1 /*
2 * Copyright (C) 2008, 2009 Intel Corporation
3 * Authors: Andi Kleen, Fengguang Wu
4 *
5 * This software may be redistributed and/or modified under the terms of
6 * the GNU General Public License ("GPL") version 2 only as published by the
7 * Free Software Foundation.
8 *
9 * High level machine check handler. Handles pages reported by the
10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11 * failure.
12 *
13 * In addition there is a "soft offline" entry point that allows stop using
14 * not-yet-corrupted-by-suspicious pages without killing anything.
15 *
16 * Handles page cache pages in various states. The tricky part
17 * here is that we can access any page asynchronously in respect to
18 * other VM users, because memory failures could happen anytime and
19 * anywhere. This could violate some of their assumptions. This is why
20 * this code has to be extremely careful. Generally it tries to use
21 * normal locking rules, as in get the standard locks, even if that means
22 * the error handling takes potentially a long time.
23 *
24 * It can be very tempting to add handling for obscure cases here.
25 * In general any code for handling new cases should only be added iff:
26 * - You know how to test it.
27 * - You have a test that can be added to mce-test
28 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
29 * - The case actually shows up as a frequent (top 10) page state in
30 * tools/vm/page-types when running a real workload.
31 *
32 * There are several operations here with exponential complexity because
33 * of unsuitable VM data structures. For example the operation to map back
34 * from RMAP chains to processes has to walk the complete process list and
35 * has non linear complexity with the number. But since memory corruptions
36 * are rare we hope to get away with this. This avoids impacting the core
37 * VM.
38 */
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/page-flags.h>
42 #include <linux/kernel-page-flags.h>
43 #include <linux/sched.h>
44 #include <linux/ksm.h>
45 #include <linux/rmap.h>
46 #include <linux/export.h>
47 #include <linux/pagemap.h>
48 #include <linux/swap.h>
49 #include <linux/backing-dev.h>
50 #include <linux/migrate.h>
51 #include <linux/page-isolation.h>
52 #include <linux/suspend.h>
53 #include <linux/slab.h>
54 #include <linux/swapops.h>
55 #include <linux/hugetlb.h>
56 #include <linux/memory_hotplug.h>
57 #include <linux/mm_inline.h>
58 #include <linux/kfifo.h>
59 #include <linux/ratelimit.h>
60 #include "internal.h"
61 #include "ras/ras_event.h"
62
63 int sysctl_memory_failure_early_kill __read_mostly = 0;
64
65 int sysctl_memory_failure_recovery __read_mostly = 1;
66
67 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
68
69 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
70
71 u32 hwpoison_filter_enable = 0;
72 u32 hwpoison_filter_dev_major = ~0U;
73 u32 hwpoison_filter_dev_minor = ~0U;
74 u64 hwpoison_filter_flags_mask;
75 u64 hwpoison_filter_flags_value;
76 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
77 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
78 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
79 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
80 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
81
hwpoison_filter_dev(struct page * p)82 static int hwpoison_filter_dev(struct page *p)
83 {
84 struct address_space *mapping;
85 dev_t dev;
86
87 if (hwpoison_filter_dev_major == ~0U &&
88 hwpoison_filter_dev_minor == ~0U)
89 return 0;
90
91 /*
92 * page_mapping() does not accept slab pages.
93 */
94 if (PageSlab(p))
95 return -EINVAL;
96
97 mapping = page_mapping(p);
98 if (mapping == NULL || mapping->host == NULL)
99 return -EINVAL;
100
101 dev = mapping->host->i_sb->s_dev;
102 if (hwpoison_filter_dev_major != ~0U &&
103 hwpoison_filter_dev_major != MAJOR(dev))
104 return -EINVAL;
105 if (hwpoison_filter_dev_minor != ~0U &&
106 hwpoison_filter_dev_minor != MINOR(dev))
107 return -EINVAL;
108
109 return 0;
110 }
111
hwpoison_filter_flags(struct page * p)112 static int hwpoison_filter_flags(struct page *p)
113 {
114 if (!hwpoison_filter_flags_mask)
115 return 0;
116
117 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
118 hwpoison_filter_flags_value)
119 return 0;
120 else
121 return -EINVAL;
122 }
123
124 /*
125 * This allows stress tests to limit test scope to a collection of tasks
126 * by putting them under some memcg. This prevents killing unrelated/important
127 * processes such as /sbin/init. Note that the target task may share clean
128 * pages with init (eg. libc text), which is harmless. If the target task
129 * share _dirty_ pages with another task B, the test scheme must make sure B
130 * is also included in the memcg. At last, due to race conditions this filter
131 * can only guarantee that the page either belongs to the memcg tasks, or is
132 * a freed page.
133 */
134 #ifdef CONFIG_MEMCG
135 u64 hwpoison_filter_memcg;
136 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
hwpoison_filter_task(struct page * p)137 static int hwpoison_filter_task(struct page *p)
138 {
139 if (!hwpoison_filter_memcg)
140 return 0;
141
142 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
143 return -EINVAL;
144
145 return 0;
146 }
147 #else
hwpoison_filter_task(struct page * p)148 static int hwpoison_filter_task(struct page *p) { return 0; }
149 #endif
150
hwpoison_filter(struct page * p)151 int hwpoison_filter(struct page *p)
152 {
153 if (!hwpoison_filter_enable)
154 return 0;
155
156 if (hwpoison_filter_dev(p))
157 return -EINVAL;
158
159 if (hwpoison_filter_flags(p))
160 return -EINVAL;
161
162 if (hwpoison_filter_task(p))
163 return -EINVAL;
164
165 return 0;
166 }
167 #else
hwpoison_filter(struct page * p)168 int hwpoison_filter(struct page *p)
169 {
170 return 0;
171 }
172 #endif
173
174 EXPORT_SYMBOL_GPL(hwpoison_filter);
175
176 /*
177 * Send all the processes who have the page mapped a signal.
178 * ``action optional'' if they are not immediately affected by the error
179 * ``action required'' if error happened in current execution context
180 */
kill_proc(struct task_struct * t,unsigned long addr,int trapno,unsigned long pfn,struct page * page,int flags)181 static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
182 unsigned long pfn, struct page *page, int flags)
183 {
184 struct siginfo si;
185 int ret;
186
187 pr_err("Memory failure: %#lx: Killing %s:%d due to hardware memory corruption\n",
188 pfn, t->comm, t->pid);
189 si.si_signo = SIGBUS;
190 si.si_errno = 0;
191 si.si_addr = (void *)addr;
192 #ifdef __ARCH_SI_TRAPNO
193 si.si_trapno = trapno;
194 #endif
195 si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
196
197 if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
198 si.si_code = BUS_MCEERR_AR;
199 ret = force_sig_info(SIGBUS, &si, current);
200 } else {
201 /*
202 * Don't use force here, it's convenient if the signal
203 * can be temporarily blocked.
204 * This could cause a loop when the user sets SIGBUS
205 * to SIG_IGN, but hopefully no one will do that?
206 */
207 si.si_code = BUS_MCEERR_AO;
208 ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
209 }
210 if (ret < 0)
211 pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
212 t->comm, t->pid, ret);
213 return ret;
214 }
215
216 /*
217 * When a unknown page type is encountered drain as many buffers as possible
218 * in the hope to turn the page into a LRU or free page, which we can handle.
