1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes: Pedro Roque : Retransmit queue handled by TCP.
23 * : Fragmentation on mtu decrease
24 * : Segment collapse on retransmit
25 * : AF independence
26 *
27 * Linus Torvalds : send_delayed_ack
28 * David S. Miller : Charge memory using the right skb
29 * during syn/ack processing.
30 * David S. Miller : Output engine completely rewritten.
31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
32 * Cacophonix Gaul : draft-minshall-nagle-01
33 * J Hadi Salim : ECN support
34 *
35 */
36
37 #define pr_fmt(fmt) "TCP: " fmt
38
39 #include <net/tcp.h>
40
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse __read_mostly = 1;
47
48 /* People can turn this on to work with those rare, broken TCPs that
49 * interpret the window field as a signed quantity.
50 */
51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
52
53 /* Default TSQ limit of four TSO segments */
54 int sysctl_tcp_limit_output_bytes __read_mostly = 262144;
55
56 /* This limits the percentage of the congestion window which we
57 * will allow a single TSO frame to consume. Building TSO frames
58 * which are too large can cause TCP streams to be bursty.
59 */
60 int sysctl_tcp_tso_win_divisor __read_mostly = 3;
61
62 /* By default, RFC2861 behavior. */
63 int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
64
65 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
66 int push_one, gfp_t gfp);
67
68 /* Account for new data that has been sent to the network. */
tcp_event_new_data_sent(struct sock * sk,const struct sk_buff * skb)69 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
70 {
71 struct inet_connection_sock *icsk = inet_csk(sk);
72 struct tcp_sock *tp = tcp_sk(sk);
73 unsigned int prior_packets = tp->packets_out;
74
75 tcp_advance_send_head(sk, skb);
76 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
77
78 tp->packets_out += tcp_skb_pcount(skb);
79 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
80 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
81 tcp_rearm_rto(sk);
82 }
83
84 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
85 tcp_skb_pcount(skb));
86 }
87
88 /* SND.NXT, if window was not shrunk.
89 * If window has been shrunk, what should we make? It is not clear at all.
90 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
91 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
92 * invalid. OK, let's make this for now:
93 */
tcp_acceptable_seq(const struct sock * sk)94 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
95 {
96 const struct tcp_sock *tp = tcp_sk(sk);
97
98 if (!before(tcp_wnd_end(tp), tp->snd_nxt))
99 return tp->snd_nxt;
100 else
101 return tcp_wnd_end(tp);
102 }
103
104 /* Calculate mss to advertise in SYN segment.
105 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
106 *
107 * 1. It is independent of path mtu.
108 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
109 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
110 * attached devices, because some buggy hosts are confused by
111 * large MSS.
112 * 4. We do not make 3, we advertise MSS, calculated from first
113 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
114 * This may be overridden via information stored in routing table.
115 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
116 * probably even Jumbo".
117 */
tcp_advertise_mss(struct sock * sk)118 static __u16 tcp_advertise_mss(struct sock *sk)
119 {
120 struct tcp_sock *tp = tcp_sk(sk);
121 const struct dst_entry *dst = __sk_dst_get(sk);
122 int mss = tp->advmss;
123
124 if (dst) {
125 unsigned int metric = dst_metric_advmss(dst);
126
127 if (metric < mss) {
128 mss = metric;
129 tp->advmss = mss;
130 }
131 }
132
133 return (__u16)mss;
134 }
135
136 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
137 * This is the first part of cwnd validation mechanism.
138 */
tcp_cwnd_restart(struct sock * sk,s32 delta)139 void tcp_cwnd_restart(struct sock *sk, s32 delta)
140 {
141 struct tcp_sock *tp = tcp_sk(sk);
142 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
143 u32 cwnd = tp->snd_cwnd;
144
145 tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
146
147 tp->snd_ssthresh = tcp_current_ssthresh(sk);
148 restart_cwnd = min(restart_cwnd, cwnd);
149
150 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
151 cwnd >>= 1;
152 tp->snd_cwnd = max(cwnd, restart_cwnd);
153 tp->snd_cwnd_stamp = tcp_time_stamp;
154 tp->snd_cwnd_used = 0;
155 }
156
157 /* Congestion state accounting after a packet has been sent. */
tcp_event_data_sent(struct tcp_sock * tp,struct sock * sk)158 static void tcp_event_data_sent(struct tcp_sock *tp,
159 struct sock *sk)
160 {
161 struct inet_connection_sock *icsk = inet_csk(sk);
162 const u32 now = tcp_time_stamp;
163
164 if (tcp_packets_in_flight(tp) == 0)
165 tcp_ca_event(sk, CA_EVENT_TX_START);
166
167 tp->lsndtime = now;
168
169 /* If it is a reply for ato after last received
170 * packet, enter pingpong mode.
171 */
172 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
173 icsk->icsk_ack.pingpong = 1;
174 }
175
176 /* Account for an ACK we sent. */
tcp_event_ack_sent(struct sock * sk,unsigned int pkts)177 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
178 {
179 tcp_dec_quickack_mode(sk, pkts);
180 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
181 }
182
183
tcp_default_init_rwnd(u32 mss)184 u32 tcp_default_init_rwnd(u32 mss)
185 {
186 /* Initial receive window should be twice of TCP_INIT_CWND to
187 * enable proper sending of new unsent data during fast recovery
188 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
189 * limit when mss is larger than 1460.
190 */
191 u32 init_rwnd = sysctl_tcp_default_init_rwnd;
192
193 if (mss > 1460)
194 init_rwnd = max((1460 * init_rwnd) / mss, 2U);
195 return init_rwnd;
196 }
197
198 /* Determine a window scaling and initial window to offer.
199 * Based on the assumption that the given amount of space
200 * will be offered. Store the results in the tp structure.
201 * NOTE: for smooth operation initial space offering should
202 * be a multiple of mss if possible. We assume here that mss >= 1.
203 * This MUST be enforced by all callers.
204 */
tcp_select_initial_window(int __space,__u32 mss,__u32 * rcv_wnd,__u32 * window_clamp,int wscale_ok,__u8 * rcv_wscale,__u32 init_rcv_wnd)205 void tcp_select_initial_window(int __space, __u32 mss,
206 __u32 *rcv_wnd, __u32 *window_clamp,
207 int wscale_ok, __u8 *rcv_wscale,
208 __u32 init_rcv_wnd)
209 {
210 unsigned int space = (__space < 0 ? 0 : __space);
211
212 /* If no clamp set the clamp to the max possible scaled window */
213 if (*window_clamp == 0)
214 (*window_clamp) = (65535 << 14);
215 space = min(*window_clamp, space);
216
217 /* Quantize space offering to a multiple of mss if possible. */
218 if (space > mss)
219 space = (space / mss) * mss;
220
221 /* NOTE: offering an initial window larger than 32767
222 * will break some buggy TCP stacks. If the admin tells us
223 * it is likely we could be speaking with such a buggy stack
224 * we will truncate our initial window offering to 32K-1
225 * unless the remote has sent us a window scaling option,
226 * which we interpret as a sign the remote TCP is not
227 * misinterpreting the window field as a signed quantity.
228 */
229 if (sysctl_tcp_workaround_signed_windows)
230 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
231 else
232 (*rcv_wnd) = space;
233
234 (*rcv_wscale) = 0;
235 if (wscale_ok) {
236 /* Set window scaling on max possible window
237 * See RFC1323 for an explanation of the limit to 14
238 */
239 space = max_t(u32, space, sysctl_tcp_rmem[2]);
240 space = max_t(u32, space, sysctl_rmem_max);
241 space = min_t(u32, space, *window_clamp);
242 while (space > 65535 && (*rcv_wscale) < 14) {
243 space >>= 1;
244 (*rcv_wscale)++;
245 }
246 }
247
248 if (mss > (1 << *rcv_wscale)) {
249 if (!init_rcv_wnd) /* Use default unless specified otherwise */
250 init_rcv_wnd = tcp_default_init_rwnd(mss);
251 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
252 }
253
254 /* Set the clamp no higher than max representable value */
255 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
256 }
257 EXPORT_SYMBOL(tcp_select_initial_window);
258
259 /* Chose a new window to advertise, update state in tcp_sock for the
260 * socket, and return result with RFC1323 scaling applied. The return
261 * value can be stuffed directly into th->window for an outgoing
262 * frame.
263 */
tcp_select_window(struct sock * sk)264 static u16 tcp_select_window(struct sock *sk)
265 {
266 struct tcp_sock *tp = tcp_sk(sk);
267 u32 old_win = tp->rcv_wnd;
268 u32 cur_win = tcp_receive_window(tp);
269 u32 new_win = __tcp_select_window(sk);
270
271 /* Never shrink the offered window */
272 if (new_win < cur_win) {
273 /* Danger Will Robinson!
274 * Don't update rcv_wup/rcv_wnd here or else
275 * we will not be able to advertise a zero
276 * window in time. --DaveM
277 *
278 * Relax Will Robinson.
279 */
280 if (new_win == 0)
281 NET_INC_STATS(sock_net(sk),
282 LINUX_MIB_TCPWANTZEROWINDOWADV);
283 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
284 }
285 tp->rcv_wnd = new_win;
286 tp->rcv_wup = tp->rcv_nxt;
287
288 /* Make sure we do not exceed the maximum possible
289 * scaled window.
290 */
291 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
292 new_win = min(new_win, MAX_TCP_WINDOW);
293 else
294 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
295
296 /* RFC1323 scaling applied */
297 new_win >>= tp->rx_opt.rcv_wscale;
298
299 /* If we advertise zero window, disable fast path. */
300 if (new_win == 0) {
301 tp->pred_flags = 0;
302 if (old_win)
303 NET_INC_STATS(sock_net(sk),
304 LINUX_MIB_TCPTOZEROWINDOWADV);
305 } else if (old_win == 0) {
306 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
307 }
308
309 return new_win;
310 }
311
312 /* Packet ECN state for a SYN-ACK */
tcp_ecn_send_synack(struct sock * sk,struct sk_buff * skb)313 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
314 {
315 const struct tcp_sock *tp = tcp_sk(sk);
316
317 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
318 if (!(tp->ecn_flags & TCP_ECN_OK))
319 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
320 else if (tcp_ca_needs_ecn(sk))
321 INET_ECN_xmit(sk);
322 }
323
324 /* Packet ECN state for a SYN. */
tcp_ecn_send_syn(struct sock * sk,struct sk_buff * skb)325 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
326 {
327 struct tcp_sock *tp = tcp_sk(sk);
328 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
329 tcp_ca_needs_ecn(sk);
330
331 if (!use_ecn) {
332 const struct dst_entry *dst = __sk_dst_get(sk);
333
334 if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
335 use_ecn = true;
336 }
337
338 tp->ecn_flags = 0;
339
340 if (use_ecn) {
341 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
342 tp->ecn_flags = TCP_ECN_OK;
343 if (tcp_ca_needs_ecn(sk))
344 INET_ECN_xmit(sk);
345 }
346 }
347
tcp_ecn_clear_syn(struct sock * sk,struct sk_buff * skb)348 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
349 {
350 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
351 /* tp->ecn_flags are cleared at a later point in time when
352 * SYN ACK is ultimatively being received.
353 */
354 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
355 }
356
357 static void
tcp_ecn_make_synack(const struct request_sock * req,struct tcphdr * th)358 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
359 {
360 if (inet_rsk(req)->ecn_ok)
361 th->ece = 1;
362 }
363
364 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
365 * be sent.
366 */
tcp_ecn_send(struct sock * sk,struct sk_buff * skb,struct tcphdr * th,int tcp_header_len)367 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
368 struct tcphdr *th, int tcp_header_len)
369 {
370 struct tcp_sock *tp = tcp_sk(sk);
371
372 if (tp->ecn_flags & TCP_ECN_OK) {
373 /* Not-retransmitted data segment: set ECT and inject CWR. */
374 if (skb->len != tcp_header_len &&
375 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
376 INET_ECN_xmit(sk);
377 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
378 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
379 th->cwr = 1;
380 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
381 }
382 } else if (!tcp_ca_needs_ecn(sk)) {
383 /* ACK or retransmitted segment: clear ECT|CE */
384 INET_ECN_dontxmit(sk);
385 }
386 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
387 th->ece = 1;
388 }
389 }
390
391 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
392 * auto increment end seqno.
393 */
tcp_init_nondata_skb(struct sk_buff * skb,u32 seq,u8 flags)394 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
395 {
396 skb->ip_summed = CHECKSUM_PARTIAL;
397 skb->csum = 0;
398
399 TCP_SKB_CB(skb)->tcp_flags = flags;
400 TCP_SKB_CB(skb)->sacked = 0;
401
402 tcp_skb_pcount_set(skb, 1);
403
404 TCP_SKB_CB(skb)->seq = seq;
405 if (flags & (TCPHDR_SYN | TCPHDR_FIN))
406 seq++;
407 TCP_SKB_CB(skb)->end_seq = seq;
408 }
409
tcp_urg_mode(const struct tcp_sock * tp)410 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
411 {
412 return tp->snd_una != tp->snd_up;
413 }
414
415 #define OPTION_SACK_ADVERTISE (1 << 0)
416 #define OPTION_TS (1 << 1)
417 #define OPTION_MD5 (1 << 2)
418 #define OPTION_WSCALE (1 << 3)
419 #define OPTION_FAST_OPEN_COOKIE (1 << 8)
420
421 struct tcp_out_options {
422 u16 options; /* bit field of OPTION_* */
423 u16 mss; /* 0 to disable */
424 u8 ws; /* window scale, 0 to disable */
425 u8 num_sack_blocks; /* number of SACK blocks to include */
426 u8 hash_size; /* bytes in hash_location */
427 __u8 *hash_location; /* temporary pointer, overloaded */
428 __u32 tsval, tsecr; /* need to include OPTION_TS */
429 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
430 };
431
432 /* Write previously computed TCP options to the packet.
433 *
434 * Beware: Something in the Internet is very sensitive to the ordering of
435 * TCP options, we learned this through the hard way, so be careful here.
436 * Luckily we can at least blame others for their non-compliance but from
437 * inter-operability perspective it seems that we're somewhat stuck with
438 * the ordering which we have been using if we want to keep working with
439 * those broken things (not that it currently hurts anybody as there isn't
440 * particular reason why the ordering would need to be changed).
441 *
442 * At least SACK_PERM as the first option is known to lead to a disaster
443 * (but it may well be that other scenarios fail similarly).
444 */
tcp_options_write(__be32 * ptr,struct tcp_sock * tp,struct tcp_out_options * opts)445 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
446 struct tcp_out_options *opts)
447 {
448 u16 options = opts->options; /* mungable copy */
449
450 if (unlikely(OPTION_MD5 & options)) {
451 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
452 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
453 /* overload cookie hash location */
454 opts->hash_location = (__u8 *)ptr;
455 ptr += 4;
456 }
457
458 if (unlikely(opts->mss)) {
459 *ptr++ = htonl((TCPOPT_MSS << 24) |
460 (TCPOLEN_MSS << 16) |
461 opts->mss);
462 }
463
464 if (likely(OPTION_TS & options)) {
465 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
466 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
467 (TCPOLEN_SACK_PERM << 16) |
468 (TCPOPT_TIMESTAMP << 8) |
469 TCPOLEN_TIMESTAMP);
470 options &= ~OPTION_SACK_ADVERTISE;
471 } else {
472 *ptr++ = htonl((TCPOPT_NOP << 24) |
473 (TCPOPT_NOP << 16) |
474 (TCPOPT_TIMESTAMP << 8) |
475 TCPOLEN_TIMESTAMP);
476 }
477 *ptr++ = htonl(opts->tsval);
478 *ptr++ = htonl(opts->tsecr);
479 }
480
481 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
482 *ptr++ = htonl((TCPOPT_NOP << 24) |
483 (TCPOPT_NOP << 16) |
484 (TCPOPT_SACK_PERM << 8) |
485 TCPOLEN_SACK_PERM);
486 }
487
488 if (unlikely(OPTION_WSCALE & options)) {
489 *ptr++ = htonl((TCPOPT_NOP << 24) |
490 (TCPOPT_WINDOW << 16) |
491 (TCPOLEN_WINDOW << 8) |
492 opts->ws);
493 }
494
495 if (unlikely(opts->num_sack_blocks)) {
496 struct tcp_sack_block *sp = tp->rx_opt.dsack ?
