• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Memory Migration functionality - linux/mm/migrate.c
3  *
4  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5  *
6  * Page migration was first developed in the context of the memory hotplug
7  * project. The main authors of the migration code are:
8  *
9  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10  * Hirokazu Takahashi <taka@valinux.co.jp>
11  * Dave Hansen <haveblue@us.ibm.com>
12  * Christoph Lameter
13  */
14 
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/backing-dev.h>
34 #include <linux/compaction.h>
35 #include <linux/syscalls.h>
36 #include <linux/hugetlb.h>
37 #include <linux/hugetlb_cgroup.h>
38 #include <linux/gfp.h>
39 #include <linux/balloon_compaction.h>
40 #include <linux/mmu_notifier.h>
41 #include <linux/page_idle.h>
42 #include <linux/page_owner.h>
43 #include <linux/ptrace.h>
44 
45 #include <asm/tlbflush.h>
46 
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/migrate.h>
49 
50 #include "internal.h"
51 
52 /*
53  * migrate_prep() needs to be called before we start compiling a list of pages
54  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
55  * undesirable, use migrate_prep_local()
56  */
migrate_prep(void)57 int migrate_prep(void)
58 {
59 	/*
60 	 * Clear the LRU lists so pages can be isolated.
61 	 * Note that pages may be moved off the LRU after we have
62 	 * drained them. Those pages will fail to migrate like other
63 	 * pages that may be busy.
64 	 */
65 	lru_add_drain_all();
66 
67 	return 0;
68 }
69 
70 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
migrate_prep_local(void)71 int migrate_prep_local(void)
72 {
73 	lru_add_drain();
74 
75 	return 0;
76 }
77 
isolate_movable_page(struct page * page,isolate_mode_t mode)78 bool isolate_movable_page(struct page *page, isolate_mode_t mode)
79 {
80 	struct address_space *mapping;
81 
82 	/*
83 	 * Avoid burning cycles with pages that are yet under __free_pages(),
84 	 * or just got freed under us.
85 	 *
86 	 * In case we 'win' a race for a movable page being freed under us and
87 	 * raise its refcount preventing __free_pages() from doing its job
88 	 * the put_page() at the end of this block will take care of
89 	 * release this page, thus avoiding a nasty leakage.
90 	 */
91 	if (unlikely(!get_page_unless_zero(page)))
92 		goto out;
93 
94 	/*
95 	 * Check PageMovable before holding a PG_lock because page's owner
96 	 * assumes anybody doesn't touch PG_lock of newly allocated page
97 	 * so unconditionally grapping the lock ruins page's owner side.
98 	 */
99 	if (unlikely(!__PageMovable(page)))
100 		goto out_putpage;
101 	/*
102 	 * As movable pages are not isolated from LRU lists, concurrent
103 	 * compaction threads can race against page migration functions
104 	 * as well as race against the releasing a page.
105 	 *
106 	 * In order to avoid having an already isolated movable page
107 	 * being (wrongly) re-isolated while it is under migration,
108 	 * or to avoid attempting to isolate pages being released,
109 	 * lets be sure we have the page lock
110 	 * before proceeding with the movable page isolation steps.
111 	 */
112 	if (unlikely(!trylock_page(page)))
113 		goto out_putpage;
114 
115 	if (!PageMovable(page) || PageIsolated(page))
116 		goto out_no_isolated;
117 
118 	mapping = page_mapping(page);
119 	VM_BUG_ON_PAGE(!mapping, page);
120 
121 	if (!mapping->a_ops->isolate_page(page, mode))
122 		goto out_no_isolated;
123 
124 	/* Driver shouldn't use PG_isolated bit of page->flags */
125 	WARN_ON_ONCE(PageIsolated(page));
126 	__SetPageIsolated(page);
127 	unlock_page(page);
128 
129 	return true;
130 
131 out_no_isolated:
132 	unlock_page(page);
133 out_putpage:
134 	put_page(page);
135 out:
136 	return false;
137 }
138 
139 /* It should be called on page which is PG_movable */
putback_movable_page(struct page * page)140 void putback_movable_page(struct page *page)
141 {
142 	struct address_space *mapping;
143 
144 	VM_BUG_ON_PAGE(!PageLocked(page), page);
145 	VM_BUG_ON_PAGE(!PageMovable(page), page);
146 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
147 
148 	mapping = page_mapping(page);
149 	mapping->a_ops->putback_page(page);
150 	__ClearPageIsolated(page);
151 }
152 
153 /*
154  * Put previously isolated pages back onto the appropriate lists
155  * from where they were once taken off for compaction/migration.
156  *
157  * This function shall be used whenever the isolated pageset has been
158  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
159  * and isolate_huge_page().
160  */
putback_movable_pages(struct list_head * l)161 void putback_movable_pages(struct list_head *l)
162 {
163 	struct page *page;
164 	struct page *page2;
165 
166 	list_for_each_entry_safe(page, page2, l, lru) {
167 		if (unlikely(PageHuge(page))) {
168 			putback_active_hugepage(page);
169 			continue;
170 		}
171 		list_del(&page->lru);
172 		/*
173 		 * We isolated non-lru movable page so here we can use
174 		 * __PageMovable because LRU page's mapping cannot have
175 		 * PAGE_MAPPING_MOVABLE.
176 		 */
177 		if (unlikely(__PageMovable(page))) {
178 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
179 			lock_page(page);
180 			if (PageMovable(page))
181 				putback_movable_page(page);
182 			else
183 				__ClearPageIsolated(page);
184 			unlock_page(page);
185 			put_page(page);
186 		} else {
187 			dec_node_page_state(page, NR_ISOLATED_ANON +
188 					page_is_file_cache(page));
189 			putback_lru_page(page);
190 		}
191 	}
192 }
193 
194 /*
195  * Restore a potential migration pte to a working pte entry
196  */
remove_migration_pte(struct page * new,struct vm_area_struct * vma,unsigned long addr,void * old)197 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
198 				 unsigned long addr, void *old)
199 {
200 	struct mm_struct *mm = vma->vm_mm;
201 	swp_entry_t entry;
202  	pmd_t *pmd;
203 	pte_t *ptep, pte;
204  	spinlock_t *ptl;
205 
206 	if (unlikely(PageHuge(new))) {
207 		ptep = huge_pte_offset(mm, addr);
208 		if (!ptep)
209 			goto out;
210 		ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
211 	} else {
212 		pmd = mm_find_pmd(mm, addr);
213 		if (!pmd)
214 			goto out;
215 
216 		ptep = pte_offset_map(pmd, addr);
217 
218 		/*
219 		 * Peek to check is_swap_pte() before taking ptlock?  No, we
220 		 * can race mremap's move_ptes(), which skips anon_vma lock.
221 		 */
222 
223 		ptl = pte_lockptr(mm, pmd);
224 	}
225 
226  	spin_lock(ptl);
227 	pte = *ptep;
228 	if (!is_swap_pte(pte))
229 		goto unlock;
230 
231 	entry = pte_to_swp_entry(pte);
232 
233 	if (!is_migration_entry(entry) ||
234 	    migration_entry_to_page(entry) != old)
235 		goto unlock;
236 
237 	get_page(new);
238 	pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
239 	if (pte_swp_soft_dirty(*ptep))
240 		pte = pte_mksoft_dirty(pte);
241 
242 	/* Recheck VMA as permissions can change since migration started  */
243 	if (is_write_migration_entry(entry))
244 		pte = maybe_mkwrite(pte, vma);
245 
246 #ifdef CONFIG_HUGETLB_PAGE
247 	if (PageHuge(new)) {
248 		pte = pte_mkhuge(pte);
249 		pte = arch_make_huge_pte(pte, vma, new, 0);
250 	}
251 #endif
252 	flush_dcache_page(new);
253 	set_pte_at(mm, addr, ptep, pte);
254 
255 	if (PageHuge(new)) {
256 		if (PageAnon(new))
257 			hugepage_add_anon_rmap(new, vma, addr);
258 		else
259 			page_dup_rmap(new, true);
260 	} else if (PageAnon(new))
261 		page_add_anon_rmap(new, vma, addr, false);
262 	else
263 		page_add_file_rmap(new, false);
264 
265 	if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
266 		mlock_vma_page(new);
267 
268 	/* No need to invalidate - it was non-present before */
269 	update_mmu_cache(vma, addr, ptep);
270 unlock:
271 	pte_unmap_unlock(ptep, ptl);
272 out:
273 	return SWAP_AGAIN;
274 }
275 
276 /*
277  * Get rid of all migration entries and replace them by
278  * references to the indicated page.
