• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* flow.c: Generic flow cache.
2  *
3  * Copyright (C) 2003 Alexey N. Kuznetsov (kuznet@ms2.inr.ac.ru)
4  * Copyright (C) 2003 David S. Miller (davem@redhat.com)
5  */
6 
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/list.h>
10 #include <linux/jhash.h>
11 #include <linux/interrupt.h>
12 #include <linux/mm.h>
13 #include <linux/random.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/smp.h>
17 #include <linux/completion.h>
18 #include <linux/percpu.h>
19 #include <linux/bitops.h>
20 #include <linux/notifier.h>
21 #include <linux/cpu.h>
22 #include <linux/cpumask.h>
23 #include <linux/mutex.h>
24 #include <net/flow.h>
25 #include <linux/atomic.h>
26 #include <linux/security.h>
27 #include <net/net_namespace.h>
28 
29 struct flow_cache_entry {
30 	union {
31 		struct hlist_node	hlist;
32 		struct list_head	gc_list;
33 	} u;
34 	struct net			*net;
35 	u16				family;
36 	u8				dir;
37 	u32				genid;
38 	struct flowi			key;
39 	struct flow_cache_object	*object;
40 };
41 
42 struct flow_flush_info {
43 	struct flow_cache		*cache;
44 	atomic_t			cpuleft;
45 	struct completion		completion;
46 };
47 
48 static struct kmem_cache *flow_cachep __read_mostly;
49 
50 #define flow_cache_hash_size(cache)	(1 << (cache)->hash_shift)
51 #define FLOW_HASH_RND_PERIOD		(10 * 60 * HZ)
52 
flow_cache_new_hashrnd(unsigned long arg)53 static void flow_cache_new_hashrnd(unsigned long arg)
54 {
55 	struct flow_cache *fc = (void *) arg;
56 	int i;
57 
58 	for_each_possible_cpu(i)
59 		per_cpu_ptr(fc->percpu, i)->hash_rnd_recalc = 1;
60 
61 	fc->rnd_timer.expires = jiffies + FLOW_HASH_RND_PERIOD;
62 	add_timer(&fc->rnd_timer);
63 }
64 
flow_entry_valid(struct flow_cache_entry * fle,struct netns_xfrm * xfrm)65 static int flow_entry_valid(struct flow_cache_entry *fle,
66 				struct netns_xfrm *xfrm)
67 {
68 	if (atomic_read(&xfrm->flow_cache_genid) != fle->genid)
69 		return 0;
70 	if (fle->object && !fle->object->ops->check(fle->object))
71 		return 0;
72 	return 1;
73 }
74 
flow_entry_kill(struct flow_cache_entry * fle,struct netns_xfrm * xfrm)75 static void flow_entry_kill(struct flow_cache_entry *fle,
76 				struct netns_xfrm *xfrm)
77 {
78 	if (fle->object)
79 		fle->object->ops->delete(fle->object);
80 	kmem_cache_free(flow_cachep, fle);
81 }
82 
flow_cache_gc_task(struct work_struct * work)83 static void flow_cache_gc_task(struct work_struct *work)
84 {
85 	struct list_head gc_list;
86 	struct flow_cache_entry *fce, *n;
87 	struct netns_xfrm *xfrm = container_of(work, struct netns_xfrm,
88 						flow_cache_gc_work);
89 
90 	INIT_LIST_HEAD(&gc_list);
91 	spin_lock_bh(&xfrm->flow_cache_gc_lock);
92 	list_splice_tail_init(&xfrm->flow_cache_gc_list, &gc_list);
93 	spin_unlock_bh(&xfrm->flow_cache_gc_lock);
94 
95 	list_for_each_entry_safe(fce, n, &gc_list, u.gc_list) {