497 tp->duplicate_sack : tp->selective_acks;
498 int this_sack;
499
500 *ptr++ = htonl((TCPOPT_NOP << 24) |
501 (TCPOPT_NOP << 16) |
502 (TCPOPT_SACK << 8) |
503 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
504 TCPOLEN_SACK_PERBLOCK)));
505
506 for (this_sack = 0; this_sack < opts->num_sack_blocks;
507 ++this_sack) {
508 *ptr++ = htonl(sp[this_sack].start_seq);
509 *ptr++ = htonl(sp[this_sack].end_seq);
510 }
511
512 tp->rx_opt.dsack = 0;
513 }
514
515 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
516 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
517 u8 *p = (u8 *)ptr;
518 u32 len; /* Fast Open option length */
519
520 if (foc->exp) {
521 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
522 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
523 TCPOPT_FASTOPEN_MAGIC);
524 p += TCPOLEN_EXP_FASTOPEN_BASE;
525 } else {
526 len = TCPOLEN_FASTOPEN_BASE + foc->len;
527 *p++ = TCPOPT_FASTOPEN;
528 *p++ = len;
529 }
530
531 memcpy(p, foc->val, foc->len);
532 if ((len & 3) == 2) {
533 p[foc->len] = TCPOPT_NOP;
534 p[foc->len + 1] = TCPOPT_NOP;
535 }
536 ptr += (len + 3) >> 2;
537 }
538 }
539
540 /* Compute TCP options for SYN packets. This is not the final
541 * network wire format yet.
542 */
tcp_syn_options(struct sock * sk,struct sk_buff * skb,struct tcp_out_options * opts,struct tcp_md5sig_key ** md5)543 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
544 struct tcp_out_options *opts,
545 struct tcp_md5sig_key **md5)
546 {
547 struct tcp_sock *tp = tcp_sk(sk);
548 unsigned int remaining = MAX_TCP_OPTION_SPACE;
549 struct tcp_fastopen_request *fastopen = tp->fastopen_req;
550
551 #ifdef CONFIG_TCP_MD5SIG
552 *md5 = tp->af_specific->md5_lookup(sk, sk);
553 if (*md5) {
554 opts->options |= OPTION_MD5;
555 remaining -= TCPOLEN_MD5SIG_ALIGNED;
556 }
557 #else
558 *md5 = NULL;
559 #endif
560
561 /* We always get an MSS option. The option bytes which will be seen in
562 * normal data packets should timestamps be used, must be in the MSS
563 * advertised. But we subtract them from tp->mss_cache so that
564 * calculations in tcp_sendmsg are simpler etc. So account for this
565 * fact here if necessary. If we don't do this correctly, as a
566 * receiver we won't recognize data packets as being full sized when we
567 * should, and thus we won't abide by the delayed ACK rules correctly.
568 * SACKs don't matter, we never delay an ACK when we have any of those
569 * going out. */
570 opts->mss = tcp_advertise_mss(sk);
571 remaining -= TCPOLEN_MSS_ALIGNED;
572
573 if (likely(sysctl_tcp_timestamps && !*md5)) {
574 opts->options |= OPTION_TS;
575 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
576 opts->tsecr = tp->rx_opt.ts_recent;
577 remaining -= TCPOLEN_TSTAMP_ALIGNED;
578 }
579 if (likely(sysctl_tcp_window_scaling)) {
580 opts->ws = tp->rx_opt.rcv_wscale;
581 opts->options |= OPTION_WSCALE;
582 remaining -= TCPOLEN_WSCALE_ALIGNED;
583 }
584 if (likely(sysctl_tcp_sack)) {
585 opts->options |= OPTION_SACK_ADVERTISE;
586 if (unlikely(!(OPTION_TS & opts->options)))
587 remaining -= TCPOLEN_SACKPERM_ALIGNED;
588 }
589
590 if (fastopen && fastopen->cookie.len >= 0) {
591 u32 need = fastopen->cookie.len;
592
593 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
594 TCPOLEN_FASTOPEN_BASE;
595 need = (need + 3) & ~3U; /* Align to 32 bits */
596 if (remaining >= need) {
597 opts->options |= OPTION_FAST_OPEN_COOKIE;
598 opts->fastopen_cookie = &fastopen->cookie;
599 remaining -= need;
600 tp->syn_fastopen = 1;
601 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
602 }
603 }
604
605 return MAX_TCP_OPTION_SPACE - remaining;
606 }
607
608 /* Set up TCP options for SYN-ACKs. */
tcp_synack_options(struct request_sock * req,unsigned int mss,struct sk_buff * skb,struct tcp_out_options * opts,const struct tcp_md5sig_key * md5,struct tcp_fastopen_cookie * foc)609 static unsigned int tcp_synack_options(struct request_sock *req,
610 unsigned int mss, struct sk_buff *skb,
611 struct tcp_out_options *opts,
612 const struct tcp_md5sig_key *md5,
613 struct tcp_fastopen_cookie *foc)
614 {
615 struct inet_request_sock *ireq = inet_rsk(req);
616 unsigned int remaining = MAX_TCP_OPTION_SPACE;
617
618 #ifdef CONFIG_TCP_MD5SIG
619 if (md5) {
620 opts->options |= OPTION_MD5;
621 remaining -= TCPOLEN_MD5SIG_ALIGNED;
622
623 /* We can't fit any SACK blocks in a packet with MD5 + TS
624 * options. There was discussion about disabling SACK
625 * rather than TS in order to fit in better with old,
626 * buggy kernels, but that was deemed to be unnecessary.
627 */
628 ireq->tstamp_ok &= !ireq->sack_ok;
629 }
630 #endif
631
632 /* We always send an MSS option. */
633 opts->mss = mss;
634 remaining -= TCPOLEN_MSS_ALIGNED;
635
636 if (likely(ireq->wscale_ok)) {
637 opts->ws = ireq->rcv_wscale;
638 opts->options |= OPTION_WSCALE;
639 remaining -= TCPOLEN_WSCALE_ALIGNED;
640 }
641 if (likely(ireq->tstamp_ok)) {
642 opts->options |= OPTION_TS;
643 opts->tsval = tcp_skb_timestamp(skb);
644 opts->tsecr = req->ts_recent;
645 remaining -= TCPOLEN_TSTAMP_ALIGNED;
646 }
647 if (likely(ireq->sack_ok)) {
648 opts->options |= OPTION_SACK_ADVERTISE;
649 if (unlikely(!ireq->tstamp_ok))
650 remaining -= TCPOLEN_SACKPERM_ALIGNED;
651 }
652 if (foc != NULL && foc->len >= 0) {
653 u32 need = foc->len;
654
655 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
656 TCPOLEN_FASTOPEN_BASE;
657 need = (need + 3) & ~3U; /* Align to 32 bits */
658 if (remaining >= need) {
659 opts->options |= OPTION_FAST_OPEN_COOKIE;
660 opts->fastopen_cookie = foc;
661 remaining -= need;
662 }
663 }
664
665 return MAX_TCP_OPTION_SPACE - remaining;
666 }
667
668 /* Compute TCP options for ESTABLISHED sockets. This is not the
669 * final wire format yet.
670 */
tcp_established_options(struct sock * sk,struct sk_buff * skb,struct tcp_out_options * opts,struct tcp_md5sig_key ** md5)671 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
672 struct tcp_out_options *opts,
673 struct tcp_md5sig_key **md5)
674 {
675 struct tcp_sock *tp = tcp_sk(sk);
676 unsigned int size = 0;
677 unsigned int eff_sacks;
678
679 opts->options = 0;
680
681 #ifdef CONFIG_TCP_MD5SIG
682 *md5 = tp->af_specific->md5_lookup(sk, sk);
683 if (unlikely(*md5)) {
684 opts->options |= OPTION_MD5;
685 size += TCPOLEN_MD5SIG_ALIGNED;
686 }
687 #else
688 *md5 = NULL;
689 #endif
690
691 if (likely(tp->rx_opt.tstamp_ok)) {
692 opts->options |= OPTION_TS;
693 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
694 opts->tsecr = tp->rx_opt.ts_recent;
695 size += TCPOLEN_TSTAMP_ALIGNED;
696 }
697
698 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
699 if (unlikely(eff_sacks)) {
700 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
701 opts->num_sack_blocks =
702 min_t(unsigned int, eff_sacks,
703 (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
704 TCPOLEN_SACK_PERBLOCK);
705 size += TCPOLEN_SACK_BASE_ALIGNED +
706 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
707 }
708
709 return size;
710 }
711
712
713 /* TCP SMALL QUEUES (TSQ)
714 *
715 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
716 * to reduce RTT and bufferbloat.
717 * We do this using a special skb destructor (tcp_wfree).
718 *
719 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
720 * needs to be reallocated in a driver.
721 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
722 *
723 * Since transmit from skb destructor is forbidden, we use a tasklet
724 * to process all sockets that eventually need to send more skbs.
725 * We use one tasklet per cpu, with its own queue of sockets.
726 */
727 struct tsq_tasklet {
728 struct tasklet_struct tasklet;
729 struct list_head head; /* queue of tcp sockets */
730 };
731 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
732
tcp_tsq_handler(struct sock * sk)733 static void tcp_tsq_handler(struct sock *sk)
734 {
735 if ((1 << sk->sk_state) &
736 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
737 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) {
738 struct tcp_sock *tp = tcp_sk(sk);
739
740 if (tp->lost_out > tp->retrans_out &&
741 tp->snd_cwnd > tcp_packets_in_flight(tp))
742 tcp_xmit_retransmit_queue(sk);
743
744 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
745 0, GFP_ATOMIC);
746 }
747 }
748 /*
749 * One tasklet per cpu tries to send more skbs.
750 * We run in tasklet context but need to disable irqs when
751 * transferring tsq->head because tcp_wfree() might
752 * interrupt us (non NAPI drivers)
753 */
tcp_tasklet_func(unsigned long data)754 static void tcp_tasklet_func(unsigned long data)
755 {
756 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
757 LIST_HEAD(list);
758 unsigned long flags;
759 struct list_head *q, *n;
760 struct tcp_sock *tp;
761 struct sock *sk;
762
763 local_irq_save(flags);
764 list_splice_init(&tsq->head, &list);
765 local_irq_restore(flags);
766
767 list_for_each_safe(q, n, &list) {
768 tp = list_entry(q, struct tcp_sock, tsq_node);
769 list_del(&tp->tsq_node);
770
771 sk = (struct sock *)tp;
772 bh_lock_sock(sk);
773
774 if (!sock_owned_by_user(sk)) {
775 tcp_tsq_handler(sk);
776 } else {
777 /* defer the work to tcp_release_cb() */
778 set_bit(TCP_TSQ_DEFERRED, &tp->tsq_flags);
779 }
780 bh_unlock_sock(sk);
781
782 clear_bit(TSQ_QUEUED, &tp->tsq_flags);
783 sk_free(sk);
784 }
785 }
786
787 #define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) | \
788 (1UL << TCP_WRITE_TIMER_DEFERRED) | \
789 (1UL << TCP_DELACK_TIMER_DEFERRED) | \
790 (1UL << TCP_MTU_REDUCED_DEFERRED))
791 /**
792 * tcp_release_cb - tcp release_sock() callback
793 * @sk: socket
794 *
795 * called from release_sock() to perform protocol dependent
796 * actions before socket release.
797 */
tcp_release_cb(struct sock * sk)798 void tcp_release_cb(struct sock *sk)
799 {
800 struct tcp_sock *tp = tcp_sk(sk);
801 unsigned long flags, nflags;
802
803 /* perform an atomic operation only if at least one flag is set */
804 do {
805 flags = tp->tsq_flags;
806 if (!(flags & TCP_DEFERRED_ALL))
807 return;
808 nflags = flags & ~TCP_DEFERRED_ALL;
809 } while (cmpxchg(&tp->tsq_flags, flags, nflags) != flags);
810
811 if (flags & (1UL << TCP_TSQ_DEFERRED))
812 tcp_tsq_handler(sk);
813
814 /* Here begins the tricky part :
815 * We are called from release_sock() with :
816 * 1) BH disabled
817 * 2) sk_lock.slock spinlock held
818 * 3) socket owned by us (sk->sk_lock.owned == 1)
819 *
820 * But following code is meant to be called from BH handlers,
821 * so we should keep BH disabled, but early release socket ownership
822 */
823 sock_release_ownership(sk);
824
825 if (flags & (1UL << TCP_WRITE_TIMER_DEFERRED)) {
826 tcp_write_timer_handler(sk);
827 __sock_put(sk);
828 }
829 if (flags & (1UL << TCP_DELACK_TIMER_DEFERRED)) {
830 tcp_delack_timer_handler(sk);
831 __sock_put(sk);
832 }
833 if (flags & (1UL << TCP_MTU_REDUCED_DEFERRED)) {
834 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
835 __sock_put(sk);
836 }
837 }
838 EXPORT_SYMBOL(tcp_release_cb);
839
tcp_tasklet_init(void)840 void __init tcp_tasklet_init(void)
841 {
842 int i;
843
844 for_each_possible_cpu(i) {
845 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
846
847 INIT_LIST_HEAD(&tsq->head);
848 tasklet_init(&tsq->tasklet,
849 tcp_tasklet_func,
850 (unsigned long)tsq);
851 }
852 }
853
854 /*
855 * Write buffer destructor automatically called from kfree_skb.
856 * We can't xmit new skbs from this context, as we might already
857 * hold qdisc lock.
858 */
tcp_wfree(struct sk_buff * skb)859 void tcp_wfree(struct sk_buff *skb)
860 {
861 struct sock *sk = skb->sk;
862 struct tcp_sock *tp = tcp_sk(sk);
863 int wmem;
864
865 /* Keep one reference on sk_wmem_alloc.
866 * Will be released by sk_free() from here or tcp_tasklet_func()
867 */
868 wmem = atomic_sub_return(skb->truesize - 1, &sk->sk_wmem_alloc);
869
870 /* If this softirq is serviced by ksoftirqd, we are likely under stress.
871 * Wait until our queues (qdisc + devices) are drained.
872 * This gives :
873 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
874 * - chance for incoming ACK (processed by another cpu maybe)
875 * to migrate this flow (skb->ooo_okay will be eventually set)
876 */
877 if (wmem >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
878 goto out;
879
880 if (test_and_clear_bit(TSQ_THROTTLED, &tp->tsq_flags) &&
881 !test_and_set_bit(TSQ_QUEUED, &tp->tsq_flags)) {
882 unsigned long flags;
883 struct tsq_tasklet *tsq;
884
885 /* queue this socket to tasklet queue */
886 local_irq_save(flags);
887 tsq = this_cpu_ptr(&tsq_tasklet);
888 list_add(&tp->tsq_node, &tsq->head);
889 tasklet_schedule(&tsq->tasklet);
890 local_irq_restore(flags);
891 return;
892 }
893 out:
894 sk_free(sk);
895 }
896
897 /* This routine actually transmits TCP packets queued in by
898 * tcp_do_sendmsg(). This is used by both the initial
899 * transmission and possible later retransmissions.
900 * All SKB's seen here are completely headerless. It is our
901 * job to build the TCP header, and pass the packet down to
902 * IP so it can do the same plus pass the packet off to the
903 * device.
904 *
905 * We are working here with either a clone of the original
906 * SKB, or a fresh unique copy made by the retransmit engine.
