• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2008, 2009 Intel Corporation
3  * Authors: Andi Kleen, Fengguang Wu
4  *
5  * This software may be redistributed and/or modified under the terms of
6  * the GNU General Public License ("GPL") version 2 only as published by the
7  * Free Software Foundation.
8  *
9  * High level machine check handler. Handles pages reported by the
10  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11  * failure.
12  *
13  * In addition there is a "soft offline" entry point that allows stop using
14  * not-yet-corrupted-by-suspicious pages without killing anything.
15  *
16  * Handles page cache pages in various states.	The tricky part
17  * here is that we can access any page asynchronously in respect to
18  * other VM users, because memory failures could happen anytime and
19  * anywhere. This could violate some of their assumptions. This is why
20  * this code has to be extremely careful. Generally it tries to use
21  * normal locking rules, as in get the standard locks, even if that means
22  * the error handling takes potentially a long time.
23  *
24  * It can be very tempting to add handling for obscure cases here.
25  * In general any code for handling new cases should only be added iff:
26  * - You know how to test it.
27  * - You have a test that can be added to mce-test
28  *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
29  * - The case actually shows up as a frequent (top 10) page state in
30  *   tools/vm/page-types when running a real workload.
31  *
32  * There are several operations here with exponential complexity because
33  * of unsuitable VM data structures. For example the operation to map back
34  * from RMAP chains to processes has to walk the complete process list and
35  * has non linear complexity with the number. But since memory corruptions
36  * are rare we hope to get away with this. This avoids impacting the core
37  * VM.
38  */
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/page-flags.h>
42 #include <linux/kernel-page-flags.h>
43 #include <linux/sched.h>
44 #include <linux/ksm.h>
45 #include <linux/rmap.h>
46 #include <linux/export.h>
47 #include <linux/pagemap.h>
48 #include <linux/swap.h>
49 #include <linux/backing-dev.h>
50 #include <linux/migrate.h>
51 #include <linux/page-isolation.h>
52 #include <linux/suspend.h>
53 #include <linux/slab.h>
54 #include <linux/swapops.h>
55 #include <linux/hugetlb.h>
56 #include <linux/memory_hotplug.h>
57 #include <linux/mm_inline.h>
58 #include <linux/kfifo.h>
59 #include <linux/ratelimit.h>
60 #include "internal.h"
61 #include "ras/ras_event.h"
62 
63 int sysctl_memory_failure_early_kill __read_mostly = 0;
64 
65 int sysctl_memory_failure_recovery __read_mostly = 1;
66 
67 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
68 
69 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
70 
71 u32 hwpoison_filter_enable = 0;
72 u32 hwpoison_filter_dev_major = ~0U;
73 u32 hwpoison_filter_dev_minor = ~0U;
74 u64 hwpoison_filter_flags_mask;
75 u64 hwpoison_filter_flags_value;
76 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
77 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
78 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
79 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
80 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
81 
hwpoison_filter_dev(struct page * p)82 static int hwpoison_filter_dev(struct page *p)
83 {
84 	struct address_space *mapping;
85 	dev_t dev;
86 
87 	if (hwpoison_filter_dev_major == ~0U &&
88 	    hwpoison_filter_dev_minor == ~0U)
89 		return 0;
90 
91 	/*
92 	 * page_mapping() does not accept slab pages.
93 	 */
94 	if (PageSlab(p))
95 		return -EINVAL;
96 
97 	mapping = page_mapping(p);
98 	if (mapping == NULL || mapping->host == NULL)
99 		return -EINVAL;
100 
101 	dev = mapping->host->i_sb->s_dev;
102 	if (hwpoison_filter_dev_major != ~0U &&
103 	    hwpoison_filter_dev_major != MAJOR(dev))
104 		return -EINVAL;
105 	if (hwpoison_filter_dev_minor != ~0U &&
106 	    hwpoison_filter_dev_minor != MINOR(dev))
107 		return -EINVAL;
108 
109 	return 0;
110 }
111 
hwpoison_filter_flags(struct page * p)112 static int hwpoison_filter_flags(struct page *p)
113 {
114 	if (!hwpoison_filter_flags_mask)
115 		return 0;
116 
117 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
118 				    hwpoison_filter_flags_value)
119 		return 0;
120 	else
121 		return -EINVAL;
122 }
123 
124 /*
125  * This allows stress tests to limit test scope to a collection of tasks
126  * by putting them under some memcg. This prevents killing unrelated/important
127  * processes such as /sbin/init. Note that the target task may share clean
128  * pages with init (eg. libc text), which is harmless. If the target task
129  * share _dirty_ pages with another task B, the test scheme must make sure B
130  * is also included in the memcg. At last, due to race conditions this filter
131  * can only guarantee that the page either belongs to the memcg tasks, or is
132  * a freed page.
133  */
134 #ifdef CONFIG_MEMCG
135 u64 hwpoison_filter_memcg;
136 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
hwpoison_filter_task(struct page * p)137 static int hwpoison_filter_task(struct page *p)
138 {
139 	if (!hwpoison_filter_memcg)
140 		return 0;
141 
142 	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
143 		return -EINVAL;
144 
145 	return 0;
146 }
147 #else
hwpoison_filter_task(struct page * p)148 static int hwpoison_filter_task(struct page *p) { return 0; }
149 #endif
150 
hwpoison_filter(struct page * p)151 int hwpoison_filter(struct page *p)
152 {
153 	if (!hwpoison_filter_enable)
154 		return 0;
155 
156 	if (hwpoison_filter_dev(p))
157 		return -EINVAL;
158 
159 	if (hwpoison_filter_flags(p))
160 		return -EINVAL;
161 
162 	if (hwpoison_filter_task(p))
163 		return -EINVAL;
164 
165 	return 0;
166 }
167 #else
hwpoison_filter(struct page * p)168 int hwpoison_filter(struct page *p)
169 {
170 	return 0;
171 }
172 #endif
173 
174 EXPORT_SYMBOL_GPL(hwpoison_filter);
175 
176 /*
177  * Send all the processes who have the page mapped a signal.
178  * ``action optional'' if they are not immediately affected by the error
179  * ``action required'' if error happened in current execution context
180  */
kill_proc(struct task_struct * t,unsigned long addr,int trapno,unsigned long pfn,struct page * page,int flags)181 static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
182 			unsigned long pfn, struct page *page, int flags)
183 {
184 	struct siginfo si;
185 	int ret;
186 
187 	pr_err("Memory failure: %#lx: Killing %s:%d due to hardware memory corruption\n",
188 		pfn, t->comm, t->pid);
189 	si.si_signo = SIGBUS;
190 	si.si_errno = 0;
191 	si.si_addr = (void *)addr;
192 #ifdef __ARCH_SI_TRAPNO
193 	si.si_trapno = trapno;
194 #endif
195 	si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
196 
197 	if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
198 		si.si_code = BUS_MCEERR_AR;
199 		ret = force_sig_info(SIGBUS, &si, current);
200 	} else {
201 		/*
202 		 * Don't use force here, it's convenient if the signal
203 		 * can be temporarily blocked.
204 		 * This could cause a loop when the user sets SIGBUS
205 		 * to SIG_IGN, but hopefully no one will do that?
206 		 */
207 		si.si_code = BUS_MCEERR_AO;
208 		ret = send_sig_info(SIGBUS, &si, t);  /* synchronous? */
209 	}
210 	if (ret < 0)
211 		pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
212 			t->comm, t->pid, ret);
213 	return ret;
214 }
215 
216 /*
217  * When a unknown page type is encountered drain as many buffers as possible
218  * in the hope to turn the page into a LRU or free page, which we can handle.
