
310 {
311 	return true;
312 }
313 
update_pageblock_skip(struct compact_control * cc,struct page * page,unsigned long nr_isolated,bool migrate_scanner)314 static void update_pageblock_skip(struct compact_control *cc,
315 			struct page *page, unsigned long nr_isolated,
316 			bool migrate_scanner)
317 {
318 }
319 #endif /* CONFIG_COMPACTION */
320 
321 /*
322  * Compaction requires the taking of some coarse locks that are potentially
323  * very heavily contended. For async compaction, back out if the lock cannot
324  * be taken immediately. For sync compaction, spin on the lock if needed.
325  *
326  * Returns true if the lock is held
327  * Returns false if the lock is not held and compaction should abort
328  */
compact_trylock_irqsave(spinlock_t * lock,unsigned long * flags,struct compact_control * cc)329 static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
330 						struct compact_control *cc)
331 {
332 	if (cc->mode == MIGRATE_ASYNC) {
333 		if (!spin_trylock_irqsave(lock, *flags)) {
334 			cc->contended = true;
335 			return false;
336 		}
337 	} else {
338 		spin_lock_irqsave(lock, *flags);
339 	}
340 
341 	return true;
342 }
343 
344 /*
345  * Compaction requires the taking of some coarse locks that are potentially
346  * very heavily contended. The lock should be periodically unlocked to avoid
347  * having disabled IRQs for a long time, even when there is nobody waiting on
348  * the lock. It might also be that allowing the IRQs will result in
349  * need_resched() becoming true. If scheduling is needed, async compaction
350  * aborts. Sync compaction schedules.
351  * Either compaction type will also abort if a fatal signal is pending.
352  * In either case if the lock was locked, it is dropped and not regained.
353  *
354  * Returns true if compaction should abort due to fatal signal pending, or
355  *		async compaction due to need_resched()
356  * Returns false when compaction can continue (sync compaction might have
357  *		scheduled)
358  */
compact_unlock_should_abort(spinlock_t * lock,unsigned long flags,bool * locked,struct compact_control * cc)359 static bool compact_unlock_should_abort(spinlock_t *lock,
360 		unsigned long flags, bool *locked, struct compact_control *cc)
361 {
362 	if (*locked) {
363 		spin_unlock_irqrestore(lock, flags);
364 		*locked = false;
365 	}
366 
367 	if (fatal_signal_pending(current)) {
368 		cc->contended = true;
369 		return true;
370 	}
371 
372 	if (need_resched()) {
373 		if (cc->mode == MIGRATE_ASYNC) {
374 			cc->contended = true;
375 			return true;
376 		}
377 		cond_resched();
378 	}
379 
380 	return false;
381 }
382 
383 /*
384  * Aside from avoiding lock contention, compaction also periodically checks
385  * need_resched() and either schedules in sync compaction or aborts async
386  * compaction. This is similar to what compact_unlock_should_abort() does, but
387  * is used where no lock is concerned.
388  *
389  * Returns false when no scheduling was needed, or sync compaction scheduled.
390  * Returns true when async compaction should abort.
391  */
compact_should_abort(struct compact_control * cc)392 static inline bool compact_should_abort(struct compact_control *cc)
393 {
394 	/* async compaction aborts if contended */
395 	if (need_resched()) {
396 		if (cc->mode == MIGRATE_ASYNC) {
397 			cc->contended = true;
398 			return true;
399 		}
400 
401 		cond_resched();
402 	}
403 
404 	return false;
405 }
406 
407 /*
408  * Isolate free pages onto a private freelist. If @strict is true, will abort
409  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
410  * (even though it may still end up isolating some pages).
411  */
isolate_freepages_block(struct compact_control * cc,unsigned long * start_pfn,unsigned long end_pfn,struct list_head * freelist,bool strict)412 static unsigned long isolate_freepages_block(struct compact_control *cc,
413 				unsigned long *start_pfn,
414 				unsigned long end_pfn,
415 				struct list_head *freelist,
416 				bool strict)
417 {
418 	int nr_scanned = 0, total_isolated = 0;
419 	struct page *cursor, *valid_page = NULL;
420 	unsigned long flags = 0;
421 	bool locked = false;
422 	unsigned long blockpfn = *start_pfn;
423 	unsigned int order;
424 
425 	cursor = pfn_to_page(blockpfn);
426 
427 	/* Isolate free pages. */
428 	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
429 		int isolated;
430 		struct page *page = cursor;
431 
432 		/*
433 		 * Periodically drop the lock (if held) regardless of its
434 		 * contention, to give chance to IRQs. Abort if fatal signal
435 		 * pending or async compaction detects need_resched()
436 		 */
437 		if (!(blockpfn % SWAP_CLUSTER_MAX)
438 		    && compact_unlock_should_abort(&cc->zone->lock, flags,
439 								&locked, cc))
440 			break;
441 
442 		nr_scanned++;
443 		if (!pfn_valid_within(blockpfn))
444 			goto isolate_fail;
445 
446 		if (!valid_page)
447 			valid_page = page;
448 
449 		/*
450 		 * For compound pages such as THP and hugetlbfs, we can save
451 		 * potentially a lot of iterations if we skip them at once.
452 		 * The check is racy, but we can consider only valid values
453 		 * and the only danger is skipping too much.
454 		 */
455 		if (PageCompound(page)) {
456 			unsigned int comp_order = compound_order(page);
457 
458 			if (likely(comp_order < MAX_ORDER)) {
459 				blockpfn += (1UL << comp_order) - 1;
460 				cursor += (1UL << comp_order) - 1;
461 			}
462 
463 			goto isolate_fail;
464 		}
465 
466 		if (!PageBuddy(page))
467 			goto isolate_fail;
468 
469 		/*
470 		 * If we already hold the lock, we can skip some rechecking.
471 		 * Note that if we hold the lock now, checked_pageblock was
472 		 * already set in some previous iteration (or strict is true),
473 		 * so it is correct to skip the suitable migration target
474 		 * recheck as well.
475 		 */
476 		if (!locked) {
477 			/*
478 			 * The zone lock must be held to isolate freepages.
479 			 * Unfortunately this is a very coarse lock and can be
480 			 * heavily contended if there are parallel allocations
481 			 * or parallel compactions. For async compaction do not
482 			 * spin on the lock and we acquire the lock as late as
483 			 * possible.
484 			 */
485 			locked = compact_trylock_irqsave(&cc->zone->lock,
486 								&flags, cc);
487 			if (!locked)
488 				break;
489 
490 			/* Recheck this is a buddy page under lock */
491 			if (!PageBuddy(page))
492 				goto isolate_fail;
493 		}
494 
495 		/* Found a free page, will break it into order-0 pages */
496 		order = page_order(page);
497 		isolated = __isolate_free_page(page, order);
498 		if (!isolated)
499 			break;
500 		set_page_private(page, order);
501 
502 		total_isolated += isolated;
503 		cc->nr_freepages += isolated;
504 		list_add_tail(&page->lru, freelist);
505 
506 		if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
507 			blockpfn += isolated;
508 			break;
509 		}
510 		/* Advance to the end of split page */
511 		blockpfn += isolated - 1;
512 		cursor += isolated - 1;
513 		continue;
514 
515 isolate_fail:
516 		if (strict)
517 			break;
518 		else
519 			continue;
520 
521 	}
522 
523 	if (locked)
524 		spin_unlock_irqrestore(&cc->zone->lock, flags);
525 
526 	/*
527 	 * There is a tiny chance that we have read bogus compound_order(),
528 	 * so be careful to not go outside of the pageblock.
529 	 */
530 	if (unlikely(blockpfn > end_pfn))
531 		blockpfn = end_pfn;
532 
533 	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
534 					nr_scanned, total_isolated);
535 
536 	/* Record how far we have got within the block */
537 	*start_pfn = blockpfn;
538 
539 	/*
540 	 * If strict isolation is requested by CMA then check that all the
541 	 * pages requested were isolated. If there were any failures, 0 is
542 	 * returned and CMA will fail.
