• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/slab.h>
24 #include <linux/sysctl.h>
25 #include <linux/workqueue.h>
26 #include <net/tcp.h>
27 #include <net/inet_common.h>
28 #include <net/xfrm.h>
29 
30 int sysctl_tcp_abort_on_overflow __read_mostly;
31 
32 struct inet_timewait_death_row tcp_death_row = {
33 	.sysctl_max_tw_buckets = NR_FILE * 2,
34 	.hashinfo	= &tcp_hashinfo,
35 };
36 EXPORT_SYMBOL_GPL(tcp_death_row);
37 
tcp_in_window(u32 seq,u32 end_seq,u32 s_win,u32 e_win)38 static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
39 {
40 	if (seq == s_win)
41 		return true;
42 	if (after(end_seq, s_win) && before(seq, e_win))
43 		return true;
44 	return seq == e_win && seq == end_seq;
45 }
46 
47 static enum tcp_tw_status
tcp_timewait_check_oow_rate_limit(struct inet_timewait_sock * tw,const struct sk_buff * skb,int mib_idx)48 tcp_timewait_check_oow_rate_limit(struct inet_timewait_sock *tw,
49 				  const struct sk_buff *skb, int mib_idx)
50 {
51 	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
52 
53 	if (!tcp_oow_rate_limited(twsk_net(tw), skb, mib_idx,
54 				  &tcptw->tw_last_oow_ack_time)) {
55 		/* Send ACK. Note, we do not put the bucket,
56 		 * it will be released by caller.
57 		 */
58 		return TCP_TW_ACK;
59 	}
60 
61 	/* We are rate-limiting, so just release the tw sock and drop skb. */
62 	inet_twsk_put(tw);
63 	return TCP_TW_SUCCESS;
64 }
65 
66 /*
67  * * Main purpose of TIME-WAIT state is to close connection gracefully,
68  *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
69  *   (and, probably, tail of data) and one or more our ACKs are lost.
70  * * What is TIME-WAIT timeout? It is associated with maximal packet
71  *   lifetime in the internet, which results in wrong conclusion, that
72  *   it is set to catch "old duplicate segments" wandering out of their path.
73  *   It is not quite correct. This timeout is calculated so that it exceeds
74  *   maximal retransmission timeout enough to allow to lose one (or more)
75  *   segments sent by peer and our ACKs. This time may be calculated from RTO.
76  * * When TIME-WAIT socket receives RST, it means that another end
77  *   finally closed and we are allowed to kill TIME-WAIT too.
78  * * Second purpose of TIME-WAIT is catching old duplicate segments.
79  *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
80  *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
81  * * If we invented some more clever way to catch duplicates
82  *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
83  *
84  * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
85  * When you compare it to RFCs, please, read section SEGMENT ARRIVES
86  * from the very beginning.
87  *
88  * NOTE. With recycling (and later with fin-wait-2) TW bucket
89  * is _not_ stateless. It means, that strictly speaking we must
90  * spinlock it. I do not want! Well, probability of misbehaviour
91  * is ridiculously low and, seems, we could use some mb() tricks
92  * to avoid misread sequence numbers, states etc.  --ANK
93  *
94  * We don't need to initialize tmp_out.sack_ok as we don't use the results
95  */
96 enum tcp_tw_status
tcp_timewait_state_process(struct inet_timewait_sock * tw,struct sk_buff * skb,const struct tcphdr * th)97 tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
98 			   const struct tcphdr *th)
99 {
100 	struct tcp_options_received tmp_opt;
101 	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
102 	bool paws_reject = false;
103 
104 	tmp_opt.saw_tstamp = 0;
105 	if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
106 		tcp_parse_options(skb, &tmp_opt, 0, NULL);
107 
108 		if (tmp_opt.saw_tstamp) {
109 			tmp_opt.rcv_tsecr	-= tcptw->tw_ts_offset;
110 			tmp_opt.ts_recent	= tcptw->tw_ts_recent;
111 			tmp_opt.ts_recent_stamp	= tcptw->tw_ts_recent_stamp;
112 			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
113 		}
114 	}
115 
116 	if (tw->tw_substate == TCP_FIN_WAIT2) {
117 		/* Just repeat all the checks of tcp_rcv_state_process() */
118 
119 		/* Out of window, send ACK */
120 		if (paws_reject ||
121 		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
122 				   tcptw->tw_rcv_nxt,
123 				   tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
124 			return tcp_timewait_check_oow_rate_limit(
125 				tw, skb, LINUX_MIB_TCPACKSKIPPEDFINWAIT2);
126 
127 		if (th->rst)
128 			goto kill;
129 
130 		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
131 			return TCP_TW_RST;
132 
133 		/* Dup ACK? */
134 		if (!th->ack ||
135 		    !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
136 		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
137 			inet_twsk_put(tw);
138 			return TCP_TW_SUCCESS;
139 		}
140 
141 		/* New data or FIN. If new data arrive after half-duplex close,
142 		 * reset.