219 */
shake_page(struct page * p,int access)220 void shake_page(struct page *p, int access)
221 {
222 if (!PageSlab(p)) {
223 lru_add_drain_all();
224 if (PageLRU(p))
225 return;
226 drain_all_pages(page_zone(p));
227 if (PageLRU(p) || is_free_buddy_page(p))
228 return;
229 }
230
231 /*
232 * Only call shrink_node_slabs here (which would also shrink
233 * other caches) if access is not potentially fatal.
234 */
235 if (access)
236 drop_slab_node(page_to_nid(p));
237 }
238 EXPORT_SYMBOL_GPL(shake_page);
239
240 /*
241 * Kill all processes that have a poisoned page mapped and then isolate
242 * the page.
243 *
244 * General strategy:
245 * Find all processes having the page mapped and kill them.
246 * But we keep a page reference around so that the page is not
247 * actually freed yet.
248 * Then stash the page away
249 *
250 * There's no convenient way to get back to mapped processes
251 * from the VMAs. So do a brute-force search over all
252 * running processes.
253 *
254 * Remember that machine checks are not common (or rather
255 * if they are common you have other problems), so this shouldn't
256 * be a performance issue.
257 *
258 * Also there are some races possible while we get from the
259 * error detection to actually handle it.
260 */
261
262 struct to_kill {
263 struct list_head nd;
264 struct task_struct *tsk;
265 unsigned long addr;
266 char addr_valid;
267 };
268
269 /*
270 * Failure handling: if we can't find or can't kill a process there's
271 * not much we can do. We just print a message and ignore otherwise.
272 */
273
274 /*
275 * Schedule a process for later kill.
276 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
277 * TBD would GFP_NOIO be enough?
278 */
add_to_kill(struct task_struct * tsk,struct page * p,struct vm_area_struct * vma,struct list_head * to_kill,struct to_kill ** tkc)279 static void add_to_kill(struct task_struct *tsk, struct page *p,
280 struct vm_area_struct *vma,
281 struct list_head *to_kill,
282 struct to_kill **tkc)
283 {
284 struct to_kill *tk;
285
286 if (*tkc) {
287 tk = *tkc;
288 *tkc = NULL;
289 } else {
290 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
291 if (!tk) {
292 pr_err("Memory failure: Out of memory while machine check handling\n");
293 return;
294 }
295 }
296 tk->addr = page_address_in_vma(p, vma);
297 tk->addr_valid = 1;
298
299 /*
300 * In theory we don't have to kill when the page was
301 * munmaped. But it could be also a mremap. Since that's
302 * likely very rare kill anyways just out of paranoia, but use
303 * a SIGKILL because the error is not contained anymore.
304 */
305 if (tk->addr == -EFAULT) {
306 pr_info("Memory failure: Unable to find user space address %lx in %s\n",
307 page_to_pfn(p), tsk->comm);
308 tk->addr_valid = 0;
309 }
310 get_task_struct(tsk);
311 tk->tsk = tsk;
312 list_add_tail(&tk->nd, to_kill);
313 }
314
315 /*
316 * Kill the processes that have been collected earlier.
317 *
318 * Only do anything when DOIT is set, otherwise just free the list
319 * (this is used for clean pages which do not need killing)
320 * Also when FAIL is set do a force kill because something went
321 * wrong earlier.
322 */
kill_procs(struct list_head * to_kill,int forcekill,int trapno,int fail,struct page * page,unsigned long pfn,int flags)323 static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
324 int fail, struct page *page, unsigned long pfn,
325 int flags)
326 {
327 struct to_kill *tk, *next;
328
329 list_for_each_entry_safe (tk, next, to_kill, nd) {
330 if (forcekill) {
331 /*
332 * In case something went wrong with munmapping
333 * make sure the process doesn't catch the
334 * signal and then access the memory. Just kill it.
335 */
336 if (fail || tk->addr_valid == 0) {
337 pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
338 pfn, tk->tsk->comm, tk->tsk->pid);
339 force_sig(SIGKILL, tk->tsk);
340 }
341
342 /*
343 * In theory the process could have mapped
344 * something else on the address in-between. We could
345 * check for that, but we need to tell the
346 * process anyways.
347 */
348 else if (kill_proc(tk->tsk, tk->addr, trapno,
349 pfn, page, flags) < 0)
350 pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
351 pfn, tk->tsk->comm, tk->tsk->pid);
352 }
353 put_task_struct(tk->tsk);
354 kfree(tk);
355 }
356 }
357
358 /*
359 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
360 * on behalf of the thread group. Return task_struct of the (first found)
361 * dedicated thread if found, and return NULL otherwise.
362 *
363 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
364 * have to call rcu_read_lock/unlock() in this function.
365 */
find_early_kill_thread(struct task_struct * tsk)366 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
367 {
368 struct task_struct *t;
369
370 for_each_thread(tsk, t)
371 if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
372 return t;
373 return NULL;
374 }
375
376 /*
377 * Determine whether a given process is "early kill" process which expects
378 * to be signaled when some page under the process is hwpoisoned.
379 * Return task_struct of the dedicated thread (main thread unless explicitly
380 * specified) if the process is "early kill," and otherwise returns NULL.
381 */
task_early_kill(struct task_struct * tsk,int force_early)382 static struct task_struct *task_early_kill(struct task_struct *tsk,
383 int force_early)
384 {
385 struct task_struct *t;
386 if (!tsk->mm)
387 return NULL;
388 if (force_early)
389 return tsk;
390 t = find_early_kill_thread(tsk);
391 if (t)
392 return t;
393 if (sysctl_memory_failure_early_kill)
394 return tsk;
395 return NULL;
396 }
397
398 /*
399 * Collect processes when the error hit an anonymous page.
400 */
collect_procs_anon(struct page * page,struct list_head * to_kill,struct to_kill ** tkc,int force_early)401 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
402 struct to_kill **tkc, int force_early)
403 {
404 struct vm_area_struct *vma;
405 struct task_struct *tsk;
406 struct anon_vma *av;
407 pgoff_t pgoff;
408
409 av = page_lock_anon_vma_read(page);
410 if (av == NULL) /* Not actually mapped anymore */
411 return;
412
413 pgoff = page_to_pgoff(page);
414 read_lock(&tasklist_lock);
415 for_each_process (tsk) {
416 struct anon_vma_chain *vmac;
417 struct task_struct *t = task_early_kill(tsk, force_early);
418
419 if (!t)
420 continue;
421 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
422 pgoff, pgoff) {
423 vma = vmac->vma;
424 if (!page_mapped_in_vma(page, vma))
425 continue;
426 if (vma->vm_mm == t->mm)
427 add_to_kill(t, page, vma, to_kill, tkc);
428 }
429 }
430 read_unlock(&tasklist_lock);
431 page_unlock_anon_vma_read(av);
432 }
433
434 /*
435 * Collect processes when the error hit a file mapped page.