543 	 */
544 	if (strict && blockpfn < end_pfn)
545 		total_isolated = 0;
546 
547 	/* Update the pageblock-skip if the whole pageblock was scanned */
548 	if (blockpfn == end_pfn)
549 		update_pageblock_skip(cc, valid_page, total_isolated, false);
550 
551 	count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
552 	if (total_isolated)
553 		count_compact_events(COMPACTISOLATED, total_isolated);
554 	return total_isolated;
555 }
556 
557 /**
558  * isolate_freepages_range() - isolate free pages.
559  * @start_pfn: The first PFN to start isolating.
560  * @end_pfn:   The one-past-last PFN.
561  *
562  * Non-free pages, invalid PFNs, or zone boundaries within the
563  * [start_pfn, end_pfn) range are considered errors, cause function to
564  * undo its actions and return zero.
565  *
566  * Otherwise, function returns one-past-the-last PFN of isolated page
567  * (which may be greater then end_pfn if end fell in a middle of
568  * a free page).
569  */
570 unsigned long
isolate_freepages_range(struct compact_control * cc,unsigned long start_pfn,unsigned long end_pfn)571 isolate_freepages_range(struct compact_control *cc,
572 			unsigned long start_pfn, unsigned long end_pfn)
573 {
574 	unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
575 	LIST_HEAD(freelist);
576 
577 	pfn = start_pfn;
578 	block_start_pfn = pageblock_start_pfn(pfn);
579 	if (block_start_pfn < cc->zone->zone_start_pfn)
580 		block_start_pfn = cc->zone->zone_start_pfn;
581 	block_end_pfn = pageblock_end_pfn(pfn);
582 
583 	for (; pfn < end_pfn; pfn += isolated,
584 				block_start_pfn = block_end_pfn,
585 				block_end_pfn += pageblock_nr_pages) {
586 		/* Protect pfn from changing by isolate_freepages_block */
587 		unsigned long isolate_start_pfn = pfn;
588 
589 		block_end_pfn = min(block_end_pfn, end_pfn);
590 
591 		/*
592 		 * pfn could pass the block_end_pfn if isolated freepage
593 		 * is more than pageblock order. In this case, we adjust
594 		 * scanning range to right one.
595 		 */
596 		if (pfn >= block_end_pfn) {
597 			block_start_pfn = pageblock_start_pfn(pfn);
598 			block_end_pfn = pageblock_end_pfn(pfn);
599 			block_end_pfn = min(block_end_pfn, end_pfn);
600 		}
601 
602 		if (!pageblock_pfn_to_page(block_start_pfn,
603 					block_end_pfn, cc->zone))
604 			break;
605 
606 		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
607 						block_end_pfn, &freelist, true);
608 
609 		/*
610 		 * In strict mode, isolate_freepages_block() returns 0 if
611 		 * there are any holes in the block (ie. invalid PFNs or
612 		 * non-free pages).
613 		 */
614 		if (!isolated)
615 			break;
616 
617 		/*
618 		 * If we managed to isolate pages, it is always (1 << n) *
619 		 * pageblock_nr_pages for some non-negative n.  (Max order
620 		 * page may span two pageblocks).
621 		 */
622 	}
623 
624 	/* __isolate_free_page() does not map the pages */
625 	map_pages(&freelist);
626 
627 	if (pfn < end_pfn) {
628 		/* Loop terminated early, cleanup. */
629 		release_freepages(&freelist);
630 		return 0;
631 	}
632 
633 	/* We don't use freelists for anything. */
634 	return pfn;
635 }
636 
637 /* Similar to reclaim, but different enough that they don't share logic */
too_many_isolated(struct zone * zone)638 static bool too_many_isolated(struct zone *zone)
639 {
640 	unsigned long active, inactive, isolated;
641 
642 	inactive = node_page_state(zone->zone_pgdat, NR_INACTIVE_FILE) +
643 			node_page_state(zone->zone_pgdat, NR_INACTIVE_ANON);
644 	active = node_page_state(zone->zone_pgdat, NR_ACTIVE_FILE) +
645 			node_page_state(zone->zone_pgdat, NR_ACTIVE_ANON);
646 	isolated = node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE) +
647 			node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON);
648 
649 	return isolated > (inactive + active) / 2;
650 }
651 
652 /**
653  * isolate_migratepages_block() - isolate all migrate-able pages within
654  *				  a single pageblock
655  * @cc:		Compaction control structure.
656  * @low_pfn:	The first PFN to isolate
657  * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
658  * @isolate_mode: Isolation mode to be used.
659  *
660  * Isolate all pages that can be migrated from the range specified by
661  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
662  * Returns zero if there is a fatal signal pending, otherwise PFN of the
663  * first page that was not scanned (which may be both less, equal to or more
664  * than end_pfn).
665  *
666  * The pages are isolated on cc->migratepages list (not required to be empty),
667  * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
668  * is neither read nor updated.
669  */
670 static unsigned long
isolate_migratepages_block(struct compact_control * cc,unsigned long low_pfn,unsigned long end_pfn,isolate_mode_t isolate_mode)671 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
672 			unsigned long end_pfn, isolate_mode_t isolate_mode)
673 {
674 	struct zone *zone = cc->zone;
675 	unsigned long nr_scanned = 0, nr_isolated = 0;
676 	struct lruvec *lruvec;
677 	unsigned long flags = 0;
678 	bool locked = false;
679 	struct page *page = NULL, *valid_page = NULL;
680 	unsigned long start_pfn = low_pfn;
681 	bool skip_on_failure = false;
682 	unsigned long next_skip_pfn = 0;
683 
684 	/*
685 	 * Ensure that there are not too many pages isolated from the LRU
686 	 * list by either parallel reclaimers or compaction. If there are,
687 	 * delay for some time until fewer pages are isolated
688 	 */
689 	while (unlikely(too_many_isolated(zone))) {
690 		/* async migration should just abort */
691 		if (cc->mode == MIGRATE_ASYNC)
692 			return 0;
693 
694 		congestion_wait(BLK_RW_ASYNC, HZ/10);
695 
696 		if (fatal_signal_pending(current))
697 			return 0;
698 	}
699 
700 	if (compact_should_abort(cc))
701 		return 0;
702 
703 	if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
704 		skip_on_failure = true;
705 		next_skip_pfn = block_end_pfn(low_pfn, cc->order);
706 	}
707 
708 	/* Time to isolate some pages for migration */
709 	for (; low_pfn < end_pfn; low_pfn++) {
710 
711 		if (skip_on_failure && low_pfn >= next_skip_pfn) {
712 			/*
713 			 * We have isolated all migration candidates in the
714 			 * previous order-aligned block, and did not skip it due
715 			 * to failure. We should migrate the pages now and
716 			 * hopefully succeed compaction.
717 			 */
718 			if (nr_isolated)
719 				break;
720 
721 			/*
722 			 * We failed to isolate in the previous order-aligned
723 			 * block. Set the new boundary to the end of the
724 			 * current block. Note we can't simply increase
725 			 * next_skip_pfn by 1 << order, as low_pfn might have
726 			 * been incremented by a higher number due to skipping
727 			 * a compound or a high-order buddy page in the
728 			 * previous loop iteration.
729 			 */
730 			next_skip_pfn = block_end_pfn(low_pfn, cc->order);
731 		}
732 
733 		/*
734 		 * Periodically drop the lock (if held) regardless of its
735 		 * contention, to give chance to IRQs. Abort async compaction
736 		 * if contended.
737 		 */
738 		if (!(low_pfn % SWAP_CLUSTER_MAX)
739 		    && compact_unlock_should_abort(zone_lru_lock(zone), flags,
740 								&locked, cc))
741 			break;
742 
743 		if (!pfn_valid_within(low_pfn))
744 			goto isolate_fail;
745 		nr_scanned++;
746 
747 		page = pfn_to_page(low_pfn);
748 
749 		if (!valid_page)
750 			valid_page = page;
751 
752 		/*
753 		 * Skip if free. We read page order here without zone lock
754 		 * which is generally unsafe, but the race window is small and
755 		 * the worst thing that can happen is that we skip some
756 		 * potential isolation targets.