907 */
tcp_transmit_skb(struct sock * sk,struct sk_buff * skb,int clone_it,gfp_t gfp_mask)908 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
909 gfp_t gfp_mask)
910 {
911 const struct inet_connection_sock *icsk = inet_csk(sk);
912 struct inet_sock *inet;
913 struct tcp_sock *tp;
914 struct tcp_skb_cb *tcb;
915 struct tcp_out_options opts;
916 unsigned int tcp_options_size, tcp_header_size;
917 struct sk_buff *oskb = NULL;
918 struct tcp_md5sig_key *md5;
919 struct tcphdr *th;
920 int err;
921
922 BUG_ON(!skb || !tcp_skb_pcount(skb));
923 tp = tcp_sk(sk);
924
925 if (clone_it) {
926 TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
927 - tp->snd_una;
928 oskb = skb;
929 if (unlikely(skb_cloned(skb)))
930 skb = pskb_copy(skb, gfp_mask);
931 else
932 skb = skb_clone(skb, gfp_mask);
933 if (unlikely(!skb))
934 return -ENOBUFS;
935 }
936 skb_mstamp_get(&skb->skb_mstamp);
937
938 inet = inet_sk(sk);
939 tcb = TCP_SKB_CB(skb);
940 memset(&opts, 0, sizeof(opts));
941
942 if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
943 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
944 else
945 tcp_options_size = tcp_established_options(sk, skb, &opts,
946 &md5);
947 tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
948
949 /* if no packet is in qdisc/device queue, then allow XPS to select
950 * another queue. We can be called from tcp_tsq_handler()
951 * which holds one reference to sk_wmem_alloc.
952 *
953 * TODO: Ideally, in-flight pure ACK packets should not matter here.
954 * One way to get this would be to set skb->truesize = 2 on them.
955 */
956 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
957
958 skb_push(skb, tcp_header_size);
959 skb_reset_transport_header(skb);
960
961 skb_orphan(skb);
962 skb->sk = sk;
963 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
964 skb_set_hash_from_sk(skb, sk);
965 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
966
967 /* Build TCP header and checksum it. */
968 th = (struct tcphdr *)skb->data;
969 th->source = inet->inet_sport;
970 th->dest = inet->inet_dport;
971 th->seq = htonl(tcb->seq);
972 th->ack_seq = htonl(tp->rcv_nxt);
973 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
974 tcb->tcp_flags);
975
976 th->check = 0;
977 th->urg_ptr = 0;
978
979 /* The urg_mode check is necessary during a below snd_una win probe */
980 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
981 if (before(tp->snd_up, tcb->seq + 0x10000)) {
982 th->urg_ptr = htons(tp->snd_up - tcb->seq);
983 th->urg = 1;
984 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
985 th->urg_ptr = htons(0xFFFF);
986 th->urg = 1;
987 }
988 }
989
990 tcp_options_write((__be32 *)(th + 1), tp, &opts);
991 skb_shinfo(skb)->gso_type = sk->sk_gso_type;
992 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
993 th->window = htons(tcp_select_window(sk));
994 tcp_ecn_send(sk, skb, th, tcp_header_size);
995 } else {
996 /* RFC1323: The window in SYN & SYN/ACK segments
997 * is never scaled.
998 */
999 th->window = htons(min(tp->rcv_wnd, 65535U));
1000 }
1001 #ifdef CONFIG_TCP_MD5SIG
1002 /* Calculate the MD5 hash, as we have all we need now */
1003 if (md5) {
1004 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1005 tp->af_specific->calc_md5_hash(opts.hash_location,
1006 md5, sk, skb);
1007 }
1008 #endif
1009
1010 icsk->icsk_af_ops->send_check(sk, skb);
1011
1012 if (likely(tcb->tcp_flags & TCPHDR_ACK))
1013 tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
1014
1015 if (skb->len != tcp_header_size) {
1016 tcp_event_data_sent(tp, sk);
1017 tp->data_segs_out += tcp_skb_pcount(skb);
1018 }
1019
1020 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1021 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1022 tcp_skb_pcount(skb));
1023
1024 tp->segs_out += tcp_skb_pcount(skb);
1025 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1026 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1027 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1028
1029 /* Our usage of tstamp should remain private */
1030 skb->tstamp.tv64 = 0;
1031
1032 /* Cleanup our debris for IP stacks */
1033 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1034 sizeof(struct inet6_skb_parm)));
1035
1036 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1037
1038 if (unlikely(err > 0)) {
1039 tcp_enter_cwr(sk);
1040 err = net_xmit_eval(err);
1041 }
1042 if (!err && oskb) {
1043 skb_mstamp_get(&oskb->skb_mstamp);
1044 tcp_rate_skb_sent(sk, oskb);
1045 }
1046 return err;
1047 }
1048
1049 /* This routine just queues the buffer for sending.
1050 *
1051 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1052 * otherwise socket can stall.
1053 */
tcp_queue_skb(struct sock * sk,struct sk_buff * skb)1054 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1055 {
1056 struct tcp_sock *tp = tcp_sk(sk);
1057
1058 /* Advance write_seq and place onto the write_queue. */
1059 tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1060 __skb_header_release(skb);
1061 tcp_add_write_queue_tail(sk, skb);
1062 sk->sk_wmem_queued += skb->truesize;
1063 sk_mem_charge(sk, skb->truesize);
1064 }
1065
1066 /* Initialize TSO segments for a packet. */
tcp_set_skb_tso_segs(struct sk_buff * skb,unsigned int mss_now)1067 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1068 {
1069 if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) {
1070 /* Avoid the costly divide in the normal
1071 * non-TSO case.
1072 */
1073 tcp_skb_pcount_set(skb, 1);
1074 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1075 } else {
1076 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1077 TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1078 }
1079 }
1080
1081 /* When a modification to fackets out becomes necessary, we need to check
1082 * skb is counted to fackets_out or not.
1083 */
tcp_adjust_fackets_out(struct sock * sk,const struct sk_buff * skb,int decr)1084 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
1085 int decr)
1086 {
1087 struct tcp_sock *tp = tcp_sk(sk);
1088
1089 if (!tp->sacked_out || tcp_is_reno(tp))
1090 return;
1091
1092 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
1093 tp->fackets_out -= decr;
1094 }
1095
1096 /* Pcount in the middle of the write queue got changed, we need to do various
1097 * tweaks to fix counters
1098 */
tcp_adjust_pcount(struct sock * sk,const struct sk_buff * skb,int decr)1099 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1100 {
1101 struct tcp_sock *tp = tcp_sk(sk);
1102
1103 tp->packets_out -= decr;
1104
1105 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1106 tp->sacked_out -= decr;
1107 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1108 tp->retrans_out -= decr;
1109 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1110 tp->lost_out -= decr;
1111
1112 /* Reno case is special. Sigh... */
1113 if (tcp_is_reno(tp) && decr > 0)
1114 tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1115
1116 tcp_adjust_fackets_out(sk, skb, decr);
1117
1118 if (tp->lost_skb_hint &&
1119 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1120 (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
1121 tp->lost_cnt_hint -= decr;
1122
1123 tcp_verify_left_out(tp);
1124 }
1125
tcp_has_tx_tstamp(const struct sk_buff * skb)1126 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1127 {
1128 return TCP_SKB_CB(skb)->txstamp_ack ||
1129 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1130 }
1131
tcp_fragment_tstamp(struct sk_buff * skb,struct sk_buff * skb2)1132 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1133 {
1134 struct skb_shared_info *shinfo = skb_shinfo(skb);
1135
1136 if (unlikely(tcp_has_tx_tstamp(skb)) &&
1137 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1138 struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1139 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1140
1141 shinfo->tx_flags &= ~tsflags;
1142 shinfo2->tx_flags |= tsflags;
1143 swap(shinfo->tskey, shinfo2->tskey);
1144 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1145 TCP_SKB_CB(skb)->txstamp_ack = 0;
1146 }
1147 }
1148
tcp_skb_fragment_eor(struct sk_buff * skb,struct sk_buff * skb2)1149 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1150 {
1151 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1152 TCP_SKB_CB(skb)->eor = 0;
1153 }
1154
1155 /* Function to create two new TCP segments. Shrinks the given segment
1156 * to the specified size and appends a new segment with the rest of the
1157 * packet to the list. This won't be called frequently, I hope.
1158 * Remember, these are still headerless SKBs at this point.
1159 */
tcp_fragment(struct sock * sk,struct sk_buff * skb,u32 len,unsigned int mss_now,gfp_t gfp)1160 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
1161 unsigned int mss_now, gfp_t gfp)
1162 {
1163 struct tcp_sock *tp = tcp_sk(sk);
1164 struct sk_buff *buff;
1165 int nsize, old_factor;
1166 int nlen;
1167 u8 flags;
1168
1169 if (WARN_ON(len > skb->len))
1170 return -EINVAL;
1171
1172 nsize = skb_headlen(skb) - len;
1173 if (nsize < 0)
1174 nsize = 0;
1175
1176 if (skb_unclone(skb, gfp))
1177 return -ENOMEM;
1178
1179 /* Get a new skb... force flag on. */
1180 buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1181 if (!buff)
1182 return -ENOMEM; /* We'll just try again later. */
1183
1184 sk->sk_wmem_queued += buff->truesize;
1185 sk_mem_charge(sk, buff->truesize);
1186 nlen = skb->len - len - nsize;
1187 buff->truesize += nlen;
1188 skb->truesize -= nlen;
1189
1190 /* Correct the sequence numbers. */
1191 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1192 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1193 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1194
1195 /* PSH and FIN should only be set in the second packet. */
1196 flags = TCP_SKB_CB(skb)->tcp_flags;
1197 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1198 TCP_SKB_CB(buff)->tcp_flags = flags;
1199 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1200 tcp_skb_fragment_eor(skb, buff);
1201
1202 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1203 /* Copy and checksum data tail into the new buffer. */
1204 buff->csum = csum_partial_copy_nocheck(skb->data + len,
1205 skb_put(buff, nsize),
1206 nsize, 0);
1207
1208 skb_trim(skb, len);
1209
1210 skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1211 } else {
1212 skb->ip_summed = CHECKSUM_PARTIAL;
1213 skb_split(skb, buff, len);
1214 }
1215
1216 buff->ip_summed = skb->ip_summed;
1217
1218 buff->tstamp = skb->tstamp;
1219 tcp_fragment_tstamp(skb, buff);
1220
1221 old_factor = tcp_skb_pcount(skb);
1222
1223 /* Fix up tso_factor for both original and new SKB. */
1224 tcp_set_skb_tso_segs(skb, mss_now);
1225 tcp_set_skb_tso_segs(buff, mss_now);
1226
1227 /* Update delivered info for the new segment */
1228 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1229
1230 /* If this packet has been sent out already, we must
1231 * adjust the various packet counters.
1232 */
1233 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1234 int diff = old_factor - tcp_skb_pcount(skb) -
1235 tcp_skb_pcount(buff);
1236
1237 if (diff)
1238 tcp_adjust_pcount(sk, skb, diff);
1239 }
1240
1241 /* Link BUFF into the send queue. */
1242 __skb_header_release(buff);
1243 tcp_insert_write_queue_after(skb, buff, sk);
1244
1245 return 0;
1246 }
1247
1248 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
1249 * eventually). The difference is that pulled data not copied, but
1250 * immediately discarded.
1251 */
__pskb_trim_head(struct sk_buff * skb,int len)1252 static int __pskb_trim_head(struct sk_buff *skb, int len)
1253 {
1254 struct skb_shared_info *shinfo;
1255 int i, k, eat;
1256
1257 eat = min_t(int, len, skb_headlen(skb));
1258 if (eat) {
1259 __skb_pull(skb, eat);
1260 len -= eat;
1261 if (!len)
1262 return 0;
1263 }
1264 eat = len;
1265 k = 0;
1266 shinfo = skb_shinfo(skb);
1267 for (i = 0; i < shinfo->nr_frags; i++) {
1268 int size = skb_frag_size(&shinfo->frags[i]);
1269
1270 if (size <= eat) {
1271 skb_frag_unref(skb, i);
1272 eat -= size;
1273 } else {
1274 shinfo->frags[k] = shinfo->frags[i];
1275 if (eat) {
1276 shinfo->frags[k].page_offset += eat;
1277 skb_frag_size_sub(&shinfo->frags[k], eat);
1278 eat = 0;
1279 }
1280 k++;
1281 }
1282 }
1283 shinfo->nr_frags = k;
1284
1285 skb_reset_tail_pointer(skb);
1286 skb->data_len -= len;
1287 skb->len = skb->data_len;
1288 return len;
1289 }
1290
1291 /* Remove acked data from a packet in the transmit queue. */
tcp_trim_head(struct sock * sk,struct sk_buff * skb,u32 len)1292 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1293 {
1294 u32 delta_truesize;
1295
1296 if (skb_unclone(skb, GFP_ATOMIC))
1297 return -ENOMEM;
1298
1299 delta_truesize = __pskb_trim_head(skb, len);
1300
1301 TCP_SKB_CB(skb)->seq += len;
1302 skb->ip_summed = CHECKSUM_PARTIAL;
1303
1304 if (delta_truesize) {
1305 skb->truesize -= delta_truesize;
1306 sk->sk_wmem_queued -= delta_truesize;
1307 sk_mem_uncharge(sk, delta_truesize);
1308 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1309 }
1310
1311 /* Any change of skb->len requires recalculation of tso factor. */
1312 if (tcp_skb_pcount(skb) > 1)
1313 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1314
1315 return 0;
1316 }
1317
1318 /* Calculate MSS not accounting any TCP options. */
__tcp_mtu_to_mss(struct sock * sk,int pmtu)1319 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1320 {
1321 const struct tcp_sock *tp = tcp_sk(sk);
1322 const struct inet_connection_sock *icsk = inet_csk(sk);
1323 int mss_now;
1324
1325 /* Calculate base mss without TCP options:
1326 It is MMS_S - sizeof(tcphdr) of rfc1122
1327 */
1328 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1329
1330 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1331 if (icsk->icsk_af_ops->net_frag_header_len) {
1332 const struct dst_entry *dst = __sk_dst_get(sk);
1333
1334 if (dst && dst_allfrag(dst))
1335 mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1336 }
1337
1338 /* Clamp it (mss_clamp does not include tcp options) */
1339 if (mss_now > tp->rx_opt.mss_clamp)
1340 mss_now = tp->rx_opt.mss_clamp;
1341
1342 /* Now subtract optional transport overhead */
1343 mss_now -= icsk->icsk_ext_hdr_len;
1344
1345 /* Then reserve room for full set of TCP options and 8 bytes of data */
1346 if (mss_now < 48)
1347 mss_now = 48;
1348 return mss_now;
1349 }
1350
1351 /* Calculate MSS. Not accounting for SACKs here. */
tcp_mtu_to_mss(struct sock * sk,int pmtu)1352 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1353 {
1354 /* Subtract TCP options size, not including SACKs */
1355 return __tcp_mtu_to_mss(sk, pmtu) -
1356 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1357 }
1358
1359 /* Inverse of above */
tcp_mss_to_mtu(struct sock * sk,int mss)1360 int tcp_mss_to_mtu(struct sock *sk, int mss)
1361 {
1362 const struct tcp_sock *tp = tcp_sk(sk);
1363 const struct inet_connection_sock *icsk = inet_csk(sk);
1364 int mtu;
1365
1366 mtu = mss +
1367 tp->tcp_header_len +
1368 icsk->icsk_ext_hdr_len +
1369 icsk->icsk_af_ops->net_header_len;
1370
1371 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1372 if (icsk->icsk_af_ops->net_frag_header_len) {
1373 const struct dst_entry *dst = __sk_dst_get(sk);
1374
1375 if (dst && dst_allfrag(dst))
1376 mtu += icsk->icsk_af_ops->net_frag_header_len;
1377 }
1378 return mtu;
1379 }
1380 EXPORT_SYMBOL(tcp_mss_to_mtu);
1381
1382 /* MTU probing init per socket */
tcp_mtup_init(struct sock * sk)1383 void tcp_mtup_init(struct sock *sk)
1384 {
1385 struct tcp_sock *tp = tcp_sk(sk);
1386 struct inet_connection_sock *icsk = inet_csk(sk);
1387 struct net *net = sock_net(sk);
1388
1389 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1390 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1391 icsk->icsk_af_ops->net_header_len;
1392 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1393 icsk->icsk_mtup.probe_size = 0;
1394 if (icsk->icsk_mtup.enabled)
1395 icsk->icsk_mtup.probe_timestamp = tcp_time_stamp;
1396 }
1397 EXPORT_SYMBOL(tcp_mtup_init);
1398
1399 /* This function synchronize snd mss to current pmtu/exthdr set.
