1 /* 2 * linux/mm/memory_hotplug.c 3 * 4 * Copyright (C) 5 */ 6 7 #include <linux/stddef.h> 8 #include <linux/mm.h> 9 #include <linux/swap.h> 10 #include <linux/interrupt.h> 11 #include <linux/pagemap.h> 12 #include <linux/compiler.h> 13 #include <linux/export.h> 14 #include <linux/pagevec.h> 15 #include <linux/writeback.h> 16 #include <linux/slab.h> 17 #include <linux/sysctl.h> 18 #include <linux/cpu.h> 19 #include <linux/memory.h> 20 #include <linux/memremap.h> 21 #include <linux/memory_hotplug.h> 22 #include <linux/highmem.h> 23 #include <linux/vmalloc.h> 24 #include <linux/ioport.h> 25 #include <linux/delay.h> 26 #include <linux/migrate.h> 27 #include <linux/page-isolation.h> 28 #include <linux/pfn.h> 29 #include <linux/suspend.h> 30 #include <linux/mm_inline.h> 31 #include <linux/firmware-map.h> 32 #include <linux/stop_machine.h> 33 #include <linux/hugetlb.h> 34 #include <linux/memblock.h> 35 #include <linux/bootmem.h> 36 #include <linux/compaction.h> 37 38 #include <asm/tlbflush.h> 39 40 #include "internal.h" 41 42 /* 43 * online_page_callback contains pointer to current page onlining function. 44 * Initially it is generic_online_page(). If it is required it could be 45 * changed by calling set_online_page_callback() for callback registration 46 * and restore_online_page_callback() for generic callback restore. 47 */ 48 49 static void generic_online_page(struct page *page); 50 51 static online_page_callback_t online_page_callback = generic_online_page; 52 static DEFINE_MUTEX(online_page_callback_lock); 53 54 /* The same as the cpu_hotplug lock, but for memory hotplug. */ 55 static struct { 56 struct task_struct *active_writer; 57 struct mutex lock; /* Synchronizes accesses to refcount, */ 58 /* 59 * Also blocks the new readers during 60 * an ongoing mem hotplug operation. 61 */ 62 int refcount; 63 64 #ifdef CONFIG_DEBUG_LOCK_ALLOC 65 struct lockdep_map dep_map; 66 #endif 67 } mem_hotplug = { 68 .active_writer = NULL, 69 .lock = __MUTEX_INITIALIZER(mem_hotplug.lock), 70 .refcount = 0, 71 #ifdef CONFIG_DEBUG_LOCK_ALLOC 72 .dep_map = {.name = "mem_hotplug.lock" }, 73 #endif 74 }; 75 76 /* Lockdep annotations for get/put_online_mems() and mem_hotplug_begin/end() */ 77 #define memhp_lock_acquire_read() lock_map_acquire_read(&mem_hotplug.dep_map) 78 #define memhp_lock_acquire() lock_map_acquire(&mem_hotplug.dep_map) 79 #define memhp_lock_release() lock_map_release(&mem_hotplug.dep_map) 80 81 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE 82 bool memhp_auto_online; 83 #else 84 bool memhp_auto_online = true; 85 #endif 86 EXPORT_SYMBOL_GPL(memhp_auto_online); 87 setup_memhp_default_state(char * str)88 static int __init setup_memhp_default_state(char *str) 89 { 90 if (!strcmp(str, "online")) 91 memhp_auto_online = true; 92 else if (!strcmp(str, "offline")) 93 memhp_auto_online = false; 94 95 return 1; 96 } 97 __setup("memhp_default_state=", setup_memhp_default_state); 98 get_online_mems(void)99 void get_online_mems(void) 100 { 101 might_sleep(); 102 if (mem_hotplug.active_writer == current) 103 return; 104 memhp_lock_acquire_read(); 105 mutex_lock(&mem_hotplug.lock); 106 mem_hotplug.refcount++; 107 mutex_unlock(&mem_hotplug.lock); 108 109 } 110 put_online_mems(void)111 void put_online_mems(void) 112 { 113 if (mem_hotplug.active_writer == current) 114 return; 115 mutex_lock(&mem_hotplug.lock); 116 117 if (WARN_ON(!mem_hotplug.refcount)) 118 mem_hotplug.refcount++; /* try to fix things up */ 119 120 if (!--mem_hotplug.refcount && unlikely(mem_hotplug.active_writer)) 121 wake_up_process(mem_hotplug.active_writer); 122 mutex_unlock(&mem_hotplug.lock); 123 memhp_lock_release(); 124 125 } 126 mem_hotplug_begin(void)127 void mem_hotplug_begin(void) 128 { 129 mem_hotplug.active_writer = current; 130 131 memhp_lock_acquire(); 132 for (;;) { 133 mutex_lock(&mem_hotplug.lock); 134 if (likely(!mem_hotplug.refcount)) 135 break; 136 __set_current_state(TASK_UNINTERRUPTIBLE); 137 mutex_unlock(&mem_hotplug.lock); 138 schedule(); 139 } 140 } 141 mem_hotplug_done(void)142 void mem_hotplug_done(void) 143 { 144 mem_hotplug.active_writer = NULL; 145 mutex_unlock(&mem_hotplug.lock); 146 memhp_lock_release(); 147 } 148 149 /* add this memory to iomem resource */ register_memory_resource(u64 start,u64 size)150 static struct resource *register_memory_resource(u64 start, u64 size) 151 { 152 struct resource *res; 153 res = kzalloc(sizeof(struct resource), GFP_KERNEL); 154 if (!res) 155 return ERR_PTR(-ENOMEM); 156 157 res->name = "System RAM"; 158 res->start = start; 159 res->end = start + size - 1; 160 res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 161 if (request_resource(&iomem_resource, res) < 0) { 162 pr_debug("System RAM resource %pR cannot be added\n", res); 163 kfree(res); 164 return ERR_PTR(-EEXIST); 165 } 166 return res; 167 } 168 release_memory_resource(struct resource * res)169 static void release_memory_resource(struct resource *res) 170 { 171 if (!res) 172 return; 173 release_resource(res); 174 kfree(res); 175 return; 176 } 177 178 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE get_page_bootmem(unsigned long info,struct page * page,unsigned long type)179 void get_page_bootmem(unsigned long info, struct page *page, 180 unsigned long type) 181 { 182 page->freelist = (void *)type; 183 SetPagePrivate(page); 184 set_page_private(page, info); 185 page_ref_inc(page); 186 } 187 put_page_bootmem(struct page * page)188 void put_page_bootmem(struct page *page) 189 { 190 unsigned long type; 191 192 type = (unsigned long) page->freelist; 193 BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE || 194 type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE); 195 196 if (page_ref_dec_return(page) == 1) { 197 page->freelist = NULL; 198 ClearPagePrivate(page); 199 set_page_private(page, 0); 200 INIT_LIST_HEAD(&page->lru); 201 free_reserved_page(page); 202 } 203 } 204 205 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE 206 #ifndef CONFIG_SPARSEMEM_VMEMMAP register_page_bootmem_info_section(unsigned long start_pfn)207 static void register_page_bootmem_info_section(unsigned long start_pfn) 208 { 209 unsigned long *usemap, mapsize, section_nr, i; 210 struct mem_section *ms; 211 struct page *page, *memmap; 212 213 section_nr = pfn_to_section_nr(start_pfn); 214 ms = __nr_to_section(section_nr); 215 216 /* Get section's memmap address */ 217 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr); 218 219 /* 220 * Get page for the memmap's phys address 221 * XXX: need more consideration for sparse_vmemmap... 222 */ 223 page = virt_to_page(memmap); 224 mapsize = sizeof(struct page) * PAGES_PER_SECTION; 225 mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT; 226 227 /* remember memmap's page */ 228 for (i = 0; i < mapsize; i++, page++) 229 get_page_bootmem(section_nr, page, SECTION_INFO); 230 231 usemap = __nr_to_section(section_nr)->pageblock_flags; 232 page = virt_to_page(usemap); 233 234 mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT; 235 236 for (i = 0; i < mapsize; i++, page++) 237 get_page_bootmem(section_nr, page, MIX_SECTION_INFO); 238 239 } 240 #else /* CONFIG_SPARSEMEM_VMEMMAP */ register_page_bootmem_info_section(unsigned long start_pfn)241 static void register_page_bootmem_info_section(unsigned long start_pfn) 242 { 243 unsigned long *usemap, mapsize, section_nr, i; 244 struct mem_section *ms; 245 struct page *page, *memmap; 246 247 if (!pfn_valid(start_pfn)) 248 return; 249 250 section_nr = pfn_to_section_nr(start_pfn); 251 ms = __nr_to_section(section_nr); 252 253 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr); 254 255 register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION); 256 257 usemap = __nr_to_section(section_nr)->pageblock_flags; 258 page = virt_to_page(usemap); 259 260 mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT; 261 262 for (i = 0; i < mapsize; i++, page++) 263 get_page_bootmem(section_nr, page, MIX_SECTION_INFO); 264 } 265 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ 266 register_page_bootmem_info_node(struct pglist_data * pgdat)267 void __init register_page_bootmem_info_node(struct pglist_data *pgdat) 268 { 269 unsigned long i, pfn, end_pfn, nr_pages; 270 int node = pgdat->node_id; 271 struct page *page; 272 273 nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT; 274 page = virt_to_page(pgdat); 275 276 for (i = 0; i < nr_pages; i++, page++) 277 get_page_bootmem(node, page, NODE_INFO); 278 279 pfn = pgdat->node_start_pfn; 280 end_pfn = pgdat_end_pfn(pgdat); 281 282 /* register section info */ 283 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 284 /* 285 * Some platforms can assign the same pfn to multiple nodes - on 286 * node0 as well as nodeN. To avoid registering a pfn against 287 * multiple nodes we check that this pfn does not already 288 * reside in some other nodes. 