• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *	Linux INET6 implementation
3  *	Forwarding Information Database
4  *
5  *	Authors:
6  *	Pedro Roque		<roque@di.fc.ul.pt>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *      modify it under the terms of the GNU General Public License
10  *      as published by the Free Software Foundation; either version
11  *      2 of the License, or (at your option) any later version.
12  *
13  *	Changes:
14  *	Yuji SEKIYA @USAGI:	Support default route on router node;
15  *				remove ip6_null_entry from the top of
16  *				routing table.
17  *	Ville Nuorvala:		Fixed routing subtrees.
18  */
19 
20 #define pr_fmt(fmt) "IPv6: " fmt
21 
22 #include <linux/errno.h>
23 #include <linux/types.h>
24 #include <linux/net.h>
25 #include <linux/route.h>
26 #include <linux/netdevice.h>
27 #include <linux/in6.h>
28 #include <linux/init.h>
29 #include <linux/list.h>
30 #include <linux/slab.h>
31 
32 #include <net/ipv6.h>
33 #include <net/ndisc.h>
34 #include <net/addrconf.h>
35 #include <net/lwtunnel.h>
36 
37 #include <net/ip6_fib.h>
38 #include <net/ip6_route.h>
39 
40 #define RT6_DEBUG 2
41 
42 #if RT6_DEBUG >= 3
43 #define RT6_TRACE(x...) pr_debug(x)
44 #else
45 #define RT6_TRACE(x...) do { ; } while (0)
46 #endif
47 
48 static struct kmem_cache *fib6_node_kmem __read_mostly;
49 
50 struct fib6_cleaner {
51 	struct fib6_walker w;
52 	struct net *net;
53 	int (*func)(struct rt6_info *, void *arg);
54 	int sernum;
55 	void *arg;
56 };
57 
58 #ifdef CONFIG_IPV6_SUBTREES
59 #define FWS_INIT FWS_S
60 #else
61 #define FWS_INIT FWS_L
62 #endif
63 
64 static void fib6_prune_clones(struct net *net, struct fib6_node *fn);
65 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn);
66 static struct fib6_node *fib6_repair_tree(struct net *net, struct fib6_node *fn);
67 static int fib6_walk(struct net *net, struct fib6_walker *w);
68 static int fib6_walk_continue(struct fib6_walker *w);
69 
70 /*
71  *	A routing update causes an increase of the serial number on the
72  *	affected subtree. This allows for cached routes to be asynchronously
73  *	tested when modifications are made to the destination cache as a
74  *	result of redirects, path MTU changes, etc.
75  */
76 
77 static void fib6_gc_timer_cb(unsigned long arg);
78 
79 #define FOR_WALKERS(net, w) \
80 	list_for_each_entry(w, &(net)->ipv6.fib6_walkers, lh)
81 
fib6_walker_link(struct net * net,struct fib6_walker * w)82 static void fib6_walker_link(struct net *net, struct fib6_walker *w)
83 {
84 	write_lock_bh(&net->ipv6.fib6_walker_lock);
85 	list_add(&w->lh, &net->ipv6.fib6_walkers);
86 	write_unlock_bh(&net->ipv6.fib6_walker_lock);
87 }
88 
fib6_walker_unlink(struct net * net,struct fib6_walker * w)89 static void fib6_walker_unlink(struct net *net, struct fib6_walker *w)
90 {
91 	write_lock_bh(&net->ipv6.fib6_walker_lock);
92 	list_del(&w->lh);
93 	write_unlock_bh(&net->ipv6.fib6_walker_lock);
94 }
95 
fib6_new_sernum(struct net * net)96 static int fib6_new_sernum(struct net *net)
97 {
98 	int new, old;
99 
100 	do {
101 		old = atomic_read(&net->ipv6.fib6_sernum);
102 		new = old < INT_MAX ? old + 1 : 1;
103 	} while (atomic_cmpxchg(&net->ipv6.fib6_sernum,
104 				old, new) != old);
105 	return new;
106 }
107 
108 enum {
109 	FIB6_NO_SERNUM_CHANGE = 0,
110 };
111 
112 /*
113  *	Auxiliary address test functions for the radix tree.
114  *
115  *	These assume a 32bit processor (although it will work on
116  *	64bit processors)
117  */
118 
119 /*
120  *	test bit
121  */
122 #if defined(__LITTLE_ENDIAN)
123 # define BITOP_BE32_SWIZZLE	(0x1F & ~7)
124 #else
125 # define BITOP_BE32_SWIZZLE	0
126 #endif
127 
addr_bit_set(const void * token,int fn_bit)128 static __be32 addr_bit_set(const void *token, int fn_bit)
129 {
130 	const __be32 *addr = token;
131 	/*
132 	 * Here,
133 	 *	1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
134 	 * is optimized version of
135 	 *	htonl(1 << ((~fn_bit)&0x1F))
136 	 * See include/asm-generic/bitops/le.h.
137 	 */
138 	return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
139 	       addr[fn_bit >> 5];
140 }
141 
node_alloc(void)142 static struct fib6_node *node_alloc(void)
143 {
144 	struct fib6_node *fn;
145 
146 	fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
147 
148 	return fn;
149 }
150 
node_free_immediate(struct fib6_node * fn)151 static void node_free_immediate(struct fib6_node *fn)
152 {
153 	kmem_cache_free(fib6_node_kmem, fn);
154 }
155 
node_free_rcu(struct rcu_head * head)156 static void node_free_rcu(struct rcu_head *head)
157 {
158 	struct fib6_node *fn = container_of(head, struct fib6_node, rcu);
159 
160 	kmem_cache_free(fib6_node_kmem, fn);
161 }
162 
node_free(struct fib6_node * fn)163 static void node_free(struct fib6_node *fn)
164 {
165 	call_rcu(&fn->rcu, node_free_rcu);
166 }
167 
rt6_rcu_free(struct rt6_info * rt)168 static void rt6_rcu_free(struct rt6_info *rt)
169 {
170 	call_rcu(&rt->dst.rcu_head, dst_rcu_free);
171 }
172 
rt6_free_pcpu(struct rt6_info * non_pcpu_rt)173 static void rt6_free_pcpu(struct rt6_info *non_pcpu_rt)
174 {
175 	int cpu;
176 
177 	if (!non_pcpu_rt->rt6i_pcpu)
178 		return;
179 
180 	for_each_possible_cpu(cpu) {
181 		struct rt6_info **ppcpu_rt;
182 		struct rt6_info *pcpu_rt;
183 
184 		ppcpu_rt = per_cpu_ptr(non_pcpu_rt->rt6i_pcpu, cpu);
185 		pcpu_rt = *ppcpu_rt;
186 		if (pcpu_rt) {
187 			rt6_rcu_free(pcpu_rt);
188 			*ppcpu_rt = NULL;
189 		}
190 	}
191 
192 	free_percpu(non_pcpu_rt->rt6i_pcpu);
193 	non_pcpu_rt->rt6i_pcpu = NULL;
194 }
195 
rt6_release(struct rt6_info * rt)196 static void rt6_release(struct rt6_info *rt)
197 {
198 	if (atomic_dec_and_test(&rt->rt6i_ref)) {
199 		rt6_free_pcpu(rt);
200 		rt6_rcu_free(rt);
201 	}
202 }
203 
fib6_free_table(struct fib6_table * table)204 static void fib6_free_table(struct fib6_table *table)
205 {
206 	inetpeer_invalidate_tree(&table->tb6_peers);
207 	kfree(table);
208 }
209 
fib6_link_table(struct net * net,struct fib6_table * tb)210 static void fib6_link_table(struct net *net, struct fib6_table *tb)
211 {
212 	unsigned int h;
213 
214 	/*
215 	 * Initialize table lock at a single place to give lockdep a key,
216 	 * tables aren't visible prior to being linked to the list.
217 	 */
218 	rwlock_init(&tb->tb6_lock);
219 
220 	h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
221 
222 	/*
223 	 * No protection necessary, this is the only list mutatation
224 	 * operation, tables never disappear once they exist.