279  */
remove_migration_ptes(struct page * old,struct page * new,bool locked)280 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
281 {
282 	struct rmap_walk_control rwc = {
283 		.rmap_one = remove_migration_pte,
284 		.arg = old,
285 	};
286 
287 	if (locked)
288 		rmap_walk_locked(new, &rwc);
289 	else
290 		rmap_walk(new, &rwc);
291 }
292 
293 /*
294  * Something used the pte of a page under migration. We need to
295  * get to the page and wait until migration is finished.
296  * When we return from this function the fault will be retried.
297  */
__migration_entry_wait(struct mm_struct * mm,pte_t * ptep,spinlock_t * ptl)298 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
299 				spinlock_t *ptl)
300 {
301 	pte_t pte;
302 	swp_entry_t entry;
303 	struct page *page;
304 
305 	spin_lock(ptl);
306 	pte = *ptep;
307 	if (!is_swap_pte(pte))
308 		goto out;
309 
310 	entry = pte_to_swp_entry(pte);
311 	if (!is_migration_entry(entry))
312 		goto out;
313 
314 	page = migration_entry_to_page(entry);
315 
316 	/*
317 	 * Once radix-tree replacement of page migration started, page_count
318 	 * *must* be zero. And, we don't want to call wait_on_page_locked()
319 	 * against a page without get_page().
320 	 * So, we use get_page_unless_zero(), here. Even failed, page fault
321 	 * will occur again.
322 	 */
323 	if (!get_page_unless_zero(page))
324 		goto out;
325 	pte_unmap_unlock(ptep, ptl);
326 	wait_on_page_locked(page);
327 	put_page(page);
328 	return;
329 out:
330 	pte_unmap_unlock(ptep, ptl);
331 }
332 
migration_entry_wait(struct mm_struct * mm,pmd_t * pmd,unsigned long address)333 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
334 				unsigned long address)
335 {
336 	spinlock_t *ptl = pte_lockptr(mm, pmd);
337 	pte_t *ptep = pte_offset_map(pmd, address);
338 	__migration_entry_wait(mm, ptep, ptl);
339 }
340 
migration_entry_wait_huge(struct vm_area_struct * vma,struct mm_struct * mm,pte_t * pte)341 void migration_entry_wait_huge(struct vm_area_struct *vma,
342 		struct mm_struct *mm, pte_t *pte)
343 {
344 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
345 	__migration_entry_wait(mm, pte, ptl);
346 }
347 
348 #ifdef CONFIG_BLOCK
349 /* Returns true if all buffers are successfully locked */
buffer_migrate_lock_buffers(struct buffer_head * head,enum migrate_mode mode)350 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
351 							enum migrate_mode mode)
352 {
353 	struct buffer_head *bh = head;
354 
355 	/* Simple case, sync compaction */
356 	if (mode != MIGRATE_ASYNC) {
357 		do {
358 			get_bh(bh);
359 			lock_buffer(bh);
360 			bh = bh->b_this_page;
361 
362 		} while (bh != head);
363 
364 		return true;
365 	}
366 
367 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
368 	do {
369 		get_bh(bh);
370 		if (!trylock_buffer(bh)) {
371 			/*
372 			 * We failed to lock the buffer and cannot stall in
373 			 * async migration. Release the taken locks
374 			 */
375 			struct buffer_head *failed_bh = bh;
376 			put_bh(failed_bh);
377 			bh = head;
378 			while (bh != failed_bh) {
379 				unlock_buffer(bh);
380 				put_bh(bh);
381 				bh = bh->b_this_page;
382 			}
383 			return false;
384 		}
385 
386 		bh = bh->b_this_page;
387 	} while (bh != head);
388 	return true;
389 }
390 #else
buffer_migrate_lock_buffers(struct buffer_head * head,enum migrate_mode mode)391 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
392 							enum migrate_mode mode)
393 {
394 	return true;
395 }
396 #endif /* CONFIG_BLOCK */
397 
398 /*
399  * Replace the page in the mapping.
400  *
401  * The number of remaining references must be:
402  * 1 for anonymous pages without a mapping
403  * 2 for pages with a mapping
404  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
405  */
migrate_page_move_mapping(struct address_space * mapping,struct page * newpage,struct page * page,struct buffer_head * head,enum migrate_mode mode,int extra_count)406 int migrate_page_move_mapping(struct address_space *mapping,
407 		struct page *newpage, struct page *page,
408 		struct buffer_head *head, enum migrate_mode mode,
409 		int extra_count)
410 {
411 	struct zone *oldzone, *newzone;
412 	int dirty;
413 	int expected_count = 1 + extra_count;
414 	void **pslot;
415 
416 	if (!mapping) {
417 		/* Anonymous page without mapping */
418 		if (page_count(page) != expected_count)
419 			return -EAGAIN;
420 
421 		/* No turning back from here */
422 		newpage->index = page->index;
423 		newpage->mapping = page->mapping;
424 		if (PageSwapBacked(page))
425 			__SetPageSwapBacked(newpage);
426 
427 		return MIGRATEPAGE_SUCCESS;
428 	}
429 
430 	oldzone = page_zone(page);
431 	newzone = page_zone(newpage);
432 
433 	spin_lock_irq(&mapping->tree_lock);
434 
435 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
436  					page_index(page));
437 
438 	expected_count += 1 + page_has_private(page);
439 	if (page_count(page) != expected_count ||
440 		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
441 		spin_unlock_irq(&mapping->tree_lock);
442 		return -EAGAIN;
443 	}
444 
445 	if (!page_ref_freeze(page, expected_count)) {
446 		spin_unlock_irq(&mapping->tree_lock);
447 		return -EAGAIN;
448 	}
449 
450 	/*
451 	 * In the async migration case of moving a page with buffers, lock the
452 	 * buffers using trylock before the mapping is moved. If the mapping
453 	 * was moved, we later failed to lock the buffers and could not move
454 	 * the mapping back due to an elevated page count, we would have to
455 	 * block waiting on other references to be dropped.
456 	 */
457 	if (mode == MIGRATE_ASYNC && head &&
458 			!buffer_migrate_lock_buffers(head, mode)) {
459 		page_ref_unfreeze(page, expected_count);
460 		spin_unlock_irq(&mapping->tree_lock);
461 		return -EAGAIN;
462 	}
463 
464 	/*
465 	 * Now we know that no one else is looking at the page:
466 	 * no turning back from here.
467 	 */
468 	newpage->index = page->index;
469 	newpage->mapping = page->mapping;
470 	if (PageSwapBacked(page))
471 		__SetPageSwapBacked(newpage);
472 
473 	get_page(newpage);	/* add cache reference */
474 	if (PageSwapCache(page)) {
475 		SetPageSwapCache(newpage);
476 		set_page_private(newpage, page_private(page));
477 	}
478 
479 	/* Move dirty while page refs frozen and newpage not yet exposed */
480 	dirty = PageDirty(page);
481 	if (dirty) {
482 		ClearPageDirty(page);
483 		SetPageDirty(newpage);
484 	}
485 
486 	radix_tree_replace_slot(pslot, newpage);
487 
488 	/*
489 	 * Drop cache reference from old page by unfreezing
490 	 * to one less reference.
491 	 * We know this isn't the last reference.
492 	 */
493 	page_ref_unfreeze(page, expected_count - 1);
494 
495 	spin_unlock(&mapping->tree_lock);
496 	/* Leave irq disabled to prevent preemption while updating stats */
497 
498 	/*
499 	 * If moved to a different zone then also account
500 	 * the page for that zone. Other VM counters will be
501 	 * taken care of when we establish references to the
502 	 * new page and drop references to the old page.
503 	 *
504 	 * Note that anonymous pages are accounted for
505 	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
506 	 * are mapped to swap space.
507 	 */
508 	if (newzone != oldzone) {
509 		__dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
510 		__inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
511 		if (PageSwapBacked(page) && !PageSwapCache(page)) {
512 			__dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
513 			__inc_node_state(newzone->zone_pgdat, NR_SHMEM);
514 		}
515 		if (dirty && mapping_cap_account_dirty(mapping)) {
516 			__dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
517 			__dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
518 			__inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
519 			__inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
520 		}
521 	}
522 	local_irq_enable();
523 
524 	return MIGRATEPAGE_SUCCESS;
525 }
526 EXPORT_SYMBOL(migrate_page_move_mapping);
527 
528 /*
529  * The expected number of remaining references is the same as that
530  * of migrate_page_move_mapping().