436 */
collect_procs_file(struct page * page,struct list_head * to_kill,struct to_kill ** tkc,int force_early)437 static void collect_procs_file(struct page *page, struct list_head *to_kill,
438 struct to_kill **tkc, int force_early)
439 {
440 struct vm_area_struct *vma;
441 struct task_struct *tsk;
442 struct address_space *mapping = page->mapping;
443
444 i_mmap_lock_read(mapping);
445 read_lock(&tasklist_lock);
446 for_each_process(tsk) {
447 pgoff_t pgoff = page_to_pgoff(page);
448 struct task_struct *t = task_early_kill(tsk, force_early);
449
450 if (!t)
451 continue;
452 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
453 pgoff) {
454 /*
455 * Send early kill signal to tasks where a vma covers
456 * the page but the corrupted page is not necessarily
457 * mapped it in its pte.
458 * Assume applications who requested early kill want
459 * to be informed of all such data corruptions.
460 */
461 if (vma->vm_mm == t->mm)
462 add_to_kill(t, page, vma, to_kill, tkc);
463 }
464 }
465 read_unlock(&tasklist_lock);
466 i_mmap_unlock_read(mapping);
467 }
468
469 /*
470 * Collect the processes who have the corrupted page mapped to kill.
471 * This is done in two steps for locking reasons.
472 * First preallocate one tokill structure outside the spin locks,
473 * so that we can kill at least one process reasonably reliable.
474 */
collect_procs(struct page * page,struct list_head * tokill,int force_early)475 static void collect_procs(struct page *page, struct list_head *tokill,
476 int force_early)
477 {
478 struct to_kill *tk;
479
480 if (!page->mapping)
481 return;
482
483 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
484 if (!tk)
485 return;
486 if (PageAnon(page))
487 collect_procs_anon(page, tokill, &tk, force_early);
488 else
489 collect_procs_file(page, tokill, &tk, force_early);
490 kfree(tk);
491 }
492
493 static const char *action_name[] = {
494 [MF_IGNORED] = "Ignored",
495 [MF_FAILED] = "Failed",
496 [MF_DELAYED] = "Delayed",
497 [MF_RECOVERED] = "Recovered",
498 };
499
500 static const char * const action_page_types[] = {
501 [MF_MSG_KERNEL] = "reserved kernel page",
502 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
503 [MF_MSG_SLAB] = "kernel slab page",
504 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
505 [MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned",
506 [MF_MSG_HUGE] = "huge page",
507 [MF_MSG_FREE_HUGE] = "free huge page",
508 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
509 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
510 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
511 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
512 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
513 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
514 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
515 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
516 [MF_MSG_CLEAN_LRU] = "clean LRU page",
517 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
518 [MF_MSG_BUDDY] = "free buddy page",
519 [MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)",
520 [MF_MSG_UNKNOWN] = "unknown page",
521 };
522
523 /*
524 * XXX: It is possible that a page is isolated from LRU cache,
525 * and then kept in swap cache or failed to remove from page cache.
526 * The page count will stop it from being freed by unpoison.
527 * Stress tests should be aware of this memory leak problem.
528 */
delete_from_lru_cache(struct page * p)529 static int delete_from_lru_cache(struct page *p)
530 {
531 if (!isolate_lru_page(p)) {
532 /*
533 * Clear sensible page flags, so that the buddy system won't
534 * complain when the page is unpoison-and-freed.
535 */
536 ClearPageActive(p);
537 ClearPageUnevictable(p);
538
539 /*
540 * Poisoned page might never drop its ref count to 0 so we have
541 * to uncharge it manually from its memcg.
542 */
543 mem_cgroup_uncharge(p);
544
545 /*
546 * drop the page count elevated by isolate_lru_page()
547 */
548 put_page(p);
549 return 0;
550 }
551 return -EIO;
552 }
553
554 /*
555 * Error hit kernel page.
556 * Do nothing, try to be lucky and not touch this instead. For a few cases we
557 * could be more sophisticated.
558 */
me_kernel(struct page * p,unsigned long pfn)559 static int me_kernel(struct page *p, unsigned long pfn)
560 {
561 return MF_IGNORED;
562 }
563
564 /*
565 * Page in unknown state. Do nothing.
566 */
me_unknown(struct page * p,unsigned long pfn)567 static int me_unknown(struct page *p, unsigned long pfn)
568 {
569 pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
570 return MF_FAILED;
571 }
572
573 /*
574 * Clean (or cleaned) page cache page.
575 */
me_pagecache_clean(struct page * p,unsigned long pfn)576 static int me_pagecache_clean(struct page *p, unsigned long pfn)
577 {
578 int err;
579 int ret = MF_FAILED;
580 struct address_space *mapping;
581
582 delete_from_lru_cache(p);
583
584 /*
585 * For anonymous pages we're done the only reference left
586 * should be the one m_f() holds.
587 */
588 if (PageAnon(p))
589 return MF_RECOVERED;
590
591 /*
592 * Now truncate the page in the page cache. This is really
593 * more like a "temporary hole punch"
594 * Don't do this for block devices when someone else
595 * has a reference, because it could be file system metadata
596 * and that's not safe to truncate.
597 */
598 mapping = page_mapping(p);
599 if (!mapping) {
600 /*
601 * Page has been teared down in the meanwhile
602 */
603 return MF_FAILED;
604 }
605
606 /*
607 * Truncation is a bit tricky. Enable it per file system for now.
608 *
609 * Open: to take i_mutex or not for this? Right now we don't.
610 */
611 if (mapping->a_ops->error_remove_page) {
612 err = mapping->a_ops->error_remove_page(mapping, p);
613 if (err != 0) {
614 pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
615 pfn, err);
616 } else if (page_has_private(p) &&
617 !try_to_release_page(p, GFP_NOIO)) {
618 pr_info("Memory failure: %#lx: failed to release buffers\n",
619 pfn);
620 } else {
621 ret = MF_RECOVERED;
622 }
623 } else {
624 /*
625 * If the file system doesn't support it just invalidate
626 * This fails on dirty or anything with private pages
627 */
628 if (invalidate_inode_page(p))
629 ret = MF_RECOVERED;
630 else
631 pr_info("Memory failure: %#lx: Failed to invalidate\n",
632 pfn);
633 }
634 return ret;
635 }
636
637 /*
638 * Dirty pagecache page
639 * Issues: when the error hit a hole page the error is not properly
640 * propagated.
641 */
me_pagecache_dirty(struct page * p,unsigned long pfn)642 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
643 {
644 struct address_space *mapping = page_mapping(p);
645
646 SetPageError(p);
647 /* TBD: print more information about the file. */
648 if (mapping) {
649 /*
650 * IO error will be reported by write(), fsync(), etc.
651 * who check the mapping.
652 * This way the application knows that something went
653 * wrong with its dirty file data.
654 *
655 * There's one open issue:
656 *
657 * The EIO will be only reported on the next IO
658 * operation and then cleared through the IO map.
659 * Normally Linux has two mechanisms to pass IO error
660 * first through the AS_EIO flag in the address space
661 * and then through the PageError flag in the page.
662 * Since we drop pages on memory failure handling the
663 * only mechanism open to use is through AS_AIO.
664 *
665 * This has the disadvantage that it gets cleared on
666 * the first operation that returns an error, while
667 * the PageError bit is more sticky and only cleared
668 * when the page is reread or dropped. If an
669 * application assumes it will always get error on
670 * fsync, but does other operations on the fd before
671 * and the page is dropped between then the error
672 * will not be properly reported.
673 *
674 * This can already happen even without hwpoisoned
675 * pages: first on metadata IO errors (which only
676 * report through AS_EIO) or when the page is dropped
677 * at the wrong time.