757 		 */
758 		if (PageBuddy(page)) {
759 			unsigned long freepage_order = page_order_unsafe(page);
760 
761 			/*
762 			 * Without lock, we cannot be sure that what we got is
763 			 * a valid page order. Consider only values in the
764 			 * valid order range to prevent low_pfn overflow.
765 			 */
766 			if (freepage_order > 0 && freepage_order < MAX_ORDER)
767 				low_pfn += (1UL << freepage_order) - 1;
768 			continue;
769 		}
770 
771 		/*
772 		 * Regardless of being on LRU, compound pages such as THP and
773 		 * hugetlbfs are not to be compacted. We can potentially save
774 		 * a lot of iterations if we skip them at once. The check is
775 		 * racy, but we can consider only valid values and the only
776 		 * danger is skipping too much.
777 		 */
778 		if (PageCompound(page)) {
779 			unsigned int comp_order = compound_order(page);
780 
781 			if (likely(comp_order < MAX_ORDER))
782 				low_pfn += (1UL << comp_order) - 1;
783 
784 			goto isolate_fail;
785 		}
786 
787 		/*
788 		 * Check may be lockless but that's ok as we recheck later.
789 		 * It's possible to migrate LRU and non-lru movable pages.
790 		 * Skip any other type of page
791 		 */
792 		if (!PageLRU(page)) {
793 			/*
794 			 * __PageMovable can return false positive so we need
795 			 * to verify it under page_lock.
796 			 */
797 			if (unlikely(__PageMovable(page)) &&
798 					!PageIsolated(page)) {
799 				if (locked) {
800 					spin_unlock_irqrestore(zone_lru_lock(zone),
801 									flags);
802 					locked = false;
803 				}
804 
805 				if (isolate_movable_page(page, isolate_mode))
806 					goto isolate_success;
807 			}
808 
809 			goto isolate_fail;
810 		}
811 
812 		/*
813 		 * Migration will fail if an anonymous page is pinned in memory,
814 		 * so avoid taking lru_lock and isolating it unnecessarily in an
815 		 * admittedly racy check.
816 		 */
817 		if (!page_mapping(page) &&
818 		    page_count(page) > page_mapcount(page))
819 			goto isolate_fail;
820 
821 		/* If we already hold the lock, we can skip some rechecking */
822 		if (!locked) {
823 			locked = compact_trylock_irqsave(zone_lru_lock(zone),
824 								&flags, cc);
825 			if (!locked)
826 				break;
827 
828 			/* Recheck PageLRU and PageCompound under lock */
829 			if (!PageLRU(page))
830 				goto isolate_fail;
831 
832 			/*
833 			 * Page become compound since the non-locked check,
834 			 * and it's on LRU. It can only be a THP so the order
835 			 * is safe to read and it's 0 for tail pages.
836 			 */
837 			if (unlikely(PageCompound(page))) {
838 				low_pfn += (1UL << compound_order(page)) - 1;
839 				goto isolate_fail;
840 			}
841 		}
842 
843 		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
844 
845 		/* Try isolate the page */
846 		if (__isolate_lru_page(page, isolate_mode) != 0)
847 			goto isolate_fail;
848 
849 		VM_BUG_ON_PAGE(PageCompound(page), page);
850 
851 		/* Successfully isolated */
852 		del_page_from_lru_list(page, lruvec, page_lru(page));
853 		inc_node_page_state(page,
854 				NR_ISOLATED_ANON + page_is_file_cache(page));
855 
856 isolate_success:
857 		list_add(&page->lru, &cc->migratepages);
858 		cc->nr_migratepages++;
859 		nr_isolated++;
860 
861 		/*
862 		 * Record where we could have freed pages by migration and not
863 		 * yet flushed them to buddy allocator.
864 		 * - this is the lowest page that was isolated and likely be
865 		 * then freed by migration.
866 		 */
867 		if (!cc->last_migrated_pfn)
868 			cc->last_migrated_pfn = low_pfn;
869 
870 		/* Avoid isolating too much */
871 		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
872 			++low_pfn;
873 			break;
874 		}
875 
876 		continue;
877 isolate_fail:
878 		if (!skip_on_failure)
879 			continue;
880 
881 		/*
882 		 * We have isolated some pages, but then failed. Release them
883 		 * instead of migrating, as we cannot form the cc->order buddy
884 		 * page anyway.
885 		 */
886 		if (nr_isolated) {
887 			if (locked) {
888 				spin_unlock_irqrestore(zone_lru_lock(zone), flags);
889 				locked = false;
890 			}
891 			putback_movable_pages(&cc->migratepages);
892 			cc->nr_migratepages = 0;
893 			cc->last_migrated_pfn = 0;
894 			nr_isolated = 0;
895 		}
896 
897 		if (low_pfn < next_skip_pfn) {
898 			low_pfn = next_skip_pfn - 1;
899 			/*
900 			 * The check near the loop beginning would have updated
901 			 * next_skip_pfn too, but this is a bit simpler.
902 			 */
903 			next_skip_pfn += 1UL << cc->order;
904 		}
905 	}
906 
907 	/*
908 	 * The PageBuddy() check could have potentially brought us outside
909 	 * the range to be scanned.
910 	 */
911 	if (unlikely(low_pfn > end_pfn))
912 		low_pfn = end_pfn;
913 
914 	if (locked)
915 		spin_unlock_irqrestore(zone_lru_lock(zone), flags);
916 
917 	/*
918 	 * Update the pageblock-skip information and cached scanner pfn,
919 	 * if the whole pageblock was scanned without isolating any page.
920 	 */
921 	if (low_pfn == end_pfn)
922 		update_pageblock_skip(cc, valid_page, nr_isolated, true);
923 
924 	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
925 						nr_scanned, nr_isolated);
926 
927 	count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
928 	if (nr_isolated)
929 		count_compact_events(COMPACTISOLATED, nr_isolated);
930 
931 	return low_pfn;
932 }
933 
934 /**
935  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
936  * @cc:        Compaction control structure.
937  * @start_pfn: The first PFN to start isolating.
938  * @end_pfn:   The one-past-last PFN.
939  *
940  * Returns zero if isolation fails fatally due to e.g. pending signal.
941  * Otherwise, function returns one-past-the-last PFN of isolated page
942  * (which may be greater than end_pfn if end fell in a middle of a THP page).
943  */
944 unsigned long
isolate_migratepages_range(struct compact_control * cc,unsigned long start_pfn,unsigned long end_pfn)945 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
946 							unsigned long end_pfn)
947 {
948 	unsigned long pfn, block_start_pfn, block_end_pfn;
949 
950 	/* Scan block by block. First and last block may be incomplete */
951 	pfn = start_pfn;
952 	block_start_pfn = pageblock_start_pfn(pfn);
953 	if (block_start_pfn < cc->zone->zone_start_pfn)
954 		block_start_pfn = cc->zone->zone_start_pfn;
955 	block_end_pfn = pageblock_end_pfn(pfn);
956 
957 	for (; pfn < end_pfn; pfn = block_end_pfn,
958 				block_start_pfn = block_end_pfn,
959 				block_end_pfn += pageblock_nr_pages) {
960 
961 		block_end_pfn = min(block_end_pfn, end_pfn);
962 
963 		if (!pageblock_pfn_to_page(block_start_pfn,
964 					block_end_pfn, cc->zone))
965 			continue;
966 
967 		pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
968 							ISOLATE_UNEVICTABLE);
969 
970 		if (!pfn)
971 			break;
972 
973 		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
974 			break;
975 	}
976 
977 	return pfn;
978 }
979 
980 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
981 #ifdef CONFIG_COMPACTION
982 
983 /* Returns true if the page is within a block suitable for migration to */
suitable_migration_target(struct compact_control * cc,struct page * page)984 static bool suitable_migration_target(struct compact_control *cc,
985 							struct page *page)
986 {
987 	if (cc->ignore_block_suitable)
988 		return true;
989 
990 	/* If the page is a large free page, then disallow migration */
991 	if (PageBuddy(page)) {
992 		/*
993 		 * We are checking page_order without zone->lock taken. But
994 		 * the only small danger is that we skip a potentially suitable
995 		 * pageblock, so it's not worth to check order for valid range.
