1 /*
2 * Linux INET6 implementation
3 * Forwarding Information Database
4 *
5 * Authors:
6 * Pedro Roque <roque@di.fc.ul.pt>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 *
13 * Changes:
14 * Yuji SEKIYA @USAGI: Support default route on router node;
15 * remove ip6_null_entry from the top of
16 * routing table.
17 * Ville Nuorvala: Fixed routing subtrees.
18 */
19
20 #define pr_fmt(fmt) "IPv6: " fmt
21
22 #include <linux/errno.h>
23 #include <linux/types.h>
24 #include <linux/net.h>
25 #include <linux/route.h>
26 #include <linux/netdevice.h>
27 #include <linux/in6.h>
28 #include <linux/init.h>
29 #include <linux/list.h>
30 #include <linux/slab.h>
31
32 #include <net/ipv6.h>
33 #include <net/ndisc.h>
34 #include <net/addrconf.h>
35 #include <net/lwtunnel.h>
36
37 #include <net/ip6_fib.h>
38 #include <net/ip6_route.h>
39
40 #define RT6_DEBUG 2
41
42 #if RT6_DEBUG >= 3
43 #define RT6_TRACE(x...) pr_debug(x)
44 #else
45 #define RT6_TRACE(x...) do { ; } while (0)
46 #endif
47
48 static struct kmem_cache *fib6_node_kmem __read_mostly;
49
50 struct fib6_cleaner {
51 struct fib6_walker w;
52 struct net *net;
53 int (*func)(struct rt6_info *, void *arg);
54 int sernum;
55 void *arg;
56 };
57
58 #ifdef CONFIG_IPV6_SUBTREES
59 #define FWS_INIT FWS_S
60 #else
61 #define FWS_INIT FWS_L
62 #endif
63
64 static void fib6_prune_clones(struct net *net, struct fib6_node *fn);
65 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn);
66 static struct fib6_node *fib6_repair_tree(struct net *net, struct fib6_node *fn);
67 static int fib6_walk(struct net *net, struct fib6_walker *w);
68 static int fib6_walk_continue(struct fib6_walker *w);
69
70 /*
71 * A routing update causes an increase of the serial number on the
72 * affected subtree. This allows for cached routes to be asynchronously
73 * tested when modifications are made to the destination cache as a
74 * result of redirects, path MTU changes, etc.
75 */
76
77 static void fib6_gc_timer_cb(unsigned long arg);
78
79 #define FOR_WALKERS(net, w) \
80 list_for_each_entry(w, &(net)->ipv6.fib6_walkers, lh)
81
fib6_walker_link(struct net * net,struct fib6_walker * w)82 static void fib6_walker_link(struct net *net, struct fib6_walker *w)
83 {
84 write_lock_bh(&net->ipv6.fib6_walker_lock);
85 list_add(&w->lh, &net->ipv6.fib6_walkers);
86 write_unlock_bh(&net->ipv6.fib6_walker_lock);
87 }
88
fib6_walker_unlink(struct net * net,struct fib6_walker * w)89 static void fib6_walker_unlink(struct net *net, struct fib6_walker *w)
90 {
91 write_lock_bh(&net->ipv6.fib6_walker_lock);
92 list_del(&w->lh);
93 write_unlock_bh(&net->ipv6.fib6_walker_lock);
94 }
95
fib6_new_sernum(struct net * net)96 static int fib6_new_sernum(struct net *net)
97 {
98 int new, old;
99
100 do {
101 old = atomic_read(&net->ipv6.fib6_sernum);
102 new = old < INT_MAX ? old + 1 : 1;
103 } while (atomic_cmpxchg(&net->ipv6.fib6_sernum,
104 old, new) != old);
105 return new;
106 }
107
108 enum {
109 FIB6_NO_SERNUM_CHANGE = 0,
110 };
111
112 /*
113 * Auxiliary address test functions for the radix tree.