531  */
migrate_huge_page_move_mapping(struct address_space * mapping,struct page * newpage,struct page * page)532 int migrate_huge_page_move_mapping(struct address_space *mapping,
533 				   struct page *newpage, struct page *page)
534 {
535 	int expected_count;
536 	void **pslot;
537 
538 	spin_lock_irq(&mapping->tree_lock);
539 
540 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
541 					page_index(page));
542 
543 	expected_count = 2 + page_has_private(page);
544 	if (page_count(page) != expected_count ||
545 		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
546 		spin_unlock_irq(&mapping->tree_lock);
547 		return -EAGAIN;
548 	}
549 
550 	if (!page_ref_freeze(page, expected_count)) {
551 		spin_unlock_irq(&mapping->tree_lock);
552 		return -EAGAIN;
553 	}
554 
555 	newpage->index = page->index;
556 	newpage->mapping = page->mapping;
557 
558 	get_page(newpage);
559 
560 	radix_tree_replace_slot(pslot, newpage);
561 
562 	page_ref_unfreeze(page, expected_count - 1);
563 
564 	spin_unlock_irq(&mapping->tree_lock);
565 
566 	return MIGRATEPAGE_SUCCESS;
567 }
568 
569 /*
570  * Gigantic pages are so large that we do not guarantee that page++ pointer
571  * arithmetic will work across the entire page.  We need something more
572  * specialized.
573  */
__copy_gigantic_page(struct page * dst,struct page * src,int nr_pages)574 static void __copy_gigantic_page(struct page *dst, struct page *src,
575 				int nr_pages)
576 {
577 	int i;
578 	struct page *dst_base = dst;
579 	struct page *src_base = src;
580 
581 	for (i = 0; i < nr_pages; ) {
582 		cond_resched();
583 		copy_highpage(dst, src);
584 
585 		i++;
586 		dst = mem_map_next(dst, dst_base, i);
587 		src = mem_map_next(src, src_base, i);
588 	}
589 }
590 
copy_huge_page(struct page * dst,struct page * src)591 static void copy_huge_page(struct page *dst, struct page *src)
592 {
593 	int i;
594 	int nr_pages;
595 
596 	if (PageHuge(src)) {
597 		/* hugetlbfs page */
598 		struct hstate *h = page_hstate(src);
599 		nr_pages = pages_per_huge_page(h);
600 
601 		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
602 			__copy_gigantic_page(dst, src, nr_pages);
603 			return;
604 		}
605 	} else {
606 		/* thp page */
607 		BUG_ON(!PageTransHuge(src));
608 		nr_pages = hpage_nr_pages(src);
609 	}
610 
611 	for (i = 0; i < nr_pages; i++) {
612 		cond_resched();
613 		copy_highpage(dst + i, src + i);
614 	}
615 }
616 
617 /*
618  * Copy the page to its new location
619  */
migrate_page_copy(struct page * newpage,struct page * page)620 void migrate_page_copy(struct page *newpage, struct page *page)
621 {
622 	int cpupid;
623 
624 	if (PageHuge(page) || PageTransHuge(page))
625 		copy_huge_page(newpage, page);
626 	else
627 		copy_highpage(newpage, page);
628 
629 	if (PageError(page))
630 		SetPageError(newpage);
631 	if (PageReferenced(page))
632 		SetPageReferenced(newpage);
633 	if (PageUptodate(page))
634 		SetPageUptodate(newpage);
635 	if (TestClearPageActive(page)) {
636 		VM_BUG_ON_PAGE(PageUnevictable(page), page);
637 		SetPageActive(newpage);
638 	} else if (TestClearPageUnevictable(page))
639 		SetPageUnevictable(newpage);
640 	if (PageChecked(page))
641 		SetPageChecked(newpage);
642 	if (PageMappedToDisk(page))
643 		SetPageMappedToDisk(newpage);
644 
645 	/* Move dirty on pages not done by migrate_page_move_mapping() */
646 	if (PageDirty(page))
647 		SetPageDirty(newpage);
648 
649 	if (page_is_young(page))
650 		set_page_young(newpage);
651 	if (page_is_idle(page))
652 		set_page_idle(newpage);
653 
654 	/*
655 	 * Copy NUMA information to the new page, to prevent over-eager
656 	 * future migrations of this same page.
657 	 */
658 	cpupid = page_cpupid_xchg_last(page, -1);
659 	page_cpupid_xchg_last(newpage, cpupid);
660 
661 	ksm_migrate_page(newpage, page);
662 	/*
663 	 * Please do not reorder this without considering how mm/ksm.c's
664 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
665 	 */
666 	if (PageSwapCache(page))
667 		ClearPageSwapCache(page);
668 	ClearPagePrivate(page);
669 	set_page_private(page, 0);
670 
671 	/*
672 	 * If any waiters have accumulated on the new page then
673 	 * wake them up.
674 	 */
675 	if (PageWriteback(newpage))
676 		end_page_writeback(newpage);
677 
678 	copy_page_owner(page, newpage);
679 
680 	mem_cgroup_migrate(page, newpage);
681 }
682 EXPORT_SYMBOL(migrate_page_copy);
683 
684 /************************************************************
685  *                    Migration functions
686  ***********************************************************/
687 
688 /*
689  * Common logic to directly migrate a single LRU page suitable for
690  * pages that do not use PagePrivate/PagePrivate2.
691  *
692  * Pages are locked upon entry and exit.
693  */
migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)694 int migrate_page(struct address_space *mapping,
695 		struct page *newpage, struct page *page,
696 		enum migrate_mode mode)
697 {
698 	int rc;
699 
700 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
701 
702 	rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
703 
704 	if (rc != MIGRATEPAGE_SUCCESS)
705 		return rc;
706 
707 	migrate_page_copy(newpage, page);
708 	return MIGRATEPAGE_SUCCESS;
709 }
710 EXPORT_SYMBOL(migrate_page);
711 
712 #ifdef CONFIG_BLOCK
713 /*
714  * Migration function for pages with buffers. This function can only be used
715  * if the underlying filesystem guarantees that no other references to "page"
716  * exist.
717  */
buffer_migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)718 int buffer_migrate_page(struct address_space *mapping,
719 		struct page *newpage, struct page *page, enum migrate_mode mode)
720 {
721 	struct buffer_head *bh, *head;
722 	int rc;
723 
724 	if (!page_has_buffers(page))
725 		return migrate_page(mapping, newpage, page, mode);
726 
727 	head = page_buffers(page);
728 
729 	rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
730 
731 	if (rc != MIGRATEPAGE_SUCCESS)
732 		return rc;
733 
734 	/*
735 	 * In the async case, migrate_page_move_mapping locked the buffers
736 	 * with an IRQ-safe spinlock held. In the sync case, the buffers
737 	 * need to be locked now
738 	 */
739 	if (mode != MIGRATE_ASYNC)
740 		BUG_ON(!buffer_migrate_lock_buffers(head, mode));
741 
742 	ClearPagePrivate(page);
743 	set_page_private(newpage, page_private(page));
744 	set_page_private(page, 0);
745 	put_page(page);
746 	get_page(newpage);
747 
748 	bh = head;
749 	do {
750 		set_bh_page(bh, newpage, bh_offset(bh));
751 		bh = bh->b_this_page;
752 
753 	} while (bh != head);
754 
755 	SetPagePrivate(newpage);
756 
757 	migrate_page_copy(newpage, page);
758 
759 	bh = head;
760 	do {
761 		unlock_buffer(bh);
762  		put_bh(bh);
763 		bh = bh->b_this_page;
764 
765 	} while (bh != head);
766 
767 	return MIGRATEPAGE_SUCCESS;
768 }
769 EXPORT_SYMBOL(buffer_migrate_page);
770 #endif
771 
772 /*
773  * Writeback a page to clean the dirty state
774  */
writeout(struct address_space * mapping,struct page * page)775 static int writeout(struct address_space *mapping, struct page *page)
776 {
777 	struct writeback_control wbc = {
778 		.sync_mode = WB_SYNC_NONE,
779 		.nr_to_write = 1,
780 		.range_start = 0,
781 		.range_end = LLONG_MAX,
782 		.for_reclaim = 1
783 	};
784 	int rc;
785 
786 	if (!mapping->a_ops->writepage)
787 		/* No write method for the address space */
788 		return -EINVAL;
789 
790 	if (!clear_page_dirty_for_io(page))
791 		/* Someone else already triggered a write */
792 		return -EAGAIN;
793 
794 	/*
795 	 * A dirty page may imply that the underlying filesystem has
796 	 * the page on some queue. So the page must be clean for
797 	 * migration. Writeout may mean we loose the lock and the
798 	 * page state is no longer what we checked for earlier.
799 	 * At this point we know that the migration attempt cannot
800 	 * be successful.
801 	 */
802 	remove_migration_ptes(page, page, false);
803 
804 	rc = mapping->a_ops->writepage(page, &wbc);
805 
806 	if (rc != AOP_WRITEPAGE_ACTIVATE)
807 		/* unlocked. Relock */
808 		lock_page(page);
809 
810 	return (rc < 0) ? -EIO : -EAGAIN;
811 }
812 
813 /*
814  * Default handling if a filesystem does not provide a migration function.