219  */
shake_page(struct page * p,int access)220 void shake_page(struct page *p, int access)
221 {
222 	if (!PageSlab(p)) {
223 		lru_add_drain_all();
224 		if (PageLRU(p))
225 			return;
226 		drain_all_pages(page_zone(p));
227 		if (PageLRU(p) || is_free_buddy_page(p))
228 			return;
229 	}
230 
231 	/*
232 	 * Only call shrink_node_slabs here (which would also shrink
233 	 * other caches) if access is not potentially fatal.
234 	 */
235 	if (access)
236 		drop_slab_node(page_to_nid(p));
237 }
238 EXPORT_SYMBOL_GPL(shake_page);
239 
240 /*
241  * Kill all processes that have a poisoned page mapped and then isolate
242  * the page.
243  *
244  * General strategy:
245  * Find all processes having the page mapped and kill them.
246  * But we keep a page reference around so that the page is not
247  * actually freed yet.
248  * Then stash the page away
249  *
250  * There's no convenient way to get back to mapped processes
251  * from the VMAs. So do a brute-force search over all
252  * running processes.
253  *
254  * Remember that machine checks are not common (or rather
255  * if they are common you have other problems), so this shouldn't
256  * be a performance issue.
257  *
258  * Also there are some races possible while we get from the
259  * error detection to actually handle it.
260  */
261 
262 struct to_kill {
263 	struct list_head nd;
264 	struct task_struct *tsk;
265 	unsigned long addr;
266 	char addr_valid;
267 };
268 
269 /*
270  * Failure handling: if we can't find or can't kill a process there's
271  * not much we can do.	We just print a message and ignore otherwise.
272  */
273 
274 /*
275  * Schedule a process for later kill.
276  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
277  * TBD would GFP_NOIO be enough?
278  */
add_to_kill(struct task_struct * tsk,struct page * p,struct vm_area_struct * vma,struct list_head * to_kill,struct to_kill ** tkc)279 static void add_to_kill(struct task_struct *tsk, struct page *p,
280 		       struct vm_area_struct *vma,
281 		       struct list_head *to_kill,
282 		       struct to_kill **tkc)
283 {
284 	struct to_kill *tk;
285 
286 	if (*tkc) {
287 		tk = *tkc;
288 		*tkc = NULL;
289 	} else {
290 		tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
291 		if (!tk) {
292 			pr_err("Memory failure: Out of memory while machine check handling\n");
293 			return;
294 		}
295 	}
296 	tk->addr = page_address_in_vma(p, vma);
297 	tk->addr_valid = 1;
298 
299 	/*
300 	 * In theory we don't have to kill when the page was
301 	 * munmaped. But it could be also a mremap. Since that's
302 	 * likely very rare kill anyways just out of paranoia, but use
303 	 * a SIGKILL because the error is not contained anymore.
304 	 */
305 	if (tk->addr == -EFAULT) {
306 		pr_info("Memory failure: Unable to find user space address %lx in %s\n",
307 			page_to_pfn(p), tsk->comm);
308 		tk->addr_valid = 0;
309 	}
310 	get_task_struct(tsk);
311 	tk->tsk = tsk;
312 	list_add_tail(&tk->nd, to_kill);
313 }
314 
315 /*
316  * Kill the processes that have been collected earlier.
317  *
318  * Only do anything when DOIT is set, otherwise just free the list
319  * (this is used for clean pages which do not need killing)
320  * Also when FAIL is set do a force kill because something went
321  * wrong earlier.
322  */
kill_procs(struct list_head * to_kill,int forcekill,int trapno,int fail,struct page * page,unsigned long pfn,int flags)323 static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
324 			  int fail, struct page *page, unsigned long pfn,
325 			  int flags)
326 {
327 	struct to_kill *tk, *next;
328 
329 	list_for_each_entry_safe (tk, next, to_kill, nd) {
330 		if (forcekill) {
331 			/*
332 			 * In case something went wrong with munmapping
333 			 * make sure the process doesn't catch the
334 			 * signal and then access the memory. Just kill it.
335 			 */
336 			if (fail || tk->addr_valid == 0) {
337 				pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
338 				       pfn, tk->tsk->comm, tk->tsk->pid);
339 				force_sig(SIGKILL, tk->tsk);
340 			}
341 
342 			/*
343 			 * In theory the process could have mapped
344 			 * something else on the address in-between. We could
345 			 * check for that, but we need to tell the
346 			 * process anyways.
347 			 */
348 			else if (kill_proc(tk->tsk, tk->addr, trapno,
349 					      pfn, page, flags) < 0)
350 				pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
351 				       pfn, tk->tsk->comm, tk->tsk->pid);
352 		}
353 		put_task_struct(tk->tsk);
354 		kfree(tk);
355 	}
356 }
357 
358 /*
359  * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
360  * on behalf of the thread group. Return task_struct of the (first found)
361  * dedicated thread if found, and return NULL otherwise.
362  *
363  * We already hold read_lock(&tasklist_lock) in the caller, so we don't
364  * have to call rcu_read_lock/unlock() in this function.
365  */
find_early_kill_thread(struct task_struct * tsk)366 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
367 {
368 	struct task_struct *t;
369 
370 	for_each_thread(tsk, t)
371 		if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
372 			return t;
373 	return NULL;
374 }
375 
376 /*
377  * Determine whether a given process is "early kill" process which expects
378  * to be signaled when some page under the process is hwpoisoned.
379  * Return task_struct of the dedicated thread (main thread unless explicitly
380  * specified) if the process is "early kill," and otherwise returns NULL.
381  */
task_early_kill(struct task_struct * tsk,int force_early)382 static struct task_struct *task_early_kill(struct task_struct *tsk,
383 					   int force_early)
384 {
385 	struct task_struct *t;
386 	if (!tsk->mm)
387 		return NULL;
388 	if (force_early)
389 		return tsk;
390 	t = find_early_kill_thread(tsk);
391 	if (t)
392 		return t;
393 	if (sysctl_memory_failure_early_kill)
394 		return tsk;
395 	return NULL;
396 }
397 
398 /*
399  * Collect processes when the error hit an anonymous page.
400  */
collect_procs_anon(struct page * page,struct list_head * to_kill,struct to_kill ** tkc,int force_early)401 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
402 			      struct to_kill **tkc, int force_early)
403 {
404 	struct vm_area_struct *vma;
405 	struct task_struct *tsk;
406 	struct anon_vma *av;
407 	pgoff_t pgoff;
408 
409 	av = page_lock_anon_vma_read(page);
410 	if (av == NULL)	/* Not actually mapped anymore */
411 		return;
412 
413 	pgoff = page_to_pgoff(page);
414 	read_lock(&tasklist_lock);
415 	for_each_process (tsk) {
416 		struct anon_vma_chain *vmac;
417 		struct task_struct *t = task_early_kill(tsk, force_early);
418 
419 		if (!t)
420 			continue;
421 		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
422 					       pgoff, pgoff) {
423 			vma = vmac->vma;
424 			if (!page_mapped_in_vma(page, vma))
425 				continue;
426 			if (vma->vm_mm == t->mm)
427 				add_to_kill(t, page, vma, to_kill, tkc);
428 		}
429 	}
430 	read_unlock(&tasklist_lock);
431 	page_unlock_anon_vma_read(av);
432 }
433 
434 /*
435  * Collect processes when the error hit a file mapped page.
436  */
collect_procs_file(struct page * page,struct list_head * to_kill,struct to_kill ** tkc,int force_early)437 static void collect_procs_file(struct page *page, struct list_head *to_kill,
438 			      struct to_kill **tkc, int force_early)
439 {
440 	struct vm_area_struct *vma;
441 	struct task_struct *tsk;
442 	struct address_space *mapping = page->mapping;
443 
444 	i_mmap_lock_read(mapping);
445 	read_lock(&tasklist_lock);
446 	for_each_process(tsk) {
447 		pgoff_t pgoff = page_to_pgoff(page);
448 		struct task_struct *t = task_early_kill(tsk, force_early);
449 
450 		if (!t)
451 			continue;
452 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
453 				      pgoff) {
454 			/*
455 			 * Send early kill signal to tasks where a vma covers
456 			 * the page but the corrupted page is not necessarily
457 			 * mapped it in its pte.
