• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Slab allocator functions that are independent of the allocator strategy
3  *
4  * (C) 2012 Christoph Lameter <cl@linux.com>
5  */
6 #include <linux/slab.h>
7 
8 #include <linux/mm.h>
9 #include <linux/poison.h>
10 #include <linux/interrupt.h>
11 #include <linux/memory.h>
12 #include <linux/compiler.h>
13 #include <linux/module.h>
14 #include <linux/cpu.h>
15 #include <linux/uaccess.h>
16 #include <linux/seq_file.h>
17 #include <linux/proc_fs.h>
18 #include <asm/cacheflush.h>
19 #include <asm/tlbflush.h>
20 #include <asm/page.h>
21 #include <linux/memcontrol.h>
22 
23 #define CREATE_TRACE_POINTS
24 #include <trace/events/kmem.h>
25 
26 #include "slab.h"
27 
28 enum slab_state slab_state;
29 LIST_HEAD(slab_caches);
30 DEFINE_MUTEX(slab_mutex);
31 struct kmem_cache *kmem_cache;
32 
33 /*
34  * Set of flags that will prevent slab merging
35  */
36 #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
37 		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
38 		SLAB_FAILSLAB | SLAB_KASAN)
39 
40 #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
41 			 SLAB_NOTRACK | SLAB_ACCOUNT)
42 
43 /*
44  * Merge control. If this is set then no merging of slab caches will occur.
45  * (Could be removed. This was introduced to pacify the merge skeptics.)
46  */
47 static int slab_nomerge;
48 
setup_slab_nomerge(char * str)49 static int __init setup_slab_nomerge(char *str)
50 {
51 	slab_nomerge = 1;
52 	return 1;
53 }
54 
55 #ifdef CONFIG_SLUB
56 __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
57 #endif
58 
59 __setup("slab_nomerge", setup_slab_nomerge);
60 
61 /*
62  * Determine the size of a slab object
63  */
kmem_cache_size(struct kmem_cache * s)64 unsigned int kmem_cache_size(struct kmem_cache *s)
65 {
66 	return s->object_size;
67 }
68 EXPORT_SYMBOL(kmem_cache_size);
69 
70 #ifdef CONFIG_DEBUG_VM
kmem_cache_sanity_check(const char * name,size_t size)71 static int kmem_cache_sanity_check(const char *name, size_t size)
72 {
73 	struct kmem_cache *s = NULL;
74 
75 	if (!name || in_interrupt() || size < sizeof(void *) ||
76 		size > KMALLOC_MAX_SIZE) {
77 		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
78 		return -EINVAL;
79 	}
80 
81 	list_for_each_entry(s, &slab_caches, list) {
82 		char tmp;
83 		int res;
84 
85 		/*
86 		 * This happens when the module gets unloaded and doesn't
87 		 * destroy its slab cache and no-one else reuses the vmalloc
88 		 * area of the module.  Print a warning.
89 		 */
90 		res = probe_kernel_address(s->name, tmp);
91 		if (res) {
92 			pr_err("Slab cache with size %d has lost its name\n",
93 			       s->object_size);
94 			continue;
95 		}
96 	}
97 
98 	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
99 	return 0;
100 }
101 #else
kmem_cache_sanity_check(const char * name,size_t size)102 static inline int kmem_cache_sanity_check(const char *name, size_t size)
103 {
104 	return 0;
105 }
106 #endif
107 
__kmem_cache_free_bulk(struct kmem_cache * s,size_t nr,void ** p)108 void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
109 {
110 	size_t i;
111 
112 	for (i = 0; i < nr; i++) {
113 		if (s)
114 			kmem_cache_free(s, p[i]);
115 		else
116 			kfree(p[i]);
117 	}
118 }
119 
__kmem_cache_alloc_bulk(struct kmem_cache * s,gfp_t flags,size_t nr,void ** p)120 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
121 								void **p)
122 {
123 	size_t i;
124 
125 	for (i = 0; i < nr; i++) {
126 		void *x = p[i] = kmem_cache_alloc(s, flags);
127 		if (!x) {
128 			__kmem_cache_free_bulk(s, i, p);
129 			return 0;
130 		}
131 	}
132 	return i;
133 }
134 
135 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
slab_init_memcg_params(struct kmem_cache * s)136 void slab_init_memcg_params(struct kmem_cache *s)
137 {
138 	s->memcg_params.is_root_cache = true;
139 	INIT_LIST_HEAD(&s->memcg_params.list);
140 	RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
141 }
142 
init_memcg_params(struct kmem_cache * s,struct mem_cgroup * memcg,struct kmem_cache * root_cache)143 static int init_memcg_params(struct kmem_cache *s,
144 		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
145 {
146 	struct memcg_cache_array *arr;
147 
148 	if (memcg) {
149 		s->memcg_params.is_root_cache = false;
150 		s->memcg_params.memcg = memcg;
151 		s->memcg_params.root_cache = root_cache;
152 		return 0;
153 	}
154 
155 	slab_init_memcg_params(s);
156 
157 	if (!memcg_nr_cache_ids)
158 		return 0;
159 
160 	arr = kzalloc(sizeof(struct memcg_cache_array) +
161 		      memcg_nr_cache_ids * sizeof(void *),
162 		      GFP_KERNEL);
163 	if (!arr)
164 		return -ENOMEM;
165 
166 	RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
167 	return 0;
168 }
169 
destroy_memcg_params(struct kmem_cache * s)170 static void destroy_memcg_params(struct kmem_cache *s)
171 {
172 	if (is_root_cache(s))
173 		kfree(rcu_access_pointer(s->memcg_params.memcg_caches));
174 }
175 
update_memcg_params(struct kmem_cache * s,int new_array_size)176 static int update_memcg_params(struct kmem_cache *s, int new_array_size)
177 {
178 	struct memcg_cache_array *old, *new;
179 
180 	if (!is_root_cache(s))
181 		return 0;
182 
183 	new = kzalloc(sizeof(struct memcg_cache_array) +
184 		      new_array_size * sizeof(void *), GFP_KERNEL);
185 	if (!new)
186 		return -ENOMEM;
187 
188 	old = rcu_dereference_protected(s->memcg_params.memcg_caches,
189 					lockdep_is_held(&slab_mutex));
190 	if (old)
191 		memcpy(new->entries, old->entries,
192 		       memcg_nr_cache_ids * sizeof(void *));
193 
194 	rcu_assign_pointer(s->memcg_params.memcg_caches, new);
195 	if (old)
196 		kfree_rcu(old, rcu);
197 	return 0;
198 }
199 
memcg_update_all_caches(int num_memcgs)200 int memcg_update_all_caches(int num_memcgs)
201 {
202 	struct kmem_cache *s;
203 	int ret = 0;
204 
205 	mutex_lock(&slab_mutex);
206 	list_for_each_entry(s, &slab_caches, list) {
207 		ret = update_memcg_params(s, num_memcgs);
208 		/*
209 		 * Instead of freeing the memory, we'll just leave the caches
210 		 * up to this point in an updated state.