289 */ 290 if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node)) 291 register_page_bootmem_info_section(pfn); 292 } 293 } 294 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */ 295 grow_zone_span(struct zone * zone,unsigned long start_pfn,unsigned long end_pfn)296 static void __meminit grow_zone_span(struct zone *zone, unsigned long start_pfn, 297 unsigned long end_pfn) 298 { 299 unsigned long old_zone_end_pfn; 300 301 zone_span_writelock(zone); 302 303 old_zone_end_pfn = zone_end_pfn(zone); 304 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn) 305 zone->zone_start_pfn = start_pfn; 306 307 zone->spanned_pages = max(old_zone_end_pfn, end_pfn) - 308 zone->zone_start_pfn; 309 310 zone_span_writeunlock(zone); 311 } 312 resize_zone(struct zone * zone,unsigned long start_pfn,unsigned long end_pfn)313 static void resize_zone(struct zone *zone, unsigned long start_pfn, 314 unsigned long end_pfn) 315 { 316 zone_span_writelock(zone); 317 318 if (end_pfn - start_pfn) { 319 zone->zone_start_pfn = start_pfn; 320 zone->spanned_pages = end_pfn - start_pfn; 321 } else { 322 /* 323 * make it consist as free_area_init_core(), 324 * if spanned_pages = 0, then keep start_pfn = 0 325 */ 326 zone->zone_start_pfn = 0; 327 zone->spanned_pages = 0; 328 } 329 330 zone_span_writeunlock(zone); 331 } 332 fix_zone_id(struct zone * zone,unsigned long start_pfn,unsigned long end_pfn)333 static void fix_zone_id(struct zone *zone, unsigned long start_pfn, 334 unsigned long end_pfn) 335 { 336 enum zone_type zid = zone_idx(zone); 337 int nid = zone->zone_pgdat->node_id; 338 unsigned long pfn; 339 340 for (pfn = start_pfn; pfn < end_pfn; pfn++) 341 set_page_links(pfn_to_page(pfn), zid, nid, pfn); 342 } 343 344 /* Can fail with -ENOMEM from allocating a wait table with vmalloc() or 345 * alloc_bootmem_node_nopanic()/memblock_virt_alloc_node_nopanic() */ ensure_zone_is_initialized(struct zone * zone,unsigned long start_pfn,unsigned long num_pages)346 static int __ref ensure_zone_is_initialized(struct zone *zone, 347 unsigned long start_pfn, unsigned long num_pages) 348 { 349 if (!zone_is_initialized(zone)) 350 return init_currently_empty_zone(zone, start_pfn, num_pages); 351 352 return 0; 353 } 354 move_pfn_range_left(struct zone * z1,struct zone * z2,unsigned long start_pfn,unsigned long end_pfn)355 static int __meminit move_pfn_range_left(struct zone *z1, struct zone *z2, 356 unsigned long start_pfn, unsigned long end_pfn) 357 { 358 int ret; 359 unsigned long flags; 360 unsigned long z1_start_pfn; 361 362 ret = ensure_zone_is_initialized(z1, start_pfn, end_pfn - start_pfn); 363 if (ret) 364 return ret; 365 366 pgdat_resize_lock(z1->zone_pgdat, &flags); 367 368 /* can't move pfns which are higher than @z2 */ 369 if (end_pfn > zone_end_pfn(z2)) 370 goto out_fail; 371 /* the move out part must be at the left most of @z2 */ 372 if (start_pfn > z2->zone_start_pfn) 373 goto out_fail; 374 /* must included/overlap */ 375 if (end_pfn <= z2->zone_start_pfn) 376 goto out_fail; 377 378 /* use start_pfn for z1's start_pfn if z1 is empty */ 379 if (!zone_is_empty(z1)) 380 z1_start_pfn = z1->zone_start_pfn; 381 else 382 z1_start_pfn = start_pfn; 383 384 resize_zone(z1, z1_start_pfn, end_pfn); 385 resize_zone(z2, end_pfn, zone_end_pfn(z2)); 386 387 pgdat_resize_unlock(z1->zone_pgdat, &flags); 388 389 fix_zone_id(z1, start_pfn, end_pfn); 390 391 return 0; 392 out_fail: 393 pgdat_resize_unlock(z1->zone_pgdat, &flags); 394 return -1; 395 } 396 move_pfn_range_right(struct zone * z1,struct zone * z2,unsigned long start_pfn,unsigned long end_pfn)397 static int __meminit move_pfn_range_right(struct zone *z1, struct zone *z2, 398 unsigned long start_pfn, unsigned long end_pfn) 399 { 400 int ret; 401 unsigned long flags; 402 unsigned long z2_end_pfn; 403 404 ret = ensure_zone_is_initialized(z2, start_pfn, end_pfn - start_pfn); 405 if (ret) 406 return ret; 407 408 pgdat_resize_lock(z1->zone_pgdat, &flags); 409 410 /* can't move pfns which are lower than @z1 */ 411 if (z1->zone_start_pfn > start_pfn) 412 goto out_fail; 413 /* the move out part mast at the right most of @z1 */ 414 if (zone_end_pfn(z1) > end_pfn) 415 goto out_fail; 416 /* must included/overlap */ 417 if (start_pfn >= zone_end_pfn(z1)) 418 goto out_fail; 419 420 /* use end_pfn for z2's end_pfn if z2 is empty */ 421 if (!zone_is_empty(z2)) 422 z2_end_pfn = zone_end_pfn(z2); 423 else 424 z2_end_pfn = end_pfn; 425 426 resize_zone(z1, z1->zone_start_pfn, start_pfn); 427 resize_zone(z2, start_pfn, z2_end_pfn); 428 429 pgdat_resize_unlock(z1->zone_pgdat, &flags); 430 431 fix_zone_id(z2, start_pfn, end_pfn); 432 433 return 0; 434 out_fail: 435 pgdat_resize_unlock(z1->zone_pgdat, &flags); 436 return -1; 437 } 438 move_pfn_range(int zone_shift,unsigned long start_pfn,unsigned long end_pfn)439 static struct zone * __meminit move_pfn_range(int zone_shift, 440 unsigned long start_pfn, unsigned long end_pfn) 441 { 442 struct zone *zone = page_zone(pfn_to_page(start_pfn)); 443 int ret = 0; 444 445 if (zone_shift < 0) 446 ret = move_pfn_range_left(zone + zone_shift, zone, 447 start_pfn, end_pfn); 448 else if (zone_shift) 449 ret = move_pfn_range_right(zone, zone + zone_shift, 450 start_pfn, end_pfn); 451 452 if (ret) 453 return NULL; 454 455 return zone + zone_shift; 456 } 457 grow_pgdat_span(struct pglist_data * pgdat,unsigned long start_pfn,unsigned long end_pfn)458 static void __meminit grow_pgdat_span(struct pglist_data *pgdat, unsigned long start_pfn, 459 unsigned long end_pfn) 460 { 461 unsigned long old_pgdat_end_pfn = pgdat_end_pfn(pgdat); 462 463 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn) 464 pgdat->node_start_pfn = start_pfn; 465 466 pgdat->node_spanned_pages = max(old_pgdat_end_pfn, end_pfn) - 467 pgdat->node_start_pfn; 468 } 469 __add_zone(struct zone * zone,unsigned long phys_start_pfn)470 static int __meminit __add_zone(struct zone *zone, unsigned long phys_start_pfn) 471 { 472 struct pglist_data *pgdat = zone->zone_pgdat; 473 int nr_pages = PAGES_PER_SECTION; 474 int nid = pgdat->node_id; 475 int zone_type; 476 unsigned long flags, pfn; 477 int ret; 478 479 zone_type = zone - pgdat->node_zones; 480 ret = ensure_zone_is_initialized(zone, phys_start_pfn, nr_pages); 481 if (ret) 482 return ret; 483 484 pgdat_resize_lock(zone->zone_pgdat, &flags); 485 grow_zone_span(zone, phys_start_pfn, phys_start_pfn + nr_pages); 486 grow_pgdat_span(zone->zone_pgdat, phys_start_pfn, 487 phys_start_pfn + nr_pages); 488 pgdat_resize_unlock(zone->zone_pgdat, &flags); 489 memmap_init_zone(nr_pages, nid, zone_type, 490 phys_start_pfn, MEMMAP_HOTPLUG); 491 492 /* online_page_range is called later and expects pages reserved */ 493 for (pfn = phys_start_pfn; pfn < phys_start_pfn + nr_pages; pfn++) { 494 if (!pfn_valid(pfn)) 495 continue; 496 497 SetPageReserved(pfn_to_page(pfn)); 498 } 499 return 0; 500 } 501 __add_section(int nid,struct zone * zone,unsigned long phys_start_pfn)502 static int __meminit __add_section(int nid, struct zone *zone, 503 unsigned long phys_start_pfn) 504 { 505 int ret; 506 507 if (pfn_valid(phys_start_pfn)) 508 return -EEXIST; 509 510 ret = sparse_add_one_section(zone, phys_start_pfn); 511 512 if (ret < 0) 513 return ret; 514 515 ret = __add_zone(zone, phys_start_pfn); 516 517 if (ret < 0) 518 return ret; 519 520 return register_new_memory(nid, __pfn_to_section(phys_start_pfn)); 521 } 522 523 /* 524 * Reasonably generic function for adding memory. It is 525 * expected that archs that support memory hotplug will 526 * call this function after deciding the zone to which to 527 * add the new pages. 528 */ __add_pages(int nid,struct zone * zone,unsigned long phys_start_pfn,unsigned long nr_pages)529 int __ref __add_pages(int nid, struct zone *zone, unsigned long phys_start_pfn, 530 unsigned long nr_pages) 531 { 532 unsigned long i; 533 int err = 0; 534 int start_sec, end_sec; 535 struct vmem_altmap *altmap; 536 537 clear_zone_contiguous(zone); 538 539 /* during initialize mem_map, align hot-added range to section */ 540 start_sec = pfn_to_section_nr(phys_start_pfn); 541 end_sec = pfn_to_section_nr(phys_start_pfn + nr_pages - 1); 542 543 altmap = to_vmem_altmap((unsigned long) pfn_to_page(phys_start_pfn)); 544 if (altmap) { 545 /* 546 * Validate altmap is within bounds of the total request 547 */ 548 if (altmap->base_pfn != phys_start_pfn 549 || vmem_altmap_offset(altmap) > nr_pages) { 550 pr_warn_once("memory add fail, invalid altmap\n"); 551 err = -EINVAL; 552 goto out; 553 } 554 altmap->alloc = 0; 555 } 556 557 for (i = start_sec; i <= end_sec; i++) { 558 err = __add_section(nid, zone, section_nr_to_pfn(i)); 559 560 /* 561 * EEXIST is finally dealt with by ioresource collision 562 * check. see add_memory() => register_memory_resource() 563 * Warning will be printed if there is collision. 