458 			 * Assume applications who requested early kill want
459 			 * to be informed of all such data corruptions.
460 			 */
461 			if (vma->vm_mm == t->mm)
462 				add_to_kill(t, page, vma, to_kill, tkc);
463 		}
464 	}
465 	read_unlock(&tasklist_lock);
466 	i_mmap_unlock_read(mapping);
467 }
468 
469 /*
470  * Collect the processes who have the corrupted page mapped to kill.
471  * This is done in two steps for locking reasons.
472  * First preallocate one tokill structure outside the spin locks,
473  * so that we can kill at least one process reasonably reliable.
474  */
collect_procs(struct page * page,struct list_head * tokill,int force_early)475 static void collect_procs(struct page *page, struct list_head *tokill,
476 				int force_early)
477 {
478 	struct to_kill *tk;
479 
480 	if (!page->mapping)
481 		return;
482 
483 	tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
484 	if (!tk)
485 		return;
486 	if (PageAnon(page))
487 		collect_procs_anon(page, tokill, &tk, force_early);
488 	else
489 		collect_procs_file(page, tokill, &tk, force_early);
490 	kfree(tk);
491 }
492 
493 static const char *action_name[] = {
494 	[MF_IGNORED] = "Ignored",
495 	[MF_FAILED] = "Failed",
496 	[MF_DELAYED] = "Delayed",
497 	[MF_RECOVERED] = "Recovered",
498 };
499 
500 static const char * const action_page_types[] = {
501 	[MF_MSG_KERNEL]			= "reserved kernel page",
502 	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
503 	[MF_MSG_SLAB]			= "kernel slab page",
504 	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
505 	[MF_MSG_POISONED_HUGE]		= "huge page already hardware poisoned",
506 	[MF_MSG_HUGE]			= "huge page",
507 	[MF_MSG_FREE_HUGE]		= "free huge page",
508 	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
509 	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
510 	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
511 	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
512 	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
513 	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
514 	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
515 	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
516 	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
517 	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
518 	[MF_MSG_BUDDY]			= "free buddy page",
519 	[MF_MSG_BUDDY_2ND]		= "free buddy page (2nd try)",
520 	[MF_MSG_UNKNOWN]		= "unknown page",
521 };
522 
523 /*
524  * XXX: It is possible that a page is isolated from LRU cache,
525  * and then kept in swap cache or failed to remove from page cache.
526  * The page count will stop it from being freed by unpoison.
527  * Stress tests should be aware of this memory leak problem.
528  */
delete_from_lru_cache(struct page * p)529 static int delete_from_lru_cache(struct page *p)
530 {
531 	if (!isolate_lru_page(p)) {
532 		/*
533 		 * Clear sensible page flags, so that the buddy system won't
534 		 * complain when the page is unpoison-and-freed.
535 		 */
536 		ClearPageActive(p);
537 		ClearPageUnevictable(p);
538 
539 		/*
540 		 * Poisoned page might never drop its ref count to 0 so we have
541 		 * to uncharge it manually from its memcg.
542 		 */
543 		mem_cgroup_uncharge(p);
544 
545 		/*
546 		 * drop the page count elevated by isolate_lru_page()
547 		 */
548 		put_page(p);
549 		return 0;
550 	}
551 	return -EIO;
552 }
553 
554 /*
555  * Error hit kernel page.
556  * Do nothing, try to be lucky and not touch this instead. For a few cases we
557  * could be more sophisticated.
558  */
me_kernel(struct page * p,unsigned long pfn)559 static int me_kernel(struct page *p, unsigned long pfn)
560 {
561 	return MF_IGNORED;
562 }
563 
564 /*
565  * Page in unknown state. Do nothing.
566  */
me_unknown(struct page * p,unsigned long pfn)567 static int me_unknown(struct page *p, unsigned long pfn)
568 {
569 	pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
570 	return MF_FAILED;
571 }
572 
573 /*
574  * Clean (or cleaned) page cache page.
575  */
me_pagecache_clean(struct page * p,unsigned long pfn)576 static int me_pagecache_clean(struct page *p, unsigned long pfn)
577 {
578 	int err;
579 	int ret = MF_FAILED;
580 	struct address_space *mapping;
581 
582 	delete_from_lru_cache(p);
583 
584 	/*
585 	 * For anonymous pages we're done the only reference left
586 	 * should be the one m_f() holds.
587 	 */
588 	if (PageAnon(p))
589 		return MF_RECOVERED;
590 
591 	/*
592 	 * Now truncate the page in the page cache. This is really
593 	 * more like a "temporary hole punch"
594 	 * Don't do this for block devices when someone else
595 	 * has a reference, because it could be file system metadata
596 	 * and that's not safe to truncate.
597 	 */
598 	mapping = page_mapping(p);
599 	if (!mapping) {
600 		/*
601 		 * Page has been teared down in the meanwhile
602 		 */
603 		return MF_FAILED;
604 	}
605 
606 	/*
607 	 * Truncation is a bit tricky. Enable it per file system for now.
608 	 *
609 	 * Open: to take i_mutex or not for this? Right now we don't.
610 	 */
611 	if (mapping->a_ops->error_remove_page) {
612 		err = mapping->a_ops->error_remove_page(mapping, p);
613 		if (err != 0) {
614 			pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
615 				pfn, err);
616 		} else if (page_has_private(p) &&
617 				!try_to_release_page(p, GFP_NOIO)) {
618 			pr_info("Memory failure: %#lx: failed to release buffers\n",
619 				pfn);
620 		} else {
621 			ret = MF_RECOVERED;
622 		}
623 	} else {
624 		/*
625 		 * If the file system doesn't support it just invalidate
626 		 * This fails on dirty or anything with private pages
627 		 */
628 		if (invalidate_inode_page(p))
629 			ret = MF_RECOVERED;
630 		else
631 			pr_info("Memory failure: %#lx: Failed to invalidate\n",
632 				pfn);
633 	}
634 	return ret;
635 }
636 
637 /*
638  * Dirty pagecache page
639  * Issues: when the error hit a hole page the error is not properly
640  * propagated.
641  */
me_pagecache_dirty(struct page * p,unsigned long pfn)642 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
643 {
644 	struct address_space *mapping = page_mapping(p);
645 
646 	SetPageError(p);
647 	/* TBD: print more information about the file. */
648 	if (mapping) {
649 		/*
650 		 * IO error will be reported by write(), fsync(), etc.
651 		 * who check the mapping.
652 		 * This way the application knows that something went
653 		 * wrong with its dirty file data.
654 		 *
655 		 * There's one open issue:
656 		 *
657 		 * The EIO will be only reported on the next IO
658 		 * operation and then cleared through the IO map.
659 		 * Normally Linux has two mechanisms to pass IO error
660 		 * first through the AS_EIO flag in the address space
661 		 * and then through the PageError flag in the page.
662 		 * Since we drop pages on memory failure handling the
663 		 * only mechanism open to use is through AS_AIO.
664 		 *
665 		 * This has the disadvantage that it gets cleared on
666 		 * the first operation that returns an error, while
667 		 * the PageError bit is more sticky and only cleared
668 		 * when the page is reread or dropped.  If an
669 		 * application assumes it will always get error on
670 		 * fsync, but does other operations on the fd before
671 		 * and the page is dropped between then the error
672 		 * will not be properly reported.
673 		 *
674 		 * This can already happen even without hwpoisoned
675 		 * pages: first on metadata IO errors (which only
676 		 * report through AS_EIO) or when the page is dropped
677 		 * at the wrong time.