114 *
115 * These assume a 32bit processor (although it will work on
116 * 64bit processors)
117 */
118
119 /*
120 * test bit
121 */
122 #if defined(__LITTLE_ENDIAN)
123 # define BITOP_BE32_SWIZZLE (0x1F & ~7)
124 #else
125 # define BITOP_BE32_SWIZZLE 0
126 #endif
127
addr_bit_set(const void * token,int fn_bit)128 static __be32 addr_bit_set(const void *token, int fn_bit)
129 {
130 const __be32 *addr = token;
131 /*
132 * Here,
133 * 1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
134 * is optimized version of
135 * htonl(1 << ((~fn_bit)&0x1F))
136 * See include/asm-generic/bitops/le.h.
137 */
138 return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
139 addr[fn_bit >> 5];
140 }
141
node_alloc(void)142 static struct fib6_node *node_alloc(void)
143 {
144 struct fib6_node *fn;
145
146 fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
147
148 return fn;
149 }
150
node_free_immediate(struct fib6_node * fn)151 static void node_free_immediate(struct fib6_node *fn)
152 {
153 kmem_cache_free(fib6_node_kmem, fn);
154 }
155
node_free_rcu(struct rcu_head * head)156 static void node_free_rcu(struct rcu_head *head)
157 {
158 struct fib6_node *fn = container_of(head, struct fib6_node, rcu);
159
160 kmem_cache_free(fib6_node_kmem, fn);
161 }
162
node_free(struct fib6_node * fn)163 static void node_free(struct fib6_node *fn)
164 {
165 call_rcu(&fn->rcu, node_free_rcu);
166 }
167
rt6_rcu_free(struct rt6_info * rt)168 static void rt6_rcu_free(struct rt6_info *rt)
169 {
170 call_rcu(&rt->dst.rcu_head, dst_rcu_free);
171 }
172
rt6_free_pcpu(struct rt6_info * non_pcpu_rt)173 static void rt6_free_pcpu(struct rt6_info *non_pcpu_rt)
174 {
175 int cpu;
176
177 if (!non_pcpu_rt->rt6i_pcpu)
178 return;
179
180 for_each_possible_cpu(cpu) {
181 struct rt6_info **ppcpu_rt;
182 struct rt6_info *pcpu_rt;
183
184 ppcpu_rt = per_cpu_ptr(non_pcpu_rt->rt6i_pcpu, cpu);
185 pcpu_rt = *ppcpu_rt;
186 if (pcpu_rt) {
187 rt6_rcu_free(pcpu_rt);
188 *ppcpu_rt = NULL;
189 }
190 }
191
192 free_percpu(non_pcpu_rt->rt6i_pcpu);
193 non_pcpu_rt->rt6i_pcpu = NULL;
194 }
195
rt6_release(struct rt6_info * rt)196 static void rt6_release(struct rt6_info *rt)
197 {
198 if (atomic_dec_and_test(&rt->rt6i_ref)) {
199 rt6_free_pcpu(rt);
200 rt6_rcu_free(rt);
201 }
202 }
203
fib6_free_table(struct fib6_table * table)204 static void fib6_free_table(struct fib6_table *table)
205 {
206 inetpeer_invalidate_tree(&table->tb6_peers);
207 kfree(table);
208 }
209
fib6_link_table(struct net * net,struct fib6_table * tb)210 static void fib6_link_table(struct net *net, struct fib6_table *tb)
211 {
212 unsigned int h;
213
214 /*
215 * Initialize table lock at a single place to give lockdep a key,
216 * tables aren't visible prior to being linked to the list.
217 */
218 rwlock_init(&tb->tb6_lock);
219
220 h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
221
222 /*
223 * No protection necessary, this is the only list mutatation
224 * operation, tables never disappear once they exist.