564 */ 565 if (err && (err != -EEXIST)) 566 break; 567 err = 0; 568 } 569 vmemmap_populate_print_last(); 570 out: 571 set_zone_contiguous(zone); 572 return err; 573 } 574 EXPORT_SYMBOL_GPL(__add_pages); 575 576 #ifdef CONFIG_MEMORY_HOTREMOVE 577 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */ find_smallest_section_pfn(int nid,struct zone * zone,unsigned long start_pfn,unsigned long end_pfn)578 static int find_smallest_section_pfn(int nid, struct zone *zone, 579 unsigned long start_pfn, 580 unsigned long end_pfn) 581 { 582 struct mem_section *ms; 583 584 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SECTION) { 585 ms = __pfn_to_section(start_pfn); 586 587 if (unlikely(!valid_section(ms))) 588 continue; 589 590 if (unlikely(pfn_to_nid(start_pfn) != nid)) 591 continue; 592 593 if (zone && zone != page_zone(pfn_to_page(start_pfn))) 594 continue; 595 596 return start_pfn; 597 } 598 599 return 0; 600 } 601 602 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */ find_biggest_section_pfn(int nid,struct zone * zone,unsigned long start_pfn,unsigned long end_pfn)603 static int find_biggest_section_pfn(int nid, struct zone *zone, 604 unsigned long start_pfn, 605 unsigned long end_pfn) 606 { 607 struct mem_section *ms; 608 unsigned long pfn; 609 610 /* pfn is the end pfn of a memory section. */ 611 pfn = end_pfn - 1; 612 for (; pfn >= start_pfn; pfn -= PAGES_PER_SECTION) { 613 ms = __pfn_to_section(pfn); 614 615 if (unlikely(!valid_section(ms))) 616 continue; 617 618 if (unlikely(pfn_to_nid(pfn) != nid)) 619 continue; 620 621 if (zone && zone != page_zone(pfn_to_page(pfn))) 622 continue; 623 624 return pfn; 625 } 626 627 return 0; 628 } 629 shrink_zone_span(struct zone * zone,unsigned long start_pfn,unsigned long end_pfn)630 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn, 631 unsigned long end_pfn) 632 { 633 unsigned long zone_start_pfn = zone->zone_start_pfn; 634 unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */ 635 unsigned long zone_end_pfn = z; 636 unsigned long pfn; 637 struct mem_section *ms; 638 int nid = zone_to_nid(zone); 639 640 zone_span_writelock(zone); 641 if (zone_start_pfn == start_pfn) { 642 /* 643 * If the section is smallest section in the zone, it need 644 * shrink zone->zone_start_pfn and zone->zone_spanned_pages. 645 * In this case, we find second smallest valid mem_section 646 * for shrinking zone. 647 */ 648 pfn = find_smallest_section_pfn(nid, zone, end_pfn, 649 zone_end_pfn); 650 if (pfn) { 651 zone->zone_start_pfn = pfn; 652 zone->spanned_pages = zone_end_pfn - pfn; 653 } 654 } else if (zone_end_pfn == end_pfn) { 655 /* 656 * If the section is biggest section in the zone, it need 657 * shrink zone->spanned_pages. 658 * In this case, we find second biggest valid mem_section for 659 * shrinking zone. 660 */ 661 pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn, 662 start_pfn); 663 if (pfn) 664 zone->spanned_pages = pfn - zone_start_pfn + 1; 665 } 666 667 /* 668 * The section is not biggest or smallest mem_section in the zone, it 669 * only creates a hole in the zone. So in this case, we need not 670 * change the zone. But perhaps, the zone has only hole data. Thus 671 * it check the zone has only hole or not. 672 */ 673 pfn = zone_start_pfn; 674 for (; pfn < zone_end_pfn; pfn += PAGES_PER_SECTION) { 675 ms = __pfn_to_section(pfn); 676 677 if (unlikely(!valid_section(ms))) 678 continue; 679 680 if (page_zone(pfn_to_page(pfn)) != zone) 681 continue; 682 683 /* If the section is current section, it continues the loop */ 684 if (start_pfn == pfn) 685 continue; 686 687 /* If we find valid section, we have nothing to do */ 688 zone_span_writeunlock(zone); 689 return; 690 } 691 692 /* The zone has no valid section */ 693 zone->zone_start_pfn = 0; 694 zone->spanned_pages = 0; 695 zone_span_writeunlock(zone); 696 } 697 shrink_pgdat_span(struct pglist_data * pgdat,unsigned long start_pfn,unsigned long end_pfn)698 static void shrink_pgdat_span(struct pglist_data *pgdat, 699 unsigned long start_pfn, unsigned long end_pfn) 700 { 701 unsigned long pgdat_start_pfn = pgdat->node_start_pfn; 702 unsigned long p = pgdat_end_pfn(pgdat); /* pgdat_end_pfn namespace clash */ 703 unsigned long pgdat_end_pfn = p; 704 unsigned long pfn; 705 struct mem_section *ms; 706 int nid = pgdat->node_id; 707 708 if (pgdat_start_pfn == start_pfn) { 709 /* 710 * If the section is smallest section in the pgdat, it need 711 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages. 712 * In this case, we find second smallest valid mem_section 713 * for shrinking zone. 714 */ 715 pfn = find_smallest_section_pfn(nid, NULL, end_pfn, 716 pgdat_end_pfn); 717 if (pfn) { 718 pgdat->node_start_pfn = pfn; 719 pgdat->node_spanned_pages = pgdat_end_pfn - pfn; 720 } 721 } else if (pgdat_end_pfn == end_pfn) { 722 /* 723 * If the section is biggest section in the pgdat, it need 724 * shrink pgdat->node_spanned_pages. 725 * In this case, we find second biggest valid mem_section for 726 * shrinking zone. 727 */ 728 pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn, 729 start_pfn); 730 if (pfn) 731 pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1; 732 } 733 734 /* 735 * If the section is not biggest or smallest mem_section in the pgdat, 736 * it only creates a hole in the pgdat. So in this case, we need not 737 * change the pgdat. 738 * But perhaps, the pgdat has only hole data. Thus it check the pgdat 739 * has only hole or not. 740 */ 741 pfn = pgdat_start_pfn; 742 for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SECTION) { 743 ms = __pfn_to_section(pfn); 744 745 if (unlikely(!valid_section(ms))) 746 continue; 747 748 if (pfn_to_nid(pfn) != nid) 749 continue; 750 751 /* If the section is current section, it continues the loop */ 752 if (start_pfn == pfn) 753 continue; 754 755 /* If we find valid section, we have nothing to do */ 756 return; 757 } 758 759 /* The pgdat has no valid section */ 760 pgdat->node_start_pfn = 0; 761 pgdat->node_spanned_pages = 0; 762 } 763 __remove_zone(struct zone * zone,unsigned long start_pfn)764 static void __remove_zone(struct zone *zone, unsigned long start_pfn) 765 { 766 struct pglist_data *pgdat = zone->zone_pgdat; 767 int nr_pages = PAGES_PER_SECTION; 768 int zone_type; 769 unsigned long flags; 770 771 zone_type = zone - pgdat->node_zones; 772 773 pgdat_resize_lock(zone->zone_pgdat, &flags); 774 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages); 775 shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages); 776 pgdat_resize_unlock(zone->zone_pgdat, &flags); 777 } 778 __remove_section(struct zone * zone,struct mem_section * ms,unsigned long map_offset)779 static int __remove_section(struct zone *zone, struct mem_section *ms, 780 unsigned long map_offset) 781 { 782 unsigned long start_pfn; 783 int scn_nr; 784 int ret = -EINVAL; 785 786 if (!valid_section(ms)) 787 return ret; 788 789 ret = unregister_memory_section(ms); 790 if (ret) 791 return ret; 792 793 scn_nr = __section_nr(ms); 794 start_pfn = section_nr_to_pfn(scn_nr); 795 __remove_zone(zone, start_pfn); 796 797 sparse_remove_one_section(zone, ms, map_offset); 798 return 0; 799 } 800 801 /** 802 * __remove_pages() - remove sections of pages from a zone 803 * @zone: zone from which pages need to be removed 804 * @phys_start_pfn: starting pageframe (must be aligned to start of a section) 805 * @nr_pages: number of pages to remove (must be multiple of section size) 806 * 807 * Generic helper function to remove section mappings and sysfs entries 808 * for the section of the memory we are removing. Caller needs to make 809 * sure that pages are marked reserved and zones are adjust properly by 810 * calling offline_pages(). 