143 		 */
144 		if (!th->fin ||
145 		    TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1)
146 			return TCP_TW_RST;
147 
148 		/* FIN arrived, enter true time-wait state. */
149 		tw->tw_substate	  = TCP_TIME_WAIT;
150 		tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
151 		if (tmp_opt.saw_tstamp) {
152 			tcptw->tw_ts_recent_stamp = get_seconds();
153 			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
154 		}
155 
156 		if (tcp_death_row.sysctl_tw_recycle &&
157 		    tcptw->tw_ts_recent_stamp &&
158 		    tcp_tw_remember_stamp(tw))
159 			inet_twsk_reschedule(tw, tw->tw_timeout);
160 		else
161 			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
162 		return TCP_TW_ACK;
163 	}
164 
165 	/*
166 	 *	Now real TIME-WAIT state.
167 	 *
168 	 *	RFC 1122:
169 	 *	"When a connection is [...] on TIME-WAIT state [...]
170 	 *	[a TCP] MAY accept a new SYN from the remote TCP to
171 	 *	reopen the connection directly, if it:
172 	 *
173 	 *	(1)  assigns its initial sequence number for the new
174 	 *	connection to be larger than the largest sequence
175 	 *	number it used on the previous connection incarnation,
176 	 *	and
177 	 *
178 	 *	(2)  returns to TIME-WAIT state if the SYN turns out
179 	 *	to be an old duplicate".
180 	 */
181 
182 	if (!paws_reject &&
183 	    (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
184 	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
185 		/* In window segment, it may be only reset or bare ack. */
186 
187 		if (th->rst) {
188 			/* This is TIME_WAIT assassination, in two flavors.
189 			 * Oh well... nobody has a sufficient solution to this
190 			 * protocol bug yet.
191 			 */
192 			if (sysctl_tcp_rfc1337 == 0) {
193 kill:
194 				inet_twsk_deschedule_put(tw);
195 				return TCP_TW_SUCCESS;
196 			}
197 		}
198 		inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
199 
200 		if (tmp_opt.saw_tstamp) {
201 			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
202 			tcptw->tw_ts_recent_stamp = get_seconds();
203 		}
204 
205 		inet_twsk_put(tw);
206 		return TCP_TW_SUCCESS;
207 	}
208 
209 	/* Out of window segment.
210 
211 	   All the segments are ACKed immediately.
212 
213 	   The only exception is new SYN. We accept it, if it is
214 	   not old duplicate and we are not in danger to be killed
215 	   by delayed old duplicates. RFC check is that it has
216 	   newer sequence number works at rates <40Mbit/sec.
217 	   However, if paws works, it is reliable AND even more,
218 	   we even may relax silly seq space cutoff.
219 
220 	   RED-PEN: we violate main RFC requirement, if this SYN will appear
221 	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
222 	   we must return socket to time-wait state. It is not good,
223 	   but not fatal yet.
224 	 */
225 
226 	if (th->syn && !th->rst && !th->ack && !paws_reject &&
227 	    (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
228 	     (tmp_opt.saw_tstamp &&
229 	      (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
230 		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
231 		if (isn == 0)
232 			isn++;
233 		TCP_SKB_CB(skb)->tcp_tw_isn = isn;
234 		return TCP_TW_SYN;
235 	}
236 
237 	if (paws_reject)
238 		__NET_INC_STATS(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
239 
240 	if (!th->rst) {
241 		/* In this case we must reset the TIMEWAIT timer.