211 		 */
212 		if (ret)
213 			break;
214 	}
215 	mutex_unlock(&slab_mutex);
216 	return ret;
217 }
218 #else
init_memcg_params(struct kmem_cache * s,struct mem_cgroup * memcg,struct kmem_cache * root_cache)219 static inline int init_memcg_params(struct kmem_cache *s,
220 		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
221 {
222 	return 0;
223 }
224 
destroy_memcg_params(struct kmem_cache * s)225 static inline void destroy_memcg_params(struct kmem_cache *s)
226 {
227 }
228 #endif /* CONFIG_MEMCG && !CONFIG_SLOB */
229 
230 /*
231  * Find a mergeable slab cache
232  */
slab_unmergeable(struct kmem_cache * s)233 int slab_unmergeable(struct kmem_cache *s)
234 {
235 	if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
236 		return 1;
237 
238 	if (!is_root_cache(s))
239 		return 1;
240 
241 	if (s->ctor)
242 		return 1;
243 
244 	/*
245 	 * We may have set a slab to be unmergeable during bootstrap.
246 	 */
247 	if (s->refcount < 0)
248 		return 1;
249 
250 	return 0;
251 }
252 
find_mergeable(size_t size,size_t align,unsigned long flags,const char * name,void (* ctor)(void *))253 struct kmem_cache *find_mergeable(size_t size, size_t align,
254 		unsigned long flags, const char *name, void (*ctor)(void *))
255 {
256 	struct kmem_cache *s;
257 
258 	if (slab_nomerge)
259 		return NULL;
260 
261 	if (ctor)
262 		return NULL;
263 
264 	size = ALIGN(size, sizeof(void *));
265 	align = calculate_alignment(flags, align, size);
266 	size = ALIGN(size, align);
267 	flags = kmem_cache_flags(size, flags, name, NULL);
268 
269 	if (flags & SLAB_NEVER_MERGE)
270 		return NULL;
271 
272 	list_for_each_entry_reverse(s, &slab_caches, list) {
273 		if (slab_unmergeable(s))
274 			continue;
275 
276 		if (size > s->size)
277 			continue;
278 
279 		if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
280 			continue;
281 		/*
282 		 * Check if alignment is compatible.
283 		 * Courtesy of Adrian Drzewiecki
284 		 */
285 		if ((s->size & ~(align - 1)) != s->size)
286 			continue;
287 
288 		if (s->size - size >= sizeof(void *))
289 			continue;
290 
291 		if (IS_ENABLED(CONFIG_SLAB) && align &&
292 			(align > s->align || s->align % align))
293 			continue;
294 
295 		return s;
296 	}
297 	return NULL;
298 }
299 
300 /*
301  * Figure out what the alignment of the objects will be given a set of
302  * flags, a user specified alignment and the size of the objects.
303  */
calculate_alignment(unsigned long flags,unsigned long align,unsigned long size)304 unsigned long calculate_alignment(unsigned long flags,
305 		unsigned long align, unsigned long size)
306 {
307 	/*
308 	 * If the user wants hardware cache aligned objects then follow that
309 	 * suggestion if the object is sufficiently large.
310 	 *
311 	 * The hardware cache alignment cannot override the specified
312 	 * alignment though. If that is greater then use it.
313 	 */
314 	if (flags & SLAB_HWCACHE_ALIGN) {
315 		unsigned long ralign = cache_line_size();
316 		while (size <= ralign / 2)
317 			ralign /= 2;
318 		align = max(align, ralign);
319 	}
320 
321 	if (align < ARCH_SLAB_MINALIGN)
322 		align = ARCH_SLAB_MINALIGN;
323 
324 	return ALIGN(align, sizeof(void *));
325 }
326 
create_cache(const char * name,size_t object_size,size_t size,size_t align,unsigned long flags,void (* ctor)(void *),struct mem_cgroup * memcg,struct kmem_cache * root_cache)327 static struct kmem_cache *create_cache(const char *name,
328 		size_t object_size, size_t size, size_t align,
329 		unsigned long flags, void (*ctor)(void *),
330 		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
331 {
332 	struct kmem_cache *s;
333 	int err;
334 
335 	err = -ENOMEM;
336 	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
337 	if (!s)
338 		goto out;
339 
340 	s->name = name;
341 	s->object_size = object_size;
342 	s->size = size;
343 	s->align = align;
344 	s->ctor = ctor;
345 
346 	err = init_memcg_params(s, memcg, root_cache);
347 	if (err)
348 		goto out_free_cache;
349 
350 	err = __kmem_cache_create(s, flags);
351 	if (err)
352 		goto out_free_cache;
353 
354 	s->refcount = 1;
355 	list_add(&s->list, &slab_caches);
356 out:
357 	if (err)
358 		return ERR_PTR(err);
359 	return s;
360 
361 out_free_cache:
362 	destroy_memcg_params(s);
363 	kmem_cache_free(kmem_cache, s);
364 	goto out;
365 }
366 
367 /*
368  * kmem_cache_create - Create a cache.