678 		 *
679 		 * So right now we assume that the application DTRT on
680 		 * the first EIO, but we're not worse than other parts
681 		 * of the kernel.
682 		 */
683 		mapping_set_error(mapping, EIO);
684 	}
685 
686 	return me_pagecache_clean(p, pfn);
687 }
688 
689 /*
690  * Clean and dirty swap cache.
691  *
692  * Dirty swap cache page is tricky to handle. The page could live both in page
693  * cache and swap cache(ie. page is freshly swapped in). So it could be
694  * referenced concurrently by 2 types of PTEs:
695  * normal PTEs and swap PTEs. We try to handle them consistently by calling
696  * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
697  * and then
698  *      - clear dirty bit to prevent IO
699  *      - remove from LRU
700  *      - but keep in the swap cache, so that when we return to it on
701  *        a later page fault, we know the application is accessing
702  *        corrupted data and shall be killed (we installed simple
703  *        interception code in do_swap_page to catch it).
704  *
705  * Clean swap cache pages can be directly isolated. A later page fault will
706  * bring in the known good data from disk.
707  */
me_swapcache_dirty(struct page * p,unsigned long pfn)708 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
709 {
710 	ClearPageDirty(p);
711 	/* Trigger EIO in shmem: */
712 	ClearPageUptodate(p);
713 
714 	if (!delete_from_lru_cache(p))
715 		return MF_DELAYED;
716 	else
717 		return MF_FAILED;
718 }
719 
me_swapcache_clean(struct page * p,unsigned long pfn)720 static int me_swapcache_clean(struct page *p, unsigned long pfn)
721 {
722 	delete_from_swap_cache(p);
723 
724 	if (!delete_from_lru_cache(p))
725 		return MF_RECOVERED;
726 	else
727 		return MF_FAILED;
728 }
729 
730 /*
731  * Huge pages. Needs work.
732  * Issues:
733  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
734  *   To narrow down kill region to one page, we need to break up pmd.
735  */
me_huge_page(struct page * p,unsigned long pfn)736 static int me_huge_page(struct page *p, unsigned long pfn)
737 {
738 	int res = 0;
739 	struct page *hpage = compound_head(p);
740 
741 	if (!PageHuge(hpage))
742 		return MF_DELAYED;
743 
744 	/*
745 	 * We can safely recover from error on free or reserved (i.e.
746 	 * not in-use) hugepage by dequeuing it from freelist.
747 	 * To check whether a hugepage is in-use or not, we can't use
748 	 * page->lru because it can be used in other hugepage operations,
749 	 * such as __unmap_hugepage_range() and gather_surplus_pages().
750 	 * So instead we use page_mapping() and PageAnon().
751 	 */
752 	if (!(page_mapping(hpage) || PageAnon(hpage))) {
753 		res = dequeue_hwpoisoned_huge_page(hpage);
754 		if (!res)
755 			return MF_RECOVERED;
756 	}
757 	return MF_DELAYED;
758 }
759 
760 /*
761  * Various page states we can handle.
762  *
763  * A page state is defined by its current page->flags bits.
764  * The table matches them in order and calls the right handler.
765  *
766  * This is quite tricky because we can access page at any time
767  * in its live cycle, so all accesses have to be extremely careful.
768  *
769  * This is not complete. More states could be added.
770  * For any missing state don't attempt recovery.
771  */
772 
773 #define dirty		(1UL << PG_dirty)
774 #define sc		(1UL << PG_swapcache)
775 #define unevict		(1UL << PG_unevictable)
776 #define mlock		(1UL << PG_mlocked)
777 #define writeback	(1UL << PG_writeback)
778 #define lru		(1UL << PG_lru)
779 #define swapbacked	(1UL << PG_swapbacked)
780 #define head		(1UL << PG_head)
781 #define slab		(1UL << PG_slab)
782 #define reserved	(1UL << PG_reserved)
783 
784 static struct page_state {
785 	unsigned long mask;
786 	unsigned long res;
787 	enum mf_action_page_type type;
788 	int (*action)(struct page *p, unsigned long pfn);
789 } error_states[] = {
790 	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
791 	/*
792 	 * free pages are specially detected outside this table:
793 	 * PG_buddy pages only make a small fraction of all free pages.
794 	 */
795 
796 	/*
797 	 * Could in theory check if slab page is free or if we can drop
798 	 * currently unused objects without touching them. But just
799 	 * treat it as standard kernel for now.
800 	 */
801 	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
802 
803 	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
804 
805 	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
806 	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
807 
808 	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
809 	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
810 
811 	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
812 	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
813 
814 	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
815 	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
816 
817 	/*
818 	 * Catchall entry: must be at end.
819 	 */
820 	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
821 };
822 
823 #undef dirty
824 #undef sc
825 #undef unevict
826 #undef mlock
827 #undef writeback
828 #undef lru
829 #undef swapbacked
830 #undef head
831 #undef slab
832 #undef reserved
833 
834 /*
835  * "Dirty/Clean" indication is not 100% accurate due to the possibility of
836  * setting PG_dirty outside page lock. See also comment above set_page_dirty().
837  */
action_result(unsigned long pfn,enum mf_action_page_type type,enum mf_result result)838 static void action_result(unsigned long pfn, enum mf_action_page_type type,
839 			  enum mf_result result)
840 {
841 	trace_memory_failure_event(pfn, type, result);
842 
843 	pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
844 		pfn, action_page_types[type], action_name[result]);
845 }
846 
page_action(struct page_state * ps,struct page * p,unsigned long pfn)847 static int page_action(struct page_state *ps, struct page *p,
848 			unsigned long pfn)
849 {
850 	int result;
851 	int count;
852 
853 	result = ps->action(p, pfn);
854 
855 	count = page_count(p) - 1;
856 	if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
857 		count--;
858 	if (count != 0) {
859 		pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
860 		       pfn, action_page_types[ps->type], count);
861 		result = MF_FAILED;
862 	}
863 	action_result(pfn, ps->type, result);
864 
865 	/* Could do more checks here if page looks ok */
866 	/*
867 	 * Could adjust zone counters here to correct for the missing page.
868 	 */
869 
870 	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
871 }
872 
873 /**
874  * get_hwpoison_page() - Get refcount for memory error handling:
875  * @page:	raw error page (hit by memory error)
876  *
877  * Return: return 0 if failed to grab the refcount, otherwise true (some
878  * non-zero value.)
879  */
get_hwpoison_page(struct page * page)880 int get_hwpoison_page(struct page *page)
881 {
882 	struct page *head = compound_head(page);
883 
884 	if (!PageHuge(head) && PageTransHuge(head)) {
885 		/*
886 		 * Non anonymous thp exists only in allocation/free time. We
887 		 * can't handle such a case correctly, so let's give it up.
888 		 * This should be better than triggering BUG_ON when kernel
889 		 * tries to touch the "partially handled" page.
890 		 */
891 		if (!PageAnon(head)) {
892 			pr_err("Memory failure: %#lx: non anonymous thp\n",
893 				page_to_pfn(page));
894 			return 0;
895 		}
896 	}
897 
898 	if (get_page_unless_zero(head)) {
899 		if (head == compound_head(page))
900 			return 1;
901 
902 		pr_info("Memory failure: %#lx cannot catch tail\n",
903 			page_to_pfn(page));
904 		put_page(head);
905 	}
906 
907 	return 0;
908 }
909 EXPORT_SYMBOL_GPL(get_hwpoison_page);
910 
911 /*
912  * Do all that is necessary to remove user space mappings. Unmap
913  * the pages and send SIGBUS to the processes if the data was dirty.