242 		 *
243 		 * If it is ACKless SYN it may be both old duplicate
244 		 * and new good SYN with random sequence number <rcv_nxt.
245 		 * Do not reschedule in the last case.
246 		 */
247 		if (paws_reject || th->ack)
248 			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
249 
250 		return tcp_timewait_check_oow_rate_limit(
251 			tw, skb, LINUX_MIB_TCPACKSKIPPEDTIMEWAIT);
252 	}
253 	inet_twsk_put(tw);
254 	return TCP_TW_SUCCESS;
255 }
256 EXPORT_SYMBOL(tcp_timewait_state_process);
257 
258 /*
259  * Move a socket to time-wait or dead fin-wait-2 state.
260  */
tcp_time_wait(struct sock * sk,int state,int timeo)261 void tcp_time_wait(struct sock *sk, int state, int timeo)
262 {
263 	const struct inet_connection_sock *icsk = inet_csk(sk);
264 	const struct tcp_sock *tp = tcp_sk(sk);
265 	struct inet_timewait_sock *tw;
266 	bool recycle_ok = false;
267 
268 	if (tcp_death_row.sysctl_tw_recycle && tp->rx_opt.ts_recent_stamp)
269 		recycle_ok = tcp_remember_stamp(sk);
270 
271 	tw = inet_twsk_alloc(sk, &tcp_death_row, state);
272 
273 	if (tw) {
274 		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
275 		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
276 		struct inet_sock *inet = inet_sk(sk);
277 
278 		tw->tw_transparent	= inet->transparent;
279 		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
280 		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
281 		tcptw->tw_snd_nxt	= tp->snd_nxt;
282 		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
283 		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
284 		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
285 		tcptw->tw_ts_offset	= tp->tsoffset;
286 		tcptw->tw_last_oow_ack_time = 0;
287 
288 #if IS_ENABLED(CONFIG_IPV6)
289 		if (tw->tw_family == PF_INET6) {
290 			struct ipv6_pinfo *np = inet6_sk(sk);
291 
292 			tw->tw_v6_daddr = sk->sk_v6_daddr;
293 			tw->tw_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
294 			tw->tw_tclass = np->tclass;
295 			tw->tw_flowlabel = be32_to_cpu(np->flow_label & IPV6_FLOWLABEL_MASK);
296 			tw->tw_ipv6only = sk->sk_ipv6only;
297 		}
298 #endif
299 
300 #ifdef CONFIG_TCP_MD5SIG
301 		/*
302 		 * The timewait bucket does not have the key DB from the
303 		 * sock structure. We just make a quick copy of the
304 		 * md5 key being used (if indeed we are using one)
305 		 * so the timewait ack generating code has the key.
306 		 */
307 		do {
308 			struct tcp_md5sig_key *key;
309 			tcptw->tw_md5_key = NULL;
310 			key = tp->af_specific->md5_lookup(sk, sk);
311 			if (key) {
312 				tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
313 				if (tcptw->tw_md5_key && !tcp_alloc_md5sig_pool())
314 					BUG();
315 			}
316 		} while (0);
317 #endif
318 
319 		/* Get the TIME_WAIT timeout firing. */
320 		if (timeo < rto)
321 			timeo = rto;
322 
323 		if (recycle_ok) {
324 			tw->tw_timeout = rto;
325 		} else {
326 			tw->tw_timeout = TCP_TIMEWAIT_LEN;
327 			if (state == TCP_TIME_WAIT)
328 				timeo = TCP_TIMEWAIT_LEN;
329 		}
330 
331 		/* tw_timer is pinned, so we need to make sure BH are disabled
332 		 * in following section, otherwise timer handler could run before
333 		 * we complete the initialization.
334 		 */
335 		local_bh_disable();
336 		inet_twsk_schedule(tw, timeo);
337 		/* Linkage updates. */
338 		__inet_twsk_hashdance(tw, sk, &tcp_hashinfo);
339 		inet_twsk_put(tw);
340 		local_bh_enable();
341 	} else {
342 		/* Sorry, if we're out of memory, just CLOSE this
343 		 * socket up.  We've got bigger problems than
344 		 * non-graceful socket closings.