678 *
679 * So right now we assume that the application DTRT on
680 * the first EIO, but we're not worse than other parts
681 * of the kernel.
682 */
683 mapping_set_error(mapping, EIO);
684 }
685
686 return me_pagecache_clean(p, pfn);
687 }
688
689 /*
690 * Clean and dirty swap cache.
691 *
692 * Dirty swap cache page is tricky to handle. The page could live both in page
693 * cache and swap cache(ie. page is freshly swapped in). So it could be
694 * referenced concurrently by 2 types of PTEs:
695 * normal PTEs and swap PTEs. We try to handle them consistently by calling
696 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
697 * and then
698 * - clear dirty bit to prevent IO
699 * - remove from LRU
700 * - but keep in the swap cache, so that when we return to it on
701 * a later page fault, we know the application is accessing
702 * corrupted data and shall be killed (we installed simple
703 * interception code in do_swap_page to catch it).
704 *
705 * Clean swap cache pages can be directly isolated. A later page fault will
706 * bring in the known good data from disk.
707 */
me_swapcache_dirty(struct page * p,unsigned long pfn)708 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
709 {
710 ClearPageDirty(p);
711 /* Trigger EIO in shmem: */
712 ClearPageUptodate(p);
713
714 if (!delete_from_lru_cache(p))
715 return MF_DELAYED;
716 else
717 return MF_FAILED;
718 }
719
me_swapcache_clean(struct page * p,unsigned long pfn)720 static int me_swapcache_clean(struct page *p, unsigned long pfn)
721 {
722 delete_from_swap_cache(p);
723
724 if (!delete_from_lru_cache(p))
725 return MF_RECOVERED;
726 else
727 return MF_FAILED;
728 }
729
730 /*
731 * Huge pages. Needs work.
732 * Issues:
733 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
734 * To narrow down kill region to one page, we need to break up pmd.
735 */
me_huge_page(struct page * p,unsigned long pfn)736 static int me_huge_page(struct page *p, unsigned long pfn)
737 {
738 int res = 0;
739 struct page *hpage = compound_head(p);
740
741 if (!PageHuge(hpage))
742 return MF_DELAYED;
743
744 /*
745 * We can safely recover from error on free or reserved (i.e.
746 * not in-use) hugepage by dequeuing it from freelist.
747 * To check whether a hugepage is in-use or not, we can't use
748 * page->lru because it can be used in other hugepage operations,
749 * such as __unmap_hugepage_range() and gather_surplus_pages().
750 * So instead we use page_mapping() and PageAnon().
751 */
752 if (!(page_mapping(hpage) || PageAnon(hpage))) {
753 res = dequeue_hwpoisoned_huge_page(hpage);
754 if (!res)
755 return MF_RECOVERED;
756 }
757 return MF_DELAYED;
758 }
759
760 /*
761 * Various page states we can handle.
762 *
763 * A page state is defined by its current page->flags bits.
764 * The table matches them in order and calls the right handler.
765 *
766 * This is quite tricky because we can access page at any time
767 * in its live cycle, so all accesses have to be extremely careful.
768 *
769 * This is not complete. More states could be added.
770 * For any missing state don't attempt recovery.
771 */
772
773 #define dirty (1UL << PG_dirty)
774 #define sc (1UL << PG_swapcache)
775 #define unevict (1UL << PG_unevictable)
776 #define mlock (1UL << PG_mlocked)
777 #define writeback (1UL << PG_writeback)
778 #define lru (1UL << PG_lru)
779 #define swapbacked (1UL << PG_swapbacked)
780 #define head (1UL << PG_head)
781 #define slab (1UL << PG_slab)
782 #define reserved (1UL << PG_reserved)
783
784 static struct page_state {
785 unsigned long mask;
786 unsigned long res;
787 enum mf_action_page_type type;
788 int (*action)(struct page *p, unsigned long pfn);
789 } error_states[] = {
790 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
791 /*
792 * free pages are specially detected outside this table:
793 * PG_buddy pages only make a small fraction of all free pages.
794 */
795
796 /*
797 * Could in theory check if slab page is free or if we can drop
798 * currently unused objects without touching them. But just
799 * treat it as standard kernel for now.
800 */
801 { slab, slab, MF_MSG_SLAB, me_kernel },
802
803 { head, head, MF_MSG_HUGE, me_huge_page },
804
805 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
806 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
807
808 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
809 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
810
811 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
812 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
813
814 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
815 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
816
817 /*
818 * Catchall entry: must be at end.
819 */
820 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
821 };
822
823 #undef dirty
824 #undef sc
825 #undef unevict
826 #undef mlock
827 #undef writeback
828 #undef lru
829 #undef swapbacked
830 #undef head
831 #undef slab
832 #undef reserved
833
834 /*
835 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
836 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
837 */
action_result(unsigned long pfn,enum mf_action_page_type type,enum mf_result result)838 static void action_result(unsigned long pfn, enum mf_action_page_type type,
839 enum mf_result result)
840 {
841 trace_memory_failure_event(pfn, type, result);
842
843 pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
844 pfn, action_page_types[type], action_name[result]);
845 }
846
page_action(struct page_state * ps,struct page * p,unsigned long pfn)847 static int page_action(struct page_state *ps, struct page *p,
848 unsigned long pfn)
849 {
850 int result;
851 int count;
852
853 result = ps->action(p, pfn);
854
855 count = page_count(p) - 1;
856 if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
857 count--;
858 if (count != 0) {
859 pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
860 pfn, action_page_types[ps->type], count);
861 result = MF_FAILED;
862 }
863 action_result(pfn, ps->type, result);
864
865 /* Could do more checks here if page looks ok */
866 /*
867 * Could adjust zone counters here to correct for the missing page.
868 */
869
870 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
871 }
872
873 /**
874 * get_hwpoison_page() - Get refcount for memory error handling:
875 * @page: raw error page (hit by memory error)
876 *
877 * Return: return 0 if failed to grab the refcount, otherwise true (some
878 * non-zero value.)
879 */
get_hwpoison_page(struct page * page)880 int get_hwpoison_page(struct page *page)
881 {
882 struct page *head = compound_head(page);
883
884 if (!PageHuge(head) && PageTransHuge(head)) {
885 /*
886 * Non anonymous thp exists only in allocation/free time. We
887 * can't handle such a case correctly, so let's give it up.
888 * This should be better than triggering BUG_ON when kernel
889 * tries to touch the "partially handled" page.
890 */
891 if (!PageAnon(head)) {
892 pr_err("Memory failure: %#lx: non anonymous thp\n",
893 page_to_pfn(page));
894 return 0;
895 }
896 }
897
898 if (get_page_unless_zero(head)) {
899 if (head == compound_head(page))
900 return 1;
901
902 pr_info("Memory failure: %#lx cannot catch tail\n",
903 page_to_pfn(page));
904 put_page(head);
905 }
906
907 return 0;
908 }
909 EXPORT_SYMBOL_GPL(get_hwpoison_page);
910
911 /*
912 * Do all that is necessary to remove user space mappings. Unmap
913 * the pages and send SIGBUS to the processes if the data was dirty.