996 		 */
997 		if (page_order_unsafe(page) >= pageblock_order)
998 			return false;
999 	}
1000 
1001 	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1002 	if (migrate_async_suitable(get_pageblock_migratetype(page)))
1003 		return true;
1004 
1005 	/* Otherwise skip the block */
1006 	return false;
1007 }
1008 
1009 /*
1010  * Test whether the free scanner has reached the same or lower pageblock than
1011  * the migration scanner, and compaction should thus terminate.
1012  */
compact_scanners_met(struct compact_control * cc)1013 static inline bool compact_scanners_met(struct compact_control *cc)
1014 {
1015 	return (cc->free_pfn >> pageblock_order)
1016 		<= (cc->migrate_pfn >> pageblock_order);
1017 }
1018 
1019 /*
1020  * Based on information in the current compact_control, find blocks
1021  * suitable for isolating free pages from and then isolate them.
1022  */
isolate_freepages(struct compact_control * cc)1023 static void isolate_freepages(struct compact_control *cc)
1024 {
1025 	struct zone *zone = cc->zone;
1026 	struct page *page;
1027 	unsigned long block_start_pfn;	/* start of current pageblock */
1028 	unsigned long isolate_start_pfn; /* exact pfn we start at */
1029 	unsigned long block_end_pfn;	/* end of current pageblock */
1030 	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
1031 	struct list_head *freelist = &cc->freepages;
1032 
1033 	/*
1034 	 * Initialise the free scanner. The starting point is where we last
1035 	 * successfully isolated from, zone-cached value, or the end of the
1036 	 * zone when isolating for the first time. For looping we also need
1037 	 * this pfn aligned down to the pageblock boundary, because we do
1038 	 * block_start_pfn -= pageblock_nr_pages in the for loop.
1039 	 * For ending point, take care when isolating in last pageblock of a
1040 	 * a zone which ends in the middle of a pageblock.
1041 	 * The low boundary is the end of the pageblock the migration scanner
1042 	 * is using.
1043 	 */
1044 	isolate_start_pfn = cc->free_pfn;
1045 	block_start_pfn = pageblock_start_pfn(cc->free_pfn);
1046 	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1047 						zone_end_pfn(zone));
1048 	low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1049 
1050 	/*
1051 	 * Isolate free pages until enough are available to migrate the
1052 	 * pages on cc->migratepages. We stop searching if the migrate
1053 	 * and free page scanners meet or enough free pages are isolated.
1054 	 */
1055 	for (; block_start_pfn >= low_pfn;
1056 				block_end_pfn = block_start_pfn,
1057 				block_start_pfn -= pageblock_nr_pages,
1058 				isolate_start_pfn = block_start_pfn) {
1059 		/*
1060 		 * This can iterate a massively long zone without finding any
1061 		 * suitable migration targets, so periodically check if we need
1062 		 * to schedule, or even abort async compaction.
1063 		 */
1064 		if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1065 						&& compact_should_abort(cc))
1066 			break;
1067 
1068 		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1069 									zone);
1070 		if (!page)
1071 			continue;
1072 
1073 		/* Check the block is suitable for migration */
1074 		if (!suitable_migration_target(cc, page))
1075 			continue;
1076 
1077 		/* If isolation recently failed, do not retry */
1078 		if (!isolation_suitable(cc, page))
1079 			continue;
1080 
1081 		/* Found a block suitable for isolating free pages from. */
1082 		isolate_freepages_block(cc, &isolate_start_pfn, block_end_pfn,
1083 					freelist, false);
1084 
1085 		/*
1086 		 * If we isolated enough freepages, or aborted due to lock
1087 		 * contention, terminate.
1088 		 */
1089 		if ((cc->nr_freepages >= cc->nr_migratepages)
1090 							|| cc->contended) {
1091 			if (isolate_start_pfn >= block_end_pfn) {
1092 				/*
1093 				 * Restart at previous pageblock if more
1094 				 * freepages can be isolated next time.
1095 				 */
1096 				isolate_start_pfn =
1097 					block_start_pfn - pageblock_nr_pages;
1098 			}
1099 			break;
1100 		} else if (isolate_start_pfn < block_end_pfn) {
1101 			/*
1102 			 * If isolation failed early, do not continue
1103 			 * needlessly.
1104 			 */
1105 			break;
1106 		}
1107 	}
1108 
1109 	/* __isolate_free_page() does not map the pages */
1110 	map_pages(freelist);
1111 
1112 	/*
1113 	 * Record where the free scanner will restart next time. Either we
1114 	 * broke from the loop and set isolate_start_pfn based on the last
1115 	 * call to isolate_freepages_block(), or we met the migration scanner
1116 	 * and the loop terminated due to isolate_start_pfn < low_pfn
1117 	 */
1118 	cc->free_pfn = isolate_start_pfn;
1119 }
1120 
1121 /*
1122  * This is a migrate-callback that "allocates" freepages by taking pages
1123  * from the isolated freelists in the block we are migrating to.
1124  */
compaction_alloc(struct page * migratepage,unsigned long data,int ** result)1125 static struct page *compaction_alloc(struct page *migratepage,
1126 					unsigned long data,
1127 					int **result)
1128 {
1129 	struct compact_control *cc = (struct compact_control *)data;
1130 	struct page *freepage;
1131 
1132 	/*
1133 	 * Isolate free pages if necessary, and if we are not aborting due to
1134 	 * contention.
1135 	 */
1136 	if (list_empty(&cc->freepages)) {
1137 		if (!cc->contended)
1138 			isolate_freepages(cc);
1139 
1140 		if (list_empty(&cc->freepages))
1141 			return NULL;
1142 	}
1143 
1144 	freepage = list_entry(cc->freepages.next, struct page, lru);
1145 	list_del(&freepage->lru);
1146 	cc->nr_freepages--;
1147 
1148 	return freepage;
1149 }
1150 
1151 /*
1152  * This is a migrate-callback that "frees" freepages back to the isolated
1153  * freelist.  All pages on the freelist are from the same zone, so there is no
1154  * special handling needed for NUMA.
1155  */
compaction_free(struct page * page,unsigned long data)1156 static void compaction_free(struct page *page, unsigned long data)
1157 {
1158 	struct compact_control *cc = (struct compact_control *)data;
1159 
1160 	list_add(&page->lru, &cc->freepages);
1161 	cc->nr_freepages++;
1162 }
1163 
1164 /* possible outcome of isolate_migratepages */
1165 typedef enum {
1166 	ISOLATE_ABORT,		/* Abort compaction now */
1167 	ISOLATE_NONE,		/* No pages isolated, continue scanning */
1168 	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
1169 } isolate_migrate_t;
1170 
1171 /*
1172  * Allow userspace to control policy on scanning the unevictable LRU for
1173  * compactable pages.
1174  */
1175 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1176 
1177 /*
1178  * Isolate all pages that can be migrated from the first suitable block,
1179  * starting at the block pointed to by the migrate scanner pfn within
1180  * compact_control.