815  */
fallback_migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)816 static int fallback_migrate_page(struct address_space *mapping,
817 	struct page *newpage, struct page *page, enum migrate_mode mode)
818 {
819 	if (PageDirty(page)) {
820 		/* Only writeback pages in full synchronous migration */
821 		if (mode != MIGRATE_SYNC)
822 			return -EBUSY;
823 		return writeout(mapping, page);
824 	}
825 
826 	/*
827 	 * Buffers may be managed in a filesystem specific way.
828 	 * We must have no buffers or drop them.
829 	 */
830 	if (page_has_private(page) &&
831 	    !try_to_release_page(page, GFP_KERNEL))
832 		return -EAGAIN;
833 
834 	return migrate_page(mapping, newpage, page, mode);
835 }
836 
837 /*
838  * Move a page to a newly allocated page
839  * The page is locked and all ptes have been successfully removed.
840  *
841  * The new page will have replaced the old page if this function
842  * is successful.
843  *
844  * Return value:
845  *   < 0 - error code
846  *  MIGRATEPAGE_SUCCESS - success
847  */
move_to_new_page(struct page * newpage,struct page * page,enum migrate_mode mode)848 static int move_to_new_page(struct page *newpage, struct page *page,
849 				enum migrate_mode mode)
850 {
851 	struct address_space *mapping;
852 	int rc = -EAGAIN;
853 	bool is_lru = !__PageMovable(page);
854 
855 	VM_BUG_ON_PAGE(!PageLocked(page), page);
856 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
857 
858 	mapping = page_mapping(page);
859 
860 	if (likely(is_lru)) {
861 		if (!mapping)
862 			rc = migrate_page(mapping, newpage, page, mode);
863 		else if (mapping->a_ops->migratepage)
864 			/*
865 			 * Most pages have a mapping and most filesystems
866 			 * provide a migratepage callback. Anonymous pages
867 			 * are part of swap space which also has its own
868 			 * migratepage callback. This is the most common path
869 			 * for page migration.
870 			 */
871 			rc = mapping->a_ops->migratepage(mapping, newpage,
872 							page, mode);
873 		else
874 			rc = fallback_migrate_page(mapping, newpage,
875 							page, mode);
876 	} else {
877 		/*
878 		 * In case of non-lru page, it could be released after
879 		 * isolation step. In that case, we shouldn't try migration.
880 		 */
881 		VM_BUG_ON_PAGE(!PageIsolated(page), page);
882 		if (!PageMovable(page)) {
883 			rc = MIGRATEPAGE_SUCCESS;
884 			__ClearPageIsolated(page);
885 			goto out;
886 		}
887 
888 		rc = mapping->a_ops->migratepage(mapping, newpage,
889 						page, mode);
890 		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
891 			!PageIsolated(page));
892 	}
893 
894 	/*
895 	 * When successful, old pagecache page->mapping must be cleared before
896 	 * page is freed; but stats require that PageAnon be left as PageAnon.
897 	 */
898 	if (rc == MIGRATEPAGE_SUCCESS) {
899 		if (__PageMovable(page)) {
900 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
901 
902 			/*
903 			 * We clear PG_movable under page_lock so any compactor
904 			 * cannot try to migrate this page.
905 			 */
906 			__ClearPageIsolated(page);
907 		}
908 
909 		/*
910 		 * Anonymous and movable page->mapping will be cleard by
911 		 * free_pages_prepare so don't reset it here for keeping
912 		 * the type to work PageAnon, for example.
913 		 */
914 		if (!PageMappingFlags(page))
915 			page->mapping = NULL;
916 	}
917 out:
918 	return rc;
919 }
920 
__unmap_and_move(struct page * page,struct page * newpage,int force,enum migrate_mode mode)921 static int __unmap_and_move(struct page *page, struct page *newpage,
922 				int force, enum migrate_mode mode)
923 {
924 	int rc = -EAGAIN;
925 	int page_was_mapped = 0;
926 	struct anon_vma *anon_vma = NULL;
927 	bool is_lru = !__PageMovable(page);
928 
929 	if (!trylock_page(page)) {
930 		if (!force || mode == MIGRATE_ASYNC)
931 			goto out;
932 
933 		/*
934 		 * It's not safe for direct compaction to call lock_page.
935 		 * For example, during page readahead pages are added locked
936 		 * to the LRU. Later, when the IO completes the pages are
937 		 * marked uptodate and unlocked. However, the queueing
938 		 * could be merging multiple pages for one bio (e.g.
939 		 * mpage_readpages). If an allocation happens for the
940 		 * second or third page, the process can end up locking
941 		 * the same page twice and deadlocking. Rather than
942 		 * trying to be clever about what pages can be locked,
943 		 * avoid the use of lock_page for direct compaction
944 		 * altogether.
945 		 */
946 		if (current->flags & PF_MEMALLOC)
947 			goto out;
948 
949 		lock_page(page);
950 	}
951 
952 	if (PageWriteback(page)) {
953 		/*
954 		 * Only in the case of a full synchronous migration is it
955 		 * necessary to wait for PageWriteback. In the async case,
956 		 * the retry loop is too short and in the sync-light case,
957 		 * the overhead of stalling is too much
958 		 */
959 		if (mode != MIGRATE_SYNC) {
960 			rc = -EBUSY;
961 			goto out_unlock;
962 		}
963 		if (!force)
964 			goto out_unlock;
965 		wait_on_page_writeback(page);
966 	}
967 
968 	/*
969 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
970 	 * we cannot notice that anon_vma is freed while we migrates a page.
971 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
972 	 * of migration. File cache pages are no problem because of page_lock()
973 	 * File Caches may use write_page() or lock_page() in migration, then,
974 	 * just care Anon page here.
975 	 *
976 	 * Only page_get_anon_vma() understands the subtleties of
977 	 * getting a hold on an anon_vma from outside one of its mms.
978 	 * But if we cannot get anon_vma, then we won't need it anyway,
979 	 * because that implies that the anon page is no longer mapped
980 	 * (and cannot be remapped so long as we hold the page lock).
981 	 */
982 	if (PageAnon(page) && !PageKsm(page))
983 		anon_vma = page_get_anon_vma(page);
984 
985 	/*
986 	 * Block others from accessing the new page when we get around to
987 	 * establishing additional references. We are usually the only one
988 	 * holding a reference to newpage at this point. We used to have a BUG
989 	 * here if trylock_page(newpage) fails, but would like to allow for
990 	 * cases where there might be a race with the previous use of newpage.
991 	 * This is much like races on refcount of oldpage: just don't BUG().
992 	 */
993 	if (unlikely(!trylock_page(newpage)))
994 		goto out_unlock;
995 
996 	if (unlikely(!is_lru)) {
997 		rc = move_to_new_page(newpage, page, mode);
998 		goto out_unlock_both;
999 	}
1000 
1001 	/*
1002 	 * Corner case handling:
1003 	 * 1. When a new swap-cache page is read into, it is added to the LRU
1004 	 * and treated as swapcache but it has no rmap yet.
1005 	 * Calling try_to_unmap() against a page->mapping==NULL page will
1006 	 * trigger a BUG.  So handle it here.
1007 	 * 2. An orphaned page (see truncate_complete_page) might have
1008 	 * fs-private metadata. The page can be picked up due to memory
1009 	 * offlining.  Everywhere else except page reclaim, the page is
1010 	 * invisible to the vm, so the page can not be migrated.  So try to
1011 	 * free the metadata, so the page can be freed.
1012 	 */
1013 	if (!page->mapping) {
1014 		VM_BUG_ON_PAGE(PageAnon(page), page);
1015 		if (page_has_private(page)) {
1016 			try_to_free_buffers(page);
1017 			goto out_unlock_both;
1018 		}
1019 	} else if (page_mapped(page)) {
1020 		/* Establish migration ptes */
1021 		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1022 				page);
1023 		try_to_unmap(page,
1024 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1025 		page_was_mapped = 1;
1026 	}
1027 
1028 	if (!page_mapped(page))
1029 		rc = move_to_new_page(newpage, page, mode);
1030 
1031 	if (page_was_mapped)
1032 		remove_migration_ptes(page,
1033 			rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1034 
1035 out_unlock_both:
1036 	unlock_page(newpage);
1037 out_unlock:
1038 	/* Drop an anon_vma reference if we took one */
1039 	if (anon_vma)
1040 		put_anon_vma(anon_vma);
1041 	unlock_page(page);
1042 out:
1043 	/*
1044 	 * If migration is successful, decrease refcount of the newpage
1045 	 * which will not free the page because new page owner increased
1046 	 * refcounter. As well, if it is LRU page, add the page to LRU
1047 	 * list in here.