914 */
hwpoison_user_mappings(struct page * p,unsigned long pfn,int trapno,int flags,struct page ** hpagep)915 static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
916 int trapno, int flags, struct page **hpagep)
917 {
918 enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
919 struct address_space *mapping;
920 LIST_HEAD(tokill);
921 int ret;
922 int kill = 1, forcekill;
923 struct page *hpage = *hpagep;
924 bool mlocked = PageMlocked(hpage);
925
926 /*
927 * Here we are interested only in user-mapped pages, so skip any
928 * other types of pages.
929 */
930 if (PageReserved(p) || PageSlab(p))
931 return SWAP_SUCCESS;
932 if (!(PageLRU(hpage) || PageHuge(p)))
933 return SWAP_SUCCESS;
934
935 /*
936 * This check implies we don't kill processes if their pages
937 * are in the swap cache early. Those are always late kills.
938 */
939 if (!page_mapped(hpage))
940 return SWAP_SUCCESS;
941
942 if (PageKsm(p)) {
943 pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
944 return SWAP_FAIL;
945 }
946
947 if (PageSwapCache(p)) {
948 pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
949 pfn);
950 ttu |= TTU_IGNORE_HWPOISON;
951 }
952
953 /*
954 * Propagate the dirty bit from PTEs to struct page first, because we
955 * need this to decide if we should kill or just drop the page.
956 * XXX: the dirty test could be racy: set_page_dirty() may not always
957 * be called inside page lock (it's recommended but not enforced).
958 */
959 mapping = page_mapping(hpage);
960 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
961 mapping_cap_writeback_dirty(mapping)) {
962 if (page_mkclean(hpage)) {
963 SetPageDirty(hpage);
964 } else {
965 kill = 0;
966 ttu |= TTU_IGNORE_HWPOISON;
967 pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
968 pfn);
969 }
970 }
971
972 /*
973 * First collect all the processes that have the page
974 * mapped in dirty form. This has to be done before try_to_unmap,
975 * because ttu takes the rmap data structures down.
976 *
977 * Error handling: We ignore errors here because
978 * there's nothing that can be done.
979 */
980 if (kill)
981 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
982
983 ret = try_to_unmap(hpage, ttu);
984 if (ret != SWAP_SUCCESS)
985 pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
986 pfn, page_mapcount(hpage));
987
988 /*
989 * try_to_unmap() might put mlocked page in lru cache, so call
990 * shake_page() again to ensure that it's flushed.
991 */
992 if (mlocked)
993 shake_page(hpage, 0);
994
995 /*
996 * Now that the dirty bit has been propagated to the
997 * struct page and all unmaps done we can decide if
998 * killing is needed or not. Only kill when the page
999 * was dirty or the process is not restartable,
1000 * otherwise the tokill list is merely
1001 * freed. When there was a problem unmapping earlier
1002 * use a more force-full uncatchable kill to prevent
1003 * any accesses to the poisoned memory.
1004 */
1005 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1006 kill_procs(&tokill, forcekill, trapno,
1007 ret != SWAP_SUCCESS, p, pfn, flags);
1008
1009 return ret;
1010 }
1011
set_page_hwpoison_huge_page(struct page * hpage)1012 static void set_page_hwpoison_huge_page(struct page *hpage)
1013 {
1014 int i;
1015 int nr_pages = 1 << compound_order(hpage);
1016 for (i = 0; i < nr_pages; i++)
1017 SetPageHWPoison(hpage + i);
1018 }
1019
clear_page_hwpoison_huge_page(struct page * hpage)1020 static void clear_page_hwpoison_huge_page(struct page *hpage)
1021 {
1022 int i;
1023 int nr_pages = 1 << compound_order(hpage);
1024 for (i = 0; i < nr_pages; i++)
1025 ClearPageHWPoison(hpage + i);
1026 }
1027
1028 /**
1029 * memory_failure - Handle memory failure of a page.
1030 * @pfn: Page Number of the corrupted page
1031 * @trapno: Trap number reported in the signal to user space.
1032 * @flags: fine tune action taken
1033 *
1034 * This function is called by the low level machine check code
1035 * of an architecture when it detects hardware memory corruption
1036 * of a page. It tries its best to recover, which includes
1037 * dropping pages, killing processes etc.
1038 *
1039 * The function is primarily of use for corruptions that
1040 * happen outside the current execution context (e.g. when
1041 * detected by a background scrubber)
1042 *
1043 * Must run in process context (e.g. a work queue) with interrupts
1044 * enabled and no spinlocks hold.
1045 */
memory_failure(unsigned long pfn,int trapno,int flags)1046 int memory_failure(unsigned long pfn, int trapno, int flags)
1047 {
1048 struct page_state *ps;
1049 struct page *p;
1050 struct page *hpage;
1051 struct page *orig_head;
1052 int res;
1053 unsigned int nr_pages;
1054 unsigned long page_flags;
1055
1056 if (!sysctl_memory_failure_recovery)
1057 panic("Memory failure from trap %d on page %lx", trapno, pfn);
1058
1059 if (!pfn_valid(pfn)) {
1060 pr_err("Memory failure: %#lx: memory outside kernel control\n",
1061 pfn);
1062 return -ENXIO;
1063 }
1064
1065 p = pfn_to_page(pfn);
1066 orig_head = hpage = compound_head(p);
1067 if (TestSetPageHWPoison(p)) {
1068 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1069 pfn);
1070 return 0;
1071 }
1072
1073 /*
1074 * Currently errors on hugetlbfs pages are measured in hugepage units,
1075 * so nr_pages should be 1 << compound_order. OTOH when errors are on
1076 * transparent hugepages, they are supposed to be split and error
1077 * measurement is done in normal page units. So nr_pages should be one
1078 * in this case.
1079 */
1080 if (PageHuge(p))
1081 nr_pages = 1 << compound_order(hpage);
1082 else /* normal page or thp */
1083 nr_pages = 1;
1084 num_poisoned_pages_add(nr_pages);
1085
1086 /*
1087 * We need/can do nothing about count=0 pages.
1088 * 1) it's a free page, and therefore in safe hand:
1089 * prep_new_page() will be the gate keeper.
1090 * 2) it's a free hugepage, which is also safe:
1091 * an affected hugepage will be dequeued from hugepage freelist,
1092 * so there's no concern about reusing it ever after.
1093 * 3) it's part of a non-compound high order page.
1094 * Implies some kernel user: cannot stop them from
1095 * R/W the page; let's pray that the page has been
1096 * used and will be freed some time later.
1097 * In fact it's dangerous to directly bump up page count from 0,
1098 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1099 */
1100 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1101 if (is_free_buddy_page(p)) {
1102 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1103 return 0;
1104 } else if (PageHuge(hpage)) {
1105 /*
1106 * Check "filter hit" and "race with other subpage."