811 */ __remove_pages(struct zone * zone,unsigned long phys_start_pfn,unsigned long nr_pages)812 int __remove_pages(struct zone *zone, unsigned long phys_start_pfn, 813 unsigned long nr_pages) 814 { 815 unsigned long i; 816 unsigned long map_offset = 0; 817 int sections_to_remove, ret = 0; 818 819 /* In the ZONE_DEVICE case device driver owns the memory region */ 820 if (is_dev_zone(zone)) { 821 struct page *page = pfn_to_page(phys_start_pfn); 822 struct vmem_altmap *altmap; 823 824 altmap = to_vmem_altmap((unsigned long) page); 825 if (altmap) 826 map_offset = vmem_altmap_offset(altmap); 827 } else { 828 resource_size_t start, size; 829 830 start = phys_start_pfn << PAGE_SHIFT; 831 size = nr_pages * PAGE_SIZE; 832 833 ret = release_mem_region_adjustable(&iomem_resource, start, 834 size); 835 if (ret) { 836 resource_size_t endres = start + size - 1; 837 838 pr_warn("Unable to release resource <%pa-%pa> (%d)\n", 839 &start, &endres, ret); 840 } 841 } 842 843 clear_zone_contiguous(zone); 844 845 /* 846 * We can only remove entire sections 847 */ 848 BUG_ON(phys_start_pfn & ~PAGE_SECTION_MASK); 849 BUG_ON(nr_pages % PAGES_PER_SECTION); 850 851 sections_to_remove = nr_pages / PAGES_PER_SECTION; 852 for (i = 0; i < sections_to_remove; i++) { 853 unsigned long pfn = phys_start_pfn + i*PAGES_PER_SECTION; 854 855 ret = __remove_section(zone, __pfn_to_section(pfn), map_offset); 856 map_offset = 0; 857 if (ret) 858 break; 859 } 860 861 set_zone_contiguous(zone); 862 863 return ret; 864 } 865 EXPORT_SYMBOL_GPL(__remove_pages); 866 #endif /* CONFIG_MEMORY_HOTREMOVE */ 867 set_online_page_callback(online_page_callback_t callback)868 int set_online_page_callback(online_page_callback_t callback) 869 { 870 int rc = -EINVAL; 871 872 get_online_mems(); 873 mutex_lock(&online_page_callback_lock); 874 875 if (online_page_callback == generic_online_page) { 876 online_page_callback = callback; 877 rc = 0; 878 } 879 880 mutex_unlock(&online_page_callback_lock); 881 put_online_mems(); 882 883 return rc; 884 } 885 EXPORT_SYMBOL_GPL(set_online_page_callback); 886 restore_online_page_callback(online_page_callback_t callback)887 int restore_online_page_callback(online_page_callback_t callback) 888 { 889 int rc = -EINVAL; 890 891 get_online_mems(); 892 mutex_lock(&online_page_callback_lock); 893 894 if (online_page_callback == callback) { 895 online_page_callback = generic_online_page; 896 rc = 0; 897 } 898 899 mutex_unlock(&online_page_callback_lock); 900 put_online_mems(); 901 902 return rc; 903 } 904 EXPORT_SYMBOL_GPL(restore_online_page_callback); 905 __online_page_set_limits(struct page * page)906 void __online_page_set_limits(struct page *page) 907 { 908 } 909 EXPORT_SYMBOL_GPL(__online_page_set_limits); 910 __online_page_increment_counters(struct page * page)911 void __online_page_increment_counters(struct page *page) 912 { 913 adjust_managed_page_count(page, 1); 914 } 915 EXPORT_SYMBOL_GPL(__online_page_increment_counters); 916 __online_page_free(struct page * page)917 void __online_page_free(struct page *page) 918 { 919 __free_reserved_page(page); 920 } 921 EXPORT_SYMBOL_GPL(__online_page_free); 922 generic_online_page(struct page * page)923 static void generic_online_page(struct page *page) 924 { 925 __online_page_set_limits(page); 926 __online_page_increment_counters(page); 927 __online_page_free(page); 928 } 929 online_pages_range(unsigned long start_pfn,unsigned long nr_pages,void * arg)930 static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages, 931 void *arg) 932 { 933 unsigned long i; 934 unsigned long onlined_pages = *(unsigned long *)arg; 935 struct page *page; 936 if (PageReserved(pfn_to_page(start_pfn))) 937 for (i = 0; i < nr_pages; i++) { 938 page = pfn_to_page(start_pfn + i); 939 (*online_page_callback)(page); 940 onlined_pages++; 941 } 942 *(unsigned long *)arg = onlined_pages; 943 return 0; 944 } 945 946 #ifdef CONFIG_MOVABLE_NODE 947 /* 948 * When CONFIG_MOVABLE_NODE, we permit onlining of a node which doesn't have 949 * normal memory. 950 */ can_online_high_movable(struct zone * zone)951 static bool can_online_high_movable(struct zone *zone) 952 { 953 return true; 954 } 955 #else /* CONFIG_MOVABLE_NODE */ 956 /* ensure every online node has NORMAL memory */ can_online_high_movable(struct zone * zone)957 static bool can_online_high_movable(struct zone *zone) 958 { 959 return node_state(zone_to_nid(zone), N_NORMAL_MEMORY); 960 } 961 #endif /* CONFIG_MOVABLE_NODE */ 962 963 /* check which state of node_states will be changed when online memory */ node_states_check_changes_online(unsigned long nr_pages,struct zone * zone,struct memory_notify * arg)964 static void node_states_check_changes_online(unsigned long nr_pages, 965 struct zone *zone, struct memory_notify *arg) 966 { 967 int nid = zone_to_nid(zone); 968 enum zone_type zone_last = ZONE_NORMAL; 969 970 /* 971 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY] 972 * contains nodes which have zones of 0...ZONE_NORMAL, 973 * set zone_last to ZONE_NORMAL. 974 * 975 * If we don't have HIGHMEM nor movable node, 976 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of 977 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE. 978 */ 979 if (N_MEMORY == N_NORMAL_MEMORY) 980 zone_last = ZONE_MOVABLE; 981 982 /* 983 * if the memory to be online is in a zone of 0...zone_last, and 984 * the zones of 0...zone_last don't have memory before online, we will 985 * need to set the node to node_states[N_NORMAL_MEMORY] after 986 * the memory is online. 987 */ 988 if (zone_idx(zone) <= zone_last && !node_state(nid, N_NORMAL_MEMORY)) 989 arg->status_change_nid_normal = nid; 990 else 991 arg->status_change_nid_normal = -1; 992 993 #ifdef CONFIG_HIGHMEM 994 /* 995 * If we have movable node, node_states[N_HIGH_MEMORY] 996 * contains nodes which have zones of 0...ZONE_HIGHMEM, 997 * set zone_last to ZONE_HIGHMEM. 998 * 999 * If we don't have movable node, node_states[N_NORMAL_MEMORY] 1000 * contains nodes which have zones of 0...ZONE_MOVABLE, 1001 * set zone_last to ZONE_MOVABLE. 1002 */ 1003 zone_last = ZONE_HIGHMEM; 1004 if (N_MEMORY == N_HIGH_MEMORY) 1005 zone_last = ZONE_MOVABLE; 1006 1007 if (zone_idx(zone) <= zone_last && !node_state(nid, N_HIGH_MEMORY)) 1008 arg->status_change_nid_high = nid; 1009 else 1010 arg->status_change_nid_high = -1; 1011 #else 1012 arg->status_change_nid_high = arg->status_change_nid_normal; 1013 #endif 1014 1015 /* 1016 * if the node don't have memory befor online, we will need to 1017 * set the node to node_states[N_MEMORY] after the memory 1018 * is online. 1019 */ 1020 if (!node_state(nid, N_MEMORY)) 1021 arg->status_change_nid = nid; 1022 else 1023 arg->status_change_nid = -1; 1024 } 1025 node_states_set_node(int node,struct memory_notify * arg)1026 static void node_states_set_node(int node, struct memory_notify *arg) 1027 { 1028 if (arg->status_change_nid_normal >= 0) 1029 node_set_state(node, N_NORMAL_MEMORY); 1030 1031 if (arg->status_change_nid_high >= 0) 1032 node_set_state(node, N_HIGH_MEMORY); 1033 1034 node_set_state(node, N_MEMORY); 1035 } 1036 zone_can_shift(unsigned long pfn,unsigned long nr_pages,enum zone_type target,int * zone_shift)1037 bool zone_can_shift(unsigned long pfn, unsigned long nr_pages, 1038 enum zone_type target, int *zone_shift) 1039 { 1040 struct zone *zone = page_zone(pfn_to_page(pfn)); 1041 enum zone_type idx = zone_idx(zone); 1042 int i; 1043 1044 *zone_shift = 0; 1045 1046 if (idx < target) { 1047 /* pages must be at end of current zone */ 1048 if (pfn + nr_pages != zone_end_pfn(zone)) 1049 return false; 1050 1051 /* no zones in use between current zone and target */ 1052 for (i = idx + 1; i < target; i++) 1053 if (zone_is_initialized(zone - idx + i)) 1054 return false; 1055 } 1056 1057 if (target < idx) { 1058 /* pages must be at beginning of current zone */ 1059 if (pfn != zone->zone_start_pfn) 1060 return false; 1061 1062 /* no zones in use between current zone and target */ 1063 for (i = target + 1; i < idx; i++) 1064 if (zone_is_initialized(zone - idx + i)) 1065 return false; 1066 } 1067 1068 *zone_shift = target - idx; 1069 return true; 1070 } 1071 1072 /* Must be protected by mem_hotplug_begin() */ online_pages(unsigned long pfn,unsigned long nr_pages,int online_type)1073 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type) 1074 { 1075 unsigned long flags; 1076 unsigned long onlined_pages = 0; 1077 struct zone *zone; 1078 int need_zonelists_rebuild = 0; 1079 int nid; 1080 int ret; 1081 struct memory_notify arg; 1082 int zone_shift = 0; 1083 1084 /* 1085 * This doesn't need a lock to do pfn_to_page(). 1086 * The section can't be removed here because of the 1087 * memory_block->state_mutex. 