225 	 */
226 	hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
227 }
228 
229 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
230 
fib6_alloc_table(struct net * net,u32 id)231 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
232 {
233 	struct fib6_table *table;
234 
235 	table = kzalloc(sizeof(*table), GFP_ATOMIC);
236 	if (table) {
237 		table->tb6_id = id;
238 		table->tb6_root.leaf = net->ipv6.ip6_null_entry;
239 		table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
240 		inet_peer_base_init(&table->tb6_peers);
241 	}
242 
243 	return table;
244 }
245 
fib6_new_table(struct net * net,u32 id)246 struct fib6_table *fib6_new_table(struct net *net, u32 id)
247 {
248 	struct fib6_table *tb;
249 
250 	if (id == 0)
251 		id = RT6_TABLE_MAIN;
252 	tb = fib6_get_table(net, id);
253 	if (tb)
254 		return tb;
255 
256 	tb = fib6_alloc_table(net, id);
257 	if (tb)
258 		fib6_link_table(net, tb);
259 
260 	return tb;
261 }
262 EXPORT_SYMBOL_GPL(fib6_new_table);
263 
fib6_get_table(struct net * net,u32 id)264 struct fib6_table *fib6_get_table(struct net *net, u32 id)
265 {
266 	struct fib6_table *tb;
267 	struct hlist_head *head;
268 	unsigned int h;
269 
270 	if (id == 0)
271 		id = RT6_TABLE_MAIN;
272 	h = id & (FIB6_TABLE_HASHSZ - 1);
273 	rcu_read_lock();
274 	head = &net->ipv6.fib_table_hash[h];
275 	hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
276 		if (tb->tb6_id == id) {
277 			rcu_read_unlock();
278 			return tb;
279 		}
280 	}
281 	rcu_read_unlock();
282 
283 	return NULL;
284 }
285 EXPORT_SYMBOL_GPL(fib6_get_table);
286 
fib6_tables_init(struct net * net)287 static void __net_init fib6_tables_init(struct net *net)
288 {
289 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
290 	fib6_link_table(net, net->ipv6.fib6_local_tbl);
291 }
292 #else
293 
fib6_new_table(struct net * net,u32 id)294 struct fib6_table *fib6_new_table(struct net *net, u32 id)
295 {
296 	return fib6_get_table(net, id);
297 }
298 
fib6_get_table(struct net * net,u32 id)299 struct fib6_table *fib6_get_table(struct net *net, u32 id)
300 {
301 	  return net->ipv6.fib6_main_tbl;
302 }
303 
fib6_rule_lookup(struct net * net,struct flowi6 * fl6,int flags,pol_lookup_t lookup)304 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
305 				   int flags, pol_lookup_t lookup)
306 {
307 	struct rt6_info *rt;
308 
309 	rt = lookup(net, net->ipv6.fib6_main_tbl, fl6, flags);
310 	if (rt->dst.error == -EAGAIN) {
311 		ip6_rt_put(rt);
312 		rt = net->ipv6.ip6_null_entry;
313 		dst_hold(&rt->dst);
314 	}
315 
316 	return &rt->dst;
317 }
318 
fib6_tables_init(struct net * net)319 static void __net_init fib6_tables_init(struct net *net)
320 {
321 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
322 }
323 
324 #endif
325 
fib6_dump_node(struct fib6_walker * w)326 static int fib6_dump_node(struct fib6_walker *w)
327 {
328 	int res;
329 	struct rt6_info *rt;
330 
331 	for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
332 		res = rt6_dump_route(rt, w->args);
333 		if (res < 0) {
334 			/* Frame is full, suspend walking */
335 			w->leaf = rt;
336 			return 1;
337 		}
338 	}
339 	w->leaf = NULL;
340 	return 0;
341 }
342 
fib6_dump_end(struct netlink_callback * cb)343 static void fib6_dump_end(struct netlink_callback *cb)
344 {
345 	struct net *net = sock_net(cb->skb->sk);
346 	struct fib6_walker *w = (void *)cb->args[2];
347 
348 	if (w) {
349 		if (cb->args[4]) {
350 			cb->args[4] = 0;
351 			fib6_walker_unlink(net, w);
352 		}
353 		cb->args[2] = 0;
354 		kfree(w);
355 	}
356 	cb->done = (void *)cb->args[3];
357 	cb->args[1] = 3;
358 }
359 
fib6_dump_done(struct netlink_callback * cb)360 static int fib6_dump_done(struct netlink_callback *cb)
361 {
362 	fib6_dump_end(cb);
363 	return cb->done ? cb->done(cb) : 0;
364 }
365 
fib6_dump_table(struct fib6_table * table,struct sk_buff * skb,struct netlink_callback * cb)366 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
367 			   struct netlink_callback *cb)
368 {
369 	struct net *net = sock_net(skb->sk);
370 	struct fib6_walker *w;
371 	int res;
372 
373 	w = (void *)cb->args[2];
374 	w->root = &table->tb6_root;
375 
376 	if (cb->args[4] == 0) {
377 		w->count = 0;
378 		w->skip = 0;
379 
380 		read_lock_bh(&table->tb6_lock);
381 		res = fib6_walk(net, w);
382 		read_unlock_bh(&table->tb6_lock);
383 		if (res > 0) {
384 			cb->args[4] = 1;
385 			cb->args[5] = w->root->fn_sernum;
386 		}
387 	} else {
388 		if (cb->args[5] != w->root->fn_sernum) {
389 			/* Begin at the root if the tree changed */
390 			cb->args[5] = w->root->fn_sernum;
391 			w->state = FWS_INIT;
392 			w->node = w->root;
393 			w->skip = w->count;
394 		} else
395 			w->skip = 0;
396 
397 		read_lock_bh(&table->tb6_lock);
398 		res = fib6_walk_continue(w);
399 		read_unlock_bh(&table->tb6_lock);
400 		if (res <= 0) {
401 			fib6_walker_unlink(net, w);
402 			cb->args[4] = 0;
403 		}
404 	}
405 
406 	return res;
407 }
408 
inet6_dump_fib(struct sk_buff * skb,struct netlink_callback * cb)409 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
410 {
411 	struct net *net = sock_net(skb->sk);
412 	unsigned int h, s_h;
413 	unsigned int e = 0, s_e;
414 	struct rt6_rtnl_dump_arg arg;
415 	struct fib6_walker *w;
416 	struct fib6_table *tb;
417 	struct hlist_head *head;
418 	int res = 0;
419 
420 	s_h = cb->args[0];
421 	s_e = cb->args[1];
422 
423 	w = (void *)cb->args[2];
424 	if (!w) {
425 		/* New dump:
426 		 *
427 		 * 1. hook callback destructor.
428 		 */
429 		cb->args[3] = (long)cb->done;
430 		cb->done = fib6_dump_done;
431 
432 		/*
433 		 * 2. allocate and initialize walker.
434 		 */
435 		w = kzalloc(sizeof(*w), GFP_ATOMIC);
436 		if (!w)
437 			return -ENOMEM;
438 		w->func = fib6_dump_node;
439 		cb->args[2] = (long)w;
440 	}
441 
442 	arg.skb = skb;
443 	arg.cb = cb;
444 	arg.net = net;
445 	w->args = &arg;
446 
447 	rcu_read_lock();
448 	for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
449 		e = 0;
450 		head = &net->ipv6.fib_table_hash[h];
451 		hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
452 			if (e < s_e)
453 				goto next;
454 			res = fib6_dump_table(tb, skb, cb);
455 			if (res != 0)
456 				goto out;
457 next:
458 			e++;
459 		}
460 	}
461 out:
462 	rcu_read_unlock();
463 	cb->args[1] = e;
464 	cb->args[0] = h;
465 
466 	res = res < 0 ? res : skb->len;
467 	if (res <= 0)
468 		fib6_dump_end(cb);
469 	return res;
470 }
471 
472 /*
473  *	Routing Table
474  *
475  *	return the appropriate node for a routing tree "add" operation
476  *	by either creating and inserting or by returning an existing
477  *	node.
478  */
479 
fib6_add_1(struct fib6_node * root,struct in6_addr * addr,int plen,int offset,int allow_create,int replace_required,int sernum)480 static struct fib6_node *fib6_add_1(struct fib6_node *root,
481 				     struct in6_addr *addr, int plen,
482 				     int offset, int allow_create,
483 				     int replace_required, int sernum)
484 {
485 	struct fib6_node *fn, *in, *ln;
486 	struct fib6_node *pn = NULL;
487 	struct rt6key *key;
488 	int	bit;
489 	__be32	dir = 0;
490 
491 	RT6_TRACE("fib6_add_1\n");
492 
493 	/* insert node in tree */
494 
495 	fn = root;
496 
497 	do {
498 		key = (struct rt6key *)((u8 *)fn->leaf + offset);
499 
500 		/*
501 		 *	Prefix match
502 		 */
503 		if (plen < fn->fn_bit ||
504 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
505 			if (!allow_create) {
506 				if (replace_required) {
507 					pr_warn("Can't replace route, no match found\n");
508 					return ERR_PTR(-ENOENT);
509 				}
510 				pr_warn("NLM_F_CREATE should be set when creating new route\n");
511 			}
512 			goto insert_above;
513 		}
514 
515 		/*
516 		 *	Exact match ?
517 		 */
518 
519 		if (plen == fn->fn_bit) {
520 			/* clean up an intermediate node */
521 			if (!(fn->fn_flags & RTN_RTINFO)) {
522 				rt6_release(fn->leaf);
523 				fn->leaf = NULL;
524 			}
525 
526 			fn->fn_sernum = sernum;
527 
528 			return fn;
529 		}
530 
531 		/*
532 		 *	We have more bits to go
533 		 */
534 
535 		/* Try to walk down on tree. */
536 		fn->fn_sernum = sernum;
537 		dir = addr_bit_set(addr, fn->fn_bit);
538 		pn = fn;
539 		fn = dir ? fn->right : fn->left;
540 	} while (fn);
541 
542 	if (!allow_create) {
543 		/* We should not create new node because
544 		 * NLM_F_REPLACE was specified without NLM_F_CREATE
545 		 * I assume it is safe to require NLM_F_CREATE when
546 		 * REPLACE flag is used! Later we may want to remove the
547 		 * check for replace_required, because according
548 		 * to netlink specification, NLM_F_CREATE
549 		 * MUST be specified if new route is created.
550 		 * That would keep IPv6 consistent with IPv4
551 		 */
552 		if (replace_required) {
553 			pr_warn("Can't replace route, no match found\n");
554 			return ERR_PTR(-ENOENT);
555 		}
556 		pr_warn("NLM_F_CREATE should be set when creating new route\n");
557 	}
558 	/*
559 	 *	We walked to the bottom of tree.
560 	 *	Create new leaf node without children.