345 		 */
346 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPTIMEWAITOVERFLOW);
347 	}
348 
349 	tcp_update_metrics(sk);
350 	tcp_done(sk);
351 }
352 
tcp_twsk_destructor(struct sock * sk)353 void tcp_twsk_destructor(struct sock *sk)
354 {
355 #ifdef CONFIG_TCP_MD5SIG
356 	struct tcp_timewait_sock *twsk = tcp_twsk(sk);
357 
358 	if (twsk->tw_md5_key)
359 		kfree_rcu(twsk->tw_md5_key, rcu);
360 #endif
361 }
362 EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
363 
364 /* Warning : This function is called without sk_listener being locked.
365  * Be sure to read socket fields once, as their value could change under us.
366  */
tcp_openreq_init_rwin(struct request_sock * req,const struct sock * sk_listener,const struct dst_entry * dst)367 void tcp_openreq_init_rwin(struct request_sock *req,
368 			   const struct sock *sk_listener,
369 			   const struct dst_entry *dst)
370 {
371 	struct inet_request_sock *ireq = inet_rsk(req);
372 	const struct tcp_sock *tp = tcp_sk(sk_listener);
373 	u16 user_mss = READ_ONCE(tp->rx_opt.user_mss);
374 	int full_space = tcp_full_space(sk_listener);
375 	int mss = dst_metric_advmss(dst);
376 	u32 window_clamp;
377 	__u8 rcv_wscale;
378 
379 	if (user_mss && user_mss < mss)
380 		mss = user_mss;
381 
382 	window_clamp = READ_ONCE(tp->window_clamp);
383 	/* Set this up on the first call only */
384 	req->rsk_window_clamp = window_clamp ? : dst_metric(dst, RTAX_WINDOW);
385 
386 	/* limit the window selection if the user enforce a smaller rx buffer */
387 	if (sk_listener->sk_userlocks & SOCK_RCVBUF_LOCK &&
388 	    (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0))
389 		req->rsk_window_clamp = full_space;
390 
391 	/* tcp_full_space because it is guaranteed to be the first packet */
392 	tcp_select_initial_window(full_space,
393 		mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
394 		&req->rsk_rcv_wnd,
395 		&req->rsk_window_clamp,
396 		ireq->wscale_ok,
397 		&rcv_wscale,
398 		dst_metric(dst, RTAX_INITRWND));
399 	ireq->rcv_wscale = rcv_wscale;
400 }
401 EXPORT_SYMBOL(tcp_openreq_init_rwin);
402 
tcp_ecn_openreq_child(struct tcp_sock * tp,const struct request_sock * req)403 static void tcp_ecn_openreq_child(struct tcp_sock *tp,
404 				  const struct request_sock *req)
405 {
406 	tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
407 }
408 
tcp_ca_openreq_child(struct sock * sk,const struct dst_entry * dst)409 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst)
410 {
411 	struct inet_connection_sock *icsk = inet_csk(sk);
412 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
413 	bool ca_got_dst = false;
414 
415 	if (ca_key != TCP_CA_UNSPEC) {
416 		const struct tcp_congestion_ops *ca;
417 
418 		rcu_read_lock();
419 		ca = tcp_ca_find_key(ca_key);
420 		if (likely(ca && try_module_get(ca->owner))) {
421 			icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
422 			icsk->icsk_ca_ops = ca;
423 			ca_got_dst = true;
424 		}
425 		rcu_read_unlock();
426 	}
427 
428 	/* If no valid choice made yet, assign current system default ca. */
429 	if (!ca_got_dst &&
430 	    (!icsk->icsk_ca_setsockopt ||
431 	     !try_module_get(icsk->icsk_ca_ops->owner)))
432 		tcp_assign_congestion_control(sk);
433 
434 	tcp_set_ca_state(sk, TCP_CA_Open);
435 }
436 EXPORT_SYMBOL_GPL(tcp_ca_openreq_child);
437 
438 /* This is not only more efficient than what we used to do, it eliminates
439  * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
440  *
441  * Actually, we could lots of memory writes here. tp of listening
442  * socket contains all necessary default parameters.