96 		flow_entry_kill(fce, xfrm);
97 		atomic_dec(&xfrm->flow_cache_gc_count);
98 	}
99 }
100 
flow_cache_queue_garbage(struct flow_cache_percpu * fcp,int deleted,struct list_head * gc_list,struct netns_xfrm * xfrm)101 static void flow_cache_queue_garbage(struct flow_cache_percpu *fcp,
102 				     int deleted, struct list_head *gc_list,
103 				     struct netns_xfrm *xfrm)
104 {
105 	if (deleted) {
106 		atomic_add(deleted, &xfrm->flow_cache_gc_count);
107 		fcp->hash_count -= deleted;
108 		spin_lock_bh(&xfrm->flow_cache_gc_lock);
109 		list_splice_tail(gc_list, &xfrm->flow_cache_gc_list);
110 		spin_unlock_bh(&xfrm->flow_cache_gc_lock);
111 		schedule_work(&xfrm->flow_cache_gc_work);
112 	}
113 }
114 
__flow_cache_shrink(struct flow_cache * fc,struct flow_cache_percpu * fcp,int shrink_to)115 static void __flow_cache_shrink(struct flow_cache *fc,
116 				struct flow_cache_percpu *fcp,
117 				int shrink_to)
118 {
119 	struct flow_cache_entry *fle;
120 	struct hlist_node *tmp;
121 	LIST_HEAD(gc_list);
122 	int i, deleted = 0;
123 	struct netns_xfrm *xfrm = container_of(fc, struct netns_xfrm,
124 						flow_cache_global);
125 
126 	for (i = 0; i < flow_cache_hash_size(fc); i++) {
127 		int saved = 0;
128 
129 		hlist_for_each_entry_safe(fle, tmp,
130 					  &fcp->hash_table[i], u.hlist) {
131 			if (saved < shrink_to &&
132 			    flow_entry_valid(fle, xfrm)) {
133 				saved++;
134 			} else {
135 				deleted++;
136 				hlist_del(&fle->u.hlist);
137 				list_add_tail(&fle->u.gc_list, &gc_list);
138 			}
139 		}
140 	}
141 
142 	flow_cache_queue_garbage(fcp, deleted, &gc_list, xfrm);
143 }
144 
flow_cache_shrink(struct flow_cache * fc,struct flow_cache_percpu * fcp)145 static void flow_cache_shrink(struct flow_cache *fc,
146 			      struct flow_cache_percpu *fcp)
147 {
148 	int shrink_to = fc->low_watermark / flow_cache_hash_size(fc);
149 
150 	__flow_cache_shrink(fc, fcp, shrink_to);
151 }
152 
flow_new_hash_rnd(struct flow_cache * fc,struct flow_cache_percpu * fcp)153 static void flow_new_hash_rnd(struct flow_cache *fc,
154 			      struct flow_cache_percpu *fcp)
155 {
156 	get_random_bytes(&fcp->hash_rnd, sizeof(u32));
157 	fcp->hash_rnd_recalc = 0;
158 	__flow_cache_shrink(fc, fcp, 0);
159 }
160 
flow_hash_code(struct flow_cache * fc,struct flow_cache_percpu * fcp,const struct flowi * key,size_t keysize)161 static u32 flow_hash_code(struct flow_cache *fc,
162 			  struct flow_cache_percpu *fcp,
163 			  const struct flowi *key,
164 			  size_t keysize)
165 {
166 	const u32 *k = (const u32 *) key;
167 	const u32 length = keysize * sizeof(flow_compare_t) / sizeof(u32);
168 
169 	return jhash2(k, length, fcp->hash_rnd)
170 		& (flow_cache_hash_size(fc) - 1);
171 }
172 
173 /* I hear what you're saying, use memcmp.  But memcmp cannot make
174  * important assumptions that we can here, such as alignment.