1181  */
isolate_migratepages(struct zone * zone,struct compact_control * cc)1182 static isolate_migrate_t isolate_migratepages(struct zone *zone,
1183 					struct compact_control *cc)
1184 {
1185 	unsigned long block_start_pfn;
1186 	unsigned long block_end_pfn;
1187 	unsigned long low_pfn;
1188 	struct page *page;
1189 	const isolate_mode_t isolate_mode =
1190 		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1191 		(cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1192 
1193 	/*
1194 	 * Start at where we last stopped, or beginning of the zone as
1195 	 * initialized by compact_zone()
1196 	 */
1197 	low_pfn = cc->migrate_pfn;
1198 	block_start_pfn = pageblock_start_pfn(low_pfn);
1199 	if (block_start_pfn < zone->zone_start_pfn)
1200 		block_start_pfn = zone->zone_start_pfn;
1201 
1202 	/* Only scan within a pageblock boundary */
1203 	block_end_pfn = pageblock_end_pfn(low_pfn);
1204 
1205 	/*
1206 	 * Iterate over whole pageblocks until we find the first suitable.
1207 	 * Do not cross the free scanner.
1208 	 */
1209 	for (; block_end_pfn <= cc->free_pfn;
1210 			low_pfn = block_end_pfn,
1211 			block_start_pfn = block_end_pfn,
1212 			block_end_pfn += pageblock_nr_pages) {
1213 
1214 		/*
1215 		 * This can potentially iterate a massively long zone with
1216 		 * many pageblocks unsuitable, so periodically check if we
1217 		 * need to schedule, or even abort async compaction.
1218 		 */
1219 		if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1220 						&& compact_should_abort(cc))
1221 			break;
1222 
1223 		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1224 									zone);
1225 		if (!page)
1226 			continue;
1227 
1228 		/* If isolation recently failed, do not retry */
1229 		if (!isolation_suitable(cc, page))
1230 			continue;
1231 
1232 		/*
1233 		 * For async compaction, also only scan in MOVABLE blocks.
1234 		 * Async compaction is optimistic to see if the minimum amount
1235 		 * of work satisfies the allocation.
1236 		 */
1237 		if (cc->mode == MIGRATE_ASYNC &&
1238 		    !migrate_async_suitable(get_pageblock_migratetype(page)))
1239 			continue;
1240 
1241 		/* Perform the isolation */
1242 		low_pfn = isolate_migratepages_block(cc, low_pfn,
1243 						block_end_pfn, isolate_mode);
1244 
1245 		if (!low_pfn || cc->contended)
1246 			return ISOLATE_ABORT;
1247 
1248 		/*
1249 		 * Either we isolated something and proceed with migration. Or
1250 		 * we failed and compact_zone should decide if we should
1251 		 * continue or not.
1252 		 */
1253 		break;
1254 	}
1255 
1256 	/* Record where migration scanner will be restarted. */
1257 	cc->migrate_pfn = low_pfn;
1258 
1259 	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1260 }
1261 
1262 /*
1263  * order == -1 is expected when compacting via
1264  * /proc/sys/vm/compact_memory
1265  */
is_via_compact_memory(int order)1266 static inline bool is_via_compact_memory(int order)
1267 {
1268 	return order == -1;
1269 }
1270 
__compact_finished(struct zone * zone,struct compact_control * cc,const int migratetype)1271 static enum compact_result __compact_finished(struct zone *zone, struct compact_control *cc,
1272 			    const int migratetype)
1273 {
1274 	unsigned int order;
1275 	unsigned long watermark;
1276 
1277 	if (cc->contended || fatal_signal_pending(current))
1278 		return COMPACT_CONTENDED;
1279 
1280 	/* Compaction run completes if the migrate and free scanner meet */
1281 	if (compact_scanners_met(cc)) {
1282 		/* Let the next compaction start anew. */
1283 		reset_cached_positions(zone);
1284 
1285 		/*
1286 		 * Mark that the PG_migrate_skip information should be cleared
1287 		 * by kswapd when it goes to sleep. kcompactd does not set the
1288 		 * flag itself as the decision to be clear should be directly
1289 		 * based on an allocation request.
1290 		 */
1291 		if (cc->direct_compaction)
1292 			zone->compact_blockskip_flush = true;
1293 
1294 		if (cc->whole_zone)
1295 			return COMPACT_COMPLETE;
1296 		else
1297 			return COMPACT_PARTIAL_SKIPPED;
1298 	}
1299 
1300 	if (is_via_compact_memory(cc->order))
1301 		return COMPACT_CONTINUE;
1302 
1303 	/* Compaction run is not finished if the watermark is not met */
1304 	watermark = zone->watermark[cc->alloc_flags & ALLOC_WMARK_MASK];
1305 
1306 	if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx,
1307 							cc->alloc_flags))
1308 		return COMPACT_CONTINUE;
1309 
1310 	/* Direct compactor: Is a suitable page free? */
1311 	for (order = cc->order; order < MAX_ORDER; order++) {
1312 		struct free_area *area = &zone->free_area[order];
1313 		bool can_steal;
1314 
1315 		/* Job done if page is free of the right migratetype */
1316 		if (!list_empty(&area->free_list[migratetype]))
1317 			return COMPACT_SUCCESS;
1318 
1319 #ifdef CONFIG_CMA
1320 		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1321 		if (migratetype == MIGRATE_MOVABLE &&
1322 			!list_empty(&area->free_list[MIGRATE_CMA]))
1323 			return COMPACT_SUCCESS;
1324 #endif
1325 		/*
1326 		 * Job done if allocation would steal freepages from
1327 		 * other migratetype buddy lists.
1328 		 */
1329 		if (find_suitable_fallback(area, order, migratetype,
1330 						true, &can_steal) != -1)
1331 			return COMPACT_SUCCESS;
1332 	}
1333 
1334 	return COMPACT_NO_SUITABLE_PAGE;
1335 }
1336 
compact_finished(struct zone * zone,struct compact_control * cc,const int migratetype)1337 static enum compact_result compact_finished(struct zone *zone,
1338 			struct compact_control *cc,
1339 			const int migratetype)
1340 {
1341 	int ret;
1342 
1343 	ret = __compact_finished(zone, cc, migratetype);
1344 	trace_mm_compaction_finished(zone, cc->order, ret);
1345 	if (ret == COMPACT_NO_SUITABLE_PAGE)
1346 		ret = COMPACT_CONTINUE;
1347 
1348 	return ret;
1349 }
1350 
1351 /*
1352  * compaction_suitable: Is this suitable to run compaction on this zone now?
1353  * Returns
1354  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
1355  *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
1356  *   COMPACT_CONTINUE - If compaction should run now
1357  */
__compaction_suitable(struct zone * zone,int order,unsigned int alloc_flags,int classzone_idx,unsigned long wmark_target)1358 static enum compact_result __compaction_suitable(struct zone *zone, int order,
1359 					unsigned int alloc_flags,
1360 					int classzone_idx,
1361 					unsigned long wmark_target)
1362 {
1363 	unsigned long watermark;
1364 
1365 	if (is_via_compact_memory(order))
1366 		return COMPACT_CONTINUE;
1367 
1368 	watermark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1369 	/*
1370 	 * If watermarks for high-order allocation are already met, there
1371 	 * should be no need for compaction at all.
1372 	 */
1373 	if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1374 								alloc_flags))
1375 		return COMPACT_SUCCESS;
1376 
1377 	/*
1378 	 * Watermarks for order-0 must be met for compaction to be able to
1379 	 * isolate free pages for migration targets. This means that the
1380 	 * watermark and alloc_flags have to match, or be more pessimistic than
1381 	 * the check in __isolate_free_page(). We don't use the direct
1382 	 * compactor's alloc_flags, as they are not relevant for freepage
1383 	 * isolation. We however do use the direct compactor's classzone_idx to
1384 	 * skip over zones where lowmem reserves would prevent allocation even
1385 	 * if compaction succeeds.
1386 	 * For costly orders, we require low watermark instead of min for
1387 	 * compaction to proceed to increase its chances.