1107 */
1108 lock_page(hpage);
1109 if (PageHWPoison(hpage)) {
1110 if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1111 || (p != hpage && TestSetPageHWPoison(hpage))) {
1112 num_poisoned_pages_sub(nr_pages);
1113 unlock_page(hpage);
1114 return 0;
1115 }
1116 }
1117 set_page_hwpoison_huge_page(hpage);
1118 res = dequeue_hwpoisoned_huge_page(hpage);
1119 action_result(pfn, MF_MSG_FREE_HUGE,
1120 res ? MF_IGNORED : MF_DELAYED);
1121 unlock_page(hpage);
1122 return res;
1123 } else {
1124 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1125 return -EBUSY;
1126 }
1127 }
1128
1129 if (!PageHuge(p) && PageTransHuge(hpage)) {
1130 lock_page(p);
1131 if (!PageAnon(p) || unlikely(split_huge_page(p))) {
1132 unlock_page(p);
1133 if (!PageAnon(p))
1134 pr_err("Memory failure: %#lx: non anonymous thp\n",
1135 pfn);
1136 else
1137 pr_err("Memory failure: %#lx: thp split failed\n",
1138 pfn);
1139 if (TestClearPageHWPoison(p))
1140 num_poisoned_pages_sub(nr_pages);
1141 put_hwpoison_page(p);
1142 return -EBUSY;
1143 }
1144 unlock_page(p);
1145 VM_BUG_ON_PAGE(!page_count(p), p);
1146 hpage = compound_head(p);
1147 }
1148
1149 /*
1150 * We ignore non-LRU pages for good reasons.
1151 * - PG_locked is only well defined for LRU pages and a few others
1152 * - to avoid races with __SetPageLocked()
1153 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1154 * The check (unnecessarily) ignores LRU pages being isolated and
1155 * walked by the page reclaim code, however that's not a big loss.
1156 */
1157 if (!PageHuge(p)) {
1158 if (!PageLRU(p))
1159 shake_page(p, 0);
1160 if (!PageLRU(p)) {
1161 /*
1162 * shake_page could have turned it free.
1163 */
1164 if (is_free_buddy_page(p)) {
1165 if (flags & MF_COUNT_INCREASED)
1166 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1167 else
1168 action_result(pfn, MF_MSG_BUDDY_2ND,
1169 MF_DELAYED);
1170 return 0;
1171 }
1172 }
1173 }
1174
1175 lock_page(hpage);
1176
1177 /*
1178 * The page could have changed compound pages during the locking.
1179 * If this happens just bail out.
1180 */
1181 if (PageCompound(p) && compound_head(p) != orig_head) {
1182 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1183 res = -EBUSY;
1184 goto out;
1185 }
1186
1187 /*
1188 * We use page flags to determine what action should be taken, but
1189 * the flags can be modified by the error containment action. One
1190 * example is an mlocked page, where PG_mlocked is cleared by
1191 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1192 * correctly, we save a copy of the page flags at this time.
1193 */
1194 if (PageHuge(p))
1195 page_flags = hpage->flags;
1196 else
1197 page_flags = p->flags;
1198
1199 /*
1200 * unpoison always clear PG_hwpoison inside page lock
1201 */
1202 if (!PageHWPoison(p)) {
1203 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1204 num_poisoned_pages_sub(nr_pages);
1205 unlock_page(hpage);
1206 put_hwpoison_page(hpage);
1207 return 0;
1208 }
1209 if (hwpoison_filter(p)) {
1210 if (TestClearPageHWPoison(p))
1211 num_poisoned_pages_sub(nr_pages);
1212 unlock_page(hpage);
1213 put_hwpoison_page(hpage);
1214 return 0;
1215 }
1216
1217 if (!PageHuge(p) && !PageTransTail(p) && !PageLRU(p))
1218 goto identify_page_state;
1219
1220 /*
1221 * For error on the tail page, we should set PG_hwpoison
1222 * on the head page to show that the hugepage is hwpoisoned
1223 */
1224 if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
1225 action_result(pfn, MF_MSG_POISONED_HUGE, MF_IGNORED);
1226 unlock_page(hpage);
1227 put_hwpoison_page(hpage);
1228 return 0;
1229 }
1230 /*
1231 * Set PG_hwpoison on all pages in an error hugepage,
1232 * because containment is done in hugepage unit for now.
1233 * Since we have done TestSetPageHWPoison() for the head page with
1234 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1235 */
1236 if (PageHuge(p))
1237 set_page_hwpoison_huge_page(hpage);
1238
1239 /*
1240 * It's very difficult to mess with pages currently under IO
1241 * and in many cases impossible, so we just avoid it here.
1242 */
1243 wait_on_page_writeback(p);
1244
1245 /*
1246 * Now take care of user space mappings.
1247 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1248 *
1249 * When the raw error page is thp tail page, hpage points to the raw
1250 * page after thp split.
1251 */
1252 if (hwpoison_user_mappings(p, pfn, trapno, flags, &hpage)
1253 != SWAP_SUCCESS) {
1254 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1255 res = -EBUSY;
1256 goto out;
1257 }
1258
1259 /*
1260 * Torn down by someone else?
1261 */
1262 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1263 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1264 res = -EBUSY;
1265 goto out;
1266 }
1267
1268 identify_page_state:
1269 res = -EBUSY;
1270 /*
1271 * The first check uses the current page flags which may not have any
1272 * relevant information. The second check with the saved page flagss is
1273 * carried out only if the first check can't determine the page status.
1274 */
1275 for (ps = error_states;; ps++)
1276 if ((p->flags & ps->mask) == ps->res)
1277 break;
1278
1279 page_flags |= (p->flags & (1UL << PG_dirty));
1280
1281 if (!ps->mask)
1282 for (ps = error_states;; ps++)
1283 if ((page_flags & ps->mask) == ps->res)
1284 break;
1285 res = page_action(ps, p, pfn);
1286 out:
1287 unlock_page(hpage);
1288 return res;
1289 }
1290 EXPORT_SYMBOL_GPL(memory_failure);
1291
1292 #define MEMORY_FAILURE_FIFO_ORDER 4
1293 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1294
1295 struct memory_failure_entry {
1296 unsigned long pfn;
1297 int trapno;
1298 int flags;
1299 };
1300
1301 struct memory_failure_cpu {
1302 DECLARE_KFIFO(fifo, struct memory_failure_entry,
1303 MEMORY_FAILURE_FIFO_SIZE);
1304 spinlock_t lock;
1305 struct work_struct work;
1306 };
1307
1308 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1309
1310 /**
1311 * memory_failure_queue - Schedule handling memory failure of a page.
1312 * @pfn: Page Number of the corrupted page
1313 * @trapno: Trap number reported in the signal to user space.
1314 * @flags: Flags for memory failure handling
1315 *
1316 * This function is called by the low level hardware error handler
1317 * when it detects hardware memory corruption of a page. It schedules
1318 * the recovering of error page, including dropping pages, killing
1319 * processes etc.
1320 *
1321 * The function is primarily of use for corruptions that
1322 * happen outside the current execution context (e.g. when
1323 * detected by a background scrubber)
1324 *
1325 * Can run in IRQ context.