369  * @name: A string which is used in /proc/slabinfo to identify this cache.
370  * @size: The size of objects to be created in this cache.
371  * @align: The required alignment for the objects.
372  * @flags: SLAB flags
373  * @ctor: A constructor for the objects.
374  *
375  * Returns a ptr to the cache on success, NULL on failure.
376  * Cannot be called within a interrupt, but can be interrupted.
377  * The @ctor is run when new pages are allocated by the cache.
378  *
379  * The flags are
380  *
381  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
382  * to catch references to uninitialised memory.
383  *
384  * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
385  * for buffer overruns.
386  *
387  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
388  * cacheline.  This can be beneficial if you're counting cycles as closely
389  * as davem.
390  */
391 struct kmem_cache *
kmem_cache_create(const char * name,size_t size,size_t align,unsigned long flags,void (* ctor)(void *))392 kmem_cache_create(const char *name, size_t size, size_t align,
393 		  unsigned long flags, void (*ctor)(void *))
394 {
395 	struct kmem_cache *s = NULL;
396 	const char *cache_name;
397 	int err;
398 
399 	get_online_cpus();
400 	get_online_mems();
401 	memcg_get_cache_ids();
402 
403 	mutex_lock(&slab_mutex);
404 
405 	err = kmem_cache_sanity_check(name, size);
406 	if (err) {
407 		goto out_unlock;
408 	}
409 
410 	/*
411 	 * Some allocators will constraint the set of valid flags to a subset
412 	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
413 	 * case, and we'll just provide them with a sanitized version of the
414 	 * passed flags.
415 	 */
416 	flags &= CACHE_CREATE_MASK;
417 
418 	s = __kmem_cache_alias(name, size, align, flags, ctor);
419 	if (s)
420 		goto out_unlock;
421 
422 	cache_name = kstrdup_const(name, GFP_KERNEL);
423 	if (!cache_name) {
424 		err = -ENOMEM;
425 		goto out_unlock;
426 	}
427 
428 	s = create_cache(cache_name, size, size,
429 			 calculate_alignment(flags, align, size),
430 			 flags, ctor, NULL, NULL);
431 	if (IS_ERR(s)) {
432 		err = PTR_ERR(s);
433 		kfree_const(cache_name);
434 	}
435 
436 out_unlock:
437 	mutex_unlock(&slab_mutex);
438 
439 	memcg_put_cache_ids();
440 	put_online_mems();
441 	put_online_cpus();
442 
443 	if (err) {
444 		if (flags & SLAB_PANIC)
445 			panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
446 				name, err);
447 		else {
448 			pr_warn("kmem_cache_create(%s) failed with error %d\n",
449 				name, err);
450 			dump_stack();
451 		}
452 		return NULL;
453 	}
454 	return s;
455 }
456 EXPORT_SYMBOL(kmem_cache_create);
457 
shutdown_cache(struct kmem_cache * s,struct list_head * release,bool * need_rcu_barrier)458 static int shutdown_cache(struct kmem_cache *s,
459 		struct list_head *release, bool *need_rcu_barrier)
460 {
461 	/* free asan quarantined objects */
462 	kasan_cache_shutdown(s);
463 
464 	if (__kmem_cache_shutdown(s) != 0)
465 		return -EBUSY;
466 
467 	if (s->flags & SLAB_DESTROY_BY_RCU)
468 		*need_rcu_barrier = true;
469 
470 	list_move(&s->list, release);
471 	return 0;
472 }
473 
release_caches(struct list_head * release,bool need_rcu_barrier)474 static void release_caches(struct list_head *release, bool need_rcu_barrier)
475 {
476 	struct kmem_cache *s, *s2;
477 
478 	if (need_rcu_barrier)
479 		rcu_barrier();
480 
481 	list_for_each_entry_safe(s, s2, release, list) {
482 #ifdef SLAB_SUPPORTS_SYSFS
483 		sysfs_slab_remove(s);
484 #else
485 		slab_kmem_cache_release(s);
486 #endif
487 	}
488 }
489 
490 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
491 /*
492  * memcg_create_kmem_cache - Create a cache for a memory cgroup.
493  * @memcg: The memory cgroup the new cache is for.
494  * @root_cache: The parent of the new cache.
495  *
496  * This function attempts to create a kmem cache that will serve allocation
497  * requests going from @memcg to @root_cache. The new cache inherits properties
498  * from its parent.
499  */
memcg_create_kmem_cache(struct mem_cgroup * memcg,struct kmem_cache * root_cache)500 void memcg_create_kmem_cache(struct mem_cgroup *memcg,
501 			     struct kmem_cache *root_cache)
502 {
503 	static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
504 	struct cgroup_subsys_state *css = &memcg->css;
505 	struct memcg_cache_array *arr;
506 	struct kmem_cache *s = NULL;
507 	char *cache_name;
508 	int idx;
509 
510 	get_online_cpus();
511 	get_online_mems();
512 
513 	mutex_lock(&slab_mutex);
514 
515 	/*
516 	 * The memory cgroup could have been offlined while the cache
517 	 * creation work was pending.
518 	 */
519 	if (memcg->kmem_state != KMEM_ONLINE)
520 		goto out_unlock;
521 
522 	idx = memcg_cache_id(memcg);
523 	arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
524 					lockdep_is_held(&slab_mutex));
525 
526 	/*
527 	 * Since per-memcg caches are created asynchronously on first
528 	 * allocation (see memcg_kmem_get_cache()), several threads can try to
529 	 * create the same cache, but only one of them may succeed.