1388 	 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
1389 	 * suitable migration targets
1390 	 */
1391 	watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
1392 				low_wmark_pages(zone) : min_wmark_pages(zone);
1393 	watermark += compact_gap(order);
1394 	if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx,
1395 						ALLOC_CMA, wmark_target))
1396 		return COMPACT_SKIPPED;
1397 
1398 	return COMPACT_CONTINUE;
1399 }
1400 
compaction_suitable(struct zone * zone,int order,unsigned int alloc_flags,int classzone_idx)1401 enum compact_result compaction_suitable(struct zone *zone, int order,
1402 					unsigned int alloc_flags,
1403 					int classzone_idx)
1404 {
1405 	enum compact_result ret;
1406 	int fragindex;
1407 
1408 	ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx,
1409 				    zone_page_state(zone, NR_FREE_PAGES));
1410 	/*
1411 	 * fragmentation index determines if allocation failures are due to
1412 	 * low memory or external fragmentation
1413 	 *
1414 	 * index of -1000 would imply allocations might succeed depending on
1415 	 * watermarks, but we already failed the high-order watermark check
1416 	 * index towards 0 implies failure is due to lack of memory
1417 	 * index towards 1000 implies failure is due to fragmentation
1418 	 *
1419 	 * Only compact if a failure would be due to fragmentation. Also
1420 	 * ignore fragindex for non-costly orders where the alternative to
1421 	 * a successful reclaim/compaction is OOM. Fragindex and the
1422 	 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
1423 	 * excessive compaction for costly orders, but it should not be at the
1424 	 * expense of system stability.
1425 	 */
1426 	if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
1427 		fragindex = fragmentation_index(zone, order);
1428 		if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1429 			ret = COMPACT_NOT_SUITABLE_ZONE;
1430 	}
1431 
1432 	trace_mm_compaction_suitable(zone, order, ret);
1433 	if (ret == COMPACT_NOT_SUITABLE_ZONE)
1434 		ret = COMPACT_SKIPPED;
1435 
1436 	return ret;
1437 }
1438 
compaction_zonelist_suitable(struct alloc_context * ac,int order,int alloc_flags)1439 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
1440 		int alloc_flags)
1441 {
1442 	struct zone *zone;
1443 	struct zoneref *z;
1444 
1445 	/*
1446 	 * Make sure at least one zone would pass __compaction_suitable if we continue
1447 	 * retrying the reclaim.
1448 	 */
1449 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1450 					ac->nodemask) {
1451 		unsigned long available;
1452 		enum compact_result compact_result;
1453 
1454 		/*
1455 		 * Do not consider all the reclaimable memory because we do not
1456 		 * want to trash just for a single high order allocation which
1457 		 * is even not guaranteed to appear even if __compaction_suitable
1458 		 * is happy about the watermark check.
1459 		 */
1460 		available = zone_reclaimable_pages(zone) / order;
1461 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
1462 		compact_result = __compaction_suitable(zone, order, alloc_flags,
1463 				ac_classzone_idx(ac), available);
1464 		if (compact_result != COMPACT_SKIPPED)
1465 			return true;
1466 	}
1467 
1468 	return false;
1469 }
1470 
compact_zone(struct zone * zone,struct compact_control * cc)1471 static enum compact_result compact_zone(struct zone *zone, struct compact_control *cc)
1472 {
1473 	enum compact_result ret;
1474 	unsigned long start_pfn = zone->zone_start_pfn;
1475 	unsigned long end_pfn = zone_end_pfn(zone);
1476 	const int migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1477 	const bool sync = cc->mode != MIGRATE_ASYNC;
1478 
1479 	ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
1480 							cc->classzone_idx);
1481 	/* Compaction is likely to fail */
1482 	if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
1483 		return ret;
1484 
1485 	/* huh, compaction_suitable is returning something unexpected */
1486 	VM_BUG_ON(ret != COMPACT_CONTINUE);
1487 
1488 	/*
1489 	 * Clear pageblock skip if there were failures recently and compaction
1490 	 * is about to be retried after being deferred.
1491 	 */
1492 	if (compaction_restarting(zone, cc->order))
1493 		__reset_isolation_suitable(zone);
1494 
1495 	/*
1496 	 * Setup to move all movable pages to the end of the zone. Used cached
1497 	 * information on where the scanners should start (unless we explicitly
1498 	 * want to compact the whole zone), but check that it is initialised
1499 	 * by ensuring the values are within zone boundaries.
1500 	 */
1501 	if (cc->whole_zone) {
1502 		cc->migrate_pfn = start_pfn;
1503 		cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
1504 	} else {
1505 		cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1506 		cc->free_pfn = zone->compact_cached_free_pfn;
1507 		if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
1508 			cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
1509 			zone->compact_cached_free_pfn = cc->free_pfn;
1510 		}
1511 		if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
1512 			cc->migrate_pfn = start_pfn;
1513 			zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1514 			zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1515 		}
1516 
1517 		if (cc->migrate_pfn == start_pfn)
1518 			cc->whole_zone = true;
1519 	}
1520 
1521 	cc->last_migrated_pfn = 0;
1522 
1523 	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
1524 				cc->free_pfn, end_pfn, sync);
1525 
1526 	migrate_prep_local();
1527 
1528 	while ((ret = compact_finished(zone, cc, migratetype)) ==
1529 						COMPACT_CONTINUE) {
1530 		int err;
1531 
1532 		switch (isolate_migratepages(zone, cc)) {
1533 		case ISOLATE_ABORT:
1534 			ret = COMPACT_CONTENDED;
1535 			putback_movable_pages(&cc->migratepages);
1536 			cc->nr_migratepages = 0;
1537 			goto out;
1538 		case ISOLATE_NONE:
1539 			/*
1540 			 * We haven't isolated and migrated anything, but
1541 			 * there might still be unflushed migrations from
1542 			 * previous cc->order aligned block.
1543 			 */
1544 			goto check_drain;
1545 		case ISOLATE_SUCCESS:
1546 			;
1547 		}
1548 
1549 		err = migrate_pages(&cc->migratepages, compaction_alloc,
1550 				compaction_free, (unsigned long)cc, cc->mode,
1551 				MR_COMPACTION);
1552 
1553 		trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1554 							&cc->migratepages);
1555 
1556 		/* All pages were either migrated or will be released */
1557 		cc->nr_migratepages = 0;
1558 		if (err) {
1559 			putback_movable_pages(&cc->migratepages);
1560 			/*
1561 			 * migrate_pages() may return -ENOMEM when scanners meet
1562 			 * and we want compact_finished() to detect it
1563 			 */
1564 			if (err == -ENOMEM && !compact_scanners_met(cc)) {
1565 				ret = COMPACT_CONTENDED;
1566 				goto out;
1567 			}
1568 			/*
1569 			 * We failed to migrate at least one page in the current
1570 			 * order-aligned block, so skip the rest of it.
1571 			 */
1572 			if (cc->direct_compaction &&
1573 						(cc->mode == MIGRATE_ASYNC)) {
1574 				cc->migrate_pfn = block_end_pfn(
1575 						cc->migrate_pfn - 1, cc->order);
1576 				/* Draining pcplists is useless in this case */
1577 				cc->last_migrated_pfn = 0;
1578 
1579 			}
1580 		}
1581 
1582 check_drain:
1583 		/*
1584 		 * Has the migration scanner moved away from the previous
1585 		 * cc->order aligned block where we migrated from? If yes,
1586 		 * flush the pages that were freed, so that they can merge and
1587 		 * compact_finished() can detect immediately if allocation
1588 		 * would succeed.
1589 		 */
1590 		if (cc->order > 0 && cc->last_migrated_pfn) {
1591 			int cpu;
1592 			unsigned long current_block_start =
1593 				block_start_pfn(cc->migrate_pfn, cc->order);
1594 
1595 			if (cc->last_migrated_pfn < current_block_start) {
1596 				cpu = get_cpu();
1597 				lru_add_drain_cpu(cpu);
1598 				drain_local_pages(zone);
1599 				put_cpu();
1600 				/* No more flushing until we migrate again */
1601 				cc->last_migrated_pfn = 0;
1602 			}
1603 		}
1604 
1605 	}
1606 
1607 out:
1608 	/*
1609 	 * Release free pages and update where the free scanner should restart,
1610 	 * so we don't leave any returned pages behind in the next attempt.
