• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Bottleneck Bandwidth and RTT (BBR) congestion control
2  *
3  * BBR congestion control computes the sending rate based on the delivery
4  * rate (throughput) estimated from ACKs. In a nutshell:
5  *
6  *   On each ACK, update our model of the network path:
7  *      bottleneck_bandwidth = windowed_max(delivered / elapsed, 10 round trips)
8  *      min_rtt = windowed_min(rtt, 10 seconds)
9  *   pacing_rate = pacing_gain * bottleneck_bandwidth
10  *   cwnd = max(cwnd_gain * bottleneck_bandwidth * min_rtt, 4)
11  *
12  * The core algorithm does not react directly to packet losses or delays,
13  * although BBR may adjust the size of next send per ACK when loss is
14  * observed, or adjust the sending rate if it estimates there is a
15  * traffic policer, in order to keep the drop rate reasonable.
16  *
17  * BBR is described in detail in:
18  *   "BBR: Congestion-Based Congestion Control",
19  *   Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas Yeganeh,
20  *   Van Jacobson. ACM Queue, Vol. 14 No. 5, September-October 2016.
21  *
22  * There is a public e-mail list for discussing BBR development and testing:
23  *   https://groups.google.com/forum/#!forum/bbr-dev
24  *
25  * NOTE: BBR *must* be used with the fq qdisc ("man tc-fq") with pacing enabled,
26  * since pacing is integral to the BBR design and implementation.
27  * BBR without pacing would not function properly, and may incur unnecessary
28  * high packet loss rates.
29  */
30 #include <linux/module.h>
31 #include <net/tcp.h>
32 #include <linux/inet_diag.h>
33 #include <linux/inet.h>
34 #include <linux/random.h>
35 #include <linux/win_minmax.h>
36 
37 /* Scale factor for rate in pkt/uSec unit to avoid truncation in bandwidth
38  * estimation. The rate unit ~= (1500 bytes / 1 usec / 2^24) ~= 715 bps.
39  * This handles bandwidths from 0.06pps (715bps) to 256Mpps (3Tbps) in a u32.
40  * Since the minimum window is >=4 packets, the lower bound isn't
41  * an issue. The upper bound isn't an issue with existing technologies.
42  */
43 #define BW_SCALE 24
44 #define BW_UNIT (1 << BW_SCALE)
45 
46 #define BBR_SCALE 8	/* scaling factor for fractions in BBR (e.g. gains) */
47 #define BBR_UNIT (1 << BBR_SCALE)
48 
49 /* BBR has the following modes for deciding how fast to send: */
50 enum bbr_mode {
51 	BBR_STARTUP,	/* ramp up sending rate rapidly to fill pipe */
52 	BBR_DRAIN,	/* drain any queue created during startup */
53 	BBR_PROBE_BW,	/* discover, share bw: pace around estimated bw */
54 	BBR_PROBE_RTT,	/* cut cwnd to min to probe min_rtt */
55 };
56 
57 /* BBR congestion control block */
58 struct bbr {
59 	u32	min_rtt_us;	        /* min RTT in min_rtt_win_sec window */
60 	u32	min_rtt_stamp;	        /* timestamp of min_rtt_us */
61 	u32	probe_rtt_done_stamp;   /* end time for BBR_PROBE_RTT mode */
62 	struct minmax bw;	/* Max recent delivery rate in pkts/uS << 24 */
63 	u32	rtt_cnt;	    /* count of packet-timed rounds elapsed */
64 	u32     next_rtt_delivered; /* scb->tx.delivered at end of round */
65 	struct skb_mstamp cycle_mstamp;  /* time of this cycle phase start */
66 	u32     mode:3,		     /* current bbr_mode in state machine */
67 		prev_ca_state:3,     /* CA state on previous ACK */
68 		packet_conservation:1,  /* use packet conservation? */
69 		restore_cwnd:1,	     /* decided to revert cwnd to old value */
70 		round_start:1,	     /* start of packet-timed tx->ack round? */
71 		tso_segs_goal:7,     /* segments we want in each skb we send */
72 		idle_restart:1,	     /* restarting after idle? */
73 		probe_rtt_round_done:1,  /* a BBR_PROBE_RTT round at 4 pkts? */
74 		unused:5,
75 		lt_is_sampling:1,    /* taking long-term ("LT") samples now? */
76 		lt_rtt_cnt:7,	     /* round trips in long-term interval */
77 		lt_use_bw:1;	     /* use lt_bw as our bw estimate? */
78 	u32	lt_bw;		     /* LT est delivery rate in pkts/uS << 24 */
79 	u32	lt_last_delivered;   /* LT intvl start: tp->delivered */
80 	u32	lt_last_stamp;	     /* LT intvl start: tp->delivered_mstamp */
81 	u32	lt_last_lost;	     /* LT intvl start: tp->lost */
82 	u32	pacing_gain:10,	/* current gain for setting pacing rate */
83 		cwnd_gain:10,	/* current gain for setting cwnd */
84 		full_bw_reached:1,   /* reached full bw in Startup? */
85 		full_bw_cnt:2,	/* number of rounds without large bw gains */
86 		cycle_idx:3,	/* current index in pacing_gain cycle array */
87 		has_seen_rtt:1, /* have we seen an RTT sample yet? */
88 		unused_b:5;
89 	u32	prior_cwnd;	/* prior cwnd upon entering loss recovery */
90 	u32	full_bw;	/* recent bw, to estimate if pipe is full */
91 };
92 
93 #define CYCLE_LEN	8	/* number of phases in a pacing gain cycle */
94 
95 /* Window length of bw filter (in rounds): */
96 static const int bbr_bw_rtts = CYCLE_LEN + 2;
97 /* Window length of min_rtt filter (in sec): */
98 static const u32 bbr_min_rtt_win_sec = 10;
99 /* Minimum time (in ms) spent at bbr_cwnd_min_target in BBR_PROBE_RTT mode: */
100 static const u32 bbr_probe_rtt_mode_ms = 200;
101 /* Skip TSO below the following bandwidth (bits/sec): */
102 static const int bbr_min_tso_rate = 1200000;
103 
104 /* We use a high_gain value of 2/ln(2) because it's the smallest pacing gain