561 	 */
562 
563 	ln = node_alloc();
564 
565 	if (!ln)
566 		return ERR_PTR(-ENOMEM);
567 	ln->fn_bit = plen;
568 
569 	ln->parent = pn;
570 	ln->fn_sernum = sernum;
571 
572 	if (dir)
573 		pn->right = ln;
574 	else
575 		pn->left  = ln;
576 
577 	return ln;
578 
579 
580 insert_above:
581 	/*
582 	 * split since we don't have a common prefix anymore or
583 	 * we have a less significant route.
584 	 * we've to insert an intermediate node on the list
585 	 * this new node will point to the one we need to create
586 	 * and the current
587 	 */
588 
589 	pn = fn->parent;
590 
591 	/* find 1st bit in difference between the 2 addrs.
592 
593 	   See comment in __ipv6_addr_diff: bit may be an invalid value,
594 	   but if it is >= plen, the value is ignored in any case.
595 	 */
596 
597 	bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr));
598 
599 	/*
600 	 *		(intermediate)[in]
601 	 *	          /	   \
602 	 *	(new leaf node)[ln] (old node)[fn]
603 	 */
604 	if (plen > bit) {
605 		in = node_alloc();
606 		ln = node_alloc();
607 
608 		if (!in || !ln) {
609 			if (in)
610 				node_free_immediate(in);
611 			if (ln)
612 				node_free_immediate(ln);
613 			return ERR_PTR(-ENOMEM);
614 		}
615 
616 		/*
617 		 * new intermediate node.
618 		 * RTN_RTINFO will
619 		 * be off since that an address that chooses one of
620 		 * the branches would not match less specific routes
621 		 * in the other branch
622 		 */
623 
624 		in->fn_bit = bit;
625 
626 		in->parent = pn;
627 		in->leaf = fn->leaf;
628 		atomic_inc(&in->leaf->rt6i_ref);
629 
630 		in->fn_sernum = sernum;
631 
632 		/* update parent pointer */
633 		if (dir)
634 			pn->right = in;
635 		else
636 			pn->left  = in;
637 
638 		ln->fn_bit = plen;
639 
640 		ln->parent = in;
641 		fn->parent = in;
642 
643 		ln->fn_sernum = sernum;
644 
645 		if (addr_bit_set(addr, bit)) {
646 			in->right = ln;
647 			in->left  = fn;
648 		} else {
649 			in->left  = ln;
650 			in->right = fn;
651 		}
652 	} else { /* plen <= bit */
653 
654 		/*
655 		 *		(new leaf node)[ln]
656 		 *	          /	   \
657 		 *	     (old node)[fn] NULL
658 		 */
659 
660 		ln = node_alloc();
661 
662 		if (!ln)
663 			return ERR_PTR(-ENOMEM);
664 
665 		ln->fn_bit = plen;
666 
667 		ln->parent = pn;
668 
669 		ln->fn_sernum = sernum;
670 
671 		if (dir)
672 			pn->right = ln;
673 		else
674 			pn->left  = ln;
675 
676 		if (addr_bit_set(&key->addr, plen))
677 			ln->right = fn;
678 		else
679 			ln->left  = fn;
680 
681 		fn->parent = ln;
682 	}
683 	return ln;
684 }
685 
rt6_qualify_for_ecmp(struct rt6_info * rt)686 static bool rt6_qualify_for_ecmp(struct rt6_info *rt)
687 {
688 	return (rt->rt6i_flags & (RTF_GATEWAY|RTF_ADDRCONF|RTF_DYNAMIC)) ==
689 	       RTF_GATEWAY;
690 }
691 
fib6_copy_metrics(u32 * mp,const struct mx6_config * mxc)692 static void fib6_copy_metrics(u32 *mp, const struct mx6_config *mxc)
693 {
694 	int i;
695 
696 	for (i = 0; i < RTAX_MAX; i++) {
697 		if (test_bit(i, mxc->mx_valid))
698 			mp[i] = mxc->mx[i];
699 	}
700 }
701 
fib6_commit_metrics(struct dst_entry * dst,struct mx6_config * mxc)702 static int fib6_commit_metrics(struct dst_entry *dst, struct mx6_config *mxc)
703 {
704 	if (!mxc->mx)
705 		return 0;
706 
707 	if (dst->flags & DST_HOST) {
708 		u32 *mp = dst_metrics_write_ptr(dst);
709 
710 		if (unlikely(!mp))
711 			return -ENOMEM;
712 
713 		fib6_copy_metrics(mp, mxc);
714 	} else {
715 		dst_init_metrics(dst, mxc->mx, false);
716 
717 		/* We've stolen mx now. */
718 		mxc->mx = NULL;
719 	}
720 
721 	return 0;
722 }
723 
fib6_purge_rt(struct rt6_info * rt,struct fib6_node * fn,struct net * net)724 static void fib6_purge_rt(struct rt6_info *rt, struct fib6_node *fn,
725 			  struct net *net)
726 {
727 	if (atomic_read(&rt->rt6i_ref) != 1) {
728 		/* This route is used as dummy address holder in some split
729 		 * nodes. It is not leaked, but it still holds other resources,
730 		 * which must be released in time. So, scan ascendant nodes
731 		 * and replace dummy references to this route with references
732 		 * to still alive ones.
733 		 */
734 		while (fn) {
735 			if (!(fn->fn_flags & RTN_RTINFO) && fn->leaf == rt) {
736 				fn->leaf = fib6_find_prefix(net, fn);
737 				atomic_inc(&fn->leaf->rt6i_ref);
738 				rt6_release(rt);
739 			}
740 			fn = fn->parent;
741 		}
742 		/* No more references are possible at this point. */
743 		BUG_ON(atomic_read(&rt->rt6i_ref) != 1);
744 	}
745 }
746 
747 /*
748  *	Insert routing information in a node.
749  */
750 
fib6_add_rt2node(struct fib6_node * fn,struct rt6_info * rt,struct nl_info * info,struct mx6_config * mxc)751 static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
752 			    struct nl_info *info, struct mx6_config *mxc)
753 {
754 	struct rt6_info *iter = NULL;
755 	struct rt6_info **ins;
756 	struct rt6_info **fallback_ins = NULL;
757 	int replace = (info->nlh &&
758 		       (info->nlh->nlmsg_flags & NLM_F_REPLACE));
759 	int add = (!info->nlh ||
760 		   (info->nlh->nlmsg_flags & NLM_F_CREATE));
761 	int found = 0;
762 	bool rt_can_ecmp = rt6_qualify_for_ecmp(rt);
763 	u16 nlflags = NLM_F_EXCL;
764 	int err;
765 
766 	ins = &fn->leaf;
767 
768 	for (iter = fn->leaf; iter; iter = iter->dst.rt6_next) {
769 		/*
770 		 *	Search for duplicates
771 		 */
772 
773 		if (iter->rt6i_metric == rt->rt6i_metric) {
774 			/*
775 			 *	Same priority level
776 			 */
777 			if (info->nlh &&
778 			    (info->nlh->nlmsg_flags & NLM_F_EXCL))
779 				return -EEXIST;
780 
781 			nlflags &= ~NLM_F_EXCL;
782 			if (replace) {
783 				if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) {
784 					found++;
785 					break;
786 				}
787 				if (rt_can_ecmp)
788 					fallback_ins = fallback_ins ?: ins;
789 				goto next_iter;
790 			}
791 
792 			if (rt6_duplicate_nexthop(iter, rt)) {
793 				if (rt->rt6i_nsiblings)
794 					rt->rt6i_nsiblings = 0;
795 				if (!(iter->rt6i_flags & RTF_EXPIRES))
796 					return -EEXIST;
797 				if (!(rt->rt6i_flags & RTF_EXPIRES))
798 					rt6_clean_expires(iter);
799 				else
800 					rt6_set_expires(iter, rt->dst.expires);
801 				iter->rt6i_pmtu = rt->rt6i_pmtu;
802 				return -EEXIST;
803 			}
804 			/* If we have the same destination and the same metric,
805 			 * but not the same gateway, then the route we try to
806 			 * add is sibling to this route, increment our counter
807 			 * of siblings, and later we will add our route to the
808 			 * list.
809 			 * Only static routes (which don't have flag
810 			 * RTF_EXPIRES) are used for ECMPv6.
811 			 *
812 			 * To avoid long list, we only had siblings if the
813 			 * route have a gateway.
814 			 */
815 			if (rt_can_ecmp &&
816 			    rt6_qualify_for_ecmp(iter))
817 				rt->rt6i_nsiblings++;
818 		}
819 
820 		if (iter->rt6i_metric > rt->rt6i_metric)
821 			break;
822 
823 next_iter:
824 		ins = &iter->dst.rt6_next;
825 	}
826 
827 	if (fallback_ins && !found) {
828 		/* No ECMP-able route found, replace first non-ECMP one */
829 		ins = fallback_ins;
830 		iter = *ins;
831 		found++;
832 	}
833 
834 	/* Reset round-robin state, if necessary */
835 	if (ins == &fn->leaf)
836 		fn->rr_ptr = NULL;
837 
838 	/* Link this route to others same route. */
839 	if (rt->rt6i_nsiblings) {
840 		unsigned int rt6i_nsiblings;
841 		struct rt6_info *sibling, *temp_sibling;
842 
843 		/* Find the first route that have the same metric */
844 		sibling = fn->leaf;
845 		while (sibling) {
846 			if (sibling->rt6i_metric == rt->rt6i_metric &&
847 			    rt6_qualify_for_ecmp(sibling)) {
848 				list_add_tail(&rt->rt6i_siblings,
849 					      &sibling->rt6i_siblings);
850 				break;
851 			}
852 			sibling = sibling->dst.rt6_next;
853 		}
854 		/* For each sibling in the list, increment the counter of
855 		 * siblings. BUG() if counters does not match, list of siblings
856 		 * is broken!