530 	 */
531 	if (arr->entries[idx])
532 		goto out_unlock;
533 
534 	cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
535 	cache_name = kasprintf(GFP_KERNEL, "%s(%llu:%s)", root_cache->name,
536 			       css->serial_nr, memcg_name_buf);
537 	if (!cache_name)
538 		goto out_unlock;
539 
540 	s = create_cache(cache_name, root_cache->object_size,
541 			 root_cache->size, root_cache->align,
542 			 root_cache->flags & CACHE_CREATE_MASK,
543 			 root_cache->ctor, memcg, root_cache);
544 	/*
545 	 * If we could not create a memcg cache, do not complain, because
546 	 * that's not critical at all as we can always proceed with the root
547 	 * cache.
548 	 */
549 	if (IS_ERR(s)) {
550 		kfree(cache_name);
551 		goto out_unlock;
552 	}
553 
554 	list_add(&s->memcg_params.list, &root_cache->memcg_params.list);
555 
556 	/*
557 	 * Since readers won't lock (see cache_from_memcg_idx()), we need a
558 	 * barrier here to ensure nobody will see the kmem_cache partially
559 	 * initialized.
560 	 */
561 	smp_wmb();
562 	arr->entries[idx] = s;
563 
564 out_unlock:
565 	mutex_unlock(&slab_mutex);
566 
567 	put_online_mems();
568 	put_online_cpus();
569 }
570 
memcg_deactivate_kmem_caches(struct mem_cgroup * memcg)571 void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg)
572 {
573 	int idx;
574 	struct memcg_cache_array *arr;
575 	struct kmem_cache *s, *c;
576 
577 	idx = memcg_cache_id(memcg);
578 
579 	get_online_cpus();
580 	get_online_mems();
581 
582 #ifdef CONFIG_SLUB
583 	/*
584 	 * In case of SLUB, we need to disable empty slab caching to
585 	 * avoid pinning the offline memory cgroup by freeable kmem
586 	 * pages charged to it. SLAB doesn't need this, as it
587 	 * periodically purges unused slabs.
588 	 */
589 	mutex_lock(&slab_mutex);
590 	list_for_each_entry(s, &slab_caches, list) {
591 		c = is_root_cache(s) ? cache_from_memcg_idx(s, idx) : NULL;
592 		if (c) {
593 			c->cpu_partial = 0;
594 			c->min_partial = 0;
595 		}
596 	}
597 	mutex_unlock(&slab_mutex);
598 	/*
599 	 * kmem_cache->cpu_partial is checked locklessly (see
600 	 * put_cpu_partial()). Make sure the change is visible.
601 	 */
602 	synchronize_sched();
603 #endif
604 
605 	mutex_lock(&slab_mutex);
606 	list_for_each_entry(s, &slab_caches, list) {
607 		if (!is_root_cache(s))
608 			continue;
609 
610 		arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
611 						lockdep_is_held(&slab_mutex));
612 		c = arr->entries[idx];
613 		if (!c)
614 			continue;
615 
616 		__kmem_cache_shrink(c);
617 		arr->entries[idx] = NULL;
618 	}
619 	mutex_unlock(&slab_mutex);
620 
621 	put_online_mems();
622 	put_online_cpus();
623 }
624 
__shutdown_memcg_cache(struct kmem_cache * s,struct list_head * release,bool * need_rcu_barrier)625 static int __shutdown_memcg_cache(struct kmem_cache *s,
626 		struct list_head *release, bool *need_rcu_barrier)
627 {
628 	BUG_ON(is_root_cache(s));
629 
630 	if (shutdown_cache(s, release, need_rcu_barrier))
631 		return -EBUSY;
632 
633 	list_del(&s->memcg_params.list);
634 	return 0;
635 }
636 
memcg_destroy_kmem_caches(struct mem_cgroup * memcg)637 void memcg_destroy_kmem_caches(struct mem_cgroup *memcg)
638 {
639 	LIST_HEAD(release);
640 	bool need_rcu_barrier = false;
641 	struct kmem_cache *s, *s2;
642 
643 	get_online_cpus();
644 	get_online_mems();
645 
646 	mutex_lock(&slab_mutex);
647 	list_for_each_entry_safe(s, s2, &slab_caches, list) {
648 		if (is_root_cache(s) || s->memcg_params.memcg != memcg)
649 			continue;
650 		/*
651 		 * The cgroup is about to be freed and therefore has no charges
652 		 * left. Hence, all its caches must be empty by now.
653 		 */
654 		BUG_ON(__shutdown_memcg_cache(s, &release, &need_rcu_barrier));
655 	}
656 	mutex_unlock(&slab_mutex);
657 
658 	put_online_mems();
659 	put_online_cpus();
660 
661 	release_caches(&release, need_rcu_barrier);
662 }
663 
shutdown_memcg_caches(struct kmem_cache * s,struct list_head * release,bool * need_rcu_barrier)664 static int shutdown_memcg_caches(struct kmem_cache *s,
665 		struct list_head *release, bool *need_rcu_barrier)
666 {
667 	struct memcg_cache_array *arr;
668 	struct kmem_cache *c, *c2;
669 	LIST_HEAD(busy);
670 	int i;
671 
672 	BUG_ON(!is_root_cache(s));
673 
674 	/*
675 	 * First, shutdown active caches, i.e. caches that belong to online
676 	 * memory cgroups.
677 	 */
678 	arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
679 					lockdep_is_held(&slab_mutex));
680 	for_each_memcg_cache_index(i) {
681 		c = arr->entries[i];
682 		if (!c)
683 			continue;
684 		if (__shutdown_memcg_cache(c, release, need_rcu_barrier))
685 			/*
686 			 * The cache still has objects. Move it to a temporary
687 			 * list so as not to try to destroy it for a second
688 			 * time while iterating over inactive caches below.