1326 */
memory_failure_queue(unsigned long pfn,int trapno,int flags)1327 void memory_failure_queue(unsigned long pfn, int trapno, int flags)
1328 {
1329 struct memory_failure_cpu *mf_cpu;
1330 unsigned long proc_flags;
1331 struct memory_failure_entry entry = {
1332 .pfn = pfn,
1333 .trapno = trapno,
1334 .flags = flags,
1335 };
1336
1337 mf_cpu = &get_cpu_var(memory_failure_cpu);
1338 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1339 if (kfifo_put(&mf_cpu->fifo, entry))
1340 schedule_work_on(smp_processor_id(), &mf_cpu->work);
1341 else
1342 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1343 pfn);
1344 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1345 put_cpu_var(memory_failure_cpu);
1346 }
1347 EXPORT_SYMBOL_GPL(memory_failure_queue);
1348
memory_failure_work_func(struct work_struct * work)1349 static void memory_failure_work_func(struct work_struct *work)
1350 {
1351 struct memory_failure_cpu *mf_cpu;
1352 struct memory_failure_entry entry = { 0, };
1353 unsigned long proc_flags;
1354 int gotten;
1355
1356 mf_cpu = this_cpu_ptr(&memory_failure_cpu);
1357 for (;;) {
1358 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1359 gotten = kfifo_get(&mf_cpu->fifo, &entry);
1360 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1361 if (!gotten)
1362 break;
1363 if (entry.flags & MF_SOFT_OFFLINE)
1364 soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1365 else
1366 memory_failure(entry.pfn, entry.trapno, entry.flags);
1367 }
1368 }
1369
memory_failure_init(void)1370 static int __init memory_failure_init(void)
1371 {
1372 struct memory_failure_cpu *mf_cpu;
1373 int cpu;
1374
1375 for_each_possible_cpu(cpu) {
1376 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1377 spin_lock_init(&mf_cpu->lock);
1378 INIT_KFIFO(mf_cpu->fifo);
1379 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1380 }
1381
1382 return 0;
1383 }
1384 core_initcall(memory_failure_init);
1385
1386 #define unpoison_pr_info(fmt, pfn, rs) \
1387 ({ \
1388 if (__ratelimit(rs)) \
1389 pr_info(fmt, pfn); \
1390 })
1391
1392 /**
1393 * unpoison_memory - Unpoison a previously poisoned page
1394 * @pfn: Page number of the to be unpoisoned page
1395 *
1396 * Software-unpoison a page that has been poisoned by
1397 * memory_failure() earlier.
1398 *
1399 * This is only done on the software-level, so it only works
1400 * for linux injected failures, not real hardware failures
1401 *
1402 * Returns 0 for success, otherwise -errno.
1403 */
unpoison_memory(unsigned long pfn)1404 int unpoison_memory(unsigned long pfn)
1405 {
1406 struct page *page;
1407 struct page *p;
1408 int freeit = 0;
1409 unsigned int nr_pages;
1410 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1411 DEFAULT_RATELIMIT_BURST);
1412
1413 if (!pfn_valid(pfn))
1414 return -ENXIO;
1415
1416 p = pfn_to_page(pfn);
1417 page = compound_head(p);
1418
1419 if (!PageHWPoison(p)) {
1420 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1421 pfn, &unpoison_rs);
1422 return 0;
1423 }
1424
1425 if (page_count(page) > 1) {
1426 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1427 pfn, &unpoison_rs);
1428 return 0;
1429 }
1430
1431 if (page_mapped(page)) {
1432 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1433 pfn, &unpoison_rs);
1434 return 0;
1435 }
1436
1437 if (page_mapping(page)) {
1438 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1439 pfn, &unpoison_rs);
1440 return 0;
1441 }
1442
1443 /*
1444 * unpoison_memory() can encounter thp only when the thp is being
1445 * worked by memory_failure() and the page lock is not held yet.
1446 * In such case, we yield to memory_failure() and make unpoison fail.
1447 */
1448 if (!PageHuge(page) && PageTransHuge(page)) {
1449 unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1450 pfn, &unpoison_rs);
1451 return 0;
1452 }
1453
1454 nr_pages = 1 << compound_order(page);
1455
1456 if (!get_hwpoison_page(p)) {
1457 /*
1458 * Since HWPoisoned hugepage should have non-zero refcount,
1459 * race between memory failure and unpoison seems to happen.
1460 * In such case unpoison fails and memory failure runs
1461 * to the end.
1462 */
1463 if (PageHuge(page)) {
1464 unpoison_pr_info("Unpoison: Memory failure is now running on free hugepage %#lx\n",
1465 pfn, &unpoison_rs);
1466 return 0;
1467 }
1468 if (TestClearPageHWPoison(p))
1469 num_poisoned_pages_dec();
1470 unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1471 pfn, &unpoison_rs);
1472 return 0;
1473 }
1474
1475 lock_page(page);
1476 /*
1477 * This test is racy because PG_hwpoison is set outside of page lock.
1478 * That's acceptable because that won't trigger kernel panic. Instead,
1479 * the PG_hwpoison page will be caught and isolated on the entrance to
1480 * the free buddy page pool.
1481 */
1482 if (TestClearPageHWPoison(page)) {
1483 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1484 pfn, &unpoison_rs);
1485 num_poisoned_pages_sub(nr_pages);
1486 freeit = 1;
1487 if (PageHuge(page))
1488 clear_page_hwpoison_huge_page(page);
1489 }
1490 unlock_page(page);
1491
1492 put_hwpoison_page(page);
1493 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1494 put_hwpoison_page(page);
1495
1496 return 0;
1497 }
1498 EXPORT_SYMBOL(unpoison_memory);
1499
new_page(struct page * p,unsigned long private,int ** x)1500 static struct page *new_page(struct page *p, unsigned long private, int **x)
1501 {
1502 int nid = page_to_nid(p);
1503 if (PageHuge(p))
1504 return alloc_huge_page_node(page_hstate(compound_head(p)),
1505 nid);
1506 else
1507 return __alloc_pages_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1508 }
1509
1510 /*
1511 * Safely get reference count of an arbitrary page.
1512 * Returns 0 for a free page, -EIO for a zero refcount page
1513 * that is not free, and 1 for any other page type.
1514 * For 1 the page is returned with increased page count, otherwise not.
1515 */
__get_any_page(struct page * p,unsigned long pfn,int flags)1516 static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1517 {
1518 int ret;
1519
1520 if (flags & MF_COUNT_INCREASED)
1521 return 1;
1522
1523 /*
1524 * When the target page is a free hugepage, just remove it
1525 * from free hugepage list.
1526 */
1527 if (!get_hwpoison_page(p)) {
1528 if (PageHuge(p)) {
1529 pr_info("%s: %#lx free huge page\n", __func__, pfn);
1530 ret = 0;
1531 } else if (is_free_buddy_page(p)) {
1532 pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1533 ret = 0;
1534 } else {
1535 pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1536 __func__, pfn, p->flags);
1537 ret = -EIO;
1538 }
1539 } else {
1540 /* Not a free page */
1541 ret = 1;
1542 }
1543 return ret;
1544 }
1545
get_any_page(struct page * page,unsigned long pfn,int flags)1546 static int get_any_page(struct page *page, unsigned long pfn, int flags)
1547 {
1548 int ret = __get_any_page(page, pfn, flags);
1549
1550 if (ret == 1 && !PageHuge(page) && !PageLRU(page)) {
1551 /*
1552 * Try to free it.
1553 */
1554 put_hwpoison_page(page);
1555 shake_page(page, 1);
1556
1557 /*
1558 * Did it turn free?
1559 */
1560 ret = __get_any_page(page, pfn, 0);
1561 if (ret == 1 && !PageLRU(page)) {
1562 /* Drop page reference which is from __get_any_page() */
1563 put_hwpoison_page(page);
1564 pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
1565 pfn, page->flags);
1566 return -EIO;
1567 }
1568 }
1569 return ret;
1570 }
1571
soft_offline_huge_page(struct page * page,int flags)1572 static int soft_offline_huge_page(struct page *page, int flags)
1573 {
1574 int ret;
1575 unsigned long pfn = page_to_pfn(page);
1576 struct page *hpage = compound_head(page);
1577 LIST_HEAD(pagelist);
1578
1579 /*
1580 * This double-check of PageHWPoison is to avoid the race with
1581 * memory_failure(). See also comment in __soft_offline_page().