914  */
hwpoison_user_mappings(struct page * p,unsigned long pfn,int trapno,int flags,struct page ** hpagep)915 static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
916 				  int trapno, int flags, struct page **hpagep)
917 {
918 	enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
919 	struct address_space *mapping;
920 	LIST_HEAD(tokill);
921 	int ret;
922 	int kill = 1, forcekill;
923 	struct page *hpage = *hpagep;
924 	bool mlocked = PageMlocked(hpage);
925 
926 	/*
927 	 * Here we are interested only in user-mapped pages, so skip any
928 	 * other types of pages.
929 	 */
930 	if (PageReserved(p) || PageSlab(p))
931 		return SWAP_SUCCESS;
932 	if (!(PageLRU(hpage) || PageHuge(p)))
933 		return SWAP_SUCCESS;
934 
935 	/*
936 	 * This check implies we don't kill processes if their pages
937 	 * are in the swap cache early. Those are always late kills.
938 	 */
939 	if (!page_mapped(hpage))
940 		return SWAP_SUCCESS;
941 
942 	if (PageKsm(p)) {
943 		pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
944 		return SWAP_FAIL;
945 	}
946 
947 	if (PageSwapCache(p)) {
948 		pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
949 			pfn);
950 		ttu |= TTU_IGNORE_HWPOISON;
951 	}
952 
953 	/*
954 	 * Propagate the dirty bit from PTEs to struct page first, because we
955 	 * need this to decide if we should kill or just drop the page.
956 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
957 	 * be called inside page lock (it's recommended but not enforced).
958 	 */
959 	mapping = page_mapping(hpage);
960 	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
961 	    mapping_cap_writeback_dirty(mapping)) {
962 		if (page_mkclean(hpage)) {
963 			SetPageDirty(hpage);
964 		} else {
965 			kill = 0;
966 			ttu |= TTU_IGNORE_HWPOISON;
967 			pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
968 				pfn);
969 		}
970 	}
971 
972 	/*
973 	 * First collect all the processes that have the page
974 	 * mapped in dirty form.  This has to be done before try_to_unmap,
975 	 * because ttu takes the rmap data structures down.
976 	 *
977 	 * Error handling: We ignore errors here because
978 	 * there's nothing that can be done.
979 	 */
980 	if (kill)
981 		collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
982 
983 	ret = try_to_unmap(hpage, ttu);
984 	if (ret != SWAP_SUCCESS)
985 		pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
986 		       pfn, page_mapcount(hpage));
987 
988 	/*
989 	 * try_to_unmap() might put mlocked page in lru cache, so call
990 	 * shake_page() again to ensure that it's flushed.
991 	 */
992 	if (mlocked)
993 		shake_page(hpage, 0);
994 
995 	/*
996 	 * Now that the dirty bit has been propagated to the
997 	 * struct page and all unmaps done we can decide if
998 	 * killing is needed or not.  Only kill when the page
999 	 * was dirty or the process is not restartable,
1000 	 * otherwise the tokill list is merely
1001 	 * freed.  When there was a problem unmapping earlier
1002 	 * use a more force-full uncatchable kill to prevent
1003 	 * any accesses to the poisoned memory.
1004 	 */
1005 	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1006 	kill_procs(&tokill, forcekill, trapno,
1007 		      ret != SWAP_SUCCESS, p, pfn, flags);
1008 
1009 	return ret;
1010 }
1011 
set_page_hwpoison_huge_page(struct page * hpage)1012 static void set_page_hwpoison_huge_page(struct page *hpage)
1013 {
1014 	int i;
1015 	int nr_pages = 1 << compound_order(hpage);
1016 	for (i = 0; i < nr_pages; i++)
1017 		SetPageHWPoison(hpage + i);
1018 }
1019 
clear_page_hwpoison_huge_page(struct page * hpage)1020 static void clear_page_hwpoison_huge_page(struct page *hpage)
1021 {
1022 	int i;
1023 	int nr_pages = 1 << compound_order(hpage);
1024 	for (i = 0; i < nr_pages; i++)
1025 		ClearPageHWPoison(hpage + i);
1026 }
1027 
1028 /**
1029  * memory_failure - Handle memory failure of a page.
1030  * @pfn: Page Number of the corrupted page
1031  * @trapno: Trap number reported in the signal to user space.
1032  * @flags: fine tune action taken
1033  *
1034  * This function is called by the low level machine check code
1035  * of an architecture when it detects hardware memory corruption
1036  * of a page. It tries its best to recover, which includes
1037  * dropping pages, killing processes etc.
1038  *
1039  * The function is primarily of use for corruptions that
1040  * happen outside the current execution context (e.g. when
1041  * detected by a background scrubber)
1042  *
1043  * Must run in process context (e.g. a work queue) with interrupts
1044  * enabled and no spinlocks hold.
1045  */
memory_failure(unsigned long pfn,int trapno,int flags)1046 int memory_failure(unsigned long pfn, int trapno, int flags)
1047 {
1048 	struct page_state *ps;
1049 	struct page *p;
1050 	struct page *hpage;
1051 	struct page *orig_head;
1052 	int res;
1053 	unsigned int nr_pages;
1054 	unsigned long page_flags;
1055 
1056 	if (!sysctl_memory_failure_recovery)
1057 		panic("Memory failure from trap %d on page %lx", trapno, pfn);
1058 
1059 	if (!pfn_valid(pfn)) {
1060 		pr_err("Memory failure: %#lx: memory outside kernel control\n",
1061 			pfn);
1062 		return -ENXIO;
1063 	}
1064 
1065 	p = pfn_to_page(pfn);
1066 	orig_head = hpage = compound_head(p);
1067 	if (TestSetPageHWPoison(p)) {
1068 		pr_err("Memory failure: %#lx: already hardware poisoned\n",
1069 			pfn);
1070 		return 0;
1071 	}
1072 
1073 	/*
1074 	 * Currently errors on hugetlbfs pages are measured in hugepage units,
1075 	 * so nr_pages should be 1 << compound_order.  OTOH when errors are on
1076 	 * transparent hugepages, they are supposed to be split and error
1077 	 * measurement is done in normal page units.  So nr_pages should be one
1078 	 * in this case.
1079 	 */
1080 	if (PageHuge(p))
1081 		nr_pages = 1 << compound_order(hpage);
1082 	else /* normal page or thp */
1083 		nr_pages = 1;
1084 	num_poisoned_pages_add(nr_pages);
1085 
1086 	/*
1087 	 * We need/can do nothing about count=0 pages.
1088 	 * 1) it's a free page, and therefore in safe hand:
1089 	 *    prep_new_page() will be the gate keeper.
1090 	 * 2) it's a free hugepage, which is also safe:
1091 	 *    an affected hugepage will be dequeued from hugepage freelist,
1092 	 *    so there's no concern about reusing it ever after.
1093 	 * 3) it's part of a non-compound high order page.
1094 	 *    Implies some kernel user: cannot stop them from
1095 	 *    R/W the page; let's pray that the page has been
1096 	 *    used and will be freed some time later.
1097 	 * In fact it's dangerous to directly bump up page count from 0,
1098 	 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1099 	 */
1100 	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1101 		if (is_free_buddy_page(p)) {
1102 			action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1103 			return 0;
1104 		} else if (PageHuge(hpage)) {
1105 			/*
1106 			 * Check "filter hit" and "race with other subpage."