105  * that will allow a smoothly increasing pacing rate that will double each RTT
106  * and send the same number of packets per RTT that an un-paced, slow-starting
107  * Reno or CUBIC flow would:
108  */
109 static const int bbr_high_gain  = BBR_UNIT * 2885 / 1000 + 1;
110 /* The pacing gain of 1/high_gain in BBR_DRAIN is calculated to typically drain
111  * the queue created in BBR_STARTUP in a single round:
112  */
113 static const int bbr_drain_gain = BBR_UNIT * 1000 / 2885;
114 /* The gain for deriving steady-state cwnd tolerates delayed/stretched ACKs: */
115 static const int bbr_cwnd_gain  = BBR_UNIT * 2;
116 /* The pacing_gain values for the PROBE_BW gain cycle, to discover/share bw: */
117 static const int bbr_pacing_gain[] = {
118 	BBR_UNIT * 5 / 4,	/* probe for more available bw */
119 	BBR_UNIT * 3 / 4,	/* drain queue and/or yield bw to other flows */
120 	BBR_UNIT, BBR_UNIT, BBR_UNIT,	/* cruise at 1.0*bw to utilize pipe, */
121 	BBR_UNIT, BBR_UNIT, BBR_UNIT	/* without creating excess queue... */
122 };
123 /* Randomize the starting gain cycling phase over N phases: */
124 static const u32 bbr_cycle_rand = 7;
125 
126 /* Try to keep at least this many packets in flight, if things go smoothly. For
127  * smooth functioning, a sliding window protocol ACKing every other packet
128  * needs at least 4 packets in flight:
129  */
130 static const u32 bbr_cwnd_min_target = 4;
131 
132 /* To estimate if BBR_STARTUP mode (i.e. high_gain) has filled pipe... */
133 /* If bw has increased significantly (1.25x), there may be more bw available: */
134 static const u32 bbr_full_bw_thresh = BBR_UNIT * 5 / 4;
135 /* But after 3 rounds w/o significant bw growth, estimate pipe is full: */
136 static const u32 bbr_full_bw_cnt = 3;
137 
138 /* "long-term" ("LT") bandwidth estimator parameters... */
139 /* The minimum number of rounds in an LT bw sampling interval: */
140 static const u32 bbr_lt_intvl_min_rtts = 4;
141 /* If lost/delivered ratio > 20%, interval is "lossy" and we may be policed: */
142 static const u32 bbr_lt_loss_thresh = 50;
143 /* If 2 intervals have a bw ratio <= 1/8, their bw is "consistent": */
144 static const u32 bbr_lt_bw_ratio = BBR_UNIT / 8;
145 /* If 2 intervals have a bw diff <= 4 Kbit/sec their bw is "consistent": */
146 static const u32 bbr_lt_bw_diff = 4000 / 8;
147 /* If we estimate we're policed, use lt_bw for this many round trips: */
148 static const u32 bbr_lt_bw_max_rtts = 48;
149 
150 /* Do we estimate that STARTUP filled the pipe? */
bbr_full_bw_reached(const struct sock * sk)151 static bool bbr_full_bw_reached(const struct sock *sk)
152 {
153 	const struct bbr *bbr = inet_csk_ca(sk);
154 
155 	return bbr->full_bw_reached;
156 }
157 
158 /* Return the windowed max recent bandwidth sample, in pkts/uS << BW_SCALE. */
bbr_max_bw(const struct sock * sk)159 static u32 bbr_max_bw(const struct sock *sk)
160 {
161 	struct bbr *bbr = inet_csk_ca(sk);
162 
163 	return minmax_get(&bbr->bw);
164 }
165 
166 /* Return the estimated bandwidth of the path, in pkts/uS << BW_SCALE. */
bbr_bw(const struct sock * sk)167 static u32 bbr_bw(const struct sock *sk)
168 {
169 	struct bbr *bbr = inet_csk_ca(sk);
170 
171 	return bbr->lt_use_bw ? bbr->lt_bw : bbr_max_bw(sk);
172 }
173 
174 /* Return rate in bytes per second, optionally with a gain.
175  * The order here is chosen carefully to avoid overflow of u64. This should
176  * work for input rates of up to 2.9Tbit/sec and gain of 2.89x.
177  */
bbr_rate_bytes_per_sec(struct sock * sk,u64 rate,int gain)178 static u64 bbr_rate_bytes_per_sec(struct sock *sk, u64 rate, int gain)
179 {
180 	rate *= tcp_mss_to_mtu(sk, tcp_sk(sk)->mss_cache);
181 	rate *= gain;
182 	rate >>= BBR_SCALE;
183 	rate *= USEC_PER_SEC;
184 	return rate >> BW_SCALE;
185 }
186 
187 /* Convert a BBR bw and gain factor to a pacing rate in bytes per second. */
bbr_bw_to_pacing_rate(struct sock * sk,u32 bw,int gain)188 static u32 bbr_bw_to_pacing_rate(struct sock *sk, u32 bw, int gain)
189 {
190 	u64 rate = bw;
191 
192 	rate = bbr_rate_bytes_per_sec(sk, rate, gain);
193 	rate = min_t(u64, rate, sk->sk_max_pacing_rate);
194 	return rate;
195 }
196 
197 /* Initialize pacing rate to: high_gain * init_cwnd / RTT. */
bbr_init_pacing_rate_from_rtt(struct sock * sk)198 static void bbr_init_pacing_rate_from_rtt(struct sock *sk)
199 {
200 	struct tcp_sock *tp = tcp_sk(sk);
201 	struct bbr *bbr = inet_csk_ca(sk);
202 	u64 bw;
203 	u32 rtt_us;
204 
205 	if (tp->srtt_us) {		/* any RTT sample yet? */
206 		rtt_us = max(tp->srtt_us >> 3, 1U);
207 		bbr->has_seen_rtt = 1;
208 	} else {			 /* no RTT sample yet */
209 		rtt_us = USEC_PER_MSEC;	 /* use nominal default RTT */
210 	}
211 	bw = (u64)tp->snd_cwnd * BW_UNIT;
212 	do_div(bw, rtt_us);
213 	sk->sk_pacing_rate = bbr_bw_to_pacing_rate(sk, bw, bbr_high_gain);
214 }
215 
216 /* Pace using current bw estimate and a gain factor. In order to help drive the
217  * network toward lower queues while maintaining high utilization and low
218  * latency, the average pacing rate aims to be slightly (~1%) lower than the
219  * estimated bandwidth. This is an important aspect of the design. In this
220  * implementation this slightly lower pacing rate is achieved implicitly by not
221  * including link-layer headers in the packet size used for the pacing rate.