1400
1401 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1402 for TCP options, but includes only bare TCP header.
1403
1404 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1405 It is minimum of user_mss and mss received with SYN.
1406 It also does not include TCP options.
1407
1408 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1409
1410 tp->mss_cache is current effective sending mss, including
1411 all tcp options except for SACKs. It is evaluated,
1412 taking into account current pmtu, but never exceeds
1413 tp->rx_opt.mss_clamp.
1414
1415 NOTE1. rfc1122 clearly states that advertised MSS
1416 DOES NOT include either tcp or ip options.
1417
1418 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1419 are READ ONLY outside this function. --ANK (980731)
1420 */
tcp_sync_mss(struct sock * sk,u32 pmtu)1421 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1422 {
1423 struct tcp_sock *tp = tcp_sk(sk);
1424 struct inet_connection_sock *icsk = inet_csk(sk);
1425 int mss_now;
1426
1427 if (icsk->icsk_mtup.search_high > pmtu)
1428 icsk->icsk_mtup.search_high = pmtu;
1429
1430 mss_now = tcp_mtu_to_mss(sk, pmtu);
1431 mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1432
1433 /* And store cached results */
1434 icsk->icsk_pmtu_cookie = pmtu;
1435 if (icsk->icsk_mtup.enabled)
1436 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1437 tp->mss_cache = mss_now;
1438
1439 return mss_now;
1440 }
1441 EXPORT_SYMBOL(tcp_sync_mss);
1442
1443 /* Compute the current effective MSS, taking SACKs and IP options,
1444 * and even PMTU discovery events into account.
1445 */
tcp_current_mss(struct sock * sk)1446 unsigned int tcp_current_mss(struct sock *sk)
1447 {
1448 const struct tcp_sock *tp = tcp_sk(sk);
1449 const struct dst_entry *dst = __sk_dst_get(sk);
1450 u32 mss_now;
1451 unsigned int header_len;
1452 struct tcp_out_options opts;
1453 struct tcp_md5sig_key *md5;
1454
1455 mss_now = tp->mss_cache;
1456
1457 if (dst) {
1458 u32 mtu = dst_mtu(dst);
1459 if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1460 mss_now = tcp_sync_mss(sk, mtu);
1461 }
1462
1463 header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1464 sizeof(struct tcphdr);
1465 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1466 * some common options. If this is an odd packet (because we have SACK
1467 * blocks etc) then our calculated header_len will be different, and
1468 * we have to adjust mss_now correspondingly */
1469 if (header_len != tp->tcp_header_len) {
1470 int delta = (int) header_len - tp->tcp_header_len;
1471 mss_now -= delta;
1472 }
1473
1474 return mss_now;
1475 }
1476
1477 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1478 * As additional protections, we do not touch cwnd in retransmission phases,
1479 * and if application hit its sndbuf limit recently.
1480 */
tcp_cwnd_application_limited(struct sock * sk)1481 static void tcp_cwnd_application_limited(struct sock *sk)
1482 {
1483 struct tcp_sock *tp = tcp_sk(sk);
1484
1485 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1486 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1487 /* Limited by application or receiver window. */
1488 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1489 u32 win_used = max(tp->snd_cwnd_used, init_win);
1490 if (win_used < tp->snd_cwnd) {
1491 tp->snd_ssthresh = tcp_current_ssthresh(sk);
1492 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1493 }
1494 tp->snd_cwnd_used = 0;
1495 }
1496 tp->snd_cwnd_stamp = tcp_time_stamp;
1497 }
1498
tcp_cwnd_validate(struct sock * sk,bool is_cwnd_limited)1499 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1500 {
1501 struct tcp_sock *tp = tcp_sk(sk);
1502
1503 /* Track the maximum number of outstanding packets in each
1504 * window, and remember whether we were cwnd-limited then.
1505 */
1506 if (!before(tp->snd_una, tp->max_packets_seq) ||
1507 tp->packets_out > tp->max_packets_out) {
1508 tp->max_packets_out = tp->packets_out;
1509 tp->max_packets_seq = tp->snd_nxt;
1510 tp->is_cwnd_limited = is_cwnd_limited;
1511 }
1512
1513 if (tcp_is_cwnd_limited(sk)) {
1514 /* Network is feed fully. */
1515 tp->snd_cwnd_used = 0;
1516 tp->snd_cwnd_stamp = tcp_time_stamp;
1517 } else {
1518 /* Network starves. */
1519 if (tp->packets_out > tp->snd_cwnd_used)
1520 tp->snd_cwnd_used = tp->packets_out;
1521
1522 if (sysctl_tcp_slow_start_after_idle &&
1523 (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
1524 tcp_cwnd_application_limited(sk);
1525 }
1526 }
1527
1528 /* Minshall's variant of the Nagle send check. */
tcp_minshall_check(const struct tcp_sock * tp)1529 static bool tcp_minshall_check(const struct tcp_sock *tp)
1530 {
1531 return after(tp->snd_sml, tp->snd_una) &&
1532 !after(tp->snd_sml, tp->snd_nxt);
1533 }
1534
1535 /* Update snd_sml if this skb is under mss
1536 * Note that a TSO packet might end with a sub-mss segment
1537 * The test is really :
1538 * if ((skb->len % mss) != 0)
1539 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1540 * But we can avoid doing the divide again given we already have
1541 * skb_pcount = skb->len / mss_now
1542 */
tcp_minshall_update(struct tcp_sock * tp,unsigned int mss_now,const struct sk_buff * skb)1543 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1544 const struct sk_buff *skb)
1545 {
1546 if (skb->len < tcp_skb_pcount(skb) * mss_now)
1547 tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1548 }
1549
1550 /* Return false, if packet can be sent now without violation Nagle's rules:
1551 * 1. It is full sized. (provided by caller in %partial bool)
1552 * 2. Or it contains FIN. (already checked by caller)
1553 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1554 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1555 * With Minshall's modification: all sent small packets are ACKed.
1556 */
tcp_nagle_check(bool partial,const struct tcp_sock * tp,int nonagle)1557 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1558 int nonagle)
1559 {
1560 return partial &&
1561 ((nonagle & TCP_NAGLE_CORK) ||
1562 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1563 }
1564
1565 /* Return how many segs we'd like on a TSO packet,
1566 * to send one TSO packet per ms
1567 */
tcp_tso_autosize(const struct sock * sk,unsigned int mss_now,int min_tso_segs)1568 u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1569 int min_tso_segs)
1570 {
1571 u32 bytes, segs;
1572
1573 bytes = min(sk->sk_pacing_rate >> 10,
1574 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1575
1576 /* Goal is to send at least one packet per ms,
1577 * not one big TSO packet every 100 ms.
1578 * This preserves ACK clocking and is consistent
1579 * with tcp_tso_should_defer() heuristic.
1580 */
1581 segs = max_t(u32, bytes / mss_now, min_tso_segs);
1582
1583 return segs;
1584 }
1585 EXPORT_SYMBOL(tcp_tso_autosize);
1586
1587 /* Return the number of segments we want in the skb we are transmitting.
1588 * See if congestion control module wants to decide; otherwise, autosize.
1589 */
tcp_tso_segs(struct sock * sk,unsigned int mss_now)1590 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1591 {
1592 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1593 u32 tso_segs = ca_ops->tso_segs_goal ? ca_ops->tso_segs_goal(sk) : 0;
1594
1595 if (!tso_segs)
1596 tso_segs = tcp_tso_autosize(sk, mss_now,
1597 sysctl_tcp_min_tso_segs);
1598 return min_t(u32, tso_segs, sk->sk_gso_max_segs);
1599 }
1600
1601 /* Returns the portion of skb which can be sent right away */
tcp_mss_split_point(const struct sock * sk,const struct sk_buff * skb,unsigned int mss_now,unsigned int max_segs,int nonagle)1602 static unsigned int tcp_mss_split_point(const struct sock *sk,
1603 const struct sk_buff *skb,
1604 unsigned int mss_now,
1605 unsigned int max_segs,
1606 int nonagle)
1607 {
1608 const struct tcp_sock *tp = tcp_sk(sk);
1609 u32 partial, needed, window, max_len;
1610
1611 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1612 max_len = mss_now * max_segs;
1613
1614 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1615 return max_len;
1616
1617 needed = min(skb->len, window);
1618
1619 if (max_len <= needed)
1620 return max_len;
1621
1622 partial = needed % mss_now;
1623 /* If last segment is not a full MSS, check if Nagle rules allow us
1624 * to include this last segment in this skb.
1625 * Otherwise, we'll split the skb at last MSS boundary
1626 */
1627 if (tcp_nagle_check(partial != 0, tp, nonagle))
1628 return needed - partial;
1629
1630 return needed;
1631 }
1632
1633 /* Can at least one segment of SKB be sent right now, according to the
1634 * congestion window rules? If so, return how many segments are allowed.
1635 */
tcp_cwnd_test(const struct tcp_sock * tp,const struct sk_buff * skb)1636 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1637 const struct sk_buff *skb)
1638 {
1639 u32 in_flight, cwnd, halfcwnd;
1640
1641 /* Don't be strict about the congestion window for the final FIN. */
1642 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1643 tcp_skb_pcount(skb) == 1)
1644 return 1;
1645
1646 in_flight = tcp_packets_in_flight(tp);
1647 cwnd = tp->snd_cwnd;
1648 if (in_flight >= cwnd)
1649 return 0;
1650
1651 /* For better scheduling, ensure we have at least
1652 * 2 GSO packets in flight.
1653 */
1654 halfcwnd = max(cwnd >> 1, 1U);
1655 return min(halfcwnd, cwnd - in_flight);
1656 }
1657
1658 /* Initialize TSO state of a skb.
1659 * This must be invoked the first time we consider transmitting
1660 * SKB onto the wire.
1661 */
tcp_init_tso_segs(struct sk_buff * skb,unsigned int mss_now)1662 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1663 {
1664 int tso_segs = tcp_skb_pcount(skb);
1665
1666 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1667 tcp_set_skb_tso_segs(skb, mss_now);
1668 tso_segs = tcp_skb_pcount(skb);
1669 }
1670 return tso_segs;
1671 }
1672
1673
1674 /* Return true if the Nagle test allows this packet to be
1675 * sent now.
1676 */
tcp_nagle_test(const struct tcp_sock * tp,const struct sk_buff * skb,unsigned int cur_mss,int nonagle)1677 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1678 unsigned int cur_mss, int nonagle)
1679 {
1680 /* Nagle rule does not apply to frames, which sit in the middle of the
1681 * write_queue (they have no chances to get new data).
1682 *
1683 * This is implemented in the callers, where they modify the 'nonagle'
1684 * argument based upon the location of SKB in the send queue.
1685 */
1686 if (nonagle & TCP_NAGLE_PUSH)
1687 return true;
1688
1689 /* Don't use the nagle rule for urgent data (or for the final FIN). */
1690 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1691 return true;
1692
1693 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1694 return true;
1695
1696 return false;
1697 }
1698
1699 /* Does at least the first segment of SKB fit into the send window? */
tcp_snd_wnd_test(const struct tcp_sock * tp,const struct sk_buff * skb,unsigned int cur_mss)1700 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1701 const struct sk_buff *skb,
1702 unsigned int cur_mss)
1703 {
1704 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1705
1706 if (skb->len > cur_mss)
1707 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1708
1709 return !after(end_seq, tcp_wnd_end(tp));
1710 }
1711
1712 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1713 * should be put on the wire right now. If so, it returns the number of
1714 * packets allowed by the congestion window.
1715 */
tcp_snd_test(const struct sock * sk,struct sk_buff * skb,unsigned int cur_mss,int nonagle)1716 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb,
1717 unsigned int cur_mss, int nonagle)
1718 {
1719 const struct tcp_sock *tp = tcp_sk(sk);
1720 unsigned int cwnd_quota;
1721
1722 tcp_init_tso_segs(skb, cur_mss);
1723
1724 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
1725 return 0;
1726
1727 cwnd_quota = tcp_cwnd_test(tp, skb);
1728 if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
1729 cwnd_quota = 0;
1730
1731 return cwnd_quota;
1732 }
1733
1734 /* Test if sending is allowed right now. */
tcp_may_send_now(struct sock * sk)1735 bool tcp_may_send_now(struct sock *sk)
1736 {
1737 const struct tcp_sock *tp = tcp_sk(sk);
1738 struct sk_buff *skb = tcp_send_head(sk);
1739
1740 return skb &&
1741 tcp_snd_test(sk, skb, tcp_current_mss(sk),
1742 (tcp_skb_is_last(sk, skb) ?
1743 tp->nonagle : TCP_NAGLE_PUSH));
1744 }
1745
1746 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1747 * which is put after SKB on the list. It is very much like
1748 * tcp_fragment() except that it may make several kinds of assumptions
1749 * in order to speed up the splitting operation. In particular, we
1750 * know that all the data is in scatter-gather pages, and that the
1751 * packet has never been sent out before (and thus is not cloned).
1752 */
tso_fragment(struct sock * sk,struct sk_buff * skb,unsigned int len,unsigned int mss_now,gfp_t gfp)1753 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1754 unsigned int mss_now, gfp_t gfp)
1755 {
1756 struct sk_buff *buff;
1757 int nlen = skb->len - len;
1758 u8 flags;
1759
1760 /* All of a TSO frame must be composed of paged data. */
1761 if (skb->len != skb->data_len)
1762 return tcp_fragment(sk, skb, len, mss_now, gfp);
1763
1764 buff = sk_stream_alloc_skb(sk, 0, gfp, true);
1765 if (unlikely(!buff))
1766 return -ENOMEM;
1767
1768 sk->sk_wmem_queued += buff->truesize;
1769 sk_mem_charge(sk, buff->truesize);
1770 buff->truesize += nlen;
1771 skb->truesize -= nlen;
1772
1773 /* Correct the sequence numbers. */
1774 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1775 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1776 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1777
1778 /* PSH and FIN should only be set in the second packet. */
1779 flags = TCP_SKB_CB(skb)->tcp_flags;
1780 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1781 TCP_SKB_CB(buff)->tcp_flags = flags;
1782
1783 /* This packet was never sent out yet, so no SACK bits. */
1784 TCP_SKB_CB(buff)->sacked = 0;
1785
1786 tcp_skb_fragment_eor(skb, buff);
1787
1788 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1789 skb_split(skb, buff, len);
1790 tcp_fragment_tstamp(skb, buff);
1791
1792 /* Fix up tso_factor for both original and new SKB. */
1793 tcp_set_skb_tso_segs(skb, mss_now);
1794 tcp_set_skb_tso_segs(buff, mss_now);
1795
1796 /* Link BUFF into the send queue. */
1797 __skb_header_release(buff);
1798 tcp_insert_write_queue_after(skb, buff, sk);
1799
1800 return 0;
1801 }
1802
1803 /* Try to defer sending, if possible, in order to minimize the amount
1804 * of TSO splitting we do. View it as a kind of TSO Nagle test.
1805 *
1806 * This algorithm is from John Heffner.