443  */
tcp_create_openreq_child(const struct sock * sk,struct request_sock * req,struct sk_buff * skb)444 struct sock *tcp_create_openreq_child(const struct sock *sk,
445 				      struct request_sock *req,
446 				      struct sk_buff *skb)
447 {
448 	struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
449 
450 	if (newsk) {
451 		const struct inet_request_sock *ireq = inet_rsk(req);
452 		struct tcp_request_sock *treq = tcp_rsk(req);
453 		struct inet_connection_sock *newicsk = inet_csk(newsk);
454 		struct tcp_sock *newtp = tcp_sk(newsk);
455 
456 		/* Now setup tcp_sock */
457 		newtp->pred_flags = 0;
458 
459 		newtp->rcv_wup = newtp->copied_seq =
460 		newtp->rcv_nxt = treq->rcv_isn + 1;
461 		newtp->segs_in = 1;
462 
463 		newtp->snd_sml = newtp->snd_una =
464 		newtp->snd_nxt = newtp->snd_up = treq->snt_isn + 1;
465 
466 		tcp_prequeue_init(newtp);
467 		INIT_LIST_HEAD(&newtp->tsq_node);
468 
469 		tcp_init_wl(newtp, treq->rcv_isn);
470 
471 		newtp->srtt_us = 0;
472 		newtp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
473 		minmax_reset(&newtp->rtt_min, tcp_time_stamp, ~0U);
474 		newicsk->icsk_rto = TCP_TIMEOUT_INIT;
475 		newicsk->icsk_ack.lrcvtime = tcp_time_stamp;
476 
477 		newtp->packets_out = 0;
478 		newtp->retrans_out = 0;
479 		newtp->sacked_out = 0;
480 		newtp->fackets_out = 0;
481 		newtp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
482 		tcp_enable_early_retrans(newtp);
483 		newtp->tlp_high_seq = 0;
484 		newtp->lsndtime = treq->snt_synack.stamp_jiffies;
485 		newsk->sk_txhash = treq->txhash;
486 		newtp->last_oow_ack_time = 0;
487 		newtp->total_retrans = req->num_retrans;
488 
489 		/* So many TCP implementations out there (incorrectly) count the
490 		 * initial SYN frame in their delayed-ACK and congestion control
491 		 * algorithms that we must have the following bandaid to talk
492 		 * efficiently to them.  -DaveM
493 		 */
494 		newtp->snd_cwnd = TCP_INIT_CWND;
495 		newtp->snd_cwnd_cnt = 0;
496 
497 		/* There's a bubble in the pipe until at least the first ACK. */
498 		newtp->app_limited = ~0U;
499 
500 		tcp_init_xmit_timers(newsk);
501 		newtp->write_seq = newtp->pushed_seq = treq->snt_isn + 1;
502 
503 		newtp->rx_opt.saw_tstamp = 0;
504 
505 		newtp->rx_opt.dsack = 0;
506 		newtp->rx_opt.num_sacks = 0;
507 
508 		newtp->urg_data = 0;
509 
510 		if (sock_flag(newsk, SOCK_KEEPOPEN))
511 			inet_csk_reset_keepalive_timer(newsk,
512 						       keepalive_time_when(newtp));
513 
514 		newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
515 		if ((newtp->rx_opt.sack_ok = ireq->sack_ok) != 0) {
516 			if (sysctl_tcp_fack)
517 				tcp_enable_fack(newtp);
518 		}
519 		newtp->window_clamp = req->rsk_window_clamp;
520 		newtp->rcv_ssthresh = req->rsk_rcv_wnd;
521 		newtp->rcv_wnd = req->rsk_rcv_wnd;
522 		newtp->rx_opt.wscale_ok = ireq->wscale_ok;
523 		if (newtp->rx_opt.wscale_ok) {
524 			newtp->rx_opt.snd_wscale = ireq->snd_wscale;
525 			newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
526 		} else {
527 			newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
528 			newtp->window_clamp = min(newtp->window_clamp, 65535U);
529 		}
530 		newtp->snd_wnd = (ntohs(tcp_hdr(skb)->window) <<
531 				  newtp->rx_opt.snd_wscale);
532 		newtp->max_window = newtp->snd_wnd;
533 
534 		if (newtp->rx_opt.tstamp_ok) {
535 			newtp->rx_opt.ts_recent = req->ts_recent;
536 			newtp->rx_opt.ts_recent_stamp = get_seconds();