222  */
bbr_set_pacing_rate(struct sock * sk,u32 bw,int gain)223 static void bbr_set_pacing_rate(struct sock *sk, u32 bw, int gain)
224 {
225 	struct tcp_sock *tp = tcp_sk(sk);
226 	struct bbr *bbr = inet_csk_ca(sk);
227 	u32 rate = bbr_bw_to_pacing_rate(sk, bw, gain);
228 
229 	if (unlikely(!bbr->has_seen_rtt && tp->srtt_us))
230 		bbr_init_pacing_rate_from_rtt(sk);
231 	if (bbr_full_bw_reached(sk) || rate > sk->sk_pacing_rate)
232 		sk->sk_pacing_rate = rate;
233 }
234 
235 /* Return count of segments we want in the skbs we send, or 0 for default. */
bbr_tso_segs_goal(struct sock * sk)236 static u32 bbr_tso_segs_goal(struct sock *sk)
237 {
238 	struct bbr *bbr = inet_csk_ca(sk);
239 
240 	return bbr->tso_segs_goal;
241 }
242 
bbr_set_tso_segs_goal(struct sock * sk)243 static void bbr_set_tso_segs_goal(struct sock *sk)
244 {
245 	struct tcp_sock *tp = tcp_sk(sk);
246 	struct bbr *bbr = inet_csk_ca(sk);
247 	u32 min_segs;
248 
249 	min_segs = sk->sk_pacing_rate < (bbr_min_tso_rate >> 3) ? 1 : 2;
250 	bbr->tso_segs_goal = min(tcp_tso_autosize(sk, tp->mss_cache, min_segs),
251 				 0x7FU);
252 }
253 
254 /* Save "last known good" cwnd so we can restore it after losses or PROBE_RTT */
bbr_save_cwnd(struct sock * sk)255 static void bbr_save_cwnd(struct sock *sk)
256 {
257 	struct tcp_sock *tp = tcp_sk(sk);
258 	struct bbr *bbr = inet_csk_ca(sk);
259 
260 	if (bbr->prev_ca_state < TCP_CA_Recovery && bbr->mode != BBR_PROBE_RTT)
261 		bbr->prior_cwnd = tp->snd_cwnd;  /* this cwnd is good enough */
262 	else  /* loss recovery or BBR_PROBE_RTT have temporarily cut cwnd */
263 		bbr->prior_cwnd = max(bbr->prior_cwnd, tp->snd_cwnd);
264 }
265 
bbr_cwnd_event(struct sock * sk,enum tcp_ca_event event)266 static void bbr_cwnd_event(struct sock *sk, enum tcp_ca_event event)
267 {
268 	struct tcp_sock *tp = tcp_sk(sk);
269 	struct bbr *bbr = inet_csk_ca(sk);
270 
271 	if (event == CA_EVENT_TX_START && tp->app_limited) {
272 		bbr->idle_restart = 1;
273 		/* Avoid pointless buffer overflows: pace at est. bw if we don't
274 		 * need more speed (we're restarting from idle and app-limited).
275 		 */
276 		if (bbr->mode == BBR_PROBE_BW)
277 			bbr_set_pacing_rate(sk, bbr_bw(sk), BBR_UNIT);
278 	}
279 }
280 
281 /* Find target cwnd. Right-size the cwnd based on min RTT and the
282  * estimated bottleneck bandwidth:
283  *
284  * cwnd = bw * min_rtt * gain = BDP * gain
285  *
286  * The key factor, gain, controls the amount of queue. While a small gain
287  * builds a smaller queue, it becomes more vulnerable to noise in RTT
288  * measurements (e.g., delayed ACKs or other ACK compression effects). This
289  * noise may cause BBR to under-estimate the rate.
290  *
291  * To achieve full performance in high-speed paths, we budget enough cwnd to
292  * fit full-sized skbs in-flight on both end hosts to fully utilize the path:
293  *   - one skb in sending host Qdisc,
294  *   - one skb in sending host TSO/GSO engine
295  *   - one skb being received by receiver host LRO/GRO/delayed-ACK engine
296  * Don't worry, at low rates (bbr_min_tso_rate) this won't bloat cwnd because
297  * in such cases tso_segs_goal is 1. The minimum cwnd is 4 packets,
298  * which allows 2 outstanding 2-packet sequences, to try to keep pipe
299  * full even with ACK-every-other-packet delayed ACKs.
300  */
bbr_target_cwnd(struct sock * sk,u32 bw,int gain)301 static u32 bbr_target_cwnd(struct sock *sk, u32 bw, int gain)
302 {
303 	struct bbr *bbr = inet_csk_ca(sk);
304 	u32 cwnd;
305 	u64 w;
306 
307 	/* If we've never had a valid RTT sample, cap cwnd at the initial
308 	 * default. This should only happen when the connection is not using TCP
309 	 * timestamps and has retransmitted all of the SYN/SYNACK/data packets
310 	 * ACKed so far. In this case, an RTO can cut cwnd to 1, in which
311 	 * case we need to slow-start up toward something safe: TCP_INIT_CWND.
312 	 */
313 	if (unlikely(bbr->min_rtt_us == ~0U))	 /* no valid RTT samples yet? */
314 		return TCP_INIT_CWND;  /* be safe: cap at default initial cwnd*/
315 
316 	w = (u64)bw * bbr->min_rtt_us;
317 
318 	/* Apply a gain to the given value, then remove the BW_SCALE shift. */
319 	cwnd = (((w * gain) >> BBR_SCALE) + BW_UNIT - 1) / BW_UNIT;
320 
321 	/* Allow enough full-sized skbs in flight to utilize end systems. */
322 	cwnd += 3 * bbr->tso_segs_goal;
323 
324 	/* Reduce delayed ACKs by rounding up cwnd to the next even number. */
325 	cwnd = (cwnd + 1) & ~1U;
326 
327 	return cwnd;
328 }
329 
330 /* An optimization in BBR to reduce losses: On the first round of recovery, we
331  * follow the packet conservation principle: send P packets per P packets acked.
332  * After that, we slow-start and send at most 2*P packets per P packets acked.