175  */
flow_key_compare(const struct flowi * key1,const struct flowi * key2,size_t keysize)176 static int flow_key_compare(const struct flowi *key1, const struct flowi *key2,
177 			    size_t keysize)
178 {
179 	const flow_compare_t *k1, *k1_lim, *k2;
180 
181 	k1 = (const flow_compare_t *) key1;
182 	k1_lim = k1 + keysize;
183 
184 	k2 = (const flow_compare_t *) key2;
185 
186 	do {
187 		if (*k1++ != *k2++)
188 			return 1;
189 	} while (k1 < k1_lim);
190 
191 	return 0;
192 }
193 
194 struct flow_cache_object *
flow_cache_lookup(struct net * net,const struct flowi * key,u16 family,u8 dir,flow_resolve_t resolver,void * ctx)195 flow_cache_lookup(struct net *net, const struct flowi *key, u16 family, u8 dir,
196 		  flow_resolve_t resolver, void *ctx)
197 {
198 	struct flow_cache *fc = &net->xfrm.flow_cache_global;
199 	struct flow_cache_percpu *fcp;
200 	struct flow_cache_entry *fle, *tfle;
201 	struct flow_cache_object *flo;
202 	size_t keysize;
203 	unsigned int hash;
204 
205 	local_bh_disable();
206 	fcp = this_cpu_ptr(fc->percpu);
207 
208 	fle = NULL;
209 	flo = NULL;
210 
211 	keysize = flow_key_size(family);
212 	if (!keysize)
213 		goto nocache;
214 
215 	/* Packet really early in init?  Making flow_cache_init a
216 	 * pre-smp initcall would solve this.  --RR */
217 	if (!fcp->hash_table)
218 		goto nocache;
219 
220 	if (fcp->hash_rnd_recalc)
221 		flow_new_hash_rnd(fc, fcp);
222 
223 	hash = flow_hash_code(fc, fcp, key, keysize);
224 	hlist_for_each_entry(tfle, &fcp->hash_table[hash], u.hlist) {
225 		if (tfle->net == net &&
226 		    tfle->family == family &&
227 		    tfle->dir == dir &&
228 		    flow_key_compare(key, &tfle->key, keysize) == 0) {
229 			fle = tfle;
230 			break;
231 		}
232 	}
233 
234 	if (unlikely(!fle)) {
235 		if (fcp->hash_count > fc->high_watermark)
236 			flow_cache_shrink(fc, fcp);
237 
238 		if (atomic_read(&net->xfrm.flow_cache_gc_count) >
239 		    2 * num_online_cpus() * fc->high_watermark) {
240 			flo = ERR_PTR(-ENOBUFS);
241 			goto ret_object;
242 		}
243 
244 		fle = kmem_cache_alloc(flow_cachep, GFP_ATOMIC);
245 		if (fle) {
246 			fle->net = net;
247 			fle->family = family;
248 			fle->dir = dir;
249 			memcpy(&fle->key, key, keysize * sizeof(flow_compare_t));
250 			fle->object = NULL;
251 			hlist_add_head(&fle->u.hlist, &fcp->hash_table[hash]);
252 			fcp->hash_count++;
253 		}
254 	} else if (likely(fle->genid == atomic_read(&net->xfrm.flow_cache_genid))) {
255 		flo = fle->object;
256 		if (!flo)
257 			goto ret_object;
258 		flo = flo->ops->get(flo);
259 		if (flo)
260 			goto ret_object;
261 	} else if (fle->object) {
262 	        flo = fle->object;
263 	        flo->ops->delete(flo);
264 	        fle->object = NULL;
265 	}
266 
267 nocache:
268 	flo = NULL;
269 	if (fle) {
270 		flo = fle->object;
271 		fle->object = NULL;
272 	}
273 	flo = resolver(net, key, family, dir, flo, ctx);
274 	if (fle) {
275 		fle->genid = atomic_read(&net->xfrm.flow_cache_genid);
276 		if (!IS_ERR(flo))
277 			fle->object = flo;
278 		else
279 			fle->genid--;
280 	} else {
281 		if (!IS_ERR_OR_NULL(flo))
282 			flo->ops->delete(flo);
283 	}
284 ret_object:
285 	local_bh_enable();
286 	return flo;
287 }
288 EXPORT_SYMBOL(flow_cache_lookup);
289 
flow_cache_flush_tasklet(unsigned long data)290 static void flow_cache_flush_tasklet(unsigned long data)
291 {
292 	struct flow_flush_info *info = (void *)data;
293 	struct flow_cache *fc = info->cache;
294 	struct flow_cache_percpu *fcp;
295 	struct flow_cache_entry *fle;
296 	struct hlist_node *tmp;
297 	LIST_HEAD(gc_list);
298 	int i, deleted = 0;
299 	struct netns_xfrm *xfrm = container_of(fc, struct netns_xfrm,
300 						flow_cache_global);
301 
302 	fcp = this_cpu_ptr(fc->percpu);
303 	for (i = 0; i < flow_cache_hash_size(fc); i++) {
304 		hlist_for_each_entry_safe(fle, tmp,
305 					  &fcp->hash_table[i], u.hlist) {
306 			if (flow_entry_valid(fle, xfrm))
307 				continue;
308 
309 			deleted++;
310 			hlist_del(&fle->u.hlist);
311 			list_add_tail(&fle->u.gc_list, &gc_list);
312 		}
313 	}
314 
315 	flow_cache_queue_garbage(fcp, deleted, &gc_list, xfrm);
316 
317 	if (atomic_dec_and_test(&info->cpuleft))
318 		complete(&info->completion);
319 }
320 
321 /*
322  * Return whether a cpu needs flushing.  Conservatively, we assume
323  * the presence of any entries means the core may require flushing,
324  * since the flow_cache_ops.check() function may assume it's running
325  * on the same core as the per-cpu cache component.