1807 */
tcp_tso_should_defer(struct sock * sk,struct sk_buff * skb,bool * is_cwnd_limited,u32 max_segs)1808 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1809 bool *is_cwnd_limited, u32 max_segs)
1810 {
1811 const struct inet_connection_sock *icsk = inet_csk(sk);
1812 u32 age, send_win, cong_win, limit, in_flight;
1813 struct tcp_sock *tp = tcp_sk(sk);
1814 struct skb_mstamp now;
1815 struct sk_buff *head;
1816 int win_divisor;
1817
1818 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1819 goto send_now;
1820
1821 if (icsk->icsk_ca_state >= TCP_CA_Recovery)
1822 goto send_now;
1823
1824 /* Avoid bursty behavior by allowing defer
1825 * only if the last write was recent.
1826 */
1827 if ((s32)(tcp_time_stamp - tp->lsndtime) > 0)
1828 goto send_now;
1829
1830 in_flight = tcp_packets_in_flight(tp);
1831
1832 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1833
1834 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1835
1836 /* From in_flight test above, we know that cwnd > in_flight. */
1837 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1838
1839 limit = min(send_win, cong_win);
1840
1841 /* If a full-sized TSO skb can be sent, do it. */
1842 if (limit >= max_segs * tp->mss_cache)
1843 goto send_now;
1844
1845 /* Middle in queue won't get any more data, full sendable already? */
1846 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1847 goto send_now;
1848
1849 win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
1850 if (win_divisor) {
1851 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1852
1853 /* If at least some fraction of a window is available,
1854 * just use it.
1855 */
1856 chunk /= win_divisor;
1857 if (limit >= chunk)
1858 goto send_now;
1859 } else {
1860 /* Different approach, try not to defer past a single
1861 * ACK. Receiver should ACK every other full sized
1862 * frame, so if we have space for more than 3 frames
1863 * then send now.
1864 */
1865 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1866 goto send_now;
1867 }
1868
1869 head = tcp_write_queue_head(sk);
1870 skb_mstamp_get(&now);
1871 age = skb_mstamp_us_delta(&now, &head->skb_mstamp);
1872 /* If next ACK is likely to come too late (half srtt), do not defer */
1873 if (age < (tp->srtt_us >> 4))
1874 goto send_now;
1875
1876 /* Ok, it looks like it is advisable to defer. */
1877
1878 if (cong_win < send_win && cong_win <= skb->len)
1879 *is_cwnd_limited = true;
1880
1881 return true;
1882
1883 send_now:
1884 return false;
1885 }
1886
tcp_mtu_check_reprobe(struct sock * sk)1887 static inline void tcp_mtu_check_reprobe(struct sock *sk)
1888 {
1889 struct inet_connection_sock *icsk = inet_csk(sk);
1890 struct tcp_sock *tp = tcp_sk(sk);
1891 struct net *net = sock_net(sk);
1892 u32 interval;
1893 s32 delta;
1894
1895 interval = net->ipv4.sysctl_tcp_probe_interval;
1896 delta = tcp_time_stamp - icsk->icsk_mtup.probe_timestamp;
1897 if (unlikely(delta >= interval * HZ)) {
1898 int mss = tcp_current_mss(sk);
1899
1900 /* Update current search range */
1901 icsk->icsk_mtup.probe_size = 0;
1902 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
1903 sizeof(struct tcphdr) +
1904 icsk->icsk_af_ops->net_header_len;
1905 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
1906
1907 /* Update probe time stamp */
1908 icsk->icsk_mtup.probe_timestamp = tcp_time_stamp;
1909 }
1910 }
1911
tcp_can_coalesce_send_queue_head(struct sock * sk,int len)1912 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
1913 {
1914 struct sk_buff *skb, *next;
1915
1916 skb = tcp_send_head(sk);
1917 tcp_for_write_queue_from_safe(skb, next, sk) {
1918 if (len <= skb->len)
1919 break;
1920
1921 if (unlikely(TCP_SKB_CB(skb)->eor))
1922 return false;
1923
1924 len -= skb->len;
1925 }
1926
1927 return true;
1928 }
1929
1930 /* Create a new MTU probe if we are ready.
1931 * MTU probe is regularly attempting to increase the path MTU by
1932 * deliberately sending larger packets. This discovers routing
1933 * changes resulting in larger path MTUs.
1934 *
1935 * Returns 0 if we should wait to probe (no cwnd available),
1936 * 1 if a probe was sent,
1937 * -1 otherwise
1938 */
tcp_mtu_probe(struct sock * sk)1939 static int tcp_mtu_probe(struct sock *sk)
1940 {
1941 struct tcp_sock *tp = tcp_sk(sk);
1942 struct inet_connection_sock *icsk = inet_csk(sk);
1943 struct sk_buff *skb, *nskb, *next;
1944 struct net *net = sock_net(sk);
1945 int len;
1946 int probe_size;
1947 int size_needed;
1948 int copy;
1949 int mss_now;
1950 int interval;
1951
1952 /* Not currently probing/verifying,
1953 * not in recovery,
1954 * have enough cwnd, and
1955 * not SACKing (the variable headers throw things off) */
1956 if (!icsk->icsk_mtup.enabled ||
1957 icsk->icsk_mtup.probe_size ||
1958 inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
1959 tp->snd_cwnd < 11 ||
1960 tp->rx_opt.num_sacks || tp->rx_opt.dsack)
1961 return -1;
1962
1963 /* Use binary search for probe_size between tcp_mss_base,
1964 * and current mss_clamp. if (search_high - search_low)
1965 * smaller than a threshold, backoff from probing.
1966 */
1967 mss_now = tcp_current_mss(sk);
1968 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
1969 icsk->icsk_mtup.search_low) >> 1);
1970 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
1971 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
1972 /* When misfortune happens, we are reprobing actively,
1973 * and then reprobe timer has expired. We stick with current
1974 * probing process by not resetting search range to its orignal.
1975 */
1976 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
1977 interval < net->ipv4.sysctl_tcp_probe_threshold) {
1978 /* Check whether enough time has elaplased for
1979 * another round of probing.
1980 */
1981 tcp_mtu_check_reprobe(sk);
1982 return -1;
1983 }
1984
1985 /* Have enough data in the send queue to probe? */
1986 if (tp->write_seq - tp->snd_nxt < size_needed)
1987 return -1;
1988
1989 if (tp->snd_wnd < size_needed)
1990 return -1;
1991 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
1992 return 0;
1993
1994 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
1995 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
1996 if (!tcp_packets_in_flight(tp))
1997 return -1;
1998 else
1999 return 0;
2000 }
2001
2002 if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2003 return -1;
2004
2005 /* We're allowed to probe. Build it now. */
2006 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
2007 if (!nskb)
2008 return -1;
2009 sk->sk_wmem_queued += nskb->truesize;
2010 sk_mem_charge(sk, nskb->truesize);
2011
2012 skb = tcp_send_head(sk);
2013
2014 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2015 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2016 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2017 TCP_SKB_CB(nskb)->sacked = 0;
2018 nskb->csum = 0;
2019 nskb->ip_summed = skb->ip_summed;
2020
2021 tcp_insert_write_queue_before(nskb, skb, sk);
2022 tcp_highest_sack_replace(sk, skb, nskb);
2023
2024 len = 0;
2025 tcp_for_write_queue_from_safe(skb, next, sk) {
2026 copy = min_t(int, skb->len, probe_size - len);
2027 if (nskb->ip_summed) {
2028 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
2029 } else {
2030 __wsum csum = skb_copy_and_csum_bits(skb, 0,
2031 skb_put(nskb, copy),
2032 copy, 0);
2033 nskb->csum = csum_block_add(nskb->csum, csum, len);
2034 }
2035
2036 if (skb->len <= copy) {
2037 /* We've eaten all the data from this skb.
2038 * Throw it away. */
2039 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2040 /* If this is the last SKB we copy and eor is set
2041 * we need to propagate it to the new skb.
2042 */
2043 TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
2044 tcp_unlink_write_queue(skb, sk);
2045 sk_wmem_free_skb(sk, skb);
2046 } else {
2047 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2048 ~(TCPHDR_FIN|TCPHDR_PSH);
2049 if (!skb_shinfo(skb)->nr_frags) {
2050 skb_pull(skb, copy);
2051 if (skb->ip_summed != CHECKSUM_PARTIAL)
2052 skb->csum = csum_partial(skb->data,
2053 skb->len, 0);
2054 } else {
2055 __pskb_trim_head(skb, copy);
2056 tcp_set_skb_tso_segs(skb, mss_now);
2057 }
2058 TCP_SKB_CB(skb)->seq += copy;
2059 }
2060
2061 len += copy;
2062
2063 if (len >= probe_size)
2064 break;
2065 }
2066 tcp_init_tso_segs(nskb, nskb->len);
2067
2068 /* We're ready to send. If this fails, the probe will
2069 * be resegmented into mss-sized pieces by tcp_write_xmit().
2070 */
2071 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2072 /* Decrement cwnd here because we are sending
2073 * effectively two packets. */
2074 tp->snd_cwnd--;
2075 tcp_event_new_data_sent(sk, nskb);
2076
2077 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2078 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2079 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2080
2081 return 1;
2082 }
2083
2084 return -1;
2085 }
2086
2087 /* TCP Small Queues :
2088 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2089 * (These limits are doubled for retransmits)
2090 * This allows for :
2091 * - better RTT estimation and ACK scheduling
2092 * - faster recovery
2093 * - high rates
2094 * Alas, some drivers / subsystems require a fair amount
2095 * of queued bytes to ensure line rate.
2096 * One example is wifi aggregation (802.11 AMPDU)
2097 */
tcp_small_queue_check(struct sock * sk,const struct sk_buff * skb,unsigned int factor)2098 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2099 unsigned int factor)
2100 {
2101 unsigned int limit;
2102
2103 limit = max(2 * skb->truesize, sk->sk_pacing_rate >> 10);
2104 limit = min_t(u32, limit, sysctl_tcp_limit_output_bytes);
2105 limit <<= factor;
2106
2107 if (atomic_read(&sk->sk_wmem_alloc) > limit) {
2108 set_bit(TSQ_THROTTLED, &tcp_sk(sk)->tsq_flags);
2109 /* It is possible TX completion already happened
2110 * before we set TSQ_THROTTLED, so we must
2111 * test again the condition.
2112 */
2113 smp_mb__after_atomic();
2114 if (atomic_read(&sk->sk_wmem_alloc) > limit)
2115 return true;
2116 }
2117 return false;
2118 }
2119
2120 /* This routine writes packets to the network. It advances the
2121 * send_head. This happens as incoming acks open up the remote
2122 * window for us.
2123 *
2124 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2125 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2126 * account rare use of URG, this is not a big flaw.
2127 *
2128 * Send at most one packet when push_one > 0. Temporarily ignore
2129 * cwnd limit to force at most one packet out when push_one == 2.
2130
2131 * Returns true, if no segments are in flight and we have queued segments,
2132 * but cannot send anything now because of SWS or another problem.
2133 */
tcp_write_xmit(struct sock * sk,unsigned int mss_now,int nonagle,int push_one,gfp_t gfp)2134 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2135 int push_one, gfp_t gfp)
2136 {
2137 struct tcp_sock *tp = tcp_sk(sk);
2138 struct sk_buff *skb;
2139 unsigned int tso_segs, sent_pkts;
2140 int cwnd_quota;
2141 int result;
2142 bool is_cwnd_limited = false;
2143 u32 max_segs;
2144
2145 sent_pkts = 0;
2146
2147 if (!push_one) {
2148 /* Do MTU probing. */
2149 result = tcp_mtu_probe(sk);
2150 if (!result) {
2151 return false;
2152 } else if (result > 0) {
2153 sent_pkts = 1;
2154 }
2155 }
2156
2157 max_segs = tcp_tso_segs(sk, mss_now);
2158 while ((skb = tcp_send_head(sk))) {
2159 unsigned int limit;
2160
2161 tso_segs = tcp_init_tso_segs(skb, mss_now);
2162 BUG_ON(!tso_segs);
2163
2164 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2165 /* "skb_mstamp" is used as a start point for the retransmit timer */
2166 skb_mstamp_get(&skb->skb_mstamp);
2167 goto repair; /* Skip network transmission */
2168 }
2169
2170 cwnd_quota = tcp_cwnd_test(tp, skb);
2171 if (!cwnd_quota) {
2172 if (push_one == 2)
2173 /* Force out a loss probe pkt. */
2174 cwnd_quota = 1;
2175 else
2176 break;
2177 }
2178
2179 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now)))
2180 break;
2181
2182 if (tso_segs == 1) {
2183 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2184 (tcp_skb_is_last(sk, skb) ?
2185 nonagle : TCP_NAGLE_PUSH))))
2186 break;
2187 } else {
2188 if (!push_one &&
2189 tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2190 max_segs))
2191 break;
2192 }
2193
2194 limit = mss_now;
2195 if (tso_segs > 1 && !tcp_urg_mode(tp))
2196 limit = tcp_mss_split_point(sk, skb, mss_now,
2197 min_t(unsigned int,
2198 cwnd_quota,
2199 max_segs),
2200 nonagle);
2201
2202 if (skb->len > limit &&
2203 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2204 break;
2205
2206 if (tcp_small_queue_check(sk, skb, 0))
2207 break;
2208
2209 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2210 break;
2211
2212 repair:
2213 /* Advance the send_head. This one is sent out.
2214 * This call will increment packets_out.
2215 */
2216 tcp_event_new_data_sent(sk, skb);
2217
2218 tcp_minshall_update(tp, mss_now, skb);
2219 sent_pkts += tcp_skb_pcount(skb);
2220
2221 if (push_one)
2222 break;
2223 }
2224
2225 if (likely(sent_pkts)) {
2226 if (tcp_in_cwnd_reduction(sk))
2227 tp->prr_out += sent_pkts;
2228
2229 /* Send one loss probe per tail loss episode. */
2230 if (push_one != 2)
2231 tcp_schedule_loss_probe(sk);
2232 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2233 tcp_cwnd_validate(sk, is_cwnd_limited);
2234 return false;
2235 }
2236 return !tp->packets_out && tcp_send_head(sk);
2237 }
2238
tcp_schedule_loss_probe(struct sock * sk)2239 bool tcp_schedule_loss_probe(struct sock *sk)
2240 {
2241 struct inet_connection_sock *icsk = inet_csk(sk);
2242 struct tcp_sock *tp = tcp_sk(sk);
2243 u32 timeout, tlp_time_stamp, rto_time_stamp;
2244 u32 rtt = usecs_to_jiffies(tp->srtt_us >> 3);
2245
2246 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS))
2247 return false;
2248 /* No consecutive loss probes. */
2249 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) {
2250 tcp_rearm_rto(sk);
2251 return false;
2252 }
2253 /* Don't do any loss probe on a Fast Open connection before 3WHS
2254 * finishes.
2255 */
2256 if (tp->fastopen_rsk)
2257 return false;
2258
2259 /* TLP is only scheduled when next timer event is RTO. */
2260 if (icsk->icsk_pending != ICSK_TIME_RETRANS)
2261 return false;
2262
2263 /* Schedule a loss probe in 2*RTT for SACK capable connections
2264 * in Open state, that are either limited by cwnd or application.
2265 */
2266 if (sysctl_tcp_early_retrans < 3 || !tp->packets_out ||
2267 !tcp_is_sack(tp) || inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2268 return false;
2269
2270 if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
2271 tcp_send_head(sk))
2272 return false;
2273
2274 /* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account
2275 * for delayed ack when there's one outstanding packet. If no RTT
2276 * sample is available then probe after TCP_TIMEOUT_INIT.