1107 			 */
1108 			lock_page(hpage);
1109 			if (PageHWPoison(hpage)) {
1110 				if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1111 				    || (p != hpage && TestSetPageHWPoison(hpage))) {
1112 					num_poisoned_pages_sub(nr_pages);
1113 					unlock_page(hpage);
1114 					return 0;
1115 				}
1116 			}
1117 			set_page_hwpoison_huge_page(hpage);
1118 			res = dequeue_hwpoisoned_huge_page(hpage);
1119 			action_result(pfn, MF_MSG_FREE_HUGE,
1120 				      res ? MF_IGNORED : MF_DELAYED);
1121 			unlock_page(hpage);
1122 			return res;
1123 		} else {
1124 			action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1125 			return -EBUSY;
1126 		}
1127 	}
1128 
1129 	if (!PageHuge(p) && PageTransHuge(hpage)) {
1130 		lock_page(p);
1131 		if (!PageAnon(p) || unlikely(split_huge_page(p))) {
1132 			unlock_page(p);
1133 			if (!PageAnon(p))
1134 				pr_err("Memory failure: %#lx: non anonymous thp\n",
1135 					pfn);
1136 			else
1137 				pr_err("Memory failure: %#lx: thp split failed\n",
1138 					pfn);
1139 			if (TestClearPageHWPoison(p))
1140 				num_poisoned_pages_sub(nr_pages);
1141 			put_hwpoison_page(p);
1142 			return -EBUSY;
1143 		}
1144 		unlock_page(p);
1145 		VM_BUG_ON_PAGE(!page_count(p), p);
1146 		hpage = compound_head(p);
1147 	}
1148 
1149 	/*
1150 	 * We ignore non-LRU pages for good reasons.
1151 	 * - PG_locked is only well defined for LRU pages and a few others
1152 	 * - to avoid races with __SetPageLocked()
1153 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1154 	 * The check (unnecessarily) ignores LRU pages being isolated and
1155 	 * walked by the page reclaim code, however that's not a big loss.
1156 	 */
1157 	if (!PageHuge(p)) {
1158 		if (!PageLRU(p))
1159 			shake_page(p, 0);
1160 		if (!PageLRU(p)) {
1161 			/*
1162 			 * shake_page could have turned it free.
1163 			 */
1164 			if (is_free_buddy_page(p)) {
1165 				if (flags & MF_COUNT_INCREASED)
1166 					action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1167 				else
1168 					action_result(pfn, MF_MSG_BUDDY_2ND,
1169 						      MF_DELAYED);
1170 				return 0;
1171 			}
1172 		}
1173 	}
1174 
1175 	lock_page(hpage);
1176 
1177 	/*
1178 	 * The page could have changed compound pages during the locking.
1179 	 * If this happens just bail out.
1180 	 */
1181 	if (PageCompound(p) && compound_head(p) != orig_head) {
1182 		action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1183 		res = -EBUSY;
1184 		goto out;
1185 	}
1186 
1187 	/*
1188 	 * We use page flags to determine what action should be taken, but
1189 	 * the flags can be modified by the error containment action.  One
1190 	 * example is an mlocked page, where PG_mlocked is cleared by
1191 	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1192 	 * correctly, we save a copy of the page flags at this time.
1193 	 */
1194 	if (PageHuge(p))
1195 		page_flags = hpage->flags;
1196 	else
1197 		page_flags = p->flags;
1198 
1199 	/*
1200 	 * unpoison always clear PG_hwpoison inside page lock
1201 	 */
1202 	if (!PageHWPoison(p)) {
1203 		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1204 		num_poisoned_pages_sub(nr_pages);
1205 		unlock_page(hpage);
1206 		put_hwpoison_page(hpage);
1207 		return 0;
1208 	}
1209 	if (hwpoison_filter(p)) {
1210 		if (TestClearPageHWPoison(p))
1211 			num_poisoned_pages_sub(nr_pages);
1212 		unlock_page(hpage);
1213 		put_hwpoison_page(hpage);
1214 		return 0;
1215 	}
1216 
1217 	if (!PageHuge(p) && !PageTransTail(p) && !PageLRU(p))
1218 		goto identify_page_state;
1219 
1220 	/*
1221 	 * For error on the tail page, we should set PG_hwpoison
1222 	 * on the head page to show that the hugepage is hwpoisoned
1223 	 */
1224 	if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
1225 		action_result(pfn, MF_MSG_POISONED_HUGE, MF_IGNORED);
1226 		unlock_page(hpage);
1227 		put_hwpoison_page(hpage);
1228 		return 0;
1229 	}
1230 	/*
1231 	 * Set PG_hwpoison on all pages in an error hugepage,
1232 	 * because containment is done in hugepage unit for now.
1233 	 * Since we have done TestSetPageHWPoison() for the head page with
1234 	 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1235 	 */
1236 	if (PageHuge(p))
1237 		set_page_hwpoison_huge_page(hpage);
1238 
1239 	/*
1240 	 * It's very difficult to mess with pages currently under IO
1241 	 * and in many cases impossible, so we just avoid it here.
1242 	 */
1243 	wait_on_page_writeback(p);
1244 
1245 	/*
1246 	 * Now take care of user space mappings.
1247 	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1248 	 *
1249 	 * When the raw error page is thp tail page, hpage points to the raw
1250 	 * page after thp split.
1251 	 */
1252 	if (hwpoison_user_mappings(p, pfn, trapno, flags, &hpage)
1253 	    != SWAP_SUCCESS) {
1254 		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1255 		res = -EBUSY;
1256 		goto out;
1257 	}
1258 
1259 	/*
1260 	 * Torn down by someone else?
1261 	 */
1262 	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1263 		action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1264 		res = -EBUSY;
1265 		goto out;
1266 	}
1267 
1268 identify_page_state:
1269 	res = -EBUSY;
1270 	/*
1271 	 * The first check uses the current page flags which may not have any
1272 	 * relevant information. The second check with the saved page flagss is
1273 	 * carried out only if the first check can't determine the page status.
1274 	 */
1275 	for (ps = error_states;; ps++)
1276 		if ((p->flags & ps->mask) == ps->res)
1277 			break;
1278 
1279 	page_flags |= (p->flags & (1UL << PG_dirty));
1280 
1281 	if (!ps->mask)
1282 		for (ps = error_states;; ps++)
1283 			if ((page_flags & ps->mask) == ps->res)
1284 				break;
1285 	res = page_action(ps, p, pfn);
1286 out:
1287 	unlock_page(hpage);
1288 	return res;
1289 }
1290 EXPORT_SYMBOL_GPL(memory_failure);
1291 
1292 #define MEMORY_FAILURE_FIFO_ORDER	4
1293 #define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
1294 
1295 struct memory_failure_entry {
1296 	unsigned long pfn;
1297 	int trapno;
1298 	int flags;
1299 };
1300 
1301 struct memory_failure_cpu {
1302 	DECLARE_KFIFO(fifo, struct memory_failure_entry,
1303 		      MEMORY_FAILURE_FIFO_SIZE);
1304 	spinlock_t lock;
1305 	struct work_struct work;
1306 };
1307 
1308 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1309 
1310 /**
1311  * memory_failure_queue - Schedule handling memory failure of a page.
1312  * @pfn: Page Number of the corrupted page
1313  * @trapno: Trap number reported in the signal to user space.
1314  * @flags: Flags for memory failure handling
1315  *
1316  * This function is called by the low level hardware error handler
1317  * when it detects hardware memory corruption of a page. It schedules
1318  * the recovering of error page, including dropping pages, killing
1319  * processes etc.
1320  *
1321  * The function is primarily of use for corruptions that
1322  * happen outside the current execution context (e.g. when
1323  * detected by a background scrubber)
1324  *
1325  * Can run in IRQ context.