326  */
flow_cache_percpu_empty(struct flow_cache * fc,int cpu)327 static int flow_cache_percpu_empty(struct flow_cache *fc, int cpu)
328 {
329 	struct flow_cache_percpu *fcp;
330 	int i;
331 
332 	fcp = per_cpu_ptr(fc->percpu, cpu);
333 	for (i = 0; i < flow_cache_hash_size(fc); i++)
334 		if (!hlist_empty(&fcp->hash_table[i]))
335 			return 0;
336 	return 1;
337 }
338 
flow_cache_flush_per_cpu(void * data)339 static void flow_cache_flush_per_cpu(void *data)
340 {
341 	struct flow_flush_info *info = data;
342 	struct tasklet_struct *tasklet;
343 
344 	tasklet = &this_cpu_ptr(info->cache->percpu)->flush_tasklet;
345 	tasklet->data = (unsigned long)info;
346 	tasklet_schedule(tasklet);
347 }
348 
flow_cache_flush(struct net * net)349 void flow_cache_flush(struct net *net)
350 {
351 	struct flow_flush_info info;
352 	cpumask_var_t mask;
353 	int i, self;
354 
355 	/* Track which cpus need flushing to avoid disturbing all cores. */
356 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
357 		return;
358 	cpumask_clear(mask);
359 
360 	/* Don't want cpus going down or up during this. */
361 	get_online_cpus();
362 	mutex_lock(&net->xfrm.flow_flush_sem);
363 	info.cache = &net->xfrm.flow_cache_global;
364 	for_each_online_cpu(i)
365 		if (!flow_cache_percpu_empty(info.cache, i))
366 			cpumask_set_cpu(i, mask);
367 	atomic_set(&info.cpuleft, cpumask_weight(mask));
368 	if (atomic_read(&info.cpuleft) == 0)
369 		goto done;
370 
371 	init_completion(&info.completion);
372 
373 	local_bh_disable();
374 	self = cpumask_test_and_clear_cpu(smp_processor_id(), mask);
375 	on_each_cpu_mask(mask, flow_cache_flush_per_cpu, &info, 0);
376 	if (self)
377 		flow_cache_flush_tasklet((unsigned long)&info);
378 	local_bh_enable();
379 
380 	wait_for_completion(&info.completion);
381 
382 done:
383 	mutex_unlock(&net->xfrm.flow_flush_sem);
384 	put_online_cpus();
385 	free_cpumask_var(mask);
386 }
387 
flow_cache_flush_task(struct work_struct * work)388 static void flow_cache_flush_task(struct work_struct *work)
389 {
390 	struct netns_xfrm *xfrm = container_of(work, struct netns_xfrm,
391 						flow_cache_flush_work);
392 	struct net *net = container_of(xfrm, struct net, xfrm);
393 
394 	flow_cache_flush(net);
395 }
396 
flow_cache_flush_deferred(struct net * net)397 void flow_cache_flush_deferred(struct net *net)
398 {
399 	schedule_work(&net->xfrm.flow_cache_flush_work);
400 }
401 
flow_cache_cpu_prepare(struct flow_cache * fc,int cpu)402 static int flow_cache_cpu_prepare(struct flow_cache *fc, int cpu)
403 {
404 	struct flow_cache_percpu *fcp = per_cpu_ptr(fc->percpu, cpu);
405 	size_t sz = sizeof(struct hlist_head) * flow_cache_hash_size(fc);
406 
407 	if (!fcp->hash_table) {
408 		fcp->hash_table = kzalloc_node(sz, GFP_KERNEL, cpu_to_node(cpu));
409 		if (!fcp->hash_table) {
410 			pr_err("NET: failed to allocate flow cache sz %zu\n", sz);
411 			return -ENOMEM;
412 		}
413 		fcp->hash_rnd_recalc = 1;
414 		fcp->hash_count = 0;
415 		tasklet_init(&fcp->flush_tasklet, flow_cache_flush_tasklet, 0);
416 	}
417 	return 0;