1088 */ 1089 zone = page_zone(pfn_to_page(pfn)); 1090 1091 if ((zone_idx(zone) > ZONE_NORMAL || 1092 online_type == MMOP_ONLINE_MOVABLE) && 1093 !can_online_high_movable(zone)) 1094 return -EINVAL; 1095 1096 if (online_type == MMOP_ONLINE_KERNEL) { 1097 if (!zone_can_shift(pfn, nr_pages, ZONE_NORMAL, &zone_shift)) 1098 return -EINVAL; 1099 } else if (online_type == MMOP_ONLINE_MOVABLE) { 1100 if (!zone_can_shift(pfn, nr_pages, ZONE_MOVABLE, &zone_shift)) 1101 return -EINVAL; 1102 } 1103 1104 zone = move_pfn_range(zone_shift, pfn, pfn + nr_pages); 1105 if (!zone) 1106 return -EINVAL; 1107 1108 arg.start_pfn = pfn; 1109 arg.nr_pages = nr_pages; 1110 node_states_check_changes_online(nr_pages, zone, &arg); 1111 1112 nid = zone_to_nid(zone); 1113 1114 ret = memory_notify(MEM_GOING_ONLINE, &arg); 1115 ret = notifier_to_errno(ret); 1116 if (ret) 1117 goto failed_addition; 1118 1119 /* 1120 * If this zone is not populated, then it is not in zonelist. 1121 * This means the page allocator ignores this zone. 1122 * So, zonelist must be updated after online. 1123 */ 1124 mutex_lock(&zonelists_mutex); 1125 if (!populated_zone(zone)) { 1126 need_zonelists_rebuild = 1; 1127 build_all_zonelists(NULL, zone); 1128 } 1129 1130 ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages, 1131 online_pages_range); 1132 if (ret) { 1133 if (need_zonelists_rebuild) 1134 zone_pcp_reset(zone); 1135 mutex_unlock(&zonelists_mutex); 1136 goto failed_addition; 1137 } 1138 1139 zone->present_pages += onlined_pages; 1140 1141 pgdat_resize_lock(zone->zone_pgdat, &flags); 1142 zone->zone_pgdat->node_present_pages += onlined_pages; 1143 pgdat_resize_unlock(zone->zone_pgdat, &flags); 1144 1145 if (onlined_pages) { 1146 node_states_set_node(nid, &arg); 1147 if (need_zonelists_rebuild) 1148 build_all_zonelists(NULL, NULL); 1149 else 1150 zone_pcp_update(zone); 1151 } 1152 1153 mutex_unlock(&zonelists_mutex); 1154 1155 init_per_zone_wmark_min(); 1156 1157 if (onlined_pages) { 1158 kswapd_run(nid); 1159 kcompactd_run(nid); 1160 } 1161 1162 vm_total_pages = nr_free_pagecache_pages(); 1163 1164 writeback_set_ratelimit(); 1165 1166 if (onlined_pages) 1167 memory_notify(MEM_ONLINE, &arg); 1168 return 0; 1169 1170 failed_addition: 1171 pr_debug("online_pages [mem %#010llx-%#010llx] failed\n", 1172 (unsigned long long) pfn << PAGE_SHIFT, 1173 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1); 1174 memory_notify(MEM_CANCEL_ONLINE, &arg); 1175 return ret; 1176 } 1177 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */ 1178 reset_node_present_pages(pg_data_t * pgdat)1179 static void reset_node_present_pages(pg_data_t *pgdat) 1180 { 1181 struct zone *z; 1182 1183 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) 1184 z->present_pages = 0; 1185 1186 pgdat->node_present_pages = 0; 1187 } 1188 1189 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */ hotadd_new_pgdat(int nid,u64 start)1190 static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start) 1191 { 1192 struct pglist_data *pgdat; 1193 unsigned long zones_size[MAX_NR_ZONES] = {0}; 1194 unsigned long zholes_size[MAX_NR_ZONES] = {0}; 1195 unsigned long start_pfn = PFN_DOWN(start); 1196 1197 pgdat = NODE_DATA(nid); 1198 if (!pgdat) { 1199 pgdat = arch_alloc_nodedata(nid); 1200 if (!pgdat) 1201 return NULL; 1202 1203 arch_refresh_nodedata(nid, pgdat); 1204 } else { 1205 /* Reset the nr_zones, order and classzone_idx before reuse */ 1206 pgdat->nr_zones = 0; 1207 pgdat->kswapd_order = 0; 1208 pgdat->kswapd_classzone_idx = 0; 1209 } 1210 1211 /* we can use NODE_DATA(nid) from here */ 1212 1213 /* init node's zones as empty zones, we don't have any present pages.*/ 1214 free_area_init_node(nid, zones_size, start_pfn, zholes_size); 1215 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat); 1216 1217 /* 1218 * The node we allocated has no zone fallback lists. For avoiding 1219 * to access not-initialized zonelist, build here. 1220 */ 1221 mutex_lock(&zonelists_mutex); 1222 build_all_zonelists(pgdat, NULL); 1223 mutex_unlock(&zonelists_mutex); 1224 1225 /* 1226 * zone->managed_pages is set to an approximate value in 1227 * free_area_init_core(), which will cause 1228 * /sys/device/system/node/nodeX/meminfo has wrong data. 1229 * So reset it to 0 before any memory is onlined. 1230 */ 1231 reset_node_managed_pages(pgdat); 1232 1233 /* 1234 * When memory is hot-added, all the memory is in offline state. So 1235 * clear all zones' present_pages because they will be updated in 1236 * online_pages() and offline_pages(). 1237 */ 1238 reset_node_present_pages(pgdat); 1239 1240 return pgdat; 1241 } 1242 rollback_node_hotadd(int nid,pg_data_t * pgdat)1243 static void rollback_node_hotadd(int nid, pg_data_t *pgdat) 1244 { 1245 arch_refresh_nodedata(nid, NULL); 1246 free_percpu(pgdat->per_cpu_nodestats); 1247 arch_free_nodedata(pgdat); 1248 return; 1249 } 1250 1251 1252 /** 1253 * try_online_node - online a node if offlined 1254 * 1255 * called by cpu_up() to online a node without onlined memory. 1256 */ try_online_node(int nid)1257 int try_online_node(int nid) 1258 { 1259 pg_data_t *pgdat; 1260 int ret; 1261 1262 if (node_online(nid)) 1263 return 0; 1264 1265 mem_hotplug_begin(); 1266 pgdat = hotadd_new_pgdat(nid, 0); 1267 if (!pgdat) { 1268 pr_err("Cannot online node %d due to NULL pgdat\n", nid); 1269 ret = -ENOMEM; 1270 goto out; 1271 } 1272 node_set_online(nid); 1273 ret = register_one_node(nid); 1274 BUG_ON(ret); 1275 1276 if (pgdat->node_zonelists->_zonerefs->zone == NULL) { 1277 mutex_lock(&zonelists_mutex); 1278 build_all_zonelists(NULL, NULL); 1279 mutex_unlock(&zonelists_mutex); 1280 } 1281 1282 out: 1283 mem_hotplug_done(); 1284 return ret; 1285 } 1286 check_hotplug_memory_range(u64 start,u64 size)1287 static int check_hotplug_memory_range(u64 start, u64 size) 1288 { 1289 u64 start_pfn = PFN_DOWN(start); 1290 u64 nr_pages = size >> PAGE_SHIFT; 1291 1292 /* Memory range must be aligned with section */ 1293 if ((start_pfn & ~PAGE_SECTION_MASK) || 1294 (nr_pages % PAGES_PER_SECTION) || (!nr_pages)) { 1295 pr_err("Section-unaligned hotplug range: start 0x%llx, size 0x%llx\n", 1296 (unsigned long long)start, 1297 (unsigned long long)size); 1298 return -EINVAL; 1299 } 1300 1301 return 0; 1302 } 1303 1304 /* 1305 * If movable zone has already been setup, newly added memory should be check. 1306 * If its address is higher than movable zone, it should be added as movable. 1307 * Without this check, movable zone may overlap with other zone. 1308 */ should_add_memory_movable(int nid,u64 start,u64 size)1309 static int should_add_memory_movable(int nid, u64 start, u64 size) 1310 { 1311 unsigned long start_pfn = start >> PAGE_SHIFT; 1312 pg_data_t *pgdat = NODE_DATA(nid); 1313 struct zone *movable_zone = pgdat->node_zones + ZONE_MOVABLE; 1314 1315 if (zone_is_empty(movable_zone)) 1316 return 0; 1317 1318 if (movable_zone->zone_start_pfn <= start_pfn) 1319 return 1; 1320 1321 return 0; 1322 } 1323 zone_for_memory(int nid,u64 start,u64 size,int zone_default,bool for_device)1324 int zone_for_memory(int nid, u64 start, u64 size, int zone_default, 1325 bool for_device) 1326 { 1327 #ifdef CONFIG_ZONE_DEVICE 1328 if (for_device) 1329 return ZONE_DEVICE; 1330 #endif 1331 if (should_add_memory_movable(nid, start, size)) 1332 return ZONE_MOVABLE; 1333 1334 return zone_default; 1335 } 1336 online_memory_block(struct memory_block * mem,void * arg)1337 static int online_memory_block(struct memory_block *mem, void *arg) 1338 { 1339 return memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE); 1340 } 1341 1342 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */ add_memory_resource(int nid,struct resource * res,bool online)1343 int __ref add_memory_resource(int nid, struct resource *res, bool online) 1344 { 1345 u64 start, size; 1346 pg_data_t *pgdat = NULL; 1347 bool new_pgdat; 1348 bool new_node; 1349 int ret; 1350 1351 start = res->start; 1352 size = resource_size(res); 1353 1354 ret = check_hotplug_memory_range(start, size); 1355 if (ret) 1356 return ret; 1357 1358 { /* Stupid hack to suppress address-never-null warning */ 1359 void *p = NODE_DATA(nid); 1360 new_pgdat = !p; 1361 } 1362 1363 mem_hotplug_begin(); 1364 1365 /* 1366 * Add new range to memblock so that when hotadd_new_pgdat() is called 1367 * to allocate new pgdat, get_pfn_range_for_nid() will be able to find 1368 * this new range and calculate total pages correctly. The range will 1369 * be removed at hot-remove time. 1370 */ 1371 memblock_add_node(start, size, nid); 1372 1373 new_node = !node_online(nid); 1374 if (new_node) { 1375 pgdat = hotadd_new_pgdat(nid, start); 1376 ret = -ENOMEM; 1377 if (!pgdat) 1378 goto error; 1379 } 1380 1381 /* call arch's memory hotadd */ 1382 ret = arch_add_memory(nid, start, size, false); 1383 1384 if (ret < 0) 1385 goto error; 1386 1387 /* we online node here. we can't roll back from here. */ 1388 node_set_online(nid); 1389 1390 if (new_node) { 1391 ret = register_one_node(nid); 1392 /* 1393 * If sysfs file of new node can't create, cpu on the node 1394 * can't be hot-added. There is no rollback way now. 1395 * So, check by BUG_ON() to catch it reluctantly.. 