333  * After recovery finishes, or upon undo, we restore the cwnd we had when
334  * recovery started (capped by the target cwnd based on estimated BDP).
335  *
336  * TODO(ycheng/ncardwell): implement a rate-based approach.
337  */
bbr_set_cwnd_to_recover_or_restore(struct sock * sk,const struct rate_sample * rs,u32 acked,u32 * new_cwnd)338 static bool bbr_set_cwnd_to_recover_or_restore(
339 	struct sock *sk, const struct rate_sample *rs, u32 acked, u32 *new_cwnd)
340 {
341 	struct tcp_sock *tp = tcp_sk(sk);
342 	struct bbr *bbr = inet_csk_ca(sk);
343 	u8 prev_state = bbr->prev_ca_state, state = inet_csk(sk)->icsk_ca_state;
344 	u32 cwnd = tp->snd_cwnd;
345 
346 	/* An ACK for P pkts should release at most 2*P packets. We do this
347 	 * in two steps. First, here we deduct the number of lost packets.
348 	 * Then, in bbr_set_cwnd() we slow start up toward the target cwnd.
349 	 */
350 	if (rs->losses > 0)
351 		cwnd = max_t(s32, cwnd - rs->losses, 1);
352 
353 	if (state == TCP_CA_Recovery && prev_state != TCP_CA_Recovery) {
354 		/* Starting 1st round of Recovery, so do packet conservation. */
355 		bbr->packet_conservation = 1;
356 		bbr->next_rtt_delivered = tp->delivered;  /* start round now */
357 		/* Cut unused cwnd from app behavior, TSQ, or TSO deferral: */
358 		cwnd = tcp_packets_in_flight(tp) + acked;
359 	} else if (prev_state >= TCP_CA_Recovery && state < TCP_CA_Recovery) {
360 		/* Exiting loss recovery; restore cwnd saved before recovery. */
361 		bbr->restore_cwnd = 1;
362 		bbr->packet_conservation = 0;
363 	}
364 	bbr->prev_ca_state = state;
365 
366 	if (bbr->restore_cwnd) {
367 		/* Restore cwnd after exiting loss recovery or PROBE_RTT. */
368 		cwnd = max(cwnd, bbr->prior_cwnd);
369 		bbr->restore_cwnd = 0;
370 	}
371 
372 	if (bbr->packet_conservation) {
373 		*new_cwnd = max(cwnd, tcp_packets_in_flight(tp) + acked);
374 		return true;	/* yes, using packet conservation */
375 	}
376 	*new_cwnd = cwnd;
377 	return false;
378 }
379 
380 /* Slow-start up toward target cwnd (if bw estimate is growing, or packet loss
381  * has drawn us down below target), or snap down to target if we're above it.
382  */
bbr_set_cwnd(struct sock * sk,const struct rate_sample * rs,u32 acked,u32 bw,int gain)383 static void bbr_set_cwnd(struct sock *sk, const struct rate_sample *rs,
384 			 u32 acked, u32 bw, int gain)
385 {
386 	struct tcp_sock *tp = tcp_sk(sk);
387 	struct bbr *bbr = inet_csk_ca(sk);
388 	u32 cwnd = 0, target_cwnd = 0;
389 
390 	if (!acked)
391 		return;
392 
393 	if (bbr_set_cwnd_to_recover_or_restore(sk, rs, acked, &cwnd))
394 		goto done;
395 
396 	/* If we're below target cwnd, slow start cwnd toward target cwnd. */
397 	target_cwnd = bbr_target_cwnd(sk, bw, gain);
398 	if (bbr_full_bw_reached(sk))  /* only cut cwnd if we filled the pipe */
399 		cwnd = min(cwnd + acked, target_cwnd);
400 	else if (cwnd < target_cwnd || tp->delivered < TCP_INIT_CWND)
401 		cwnd = cwnd + acked;
402 	cwnd = max(cwnd, bbr_cwnd_min_target);
403 
404 done:
405 	tp->snd_cwnd = min(cwnd, tp->snd_cwnd_clamp);	/* apply global cap */
406 	if (bbr->mode == BBR_PROBE_RTT)  /* drain queue, refresh min_rtt */
407 		tp->snd_cwnd = min(tp->snd_cwnd, bbr_cwnd_min_target);
408 }
409 
410 /* End cycle phase if it's time and/or we hit the phase's in-flight target. */
bbr_is_next_cycle_phase(struct sock * sk,const struct rate_sample * rs)411 static bool bbr_is_next_cycle_phase(struct sock *sk,
412 				    const struct rate_sample *rs)
413 {
414 	struct tcp_sock *tp = tcp_sk(sk);
415 	struct bbr *bbr = inet_csk_ca(sk);
416 	bool is_full_length =
417 		skb_mstamp_us_delta(&tp->delivered_mstamp, &bbr->cycle_mstamp) >
418 		bbr->min_rtt_us;
419 	u32 inflight, bw;
420 
421 	/* The pacing_gain of 1.0 paces at the estimated bw to try to fully
422 	 * use the pipe without increasing the queue.
423 	 */
424 	if (bbr->pacing_gain == BBR_UNIT)
425 		return is_full_length;		/* just use wall clock time */
426 
427 	inflight = rs->prior_in_flight;  /* what was in-flight before ACK? */
428 	bw = bbr_max_bw(sk);
429 
430 	/* A pacing_gain > 1.0 probes for bw by trying to raise inflight to at
431 	 * least pacing_gain*BDP; this may take more than min_rtt if min_rtt is
432 	 * small (e.g. on a LAN). We do not persist if packets are lost, since
433 	 * a path with small buffers may not hold that much.
434 	 */
435 	if (bbr->pacing_gain > BBR_UNIT)
436 		return is_full_length &&
437 			(rs->losses ||  /* perhaps pacing_gain*BDP won't fit */
438 			 inflight >= bbr_target_cwnd(sk, bw, bbr->pacing_gain));
439 
440 	/* A pacing_gain < 1.0 tries to drain extra queue we added if bw
441 	 * probing didn't find more bw. If inflight falls to match BDP then we
442 	 * estimate queue is drained; persisting would underutilize the pipe.