418 }
419 
flow_cache_cpu(struct notifier_block * nfb,unsigned long action,void * hcpu)420 static int flow_cache_cpu(struct notifier_block *nfb,
421 			  unsigned long action,
422 			  void *hcpu)
423 {
424 	struct flow_cache *fc = container_of(nfb, struct flow_cache,
425 						hotcpu_notifier);
426 	int res, cpu = (unsigned long) hcpu;
427 	struct flow_cache_percpu *fcp = per_cpu_ptr(fc->percpu, cpu);
428 
429 	switch (action) {
430 	case CPU_UP_PREPARE:
431 	case CPU_UP_PREPARE_FROZEN:
432 		res = flow_cache_cpu_prepare(fc, cpu);
433 		if (res)
434 			return notifier_from_errno(res);
435 		break;
436 	case CPU_DEAD:
437 	case CPU_DEAD_FROZEN:
438 		__flow_cache_shrink(fc, fcp, 0);
439 		break;
440 	}
441 	return NOTIFY_OK;
442 }
443 
flow_cache_init(struct net * net)444 int flow_cache_init(struct net *net)
445 {
446 	int i;
447 	struct flow_cache *fc = &net->xfrm.flow_cache_global;
448 
449 	if (!flow_cachep)
450 		flow_cachep = kmem_cache_create("flow_cache",
451 						sizeof(struct flow_cache_entry),
452 						0, SLAB_PANIC, NULL);
453 	spin_lock_init(&net->xfrm.flow_cache_gc_lock);
454 	INIT_LIST_HEAD(&net->xfrm.flow_cache_gc_list);
455 	INIT_WORK(&net->xfrm.flow_cache_gc_work, flow_cache_gc_task);
456 	INIT_WORK(&net->xfrm.flow_cache_flush_work, flow_cache_flush_task);
457 	mutex_init(&net->xfrm.flow_flush_sem);
458 	atomic_set(&net->xfrm.flow_cache_gc_count, 0);
459 
460 	fc->hash_shift = 10;
461 	fc->low_watermark = 2 * flow_cache_hash_size(fc);
462 	fc->high_watermark = 4 * flow_cache_hash_size(fc);
463 
464 	fc->percpu = alloc_percpu(struct flow_cache_percpu);
465 	if (!fc->percpu)
466 		return -ENOMEM;
467 
468 	cpu_notifier_register_begin();
469 
470 	for_each_online_cpu(i) {
471 		if (flow_cache_cpu_prepare(fc, i))
472 			goto err;
473 	}
474 	fc->hotcpu_notifier = (struct notifier_block){
475 		.notifier_call = flow_cache_cpu,
476 	};
477 	__register_hotcpu_notifier(&fc->hotcpu_notifier);
478 
479 	cpu_notifier_register_done();
480 
481 	setup_timer(&fc->rnd_timer, flow_cache_new_hashrnd,
482 		    (unsigned long) fc);
483 	fc->rnd_timer.expires = jiffies + FLOW_HASH_RND_PERIOD;
484 	add_timer(&fc->rnd_timer);
485 
486 	return 0;
487 
488 err:
489 	for_each_possible_cpu(i) {
490 		struct flow_cache_percpu *fcp = per_cpu_ptr(fc->percpu, i);
491 		kfree(fcp->hash_table);
492 		fcp->hash_table = NULL;
493 	}
494 
495 	cpu_notifier_register_done();
496 
497 	free_percpu(fc->percpu);
498 	fc->percpu = NULL;
499 
500 	return -ENOMEM;
501 }
502 EXPORT_SYMBOL(flow_cache_init);
503 
flow_cache_fini(struct net * net)504 void flow_cache_fini(struct net *net)
505 {
506 	int i;
507 	struct flow_cache *fc = &net->xfrm.flow_cache_global;
508 
509 	del_timer_sync(&fc->rnd_timer);
510 	unregister_hotcpu_notifier(&fc->hotcpu_notifier);
511 
512 	for_each_possible_cpu(i) {
513 		struct flow_cache_percpu *fcp = per_cpu_ptr(fc->percpu, i);
514 		kfree(fcp->hash_table);
515 		fcp->hash_table = NULL;
516 	}
517 
518 	free_percpu(fc->percpu);
519 	fc->percpu = NULL;
520 }
521 EXPORT_SYMBOL(flow_cache_fini);
522