857 		 */
858 		rt6i_nsiblings = 0;
859 		list_for_each_entry_safe(sibling, temp_sibling,
860 					 &rt->rt6i_siblings, rt6i_siblings) {
861 			sibling->rt6i_nsiblings++;
862 			BUG_ON(sibling->rt6i_nsiblings != rt->rt6i_nsiblings);
863 			rt6i_nsiblings++;
864 		}
865 		BUG_ON(rt6i_nsiblings != rt->rt6i_nsiblings);
866 	}
867 
868 	/*
869 	 *	insert node
870 	 */
871 	if (!replace) {
872 		if (!add)
873 			pr_warn("NLM_F_CREATE should be set when creating new route\n");
874 
875 add:
876 		nlflags |= NLM_F_CREATE;
877 		err = fib6_commit_metrics(&rt->dst, mxc);
878 		if (err)
879 			return err;
880 
881 		rt->dst.rt6_next = iter;
882 		*ins = rt;
883 		rcu_assign_pointer(rt->rt6i_node, fn);
884 		atomic_inc(&rt->rt6i_ref);
885 		inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags);
886 		info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
887 
888 		if (!(fn->fn_flags & RTN_RTINFO)) {
889 			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
890 			fn->fn_flags |= RTN_RTINFO;
891 		}
892 
893 	} else {
894 		int nsiblings;
895 
896 		if (!found) {
897 			if (add)
898 				goto add;
899 			pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
900 			return -ENOENT;
901 		}
902 
903 		err = fib6_commit_metrics(&rt->dst, mxc);
904 		if (err)
905 			return err;
906 
907 		*ins = rt;
908 		rcu_assign_pointer(rt->rt6i_node, fn);
909 		rt->dst.rt6_next = iter->dst.rt6_next;
910 		atomic_inc(&rt->rt6i_ref);
911 		inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE);
912 		if (!(fn->fn_flags & RTN_RTINFO)) {
913 			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
914 			fn->fn_flags |= RTN_RTINFO;
915 		}
916 		nsiblings = iter->rt6i_nsiblings;
917 		iter->rt6i_node = NULL;
918 		fib6_purge_rt(iter, fn, info->nl_net);
919 		if (fn->rr_ptr == iter)
920 			fn->rr_ptr = NULL;
921 		rt6_release(iter);
922 
923 		if (nsiblings) {
924 			/* Replacing an ECMP route, remove all siblings */
925 			ins = &rt->dst.rt6_next;
926 			iter = *ins;
927 			while (iter) {
928 				if (iter->rt6i_metric > rt->rt6i_metric)
929 					break;
930 				if (rt6_qualify_for_ecmp(iter)) {
931 					*ins = iter->dst.rt6_next;
932 					iter->rt6i_node = NULL;
933 					fib6_purge_rt(iter, fn, info->nl_net);
934 					if (fn->rr_ptr == iter)
935 						fn->rr_ptr = NULL;
936 					rt6_release(iter);
937 					nsiblings--;
938 				} else {
939 					ins = &iter->dst.rt6_next;
940 				}
941 				iter = *ins;
942 			}
943 			WARN_ON(nsiblings != 0);
944 		}
945 	}
946 
947 	return 0;
948 }
949 
fib6_start_gc(struct net * net,struct rt6_info * rt)950 static void fib6_start_gc(struct net *net, struct rt6_info *rt)
951 {
952 	if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
953 	    (rt->rt6i_flags & (RTF_EXPIRES | RTF_CACHE)))
954 		mod_timer(&net->ipv6.ip6_fib_timer,
955 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
956 }
957 
fib6_force_start_gc(struct net * net)958 void fib6_force_start_gc(struct net *net)
959 {
960 	if (!timer_pending(&net->ipv6.ip6_fib_timer))
961 		mod_timer(&net->ipv6.ip6_fib_timer,
962 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
963 }
964 
965 /*
966  *	Add routing information to the routing tree.
967  *	<destination addr>/<source addr>
968  *	with source addr info in sub-trees
969  */
970 
fib6_add(struct fib6_node * root,struct rt6_info * rt,struct nl_info * info,struct mx6_config * mxc)971 int fib6_add(struct fib6_node *root, struct rt6_info *rt,
972 	     struct nl_info *info, struct mx6_config *mxc)
973 {
974 	struct fib6_node *fn, *pn = NULL;
975 	int err = -ENOMEM;
976 	int allow_create = 1;
977 	int replace_required = 0;
978 	int sernum = fib6_new_sernum(info->nl_net);
979 
980 	if (WARN_ON_ONCE((rt->dst.flags & DST_NOCACHE) &&
981 			 !atomic_read(&rt->dst.__refcnt)))
982 		return -EINVAL;
983 
984 	if (info->nlh) {
985 		if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
986 			allow_create = 0;
987 		if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
988 			replace_required = 1;
989 	}
990 	if (!allow_create && !replace_required)
991 		pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
992 
993 	fn = fib6_add_1(root, &rt->rt6i_dst.addr, rt->rt6i_dst.plen,
994 			offsetof(struct rt6_info, rt6i_dst), allow_create,
995 			replace_required, sernum);
996 	if (IS_ERR(fn)) {
997 		err = PTR_ERR(fn);
998 		fn = NULL;
999 		goto out;
1000 	}
1001 
1002 	pn = fn;
1003 
1004 #ifdef CONFIG_IPV6_SUBTREES
1005 	if (rt->rt6i_src.plen) {
1006 		struct fib6_node *sn;
1007 
1008 		if (!fn->subtree) {
1009 			struct fib6_node *sfn;
1010 
1011 			/*
1012 			 * Create subtree.
1013 			 *
1014 			 *		fn[main tree]
1015 			 *		|
1016 			 *		sfn[subtree root]
1017 			 *		   \
1018 			 *		    sn[new leaf node]
1019 			 */
1020 
1021 			/* Create subtree root node */
1022 			sfn = node_alloc();
1023 			if (!sfn)
1024 				goto failure;
1025 
1026 			sfn->leaf = info->nl_net->ipv6.ip6_null_entry;
1027 			atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
1028 			sfn->fn_flags = RTN_ROOT;
1029 			sfn->fn_sernum = sernum;
1030 
1031 			/* Now add the first leaf node to new subtree */
1032 
1033 			sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
1034 					rt->rt6i_src.plen,
1035 					offsetof(struct rt6_info, rt6i_src),
1036 					allow_create, replace_required, sernum);
1037 
1038 			if (IS_ERR(sn)) {
1039 				/* If it is failed, discard just allocated
1040 				   root, and then (in failure) stale node
1041 				   in main tree.
1042 				 */
1043 				node_free_immediate(sfn);
1044 				err = PTR_ERR(sn);
1045 				goto failure;
1046 			}
1047 
1048 			/* Now link new subtree to main tree */
1049 			sfn->parent = fn;
1050 			fn->subtree = sfn;
1051 		} else {
1052 			sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
1053 					rt->rt6i_src.plen,
1054 					offsetof(struct rt6_info, rt6i_src),
1055 					allow_create, replace_required, sernum);
1056 
1057 			if (IS_ERR(sn)) {
1058 				err = PTR_ERR(sn);
1059 				goto failure;
1060 			}
1061 		}
1062 
1063 		if (!fn->leaf) {
1064 			fn->leaf = rt;
1065 			atomic_inc(&rt->rt6i_ref);
1066 		}
1067 		fn = sn;
1068 	}
1069 #endif
1070 
1071 	err = fib6_add_rt2node(fn, rt, info, mxc);
1072 	if (!err) {
1073 		fib6_start_gc(info->nl_net, rt);
1074 		if (!(rt->rt6i_flags & RTF_CACHE))
1075 			fib6_prune_clones(info->nl_net, pn);
1076 		rt->dst.flags &= ~DST_NOCACHE;
1077 	}
1078 
1079 out:
1080 	if (err) {
1081 #ifdef CONFIG_IPV6_SUBTREES
1082 		/*
1083 		 * If fib6_add_1 has cleared the old leaf pointer in the
1084 		 * super-tree leaf node we have to find a new one for it.
1085 		 */
1086 		if (pn != fn && pn->leaf == rt) {
1087 			pn->leaf = NULL;
1088 			atomic_dec(&rt->rt6i_ref);
1089 		}
1090 		if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) {
1091 			pn->leaf = fib6_find_prefix(info->nl_net, pn);
1092 #if RT6_DEBUG >= 2
1093 			if (!pn->leaf) {
1094 				WARN_ON(pn->leaf == NULL);
1095 				pn->leaf = info->nl_net->ipv6.ip6_null_entry;
1096 			}
1097 #endif
1098 			atomic_inc(&pn->leaf->rt6i_ref);
1099 		}
1100 #endif
1101 		goto failure;
1102 	}
1103 	return err;
1104 
1105 failure:
1106 	/* fn->leaf could be NULL if fn is an intermediate node and we
1107 	 * failed to add the new route to it in both subtree creation
1108 	 * failure and fib6_add_rt2node() failure case.
1109 	 * In both cases, fib6_repair_tree() should be called to fix
1110 	 * fn->leaf.