443 	 */
444 	return is_full_length ||
445 		inflight <= bbr_target_cwnd(sk, bw, BBR_UNIT);
446 }
447 
bbr_advance_cycle_phase(struct sock * sk)448 static void bbr_advance_cycle_phase(struct sock *sk)
449 {
450 	struct tcp_sock *tp = tcp_sk(sk);
451 	struct bbr *bbr = inet_csk_ca(sk);
452 
453 	bbr->cycle_idx = (bbr->cycle_idx + 1) & (CYCLE_LEN - 1);
454 	bbr->cycle_mstamp = tp->delivered_mstamp;
455 	bbr->pacing_gain = bbr->lt_use_bw ? BBR_UNIT :
456 					    bbr_pacing_gain[bbr->cycle_idx];
457 }
458 
459 /* Gain cycling: cycle pacing gain to converge to fair share of available bw. */
bbr_update_cycle_phase(struct sock * sk,const struct rate_sample * rs)460 static void bbr_update_cycle_phase(struct sock *sk,
461 				   const struct rate_sample *rs)
462 {
463 	struct bbr *bbr = inet_csk_ca(sk);
464 
465 	if (bbr->mode == BBR_PROBE_BW && bbr_is_next_cycle_phase(sk, rs))
466 		bbr_advance_cycle_phase(sk);
467 }
468 
bbr_reset_startup_mode(struct sock * sk)469 static void bbr_reset_startup_mode(struct sock *sk)
470 {
471 	struct bbr *bbr = inet_csk_ca(sk);
472 
473 	bbr->mode = BBR_STARTUP;
474 	bbr->pacing_gain = bbr_high_gain;
475 	bbr->cwnd_gain	 = bbr_high_gain;
476 }
477 
bbr_reset_probe_bw_mode(struct sock * sk)478 static void bbr_reset_probe_bw_mode(struct sock *sk)
479 {
480 	struct bbr *bbr = inet_csk_ca(sk);
481 
482 	bbr->mode = BBR_PROBE_BW;
483 	bbr->pacing_gain = BBR_UNIT;
484 	bbr->cwnd_gain = bbr_cwnd_gain;
485 	bbr->cycle_idx = CYCLE_LEN - 1 - prandom_u32_max(bbr_cycle_rand);
486 	bbr_advance_cycle_phase(sk);	/* flip to next phase of gain cycle */
487 }
488 
bbr_reset_mode(struct sock * sk)489 static void bbr_reset_mode(struct sock *sk)
490 {
491 	if (!bbr_full_bw_reached(sk))
492 		bbr_reset_startup_mode(sk);
493 	else
494 		bbr_reset_probe_bw_mode(sk);
495 }
496 
497 /* Start a new long-term sampling interval. */
bbr_reset_lt_bw_sampling_interval(struct sock * sk)498 static void bbr_reset_lt_bw_sampling_interval(struct sock *sk)
499 {
500 	struct tcp_sock *tp = tcp_sk(sk);
501 	struct bbr *bbr = inet_csk_ca(sk);
502 
503 	bbr->lt_last_stamp = tp->delivered_mstamp.stamp_jiffies;
504 	bbr->lt_last_delivered = tp->delivered;
505 	bbr->lt_last_lost = tp->lost;
506 	bbr->lt_rtt_cnt = 0;
507 }
508 
509 /* Completely reset long-term bandwidth sampling. */
bbr_reset_lt_bw_sampling(struct sock * sk)510 static void bbr_reset_lt_bw_sampling(struct sock *sk)
511 {
512 	struct bbr *bbr = inet_csk_ca(sk);
513 
514 	bbr->lt_bw = 0;
515 	bbr->lt_use_bw = 0;
516 	bbr->lt_is_sampling = false;
517 	bbr_reset_lt_bw_sampling_interval(sk);
518 }
519 
520 /* Long-term bw sampling interval is done. Estimate whether we're policed. */
bbr_lt_bw_interval_done(struct sock * sk,u32 bw)521 static void bbr_lt_bw_interval_done(struct sock *sk, u32 bw)
522 {
523 	struct bbr *bbr = inet_csk_ca(sk);
524 	u32 diff;
525 
526 	if (bbr->lt_bw) {  /* do we have bw from a previous interval? */
527 		/* Is new bw close to the lt_bw from the previous interval? */
528 		diff = abs(bw - bbr->lt_bw);
529 		if ((diff * BBR_UNIT <= bbr_lt_bw_ratio * bbr->lt_bw) ||
530 		    (bbr_rate_bytes_per_sec(sk, diff, BBR_UNIT) <=
531 		     bbr_lt_bw_diff)) {
532 			/* All criteria are met; estimate we're policed. */
533 			bbr->lt_bw = (bw + bbr->lt_bw) >> 1;  /* avg 2 intvls */
534 			bbr->lt_use_bw = 1;
535 			bbr->pacing_gain = BBR_UNIT;  /* try to avoid drops */
536 			bbr->lt_rtt_cnt = 0;
537 			return;
538 		}
539 	}
540 	bbr->lt_bw = bw;
541 	bbr_reset_lt_bw_sampling_interval(sk);
542 }
543 
544 /* Token-bucket traffic policers are common (see "An Internet-Wide Analysis of
545  * Traffic Policing", SIGCOMM 2016). BBR detects token-bucket policers and
546  * explicitly models their policed rate, to reduce unnecessary losses. We
547  * estimate that we're policed if we see 2 consecutive sampling intervals with
548  * consistent throughput and high packet loss. If we think we're being policed,
549  * set lt_bw to the "long-term" average delivery rate from those 2 intervals.
550  */
bbr_lt_bw_sampling(struct sock * sk,const struct rate_sample * rs)551 static void bbr_lt_bw_sampling(struct sock *sk, const struct rate_sample *rs)
552 {
553 	struct tcp_sock *tp = tcp_sk(sk);
554 	struct bbr *bbr = inet_csk_ca(sk);
555 	u32 lost, delivered;
556 	u64 bw;
557 	s32 t;
558 
559 	if (bbr->lt_use_bw) {	/* already using long-term rate, lt_bw? */
560 		if (bbr->mode == BBR_PROBE_BW && bbr->round_start &&
561 		    ++bbr->lt_rtt_cnt >= bbr_lt_bw_max_rtts) {
562 			bbr_reset_lt_bw_sampling(sk);    /* stop using lt_bw */
563 			bbr_reset_probe_bw_mode(sk);  /* restart gain cycling */
564 		}
565 		return;
566 	}
567 
568 	/* Wait for the first loss before sampling, to let the policer exhaust
569 	 * its tokens and estimate the steady-state rate allowed by the policer.