689 			 */
690 			list_move(&c->memcg_params.list, &busy);
691 		else
692 			/*
693 			 * The cache is empty and will be destroyed soon. Clear
694 			 * the pointer to it in the memcg_caches array so that
695 			 * it will never be accessed even if the root cache
696 			 * stays alive.
697 			 */
698 			arr->entries[i] = NULL;
699 	}
700 
701 	/*
702 	 * Second, shutdown all caches left from memory cgroups that are now
703 	 * offline.
704 	 */
705 	list_for_each_entry_safe(c, c2, &s->memcg_params.list,
706 				 memcg_params.list)
707 		__shutdown_memcg_cache(c, release, need_rcu_barrier);
708 
709 	list_splice(&busy, &s->memcg_params.list);
710 
711 	/*
712 	 * A cache being destroyed must be empty. In particular, this means
713 	 * that all per memcg caches attached to it must be empty too.
714 	 */
715 	if (!list_empty(&s->memcg_params.list))
716 		return -EBUSY;
717 	return 0;
718 }
719 #else
shutdown_memcg_caches(struct kmem_cache * s,struct list_head * release,bool * need_rcu_barrier)720 static inline int shutdown_memcg_caches(struct kmem_cache *s,
721 		struct list_head *release, bool *need_rcu_barrier)
722 {
723 	return 0;
724 }
725 #endif /* CONFIG_MEMCG && !CONFIG_SLOB */
726 
slab_kmem_cache_release(struct kmem_cache * s)727 void slab_kmem_cache_release(struct kmem_cache *s)
728 {
729 	__kmem_cache_release(s);
730 	destroy_memcg_params(s);
731 	kfree_const(s->name);
732 	kmem_cache_free(kmem_cache, s);
733 }
734 
kmem_cache_destroy(struct kmem_cache * s)735 void kmem_cache_destroy(struct kmem_cache *s)
736 {
737 	LIST_HEAD(release);
738 	bool need_rcu_barrier = false;
739 	int err;
740 
741 	if (unlikely(!s))
742 		return;
743 
744 	get_online_cpus();
745 	get_online_mems();
746 
747 	mutex_lock(&slab_mutex);
748 
749 	s->refcount--;
750 	if (s->refcount)
751 		goto out_unlock;
752 
753 	err = shutdown_memcg_caches(s, &release, &need_rcu_barrier);
754 	if (!err)
755 		err = shutdown_cache(s, &release, &need_rcu_barrier);
756 
757 	if (err) {
758 		pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
759 		       s->name);
760 		dump_stack();
761 	}
762 out_unlock:
763 	mutex_unlock(&slab_mutex);
764 
765 	put_online_mems();
766 	put_online_cpus();
767 
768 	release_caches(&release, need_rcu_barrier);
769 }
770 EXPORT_SYMBOL(kmem_cache_destroy);
771 
772 /**
773  * kmem_cache_shrink - Shrink a cache.
774  * @cachep: The cache to shrink.
775  *
776  * Releases as many slabs as possible for a cache.
777  * To help debugging, a zero exit status indicates all slabs were released.
778  */
kmem_cache_shrink(struct kmem_cache * cachep)779 int kmem_cache_shrink(struct kmem_cache *cachep)
780 {
781 	int ret;
782 
783 	get_online_cpus();
784 	get_online_mems();
785 	kasan_cache_shrink(cachep);
786 	ret = __kmem_cache_shrink(cachep);
787 	put_online_mems();
788 	put_online_cpus();
789 	return ret;
790 }
791 EXPORT_SYMBOL(kmem_cache_shrink);
792 
slab_is_available(void)793 bool slab_is_available(void)
794 {
795 	return slab_state >= UP;
796 }
797 
798 #ifndef CONFIG_SLOB
799 /* Create a cache during boot when no slab services are available yet */
create_boot_cache(struct kmem_cache * s,const char * name,size_t size,unsigned long flags)800 void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
801 		unsigned long flags)
802 {
803 	int err;
804 
805 	s->name = name;
806 	s->size = s->object_size = size;
807 	s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
808 
809 	slab_init_memcg_params(s);
810 
811 	err = __kmem_cache_create(s, flags);
812 
813 	if (err)
814 		panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
815 					name, size, err);
816 
817 	s->refcount = -1;	/* Exempt from merging for now */
818 }
819 
create_kmalloc_cache(const char * name,size_t size,unsigned long flags)820 struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
821 				unsigned long flags)
822 {
823 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
824 
825 	if (!s)
826 		panic("Out of memory when creating slab %s\n", name);
827 
828 	create_boot_cache(s, name, size, flags);
829 	list_add(&s->list, &slab_caches);
830 	s->refcount = 1;
831 	return s;
832 }
833 
834 struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
835 EXPORT_SYMBOL(kmalloc_caches);
836 
837 #ifdef CONFIG_ZONE_DMA
838 struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
839 EXPORT_SYMBOL(kmalloc_dma_caches);
840 #endif
841 
842 /*
843  * Conversion table for small slabs sizes / 8 to the index in the
844  * kmalloc array. This is necessary for slabs < 192 since we have non power
845  * of two cache sizes there. The size of larger slabs can be determined using
846  * fls.