1048 	 */
1049 	if (rc == MIGRATEPAGE_SUCCESS) {
1050 		if (unlikely(__PageMovable(newpage)))
1051 			put_page(newpage);
1052 		else
1053 			putback_lru_page(newpage);
1054 	}
1055 
1056 	return rc;
1057 }
1058 
1059 /*
1060  * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
1061  * around it.
1062  */
1063 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
1064 #define ICE_noinline noinline
1065 #else
1066 #define ICE_noinline
1067 #endif
1068 
1069 /*
1070  * Obtain the lock on page, remove all ptes and migrate the page
1071  * to the newly allocated page in newpage.
1072  */
unmap_and_move(new_page_t get_new_page,free_page_t put_new_page,unsigned long private,struct page * page,int force,enum migrate_mode mode,enum migrate_reason reason)1073 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1074 				   free_page_t put_new_page,
1075 				   unsigned long private, struct page *page,
1076 				   int force, enum migrate_mode mode,
1077 				   enum migrate_reason reason)
1078 {
1079 	int rc = MIGRATEPAGE_SUCCESS;
1080 	int *result = NULL;
1081 	struct page *newpage;
1082 
1083 	newpage = get_new_page(page, private, &result);
1084 	if (!newpage)
1085 		return -ENOMEM;
1086 
1087 	if (page_count(page) == 1) {
1088 		/* page was freed from under us. So we are done. */
1089 		ClearPageActive(page);
1090 		ClearPageUnevictable(page);
1091 		if (unlikely(__PageMovable(page))) {
1092 			lock_page(page);
1093 			if (!PageMovable(page))
1094 				__ClearPageIsolated(page);
1095 			unlock_page(page);
1096 		}
1097 		if (put_new_page)
1098 			put_new_page(newpage, private);
1099 		else
1100 			put_page(newpage);
1101 		goto out;
1102 	}
1103 
1104 	if (unlikely(PageTransHuge(page))) {
1105 		lock_page(page);
1106 		rc = split_huge_page(page);
1107 		unlock_page(page);
1108 		if (rc)
1109 			goto out;
1110 	}
1111 
1112 	rc = __unmap_and_move(page, newpage, force, mode);
1113 	if (rc == MIGRATEPAGE_SUCCESS)
1114 		set_page_owner_migrate_reason(newpage, reason);
1115 
1116 out:
1117 	if (rc != -EAGAIN) {
1118 		/*
1119 		 * A page that has been migrated has all references
1120 		 * removed and will be freed. A page that has not been
1121 		 * migrated will have kepts its references and be
1122 		 * restored.
1123 		 */
1124 		list_del(&page->lru);
1125 
1126 		/*
1127 		 * Compaction can migrate also non-LRU pages which are
1128 		 * not accounted to NR_ISOLATED_*. They can be recognized
1129 		 * as __PageMovable
1130 		 */
1131 		if (likely(!__PageMovable(page)))
1132 			dec_node_page_state(page, NR_ISOLATED_ANON +
1133 					page_is_file_cache(page));
1134 	}
1135 
1136 	/*
1137 	 * If migration is successful, releases reference grabbed during
1138 	 * isolation. Otherwise, restore the page to right list unless
1139 	 * we want to retry.
1140 	 */
1141 	if (rc == MIGRATEPAGE_SUCCESS) {
1142 		put_page(page);
1143 		if (reason == MR_MEMORY_FAILURE) {
1144 			/*
1145 			 * Set PG_HWPoison on just freed page
1146 			 * intentionally. Although it's rather weird,
1147 			 * it's how HWPoison flag works at the moment.
1148 			 */
1149 			if (!test_set_page_hwpoison(page))
1150 				num_poisoned_pages_inc();
1151 		}
1152 	} else {
1153 		if (rc != -EAGAIN) {
1154 			if (likely(!__PageMovable(page))) {
1155 				putback_lru_page(page);
1156 				goto put_new;
1157 			}
1158 
1159 			lock_page(page);
1160 			if (PageMovable(page))
1161 				putback_movable_page(page);
1162 			else
1163 				__ClearPageIsolated(page);
1164 			unlock_page(page);
1165 			put_page(page);
1166 		}
1167 put_new:
1168 		if (put_new_page)
1169 			put_new_page(newpage, private);
1170 		else
1171 			put_page(newpage);
1172 	}
1173 
1174 	if (result) {
1175 		if (rc)
1176 			*result = rc;
1177 		else
1178 			*result = page_to_nid(newpage);
1179 	}
1180 	return rc;
1181 }
1182 
1183 /*
1184  * Counterpart of unmap_and_move_page() for hugepage migration.
1185  *
1186  * This function doesn't wait the completion of hugepage I/O
1187  * because there is no race between I/O and migration for hugepage.
1188  * Note that currently hugepage I/O occurs only in direct I/O
1189  * where no lock is held and PG_writeback is irrelevant,
1190  * and writeback status of all subpages are counted in the reference
1191  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1192  * under direct I/O, the reference of the head page is 512 and a bit more.)
1193  * This means that when we try to migrate hugepage whose subpages are
1194  * doing direct I/O, some references remain after try_to_unmap() and
1195  * hugepage migration fails without data corruption.
1196  *
1197  * There is also no race when direct I/O is issued on the page under migration,
1198  * because then pte is replaced with migration swap entry and direct I/O code
1199  * will wait in the page fault for migration to complete.
1200  */
unmap_and_move_huge_page(new_page_t get_new_page,free_page_t put_new_page,unsigned long private,struct page * hpage,int force,enum migrate_mode mode,int reason)1201 static int unmap_and_move_huge_page(new_page_t get_new_page,
1202 				free_page_t put_new_page, unsigned long private,
1203 				struct page *hpage, int force,
1204 				enum migrate_mode mode, int reason)
1205 {
1206 	int rc = -EAGAIN;
1207 	int *result = NULL;
1208 	int page_was_mapped = 0;
1209 	struct page *new_hpage;
1210 	struct anon_vma *anon_vma = NULL;
1211 
1212 	/*
1213 	 * Movability of hugepages depends on architectures and hugepage size.
1214 	 * This check is necessary because some callers of hugepage migration
1215 	 * like soft offline and memory hotremove don't walk through page
1216 	 * tables or check whether the hugepage is pmd-based or not before
1217 	 * kicking migration.
1218 	 */
1219 	if (!hugepage_migration_supported(page_hstate(hpage))) {
1220 		putback_active_hugepage(hpage);
1221 		return -ENOSYS;
1222 	}
1223 
1224 	new_hpage = get_new_page(hpage, private, &result);
1225 	if (!new_hpage)
1226 		return -ENOMEM;
1227 
1228 	if (!trylock_page(hpage)) {
1229 		if (!force || mode != MIGRATE_SYNC)
1230 			goto out;
1231 		lock_page(hpage);
1232 	}
1233 
1234 	if (PageAnon(hpage))
1235 		anon_vma = page_get_anon_vma(hpage);
1236 
1237 	if (unlikely(!trylock_page(new_hpage)))
1238 		goto put_anon;
1239 
1240 	if (page_mapped(hpage)) {
1241 		try_to_unmap(hpage,
1242 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1243 		page_was_mapped = 1;
1244 	}
1245 
1246 	if (!page_mapped(hpage))
1247 		rc = move_to_new_page(new_hpage, hpage, mode);
1248 
1249 	if (page_was_mapped)
1250 		remove_migration_ptes(hpage,
1251 			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1252 
1253 	unlock_page(new_hpage);
1254 
1255 put_anon:
1256 	if (anon_vma)
1257 		put_anon_vma(anon_vma);
1258 
1259 	if (rc == MIGRATEPAGE_SUCCESS) {
1260 		hugetlb_cgroup_migrate(hpage, new_hpage);
1261 		put_new_page = NULL;
1262 		set_page_owner_migrate_reason(new_hpage, reason);
1263 	}
1264 
1265 	unlock_page(hpage);
1266 out:
1267 	if (rc != -EAGAIN)
1268 		putback_active_hugepage(hpage);
1269 
1270 	/*
1271 	 * If migration was not successful and there's a freeing callback, use
1272 	 * it.  Otherwise, put_page() will drop the reference grabbed during
1273 	 * isolation.
1274 	 */
1275 	if (put_new_page)
1276 		put_new_page(new_hpage, private);
1277 	else
1278 		putback_active_hugepage(new_hpage);
1279 
1280 	if (result) {
1281 		if (rc)
1282 			*result = rc;
1283 		else
1284 			*result = page_to_nid(new_hpage);
1285 	}
1286 	return rc;
1287 }
1288 
1289 /*
1290  * migrate_pages - migrate the pages specified in a list, to the free pages
1291  *		   supplied as the target for the page migration
1292  *
1293  * @from:		The list of pages to be migrated.
1294  * @get_new_page:	The function used to allocate free pages to be used
1295  *			as the target of the page migration.