570 	 * Starting samples earlier includes bursts that over-estimate the bw.
571 	 */
572 	if (!bbr->lt_is_sampling) {
573 		if (!rs->losses)
574 			return;
575 		bbr_reset_lt_bw_sampling_interval(sk);
576 		bbr->lt_is_sampling = true;
577 	}
578 
579 	/* To avoid underestimates, reset sampling if we run out of data. */
580 	if (rs->is_app_limited) {
581 		bbr_reset_lt_bw_sampling(sk);
582 		return;
583 	}
584 
585 	if (bbr->round_start)
586 		bbr->lt_rtt_cnt++;	/* count round trips in this interval */
587 	if (bbr->lt_rtt_cnt < bbr_lt_intvl_min_rtts)
588 		return;		/* sampling interval needs to be longer */
589 	if (bbr->lt_rtt_cnt > 4 * bbr_lt_intvl_min_rtts) {
590 		bbr_reset_lt_bw_sampling(sk);  /* interval is too long */
591 		return;
592 	}
593 
594 	/* End sampling interval when a packet is lost, so we estimate the
595 	 * policer tokens were exhausted. Stopping the sampling before the
596 	 * tokens are exhausted under-estimates the policed rate.
597 	 */
598 	if (!rs->losses)
599 		return;
600 
601 	/* Calculate packets lost and delivered in sampling interval. */
602 	lost = tp->lost - bbr->lt_last_lost;
603 	delivered = tp->delivered - bbr->lt_last_delivered;
604 	/* Is loss rate (lost/delivered) >= lt_loss_thresh? If not, wait. */
605 	if (!delivered || (lost << BBR_SCALE) < bbr_lt_loss_thresh * delivered)
606 		return;
607 
608 	/* Find average delivery rate in this sampling interval. */
609 	t = (s32)(tp->delivered_mstamp.stamp_jiffies - bbr->lt_last_stamp);
610 	if (t < 1)
611 		return;		/* interval is less than one jiffy, so wait */
612 	t = jiffies_to_usecs(t);
613 	/* Interval long enough for jiffies_to_usecs() to return a bogus 0? */
614 	if (t < 1) {
615 		bbr_reset_lt_bw_sampling(sk);  /* interval too long; reset */
616 		return;
617 	}
618 	bw = (u64)delivered * BW_UNIT;
619 	do_div(bw, t);
620 	bbr_lt_bw_interval_done(sk, bw);
621 }
622 
623 /* Estimate the bandwidth based on how fast packets are delivered */
bbr_update_bw(struct sock * sk,const struct rate_sample * rs)624 static void bbr_update_bw(struct sock *sk, const struct rate_sample *rs)
625 {
626 	struct tcp_sock *tp = tcp_sk(sk);
627 	struct bbr *bbr = inet_csk_ca(sk);
628 	u64 bw;
629 
630 	bbr->round_start = 0;
631 	if (rs->delivered < 0 || rs->interval_us <= 0)
632 		return; /* Not a valid observation */
633 
634 	/* See if we've reached the next RTT */
635 	if (!before(rs->prior_delivered, bbr->next_rtt_delivered)) {
636 		bbr->next_rtt_delivered = tp->delivered;
637 		bbr->rtt_cnt++;
638 		bbr->round_start = 1;
639 		bbr->packet_conservation = 0;
640 	}
641 
642 	bbr_lt_bw_sampling(sk, rs);
643 
644 	/* Divide delivered by the interval to find a (lower bound) bottleneck
645 	 * bandwidth sample. Delivered is in packets and interval_us in uS and
646 	 * ratio will be <<1 for most connections. So delivered is first scaled.
647 	 */
648 	bw = (u64)rs->delivered * BW_UNIT;
649 	do_div(bw, rs->interval_us);
650 
651 	/* If this sample is application-limited, it is likely to have a very
652 	 * low delivered count that represents application behavior rather than
653 	 * the available network rate. Such a sample could drag down estimated
654 	 * bw, causing needless slow-down. Thus, to continue to send at the
655 	 * last measured network rate, we filter out app-limited samples unless
656 	 * they describe the path bw at least as well as our bw model.
657 	 *
658 	 * So the goal during app-limited phase is to proceed with the best
659 	 * network rate no matter how long. We automatically leave this
660 	 * phase when app writes faster than the network can deliver :)
661 	 */
662 	if (!rs->is_app_limited || bw >= bbr_max_bw(sk)) {
663 		/* Incorporate new sample into our max bw filter. */
664 		minmax_running_max(&bbr->bw, bbr_bw_rtts, bbr->rtt_cnt, bw);
665 	}
666 }
667 
668 /* Estimate when the pipe is full, using the change in delivery rate: BBR
669  * estimates that STARTUP filled the pipe if the estimated bw hasn't changed by
670  * at least bbr_full_bw_thresh (25%) after bbr_full_bw_cnt (3) non-app-limited
671  * rounds. Why 3 rounds: 1: rwin autotuning grows the rwin, 2: we fill the
672  * higher rwin, 3: we get higher delivery rate samples. Or transient
673  * cross-traffic or radio noise can go away. CUBIC Hystart shares a similar
674  * design goal, but uses delay and inter-ACK spacing instead of bandwidth.