847  */
848 static s8 size_index[24] = {
849 	3,	/* 8 */
850 	4,	/* 16 */
851 	5,	/* 24 */
852 	5,	/* 32 */
853 	6,	/* 40 */
854 	6,	/* 48 */
855 	6,	/* 56 */
856 	6,	/* 64 */
857 	1,	/* 72 */
858 	1,	/* 80 */
859 	1,	/* 88 */
860 	1,	/* 96 */
861 	7,	/* 104 */
862 	7,	/* 112 */
863 	7,	/* 120 */
864 	7,	/* 128 */
865 	2,	/* 136 */
866 	2,	/* 144 */
867 	2,	/* 152 */
868 	2,	/* 160 */
869 	2,	/* 168 */
870 	2,	/* 176 */
871 	2,	/* 184 */
872 	2	/* 192 */
873 };
874 
size_index_elem(size_t bytes)875 static inline int size_index_elem(size_t bytes)
876 {
877 	return (bytes - 1) / 8;
878 }
879 
880 /*
881  * Find the kmem_cache structure that serves a given size of
882  * allocation
883  */
kmalloc_slab(size_t size,gfp_t flags)884 struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
885 {
886 	int index;
887 
888 	if (unlikely(size > KMALLOC_MAX_SIZE)) {
889 		WARN_ON_ONCE(!(flags & __GFP_NOWARN));
890 		return NULL;
891 	}
892 
893 	if (size <= 192) {
894 		if (!size)
895 			return ZERO_SIZE_PTR;
896 
897 		index = size_index[size_index_elem(size)];
898 	} else
899 		index = fls(size - 1);
900 
901 #ifdef CONFIG_ZONE_DMA
902 	if (unlikely((flags & GFP_DMA)))
903 		return kmalloc_dma_caches[index];
904 
905 #endif
906 	return kmalloc_caches[index];
907 }
908 
909 /*
910  * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
911  * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
912  * kmalloc-67108864.
913  */
914 static struct {
915 	const char *name;
916 	unsigned long size;
917 } const kmalloc_info[] __initconst = {
918 	{NULL,                      0},		{"kmalloc-96",             96},
919 	{"kmalloc-192",           192},		{"kmalloc-8",               8},
920 	{"kmalloc-16",             16},		{"kmalloc-32",             32},
921 	{"kmalloc-64",             64},		{"kmalloc-128",           128},
922 	{"kmalloc-256",           256},		{"kmalloc-512",           512},
923 	{"kmalloc-1024",         1024},		{"kmalloc-2048",         2048},
924 	{"kmalloc-4096",         4096},		{"kmalloc-8192",         8192},
925 	{"kmalloc-16384",       16384},		{"kmalloc-32768",       32768},
926 	{"kmalloc-65536",       65536},		{"kmalloc-131072",     131072},
927 	{"kmalloc-262144",     262144},		{"kmalloc-524288",     524288},
928 	{"kmalloc-1048576",   1048576},		{"kmalloc-2097152",   2097152},
929 	{"kmalloc-4194304",   4194304},		{"kmalloc-8388608",   8388608},
930 	{"kmalloc-16777216", 16777216},		{"kmalloc-33554432", 33554432},
931 	{"kmalloc-67108864", 67108864}
932 };
933 
934 /*
935  * Patch up the size_index table if we have strange large alignment
936  * requirements for the kmalloc array. This is only the case for
937  * MIPS it seems. The standard arches will not generate any code here.
938  *
939  * Largest permitted alignment is 256 bytes due to the way we
940  * handle the index determination for the smaller caches.
941  *
942  * Make sure that nothing crazy happens if someone starts tinkering
943  * around with ARCH_KMALLOC_MINALIGN
944  */
setup_kmalloc_cache_index_table(void)945 void __init setup_kmalloc_cache_index_table(void)
946 {
947 	int i;
948 
949 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
950 		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
951 
952 	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
953 		int elem = size_index_elem(i);
954 
955 		if (elem >= ARRAY_SIZE(size_index))
956 			break;
957 		size_index[elem] = KMALLOC_SHIFT_LOW;
958 	}
959 
960 	if (KMALLOC_MIN_SIZE >= 64) {
961 		/*
962 		 * The 96 byte size cache is not used if the alignment
963 		 * is 64 byte.
964 		 */
965 		for (i = 64 + 8; i <= 96; i += 8)
966 			size_index[size_index_elem(i)] = 7;
967 
968 	}
969 
970 	if (KMALLOC_MIN_SIZE >= 128) {
971 		/*
972 		 * The 192 byte sized cache is not used if the alignment
973 		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
974 		 * instead.
975 		 */
976 		for (i = 128 + 8; i <= 192; i += 8)
977 			size_index[size_index_elem(i)] = 8;
978 	}
979 }
980 
new_kmalloc_cache(int idx,unsigned long flags)981 static void __init new_kmalloc_cache(int idx, unsigned long flags)
982 {
983 	kmalloc_caches[idx] = create_kmalloc_cache(kmalloc_info[idx].name,
984 					kmalloc_info[idx].size, flags);
985 }
986 
987 /*
988  * Create the kmalloc array. Some of the regular kmalloc arrays
989  * may already have been created because they were needed to
990  * enable allocations for slab creation.
991  */
create_kmalloc_caches(unsigned long flags)992 void __init create_kmalloc_caches(unsigned long flags)
993 {
994 	int i;
995 
996 	for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
997 		if (!kmalloc_caches[i])
998 			new_kmalloc_cache(i, flags);
999 
1000 		/*
1001 		 * Caches that are not of the two-to-the-power-of size.
1002 		 * These have to be created immediately after the
1003 		 * earlier power of two caches
1004 		 */
1005 		if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
1006 			new_kmalloc_cache(1, flags);
1007 		if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
1008 			new_kmalloc_cache(2, flags);
1009 	}
1010 
1011 	/* Kmalloc array is now usable */
1012 	slab_state = UP;
1013 
1014 #ifdef CONFIG_ZONE_DMA
1015 	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
1016 		struct kmem_cache *s = kmalloc_caches[i];
1017 
1018 		if (s) {
1019 			int size = kmalloc_size(i);
1020 			char *n = kasprintf(GFP_NOWAIT,
1021 				 "dma-kmalloc-%d", size);
1022 
1023 			BUG_ON(!n);
1024 			kmalloc_dma_caches[i] = create_kmalloc_cache(n,
1025 				size, SLAB_CACHE_DMA | flags);
1026 		}
1027 	}
1028 #endif
1029 }
1030 #endif /* !CONFIG_SLOB */
1031 
1032 /*
1033  * To avoid unnecessary overhead, we pass through large allocation requests
1034  * directly to the page allocator. We use __GFP_COMP, because we will need to
1035  * know the allocation order to free the pages properly in kfree.