1396 */ 1397 BUG_ON(ret); 1398 } 1399 1400 /* create new memmap entry */ 1401 firmware_map_add_hotplug(start, start + size, "System RAM"); 1402 1403 /* online pages if requested */ 1404 if (online) 1405 walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), 1406 NULL, online_memory_block); 1407 1408 goto out; 1409 1410 error: 1411 /* rollback pgdat allocation and others */ 1412 if (new_pgdat) 1413 rollback_node_hotadd(nid, pgdat); 1414 memblock_remove(start, size); 1415 1416 out: 1417 mem_hotplug_done(); 1418 return ret; 1419 } 1420 EXPORT_SYMBOL_GPL(add_memory_resource); 1421 add_memory(int nid,u64 start,u64 size)1422 int __ref add_memory(int nid, u64 start, u64 size) 1423 { 1424 struct resource *res; 1425 int ret; 1426 1427 res = register_memory_resource(start, size); 1428 if (IS_ERR(res)) 1429 return PTR_ERR(res); 1430 1431 ret = add_memory_resource(nid, res, memhp_auto_online); 1432 if (ret < 0) 1433 release_memory_resource(res); 1434 return ret; 1435 } 1436 EXPORT_SYMBOL_GPL(add_memory); 1437 1438 #ifdef CONFIG_MEMORY_HOTREMOVE 1439 /* 1440 * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy 1441 * set and the size of the free page is given by page_order(). Using this, 1442 * the function determines if the pageblock contains only free pages. 1443 * Due to buddy contraints, a free page at least the size of a pageblock will 1444 * be located at the start of the pageblock 1445 */ pageblock_free(struct page * page)1446 static inline int pageblock_free(struct page *page) 1447 { 1448 return PageBuddy(page) && page_order(page) >= pageblock_order; 1449 } 1450 1451 /* Return the start of the next active pageblock after a given page */ next_active_pageblock(struct page * page)1452 static struct page *next_active_pageblock(struct page *page) 1453 { 1454 /* Ensure the starting page is pageblock-aligned */ 1455 BUG_ON(page_to_pfn(page) & (pageblock_nr_pages - 1)); 1456 1457 /* If the entire pageblock is free, move to the end of free page */ 1458 if (pageblock_free(page)) { 1459 int order; 1460 /* be careful. we don't have locks, page_order can be changed.*/ 1461 order = page_order(page); 1462 if ((order < MAX_ORDER) && (order >= pageblock_order)) 1463 return page + (1 << order); 1464 } 1465 1466 return page + pageblock_nr_pages; 1467 } 1468 1469 /* Checks if this range of memory is likely to be hot-removable. */ is_mem_section_removable(unsigned long start_pfn,unsigned long nr_pages)1470 bool is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages) 1471 { 1472 struct page *page = pfn_to_page(start_pfn); 1473 struct page *end_page = page + nr_pages; 1474 1475 /* Check the starting page of each pageblock within the range */ 1476 for (; page < end_page; page = next_active_pageblock(page)) { 1477 if (!is_pageblock_removable_nolock(page)) 1478 return false; 1479 cond_resched(); 1480 } 1481 1482 /* All pageblocks in the memory block are likely to be hot-removable */ 1483 return true; 1484 } 1485 1486 /* 1487 * Confirm all pages in a range [start, end) belong to the same zone. 1488 * When true, return its valid [start, end). 1489 */ test_pages_in_a_zone(unsigned long start_pfn,unsigned long end_pfn,unsigned long * valid_start,unsigned long * valid_end)1490 int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn, 1491 unsigned long *valid_start, unsigned long *valid_end) 1492 { 1493 unsigned long pfn, sec_end_pfn; 1494 unsigned long start, end; 1495 struct zone *zone = NULL; 1496 struct page *page; 1497 int i; 1498 for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1); 1499 pfn < end_pfn; 1500 pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) { 1501 /* Make sure the memory section is present first */ 1502 if (!present_section_nr(pfn_to_section_nr(pfn))) 1503 continue; 1504 for (; pfn < sec_end_pfn && pfn < end_pfn; 1505 pfn += MAX_ORDER_NR_PAGES) { 1506 i = 0; 1507 /* This is just a CONFIG_HOLES_IN_ZONE check.*/ 1508 while ((i < MAX_ORDER_NR_PAGES) && 1509 !pfn_valid_within(pfn + i)) 1510 i++; 1511 if (i == MAX_ORDER_NR_PAGES) 1512 continue; 1513 page = pfn_to_page(pfn + i); 1514 if (zone && page_zone(page) != zone) 1515 return 0; 1516 if (!zone) 1517 start = pfn + i; 1518 zone = page_zone(page); 1519 end = pfn + MAX_ORDER_NR_PAGES; 1520 } 1521 } 1522 1523 if (zone) { 1524 *valid_start = start; 1525 *valid_end = end; 1526 return 1; 1527 } else { 1528 return 0; 1529 } 1530 } 1531 1532 /* 1533 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages 1534 * and hugepages). We scan pfn because it's much easier than scanning over 1535 * linked list. This function returns the pfn of the first found movable 1536 * page if it's found, otherwise 0. 1537 */ scan_movable_pages(unsigned long start,unsigned long end)1538 static unsigned long scan_movable_pages(unsigned long start, unsigned long end) 1539 { 1540 unsigned long pfn; 1541 struct page *page; 1542 for (pfn = start; pfn < end; pfn++) { 1543 if (pfn_valid(pfn)) { 1544 page = pfn_to_page(pfn); 1545 if (PageLRU(page)) 1546 return pfn; 1547 if (PageHuge(page)) { 1548 if (page_huge_active(page)) 1549 return pfn; 1550 else 1551 pfn = round_up(pfn + 1, 1552 1 << compound_order(page)) - 1; 1553 } 1554 } 1555 } 1556 return 0; 1557 } 1558 new_node_page(struct page * page,unsigned long private,int ** result)1559 static struct page *new_node_page(struct page *page, unsigned long private, 1560 int **result) 1561 { 1562 gfp_t gfp_mask = GFP_USER | __GFP_MOVABLE; 1563 int nid = page_to_nid(page); 1564 nodemask_t nmask = node_states[N_MEMORY]; 1565 struct page *new_page = NULL; 1566 1567 /* 1568 * TODO: allocate a destination hugepage from a nearest neighbor node, 1569 * accordance with memory policy of the user process if possible. For 1570 * now as a simple work-around, we use the next node for destination. 1571 */ 1572 if (PageHuge(page)) 1573 return alloc_huge_page_node(page_hstate(compound_head(page)), 1574 next_node_in(nid, nmask)); 1575 1576 node_clear(nid, nmask); 1577 1578 if (PageHighMem(page) 1579 || (zone_idx(page_zone(page)) == ZONE_MOVABLE)) 1580 gfp_mask |= __GFP_HIGHMEM; 1581 1582 if (!nodes_empty(nmask)) 1583 new_page = __alloc_pages_nodemask(gfp_mask, 0, 1584 node_zonelist(nid, gfp_mask), &nmask); 1585 if (!new_page) 1586 new_page = __alloc_pages(gfp_mask, 0, 1587 node_zonelist(nid, gfp_mask)); 1588 1589 return new_page; 1590 } 1591 1592 #define NR_OFFLINE_AT_ONCE_PAGES (256) 1593 static int do_migrate_range(unsigned long start_pfn,unsigned long end_pfn)1594 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn) 1595 { 1596 unsigned long pfn; 1597 struct page *page; 1598 int move_pages = NR_OFFLINE_AT_ONCE_PAGES; 1599 int not_managed = 0; 1600 int ret = 0; 1601 LIST_HEAD(source); 1602 1603 for (pfn = start_pfn; pfn < end_pfn && move_pages > 0; pfn++) { 1604 if (!pfn_valid(pfn)) 1605 continue; 1606 page = pfn_to_page(pfn); 1607 1608 if (PageHuge(page)) { 1609 struct page *head = compound_head(page); 1610 pfn = page_to_pfn(head) + (1<<compound_order(head)) - 1; 1611 if (compound_order(head) > PFN_SECTION_SHIFT) { 1612 ret = -EBUSY; 1613 break; 1614 } 1615 if (isolate_huge_page(page, &source)) 1616 move_pages -= 1 << compound_order(head); 1617 continue; 1618 } 1619 1620 if (!get_page_unless_zero(page)) 1621 continue; 1622 /* 1623 * We can skip free pages. And we can only deal with pages on 1624 * LRU. 1625 */ 1626 ret = isolate_lru_page(page); 1627 if (!ret) { /* Success */ 1628 put_page(page); 1629 list_add_tail(&page->lru, &source); 1630 move_pages--; 1631 inc_node_page_state(page, NR_ISOLATED_ANON + 1632 page_is_file_cache(page)); 1633 1634 } else { 1635 #ifdef CONFIG_DEBUG_VM 1636 pr_alert("removing pfn %lx from LRU failed\n", pfn); 1637 dump_page(page, "failed to remove from LRU"); 1638 #endif 1639 put_page(page); 1640 /* Because we don't have big zone->lock. we should 1641 check this again here. */ 1642 if (page_count(page)) { 1643 not_managed++; 1644 ret = -EBUSY; 1645 break; 1646 } 1647 } 1648 } 1649 if (!list_empty(&source)) { 1650 if (not_managed) { 1651 putback_movable_pages(&source); 1652 goto out; 1653 } 1654 1655 /* Allocate a new page from the nearest neighbor node */ 1656 ret = migrate_pages(&source, new_node_page, NULL, 0, 1657 MIGRATE_SYNC, MR_MEMORY_HOTPLUG); 1658 if (ret) 1659 putback_movable_pages(&source); 1660 } 1661 out: 1662 return ret; 1663 } 1664 1665 /* 1666 * remove from free_area[] and mark all as Reserved. 