1111 	 */
1112 	if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
1113 		fib6_repair_tree(info->nl_net, fn);
1114 	if (!(rt->dst.flags & DST_NOCACHE))
1115 		dst_free(&rt->dst);
1116 	return err;
1117 }
1118 
1119 /*
1120  *	Routing tree lookup
1121  *
1122  */
1123 
1124 struct lookup_args {
1125 	int			offset;		/* key offset on rt6_info	*/
1126 	const struct in6_addr	*addr;		/* search key			*/
1127 };
1128 
fib6_lookup_1(struct fib6_node * root,struct lookup_args * args)1129 static struct fib6_node *fib6_lookup_1(struct fib6_node *root,
1130 				       struct lookup_args *args)
1131 {
1132 	struct fib6_node *fn;
1133 	__be32 dir;
1134 
1135 	if (unlikely(args->offset == 0))
1136 		return NULL;
1137 
1138 	/*
1139 	 *	Descend on a tree
1140 	 */
1141 
1142 	fn = root;
1143 
1144 	for (;;) {
1145 		struct fib6_node *next;
1146 
1147 		dir = addr_bit_set(args->addr, fn->fn_bit);
1148 
1149 		next = dir ? fn->right : fn->left;
1150 
1151 		if (next) {
1152 			fn = next;
1153 			continue;
1154 		}
1155 		break;
1156 	}
1157 
1158 	while (fn) {
1159 		if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) {
1160 			struct rt6key *key;
1161 
1162 			key = (struct rt6key *) ((u8 *) fn->leaf +
1163 						 args->offset);
1164 
1165 			if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
1166 #ifdef CONFIG_IPV6_SUBTREES
1167 				if (fn->subtree) {
1168 					struct fib6_node *sfn;
1169 					sfn = fib6_lookup_1(fn->subtree,
1170 							    args + 1);
1171 					if (!sfn)
1172 						goto backtrack;
1173 					fn = sfn;
1174 				}
1175 #endif
1176 				if (fn->fn_flags & RTN_RTINFO)
1177 					return fn;
1178 			}
1179 		}
1180 #ifdef CONFIG_IPV6_SUBTREES
1181 backtrack:
1182 #endif
1183 		if (fn->fn_flags & RTN_ROOT)
1184 			break;
1185 
1186 		fn = fn->parent;
1187 	}
1188 
1189 	return NULL;
1190 }
1191 
fib6_lookup(struct fib6_node * root,const struct in6_addr * daddr,const struct in6_addr * saddr)1192 struct fib6_node *fib6_lookup(struct fib6_node *root, const struct in6_addr *daddr,
1193 			      const struct in6_addr *saddr)
1194 {
1195 	struct fib6_node *fn;
1196 	struct lookup_args args[] = {
1197 		{
1198 			.offset = offsetof(struct rt6_info, rt6i_dst),
1199 			.addr = daddr,
1200 		},
1201 #ifdef CONFIG_IPV6_SUBTREES
1202 		{
1203 			.offset = offsetof(struct rt6_info, rt6i_src),
1204 			.addr = saddr,
1205 		},
1206 #endif
1207 		{
1208 			.offset = 0,	/* sentinel */
1209 		}
1210 	};
1211 
1212 	fn = fib6_lookup_1(root, daddr ? args : args + 1);
1213 	if (!fn || fn->fn_flags & RTN_TL_ROOT)
1214 		fn = root;
1215 
1216 	return fn;
1217 }
1218 
1219 /*
1220  *	Get node with specified destination prefix (and source prefix,
1221  *	if subtrees are used)
1222  */
1223 
1224 
fib6_locate_1(struct fib6_node * root,const struct in6_addr * addr,int plen,int offset)1225 static struct fib6_node *fib6_locate_1(struct fib6_node *root,
1226 				       const struct in6_addr *addr,
1227 				       int plen, int offset)
1228 {
1229 	struct fib6_node *fn;
1230 
1231 	for (fn = root; fn ; ) {
1232 		struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
1233 
1234 		/*
1235 		 *	Prefix match
1236 		 */
1237 		if (plen < fn->fn_bit ||
1238 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1239 			return NULL;
1240 
1241 		if (plen == fn->fn_bit)
1242 			return fn;
1243 
1244 		/*
1245 		 *	We have more bits to go
1246 		 */
1247 		if (addr_bit_set(addr, fn->fn_bit))
1248 			fn = fn->right;
1249 		else
1250 			fn = fn->left;
1251 	}
1252 	return NULL;
1253 }
1254 
fib6_locate(struct fib6_node * root,const struct in6_addr * daddr,int dst_len,const struct in6_addr * saddr,int src_len)1255 struct fib6_node *fib6_locate(struct fib6_node *root,
1256 			      const struct in6_addr *daddr, int dst_len,
1257 			      const struct in6_addr *saddr, int src_len)
1258 {
1259 	struct fib6_node *fn;
1260 
1261 	fn = fib6_locate_1(root, daddr, dst_len,
1262 			   offsetof(struct rt6_info, rt6i_dst));
1263 
1264 #ifdef CONFIG_IPV6_SUBTREES
1265 	if (src_len) {
1266 		WARN_ON(saddr == NULL);
1267 		if (fn && fn->subtree)
1268 			fn = fib6_locate_1(fn->subtree, saddr, src_len,
1269 					   offsetof(struct rt6_info, rt6i_src));
1270 	}
1271 #endif
1272 
1273 	if (fn && fn->fn_flags & RTN_RTINFO)
1274 		return fn;
1275 
1276 	return NULL;
1277 }
1278 
1279 
1280 /*
1281  *	Deletion
1282  *
1283  */
1284 
fib6_find_prefix(struct net * net,struct fib6_node * fn)1285 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn)
1286 {
1287 	if (fn->fn_flags & RTN_ROOT)
1288 		return net->ipv6.ip6_null_entry;
1289 
1290 	while (fn) {
1291 		if (fn->left)
1292 			return fn->left->leaf;
1293 		if (fn->right)
1294 			return fn->right->leaf;
1295 
1296 		fn = FIB6_SUBTREE(fn);
1297 	}
1298 	return NULL;
1299 }
1300 
1301 /*
1302  *	Called to trim the tree of intermediate nodes when possible. "fn"
1303  *	is the node we want to try and remove.
1304  */
1305 
fib6_repair_tree(struct net * net,struct fib6_node * fn)1306 static struct fib6_node *fib6_repair_tree(struct net *net,
1307 					   struct fib6_node *fn)
1308 {
1309 	int children;
1310 	int nstate;
1311 	struct fib6_node *child, *pn;
1312 	struct fib6_walker *w;
1313 	int iter = 0;
1314 
1315 	for (;;) {
1316 		RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1317 		iter++;
1318 
1319 		WARN_ON(fn->fn_flags & RTN_RTINFO);
1320 		WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1321 		WARN_ON(fn->leaf);
1322 
1323 		children = 0;
1324 		child = NULL;
1325 		if (fn->right)
1326 			child = fn->right, children |= 1;
1327 		if (fn->left)
1328 			child = fn->left, children |= 2;
1329 
1330 		if (children == 3 || FIB6_SUBTREE(fn)
1331 #ifdef CONFIG_IPV6_SUBTREES
1332 		    /* Subtree root (i.e. fn) may have one child */
1333 		    || (children && fn->fn_flags & RTN_ROOT)
1334 #endif
1335 		    ) {
1336 			fn->leaf = fib6_find_prefix(net, fn);
1337 #if RT6_DEBUG >= 2
1338 			if (!fn->leaf) {
1339 				WARN_ON(!fn->leaf);
1340 				fn->leaf = net->ipv6.ip6_null_entry;
1341 			}
1342 #endif
1343 			atomic_inc(&fn->leaf->rt6i_ref);
1344 			return fn->parent;
1345 		}
1346 
1347 		pn = fn->parent;
1348 #ifdef CONFIG_IPV6_SUBTREES
1349 		if (FIB6_SUBTREE(pn) == fn) {
1350 			WARN_ON(!(fn->fn_flags & RTN_ROOT));
1351 			FIB6_SUBTREE(pn) = NULL;
1352 			nstate = FWS_L;
1353 		} else {
1354 			WARN_ON(fn->fn_flags & RTN_ROOT);
1355 #endif
1356 			if (pn->right == fn)
1357 				pn->right = child;
1358 			else if (pn->left == fn)
1359 				pn->left = child;
1360 #if RT6_DEBUG >= 2
1361 			else
1362 				WARN_ON(1);
1363 #endif
1364 			if (child)
1365 				child->parent = pn;
1366 			nstate = FWS_R;
1367 #ifdef CONFIG_IPV6_SUBTREES
1368 		}
1369 #endif
1370 
1371 		read_lock(&net->ipv6.fib6_walker_lock);
1372 		FOR_WALKERS(net, w) {
1373 			if (!child) {
1374 				if (w->root == fn) {
1375 					w->root = w->node = NULL;
1376 					RT6_TRACE("W %p adjusted by delroot 1\n", w);
1377 				} else if (w->node == fn) {
1378 					RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1379 					w->node = pn;
1380 					w->state = nstate;
1381 				}
1382 			} else {
1383 				if (w->root == fn) {
1384 					w->root = child;
1385 					RT6_TRACE("W %p adjusted by delroot 2\n", w);
1386 				}
1387 				if (w->node == fn) {
1388 					w->node = child;
1389 					if (children&2) {
1390 						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1391 						w->state = w->state >= FWS_R ? FWS_U : FWS_INIT;
1392 					} else {
1393 						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1394 						w->state = w->state >= FWS_C ? FWS_U : FWS_INIT;