537 			newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
538 		} else {
539 			newtp->rx_opt.ts_recent_stamp = 0;
540 			newtp->tcp_header_len = sizeof(struct tcphdr);
541 		}
542 		newtp->tsoffset = 0;
543 #ifdef CONFIG_TCP_MD5SIG
544 		newtp->md5sig_info = NULL;	/*XXX*/
545 		if (newtp->af_specific->md5_lookup(sk, newsk))
546 			newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
547 #endif
548 		if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
549 			newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
550 		newtp->rx_opt.mss_clamp = req->mss;
551 		tcp_ecn_openreq_child(newtp, req);
552 		newtp->fastopen_req = NULL;
553 		newtp->fastopen_rsk = NULL;
554 		newtp->syn_data_acked = 0;
555 		newtp->rack.mstamp.v64 = 0;
556 		newtp->rack.advanced = 0;
557 
558 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_PASSIVEOPENS);
559 	}
560 	return newsk;
561 }
562 EXPORT_SYMBOL(tcp_create_openreq_child);
563 
564 /*
565  * Process an incoming packet for SYN_RECV sockets represented as a
566  * request_sock. Normally sk is the listener socket but for TFO it
567  * points to the child socket.
568  *
569  * XXX (TFO) - The current impl contains a special check for ack
570  * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
571  *
572  * We don't need to initialize tmp_opt.sack_ok as we don't use the results
573  */
574 
tcp_check_req(struct sock * sk,struct sk_buff * skb,struct request_sock * req,bool fastopen)575 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
576 			   struct request_sock *req,
577 			   bool fastopen)
578 {
579 	struct tcp_options_received tmp_opt;
580 	struct sock *child;
581 	const struct tcphdr *th = tcp_hdr(skb);
582 	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
583 	bool paws_reject = false;
584 	bool own_req;
585 
586 	tmp_opt.saw_tstamp = 0;
587 	if (th->doff > (sizeof(struct tcphdr)>>2)) {
588 		tcp_parse_options(skb, &tmp_opt, 0, NULL);
589 
590 		if (tmp_opt.saw_tstamp) {
591 			tmp_opt.ts_recent = req->ts_recent;
592 			/* We do not store true stamp, but it is not required,
593 			 * it can be estimated (approximately)
594 			 * from another data.
595 			 */
596 			tmp_opt.ts_recent_stamp = get_seconds() - ((TCP_TIMEOUT_INIT/HZ)<<req->num_timeout);
597 			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
598 		}
599 	}
600 
601 	/* Check for pure retransmitted SYN. */
602 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
603 	    flg == TCP_FLAG_SYN &&
604 	    !paws_reject) {
605 		/*
606 		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
607 		 * this case on figure 6 and figure 8, but formal
608 		 * protocol description says NOTHING.
609 		 * To be more exact, it says that we should send ACK,
610 		 * because this segment (at least, if it has no data)
611 		 * is out of window.
612 		 *
613 		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
614 		 *  describe SYN-RECV state. All the description
615 		 *  is wrong, we cannot believe to it and should
616 		 *  rely only on common sense and implementation
617 		 *  experience.
618 		 *
619 		 * Enforce "SYN-ACK" according to figure 8, figure 6
620 		 * of RFC793, fixed by RFC1122.
621 		 *
622 		 * Note that even if there is new data in the SYN packet
623 		 * they will be thrown away too.
624 		 *
625 		 * Reset timer after retransmitting SYNACK, similar to
626 		 * the idea of fast retransmit in recovery.