1667 */ 1668 static int offline_isolated_pages_cb(unsigned long start,unsigned long nr_pages,void * data)1669 offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages, 1670 void *data) 1671 { 1672 __offline_isolated_pages(start, start + nr_pages); 1673 return 0; 1674 } 1675 1676 static void offline_isolated_pages(unsigned long start_pfn,unsigned long end_pfn)1677 offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 1678 { 1679 walk_system_ram_range(start_pfn, end_pfn - start_pfn, NULL, 1680 offline_isolated_pages_cb); 1681 } 1682 1683 /* 1684 * Check all pages in range, recoreded as memory resource, are isolated. 1685 */ 1686 static int check_pages_isolated_cb(unsigned long start_pfn,unsigned long nr_pages,void * data)1687 check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages, 1688 void *data) 1689 { 1690 int ret; 1691 long offlined = *(long *)data; 1692 ret = test_pages_isolated(start_pfn, start_pfn + nr_pages, true); 1693 offlined = nr_pages; 1694 if (!ret) 1695 *(long *)data += offlined; 1696 return ret; 1697 } 1698 1699 static long check_pages_isolated(unsigned long start_pfn,unsigned long end_pfn)1700 check_pages_isolated(unsigned long start_pfn, unsigned long end_pfn) 1701 { 1702 long offlined = 0; 1703 int ret; 1704 1705 ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn, &offlined, 1706 check_pages_isolated_cb); 1707 if (ret < 0) 1708 offlined = (long)ret; 1709 return offlined; 1710 } 1711 1712 #ifdef CONFIG_MOVABLE_NODE 1713 /* 1714 * When CONFIG_MOVABLE_NODE, we permit offlining of a node which doesn't have 1715 * normal memory. 1716 */ can_offline_normal(struct zone * zone,unsigned long nr_pages)1717 static bool can_offline_normal(struct zone *zone, unsigned long nr_pages) 1718 { 1719 return true; 1720 } 1721 #else /* CONFIG_MOVABLE_NODE */ 1722 /* ensure the node has NORMAL memory if it is still online */ can_offline_normal(struct zone * zone,unsigned long nr_pages)1723 static bool can_offline_normal(struct zone *zone, unsigned long nr_pages) 1724 { 1725 struct pglist_data *pgdat = zone->zone_pgdat; 1726 unsigned long present_pages = 0; 1727 enum zone_type zt; 1728 1729 for (zt = 0; zt <= ZONE_NORMAL; zt++) 1730 present_pages += pgdat->node_zones[zt].present_pages; 1731 1732 if (present_pages > nr_pages) 1733 return true; 1734 1735 present_pages = 0; 1736 for (; zt <= ZONE_MOVABLE; zt++) 1737 present_pages += pgdat->node_zones[zt].present_pages; 1738 1739 /* 1740 * we can't offline the last normal memory until all 1741 * higher memory is offlined. 1742 */ 1743 return present_pages == 0; 1744 } 1745 #endif /* CONFIG_MOVABLE_NODE */ 1746 cmdline_parse_movable_node(char * p)1747 static int __init cmdline_parse_movable_node(char *p) 1748 { 1749 #ifdef CONFIG_MOVABLE_NODE 1750 /* 1751 * Memory used by the kernel cannot be hot-removed because Linux 1752 * cannot migrate the kernel pages. When memory hotplug is 1753 * enabled, we should prevent memblock from allocating memory 1754 * for the kernel. 1755 * 1756 * ACPI SRAT records all hotpluggable memory ranges. But before 1757 * SRAT is parsed, we don't know about it. 1758 * 1759 * The kernel image is loaded into memory at very early time. We 1760 * cannot prevent this anyway. So on NUMA system, we set any 1761 * node the kernel resides in as un-hotpluggable. 1762 * 1763 * Since on modern servers, one node could have double-digit 1764 * gigabytes memory, we can assume the memory around the kernel 1765 * image is also un-hotpluggable. So before SRAT is parsed, just 1766 * allocate memory near the kernel image to try the best to keep 1767 * the kernel away from hotpluggable memory. 1768 */ 1769 memblock_set_bottom_up(true); 1770 movable_node_enabled = true; 1771 #else 1772 pr_warn("movable_node option not supported\n"); 1773 #endif 1774 return 0; 1775 } 1776 early_param("movable_node", cmdline_parse_movable_node); 1777 1778 /* check which state of node_states will be changed when offline memory */ node_states_check_changes_offline(unsigned long nr_pages,struct zone * zone,struct memory_notify * arg)1779 static void node_states_check_changes_offline(unsigned long nr_pages, 1780 struct zone *zone, struct memory_notify *arg) 1781 { 1782 struct pglist_data *pgdat = zone->zone_pgdat; 1783 unsigned long present_pages = 0; 1784 enum zone_type zt, zone_last = ZONE_NORMAL; 1785 1786 /* 1787 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY] 1788 * contains nodes which have zones of 0...ZONE_NORMAL, 1789 * set zone_last to ZONE_NORMAL. 1790 * 1791 * If we don't have HIGHMEM nor movable node, 1792 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of 1793 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE. 1794 */ 1795 if (N_MEMORY == N_NORMAL_MEMORY) 1796 zone_last = ZONE_MOVABLE; 1797 1798 /* 1799 * check whether node_states[N_NORMAL_MEMORY] will be changed. 1800 * If the memory to be offline is in a zone of 0...zone_last, 1801 * and it is the last present memory, 0...zone_last will 1802 * become empty after offline , thus we can determind we will 1803 * need to clear the node from node_states[N_NORMAL_MEMORY]. 1804 */ 1805 for (zt = 0; zt <= zone_last; zt++) 1806 present_pages += pgdat->node_zones[zt].present_pages; 1807 if (zone_idx(zone) <= zone_last && nr_pages >= present_pages) 1808 arg->status_change_nid_normal = zone_to_nid(zone); 1809 else 1810 arg->status_change_nid_normal = -1; 1811 1812 #ifdef CONFIG_HIGHMEM 1813 /* 1814 * If we have movable node, node_states[N_HIGH_MEMORY] 1815 * contains nodes which have zones of 0...ZONE_HIGHMEM, 1816 * set zone_last to ZONE_HIGHMEM. 1817 * 1818 * If we don't have movable node, node_states[N_NORMAL_MEMORY] 1819 * contains nodes which have zones of 0...ZONE_MOVABLE, 1820 * set zone_last to ZONE_MOVABLE. 1821 */ 1822 zone_last = ZONE_HIGHMEM; 1823 if (N_MEMORY == N_HIGH_MEMORY) 1824 zone_last = ZONE_MOVABLE; 1825 1826 for (; zt <= zone_last; zt++) 1827 present_pages += pgdat->node_zones[zt].present_pages; 1828 if (zone_idx(zone) <= zone_last && nr_pages >= present_pages) 1829 arg->status_change_nid_high = zone_to_nid(zone); 1830 else 1831 arg->status_change_nid_high = -1; 1832 #else 1833 arg->status_change_nid_high = arg->status_change_nid_normal; 1834 #endif 1835 1836 /* 1837 * node_states[N_HIGH_MEMORY] contains nodes which have 0...ZONE_MOVABLE 1838 */ 1839 zone_last = ZONE_MOVABLE; 1840 1841 /* 1842 * check whether node_states[N_HIGH_MEMORY] will be changed 1843 * If we try to offline the last present @nr_pages from the node, 1844 * we can determind we will need to clear the node from 1845 * node_states[N_HIGH_MEMORY]. 1846 */ 1847 for (; zt <= zone_last; zt++) 1848 present_pages += pgdat->node_zones[zt].present_pages; 1849 if (nr_pages >= present_pages) 1850 arg->status_change_nid = zone_to_nid(zone); 1851 else 1852 arg->status_change_nid = -1; 1853 } 1854 node_states_clear_node(int node,struct memory_notify * arg)1855 static void node_states_clear_node(int node, struct memory_notify *arg) 1856 { 1857 if (arg->status_change_nid_normal >= 0) 1858 node_clear_state(node, N_NORMAL_MEMORY); 1859 1860 if ((N_MEMORY != N_NORMAL_MEMORY) && 1861 (arg->status_change_nid_high >= 0)) 1862 node_clear_state(node, N_HIGH_MEMORY); 1863 1864 if ((N_MEMORY != N_HIGH_MEMORY) && 1865 (arg->status_change_nid >= 0)) 1866 node_clear_state(node, N_MEMORY); 1867 } 1868 __offline_pages(unsigned long start_pfn,unsigned long end_pfn,unsigned long timeout)1869 static int __ref __offline_pages(unsigned long start_pfn, 1870 unsigned long end_pfn, unsigned long timeout) 1871 { 1872 unsigned long pfn, nr_pages, expire; 1873 long offlined_pages; 1874 int ret, drain, retry_max, node; 1875 unsigned long flags; 1876 unsigned long valid_start, valid_end; 1877 struct zone *zone; 1878 struct memory_notify arg; 1879 1880 /* at least, alignment against pageblock is necessary */ 1881 if (!IS_ALIGNED(start_pfn, pageblock_nr_pages)) 1882 return -EINVAL; 1883 if (!IS_ALIGNED(end_pfn, pageblock_nr_pages)) 1884 return -EINVAL; 1885 /* This makes hotplug much easier...and readable. 1886 we assume this for now. .