2277 */
2278 timeout = rtt << 1 ? : TCP_TIMEOUT_INIT;
2279 if (tp->packets_out == 1)
2280 timeout = max_t(u32, timeout,
2281 (rtt + (rtt >> 1) + TCP_DELACK_MAX));
2282 timeout = max_t(u32, timeout, msecs_to_jiffies(10));
2283
2284 /* If RTO is shorter, just schedule TLP in its place. */
2285 tlp_time_stamp = tcp_time_stamp + timeout;
2286 rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout;
2287 if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) {
2288 s32 delta = rto_time_stamp - tcp_time_stamp;
2289 if (delta > 0)
2290 timeout = delta;
2291 }
2292
2293 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2294 TCP_RTO_MAX);
2295 return true;
2296 }
2297
2298 /* Thanks to skb fast clones, we can detect if a prior transmit of
2299 * a packet is still in a qdisc or driver queue.
2300 * In this case, there is very little point doing a retransmit !
2301 */
skb_still_in_host_queue(const struct sock * sk,const struct sk_buff * skb)2302 static bool skb_still_in_host_queue(const struct sock *sk,
2303 const struct sk_buff *skb)
2304 {
2305 if (unlikely(skb_fclone_busy(sk, skb))) {
2306 NET_INC_STATS(sock_net(sk),
2307 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2308 return true;
2309 }
2310 return false;
2311 }
2312
2313 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2314 * retransmit the last segment.
2315 */
tcp_send_loss_probe(struct sock * sk)2316 void tcp_send_loss_probe(struct sock *sk)
2317 {
2318 struct tcp_sock *tp = tcp_sk(sk);
2319 struct sk_buff *skb;
2320 int pcount;
2321 int mss = tcp_current_mss(sk);
2322
2323 skb = tcp_send_head(sk);
2324 if (skb) {
2325 if (tcp_snd_wnd_test(tp, skb, mss)) {
2326 pcount = tp->packets_out;
2327 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2328 if (tp->packets_out > pcount)
2329 goto probe_sent;
2330 goto rearm_timer;
2331 }
2332 skb = tcp_write_queue_prev(sk, skb);
2333 } else {
2334 skb = tcp_write_queue_tail(sk);
2335 }
2336
2337 /* At most one outstanding TLP retransmission. */
2338 if (tp->tlp_high_seq)
2339 goto rearm_timer;
2340
2341 /* Retransmit last segment. */
2342 if (WARN_ON(!skb))
2343 goto rearm_timer;
2344
2345 if (skb_still_in_host_queue(sk, skb))
2346 goto rearm_timer;
2347
2348 pcount = tcp_skb_pcount(skb);
2349 if (WARN_ON(!pcount))
2350 goto rearm_timer;
2351
2352 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2353 if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss,
2354 GFP_ATOMIC)))
2355 goto rearm_timer;
2356 skb = tcp_write_queue_next(sk, skb);
2357 }
2358
2359 if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2360 goto rearm_timer;
2361
2362 if (__tcp_retransmit_skb(sk, skb, 1))
2363 goto rearm_timer;
2364
2365 /* Record snd_nxt for loss detection. */
2366 tp->tlp_high_seq = tp->snd_nxt;
2367
2368 probe_sent:
2369 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2370 /* Reset s.t. tcp_rearm_rto will restart timer from now */
2371 inet_csk(sk)->icsk_pending = 0;
2372 rearm_timer:
2373 tcp_rearm_rto(sk);
2374 }
2375
2376 /* Push out any pending frames which were held back due to
2377 * TCP_CORK or attempt at coalescing tiny packets.
2378 * The socket must be locked by the caller.
2379 */
__tcp_push_pending_frames(struct sock * sk,unsigned int cur_mss,int nonagle)2380 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2381 int nonagle)
2382 {
2383 /* If we are closed, the bytes will have to remain here.
2384 * In time closedown will finish, we empty the write queue and
2385 * all will be happy.
2386 */
2387 if (unlikely(sk->sk_state == TCP_CLOSE))
2388 return;
2389
2390 if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2391 sk_gfp_mask(sk, GFP_ATOMIC)))
2392 tcp_check_probe_timer(sk);
2393 }
2394
2395 /* Send _single_ skb sitting at the send head. This function requires
2396 * true push pending frames to setup probe timer etc.
2397 */
tcp_push_one(struct sock * sk,unsigned int mss_now)2398 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2399 {
2400 struct sk_buff *skb = tcp_send_head(sk);
2401
2402 BUG_ON(!skb || skb->len < mss_now);
2403
2404 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2405 }
2406
2407 /* This function returns the amount that we can raise the
2408 * usable window based on the following constraints
2409 *
2410 * 1. The window can never be shrunk once it is offered (RFC 793)
2411 * 2. We limit memory per socket
2412 *
2413 * RFC 1122:
2414 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2415 * RECV.NEXT + RCV.WIN fixed until:
2416 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2417 *
2418 * i.e. don't raise the right edge of the window until you can raise
2419 * it at least MSS bytes.
2420 *
2421 * Unfortunately, the recommended algorithm breaks header prediction,
2422 * since header prediction assumes th->window stays fixed.
2423 *
2424 * Strictly speaking, keeping th->window fixed violates the receiver
2425 * side SWS prevention criteria. The problem is that under this rule
2426 * a stream of single byte packets will cause the right side of the
2427 * window to always advance by a single byte.
2428 *
2429 * Of course, if the sender implements sender side SWS prevention
2430 * then this will not be a problem.
2431 *
2432 * BSD seems to make the following compromise:
2433 *
2434 * If the free space is less than the 1/4 of the maximum
2435 * space available and the free space is less than 1/2 mss,
2436 * then set the window to 0.
2437 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2438 * Otherwise, just prevent the window from shrinking
2439 * and from being larger than the largest representable value.
2440 *
2441 * This prevents incremental opening of the window in the regime
2442 * where TCP is limited by the speed of the reader side taking
2443 * data out of the TCP receive queue. It does nothing about
2444 * those cases where the window is constrained on the sender side
2445 * because the pipeline is full.
2446 *
2447 * BSD also seems to "accidentally" limit itself to windows that are a
2448 * multiple of MSS, at least until the free space gets quite small.
2449 * This would appear to be a side effect of the mbuf implementation.
2450 * Combining these two algorithms results in the observed behavior
2451 * of having a fixed window size at almost all times.
2452 *
2453 * Below we obtain similar behavior by forcing the offered window to
2454 * a multiple of the mss when it is feasible to do so.
2455 *
2456 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2457 * Regular options like TIMESTAMP are taken into account.
2458 */
__tcp_select_window(struct sock * sk)2459 u32 __tcp_select_window(struct sock *sk)
2460 {
2461 struct inet_connection_sock *icsk = inet_csk(sk);
2462 struct tcp_sock *tp = tcp_sk(sk);
2463 /* MSS for the peer's data. Previous versions used mss_clamp
2464 * here. I don't know if the value based on our guesses
2465 * of peer's MSS is better for the performance. It's more correct
2466 * but may be worse for the performance because of rcv_mss
2467 * fluctuations. --SAW 1998/11/1
2468 */
2469 int mss = icsk->icsk_ack.rcv_mss;
2470 int free_space = tcp_space(sk);
2471 int allowed_space = tcp_full_space(sk);
2472 int full_space = min_t(int, tp->window_clamp, allowed_space);
2473 int window;
2474
2475 if (unlikely(mss > full_space)) {
2476 mss = full_space;
2477 if (mss <= 0)
2478 return 0;
2479 }
2480 if (free_space < (full_space >> 1)) {
2481 icsk->icsk_ack.quick = 0;
2482
2483 if (tcp_under_memory_pressure(sk))
2484 tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2485 4U * tp->advmss);
2486
2487 /* free_space might become our new window, make sure we don't
2488 * increase it due to wscale.
2489 */
2490 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2491
2492 /* if free space is less than mss estimate, or is below 1/16th
2493 * of the maximum allowed, try to move to zero-window, else
2494 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2495 * new incoming data is dropped due to memory limits.
2496 * With large window, mss test triggers way too late in order
2497 * to announce zero window in time before rmem limit kicks in.
2498 */
2499 if (free_space < (allowed_space >> 4) || free_space < mss)
2500 return 0;
2501 }
2502
2503 if (free_space > tp->rcv_ssthresh)
2504 free_space = tp->rcv_ssthresh;
2505
2506 /* Don't do rounding if we are using window scaling, since the
2507 * scaled window will not line up with the MSS boundary anyway.
2508 */
2509 window = tp->rcv_wnd;
2510 if (tp->rx_opt.rcv_wscale) {
2511 window = free_space;
2512
2513 /* Advertise enough space so that it won't get scaled away.
2514 * Import case: prevent zero window announcement if
2515 * 1<<rcv_wscale > mss.
2516 */
2517 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
2518 window = (((window >> tp->rx_opt.rcv_wscale) + 1)
2519 << tp->rx_opt.rcv_wscale);
2520 } else {
2521 /* Get the largest window that is a nice multiple of mss.
2522 * Window clamp already applied above.
2523 * If our current window offering is within 1 mss of the
2524 * free space we just keep it. This prevents the divide
2525 * and multiply from happening most of the time.
2526 * We also don't do any window rounding when the free space
2527 * is too small.
2528 */
2529 if (window <= free_space - mss || window > free_space)
2530 window = (free_space / mss) * mss;
2531 else if (mss == full_space &&
2532 free_space > window + (full_space >> 1))
2533 window = free_space;
2534 }
2535
2536 return window;
2537 }
2538
tcp_skb_collapse_tstamp(struct sk_buff * skb,const struct sk_buff * next_skb)2539 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
2540 const struct sk_buff *next_skb)
2541 {
2542 if (unlikely(tcp_has_tx_tstamp(next_skb))) {
2543 const struct skb_shared_info *next_shinfo =
2544 skb_shinfo(next_skb);
2545 struct skb_shared_info *shinfo = skb_shinfo(skb);
2546
2547 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
2548 shinfo->tskey = next_shinfo->tskey;
2549 TCP_SKB_CB(skb)->txstamp_ack |=
2550 TCP_SKB_CB(next_skb)->txstamp_ack;
2551 }
2552 }
2553
2554 /* Collapses two adjacent SKB's during retransmission. */
tcp_collapse_retrans(struct sock * sk,struct sk_buff * skb)2555 static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2556 {
2557 struct tcp_sock *tp = tcp_sk(sk);
2558 struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
2559 int skb_size, next_skb_size;
2560
2561 skb_size = skb->len;
2562 next_skb_size = next_skb->len;
2563
2564 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2565
2566 tcp_highest_sack_replace(sk, next_skb, skb);
2567
2568 tcp_unlink_write_queue(next_skb, sk);
2569
2570 skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size),
2571 next_skb_size);
2572
2573 if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2574 skb->ip_summed = CHECKSUM_PARTIAL;
2575
2576 if (skb->ip_summed != CHECKSUM_PARTIAL)
2577 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2578
2579 /* Update sequence range on original skb. */
2580 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2581
2582 /* Merge over control information. This moves PSH/FIN etc. over */
2583 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2584
2585 /* All done, get rid of second SKB and account for it so
2586 * packet counting does not break.
2587 */
2588 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2589 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
2590
2591 /* changed transmit queue under us so clear hints */
2592 tcp_clear_retrans_hints_partial(tp);
2593 if (next_skb == tp->retransmit_skb_hint)
2594 tp->retransmit_skb_hint = skb;
2595
2596 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2597
2598 tcp_skb_collapse_tstamp(skb, next_skb);
2599
2600 sk_wmem_free_skb(sk, next_skb);
2601 }
2602
2603 /* Check if coalescing SKBs is legal. */
tcp_can_collapse(const struct sock * sk,const struct sk_buff * skb)2604 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2605 {
2606 if (tcp_skb_pcount(skb) > 1)
2607 return false;
2608 /* TODO: SACK collapsing could be used to remove this condition */
2609 if (skb_shinfo(skb)->nr_frags != 0)
2610 return false;
2611 if (skb_cloned(skb))
2612 return false;
2613 if (skb == tcp_send_head(sk))
2614 return false;
2615 /* Some heurestics for collapsing over SACK'd could be invented */
2616 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2617 return false;
2618
2619 return true;
2620 }
2621
2622 /* Collapse packets in the retransmit queue to make to create
2623 * less packets on the wire. This is only done on retransmission.
2624 */
tcp_retrans_try_collapse(struct sock * sk,struct sk_buff * to,int space)2625 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2626 int space)
2627 {
2628 struct tcp_sock *tp = tcp_sk(sk);
2629 struct sk_buff *skb = to, *tmp;
2630 bool first = true;
2631
2632 if (!sysctl_tcp_retrans_collapse)
2633 return;
2634 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2635 return;
2636
2637 tcp_for_write_queue_from_safe(skb, tmp, sk) {
2638 if (!tcp_can_collapse(sk, skb))
2639 break;
2640
2641 if (!tcp_skb_can_collapse_to(to))
2642 break;
2643
2644 space -= skb->len;
2645
2646 if (first) {
2647 first = false;
2648 continue;
2649 }
2650
2651 if (space < 0)
2652 break;
2653 /* Punt if not enough space exists in the first SKB for
2654 * the data in the second
2655 */
2656 if (skb->len > skb_availroom(to))
2657 break;
2658
2659 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2660 break;
2661
2662 tcp_collapse_retrans(sk, to);
2663 }
2664 }
2665
2666 /* This retransmits one SKB. Policy decisions and retransmit queue
2667 * state updates are done by the caller. Returns non-zero if an
2668 * error occurred which prevented the send.
2669 */
__tcp_retransmit_skb(struct sock * sk,struct sk_buff * skb,int segs)2670 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2671 {
2672 struct inet_connection_sock *icsk = inet_csk(sk);
2673 struct tcp_sock *tp = tcp_sk(sk);
2674 unsigned int cur_mss;
2675 int diff, len, err;
2676
2677
2678 /* Inconclusive MTU probe */
2679 if (icsk->icsk_mtup.probe_size)
2680 icsk->icsk_mtup.probe_size = 0;
2681
2682 /* Do not sent more than we queued. 1/4 is reserved for possible
2683 * copying overhead: fragmentation, tunneling, mangling etc.
2684 */
2685 if (atomic_read(&sk->sk_wmem_alloc) >
2686 min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
2687 sk->sk_sndbuf))
2688 return -EAGAIN;
2689
2690 if (skb_still_in_host_queue(sk, skb))
2691 return -EBUSY;
2692
2693 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2694 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2695 BUG();
2696 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2697 return -ENOMEM;
2698 }
2699
2700 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2701 return -EHOSTUNREACH; /* Routing failure or similar. */
2702
2703 cur_mss = tcp_current_mss(sk);
2704
2705 /* If receiver has shrunk his window, and skb is out of
2706 * new window, do not retransmit it. The exception is the
2707 * case, when window is shrunk to zero. In this case
2708 * our retransmit serves as a zero window probe.
2709 */
2710 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2711 TCP_SKB_CB(skb)->seq != tp->snd_una)
2712 return -EAGAIN;
2713
2714 len = cur_mss * segs;
2715 if (skb->len > len) {
2716 if (tcp_fragment(sk, skb, len, cur_mss, GFP_ATOMIC))
2717 return -ENOMEM; /* We'll try again later. */
2718 } else {
2719 if (skb_unclone(skb, GFP_ATOMIC))
2720 return -ENOMEM;
2721
2722 diff = tcp_skb_pcount(skb);
2723 tcp_set_skb_tso_segs(skb, cur_mss);
2724 diff -= tcp_skb_pcount(skb);
2725 if (diff)
2726 tcp_adjust_pcount(sk, skb, diff);
2727 if (skb->len < cur_mss)
2728 tcp_retrans_try_collapse(sk, skb, cur_mss);
2729 }
2730
2731 /* RFC3168, section 6.1.1.1. ECN fallback */
2732 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
2733 tcp_ecn_clear_syn(sk, skb);
2734
2735 /* make sure skb->data is aligned on arches that require it
2736 * and check if ack-trimming & collapsing extended the headroom
2737 * beyond what csum_start can cover.