1326  */
memory_failure_queue(unsigned long pfn,int trapno,int flags)1327 void memory_failure_queue(unsigned long pfn, int trapno, int flags)
1328 {
1329 	struct memory_failure_cpu *mf_cpu;
1330 	unsigned long proc_flags;
1331 	struct memory_failure_entry entry = {
1332 		.pfn =		pfn,
1333 		.trapno =	trapno,
1334 		.flags =	flags,
1335 	};
1336 
1337 	mf_cpu = &get_cpu_var(memory_failure_cpu);
1338 	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1339 	if (kfifo_put(&mf_cpu->fifo, entry))
1340 		schedule_work_on(smp_processor_id(), &mf_cpu->work);
1341 	else
1342 		pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1343 		       pfn);
1344 	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1345 	put_cpu_var(memory_failure_cpu);
1346 }
1347 EXPORT_SYMBOL_GPL(memory_failure_queue);
1348 
memory_failure_work_func(struct work_struct * work)1349 static void memory_failure_work_func(struct work_struct *work)
1350 {
1351 	struct memory_failure_cpu *mf_cpu;
1352 	struct memory_failure_entry entry = { 0, };
1353 	unsigned long proc_flags;
1354 	int gotten;
1355 
1356 	mf_cpu = this_cpu_ptr(&memory_failure_cpu);
1357 	for (;;) {
1358 		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1359 		gotten = kfifo_get(&mf_cpu->fifo, &entry);
1360 		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1361 		if (!gotten)
1362 			break;
1363 		if (entry.flags & MF_SOFT_OFFLINE)
1364 			soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1365 		else
1366 			memory_failure(entry.pfn, entry.trapno, entry.flags);
1367 	}
1368 }
1369 
memory_failure_init(void)1370 static int __init memory_failure_init(void)
1371 {
1372 	struct memory_failure_cpu *mf_cpu;
1373 	int cpu;
1374 
1375 	for_each_possible_cpu(cpu) {
1376 		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1377 		spin_lock_init(&mf_cpu->lock);
1378 		INIT_KFIFO(mf_cpu->fifo);
1379 		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1380 	}
1381 
1382 	return 0;
1383 }
1384 core_initcall(memory_failure_init);
1385 
1386 #define unpoison_pr_info(fmt, pfn, rs)			\
1387 ({							\
1388 	if (__ratelimit(rs))				\
1389 		pr_info(fmt, pfn);			\
1390 })
1391 
1392 /**
1393  * unpoison_memory - Unpoison a previously poisoned page
1394  * @pfn: Page number of the to be unpoisoned page
1395  *
1396  * Software-unpoison a page that has been poisoned by
1397  * memory_failure() earlier.
1398  *
1399  * This is only done on the software-level, so it only works
1400  * for linux injected failures, not real hardware failures
1401  *
1402  * Returns 0 for success, otherwise -errno.
1403  */
unpoison_memory(unsigned long pfn)1404 int unpoison_memory(unsigned long pfn)
1405 {
1406 	struct page *page;
1407 	struct page *p;
1408 	int freeit = 0;
1409 	unsigned int nr_pages;
1410 	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1411 					DEFAULT_RATELIMIT_BURST);
1412 
1413 	if (!pfn_valid(pfn))
1414 		return -ENXIO;
1415 
1416 	p = pfn_to_page(pfn);
1417 	page = compound_head(p);
1418 
1419 	if (!PageHWPoison(p)) {
1420 		unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1421 				 pfn, &unpoison_rs);
1422 		return 0;
1423 	}
1424 
1425 	if (page_count(page) > 1) {
1426 		unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1427 				 pfn, &unpoison_rs);
1428 		return 0;
1429 	}
1430 
1431 	if (page_mapped(page)) {
1432 		unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1433 				 pfn, &unpoison_rs);
1434 		return 0;
1435 	}
1436 
1437 	if (page_mapping(page)) {
1438 		unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1439 				 pfn, &unpoison_rs);
1440 		return 0;
1441 	}
1442 
1443 	/*
1444 	 * unpoison_memory() can encounter thp only when the thp is being
1445 	 * worked by memory_failure() and the page lock is not held yet.
1446 	 * In such case, we yield to memory_failure() and make unpoison fail.
1447 	 */
1448 	if (!PageHuge(page) && PageTransHuge(page)) {
1449 		unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1450 				 pfn, &unpoison_rs);
1451 		return 0;
1452 	}
1453 
1454 	nr_pages = 1 << compound_order(page);
1455 
1456 	if (!get_hwpoison_page(p)) {
1457 		/*
1458 		 * Since HWPoisoned hugepage should have non-zero refcount,
1459 		 * race between memory failure and unpoison seems to happen.
1460 		 * In such case unpoison fails and memory failure runs
1461 		 * to the end.
1462 		 */
1463 		if (PageHuge(page)) {
1464 			unpoison_pr_info("Unpoison: Memory failure is now running on free hugepage %#lx\n",
1465 					 pfn, &unpoison_rs);
1466 			return 0;
1467 		}
1468 		if (TestClearPageHWPoison(p))
1469 			num_poisoned_pages_dec();
1470 		unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1471 				 pfn, &unpoison_rs);
1472 		return 0;
1473 	}
1474 
1475 	lock_page(page);
1476 	/*
1477 	 * This test is racy because PG_hwpoison is set outside of page lock.
1478 	 * That's acceptable because that won't trigger kernel panic. Instead,
1479 	 * the PG_hwpoison page will be caught and isolated on the entrance to
1480 	 * the free buddy page pool.
1481 	 */
1482 	if (TestClearPageHWPoison(page)) {
1483 		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1484 				 pfn, &unpoison_rs);
1485 		num_poisoned_pages_sub(nr_pages);
1486 		freeit = 1;
1487 		if (PageHuge(page))
1488 			clear_page_hwpoison_huge_page(page);
1489 	}
1490 	unlock_page(page);
1491 
1492 	put_hwpoison_page(page);
1493 	if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1494 		put_hwpoison_page(page);
1495 
1496 	return 0;
1497 }
1498 EXPORT_SYMBOL(unpoison_memory);
1499 
new_page(struct page * p,unsigned long private,int ** x)1500 static struct page *new_page(struct page *p, unsigned long private, int **x)
1501 {
1502 	int nid = page_to_nid(p);
1503 	if (PageHuge(p))
1504 		return alloc_huge_page_node(page_hstate(compound_head(p)),
1505 						   nid);
1506 	else
1507 		return __alloc_pages_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1508 }
1509 
1510 /*
1511  * Safely get reference count of an arbitrary page.
1512  * Returns 0 for a free page, -EIO for a zero refcount page
1513  * that is not free, and 1 for any other page type.
1514  * For 1 the page is returned with increased page count, otherwise not.
1515  */
__get_any_page(struct page * p,unsigned long pfn,int flags)1516 static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1517 {
1518 	int ret;
1519 
1520 	if (flags & MF_COUNT_INCREASED)
1521 		return 1;
1522 
1523 	/*
1524 	 * When the target page is a free hugepage, just remove it
1525 	 * from free hugepage list.
1526 	 */
1527 	if (!get_hwpoison_page(p)) {
1528 		if (PageHuge(p)) {
1529 			pr_info("%s: %#lx free huge page\n", __func__, pfn);
1530 			ret = 0;
1531 		} else if (is_free_buddy_page(p)) {
1532 			pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1533 			ret = 0;
1534 		} else {
1535 			pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1536 				__func__, pfn, p->flags);
1537 			ret = -EIO;
1538 		}
1539 	} else {
1540 		/* Not a free page */
1541 		ret = 1;
1542 	}
1543 	return ret;
1544 }
1545 
get_any_page(struct page * page,unsigned long pfn,int flags)1546 static int get_any_page(struct page *page, unsigned long pfn, int flags)
1547 {
1548 	int ret = __get_any_page(page, pfn, flags);
1549 
1550 	if (ret == 1 && !PageHuge(page) && !PageLRU(page)) {
1551 		/*
1552 		 * Try to free it.
1553 		 */
1554 		put_hwpoison_page(page);
1555 		shake_page(page, 1);
1556 
1557 		/*
1558 		 * Did it turn free?