1395 					}
1396 				}
1397 			}
1398 		}
1399 		read_unlock(&net->ipv6.fib6_walker_lock);
1400 
1401 		node_free(fn);
1402 		if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1403 			return pn;
1404 
1405 		rt6_release(pn->leaf);
1406 		pn->leaf = NULL;
1407 		fn = pn;
1408 	}
1409 }
1410 
fib6_del_route(struct fib6_node * fn,struct rt6_info ** rtp,struct nl_info * info)1411 static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
1412 			   struct nl_info *info)
1413 {
1414 	struct fib6_walker *w;
1415 	struct rt6_info *rt = *rtp;
1416 	struct net *net = info->nl_net;
1417 
1418 	RT6_TRACE("fib6_del_route\n");
1419 
1420 	/* Unlink it */
1421 	*rtp = rt->dst.rt6_next;
1422 	rt->rt6i_node = NULL;
1423 	net->ipv6.rt6_stats->fib_rt_entries--;
1424 	net->ipv6.rt6_stats->fib_discarded_routes++;
1425 
1426 	/* Reset round-robin state, if necessary */
1427 	if (fn->rr_ptr == rt)
1428 		fn->rr_ptr = NULL;
1429 
1430 	/* Remove this entry from other siblings */
1431 	if (rt->rt6i_nsiblings) {
1432 		struct rt6_info *sibling, *next_sibling;
1433 
1434 		list_for_each_entry_safe(sibling, next_sibling,
1435 					 &rt->rt6i_siblings, rt6i_siblings)
1436 			sibling->rt6i_nsiblings--;
1437 		rt->rt6i_nsiblings = 0;
1438 		list_del_init(&rt->rt6i_siblings);
1439 	}
1440 
1441 	/* Adjust walkers */
1442 	read_lock(&net->ipv6.fib6_walker_lock);
1443 	FOR_WALKERS(net, w) {
1444 		if (w->state == FWS_C && w->leaf == rt) {
1445 			RT6_TRACE("walker %p adjusted by delroute\n", w);
1446 			w->leaf = rt->dst.rt6_next;
1447 			if (!w->leaf)
1448 				w->state = FWS_U;
1449 		}
1450 	}
1451 	read_unlock(&net->ipv6.fib6_walker_lock);
1452 
1453 	rt->dst.rt6_next = NULL;
1454 
1455 	/* If it was last route, expunge its radix tree node */
1456 	if (!fn->leaf) {
1457 		fn->fn_flags &= ~RTN_RTINFO;
1458 		net->ipv6.rt6_stats->fib_route_nodes--;
1459 		fn = fib6_repair_tree(net, fn);
1460 	}
1461 
1462 	fib6_purge_rt(rt, fn, net);
1463 
1464 	inet6_rt_notify(RTM_DELROUTE, rt, info, 0);
1465 	rt6_release(rt);
1466 }
1467 
fib6_del(struct rt6_info * rt,struct nl_info * info)1468 int fib6_del(struct rt6_info *rt, struct nl_info *info)
1469 {
1470 	struct fib6_node *fn = rcu_dereference_protected(rt->rt6i_node,
1471 				    lockdep_is_held(&rt->rt6i_table->tb6_lock));
1472 	struct net *net = info->nl_net;
1473 	struct rt6_info **rtp;
1474 
1475 #if RT6_DEBUG >= 2
1476 	if (rt->dst.obsolete > 0) {
1477 		WARN_ON(fn);
1478 		return -ENOENT;
1479 	}
1480 #endif
1481 	if (!fn || rt == net->ipv6.ip6_null_entry)
1482 		return -ENOENT;
1483 
1484 	WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1485 
1486 	if (!(rt->rt6i_flags & RTF_CACHE)) {
1487 		struct fib6_node *pn = fn;
1488 #ifdef CONFIG_IPV6_SUBTREES
1489 		/* clones of this route might be in another subtree */
1490 		if (rt->rt6i_src.plen) {
1491 			while (!(pn->fn_flags & RTN_ROOT))
1492 				pn = pn->parent;
1493 			pn = pn->parent;
1494 		}
1495 #endif
1496 		fib6_prune_clones(info->nl_net, pn);
1497 	}
1498 
1499 	/*
1500 	 *	Walk the leaf entries looking for ourself
1501 	 */
1502 
1503 	for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->dst.rt6_next) {
1504 		if (*rtp == rt) {
1505 			fib6_del_route(fn, rtp, info);
1506 			return 0;
1507 		}
1508 	}
1509 	return -ENOENT;
1510 }
1511 
1512 /*
1513  *	Tree traversal function.
1514  *
1515  *	Certainly, it is not interrupt safe.
1516  *	However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1517  *	It means, that we can modify tree during walking
1518  *	and use this function for garbage collection, clone pruning,
1519  *	cleaning tree when a device goes down etc. etc.
1520  *
1521  *	It guarantees that every node will be traversed,
1522  *	and that it will be traversed only once.
1523  *
1524  *	Callback function w->func may return:
1525  *	0 -> continue walking.
1526  *	positive value -> walking is suspended (used by tree dumps,
1527  *	and probably by gc, if it will be split to several slices)
1528  *	negative value -> terminate walking.
1529  *
1530  *	The function itself returns:
1531  *	0   -> walk is complete.
1532  *	>0  -> walk is incomplete (i.e. suspended)
1533  *	<0  -> walk is terminated by an error.
1534  */
1535 
fib6_walk_continue(struct fib6_walker * w)1536 static int fib6_walk_continue(struct fib6_walker *w)
1537 {
1538 	struct fib6_node *fn, *pn;
1539 
1540 	for (;;) {
1541 		fn = w->node;
1542 		if (!fn)
1543 			return 0;
1544 
1545 		if (w->prune && fn != w->root &&
1546 		    fn->fn_flags & RTN_RTINFO && w->state < FWS_C) {
1547 			w->state = FWS_C;
1548 			w->leaf = fn->leaf;
1549 		}
1550 		switch (w->state) {
1551 #ifdef CONFIG_IPV6_SUBTREES
1552 		case FWS_S:
1553 			if (FIB6_SUBTREE(fn)) {
1554 				w->node = FIB6_SUBTREE(fn);
1555 				continue;
1556 			}
1557 			w->state = FWS_L;
1558 #endif
1559 		case FWS_L:
1560 			if (fn->left) {
1561 				w->node = fn->left;
1562 				w->state = FWS_INIT;
1563 				continue;
1564 			}
1565 			w->state = FWS_R;
1566 		case FWS_R:
1567 			if (fn->right) {
1568 				w->node = fn->right;
1569 				w->state = FWS_INIT;
1570 				continue;
1571 			}
1572 			w->state = FWS_C;
1573 			w->leaf = fn->leaf;
1574 		case FWS_C:
1575 			if (w->leaf && fn->fn_flags & RTN_RTINFO) {
1576 				int err;
1577 
1578 				if (w->skip) {
1579 					w->skip--;
1580 					goto skip;
1581 				}
1582 
1583 				err = w->func(w);
1584 				if (err)
1585 					return err;
1586 
1587 				w->count++;
1588 				continue;
1589 			}
1590 skip:
1591 			w->state = FWS_U;
1592 		case FWS_U:
1593 			if (fn == w->root)
1594 				return 0;
1595 			pn = fn->parent;
1596 			w->node = pn;
1597 #ifdef CONFIG_IPV6_SUBTREES
1598 			if (FIB6_SUBTREE(pn) == fn) {
1599 				WARN_ON(!(fn->fn_flags & RTN_ROOT));
1600 				w->state = FWS_L;
1601 				continue;
1602 			}
1603 #endif
1604 			if (pn->left == fn) {
1605 				w->state = FWS_R;
1606 				continue;
1607 			}
1608 			if (pn->right == fn) {
1609 				w->state = FWS_C;
1610 				w->leaf = w->node->leaf;
1611 				continue;
1612 			}
1613 #if RT6_DEBUG >= 2
1614 			WARN_ON(1);
1615 #endif
1616 		}
1617 	}
1618 }
1619 
fib6_walk(struct net * net,struct fib6_walker * w)1620 static int fib6_walk(struct net *net, struct fib6_walker *w)
1621 {
1622 	int res;
1623 
1624 	w->state = FWS_INIT;
1625 	w->node = w->root;
1626 
1627 	fib6_walker_link(net, w);
1628 	res = fib6_walk_continue(w);
1629 	if (res <= 0)
1630 		fib6_walker_unlink(net, w);
1631 	return res;
1632 }
1633 
fib6_clean_node(struct fib6_walker * w)1634 static int fib6_clean_node(struct fib6_walker *w)
1635 {
1636 	int res;
1637 	struct rt6_info *rt;
1638 	struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w);
1639 	struct nl_info info = {
1640 		.nl_net = c->net,
1641 	};
1642 
1643 	if (c->sernum != FIB6_NO_SERNUM_CHANGE &&
1644 	    w->node->fn_sernum != c->sernum)
1645 		w->node->fn_sernum = c->sernum;
1646 
1647 	if (!c->func) {
1648 		WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE);
1649 		w->leaf = NULL;
1650 		return 0;
1651 	}
1652 
1653 	for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
1654 		res = c->func(rt, c->arg);
1655 		if (res < 0) {
1656 			w->leaf = rt;
1657 			res = fib6_del(rt, &info);
1658 			if (res) {
1659 #if RT6_DEBUG >= 2
1660 				pr_debug("%s: del failed: rt=%p@%p err=%d\n",
1661 					 __func__, rt,
1662 					 rcu_access_pointer(rt->rt6i_node),
1663 					 res);
1664 #endif
1665 				continue;
1666 			}
1667 			return 0;
1668 		}
1669 		WARN_ON(res != 0);
1670 	}
1671 	w->leaf = rt;
1672 	return 0;
1673 }
1674 
1675 /*
1676  *	Convenient frontend to tree walker.