1296  * @put_new_page:	The function used to free target pages if migration
1297  *			fails, or NULL if no special handling is necessary.
1298  * @private:		Private data to be passed on to get_new_page()
1299  * @mode:		The migration mode that specifies the constraints for
1300  *			page migration, if any.
1301  * @reason:		The reason for page migration.
1302  *
1303  * The function returns after 10 attempts or if no pages are movable any more
1304  * because the list has become empty or no retryable pages exist any more.
1305  * The caller should call putback_movable_pages() to return pages to the LRU
1306  * or free list only if ret != 0.
1307  *
1308  * Returns the number of pages that were not migrated, or an error code.
1309  */
migrate_pages(struct list_head * from,new_page_t get_new_page,free_page_t put_new_page,unsigned long private,enum migrate_mode mode,int reason)1310 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1311 		free_page_t put_new_page, unsigned long private,
1312 		enum migrate_mode mode, int reason)
1313 {
1314 	int retry = 1;
1315 	int nr_failed = 0;
1316 	int nr_succeeded = 0;
1317 	int pass = 0;
1318 	struct page *page;
1319 	struct page *page2;
1320 	int swapwrite = current->flags & PF_SWAPWRITE;
1321 	int rc;
1322 
1323 	if (!swapwrite)
1324 		current->flags |= PF_SWAPWRITE;
1325 
1326 	for(pass = 0; pass < 10 && retry; pass++) {
1327 		retry = 0;
1328 
1329 		list_for_each_entry_safe(page, page2, from, lru) {
1330 			cond_resched();
1331 
1332 			if (PageHuge(page))
1333 				rc = unmap_and_move_huge_page(get_new_page,
1334 						put_new_page, private, page,
1335 						pass > 2, mode, reason);
1336 			else
1337 				rc = unmap_and_move(get_new_page, put_new_page,
1338 						private, page, pass > 2, mode,
1339 						reason);
1340 
1341 			switch(rc) {
1342 			case -ENOMEM:
1343 				nr_failed++;
1344 				goto out;
1345 			case -EAGAIN:
1346 				retry++;
1347 				break;
1348 			case MIGRATEPAGE_SUCCESS:
1349 				nr_succeeded++;
1350 				break;
1351 			default:
1352 				/*
1353 				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1354 				 * unlike -EAGAIN case, the failed page is
1355 				 * removed from migration page list and not
1356 				 * retried in the next outer loop.
1357 				 */
1358 				nr_failed++;
1359 				break;
1360 			}
1361 		}
1362 	}
1363 	nr_failed += retry;
1364 	rc = nr_failed;
1365 out:
1366 	if (nr_succeeded)
1367 		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1368 	if (nr_failed)
1369 		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1370 	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1371 
1372 	if (!swapwrite)
1373 		current->flags &= ~PF_SWAPWRITE;
1374 
1375 	return rc;
1376 }
1377 
1378 #ifdef CONFIG_NUMA
1379 /*
1380  * Move a list of individual pages
1381  */
1382 struct page_to_node {
1383 	unsigned long addr;
1384 	struct page *page;
1385 	int node;
1386 	int status;
1387 };
1388 
new_page_node(struct page * p,unsigned long private,int ** result)1389 static struct page *new_page_node(struct page *p, unsigned long private,
1390 		int **result)
1391 {
1392 	struct page_to_node *pm = (struct page_to_node *)private;
1393 
1394 	while (pm->node != MAX_NUMNODES && pm->page != p)
1395 		pm++;
1396 
1397 	if (pm->node == MAX_NUMNODES)
1398 		return NULL;
1399 
1400 	*result = &pm->status;
1401 
1402 	if (PageHuge(p))
1403 		return alloc_huge_page_node(page_hstate(compound_head(p)),
1404 					pm->node);
1405 	else
1406 		return __alloc_pages_node(pm->node,
1407 				GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1408 }
1409 
1410 /*
1411  * Move a set of pages as indicated in the pm array. The addr
1412  * field must be set to the virtual address of the page to be moved
1413  * and the node number must contain a valid target node.
1414  * The pm array ends with node = MAX_NUMNODES.
1415  */
do_move_page_to_node_array(struct mm_struct * mm,struct page_to_node * pm,int migrate_all)1416 static int do_move_page_to_node_array(struct mm_struct *mm,
1417 				      struct page_to_node *pm,
1418 				      int migrate_all)
1419 {
1420 	int err;
1421 	struct page_to_node *pp;
1422 	LIST_HEAD(pagelist);
1423 
1424 	down_read(&mm->mmap_sem);
1425 
1426 	/*
1427 	 * Build a list of pages to migrate
1428 	 */
1429 	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1430 		struct vm_area_struct *vma;
1431 		struct page *page;
1432 
1433 		err = -EFAULT;
1434 		vma = find_vma(mm, pp->addr);
1435 		if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1436 			goto set_status;
1437 
1438 		/* FOLL_DUMP to ignore special (like zero) pages */
1439 		page = follow_page(vma, pp->addr,
1440 				FOLL_GET | FOLL_SPLIT | FOLL_DUMP);
1441 
1442 		err = PTR_ERR(page);
1443 		if (IS_ERR(page))
1444 			goto set_status;
1445 
1446 		err = -ENOENT;
1447 		if (!page)
1448 			goto set_status;
1449 
1450 		pp->page = page;
1451 		err = page_to_nid(page);
1452 
1453 		if (err == pp->node)
1454 			/*
1455 			 * Node already in the right place
1456 			 */
1457 			goto put_and_set;
1458 
1459 		err = -EACCES;
1460 		if (page_mapcount(page) > 1 &&
1461 				!migrate_all)
1462 			goto put_and_set;
1463 
1464 		if (PageHuge(page)) {
1465 			if (PageHead(page))
1466 				isolate_huge_page(page, &pagelist);
1467 			goto put_and_set;
1468 		}
1469 
1470 		err = isolate_lru_page(page);
1471 		if (!err) {
1472 			list_add_tail(&page->lru, &pagelist);
1473 			inc_node_page_state(page, NR_ISOLATED_ANON +
1474 					    page_is_file_cache(page));
1475 		}
1476 put_and_set:
1477 		/*
1478 		 * Either remove the duplicate refcount from
1479 		 * isolate_lru_page() or drop the page ref if it was
1480 		 * not isolated.
1481 		 */
1482 		put_page(page);
1483 set_status:
1484 		pp->status = err;
1485 	}
1486 
1487 	err = 0;
1488 	if (!list_empty(&pagelist)) {
1489 		err = migrate_pages(&pagelist, new_page_node, NULL,
1490 				(unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1491 		if (err)
1492 			putback_movable_pages(&pagelist);
1493 	}
1494 
1495 	up_read(&mm->mmap_sem);
1496 	return err;
1497 }
1498 
1499 /*
1500  * Migrate an array of page address onto an array of nodes and fill
1501  * the corresponding array of status.
1502  */
do_pages_move(struct mm_struct * mm,nodemask_t task_nodes,unsigned long nr_pages,const void __user * __user * pages,const int __user * nodes,int __user * status,int flags)1503 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1504 			 unsigned long nr_pages,
1505 			 const void __user * __user *pages,
1506 			 const int __user *nodes,
1507 			 int __user *status, int flags)
1508 {
1509 	struct page_to_node *pm;
1510 	unsigned long chunk_nr_pages;
1511 	unsigned long chunk_start;
1512 	int err;
1513 
1514 	err = -ENOMEM;
1515 	pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1516 	if (!pm)
1517 		goto out;
1518 
1519 	migrate_prep();
1520 
1521 	/*
1522 	 * Store a chunk of page_to_node array in a page,
1523 	 * but keep the last one as a marker
1524 	 */
1525 	chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1526 
1527 	for (chunk_start = 0;
1528 	     chunk_start < nr_pages;
1529 	     chunk_start += chunk_nr_pages) {
1530 		int j;
1531 
1532 		if (chunk_start + chunk_nr_pages > nr_pages)
1533 			chunk_nr_pages = nr_pages - chunk_start;
1534 
1535 		/* fill the chunk pm with addrs and nodes from user-space */
1536 		for (j = 0; j < chunk_nr_pages; j++) {
1537 			const void __user *p;
1538 			int node;
1539 
1540 			err = -EFAULT;
1541 			if (get_user(p, pages + j + chunk_start))
1542 				goto out_pm;
1543 			pm[j].addr = (unsigned long) p;
1544 
1545 			if (get_user(node, nodes + j + chunk_start))
1546 				goto out_pm;
1547 
1548 			err = -ENODEV;
1549 			if (node < 0 || node >= MAX_NUMNODES)
1550 				goto out_pm;
1551 
1552 			if (!node_state(node, N_MEMORY))
1553 				goto out_pm;
1554 
1555 			err = -EACCES;
1556 			if (!node_isset(node, task_nodes))
1557 				goto out_pm;
1558 
1559 			pm[j].node = node;
1560 		}
1561 
1562 		/* End marker for this chunk */
1563 		pm[chunk_nr_pages].node = MAX_NUMNODES;
1564 
1565 		/* Migrate this chunk */
1566 		err = do_move_page_to_node_array(mm, pm,
1567 						 flags & MPOL_MF_MOVE_ALL);
1568 		if (err < 0)
1569 			goto out_pm;
1570 
1571 		/* Return status information */
1572 		for (j = 0; j < chunk_nr_pages; j++)
1573 			if (put_user(pm[j].status, status + j + chunk_start)) {
1574 				err = -EFAULT;
1575 				goto out_pm;
1576 			}
1577 	}
1578 	err = 0;
1579 
1580 out_pm:
1581 	free_page((unsigned long)pm);
1582 out:
1583 	return err;
1584 }
1585 
1586 /*
1587  * Determine the nodes of an array of pages and store it in an array of status.