1559 		 */
1560 		ret = __get_any_page(page, pfn, 0);
1561 		if (ret == 1 && !PageLRU(page)) {
1562 			/* Drop page reference which is from __get_any_page() */
1563 			put_hwpoison_page(page);
1564 			pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
1565 				pfn, page->flags);
1566 			return -EIO;
1567 		}
1568 	}
1569 	return ret;
1570 }
1571 
soft_offline_huge_page(struct page * page,int flags)1572 static int soft_offline_huge_page(struct page *page, int flags)
1573 {
1574 	int ret;
1575 	unsigned long pfn = page_to_pfn(page);
1576 	struct page *hpage = compound_head(page);
1577 	LIST_HEAD(pagelist);
1578 
1579 	/*
1580 	 * This double-check of PageHWPoison is to avoid the race with
1581 	 * memory_failure(). See also comment in __soft_offline_page().
1582 	 */
1583 	lock_page(hpage);
1584 	if (PageHWPoison(hpage)) {
1585 		unlock_page(hpage);
1586 		put_hwpoison_page(hpage);
1587 		pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1588 		return -EBUSY;
1589 	}
1590 	unlock_page(hpage);
1591 
1592 	ret = isolate_huge_page(hpage, &pagelist);
1593 	/*
1594 	 * get_any_page() and isolate_huge_page() takes a refcount each,
1595 	 * so need to drop one here.
1596 	 */
1597 	put_hwpoison_page(hpage);
1598 	if (!ret) {
1599 		pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
1600 		return -EBUSY;
1601 	}
1602 
1603 	ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1604 				MIGRATE_SYNC, MR_MEMORY_FAILURE);
1605 	if (ret) {
1606 		pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1607 			pfn, ret, page->flags);
1608 		if (!list_empty(&pagelist))
1609 			putback_movable_pages(&pagelist);
1610 		if (ret > 0)
1611 			ret = -EIO;
1612 	} else {
1613 		/* overcommit hugetlb page will be freed to buddy */
1614 		if (PageHuge(page)) {
1615 			set_page_hwpoison_huge_page(hpage);
1616 			dequeue_hwpoisoned_huge_page(hpage);
1617 			num_poisoned_pages_add(1 << compound_order(hpage));
1618 		} else {
1619 			SetPageHWPoison(page);
1620 			num_poisoned_pages_inc();
1621 		}
1622 	}
1623 	return ret;
1624 }
1625 
__soft_offline_page(struct page * page,int flags)1626 static int __soft_offline_page(struct page *page, int flags)
1627 {
1628 	int ret;
1629 	unsigned long pfn = page_to_pfn(page);
1630 
1631 	/*
1632 	 * Check PageHWPoison again inside page lock because PageHWPoison
1633 	 * is set by memory_failure() outside page lock. Note that
1634 	 * memory_failure() also double-checks PageHWPoison inside page lock,
1635 	 * so there's no race between soft_offline_page() and memory_failure().
1636 	 */
1637 	lock_page(page);
1638 	wait_on_page_writeback(page);
1639 	if (PageHWPoison(page)) {
1640 		unlock_page(page);
1641 		put_hwpoison_page(page);
1642 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1643 		return -EBUSY;
1644 	}
1645 	/*
1646 	 * Try to invalidate first. This should work for
1647 	 * non dirty unmapped page cache pages.
1648 	 */
1649 	ret = invalidate_inode_page(page);
1650 	unlock_page(page);
1651 	/*
1652 	 * RED-PEN would be better to keep it isolated here, but we
1653 	 * would need to fix isolation locking first.
1654 	 */
1655 	if (ret == 1) {
1656 		put_hwpoison_page(page);
1657 		pr_info("soft_offline: %#lx: invalidated\n", pfn);
1658 		SetPageHWPoison(page);
1659 		num_poisoned_pages_inc();
1660 		return 0;
1661 	}
1662 
1663 	/*
1664 	 * Simple invalidation didn't work.
1665 	 * Try to migrate to a new page instead. migrate.c
1666 	 * handles a large number of cases for us.
1667 	 */
1668 	ret = isolate_lru_page(page);
1669 	/*
1670 	 * Drop page reference which is came from get_any_page()
1671 	 * successful isolate_lru_page() already took another one.
1672 	 */
1673 	put_hwpoison_page(page);
1674 	if (!ret) {
1675 		LIST_HEAD(pagelist);
1676 		inc_node_page_state(page, NR_ISOLATED_ANON +
1677 					page_is_file_cache(page));
1678 		list_add(&page->lru, &pagelist);
1679 		ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1680 					MIGRATE_SYNC, MR_MEMORY_FAILURE);
1681 		if (ret) {
1682 			if (!list_empty(&pagelist)) {
1683 				list_del(&page->lru);
1684 				dec_node_page_state(page, NR_ISOLATED_ANON +
1685 						page_is_file_cache(page));
1686 				putback_lru_page(page);
1687 			}
1688 
1689 			pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1690 				pfn, ret, page->flags);
1691 			if (ret > 0)
1692 				ret = -EIO;
1693 		}
1694 	} else {
1695 		pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1696 			pfn, ret, page_count(page), page->flags);
1697 	}
1698 	return ret;
1699 }
1700 
soft_offline_in_use_page(struct page * page,int flags)1701 static int soft_offline_in_use_page(struct page *page, int flags)
1702 {
1703 	int ret;
1704 	struct page *hpage = compound_head(page);
1705 
1706 	if (!PageHuge(page) && PageTransHuge(hpage)) {
1707 		lock_page(hpage);
1708 		if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) {
1709 			unlock_page(hpage);
1710 			if (!PageAnon(hpage))
1711 				pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page));
1712 			else
1713 				pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page));
1714 			put_hwpoison_page(hpage);
1715 			return -EBUSY;
1716 		}
1717 		unlock_page(hpage);
1718 		get_hwpoison_page(page);
1719 		put_hwpoison_page(hpage);
1720 	}
1721 
1722 	if (PageHuge(page))
1723 		ret = soft_offline_huge_page(page, flags);
1724 	else
1725 		ret = __soft_offline_page(page, flags);
1726 
1727 	return ret;
1728 }
1729 
soft_offline_free_page(struct page * page)1730 static void soft_offline_free_page(struct page *page)
1731 {
1732 	if (PageHuge(page)) {
1733 		struct page *hpage = compound_head(page);
1734 
1735 		set_page_hwpoison_huge_page(hpage);
1736 		if (!dequeue_hwpoisoned_huge_page(hpage))
1737 			num_poisoned_pages_add(1 << compound_order(hpage));
1738 	} else {
1739 		if (!TestSetPageHWPoison(page))
1740 			num_poisoned_pages_inc();
1741 	}
1742 }
1743 
1744 /**
1745  * soft_offline_page - Soft offline a page.
1746  * @page: page to offline
1747  * @flags: flags. Same as memory_failure().
1748  *
1749  * Returns 0 on success, otherwise negated errno.
1750  *
1751  * Soft offline a page, by migration or invalidation,
1752  * without killing anything. This is for the case when
1753  * a page is not corrupted yet (so it's still valid to access),
1754  * but has had a number of corrected errors and is better taken
1755  * out.
1756  *
1757  * The actual policy on when to do that is maintained by
1758  * user space.
1759  *
1760  * This should never impact any application or cause data loss,
1761  * however it might take some time.
1762  *
1763  * This is not a 100% solution for all memory, but tries to be
1764  * ``good enough'' for the majority of memory.
1765  */
soft_offline_page(struct page * page,int flags)1766 int soft_offline_page(struct page *page, int flags)
1767 {
1768 	int ret;
1769 	unsigned long pfn = page_to_pfn(page);
1770 
1771 	if (PageHWPoison(page)) {
1772 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1773 		if (flags & MF_COUNT_INCREASED)
1774 			put_hwpoison_page(page);
1775 		return -EBUSY;
1776 	}
1777 
1778 	get_online_mems();
1779 	ret = get_any_page(page, pfn, flags);
1780 	put_online_mems();
1781 
1782 	if (ret > 0)
1783 		ret = soft_offline_in_use_page(page, flags);
1784 	else if (ret == 0)
1785 		soft_offline_free_page(page);
1786 
1787 	return ret;
1788 }
1789