1036  */
kmalloc_order(size_t size,gfp_t flags,unsigned int order)1037 void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
1038 {
1039 	void *ret;
1040 	struct page *page;
1041 
1042 	flags |= __GFP_COMP;
1043 	page = alloc_pages(flags, order);
1044 	ret = page ? page_address(page) : NULL;
1045 	kmemleak_alloc(ret, size, 1, flags);
1046 	kasan_kmalloc_large(ret, size, flags);
1047 	return ret;
1048 }
1049 EXPORT_SYMBOL(kmalloc_order);
1050 
1051 #ifdef CONFIG_TRACING
kmalloc_order_trace(size_t size,gfp_t flags,unsigned int order)1052 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
1053 {
1054 	void *ret = kmalloc_order(size, flags, order);
1055 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
1056 	return ret;
1057 }
1058 EXPORT_SYMBOL(kmalloc_order_trace);
1059 #endif
1060 
1061 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1062 /* Randomize a generic freelist */
freelist_randomize(struct rnd_state * state,unsigned int * list,size_t count)1063 static void freelist_randomize(struct rnd_state *state, unsigned int *list,
1064 			size_t count)
1065 {
1066 	size_t i;
1067 	unsigned int rand;
1068 
1069 	for (i = 0; i < count; i++)
1070 		list[i] = i;
1071 
1072 	/* Fisher-Yates shuffle */
1073 	for (i = count - 1; i > 0; i--) {
1074 		rand = prandom_u32_state(state);
1075 		rand %= (i + 1);
1076 		swap(list[i], list[rand]);
1077 	}
1078 }
1079 
1080 /* Create a random sequence per cache */
cache_random_seq_create(struct kmem_cache * cachep,unsigned int count,gfp_t gfp)1081 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
1082 				    gfp_t gfp)
1083 {
1084 	struct rnd_state state;
1085 
1086 	if (count < 2 || cachep->random_seq)
1087 		return 0;
1088 
1089 	cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
1090 	if (!cachep->random_seq)
1091 		return -ENOMEM;
1092 
1093 	/* Get best entropy at this stage of boot */
1094 	prandom_seed_state(&state, get_random_long());
1095 
1096 	freelist_randomize(&state, cachep->random_seq, count);
1097 	return 0;
1098 }
1099 
1100 /* Destroy the per-cache random freelist sequence */
cache_random_seq_destroy(struct kmem_cache * cachep)1101 void cache_random_seq_destroy(struct kmem_cache *cachep)
1102 {
1103 	kfree(cachep->random_seq);
1104 	cachep->random_seq = NULL;
1105 }
1106 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1107 
1108 #ifdef CONFIG_SLABINFO
1109 
1110 #ifdef CONFIG_SLAB
1111 #define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
1112 #else
1113 #define SLABINFO_RIGHTS S_IRUSR
1114 #endif
1115 
print_slabinfo_header(struct seq_file * m)1116 static void print_slabinfo_header(struct seq_file *m)
1117 {
1118 	/*
1119 	 * Output format version, so at least we can change it
1120 	 * without _too_ many complaints.
1121 	 */
1122 #ifdef CONFIG_DEBUG_SLAB
1123 	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1124 #else
1125 	seq_puts(m, "slabinfo - version: 2.1\n");
1126 #endif
1127 	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1128 	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1129 	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1130 #ifdef CONFIG_DEBUG_SLAB
1131 	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1132 	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1133 #endif
1134 	seq_putc(m, '\n');
1135 }
1136 
slab_start(struct seq_file * m,loff_t * pos)1137 void *slab_start(struct seq_file *m, loff_t *pos)
1138 {
1139 	mutex_lock(&slab_mutex);
1140 	return seq_list_start(&slab_caches, *pos);
1141 }
1142 
slab_next(struct seq_file * m,void * p,loff_t * pos)1143 void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1144 {
1145 	return seq_list_next(p, &slab_caches, pos);
1146 }
1147 
slab_stop(struct seq_file * m,void * p)1148 void slab_stop(struct seq_file *m, void *p)
1149 {
1150 	mutex_unlock(&slab_mutex);
1151 }
1152 
1153 static void
memcg_accumulate_slabinfo(struct kmem_cache * s,struct slabinfo * info)1154 memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
1155 {
1156 	struct kmem_cache *c;
1157 	struct slabinfo sinfo;
1158 
1159 	if (!is_root_cache(s))
1160 		return;
1161 
1162 	for_each_memcg_cache(c, s) {
1163 		memset(&sinfo, 0, sizeof(sinfo));
1164 		get_slabinfo(c, &sinfo);
1165 
1166 		info->active_slabs += sinfo.active_slabs;
1167 		info->num_slabs += sinfo.num_slabs;
1168 		info->shared_avail += sinfo.shared_avail;
1169 		info->active_objs += sinfo.active_objs;
1170 		info->num_objs += sinfo.num_objs;
1171 	}
1172 }
1173 
cache_show(struct kmem_cache * s,struct seq_file * m)1174 static void cache_show(struct kmem_cache *s, struct seq_file *m)
1175 {
1176 	struct slabinfo sinfo;
1177 
1178 	memset(&sinfo, 0, sizeof(sinfo));
1179 	get_slabinfo(s, &sinfo);
1180 
1181 	memcg_accumulate_slabinfo(s, &sinfo);
1182 
1183 	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1184 		   cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
1185 		   sinfo.objects_per_slab, (1 << sinfo.cache_order));
1186 
1187 	seq_printf(m, " : tunables %4u %4u %4u",
1188 		   sinfo.limit, sinfo.batchcount, sinfo.shared);
1189 	seq_printf(m, " : slabdata %6lu %6lu %6lu",
1190 		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1191 	slabinfo_show_stats(m, s);
1192 	seq_putc(m, '\n');
1193 }
1194 