1588  */
do_pages_stat_array(struct mm_struct * mm,unsigned long nr_pages,const void __user ** pages,int * status)1589 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1590 				const void __user **pages, int *status)
1591 {
1592 	unsigned long i;
1593 
1594 	down_read(&mm->mmap_sem);
1595 
1596 	for (i = 0; i < nr_pages; i++) {
1597 		unsigned long addr = (unsigned long)(*pages);
1598 		struct vm_area_struct *vma;
1599 		struct page *page;
1600 		int err = -EFAULT;
1601 
1602 		vma = find_vma(mm, addr);
1603 		if (!vma || addr < vma->vm_start)
1604 			goto set_status;
1605 
1606 		/* FOLL_DUMP to ignore special (like zero) pages */
1607 		page = follow_page(vma, addr, FOLL_DUMP);
1608 
1609 		err = PTR_ERR(page);
1610 		if (IS_ERR(page))
1611 			goto set_status;
1612 
1613 		err = page ? page_to_nid(page) : -ENOENT;
1614 set_status:
1615 		*status = err;
1616 
1617 		pages++;
1618 		status++;
1619 	}
1620 
1621 	up_read(&mm->mmap_sem);
1622 }
1623 
1624 /*
1625  * Determine the nodes of a user array of pages and store it in
1626  * a user array of status.
1627  */
do_pages_stat(struct mm_struct * mm,unsigned long nr_pages,const void __user * __user * pages,int __user * status)1628 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1629 			 const void __user * __user *pages,
1630 			 int __user *status)
1631 {
1632 #define DO_PAGES_STAT_CHUNK_NR 16
1633 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1634 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1635 
1636 	while (nr_pages) {
1637 		unsigned long chunk_nr;
1638 
1639 		chunk_nr = nr_pages;
1640 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1641 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1642 
1643 		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1644 			break;
1645 
1646 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1647 
1648 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1649 			break;
1650 
1651 		pages += chunk_nr;
1652 		status += chunk_nr;
1653 		nr_pages -= chunk_nr;
1654 	}
1655 	return nr_pages ? -EFAULT : 0;
1656 }
1657 
1658 /*
1659  * Move a list of pages in the address space of the currently executing
1660  * process.
1661  */
SYSCALL_DEFINE6(move_pages,pid_t,pid,unsigned long,nr_pages,const void __user * __user *,pages,const int __user *,nodes,int __user *,status,int,flags)1662 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1663 		const void __user * __user *, pages,
1664 		const int __user *, nodes,
1665 		int __user *, status, int, flags)
1666 {
1667 	struct task_struct *task;
1668 	struct mm_struct *mm;
1669 	int err;
1670 	nodemask_t task_nodes;
1671 
1672 	/* Check flags */
1673 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1674 		return -EINVAL;
1675 
1676 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1677 		return -EPERM;
1678 
1679 	/* Find the mm_struct */
1680 	rcu_read_lock();
1681 	task = pid ? find_task_by_vpid(pid) : current;
1682 	if (!task) {
1683 		rcu_read_unlock();
1684 		return -ESRCH;
1685 	}
1686 	get_task_struct(task);
1687 
1688 	/*
1689 	 * Check if this process has the right to modify the specified
1690 	 * process. Use the regular "ptrace_may_access()" checks.
1691 	 */
1692 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1693 		rcu_read_unlock();
1694 		err = -EPERM;
1695 		goto out;
1696 	}
1697 	rcu_read_unlock();
1698 
1699  	err = security_task_movememory(task);
1700  	if (err)
1701 		goto out;
1702 
1703 	task_nodes = cpuset_mems_allowed(task);
1704 	mm = get_task_mm(task);
1705 	put_task_struct(task);
1706 
1707 	if (!mm)
1708 		return -EINVAL;
1709 
1710 	if (nodes)
1711 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1712 				    nodes, status, flags);
1713 	else
1714 		err = do_pages_stat(mm, nr_pages, pages, status);
1715 
1716 	mmput(mm);
1717 	return err;
1718 
1719 out:
1720 	put_task_struct(task);
1721 	return err;
1722 }
1723 
1724 #ifdef CONFIG_NUMA_BALANCING
1725 /*
1726  * Returns true if this is a safe migration target node for misplaced NUMA
1727  * pages. Currently it only checks the watermarks which crude
1728  */
migrate_balanced_pgdat(struct pglist_data * pgdat,unsigned long nr_migrate_pages)1729 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1730 				   unsigned long nr_migrate_pages)
1731 {
1732 	int z;
1733 
1734 	if (!pgdat_reclaimable(pgdat))
1735 		return false;
1736 
1737 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1738 		struct zone *zone = pgdat->node_zones + z;
1739 
1740 		if (!populated_zone(zone))
1741 			continue;
1742 
1743 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
1744 		if (!zone_watermark_ok(zone, 0,
1745 				       high_wmark_pages(zone) +
1746 				       nr_migrate_pages,
1747 				       0, 0))
1748 			continue;
1749 		return true;
1750 	}
1751 	return false;
1752 }
1753 
alloc_misplaced_dst_page(struct page * page,unsigned long data,int ** result)1754 static struct page *alloc_misplaced_dst_page(struct page *page,
1755 					   unsigned long data,
1756 					   int **result)
1757 {
1758 	int nid = (int) data;
1759 	struct page *newpage;
1760 
1761 	newpage = __alloc_pages_node(nid,
1762 					 (GFP_HIGHUSER_MOVABLE |
1763 					  __GFP_THISNODE | __GFP_NOMEMALLOC |
1764 					  __GFP_NORETRY | __GFP_NOWARN) &
1765 					 ~__GFP_RECLAIM, 0);
1766 
1767 	return newpage;
1768 }
1769 
1770 /*
1771  * page migration rate limiting control.
1772  * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1773  * window of time. Default here says do not migrate more than 1280M per second.
1774  */
1775 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1776 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1777 
1778 /* Returns true if the node is migrate rate-limited after the update */
numamigrate_update_ratelimit(pg_data_t * pgdat,unsigned long nr_pages)1779 static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1780 					unsigned long nr_pages)
1781 {
1782 	/*
1783 	 * Rate-limit the amount of data that is being migrated to a node.
1784 	 * Optimal placement is no good if the memory bus is saturated and
1785 	 * all the time is being spent migrating!
1786 	 */
1787 	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1788 		spin_lock(&pgdat->numabalancing_migrate_lock);
1789 		pgdat->numabalancing_migrate_nr_pages = 0;
1790 		pgdat->numabalancing_migrate_next_window = jiffies +
1791 			msecs_to_jiffies(migrate_interval_millisecs);
1792 		spin_unlock(&pgdat->numabalancing_migrate_lock);
1793 	}
1794 	if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1795 		trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1796 								nr_pages);
1797 		return true;
1798 	}
1799 
1800 	/*
1801 	 * This is an unlocked non-atomic update so errors are possible.
1802 	 * The consequences are failing to migrate when we potentiall should
1803 	 * have which is not severe enough to warrant locking. If it is ever
1804 	 * a problem, it can be converted to a per-cpu counter.
1805 	 */
1806 	pgdat->numabalancing_migrate_nr_pages += nr_pages;
1807 	return false;
1808 }
1809 
numamigrate_isolate_page(pg_data_t * pgdat,struct page * page)1810 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1811 {
1812 	int page_lru;
1813 
1814 	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1815 
1816 	/* Avoid migrating to a node that is nearly full */
1817 	if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1818 		return 0;
1819 
1820 	if (isolate_lru_page(page))
1821 		return 0;
1822 
1823 	/*
1824 	 * migrate_misplaced_transhuge_page() skips page migration's usual
1825 	 * check on page_count(), so we must do it here, now that the page
1826 	 * has been isolated: a GUP pin, or any other pin, prevents migration.