675  */
bbr_check_full_bw_reached(struct sock * sk,const struct rate_sample * rs)676 static void bbr_check_full_bw_reached(struct sock *sk,
677 				      const struct rate_sample *rs)
678 {
679 	struct bbr *bbr = inet_csk_ca(sk);
680 	u32 bw_thresh;
681 
682 	if (bbr_full_bw_reached(sk) || !bbr->round_start || rs->is_app_limited)
683 		return;
684 
685 	bw_thresh = (u64)bbr->full_bw * bbr_full_bw_thresh >> BBR_SCALE;
686 	if (bbr_max_bw(sk) >= bw_thresh) {
687 		bbr->full_bw = bbr_max_bw(sk);
688 		bbr->full_bw_cnt = 0;
689 		return;
690 	}
691 	++bbr->full_bw_cnt;
692 	bbr->full_bw_reached = bbr->full_bw_cnt >= bbr_full_bw_cnt;
693 }
694 
695 /* If pipe is probably full, drain the queue and then enter steady-state. */
bbr_check_drain(struct sock * sk,const struct rate_sample * rs)696 static void bbr_check_drain(struct sock *sk, const struct rate_sample *rs)
697 {
698 	struct bbr *bbr = inet_csk_ca(sk);
699 
700 	if (bbr->mode == BBR_STARTUP && bbr_full_bw_reached(sk)) {
701 		bbr->mode = BBR_DRAIN;	/* drain queue we created */
702 		bbr->pacing_gain = bbr_drain_gain;	/* pace slow to drain */
703 		bbr->cwnd_gain = bbr_high_gain;	/* maintain cwnd */
704 	}	/* fall through to check if in-flight is already small: */
705 	if (bbr->mode == BBR_DRAIN &&
706 	    tcp_packets_in_flight(tcp_sk(sk)) <=
707 	    bbr_target_cwnd(sk, bbr_max_bw(sk), BBR_UNIT))
708 		bbr_reset_probe_bw_mode(sk);  /* we estimate queue is drained */
709 }
710 
711 /* The goal of PROBE_RTT mode is to have BBR flows cooperatively and
712  * periodically drain the bottleneck queue, to converge to measure the true
713  * min_rtt (unloaded propagation delay). This allows the flows to keep queues
714  * small (reducing queuing delay and packet loss) and achieve fairness among
715  * BBR flows.
716  *
717  * The min_rtt filter window is 10 seconds. When the min_rtt estimate expires,
718  * we enter PROBE_RTT mode and cap the cwnd at bbr_cwnd_min_target=4 packets.
719  * After at least bbr_probe_rtt_mode_ms=200ms and at least one packet-timed
720  * round trip elapsed with that flight size <= 4, we leave PROBE_RTT mode and
721  * re-enter the previous mode. BBR uses 200ms to approximately bound the
722  * performance penalty of PROBE_RTT's cwnd capping to roughly 2% (200ms/10s).
723  *
724  * Note that flows need only pay 2% if they are busy sending over the last 10
725  * seconds. Interactive applications (e.g., Web, RPCs, video chunks) often have
726  * natural silences or low-rate periods within 10 seconds where the rate is low
727  * enough for long enough to drain its queue in the bottleneck. We pick up
728  * these min RTT measurements opportunistically with our min_rtt filter. :-)
729  */
bbr_update_min_rtt(struct sock * sk,const struct rate_sample * rs)730 static void bbr_update_min_rtt(struct sock *sk, const struct rate_sample *rs)
731 {
732 	struct tcp_sock *tp = tcp_sk(sk);
733 	struct bbr *bbr = inet_csk_ca(sk);
734 	bool filter_expired;
735 
736 	/* Track min RTT seen in the min_rtt_win_sec filter window: */
737 	filter_expired = after(tcp_time_stamp,
738 			       bbr->min_rtt_stamp + bbr_min_rtt_win_sec * HZ);
739 	if (rs->rtt_us >= 0 &&
740 	    (rs->rtt_us <= bbr->min_rtt_us || filter_expired)) {
741 		bbr->min_rtt_us = rs->rtt_us;
742 		bbr->min_rtt_stamp = tcp_time_stamp;
743 	}
744 
745 	if (bbr_probe_rtt_mode_ms > 0 && filter_expired &&
746 	    !bbr->idle_restart && bbr->mode != BBR_PROBE_RTT) {
747 		bbr->mode = BBR_PROBE_RTT;  /* dip, drain queue */
748 		bbr->pacing_gain = BBR_UNIT;
749 		bbr->cwnd_gain = BBR_UNIT;
750 		bbr_save_cwnd(sk);  /* note cwnd so we can restore it */
751 		bbr->probe_rtt_done_stamp = 0;
752 	}
753 
754 	if (bbr->mode == BBR_PROBE_RTT) {
755 		/* Ignore low rate samples during this mode. */
756 		tp->app_limited =
757 			(tp->delivered + tcp_packets_in_flight(tp)) ? : 1;
758 		/* Maintain min packets in flight for max(200 ms, 1 round). */
759 		if (!bbr->probe_rtt_done_stamp &&
760 		    tcp_packets_in_flight(tp) <= bbr_cwnd_min_target) {
761 			bbr->probe_rtt_done_stamp = tcp_time_stamp +
762 				msecs_to_jiffies(bbr_probe_rtt_mode_ms);
763 			bbr->probe_rtt_round_done = 0;
764 			bbr->next_rtt_delivered = tp->delivered;
765 		} else if (bbr->probe_rtt_done_stamp) {
766 			if (bbr->round_start)
767 				bbr->probe_rtt_round_done = 1;
768 			if (bbr->probe_rtt_round_done &&
769 			    after(tcp_time_stamp, bbr->probe_rtt_done_stamp)) {
770 				bbr->min_rtt_stamp = tcp_time_stamp;
771 				bbr->restore_cwnd = 1;  /* snap to prior_cwnd */
772 				bbr_reset_mode(sk);
773 			}
774 		}
775 	}
776 	bbr->idle_restart = 0;
777 }
778 
bbr_update_model(struct sock * sk,const struct rate_sample * rs)779 static void bbr_update_model(struct sock *sk, const struct rate_sample *rs)
780 {
781 	bbr_update_bw(sk, rs);
782 	bbr_update_cycle_phase(sk, rs);
783 	bbr_check_full_bw_reached(sk, rs);
784 	bbr_check_drain(sk, rs);
785 	bbr_update_min_rtt(sk, rs);
786 }
787 
bbr_main(struct sock * sk,const struct rate_sample * rs)788 static void bbr_main(struct sock *sk, const struct rate_sample *rs)
789 {
790 	struct bbr *bbr = inet_csk_ca(sk);
791 	u32 bw;
792 
793 	bbr_update_model(sk, rs);
794 
795 	bw = bbr_bw(sk);
796 	bbr_set_pacing_rate(sk, bw, bbr->pacing_gain);
797 	bbr_set_tso_segs_goal(sk);
798 	bbr_set_cwnd(sk, rs, rs->acked_sacked, bw, bbr->cwnd_gain);
799 }
800 
bbr_init(struct sock * sk)801 static void bbr_init(struct sock *sk)
802 {
803 	struct tcp_sock *tp = tcp_sk(sk);
804 	struct bbr *bbr = inet_csk_ca(sk);
805 
806 	bbr->prior_cwnd = 0;
807 	bbr->tso_segs_goal = 0;	 /* default segs per skb until first ACK */
808 	bbr->rtt_cnt = 0;
809 	bbr->next_rtt_delivered = 0;
810 	bbr->prev_ca_state = TCP_CA_Open;
811 	bbr->packet_conservation = 0;
812 
813 	bbr->probe_rtt_done_stamp = 0;
814 	bbr->probe_rtt_round_done = 0;
815 	bbr->min_rtt_us = tcp_min_rtt(tp);
816 	bbr->min_rtt_stamp = tcp_time_stamp;
817 
818 	minmax_reset(&bbr->bw, bbr->rtt_cnt, 0);  /* init max bw to 0 */
819 
820 	bbr->has_seen_rtt = 0;
821 	bbr_init_pacing_rate_from_rtt(sk);
822 
823 	bbr->restore_cwnd = 0;
824 	bbr->round_start = 0;
825 	bbr->idle_restart = 0;
826 	bbr->full_bw_reached = 0;
827 	bbr->full_bw = 0;
828 	bbr->full_bw_cnt = 0;
829 	bbr->cycle_mstamp.v64 = 0;
830 	bbr->cycle_idx = 0;
831 	bbr_reset_lt_bw_sampling(sk);
832 	bbr_reset_startup_mode(sk);
833 }
834 
bbr_sndbuf_expand(struct sock * sk)835 static u32 bbr_sndbuf_expand(struct sock *sk)
836 {
837 	/* Provision 3 * cwnd since BBR may slow-start even during recovery. */
838 	return 3;
839 }
840 
841 /* In theory BBR does not need to undo the cwnd since it does not
842  * always reduce cwnd on losses (see bbr_main()). Keep it for now.