2738 */
2739 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2740 skb_headroom(skb) >= 0xFFFF)) {
2741 struct sk_buff *nskb;
2742
2743 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
2744 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2745 -ENOBUFS;
2746 if (!err)
2747 skb_mstamp_get(&skb->skb_mstamp);
2748 } else {
2749 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2750 }
2751
2752 if (likely(!err)) {
2753 segs = tcp_skb_pcount(skb);
2754
2755 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2756 /* Update global TCP statistics. */
2757 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
2758 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2759 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2760 tp->total_retrans += segs;
2761 }
2762 return err;
2763 }
2764
tcp_retransmit_skb(struct sock * sk,struct sk_buff * skb,int segs)2765 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2766 {
2767 struct tcp_sock *tp = tcp_sk(sk);
2768 int err = __tcp_retransmit_skb(sk, skb, segs);
2769
2770 if (err == 0) {
2771 #if FASTRETRANS_DEBUG > 0
2772 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2773 net_dbg_ratelimited("retrans_out leaked\n");
2774 }
2775 #endif
2776 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2777 tp->retrans_out += tcp_skb_pcount(skb);
2778
2779 /* Save stamp of the first retransmit. */
2780 if (!tp->retrans_stamp)
2781 tp->retrans_stamp = tcp_skb_timestamp(skb);
2782
2783 } else if (err != -EBUSY) {
2784 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2785 }
2786
2787 if (tp->undo_retrans < 0)
2788 tp->undo_retrans = 0;
2789 tp->undo_retrans += tcp_skb_pcount(skb);
2790 return err;
2791 }
2792
2793 /* Check if we forward retransmits are possible in the current
2794 * window/congestion state.
2795 */
tcp_can_forward_retransmit(struct sock * sk)2796 static bool tcp_can_forward_retransmit(struct sock *sk)
2797 {
2798 const struct inet_connection_sock *icsk = inet_csk(sk);
2799 const struct tcp_sock *tp = tcp_sk(sk);
2800
2801 /* Forward retransmissions are possible only during Recovery. */
2802 if (icsk->icsk_ca_state != TCP_CA_Recovery)
2803 return false;
2804
2805 /* No forward retransmissions in Reno are possible. */
2806 if (tcp_is_reno(tp))
2807 return false;
2808
2809 /* Yeah, we have to make difficult choice between forward transmission
2810 * and retransmission... Both ways have their merits...
2811 *
2812 * For now we do not retransmit anything, while we have some new
2813 * segments to send. In the other cases, follow rule 3 for
2814 * NextSeg() specified in RFC3517.
2815 */
2816
2817 if (tcp_may_send_now(sk))
2818 return false;
2819
2820 return true;
2821 }
2822
2823 /* This gets called after a retransmit timeout, and the initially
2824 * retransmitted data is acknowledged. It tries to continue
2825 * resending the rest of the retransmit queue, until either
2826 * we've sent it all or the congestion window limit is reached.
2827 * If doing SACK, the first ACK which comes back for a timeout
2828 * based retransmit packet might feed us FACK information again.
2829 * If so, we use it to avoid unnecessarily retransmissions.
2830 */
tcp_xmit_retransmit_queue(struct sock * sk)2831 void tcp_xmit_retransmit_queue(struct sock *sk)
2832 {
2833 const struct inet_connection_sock *icsk = inet_csk(sk);
2834 struct tcp_sock *tp = tcp_sk(sk);
2835 struct sk_buff *skb;
2836 struct sk_buff *hole = NULL;
2837 u32 max_segs, last_lost;
2838 int mib_idx;
2839 int fwd_rexmitting = 0;
2840
2841 if (!tp->packets_out)
2842 return;
2843
2844 if (!tp->lost_out)
2845 tp->retransmit_high = tp->snd_una;
2846
2847 if (tp->retransmit_skb_hint) {
2848 skb = tp->retransmit_skb_hint;
2849 last_lost = TCP_SKB_CB(skb)->end_seq;
2850 if (after(last_lost, tp->retransmit_high))
2851 last_lost = tp->retransmit_high;
2852 } else {
2853 skb = tcp_write_queue_head(sk);
2854 last_lost = tp->snd_una;
2855 }
2856
2857 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
2858 tcp_for_write_queue_from(skb, sk) {
2859 __u8 sacked;
2860 int segs;
2861
2862 if (skb == tcp_send_head(sk))
2863 break;
2864 /* we could do better than to assign each time */
2865 if (!hole)
2866 tp->retransmit_skb_hint = skb;
2867
2868 segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
2869 if (segs <= 0)
2870 return;
2871 sacked = TCP_SKB_CB(skb)->sacked;
2872 /* In case tcp_shift_skb_data() have aggregated large skbs,
2873 * we need to make sure not sending too bigs TSO packets
2874 */
2875 segs = min_t(int, segs, max_segs);
2876
2877 if (fwd_rexmitting) {
2878 begin_fwd:
2879 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
2880 break;
2881 mib_idx = LINUX_MIB_TCPFORWARDRETRANS;
2882
2883 } else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) {
2884 tp->retransmit_high = last_lost;
2885 if (!tcp_can_forward_retransmit(sk))
2886 break;
2887 /* Backtrack if necessary to non-L'ed skb */
2888 if (hole) {
2889 skb = hole;
2890 hole = NULL;
2891 }
2892 fwd_rexmitting = 1;
2893 goto begin_fwd;
2894
2895 } else if (!(sacked & TCPCB_LOST)) {
2896 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2897 hole = skb;
2898 continue;
2899
2900 } else {
2901 last_lost = TCP_SKB_CB(skb)->end_seq;
2902 if (icsk->icsk_ca_state != TCP_CA_Loss)
2903 mib_idx = LINUX_MIB_TCPFASTRETRANS;
2904 else
2905 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2906 }
2907
2908 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2909 continue;
2910
2911 if (tcp_small_queue_check(sk, skb, 1))
2912 return;
2913
2914 if (tcp_retransmit_skb(sk, skb, segs))
2915 return;
2916
2917 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
2918
2919 if (tcp_in_cwnd_reduction(sk))
2920 tp->prr_out += tcp_skb_pcount(skb);
2921
2922 if (skb == tcp_write_queue_head(sk))
2923 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2924 inet_csk(sk)->icsk_rto,
2925 TCP_RTO_MAX);
2926 }
2927 }
2928
2929 /* We allow to exceed memory limits for FIN packets to expedite
2930 * connection tear down and (memory) recovery.
2931 * Otherwise tcp_send_fin() could be tempted to either delay FIN
2932 * or even be forced to close flow without any FIN.
2933 * In general, we want to allow one skb per socket to avoid hangs
2934 * with edge trigger epoll()
2935 */
sk_forced_mem_schedule(struct sock * sk,int size)2936 void sk_forced_mem_schedule(struct sock *sk, int size)
2937 {
2938 int amt;
2939
2940 if (size <= sk->sk_forward_alloc)
2941 return;
2942 amt = sk_mem_pages(size);
2943 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
2944 sk_memory_allocated_add(sk, amt);
2945
2946 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2947 mem_cgroup_charge_skmem(sk->sk_memcg, amt);
2948 }
2949
2950 /* Send a FIN. The caller locks the socket for us.
2951 * We should try to send a FIN packet really hard, but eventually give up.
2952 */
tcp_send_fin(struct sock * sk)2953 void tcp_send_fin(struct sock *sk)
2954 {
2955 struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
2956 struct tcp_sock *tp = tcp_sk(sk);
2957
2958 /* Optimization, tack on the FIN if we have one skb in write queue and
2959 * this skb was not yet sent, or we are under memory pressure.
2960 * Note: in the latter case, FIN packet will be sent after a timeout,
2961 * as TCP stack thinks it has already been transmitted.
2962 */
2963 if (tskb && (tcp_send_head(sk) || tcp_under_memory_pressure(sk))) {
2964 coalesce:
2965 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
2966 TCP_SKB_CB(tskb)->end_seq++;
2967 tp->write_seq++;
2968 if (!tcp_send_head(sk)) {
2969 /* This means tskb was already sent.
2970 * Pretend we included the FIN on previous transmit.
2971 * We need to set tp->snd_nxt to the value it would have
2972 * if FIN had been sent. This is because retransmit path
2973 * does not change tp->snd_nxt.
2974 */
2975 tp->snd_nxt++;
2976 return;
2977 }
2978 } else {
2979 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
2980 if (unlikely(!skb)) {
2981 if (tskb)
2982 goto coalesce;
2983 return;
2984 }
2985 skb_reserve(skb, MAX_TCP_HEADER);
2986 sk_forced_mem_schedule(sk, skb->truesize);
2987 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
2988 tcp_init_nondata_skb(skb, tp->write_seq,
2989 TCPHDR_ACK | TCPHDR_FIN);
2990 tcp_queue_skb(sk, skb);
2991 }
2992 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
2993 }
2994
2995 /* We get here when a process closes a file descriptor (either due to
2996 * an explicit close() or as a byproduct of exit()'ing) and there
2997 * was unread data in the receive queue. This behavior is recommended
2998 * by RFC 2525, section 2.17. -DaveM
2999 */
tcp_send_active_reset(struct sock * sk,gfp_t priority)3000 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3001 {
3002 struct sk_buff *skb;
3003
3004 /* NOTE: No TCP options attached and we never retransmit this. */
3005 skb = alloc_skb(MAX_TCP_HEADER, priority);
3006 if (!skb) {
3007 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3008 return;
3009 }
3010
3011 /* Reserve space for headers and prepare control bits. */
3012 skb_reserve(skb, MAX_TCP_HEADER);
3013 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3014 TCPHDR_ACK | TCPHDR_RST);
3015 skb_mstamp_get(&skb->skb_mstamp);
3016 /* Send it off. */
3017 if (tcp_transmit_skb(sk, skb, 0, priority))
3018 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3019
3020 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3021 }
3022
3023 /* Send a crossed SYN-ACK during socket establishment.
3024 * WARNING: This routine must only be called when we have already sent
3025 * a SYN packet that crossed the incoming SYN that caused this routine
3026 * to get called. If this assumption fails then the initial rcv_wnd
3027 * and rcv_wscale values will not be correct.
3028 */
tcp_send_synack(struct sock * sk)3029 int tcp_send_synack(struct sock *sk)
3030 {
3031 struct sk_buff *skb;
3032
3033 skb = tcp_write_queue_head(sk);
3034 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3035 pr_debug("%s: wrong queue state\n", __func__);
3036 return -EFAULT;
3037 }
3038 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3039 if (skb_cloned(skb)) {
3040 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
3041 if (!nskb)
3042 return -ENOMEM;
3043 tcp_unlink_write_queue(skb, sk);
3044 __skb_header_release(nskb);
3045 __tcp_add_write_queue_head(sk, nskb);
3046 sk_wmem_free_skb(sk, skb);
3047 sk->sk_wmem_queued += nskb->truesize;
3048 sk_mem_charge(sk, nskb->truesize);
3049 skb = nskb;
3050 }
3051
3052 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3053 tcp_ecn_send_synack(sk, skb);
3054 }
3055 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3056 }
3057
3058 /**
3059 * tcp_make_synack - Prepare a SYN-ACK.
3060 * sk: listener socket
3061 * dst: dst entry attached to the SYNACK
3062 * req: request_sock pointer
3063 *
3064 * Allocate one skb and build a SYNACK packet.
3065 * @dst is consumed : Caller should not use it again.
3066 */
tcp_make_synack(const struct sock * sk,struct dst_entry * dst,struct request_sock * req,struct tcp_fastopen_cookie * foc,enum tcp_synack_type synack_type)3067 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3068 struct request_sock *req,
3069 struct tcp_fastopen_cookie *foc,
3070 enum tcp_synack_type synack_type)
3071 {
3072 struct inet_request_sock *ireq = inet_rsk(req);
3073 const struct tcp_sock *tp = tcp_sk(sk);
3074 struct tcp_md5sig_key *md5 = NULL;
3075 struct tcp_out_options opts;
3076 struct sk_buff *skb;
3077 int tcp_header_size;
3078 struct tcphdr *th;
3079 u16 user_mss;
3080 int mss;
3081
3082 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3083 if (unlikely(!skb)) {
3084 dst_release(dst);
3085 return NULL;
3086 }
3087 /* Reserve space for headers. */
3088 skb_reserve(skb, MAX_TCP_HEADER);
3089
3090 switch (synack_type) {
3091 case TCP_SYNACK_NORMAL:
3092 skb_set_owner_w(skb, req_to_sk(req));
3093 break;
3094 case TCP_SYNACK_COOKIE:
3095 /* Under synflood, we do not attach skb to a socket,
3096 * to avoid false sharing.
3097 */
3098 break;
3099 case TCP_SYNACK_FASTOPEN:
3100 /* sk is a const pointer, because we want to express multiple
3101 * cpu might call us concurrently.
3102 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3103 */
3104 skb_set_owner_w(skb, (struct sock *)sk);
3105 break;
3106 }
3107 skb_dst_set(skb, dst);
3108
3109 mss = dst_metric_advmss(dst);
3110 user_mss = READ_ONCE(tp->rx_opt.user_mss);
3111 if (user_mss && user_mss < mss)
3112 mss = user_mss;
3113
3114 memset(&opts, 0, sizeof(opts));
3115 #ifdef CONFIG_SYN_COOKIES
3116 if (unlikely(req->cookie_ts))
3117 skb->skb_mstamp.stamp_jiffies = cookie_init_timestamp(req);
3118 else
3119 #endif
3120 skb_mstamp_get(&skb->skb_mstamp);
3121
3122 #ifdef CONFIG_TCP_MD5SIG
3123 rcu_read_lock();
3124 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3125 #endif
3126 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3127 tcp_header_size = tcp_synack_options(req, mss, skb, &opts, md5, foc) +
3128 sizeof(*th);
3129
3130 skb_push(skb, tcp_header_size);
3131 skb_reset_transport_header(skb);
3132
3133 th = (struct tcphdr *)skb->data;
3134 memset(th, 0, sizeof(struct tcphdr));
3135 th->syn = 1;
3136 th->ack = 1;
3137 tcp_ecn_make_synack(req, th);
3138 th->source = htons(ireq->ir_num);
3139 th->dest = ireq->ir_rmt_port;
3140 skb->ip_summed = CHECKSUM_PARTIAL;
3141 th->seq = htonl(tcp_rsk(req)->snt_isn);
3142 /* XXX data is queued and acked as is. No buffer/window check */
3143 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3144
3145 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3146 th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3147 tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3148 th->doff = (tcp_header_size >> 2);
3149 __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3150
3151 #ifdef CONFIG_TCP_MD5SIG
3152 /* Okay, we have all we need - do the md5 hash if needed */
3153 if (md5)
3154 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3155 md5, req_to_sk(req), skb);
3156 rcu_read_unlock();
3157 #endif
3158
3159 /* Do not fool tcpdump (if any), clean our debris */
3160 skb->tstamp.tv64 = 0;
3161 return skb;
3162 }
3163 EXPORT_SYMBOL(tcp_make_synack);
3164
tcp_ca_dst_init(struct sock * sk,const struct dst_entry * dst)3165 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3166 {
3167 struct inet_connection_sock *icsk = inet_csk(sk);
3168 const struct tcp_congestion_ops *ca;
3169 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3170
3171 if (ca_key == TCP_CA_UNSPEC)
3172 return;
3173
3174 rcu_read_lock();
3175 ca = tcp_ca_find_key(ca_key);
3176 if (likely(ca && try_module_get(ca->owner))) {
3177 module_put(icsk->icsk_ca_ops->owner);
3178 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3179 icsk->icsk_ca_ops = ca;
3180 }
3181 rcu_read_unlock();
3182 }
3183
3184 /* Do all connect socket setups that can be done AF independent. */
tcp_connect_init(struct sock * sk)3185 static void tcp_connect_init(struct sock *sk)
3186 {
3187 const struct dst_entry *dst = __sk_dst_get(sk);
3188 struct tcp_sock *tp = tcp_sk(sk);
3189 __u8 rcv_wscale;
3190
3191 /* We'll fix this up when we get a response from the other end.