627 		 */
628 		if (!tcp_oow_rate_limited(sock_net(sk), skb,
629 					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
630 					  &tcp_rsk(req)->last_oow_ack_time) &&
631 
632 		    !inet_rtx_syn_ack(sk, req)) {
633 			unsigned long expires = jiffies;
634 
635 			expires += min(TCP_TIMEOUT_INIT << req->num_timeout,
636 				       TCP_RTO_MAX);
637 			if (!fastopen)
638 				mod_timer_pending(&req->rsk_timer, expires);
639 			else
640 				req->rsk_timer.expires = expires;
641 		}
642 		return NULL;
643 	}
644 
645 	/* Further reproduces section "SEGMENT ARRIVES"
646 	   for state SYN-RECEIVED of RFC793.
647 	   It is broken, however, it does not work only
648 	   when SYNs are crossed.
649 
650 	   You would think that SYN crossing is impossible here, since
651 	   we should have a SYN_SENT socket (from connect()) on our end,
652 	   but this is not true if the crossed SYNs were sent to both
653 	   ends by a malicious third party.  We must defend against this,
654 	   and to do that we first verify the ACK (as per RFC793, page
655 	   36) and reset if it is invalid.  Is this a true full defense?
656 	   To convince ourselves, let us consider a way in which the ACK
657 	   test can still pass in this 'malicious crossed SYNs' case.
658 	   Malicious sender sends identical SYNs (and thus identical sequence
659 	   numbers) to both A and B:
660 
661 		A: gets SYN, seq=7
662 		B: gets SYN, seq=7
663 
664 	   By our good fortune, both A and B select the same initial
665 	   send sequence number of seven :-)
666 
667 		A: sends SYN|ACK, seq=7, ack_seq=8
668 		B: sends SYN|ACK, seq=7, ack_seq=8
669 
670 	   So we are now A eating this SYN|ACK, ACK test passes.  So
671 	   does sequence test, SYN is truncated, and thus we consider
672 	   it a bare ACK.
673 
674 	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
675 	   bare ACK.  Otherwise, we create an established connection.  Both
676 	   ends (listening sockets) accept the new incoming connection and try
677 	   to talk to each other. 8-)
678 
679 	   Note: This case is both harmless, and rare.  Possibility is about the
680 	   same as us discovering intelligent life on another plant tomorrow.
681 
682 	   But generally, we should (RFC lies!) to accept ACK
683 	   from SYNACK both here and in tcp_rcv_state_process().
684 	   tcp_rcv_state_process() does not, hence, we do not too.
685 
686 	   Note that the case is absolutely generic:
687 	   we cannot optimize anything here without
688 	   violating protocol. All the checks must be made
689 	   before attempt to create socket.
690 	 */
691 
692 	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
693 	 *                  and the incoming segment acknowledges something not yet
694 	 *                  sent (the segment carries an unacceptable ACK) ...
695 	 *                  a reset is sent."
696 	 *
697 	 * Invalid ACK: reset will be sent by listening socket.
698 	 * Note that the ACK validity check for a Fast Open socket is done
699 	 * elsewhere and is checked directly against the child socket rather
700 	 * than req because user data may have been sent out.
701 	 */
702 	if ((flg & TCP_FLAG_ACK) && !fastopen &&
703 	    (TCP_SKB_CB(skb)->ack_seq !=
704 	     tcp_rsk(req)->snt_isn + 1))
705 		return sk;
706 
707 	/* Also, it would be not so bad idea to check rcv_tsecr, which
708 	 * is essentially ACK extension and too early or too late values
709 	 * should cause reset in unsynchronized states.
710 	 */
711 
712 	/* RFC793: "first check sequence number". */
713 
714 	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
715 					  tcp_rsk(req)->rcv_nxt, tcp_rsk(req)->rcv_nxt + req->rsk_rcv_wnd)) {
716 		/* Out of window: send ACK and drop. */
717 		if (!(flg & TCP_FLAG_RST) &&
718 		    !tcp_oow_rate_limited(sock_net(sk), skb,
719 					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
720 					  &tcp_rsk(req)->last_oow_ack_time))
721 			req->rsk_ops->send_ack(sk, skb, req);
722 		if (paws_reject)
723 			__NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
724 		return NULL;
725 	}
726 
727 	/* In sequence, PAWS is OK. */
728 
729 	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt))
730 		req->ts_recent = tmp_opt.rcv_tsval;
731 
732 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
733 		/* Truncate SYN, it is out of window starting
734 		   at tcp_rsk(req)->rcv_isn + 1. */
735 		flg &= ~TCP_FLAG_SYN;
736 	}
737 
738 	/* RFC793: "second check the RST bit" and
739 	 *	   "fourth, check the SYN bit"
740 	 */
741 	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
742 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
743 		goto embryonic_reset;
744 	}
745 
746 	/* ACK sequence verified above, just make sure ACK is
747 	 * set.  If ACK not set, just silently drop the packet.