843  */
bbr_undo_cwnd(struct sock * sk)844 static u32 bbr_undo_cwnd(struct sock *sk)
845 {
846 	struct bbr *bbr = inet_csk_ca(sk);
847 
848 	bbr->full_bw = 0;   /* spurious slow-down; reset full pipe detection */
849 	bbr->full_bw_cnt = 0;
850 	bbr_reset_lt_bw_sampling(sk);
851 	return tcp_sk(sk)->snd_cwnd;
852 }
853 
854 /* Entering loss recovery, so save cwnd for when we exit or undo recovery. */
bbr_ssthresh(struct sock * sk)855 static u32 bbr_ssthresh(struct sock *sk)
856 {
857 	bbr_save_cwnd(sk);
858 	return TCP_INFINITE_SSTHRESH;	 /* BBR does not use ssthresh */
859 }
860 
bbr_get_info(struct sock * sk,u32 ext,int * attr,union tcp_cc_info * info)861 static size_t bbr_get_info(struct sock *sk, u32 ext, int *attr,
862 			   union tcp_cc_info *info)
863 {
864 	if (ext & (1 << (INET_DIAG_BBRINFO - 1)) ||
865 	    ext & (1 << (INET_DIAG_VEGASINFO - 1))) {
866 		struct tcp_sock *tp = tcp_sk(sk);
867 		struct bbr *bbr = inet_csk_ca(sk);
868 		u64 bw = bbr_bw(sk);
869 
870 		bw = bw * tp->mss_cache * USEC_PER_SEC >> BW_SCALE;
871 		memset(&info->bbr, 0, sizeof(info->bbr));
872 		info->bbr.bbr_bw_lo		= (u32)bw;
873 		info->bbr.bbr_bw_hi		= (u32)(bw >> 32);
874 		info->bbr.bbr_min_rtt		= bbr->min_rtt_us;
875 		info->bbr.bbr_pacing_gain	= bbr->pacing_gain;
876 		info->bbr.bbr_cwnd_gain		= bbr->cwnd_gain;
877 		*attr = INET_DIAG_BBRINFO;
878 		return sizeof(info->bbr);
879 	}
880 	return 0;
881 }
882 
bbr_set_state(struct sock * sk,u8 new_state)883 static void bbr_set_state(struct sock *sk, u8 new_state)
884 {
885 	struct bbr *bbr = inet_csk_ca(sk);
886 
887 	if (new_state == TCP_CA_Loss) {
888 		struct rate_sample rs = { .losses = 1 };
889 
890 		bbr->prev_ca_state = TCP_CA_Loss;
891 		bbr->full_bw = 0;
892 		bbr->round_start = 1;	/* treat RTO like end of a round */
893 		bbr_lt_bw_sampling(sk, &rs);
894 	}
895 }
896 
897 static struct tcp_congestion_ops tcp_bbr_cong_ops __read_mostly = {
898 	.flags		= TCP_CONG_NON_RESTRICTED,
899 	.name		= "bbr",
900 	.owner		= THIS_MODULE,
901 	.init		= bbr_init,
902 	.cong_control	= bbr_main,
903 	.sndbuf_expand	= bbr_sndbuf_expand,
904 	.undo_cwnd	= bbr_undo_cwnd,
905 	.cwnd_event	= bbr_cwnd_event,
906 	.ssthresh	= bbr_ssthresh,
907 	.tso_segs_goal	= bbr_tso_segs_goal,
908 	.get_info	= bbr_get_info,
909 	.set_state	= bbr_set_state,
910 };
911 
bbr_register(void)912 static int __init bbr_register(void)
913 {
914 	BUILD_BUG_ON(sizeof(struct bbr) > ICSK_CA_PRIV_SIZE);
915 	return tcp_register_congestion_control(&tcp_bbr_cong_ops);
916 }
917 
bbr_unregister(void)918 static void __exit bbr_unregister(void)
919 {
920 	tcp_unregister_congestion_control(&tcp_bbr_cong_ops);
921 }
922 
923 module_init(bbr_register);
924 module_exit(bbr_unregister);
925 
926 MODULE_AUTHOR("Van Jacobson <vanj@google.com>");
927 MODULE_AUTHOR("Neal Cardwell <ncardwell@google.com>");
928 MODULE_AUTHOR("Yuchung Cheng <ycheng@google.com>");
929 MODULE_AUTHOR("Soheil Hassas Yeganeh <soheil@google.com>");
930 MODULE_LICENSE("Dual BSD/GPL");
931 MODULE_DESCRIPTION("TCP BBR (Bottleneck Bandwidth and RTT)");
932