slab_show(struct seq_file * m,void * p)1195 static int slab_show(struct seq_file *m, void *p)
1196 {
1197 	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
1198 
1199 	if (p == slab_caches.next)
1200 		print_slabinfo_header(m);
1201 	if (is_root_cache(s))
1202 		cache_show(s, m);
1203 	return 0;
1204 }
1205 
1206 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
memcg_slab_show(struct seq_file * m,void * p)1207 int memcg_slab_show(struct seq_file *m, void *p)
1208 {
1209 	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
1210 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1211 
1212 	if (p == slab_caches.next)
1213 		print_slabinfo_header(m);
1214 	if (!is_root_cache(s) && s->memcg_params.memcg == memcg)
1215 		cache_show(s, m);
1216 	return 0;
1217 }
1218 #endif
1219 
1220 /*
1221  * slabinfo_op - iterator that generates /proc/slabinfo
1222  *
1223  * Output layout:
1224  * cache-name
1225  * num-active-objs
1226  * total-objs
1227  * object size
1228  * num-active-slabs
1229  * total-slabs
1230  * num-pages-per-slab
1231  * + further values on SMP and with statistics enabled
1232  */
1233 static const struct seq_operations slabinfo_op = {
1234 	.start = slab_start,
1235 	.next = slab_next,
1236 	.stop = slab_stop,
1237 	.show = slab_show,
1238 };
1239 
slabinfo_open(struct inode * inode,struct file * file)1240 static int slabinfo_open(struct inode *inode, struct file *file)
1241 {
1242 	return seq_open(file, &slabinfo_op);
1243 }
1244 
1245 static const struct file_operations proc_slabinfo_operations = {
1246 	.open		= slabinfo_open,
1247 	.read		= seq_read,
1248 	.write          = slabinfo_write,
1249 	.llseek		= seq_lseek,
1250 	.release	= seq_release,
1251 };
1252 
slab_proc_init(void)1253 static int __init slab_proc_init(void)
1254 {
1255 	proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
1256 						&proc_slabinfo_operations);
1257 	return 0;
1258 }
1259 module_init(slab_proc_init);
1260 #endif /* CONFIG_SLABINFO */
1261 
__do_krealloc(const void * p,size_t new_size,gfp_t flags)1262 static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1263 					   gfp_t flags)
1264 {
1265 	void *ret;
1266 	size_t ks = 0;
1267 
1268 	if (p)
1269 		ks = ksize(p);
1270 
1271 	if (ks >= new_size) {
1272 		kasan_krealloc((void *)p, new_size, flags);
1273 		return (void *)p;
1274 	}
1275 
1276 	ret = kmalloc_track_caller(new_size, flags);
1277 	if (ret && p)
1278 		memcpy(ret, p, ks);
1279 
1280 	return ret;
1281 }
1282 
1283 /**
1284  * __krealloc - like krealloc() but don't free @p.
1285  * @p: object to reallocate memory for.
1286  * @new_size: how many bytes of memory are required.
1287  * @flags: the type of memory to allocate.
1288  *
1289  * This function is like krealloc() except it never frees the originally
1290  * allocated buffer. Use this if you don't want to free the buffer immediately
1291  * like, for example, with RCU.
1292  */
__krealloc(const void * p,size_t new_size,gfp_t flags)1293 void *__krealloc(const void *p, size_t new_size, gfp_t flags)
1294 {
1295 	if (unlikely(!new_size))
1296 		return ZERO_SIZE_PTR;
1297 
1298 	return __do_krealloc(p, new_size, flags);
1299 
1300 }
1301 EXPORT_SYMBOL(__krealloc);
1302 
1303 /**
1304  * krealloc - reallocate memory. The contents will remain unchanged.
1305  * @p: object to reallocate memory for.
1306  * @new_size: how many bytes of memory are required.
1307  * @flags: the type of memory to allocate.
1308  *
1309  * The contents of the object pointed to are preserved up to the
1310  * lesser of the new and old sizes.  If @p is %NULL, krealloc()
1311  * behaves exactly like kmalloc().  If @new_size is 0 and @p is not a
1312  * %NULL pointer, the object pointed to is freed.
1313  */
krealloc(const void * p,size_t new_size,gfp_t flags)1314 void *krealloc(const void *p, size_t new_size, gfp_t flags)
1315 {
1316 	void *ret;
1317 
1318 	if (unlikely(!new_size)) {
1319 		kfree(p);
1320 		return ZERO_SIZE_PTR;
1321 	}
1322 
1323 	ret = __do_krealloc(p, new_size, flags);
1324 	if (ret && p != ret)
1325 		kfree(p);
1326 
1327 	return ret;
1328 }
1329 EXPORT_SYMBOL(krealloc);
1330 
1331 /**
1332  * kzfree - like kfree but zero memory
1333  * @p: object to free memory of
1334  *
1335  * The memory of the object @p points to is zeroed before freed.
1336  * If @p is %NULL, kzfree() does nothing.
1337  *
1338  * Note: this function zeroes the whole allocated buffer which can be a good
1339  * deal bigger than the requested buffer size passed to kmalloc(). So be
1340  * careful when using this function in performance sensitive code.
1341  */
kzfree(const void * p)1342 void kzfree(const void *p)
1343 {
1344 	size_t ks;
1345 	void *mem = (void *)p;
1346 
1347 	if (unlikely(ZERO_OR_NULL_PTR(mem)))
1348 		return;
1349 	ks = ksize(mem);
1350 	memset(mem, 0, ks);
1351 	kfree(mem);
1352 }
1353 EXPORT_SYMBOL(kzfree);
1354 
1355 /* Tracepoints definitions. */
1356 EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1357 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1358 EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1359 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1360 EXPORT_TRACEPOINT_SYMBOL(kfree);
1361 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
1362