1582 */
1583 lock_page(hpage);
1584 if (PageHWPoison(hpage)) {
1585 unlock_page(hpage);
1586 put_hwpoison_page(hpage);
1587 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1588 return -EBUSY;
1589 }
1590 unlock_page(hpage);
1591
1592 ret = isolate_huge_page(hpage, &pagelist);
1593 /*
1594 * get_any_page() and isolate_huge_page() takes a refcount each,
1595 * so need to drop one here.
1596 */
1597 put_hwpoison_page(hpage);
1598 if (!ret) {
1599 pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
1600 return -EBUSY;
1601 }
1602
1603 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1604 MIGRATE_SYNC, MR_MEMORY_FAILURE);
1605 if (ret) {
1606 pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1607 pfn, ret, page->flags);
1608 if (!list_empty(&pagelist))
1609 putback_movable_pages(&pagelist);
1610 if (ret > 0)
1611 ret = -EIO;
1612 } else {
1613 /* overcommit hugetlb page will be freed to buddy */
1614 if (PageHuge(page)) {
1615 set_page_hwpoison_huge_page(hpage);
1616 dequeue_hwpoisoned_huge_page(hpage);
1617 num_poisoned_pages_add(1 << compound_order(hpage));
1618 } else {
1619 SetPageHWPoison(page);
1620 num_poisoned_pages_inc();
1621 }
1622 }
1623 return ret;
1624 }
1625
__soft_offline_page(struct page * page,int flags)1626 static int __soft_offline_page(struct page *page, int flags)
1627 {
1628 int ret;
1629 unsigned long pfn = page_to_pfn(page);
1630
1631 /*
1632 * Check PageHWPoison again inside page lock because PageHWPoison
1633 * is set by memory_failure() outside page lock. Note that
1634 * memory_failure() also double-checks PageHWPoison inside page lock,
1635 * so there's no race between soft_offline_page() and memory_failure().
1636 */
1637 lock_page(page);
1638 wait_on_page_writeback(page);
1639 if (PageHWPoison(page)) {
1640 unlock_page(page);
1641 put_hwpoison_page(page);
1642 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1643 return -EBUSY;
1644 }
1645 /*
1646 * Try to invalidate first. This should work for
1647 * non dirty unmapped page cache pages.
1648 */
1649 ret = invalidate_inode_page(page);
1650 unlock_page(page);
1651 /*
1652 * RED-PEN would be better to keep it isolated here, but we
1653 * would need to fix isolation locking first.
1654 */
1655 if (ret == 1) {
1656 put_hwpoison_page(page);
1657 pr_info("soft_offline: %#lx: invalidated\n", pfn);
1658 SetPageHWPoison(page);
1659 num_poisoned_pages_inc();
1660 return 0;
1661 }
1662
1663 /*
1664 * Simple invalidation didn't work.
1665 * Try to migrate to a new page instead. migrate.c
1666 * handles a large number of cases for us.
1667 */
1668 ret = isolate_lru_page(page);
1669 /*
1670 * Drop page reference which is came from get_any_page()
1671 * successful isolate_lru_page() already took another one.
1672 */
1673 put_hwpoison_page(page);
1674 if (!ret) {
1675 LIST_HEAD(pagelist);
1676 inc_node_page_state(page, NR_ISOLATED_ANON +
1677 page_is_file_cache(page));
1678 list_add(&page->lru, &pagelist);
1679 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1680 MIGRATE_SYNC, MR_MEMORY_FAILURE);
1681 if (ret) {
1682 if (!list_empty(&pagelist)) {
1683 list_del(&page->lru);
1684 dec_node_page_state(page, NR_ISOLATED_ANON +
1685 page_is_file_cache(page));
1686 putback_lru_page(page);
1687 }
1688
1689 pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1690 pfn, ret, page->flags);
1691 if (ret > 0)
1692 ret = -EIO;
1693 }
1694 } else {
1695 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1696 pfn, ret, page_count(page), page->flags);
1697 }
1698 return ret;
1699 }
1700
soft_offline_in_use_page(struct page * page,int flags)1701 static int soft_offline_in_use_page(struct page *page, int flags)
1702 {
1703 int ret;
1704 struct page *hpage = compound_head(page);
1705
1706 if (!PageHuge(page) && PageTransHuge(hpage)) {
1707 lock_page(hpage);
1708 if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) {
1709 unlock_page(hpage);
1710 if (!PageAnon(hpage))
1711 pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page));
1712 else
1713 pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page));
1714 put_hwpoison_page(hpage);
1715 return -EBUSY;
1716 }
1717 unlock_page(hpage);
1718 get_hwpoison_page(page);
1719 put_hwpoison_page(hpage);
1720 }
1721
1722 if (PageHuge(page))
1723 ret = soft_offline_huge_page(page, flags);
1724 else
1725 ret = __soft_offline_page(page, flags);
1726
1727 return ret;
1728 }
1729
soft_offline_free_page(struct page * page)1730 static void soft_offline_free_page(struct page *page)
1731 {
1732 if (PageHuge(page)) {
1733 struct page *hpage = compound_head(page);
1734
1735 set_page_hwpoison_huge_page(hpage);
1736 if (!dequeue_hwpoisoned_huge_page(hpage))
1737 num_poisoned_pages_add(1 << compound_order(hpage));
1738 } else {
1739 if (!TestSetPageHWPoison(page))
1740 num_poisoned_pages_inc();
1741 }
1742 }
1743
1744 /**
1745 * soft_offline_page - Soft offline a page.
1746 * @page: page to offline
1747 * @flags: flags. Same as memory_failure().
1748 *
1749 * Returns 0 on success, otherwise negated errno.
1750 *
1751 * Soft offline a page, by migration or invalidation,
1752 * without killing anything. This is for the case when
1753 * a page is not corrupted yet (so it's still valid to access),
1754 * but has had a number of corrected errors and is better taken
1755 * out.
1756 *
1757 * The actual policy on when to do that is maintained by
1758 * user space.
1759 *
1760 * This should never impact any application or cause data loss,
1761 * however it might take some time.
1762 *
1763 * This is not a 100% solution for all memory, but tries to be
1764 * ``good enough'' for the majority of memory.
1765 */
soft_offline_page(struct page * page,int flags)1766 int soft_offline_page(struct page *page, int flags)
1767 {
1768 int ret;
1769 unsigned long pfn = page_to_pfn(page);
1770
1771 if (PageHWPoison(page)) {
1772 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1773 if (flags & MF_COUNT_INCREASED)
1774 put_hwpoison_page(page);
1775 return -EBUSY;
1776 }
1777
1778 get_online_mems();
1779 ret = get_any_page(page, pfn, flags);
1780 put_online_mems();
1781
1782 if (ret > 0)
1783 ret = soft_offline_in_use_page(page, flags);
1784 else if (ret == 0)
1785 soft_offline_free_page(page);
1786
1787 return ret;
1788 }
1789