1611 	 */
1612 	if (cc->nr_freepages > 0) {
1613 		unsigned long free_pfn = release_freepages(&cc->freepages);
1614 
1615 		cc->nr_freepages = 0;
1616 		VM_BUG_ON(free_pfn == 0);
1617 		/* The cached pfn is always the first in a pageblock */
1618 		free_pfn = pageblock_start_pfn(free_pfn);
1619 		/*
1620 		 * Only go back, not forward. The cached pfn might have been
1621 		 * already reset to zone end in compact_finished()
1622 		 */
1623 		if (free_pfn > zone->compact_cached_free_pfn)
1624 			zone->compact_cached_free_pfn = free_pfn;
1625 	}
1626 
1627 	trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
1628 				cc->free_pfn, end_pfn, sync, ret);
1629 
1630 	return ret;
1631 }
1632 
compact_zone_order(struct zone * zone,int order,gfp_t gfp_mask,enum compact_priority prio,unsigned int alloc_flags,int classzone_idx)1633 static enum compact_result compact_zone_order(struct zone *zone, int order,
1634 		gfp_t gfp_mask, enum compact_priority prio,
1635 		unsigned int alloc_flags, int classzone_idx)
1636 {
1637 	enum compact_result ret;
1638 	struct compact_control cc = {
1639 		.nr_freepages = 0,
1640 		.nr_migratepages = 0,
1641 		.order = order,
1642 		.gfp_mask = gfp_mask,
1643 		.zone = zone,
1644 		.mode = (prio == COMPACT_PRIO_ASYNC) ?
1645 					MIGRATE_ASYNC :	MIGRATE_SYNC_LIGHT,
1646 		.alloc_flags = alloc_flags,
1647 		.classzone_idx = classzone_idx,
1648 		.direct_compaction = true,
1649 		.whole_zone = (prio == MIN_COMPACT_PRIORITY),
1650 		.ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
1651 		.ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
1652 	};
1653 	INIT_LIST_HEAD(&cc.freepages);
1654 	INIT_LIST_HEAD(&cc.migratepages);
1655 
1656 	ret = compact_zone(zone, &cc);
1657 
1658 	VM_BUG_ON(!list_empty(&cc.freepages));
1659 	VM_BUG_ON(!list_empty(&cc.migratepages));
1660 
1661 	return ret;
1662 }
1663 
1664 int sysctl_extfrag_threshold = 500;
1665 
1666 /**
1667  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1668  * @gfp_mask: The GFP mask of the current allocation
1669  * @order: The order of the current allocation
1670  * @alloc_flags: The allocation flags of the current allocation
1671  * @ac: The context of current allocation
1672  * @mode: The migration mode for async, sync light, or sync migration
1673  *
1674  * This is the main entry point for direct page compaction.
1675  */
try_to_compact_pages(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio)1676 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
1677 		unsigned int alloc_flags, const struct alloc_context *ac,
1678 		enum compact_priority prio)
1679 {
1680 	int may_enter_fs = gfp_mask & __GFP_FS;
1681 	int may_perform_io = gfp_mask & __GFP_IO;
1682 	struct zoneref *z;
1683 	struct zone *zone;
1684 	enum compact_result rc = COMPACT_SKIPPED;
1685 
1686 	/* Check if the GFP flags allow compaction */
1687 	if (!may_enter_fs || !may_perform_io)
1688 		return COMPACT_SKIPPED;
1689 
1690 	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
1691 
1692 	/* Compact each zone in the list */
1693 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1694 								ac->nodemask) {
1695 		enum compact_result status;
1696 
1697 		if (prio > MIN_COMPACT_PRIORITY
1698 					&& compaction_deferred(zone, order)) {
1699 			rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
1700 			continue;
1701 		}
1702 
1703 		status = compact_zone_order(zone, order, gfp_mask, prio,
1704 					alloc_flags, ac_classzone_idx(ac));
1705 		rc = max(status, rc);
1706 
1707 		/* The allocation should succeed, stop compacting */
1708 		if (status == COMPACT_SUCCESS) {
1709 			/*
1710 			 * We think the allocation will succeed in this zone,
1711 			 * but it is not certain, hence the false. The caller
1712 			 * will repeat this with true if allocation indeed
1713 			 * succeeds in this zone.
1714 			 */
1715 			compaction_defer_reset(zone, order, false);
1716 
1717 			break;
1718 		}
1719 
1720 		if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
1721 					status == COMPACT_PARTIAL_SKIPPED))
1722 			/*
1723 			 * We think that allocation won't succeed in this zone
1724 			 * so we defer compaction there. If it ends up
1725 			 * succeeding after all, it will be reset.
1726 			 */
1727 			defer_compaction(zone, order);
1728 
1729 		/*
1730 		 * We might have stopped compacting due to need_resched() in
1731 		 * async compaction, or due to a fatal signal detected. In that
1732 		 * case do not try further zones
1733 		 */
1734 		if ((prio == COMPACT_PRIO_ASYNC && need_resched())
1735 					|| fatal_signal_pending(current))
1736 			break;
1737 	}
1738 
1739 	return rc;
1740 }
1741 
1742 
1743 /* Compact all zones within a node */
compact_node(int nid)1744 static void compact_node(int nid)
1745 {
1746 	pg_data_t *pgdat = NODE_DATA(nid);
1747 	int zoneid;
1748 	struct zone *zone;
1749 	struct compact_control cc = {
1750 		.order = -1,
1751 		.mode = MIGRATE_SYNC,
1752 		.ignore_skip_hint = true,
1753 		.whole_zone = true,
1754 	};
1755 
1756 
1757 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1758 
1759 		zone = &pgdat->node_zones[zoneid];
1760 		if (!populated_zone(zone))
1761 			continue;
1762 
1763 		cc.nr_freepages = 0;
1764 		cc.nr_migratepages = 0;
1765 		cc.zone = zone;
1766 		INIT_LIST_HEAD(&cc.freepages);
1767 		INIT_LIST_HEAD(&cc.migratepages);
1768 
1769 		compact_zone(zone, &cc);
1770 
1771 		VM_BUG_ON(!list_empty(&cc.freepages));
1772 		VM_BUG_ON(!list_empty(&cc.migratepages));
1773 	}
1774 }
1775 
1776 /* Compact all nodes in the system */
compact_nodes(void)1777 static void compact_nodes(void)
1778 {
1779 	int nid;
1780 
1781 	/* Flush pending updates to the LRU lists */
1782 	lru_add_drain_all();
1783 
1784 	for_each_online_node(nid)
1785 		compact_node(nid);
1786 }
1787 
1788 /* The written value is actually unused, all memory is compacted */
1789 int sysctl_compact_memory;
1790 
1791 /*
1792  * This is the entry point for compacting all nodes via
1793  * /proc/sys/vm/compact_memory
1794  */
sysctl_compaction_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)1795 int sysctl_compaction_handler(struct ctl_table *table, int write,
1796 			void __user *buffer, size_t *length, loff_t *ppos)
1797 {
1798 	if (write)
1799 		compact_nodes();
1800 
1801 	return 0;
1802 }
1803 
sysctl_extfrag_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)1804 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1805 			void __user *buffer, size_t *length, loff_t *ppos)
1806 {
1807 	proc_dointvec_minmax(table, write, buffer, length, ppos);
1808 
1809 	return 0;
1810 }
1811 
1812 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
sysfs_compact_node(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1813 static ssize_t sysfs_compact_node(struct device *dev,
1814 			struct device_attribute *attr,
1815 			const char *buf, size_t count)
1816 {
1817 	int nid = dev->id;
1818 
1819 	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1820 		/* Flush pending updates to the LRU lists */
1821 		lru_add_drain_all();
1822 
1823 		compact_node(nid);
1824 	}
1825 
1826 	return count;
1827 }
1828 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1829 
compaction_register_node(struct node * node)1830 int compaction_register_node(struct node *node)
1831 {
1832 	return device_create_file(&node->dev, &dev_attr_compact);
1833 }
1834 
compaction_unregister_node(struct node * node)1835 void compaction_unregister_node(struct node *node)
1836 {
1837 	return device_remove_file(&node->dev, &dev_attr_compact);
1838 }
1839 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1840 
kcompactd_work_requested(pg_data_t * pgdat)1841 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
1842 {
1843 	return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
1844 }
1845 
kcompactd_node_suitable(pg_data_t * pgdat)1846 static bool kcompactd_node_suitable(pg_data_t *pgdat)
1847 {
1848 	int zoneid;
1849 	struct zone *zone;
1850 	enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx;
1851 
1852 	for (zoneid = 0; zoneid <= classzone_idx; zoneid++) {
1853 		zone = &pgdat->node_zones[zoneid];
1854 
1855 		if (!populated_zone(zone))
1856 			continue;
1857 
1858 		if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
1859 					classzone_idx) == COMPACT_CONTINUE)
1860 			return true;
1861 	}
1862 
1863 	return false;
1864 }
1865 
kcompactd_do_work(pg_data_t * pgdat)1866 static void kcompactd_do_work(pg_data_t *pgdat)
1867 {
1868 	/*
1869 	 * With no special task, compact all zones so that a page of requested
1870 	 * order is allocatable.