1827 	 * The expected page count is 3: 1 for page's mapcount and 1 for the
1828 	 * caller's pin and 1 for the reference taken by isolate_lru_page().
1829 	 */
1830 	if (PageTransHuge(page) && page_count(page) != 3) {
1831 		putback_lru_page(page);
1832 		return 0;
1833 	}
1834 
1835 	page_lru = page_is_file_cache(page);
1836 	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1837 				hpage_nr_pages(page));
1838 
1839 	/*
1840 	 * Isolating the page has taken another reference, so the
1841 	 * caller's reference can be safely dropped without the page
1842 	 * disappearing underneath us during migration.
1843 	 */
1844 	put_page(page);
1845 	return 1;
1846 }
1847 
pmd_trans_migrating(pmd_t pmd)1848 bool pmd_trans_migrating(pmd_t pmd)
1849 {
1850 	struct page *page = pmd_page(pmd);
1851 	return PageLocked(page);
1852 }
1853 
1854 /*
1855  * Attempt to migrate a misplaced page to the specified destination
1856  * node. Caller is expected to have an elevated reference count on
1857  * the page that will be dropped by this function before returning.
1858  */
migrate_misplaced_page(struct page * page,struct vm_area_struct * vma,int node)1859 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1860 			   int node)
1861 {
1862 	pg_data_t *pgdat = NODE_DATA(node);
1863 	int isolated;
1864 	int nr_remaining;
1865 	LIST_HEAD(migratepages);
1866 
1867 	/*
1868 	 * Don't migrate file pages that are mapped in multiple processes
1869 	 * with execute permissions as they are probably shared libraries.
1870 	 */
1871 	if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1872 	    (vma->vm_flags & VM_EXEC))
1873 		goto out;
1874 
1875 	/*
1876 	 * Rate-limit the amount of data that is being migrated to a node.
1877 	 * Optimal placement is no good if the memory bus is saturated and
1878 	 * all the time is being spent migrating!
1879 	 */
1880 	if (numamigrate_update_ratelimit(pgdat, 1))
1881 		goto out;
1882 
1883 	isolated = numamigrate_isolate_page(pgdat, page);
1884 	if (!isolated)
1885 		goto out;
1886 
1887 	list_add(&page->lru, &migratepages);
1888 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1889 				     NULL, node, MIGRATE_ASYNC,
1890 				     MR_NUMA_MISPLACED);
1891 	if (nr_remaining) {
1892 		if (!list_empty(&migratepages)) {
1893 			list_del(&page->lru);
1894 			dec_node_page_state(page, NR_ISOLATED_ANON +
1895 					page_is_file_cache(page));
1896 			putback_lru_page(page);
1897 		}
1898 		isolated = 0;
1899 	} else
1900 		count_vm_numa_event(NUMA_PAGE_MIGRATE);
1901 	BUG_ON(!list_empty(&migratepages));
1902 	return isolated;
1903 
1904 out:
1905 	put_page(page);
1906 	return 0;
1907 }
1908 #endif /* CONFIG_NUMA_BALANCING */
1909 
1910 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1911 /*
1912  * Migrates a THP to a given target node. page must be locked and is unlocked
1913  * before returning.
1914  */
migrate_misplaced_transhuge_page(struct mm_struct * mm,struct vm_area_struct * vma,pmd_t * pmd,pmd_t entry,unsigned long address,struct page * page,int node)1915 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1916 				struct vm_area_struct *vma,
1917 				pmd_t *pmd, pmd_t entry,
1918 				unsigned long address,
1919 				struct page *page, int node)
1920 {
1921 	spinlock_t *ptl;
1922 	pg_data_t *pgdat = NODE_DATA(node);
1923 	int isolated = 0;
1924 	struct page *new_page = NULL;
1925 	int page_lru = page_is_file_cache(page);
1926 	unsigned long mmun_start = address & HPAGE_PMD_MASK;
1927 	unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1928 	pmd_t orig_entry;
1929 
1930 	/*
1931 	 * Rate-limit the amount of data that is being migrated to a node.
1932 	 * Optimal placement is no good if the memory bus is saturated and
1933 	 * all the time is being spent migrating!
1934 	 */
1935 	if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1936 		goto out_dropref;
1937 
1938 	new_page = alloc_pages_node(node,
1939 		(GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
1940 		HPAGE_PMD_ORDER);
1941 	if (!new_page)
1942 		goto out_fail;
1943 	prep_transhuge_page(new_page);
1944 
1945 	isolated = numamigrate_isolate_page(pgdat, page);
1946 	if (!isolated) {
1947 		put_page(new_page);
1948 		goto out_fail;
1949 	}
1950 	/*
1951 	 * We are not sure a pending tlb flush here is for a huge page
1952 	 * mapping or not. Hence use the tlb range variant
1953 	 */
1954 	if (mm_tlb_flush_pending(mm))
1955 		flush_tlb_range(vma, mmun_start, mmun_end);
1956 
1957 	/* Prepare a page as a migration target */
1958 	__SetPageLocked(new_page);
1959 	__SetPageSwapBacked(new_page);
1960 
1961 	/* anon mapping, we can simply copy page->mapping to the new page: */
1962 	new_page->mapping = page->mapping;
1963 	new_page->index = page->index;
1964 	migrate_page_copy(new_page, page);
1965 	WARN_ON(PageLRU(new_page));
1966 
1967 	/* Recheck the target PMD */
1968 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1969 	ptl = pmd_lock(mm, pmd);
1970 	if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
1971 fail_putback:
1972 		spin_unlock(ptl);
1973 		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1974 
1975 		/* Reverse changes made by migrate_page_copy() */
1976 		if (TestClearPageActive(new_page))
1977 			SetPageActive(page);
1978 		if (TestClearPageUnevictable(new_page))
1979 			SetPageUnevictable(page);
1980 
1981 		unlock_page(new_page);
1982 		put_page(new_page);		/* Free it */
1983 
1984 		/* Retake the callers reference and putback on LRU */
1985 		get_page(page);
1986 		putback_lru_page(page);
1987 		mod_node_page_state(page_pgdat(page),
1988 			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1989 
1990 		goto out_unlock;
1991 	}
1992 
1993 	orig_entry = *pmd;
1994 	entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1995 	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1996 
1997 	/*
1998 	 * Clear the old entry under pagetable lock and establish the new PTE.
1999 	 * Any parallel GUP will either observe the old page blocking on the
2000 	 * page lock, block on the page table lock or observe the new page.
2001 	 * The SetPageUptodate on the new page and page_add_new_anon_rmap
2002 	 * guarantee the copy is visible before the pagetable update.
2003 	 */
2004 	flush_cache_range(vma, mmun_start, mmun_end);
2005 	page_add_anon_rmap(new_page, vma, mmun_start, true);
2006 	pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
2007 	set_pmd_at(mm, mmun_start, pmd, entry);
2008 	update_mmu_cache_pmd(vma, address, &entry);
2009 
2010 	if (page_count(page) != 2) {
2011 		set_pmd_at(mm, mmun_start, pmd, orig_entry);
2012 		flush_pmd_tlb_range(vma, mmun_start, mmun_end);
2013 		mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
2014 		update_mmu_cache_pmd(vma, address, &entry);
2015 		page_remove_rmap(new_page, true);
2016 		goto fail_putback;
2017 	}
2018 
2019 	mlock_migrate_page(new_page, page);
2020 	page_remove_rmap(page, true);
2021 	set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2022 
2023 	spin_unlock(ptl);
2024 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2025 
2026 	/* Take an "isolate" reference and put new page on the LRU. */
2027 	get_page(new_page);
2028 	putback_lru_page(new_page);
2029 
2030 	unlock_page(new_page);
2031 	unlock_page(page);
2032 	put_page(page);			/* Drop the rmap reference */
2033 	put_page(page);			/* Drop the LRU isolation reference */
2034 
2035 	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2036 	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2037 
2038 	mod_node_page_state(page_pgdat(page),
2039 			NR_ISOLATED_ANON + page_lru,
2040 			-HPAGE_PMD_NR);
2041 	return isolated;
2042 
2043 out_fail:
2044 	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2045 out_dropref:
2046 	ptl = pmd_lock(mm, pmd);
2047 	if (pmd_same(*pmd, entry)) {
2048 		entry = pmd_modify(entry, vma->vm_page_prot);
2049 		set_pmd_at(mm, mmun_start, pmd, entry);
2050 		update_mmu_cache_pmd(vma, address, &entry);
2051 	}
2052 	spin_unlock(ptl);
2053 
2054 out_unlock:
2055 	unlock_page(page);
2056 	put_page(page);
2057 	return 0;
2058 }
2059 #endif /* CONFIG_NUMA_BALANCING */
2060 
2061 #endif /* CONFIG_NUMA */
2062