1677  *
1678  *	func is called on each route.
1679  *		It may return -1 -> delete this route.
1680  *		              0  -> continue walking
1681  *
1682  *	prune==1 -> only immediate children of node (certainly,
1683  *	ignoring pure split nodes) will be scanned.
1684  */
1685 
fib6_clean_tree(struct net * net,struct fib6_node * root,int (* func)(struct rt6_info *,void * arg),bool prune,int sernum,void * arg)1686 static void fib6_clean_tree(struct net *net, struct fib6_node *root,
1687 			    int (*func)(struct rt6_info *, void *arg),
1688 			    bool prune, int sernum, void *arg)
1689 {
1690 	struct fib6_cleaner c;
1691 
1692 	c.w.root = root;
1693 	c.w.func = fib6_clean_node;
1694 	c.w.prune = prune;
1695 	c.w.count = 0;
1696 	c.w.skip = 0;
1697 	c.func = func;
1698 	c.sernum = sernum;
1699 	c.arg = arg;
1700 	c.net = net;
1701 
1702 	fib6_walk(net, &c.w);
1703 }
1704 
__fib6_clean_all(struct net * net,int (* func)(struct rt6_info *,void *),int sernum,void * arg)1705 static void __fib6_clean_all(struct net *net,
1706 			     int (*func)(struct rt6_info *, void *),
1707 			     int sernum, void *arg)
1708 {
1709 	struct fib6_table *table;
1710 	struct hlist_head *head;
1711 	unsigned int h;
1712 
1713 	rcu_read_lock();
1714 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1715 		head = &net->ipv6.fib_table_hash[h];
1716 		hlist_for_each_entry_rcu(table, head, tb6_hlist) {
1717 			write_lock_bh(&table->tb6_lock);
1718 			fib6_clean_tree(net, &table->tb6_root,
1719 					func, false, sernum, arg);
1720 			write_unlock_bh(&table->tb6_lock);
1721 		}
1722 	}
1723 	rcu_read_unlock();
1724 }
1725 
fib6_clean_all(struct net * net,int (* func)(struct rt6_info *,void *),void * arg)1726 void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *),
1727 		    void *arg)
1728 {
1729 	__fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg);
1730 }
1731 
fib6_prune_clone(struct rt6_info * rt,void * arg)1732 static int fib6_prune_clone(struct rt6_info *rt, void *arg)
1733 {
1734 	if (rt->rt6i_flags & RTF_CACHE) {
1735 		RT6_TRACE("pruning clone %p\n", rt);
1736 		return -1;
1737 	}
1738 
1739 	return 0;
1740 }
1741 
fib6_prune_clones(struct net * net,struct fib6_node * fn)1742 static void fib6_prune_clones(struct net *net, struct fib6_node *fn)
1743 {
1744 	fib6_clean_tree(net, fn, fib6_prune_clone, true,
1745 			FIB6_NO_SERNUM_CHANGE, NULL);
1746 }
1747 
fib6_flush_trees(struct net * net)1748 static void fib6_flush_trees(struct net *net)
1749 {
1750 	int new_sernum = fib6_new_sernum(net);
1751 
1752 	__fib6_clean_all(net, NULL, new_sernum, NULL);
1753 }
1754 
1755 /*
1756  *	Garbage collection
1757  */
1758 
1759 struct fib6_gc_args
1760 {
1761 	int			timeout;
1762 	int			more;
1763 };
1764 
fib6_age(struct rt6_info * rt,void * arg)1765 static int fib6_age(struct rt6_info *rt, void *arg)
1766 {
1767 	struct fib6_gc_args *gc_args = arg;
1768 	unsigned long now = jiffies;
1769 
1770 	/*
1771 	 *	check addrconf expiration here.
1772 	 *	Routes are expired even if they are in use.
1773 	 *
1774 	 *	Also age clones. Note, that clones are aged out
1775 	 *	only if they are not in use now.
1776 	 */
1777 
1778 	if (rt->rt6i_flags & RTF_EXPIRES && rt->dst.expires) {
1779 		if (time_after(now, rt->dst.expires)) {
1780 			RT6_TRACE("expiring %p\n", rt);
1781 			return -1;
1782 		}
1783 		gc_args->more++;
1784 	} else if (rt->rt6i_flags & RTF_CACHE) {
1785 		if (atomic_read(&rt->dst.__refcnt) == 0 &&
1786 		    time_after_eq(now, rt->dst.lastuse + gc_args->timeout)) {
1787 			RT6_TRACE("aging clone %p\n", rt);
1788 			return -1;
1789 		} else if (rt->rt6i_flags & RTF_GATEWAY) {
1790 			struct neighbour *neigh;
1791 			__u8 neigh_flags = 0;
1792 
1793 			neigh = dst_neigh_lookup(&rt->dst, &rt->rt6i_gateway);
1794 			if (neigh) {
1795 				neigh_flags = neigh->flags;
1796 				neigh_release(neigh);
1797 			}
1798 			if (!(neigh_flags & NTF_ROUTER)) {
1799 				RT6_TRACE("purging route %p via non-router but gateway\n",
1800 					  rt);
1801 				return -1;
1802 			}
1803 		}
1804 		gc_args->more++;
1805 	}
1806 
1807 	return 0;
1808 }
1809 
fib6_run_gc(unsigned long expires,struct net * net,bool force)1810 void fib6_run_gc(unsigned long expires, struct net *net, bool force)
1811 {
1812 	struct fib6_gc_args gc_args;
1813 	unsigned long now;
1814 
1815 	if (force) {
1816 		spin_lock_bh(&net->ipv6.fib6_gc_lock);
1817 	} else if (!spin_trylock_bh(&net->ipv6.fib6_gc_lock)) {
1818 		mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
1819 		return;
1820 	}
1821 	gc_args.timeout = expires ? (int)expires :
1822 			  net->ipv6.sysctl.ip6_rt_gc_interval;
1823 
1824 	gc_args.more = icmp6_dst_gc();
1825 
1826 	fib6_clean_all(net, fib6_age, &gc_args);
1827 	now = jiffies;
1828 	net->ipv6.ip6_rt_last_gc = now;
1829 
1830 	if (gc_args.more)
1831 		mod_timer(&net->ipv6.ip6_fib_timer,
1832 			  round_jiffies(now
1833 					+ net->ipv6.sysctl.ip6_rt_gc_interval));
1834 	else
1835 		del_timer(&net->ipv6.ip6_fib_timer);
1836 	spin_unlock_bh(&net->ipv6.fib6_gc_lock);
1837 }
1838 
fib6_gc_timer_cb(unsigned long arg)1839 static void fib6_gc_timer_cb(unsigned long arg)
1840 {
1841 	fib6_run_gc(0, (struct net *)arg, true);
1842 }
1843 
fib6_net_init(struct net * net)1844 static int __net_init fib6_net_init(struct net *net)
1845 {
1846 	size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
1847 
1848 	spin_lock_init(&net->ipv6.fib6_gc_lock);
1849 	rwlock_init(&net->ipv6.fib6_walker_lock);
1850 	INIT_LIST_HEAD(&net->ipv6.fib6_walkers);
1851 	setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net);
1852 
1853 	net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
1854 	if (!net->ipv6.rt6_stats)
1855 		goto out_timer;
1856 
1857 	/* Avoid false sharing : Use at least a full cache line */
1858 	size = max_t(size_t, size, L1_CACHE_BYTES);
1859 
1860 	net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
1861 	if (!net->ipv6.fib_table_hash)
1862 		goto out_rt6_stats;
1863 
1864 	net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
1865 					  GFP_KERNEL);
1866 	if (!net->ipv6.fib6_main_tbl)
1867 		goto out_fib_table_hash;
1868 
1869 	net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
1870 	net->ipv6.fib6_main_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1871 	net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
1872 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1873 	inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
1874 
1875 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1876 	net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
1877 					   GFP_KERNEL);
1878 	if (!net->ipv6.fib6_local_tbl)
1879 		goto out_fib6_main_tbl;
1880 	net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
1881 	net->ipv6.fib6_local_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1882 	net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
1883 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1884 	inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
1885 #endif
1886 	fib6_tables_init(net);
1887 
1888 	return 0;
1889 
1890 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1891 out_fib6_main_tbl:
1892 	kfree(net->ipv6.fib6_main_tbl);
1893 #endif
1894 out_fib_table_hash:
1895 	kfree(net->ipv6.fib_table_hash);
1896 out_rt6_stats:
1897 	kfree(net->ipv6.rt6_stats);
1898 out_timer:
1899 	return -ENOMEM;
1900 }
1901 
fib6_net_exit(struct net * net)1902 static void fib6_net_exit(struct net *net)