1871 	 */
1872 	int zoneid;
1873 	struct zone *zone;
1874 	struct compact_control cc = {
1875 		.order = pgdat->kcompactd_max_order,
1876 		.classzone_idx = pgdat->kcompactd_classzone_idx,
1877 		.mode = MIGRATE_SYNC_LIGHT,
1878 		.ignore_skip_hint = true,
1879 
1880 	};
1881 	trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
1882 							cc.classzone_idx);
1883 	count_vm_event(KCOMPACTD_WAKE);
1884 
1885 	for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) {
1886 		int status;
1887 
1888 		zone = &pgdat->node_zones[zoneid];
1889 		if (!populated_zone(zone))
1890 			continue;
1891 
1892 		if (compaction_deferred(zone, cc.order))
1893 			continue;
1894 
1895 		if (compaction_suitable(zone, cc.order, 0, zoneid) !=
1896 							COMPACT_CONTINUE)
1897 			continue;
1898 
1899 		cc.nr_freepages = 0;
1900 		cc.nr_migratepages = 0;
1901 		cc.zone = zone;
1902 		INIT_LIST_HEAD(&cc.freepages);
1903 		INIT_LIST_HEAD(&cc.migratepages);
1904 
1905 		if (kthread_should_stop())
1906 			return;
1907 		status = compact_zone(zone, &cc);
1908 
1909 		if (status == COMPACT_SUCCESS) {
1910 			compaction_defer_reset(zone, cc.order, false);
1911 		} else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
1912 			/*
1913 			 * We use sync migration mode here, so we defer like
1914 			 * sync direct compaction does.
1915 			 */
1916 			defer_compaction(zone, cc.order);
1917 		}
1918 
1919 		VM_BUG_ON(!list_empty(&cc.freepages));
1920 		VM_BUG_ON(!list_empty(&cc.migratepages));
1921 	}
1922 
1923 	/*
1924 	 * Regardless of success, we are done until woken up next. But remember
1925 	 * the requested order/classzone_idx in case it was higher/tighter than
1926 	 * our current ones
1927 	 */
1928 	if (pgdat->kcompactd_max_order <= cc.order)
1929 		pgdat->kcompactd_max_order = 0;
1930 	if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx)
1931 		pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
1932 }
1933 
wakeup_kcompactd(pg_data_t * pgdat,int order,int classzone_idx)1934 void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx)
1935 {
1936 	if (!order)
1937 		return;
1938 
1939 	if (pgdat->kcompactd_max_order < order)
1940 		pgdat->kcompactd_max_order = order;
1941 
1942 	if (pgdat->kcompactd_classzone_idx > classzone_idx)
1943 		pgdat->kcompactd_classzone_idx = classzone_idx;
1944 
1945 	if (!waitqueue_active(&pgdat->kcompactd_wait))
1946 		return;
1947 
1948 	if (!kcompactd_node_suitable(pgdat))
1949 		return;
1950 
1951 	trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
1952 							classzone_idx);
1953 	wake_up_interruptible(&pgdat->kcompactd_wait);
1954 }
1955 
1956 /*
1957  * The background compaction daemon, started as a kernel thread
1958  * from the init process.
1959  */
kcompactd(void * p)1960 static int kcompactd(void *p)
1961 {
1962 	pg_data_t *pgdat = (pg_data_t*)p;
1963 	struct task_struct *tsk = current;
1964 
1965 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1966 
1967 	if (!cpumask_empty(cpumask))
1968 		set_cpus_allowed_ptr(tsk, cpumask);
1969 
1970 	set_freezable();
1971 
1972 	pgdat->kcompactd_max_order = 0;
1973 	pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
1974 
1975 	while (!kthread_should_stop()) {
1976 		trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
1977 		wait_event_freezable(pgdat->kcompactd_wait,
1978 				kcompactd_work_requested(pgdat));
1979 
1980 		kcompactd_do_work(pgdat);
1981 	}
1982 
1983 	return 0;
1984 }
1985 
1986 /*
1987  * This kcompactd start function will be called by init and node-hot-add.
1988  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
1989  */
kcompactd_run(int nid)1990 int kcompactd_run(int nid)
1991 {
1992 	pg_data_t *pgdat = NODE_DATA(nid);
1993 	int ret = 0;
1994 
1995 	if (pgdat->kcompactd)
1996 		return 0;
1997 
1998 	pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
1999 	if (IS_ERR(pgdat->kcompactd)) {
2000 		pr_err("Failed to start kcompactd on node %d\n", nid);
2001 		ret = PTR_ERR(pgdat->kcompactd);
2002 		pgdat->kcompactd = NULL;
2003 	}
2004 	return ret;
2005 }
2006 
2007 /*
2008  * Called by memory hotplug when all memory in a node is offlined. Caller must
2009  * hold mem_hotplug_begin/end().
2010  */
kcompactd_stop(int nid)2011 void kcompactd_stop(int nid)
2012 {
2013 	struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2014 
2015 	if (kcompactd) {
2016 		kthread_stop(kcompactd);
2017 		NODE_DATA(nid)->kcompactd = NULL;
2018 	}
2019 }
2020 
2021 /*
2022  * It's optimal to keep kcompactd on the same CPUs as their memory, but
2023  * not required for correctness. So if the last cpu in a node goes
2024  * away, we get changed to run anywhere: as the first one comes back,
2025  * restore their cpu bindings.
2026  */
cpu_callback(struct notifier_block * nfb,unsigned long action,void * hcpu)2027 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
2028 			void *hcpu)
2029 {
2030 	int nid;
2031 
2032 	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2033 		for_each_node_state(nid, N_MEMORY) {
2034 			pg_data_t *pgdat = NODE_DATA(nid);
2035 			const struct cpumask *mask;
2036 
2037 			mask = cpumask_of_node(pgdat->node_id);
2038 
2039 			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2040 				/* One of our CPUs online: restore mask */
2041 				set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2042 		}
2043 	}
2044 	return NOTIFY_OK;
2045 }
2046 
kcompactd_init(void)2047 static int __init kcompactd_init(void)
2048 {
2049 	int nid;
2050 
2051 	for_each_node_state(nid, N_MEMORY)
2052 		kcompactd_run(nid);
2053 	hotcpu_notifier(cpu_callback, 0);
2054 	return 0;
2055 }
2056 subsys_initcall(kcompactd_init)
2057 
2058 #endif /* CONFIG_COMPACTION */
2059