748 	 *
749 	 * XXX (TFO) - if we ever allow "data after SYN", the
750 	 * following check needs to be removed.
751 	 */
752 	if (!(flg & TCP_FLAG_ACK))
753 		return NULL;
754 
755 	/* For Fast Open no more processing is needed (sk is the
756 	 * child socket).
757 	 */
758 	if (fastopen)
759 		return sk;
760 
761 	/* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
762 	if (req->num_timeout < inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
763 	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
764 		inet_rsk(req)->acked = 1;
765 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
766 		return NULL;
767 	}
768 
769 	/* OK, ACK is valid, create big socket and
770 	 * feed this segment to it. It will repeat all
771 	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
772 	 * ESTABLISHED STATE. If it will be dropped after
773 	 * socket is created, wait for troubles.
774 	 */
775 	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
776 							 req, &own_req);
777 	if (!child)
778 		goto listen_overflow;
779 
780 	sock_rps_save_rxhash(child, skb);
781 	tcp_synack_rtt_meas(child, req);
782 	return inet_csk_complete_hashdance(sk, child, req, own_req);
783 
784 listen_overflow:
785 	if (!sysctl_tcp_abort_on_overflow) {
786 		inet_rsk(req)->acked = 1;
787 		return NULL;
788 	}
789 
790 embryonic_reset:
791 	if (!(flg & TCP_FLAG_RST)) {
792 		/* Received a bad SYN pkt - for TFO We try not to reset
793 		 * the local connection unless it's really necessary to
794 		 * avoid becoming vulnerable to outside attack aiming at
795 		 * resetting legit local connections.
796 		 */
797 		req->rsk_ops->send_reset(sk, skb);
798 	} else if (fastopen) { /* received a valid RST pkt */
799 		reqsk_fastopen_remove(sk, req, true);
800 		tcp_reset(sk);
801 	}
802 	if (!fastopen) {
803 		inet_csk_reqsk_queue_drop(sk, req);
804 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
805 	}
806 	return NULL;
807 }
808 EXPORT_SYMBOL(tcp_check_req);
809 
810 /*
811  * Queue segment on the new socket if the new socket is active,
812  * otherwise we just shortcircuit this and continue with
813  * the new socket.
814  *
815  * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
816  * when entering. But other states are possible due to a race condition
817  * where after __inet_lookup_established() fails but before the listener
818  * locked is obtained, other packets cause the same connection to
819  * be created.
820  */
821 
tcp_child_process(struct sock * parent,struct sock * child,struct sk_buff * skb)822 int tcp_child_process(struct sock *parent, struct sock *child,
823 		      struct sk_buff *skb)
824 {
825 	int ret = 0;
826 	int state = child->sk_state;
827 
828 	tcp_segs_in(tcp_sk(child), skb);
829 	if (!sock_owned_by_user(child)) {
830 		ret = tcp_rcv_state_process(child, skb);
831 		/* Wakeup parent, send SIGIO */
832 		if (state == TCP_SYN_RECV && child->sk_state != state)
833 			parent->sk_data_ready(parent);
834 	} else {
835 		/* Alas, it is possible again, because we do lookup
836 		 * in main socket hash table and lock on listening
837 		 * socket does not protect us more.
838 		 */
839 		__sk_add_backlog(child, skb);
840 	}
841 
842 	bh_unlock_sock(child);
843 	sock_put(child);
844 	return ret;
845 }
846 EXPORT_SYMBOL(tcp_child_process);
847