*/ 1887 if (!test_pages_in_a_zone(start_pfn, end_pfn, &valid_start, &valid_end)) 1888 return -EINVAL; 1889 1890 zone = page_zone(pfn_to_page(valid_start)); 1891 node = zone_to_nid(zone); 1892 nr_pages = end_pfn - start_pfn; 1893 1894 if (zone_idx(zone) <= ZONE_NORMAL && !can_offline_normal(zone, nr_pages)) 1895 return -EINVAL; 1896 1897 /* set above range as isolated */ 1898 ret = start_isolate_page_range(start_pfn, end_pfn, 1899 MIGRATE_MOVABLE, true); 1900 if (ret) 1901 return ret; 1902 1903 arg.start_pfn = start_pfn; 1904 arg.nr_pages = nr_pages; 1905 node_states_check_changes_offline(nr_pages, zone, &arg); 1906 1907 ret = memory_notify(MEM_GOING_OFFLINE, &arg); 1908 ret = notifier_to_errno(ret); 1909 if (ret) 1910 goto failed_removal; 1911 1912 pfn = start_pfn; 1913 expire = jiffies + timeout; 1914 drain = 0; 1915 retry_max = 5; 1916 repeat: 1917 /* start memory hot removal */ 1918 ret = -EAGAIN; 1919 if (time_after(jiffies, expire)) 1920 goto failed_removal; 1921 ret = -EINTR; 1922 if (signal_pending(current)) 1923 goto failed_removal; 1924 ret = 0; 1925 if (drain) { 1926 lru_add_drain_all(); 1927 cond_resched(); 1928 drain_all_pages(zone); 1929 } 1930 1931 pfn = scan_movable_pages(start_pfn, end_pfn); 1932 if (pfn) { /* We have movable pages */ 1933 ret = do_migrate_range(pfn, end_pfn); 1934 if (!ret) { 1935 drain = 1; 1936 goto repeat; 1937 } else { 1938 if (ret < 0) 1939 if (--retry_max == 0) 1940 goto failed_removal; 1941 yield(); 1942 drain = 1; 1943 goto repeat; 1944 } 1945 } 1946 /* drain all zone's lru pagevec, this is asynchronous... */ 1947 lru_add_drain_all(); 1948 yield(); 1949 /* drain pcp pages, this is synchronous. */ 1950 drain_all_pages(zone); 1951 /* 1952 * dissolve free hugepages in the memory block before doing offlining 1953 * actually in order to make hugetlbfs's object counting consistent. 1954 */ 1955 ret = dissolve_free_huge_pages(start_pfn, end_pfn); 1956 if (ret) 1957 goto failed_removal; 1958 /* check again */ 1959 offlined_pages = check_pages_isolated(start_pfn, end_pfn); 1960 if (offlined_pages < 0) { 1961 ret = -EBUSY; 1962 goto failed_removal; 1963 } 1964 pr_info("Offlined Pages %ld\n", offlined_pages); 1965 /* Ok, all of our target is isolated. 1966 We cannot do rollback at this point. */ 1967 offline_isolated_pages(start_pfn, end_pfn); 1968 /* reset pagetype flags and makes migrate type to be MOVABLE */ 1969 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE); 1970 /* removal success */ 1971 adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages); 1972 zone->present_pages -= offlined_pages; 1973 1974 pgdat_resize_lock(zone->zone_pgdat, &flags); 1975 zone->zone_pgdat->node_present_pages -= offlined_pages; 1976 pgdat_resize_unlock(zone->zone_pgdat, &flags); 1977 1978 init_per_zone_wmark_min(); 1979 1980 if (!populated_zone(zone)) { 1981 zone_pcp_reset(zone); 1982 mutex_lock(&zonelists_mutex); 1983 build_all_zonelists(NULL, NULL); 1984 mutex_unlock(&zonelists_mutex); 1985 } else 1986 zone_pcp_update(zone); 1987 1988 node_states_clear_node(node, &arg); 1989 if (arg.status_change_nid >= 0) { 1990 kswapd_stop(node); 1991 kcompactd_stop(node); 1992 } 1993 1994 vm_total_pages = nr_free_pagecache_pages(); 1995 writeback_set_ratelimit(); 1996 1997 memory_notify(MEM_OFFLINE, &arg); 1998 return 0; 1999 2000 failed_removal: 2001 pr_debug("memory offlining [mem %#010llx-%#010llx] failed\n", 2002 (unsigned long long) start_pfn << PAGE_SHIFT, 2003 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1); 2004 memory_notify(MEM_CANCEL_OFFLINE, &arg); 2005 /* pushback to free area */ 2006 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE); 2007 return ret; 2008 } 2009 2010 /* Must be protected by mem_hotplug_begin() */ offline_pages(unsigned long start_pfn,unsigned long nr_pages)2011 int offline_pages(unsigned long start_pfn, unsigned long nr_pages) 2012 { 2013 return __offline_pages(start_pfn, start_pfn + nr_pages, 120 * HZ); 2014 } 2015 #endif /* CONFIG_MEMORY_HOTREMOVE */ 2016 2017 /** 2018 * walk_memory_range - walks through all mem sections in [start_pfn, end_pfn) 2019 * @start_pfn: start pfn of the memory range 2020 * @end_pfn: end pfn of the memory range 2021 * @arg: argument passed to func 2022 * @func: callback for each memory section walked 2023 * 2024 * This function walks through all present mem sections in range 2025 * [start_pfn, end_pfn) and call func on each mem section. 2026 * 2027 * Returns the return value of func. 2028 */ walk_memory_range(unsigned long start_pfn,unsigned long end_pfn,void * arg,int (* func)(struct memory_block *,void *))2029 int walk_memory_range(unsigned long start_pfn, unsigned long end_pfn, 2030 void *arg, int (*func)(struct memory_block *, void *)) 2031 { 2032 struct memory_block *mem = NULL; 2033 struct mem_section *section; 2034 unsigned long pfn, section_nr; 2035 int ret; 2036 2037 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 2038 section_nr = pfn_to_section_nr(pfn); 2039 if (!present_section_nr(section_nr)) 2040 continue; 2041 2042 section = __nr_to_section(section_nr); 2043 /* same memblock? */ 2044 if (mem) 2045 if ((section_nr >= mem->start_section_nr) && 2046 (section_nr <= mem->end_section_nr)) 2047 continue; 2048 2049 mem = find_memory_block_hinted(section, mem); 2050 if (!mem) 2051 continue; 2052 2053 ret = func(mem, arg); 2054 if (ret) { 2055 kobject_put(&mem->dev.kobj); 2056 return ret; 2057 } 2058 } 2059 2060 if (mem) 2061 kobject_put(&mem->dev.kobj); 2062 2063 return 0; 2064 } 2065 2066 #ifdef CONFIG_MEMORY_HOTREMOVE check_memblock_offlined_cb(struct memory_block * mem,void * arg)2067 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg) 2068 { 2069 int ret = !is_memblock_offlined(mem); 2070 2071 if (unlikely(ret)) { 2072 phys_addr_t beginpa, endpa; 2073 2074 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr)); 2075 endpa = PFN_PHYS(section_nr_to_pfn(mem->end_section_nr + 1))-1; 2076 pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n", 2077 &beginpa, &endpa); 2078 } 2079 2080 return ret; 2081 } 2082 check_cpu_on_node(pg_data_t * pgdat)2083 static int check_cpu_on_node(pg_data_t *pgdat) 2084 { 2085 int cpu; 2086 2087 for_each_present_cpu(cpu) { 2088 if (cpu_to_node(cpu) == pgdat->node_id) 2089 /* 2090 * the cpu on this node isn't removed, and we can't 2091 * offline this node. 2092 */ 2093 return -EBUSY; 2094 } 2095 2096 return 0; 2097 } 2098 unmap_cpu_on_node(pg_data_t * pgdat)2099 static void unmap_cpu_on_node(pg_data_t *pgdat) 2100 { 2101 #ifdef CONFIG_ACPI_NUMA 2102 int cpu; 2103 2104 for_each_possible_cpu(cpu) 2105 if (cpu_to_node(cpu) == pgdat->node_id) 2106 numa_clear_node(cpu); 2107 #endif 2108 } 2109 check_and_unmap_cpu_on_node(pg_data_t * pgdat)2110 static int check_and_unmap_cpu_on_node(pg_data_t *pgdat) 2111 { 2112 int ret; 2113 2114 ret = check_cpu_on_node(pgdat); 2115 if (ret) 2116 return ret; 2117 2118 /* 2119 * the node will be offlined when we come here, so we can clear 2120 * the cpu_to_node() now. 2121 */ 2122 2123 unmap_cpu_on_node(pgdat); 2124 return 0; 2125 } 2126 2127 /** 2128 * try_offline_node 2129 * 2130 * Offline a node if all memory sections and cpus of the node are removed. 2131 * 2132 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 2133 * and online/offline operations before this call. 2134 */ try_offline_node(int nid)2135 void try_offline_node(int nid) 2136 { 2137 pg_data_t *pgdat = NODE_DATA(nid); 2138 unsigned long start_pfn = pgdat->node_start_pfn; 2139 unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages; 2140 unsigned long pfn; 2141 2142 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 2143 unsigned long section_nr = pfn_to_section_nr(pfn); 2144 2145 if (!present_section_nr(section_nr)) 2146 continue; 2147 2148 if (pfn_to_nid(pfn) != nid) 2149 continue; 2150 2151 /* 2152 * some memory sections of this node are not removed, and we 2153 * can't offline node now. 2154 */ 2155 return; 2156 } 2157 2158 if (check_and_unmap_cpu_on_node(pgdat)) 2159 return; 2160 2161 /* 2162 * all memory/cpu of this node are removed, we can offline this 2163 * node now. 2164 */ 2165 node_set_offline(nid); 2166 unregister_one_node(nid); 2167 } 2168 EXPORT_SYMBOL(try_offline_node); 2169 2170 /** 2171 * remove_memory 2172 * 2173 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 2174 * and online/offline operations before this call, as required by 2175 * try_offline_node(). 2176 */ remove_memory(int nid,u64 start,u64 size)2177 void __ref remove_memory(int nid, u64 start, u64 size) 2178 { 2179 int ret; 2180 2181 BUG_ON(check_hotplug_memory_range(start, size)); 2182 2183 mem_hotplug_begin(); 2184 2185 /* 2186 * All memory blocks must be offlined before removing memory. Check 2187 * whether all memory blocks in question are offline and trigger a BUG() 2188 * if this is not the case. 2189 */ 2190 ret = walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), NULL, 2191 check_memblock_offlined_cb); 2192 if (ret) 2193 BUG(); 2194 2195 /* remove memmap entry */ 2196 firmware_map_remove(start, start + size, "System RAM"); 2197 memblock_free(start, size); 2198 memblock_remove(start, size); 2199 2200 arch_remove_memory(start, size); 2201 2202 try_offline_node(nid); 2203 2204 mem_hotplug_done(); 2205 } 2206 EXPORT_SYMBOL_GPL(remove_memory); 2207 #endif /* CONFIG_MEMORY_HOTREMOVE */ 2208