1903 {
1904 	unsigned int i;
1905 
1906 	rt6_ifdown(net, NULL);
1907 	del_timer_sync(&net->ipv6.ip6_fib_timer);
1908 
1909 	for (i = 0; i < FIB6_TABLE_HASHSZ; i++) {
1910 		struct hlist_head *head = &net->ipv6.fib_table_hash[i];
1911 		struct hlist_node *tmp;
1912 		struct fib6_table *tb;
1913 
1914 		hlist_for_each_entry_safe(tb, tmp, head, tb6_hlist) {
1915 			hlist_del(&tb->tb6_hlist);
1916 			fib6_free_table(tb);
1917 		}
1918 	}
1919 
1920 	kfree(net->ipv6.fib_table_hash);
1921 	kfree(net->ipv6.rt6_stats);
1922 }
1923 
1924 static struct pernet_operations fib6_net_ops = {
1925 	.init = fib6_net_init,
1926 	.exit = fib6_net_exit,
1927 };
1928 
fib6_init(void)1929 int __init fib6_init(void)
1930 {
1931 	int ret = -ENOMEM;
1932 
1933 	fib6_node_kmem = kmem_cache_create("fib6_nodes",
1934 					   sizeof(struct fib6_node),
1935 					   0, SLAB_HWCACHE_ALIGN,
1936 					   NULL);
1937 	if (!fib6_node_kmem)
1938 		goto out;
1939 
1940 	ret = register_pernet_subsys(&fib6_net_ops);
1941 	if (ret)
1942 		goto out_kmem_cache_create;
1943 
1944 	ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib,
1945 			      NULL);
1946 	if (ret)
1947 		goto out_unregister_subsys;
1948 
1949 	__fib6_flush_trees = fib6_flush_trees;
1950 out:
1951 	return ret;
1952 
1953 out_unregister_subsys:
1954 	unregister_pernet_subsys(&fib6_net_ops);
1955 out_kmem_cache_create:
1956 	kmem_cache_destroy(fib6_node_kmem);
1957 	goto out;
1958 }
1959 
fib6_gc_cleanup(void)1960 void fib6_gc_cleanup(void)
1961 {
1962 	unregister_pernet_subsys(&fib6_net_ops);
1963 	kmem_cache_destroy(fib6_node_kmem);
1964 }
1965 
1966 #ifdef CONFIG_PROC_FS
1967 
1968 struct ipv6_route_iter {
1969 	struct seq_net_private p;
1970 	struct fib6_walker w;
1971 	loff_t skip;
1972 	struct fib6_table *tbl;
1973 	int sernum;
1974 };
1975 
ipv6_route_seq_show(struct seq_file * seq,void * v)1976 static int ipv6_route_seq_show(struct seq_file *seq, void *v)
1977 {
1978 	struct rt6_info *rt = v;
1979 	struct ipv6_route_iter *iter = seq->private;
1980 
1981 	seq_printf(seq, "%pi6 %02x ", &rt->rt6i_dst.addr, rt->rt6i_dst.plen);
1982 
1983 #ifdef CONFIG_IPV6_SUBTREES
1984 	seq_printf(seq, "%pi6 %02x ", &rt->rt6i_src.addr, rt->rt6i_src.plen);
1985 #else
1986 	seq_puts(seq, "00000000000000000000000000000000 00 ");
1987 #endif
1988 	if (rt->rt6i_flags & RTF_GATEWAY)
1989 		seq_printf(seq, "%pi6", &rt->rt6i_gateway);
1990 	else
1991 		seq_puts(seq, "00000000000000000000000000000000");
1992 
1993 	seq_printf(seq, " %08x %08x %08x %08x %8s\n",
1994 		   rt->rt6i_metric, atomic_read(&rt->dst.__refcnt),
1995 		   rt->dst.__use, rt->rt6i_flags,
1996 		   rt->dst.dev ? rt->dst.dev->name : "");
1997 	iter->w.leaf = NULL;
1998 	return 0;
1999 }
2000 
ipv6_route_yield(struct fib6_walker * w)2001 static int ipv6_route_yield(struct fib6_walker *w)
2002 {
2003 	struct ipv6_route_iter *iter = w->args;
2004 
2005 	if (!iter->skip)
2006 		return 1;
2007 
2008 	do {
2009 		iter->w.leaf = iter->w.leaf->dst.rt6_next;
2010 		iter->skip--;
2011 		if (!iter->skip && iter->w.leaf)
2012 			return 1;
2013 	} while (iter->w.leaf);
2014 
2015 	return 0;
2016 }
2017 
ipv6_route_seq_setup_walk(struct ipv6_route_iter * iter,struct net * net)2018 static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter,
2019 				      struct net *net)
2020 {
2021 	memset(&iter->w, 0, sizeof(iter->w));
2022 	iter->w.func = ipv6_route_yield;
2023 	iter->w.root = &iter->tbl->tb6_root;
2024 	iter->w.state = FWS_INIT;
2025 	iter->w.node = iter->w.root;
2026 	iter->w.args = iter;
2027 	iter->sernum = iter->w.root->fn_sernum;
2028 	INIT_LIST_HEAD(&iter->w.lh);
2029 	fib6_walker_link(net, &iter->w);
2030 }
2031 
ipv6_route_seq_next_table(struct fib6_table * tbl,struct net * net)2032 static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl,
2033 						    struct net *net)
2034 {
2035 	unsigned int h;
2036 	struct hlist_node *node;
2037 
2038 	if (tbl) {
2039 		h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1;
2040 		node = rcu_dereference_bh(hlist_next_rcu(&tbl->tb6_hlist));
2041 	} else {
2042 		h = 0;
2043 		node = NULL;
2044 	}
2045 
2046 	while (!node && h < FIB6_TABLE_HASHSZ) {
2047 		node = rcu_dereference_bh(
2048 			hlist_first_rcu(&net->ipv6.fib_table_hash[h++]));
2049 	}
2050 	return hlist_entry_safe(node, struct fib6_table, tb6_hlist);
2051 }
2052 
ipv6_route_check_sernum(struct ipv6_route_iter * iter)2053 static void ipv6_route_check_sernum(struct ipv6_route_iter *iter)
2054 {
2055 	if (iter->sernum != iter->w.root->fn_sernum) {
2056 		iter->sernum = iter->w.root->fn_sernum;
2057 		iter->w.state = FWS_INIT;
2058 		iter->w.node = iter->w.root;
2059 		WARN_ON(iter->w.skip);
2060 		iter->w.skip = iter->w.count;
2061 	}
2062 }
2063 
ipv6_route_seq_next(struct seq_file * seq,void * v,loff_t * pos)2064 static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2065 {
2066 	int r;
2067 	struct rt6_info *n;
2068 	struct net *net = seq_file_net(seq);
2069 	struct ipv6_route_iter *iter = seq->private;
2070 
2071 	if (!v)
2072 		goto iter_table;
2073 
2074 	n = ((struct rt6_info *)v)->dst.rt6_next;
2075 	if (n) {
2076 		++*pos;
2077 		return n;
2078 	}
2079 
2080 iter_table:
2081 	ipv6_route_check_sernum(iter);
2082 	read_lock(&iter->tbl->tb6_lock);
2083 	r = fib6_walk_continue(&iter->w);
2084 	read_unlock(&iter->tbl->tb6_lock);
2085 	if (r > 0) {
2086 		if (v)
2087 			++*pos;
2088 		return iter->w.leaf;
2089 	} else if (r < 0) {
2090 		fib6_walker_unlink(net, &iter->w);
2091 		return NULL;
2092 	}
2093 	fib6_walker_unlink(net, &iter->w);
2094 
2095 	iter->tbl = ipv6_route_seq_next_table(iter->tbl, net);
2096 	if (!iter->tbl)
2097 		return NULL;
2098 
2099 	ipv6_route_seq_setup_walk(iter, net);
2100 	goto iter_table;
2101 }
2102 
ipv6_route_seq_start(struct seq_file * seq,loff_t * pos)2103 static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos)
2104 	__acquires(RCU_BH)
2105 {
2106 	struct net *net = seq_file_net(seq);
2107 	struct ipv6_route_iter *iter = seq->private;
2108 
2109 	rcu_read_lock_bh();
2110 	iter->tbl = ipv6_route_seq_next_table(NULL, net);
2111 	iter->skip = *pos;
2112 
2113 	if (iter->tbl) {
2114 		ipv6_route_seq_setup_walk(iter, net);
2115 		return ipv6_route_seq_next(seq, NULL, pos);
2116 	} else {
2117 		return NULL;
2118 	}
2119 }
2120 
ipv6_route_iter_active(struct ipv6_route_iter * iter)2121 static bool ipv6_route_iter_active(struct ipv6_route_iter *iter)
2122 {
2123 	struct fib6_walker *w = &iter->w;
2124 	return w->node && !(w->state == FWS_U && w->node == w->root);
2125 }
2126 
ipv6_route_seq_stop(struct seq_file * seq,void * v)2127 static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2128 	__releases(RCU_BH)
2129 {
2130 	struct net *net = seq_file_net(seq);
2131 	struct ipv6_route_iter *iter = seq->private;
2132 
2133 	if (ipv6_route_iter_active(iter))
2134 		fib6_walker_unlink(net, &iter->w);
2135 
2136 	rcu_read_unlock_bh();
2137 }
2138 
2139 static const struct seq_operations ipv6_route_seq_ops = {
2140 	.start	= ipv6_route_seq_start,
2141 	.next	= ipv6_route_seq_next,
2142 	.stop	= ipv6_route_seq_stop,
2143 	.show	= ipv6_route_seq_show
2144 };
2145 
ipv6_route_open(struct inode * inode,struct file * file)2146 int ipv6_route_open(struct inode *inode, struct file *file)
2147 {
2148 	return seq_open_net(inode, file, &ipv6_route_seq_ops,
2149 			    sizeof(struct ipv6_route_iter));
2150 }
2151 
2152 #endif /* CONFIG_PROC_FS */
2153