3192 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3193 */
3194 tp->tcp_header_len = sizeof(struct tcphdr) +
3195 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
3196
3197 #ifdef CONFIG_TCP_MD5SIG
3198 if (tp->af_specific->md5_lookup(sk, sk))
3199 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3200 #endif
3201
3202 /* If user gave his TCP_MAXSEG, record it to clamp */
3203 if (tp->rx_opt.user_mss)
3204 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3205 tp->max_window = 0;
3206 tcp_mtup_init(sk);
3207 tcp_sync_mss(sk, dst_mtu(dst));
3208
3209 tcp_ca_dst_init(sk, dst);
3210
3211 if (!tp->window_clamp)
3212 tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3213 tp->advmss = dst_metric_advmss(dst);
3214 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss)
3215 tp->advmss = tp->rx_opt.user_mss;
3216
3217 tcp_initialize_rcv_mss(sk);
3218
3219 /* limit the window selection if the user enforce a smaller rx buffer */
3220 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3221 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3222 tp->window_clamp = tcp_full_space(sk);
3223
3224 tcp_select_initial_window(tcp_full_space(sk),
3225 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3226 &tp->rcv_wnd,
3227 &tp->window_clamp,
3228 sysctl_tcp_window_scaling,
3229 &rcv_wscale,
3230 dst_metric(dst, RTAX_INITRWND));
3231
3232 tp->rx_opt.rcv_wscale = rcv_wscale;
3233 tp->rcv_ssthresh = tp->rcv_wnd;
3234
3235 sk->sk_err = 0;
3236 sock_reset_flag(sk, SOCK_DONE);
3237 tp->snd_wnd = 0;
3238 tcp_init_wl(tp, 0);
3239 tp->snd_una = tp->write_seq;
3240 tp->snd_sml = tp->write_seq;
3241 tp->snd_up = tp->write_seq;
3242 tp->snd_nxt = tp->write_seq;
3243
3244 if (likely(!tp->repair))
3245 tp->rcv_nxt = 0;
3246 else
3247 tp->rcv_tstamp = tcp_time_stamp;
3248 tp->rcv_wup = tp->rcv_nxt;
3249 tp->copied_seq = tp->rcv_nxt;
3250
3251 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
3252 inet_csk(sk)->icsk_retransmits = 0;
3253 tcp_clear_retrans(tp);
3254 }
3255
tcp_connect_queue_skb(struct sock * sk,struct sk_buff * skb)3256 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3257 {
3258 struct tcp_sock *tp = tcp_sk(sk);
3259 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3260
3261 tcb->end_seq += skb->len;
3262 __skb_header_release(skb);
3263 __tcp_add_write_queue_tail(sk, skb);
3264 sk->sk_wmem_queued += skb->truesize;
3265 sk_mem_charge(sk, skb->truesize);
3266 tp->write_seq = tcb->end_seq;
3267 tp->packets_out += tcp_skb_pcount(skb);
3268 }
3269
3270 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3271 * queue a data-only packet after the regular SYN, such that regular SYNs
3272 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3273 * only the SYN sequence, the data are retransmitted in the first ACK.
3274 * If cookie is not cached or other error occurs, falls back to send a
3275 * regular SYN with Fast Open cookie request option.
3276 */
tcp_send_syn_data(struct sock * sk,struct sk_buff * syn)3277 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3278 {
3279 struct tcp_sock *tp = tcp_sk(sk);
3280 struct tcp_fastopen_request *fo = tp->fastopen_req;
3281 int space, err = 0;
3282 struct sk_buff *syn_data;
3283
3284 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
3285 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3286 goto fallback;
3287
3288 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3289 * user-MSS. Reserve maximum option space for middleboxes that add
3290 * private TCP options. The cost is reduced data space in SYN :(
3291 */
3292 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp)
3293 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3294 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3295 MAX_TCP_OPTION_SPACE;
3296
3297 space = min_t(size_t, space, fo->size);
3298
3299 /* limit to order-0 allocations */
3300 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3301
3302 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3303 if (!syn_data)
3304 goto fallback;
3305 syn_data->ip_summed = CHECKSUM_PARTIAL;
3306 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3307 if (space) {
3308 int copied = copy_from_iter(skb_put(syn_data, space), space,
3309 &fo->data->msg_iter);
3310 if (unlikely(!copied)) {
3311 kfree_skb(syn_data);
3312 goto fallback;
3313 }
3314 if (copied != space) {
3315 skb_trim(syn_data, copied);
3316 space = copied;
3317 }
3318 }
3319 /* No more data pending in inet_wait_for_connect() */
3320 if (space == fo->size)
3321 fo->data = NULL;
3322 fo->copied = space;
3323
3324 tcp_connect_queue_skb(sk, syn_data);
3325
3326 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3327
3328 syn->skb_mstamp = syn_data->skb_mstamp;
3329
3330 /* Now full SYN+DATA was cloned and sent (or not),
3331 * remove the SYN from the original skb (syn_data)
3332 * we keep in write queue in case of a retransmit, as we
3333 * also have the SYN packet (with no data) in the same queue.
3334 */
3335 TCP_SKB_CB(syn_data)->seq++;
3336 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3337 if (!err) {
3338 tp->syn_data = (fo->copied > 0);
3339 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3340 goto done;
3341 }
3342
3343 /* data was not sent, this is our new send_head */
3344 sk->sk_send_head = syn_data;
3345 tp->packets_out -= tcp_skb_pcount(syn_data);
3346
3347 fallback:
3348 /* Send a regular SYN with Fast Open cookie request option */
3349 if (fo->cookie.len > 0)
3350 fo->cookie.len = 0;
3351 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3352 if (err)
3353 tp->syn_fastopen = 0;
3354 done:
3355 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
3356 return err;
3357 }
3358
3359 /* Build a SYN and send it off. */
tcp_connect(struct sock * sk)3360 int tcp_connect(struct sock *sk)
3361 {
3362 struct tcp_sock *tp = tcp_sk(sk);
3363 struct sk_buff *buff;
3364 int err;
3365
3366 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3367 return -EHOSTUNREACH; /* Routing failure or similar. */
3368
3369 tcp_connect_init(sk);
3370
3371 if (unlikely(tp->repair)) {
3372 tcp_finish_connect(sk, NULL);
3373 return 0;
3374 }
3375
3376 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3377 if (unlikely(!buff))
3378 return -ENOBUFS;
3379
3380 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3381 tp->retrans_stamp = tcp_time_stamp;
3382 tcp_connect_queue_skb(sk, buff);
3383 tcp_ecn_send_syn(sk, buff);
3384
3385 /* Send off SYN; include data in Fast Open. */
3386 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3387 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3388 if (err == -ECONNREFUSED)
3389 return err;
3390
3391 /* We change tp->snd_nxt after the tcp_transmit_skb() call
3392 * in order to make this packet get counted in tcpOutSegs.
3393 */
3394 tp->snd_nxt = tp->write_seq;
3395 tp->pushed_seq = tp->write_seq;
3396 buff = tcp_send_head(sk);
3397 if (unlikely(buff)) {
3398 tp->snd_nxt = TCP_SKB_CB(buff)->seq;
3399 tp->pushed_seq = TCP_SKB_CB(buff)->seq;
3400 }
3401 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3402
3403 /* Timer for repeating the SYN until an answer. */
3404 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3405 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3406 return 0;
3407 }
3408 EXPORT_SYMBOL(tcp_connect);
3409
3410 /* Send out a delayed ack, the caller does the policy checking
3411 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
3412 * for details.
3413 */
tcp_send_delayed_ack(struct sock * sk)3414 void tcp_send_delayed_ack(struct sock *sk)
3415 {
3416 struct inet_connection_sock *icsk = inet_csk(sk);
3417 int ato = icsk->icsk_ack.ato;
3418 unsigned long timeout;
3419
3420 tcp_ca_event(sk, CA_EVENT_DELAYED_ACK);
3421
3422 if (ato > TCP_DELACK_MIN) {
3423 const struct tcp_sock *tp = tcp_sk(sk);
3424 int max_ato = HZ / 2;
3425
3426 if (icsk->icsk_ack.pingpong ||
3427 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3428 max_ato = TCP_DELACK_MAX;
3429
3430 /* Slow path, intersegment interval is "high". */
3431
3432 /* If some rtt estimate is known, use it to bound delayed ack.
3433 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3434 * directly.
3435 */
3436 if (tp->srtt_us) {
3437 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3438 TCP_DELACK_MIN);
3439
3440 if (rtt < max_ato)
3441 max_ato = rtt;
3442 }
3443
3444 ato = min(ato, max_ato);
3445 }
3446
3447 /* Stay within the limit we were given */
3448 timeout = jiffies + ato;
3449
3450 /* Use new timeout only if there wasn't a older one earlier. */
3451 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3452 /* If delack timer was blocked or is about to expire,
3453 * send ACK now.
3454 */
3455 if (icsk->icsk_ack.blocked ||
3456 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3457 tcp_send_ack(sk);
3458 return;
3459 }
3460
3461 if (!time_before(timeout, icsk->icsk_ack.timeout))
3462 timeout = icsk->icsk_ack.timeout;
3463 }
3464 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3465 icsk->icsk_ack.timeout = timeout;
3466 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3467 }
3468
3469 /* This routine sends an ack and also updates the window. */
tcp_send_ack(struct sock * sk)3470 void tcp_send_ack(struct sock *sk)
3471 {
3472 struct sk_buff *buff;
3473
3474 /* If we have been reset, we may not send again. */
3475 if (sk->sk_state == TCP_CLOSE)
3476 return;
3477
3478 tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK);
3479
3480 /* We are not putting this on the write queue, so
3481 * tcp_transmit_skb() will set the ownership to this
3482 * sock.
3483 */
3484 buff = alloc_skb(MAX_TCP_HEADER,
3485 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3486 if (unlikely(!buff)) {
3487 inet_csk_schedule_ack(sk);
3488 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3489 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3490 TCP_DELACK_MAX, TCP_RTO_MAX);
3491 return;
3492 }
3493
3494 /* Reserve space for headers and prepare control bits. */
3495 skb_reserve(buff, MAX_TCP_HEADER);
3496 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3497
3498 /* We do not want pure acks influencing TCP Small Queues or fq/pacing
3499 * too much.
3500 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3501 * We also avoid tcp_wfree() overhead (cache line miss accessing
3502 * tp->tsq_flags) by using regular sock_wfree()
3503 */
3504 skb_set_tcp_pure_ack(buff);
3505
3506 /* Send it off, this clears delayed acks for us. */
3507 skb_mstamp_get(&buff->skb_mstamp);
3508 tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0);
3509 }
3510 EXPORT_SYMBOL_GPL(tcp_send_ack);
3511
3512 /* This routine sends a packet with an out of date sequence
3513 * number. It assumes the other end will try to ack it.
3514 *
3515 * Question: what should we make while urgent mode?
3516 * 4.4BSD forces sending single byte of data. We cannot send
3517 * out of window data, because we have SND.NXT==SND.MAX...
3518 *
3519 * Current solution: to send TWO zero-length segments in urgent mode:
3520 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3521 * out-of-date with SND.UNA-1 to probe window.
3522 */
tcp_xmit_probe_skb(struct sock * sk,int urgent,int mib)3523 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3524 {
3525 struct tcp_sock *tp = tcp_sk(sk);
3526 struct sk_buff *skb;
3527
3528 /* We don't queue it, tcp_transmit_skb() sets ownership. */
3529 skb = alloc_skb(MAX_TCP_HEADER,
3530 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3531 if (!skb)
3532 return -1;
3533
3534 /* Reserve space for headers and set control bits. */
3535 skb_reserve(skb, MAX_TCP_HEADER);
3536 /* Use a previous sequence. This should cause the other
3537 * end to send an ack. Don't queue or clone SKB, just
3538 * send it.
3539 */
3540 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3541 skb_mstamp_get(&skb->skb_mstamp);
3542 NET_INC_STATS(sock_net(sk), mib);
3543 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
3544 }
3545
tcp_send_window_probe(struct sock * sk)3546 void tcp_send_window_probe(struct sock *sk)
3547 {
3548 if (sk->sk_state == TCP_ESTABLISHED) {
3549 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3550 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
3551 }
3552 }
3553
3554 /* Initiate keepalive or window probe from timer. */
tcp_write_wakeup(struct sock * sk,int mib)3555 int tcp_write_wakeup(struct sock *sk, int mib)
3556 {
3557 struct tcp_sock *tp = tcp_sk(sk);
3558 struct sk_buff *skb;
3559
3560 if (sk->sk_state == TCP_CLOSE)
3561 return -1;
3562
3563 skb = tcp_send_head(sk);
3564 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3565 int err;
3566 unsigned int mss = tcp_current_mss(sk);
3567 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3568
3569 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3570 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3571
3572 /* We are probing the opening of a window
3573 * but the window size is != 0
3574 * must have been a result SWS avoidance ( sender )
3575 */
3576 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3577 skb->len > mss) {
3578 seg_size = min(seg_size, mss);
3579 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3580 if (tcp_fragment(sk, skb, seg_size, mss, GFP_ATOMIC))
3581 return -1;
3582 } else if (!tcp_skb_pcount(skb))
3583 tcp_set_skb_tso_segs(skb, mss);
3584
3585 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3586 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3587 if (!err)
3588 tcp_event_new_data_sent(sk, skb);
3589 return err;
3590 } else {
3591 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3592 tcp_xmit_probe_skb(sk, 1, mib);
3593 return tcp_xmit_probe_skb(sk, 0, mib);
3594 }
3595 }
3596
3597 /* A window probe timeout has occurred. If window is not closed send
3598 * a partial packet else a zero probe.
3599 */
tcp_send_probe0(struct sock * sk)3600 void tcp_send_probe0(struct sock *sk)
3601 {
3602 struct inet_connection_sock *icsk = inet_csk(sk);
3603 struct tcp_sock *tp = tcp_sk(sk);
3604 struct net *net = sock_net(sk);
3605 unsigned long probe_max;
3606 int err;
3607
3608 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
3609
3610 if (tp->packets_out || !tcp_send_head(sk)) {
3611 /* Cancel probe timer, if it is not required. */
3612 icsk->icsk_probes_out = 0;
3613 icsk->icsk_backoff = 0;
3614 return;
3615 }
3616
3617 if (err <= 0) {
3618 if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
3619 icsk->icsk_backoff++;
3620 icsk->icsk_probes_out++;
3621 probe_max = TCP_RTO_MAX;
3622 } else {
3623 /* If packet was not sent due to local congestion,
3624 * do not backoff and do not remember icsk_probes_out.
3625 * Let local senders to fight for local resources.
3626 *
3627 * Use accumulated backoff yet.
3628 */
3629 if (!icsk->icsk_probes_out)
3630 icsk->icsk_probes_out = 1;
3631 probe_max = TCP_RESOURCE_PROBE_INTERVAL;
3632 }
3633 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3634 tcp_probe0_when(sk, probe_max),
3635 TCP_RTO_MAX);
3636 }
3637
tcp_rtx_synack(const struct sock * sk,struct request_sock * req)3638 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
3639 {
3640 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3641 struct flowi fl;
3642 int res;
3643
3644 tcp_rsk(req)->txhash = net_tx_rndhash();
3645 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL);
3646 if (!res) {
3647 __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
3648 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3649 if (unlikely(tcp_passive_fastopen(sk)))
3650 tcp_sk(sk)->total_retrans++;
3651 }
3652 return res;
3653 }
3654 EXPORT_SYMBOL(tcp_rtx_synack);
3655