225 */
226 hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
227 }
228
229 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
230
fib6_alloc_table(struct net * net,u32 id)231 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
232 {
233 struct fib6_table *table;
234
235 table = kzalloc(sizeof(*table), GFP_ATOMIC);
236 if (table) {
237 table->tb6_id = id;
238 table->tb6_root.leaf = net->ipv6.ip6_null_entry;
239 table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
240 inet_peer_base_init(&table->tb6_peers);
241 }
242
243 return table;
244 }
245
fib6_new_table(struct net * net,u32 id)246 struct fib6_table *fib6_new_table(struct net *net, u32 id)
247 {
248 struct fib6_table *tb;
249
250 if (id == 0)
251 id = RT6_TABLE_MAIN;
252 tb = fib6_get_table(net, id);
253 if (tb)
254 return tb;
255
256 tb = fib6_alloc_table(net, id);
257 if (tb)
258 fib6_link_table(net, tb);
259
260 return tb;
261 }
262 EXPORT_SYMBOL_GPL(fib6_new_table);
263
fib6_get_table(struct net * net,u32 id)264 struct fib6_table *fib6_get_table(struct net *net, u32 id)
265 {
266 struct fib6_table *tb;
267 struct hlist_head *head;
268 unsigned int h;
269
270 if (id == 0)
271 id = RT6_TABLE_MAIN;
272 h = id & (FIB6_TABLE_HASHSZ - 1);
273 rcu_read_lock();
274 head = &net->ipv6.fib_table_hash[h];
275 hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
276 if (tb->tb6_id == id) {
277 rcu_read_unlock();
278 return tb;
279 }
280 }
281 rcu_read_unlock();
282
283 return NULL;
284 }
285 EXPORT_SYMBOL_GPL(fib6_get_table);
286
fib6_tables_init(struct net * net)287 static void __net_init fib6_tables_init(struct net *net)
288 {
289 fib6_link_table(net, net->ipv6.fib6_main_tbl);
290 fib6_link_table(net, net->ipv6.fib6_local_tbl);
291 }
292 #else
293
fib6_new_table(struct net * net,u32 id)294 struct fib6_table *fib6_new_table(struct net *net, u32 id)
295 {
296 return fib6_get_table(net, id);
297 }
298
fib6_get_table(struct net * net,u32 id)299 struct fib6_table *fib6_get_table(struct net *net, u32 id)
300 {
301 return net->ipv6.fib6_main_tbl;
302 }
303
fib6_rule_lookup(struct net * net,struct flowi6 * fl6,int flags,pol_lookup_t lookup)304 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
305 int flags, pol_lookup_t lookup)
306 {
307 struct rt6_info *rt;
308
309 rt = lookup(net, net->ipv6.fib6_main_tbl, fl6, flags);
310 if (rt->dst.error == -EAGAIN) {
311 ip6_rt_put(rt);
312 rt = net->ipv6.ip6_null_entry;
313 dst_hold(&rt->dst);
314 }
315
316 return &rt->dst;
317 }
318
fib6_tables_init(struct net * net)319 static void __net_init fib6_tables_init(struct net *net)
320 {
321 fib6_link_table(net, net->ipv6.fib6_main_tbl);
322 }
323
324 #endif
325
fib6_dump_node(struct fib6_walker * w)326 static int fib6_dump_node(struct fib6_walker *w)
327 {
328 int res;
329 struct rt6_info *rt;
330
331 for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
332 res = rt6_dump_route(rt, w->args);
333 if (res < 0) {
334 /* Frame is full, suspend walking */
335 w->leaf = rt;
336 return 1;
337 }
338 }
339 w->leaf = NULL;
340 return 0;
341 }
342
fib6_dump_end(struct netlink_callback * cb)343 static void fib6_dump_end(struct netlink_callback *cb)
344 {
345 struct net *net = sock_net(cb->skb->sk);
346 struct fib6_walker *w = (void *)cb->args[2];
347
348 if (w) {
349 if (cb->args[4]) {
350 cb->args[4] = 0;
351 fib6_walker_unlink(net, w);
352 }
353 cb->args[2] = 0;
354 kfree(w);
355 }
356 cb->done = (void *)cb->args[3];
357 cb->args[1] = 3;
358 }
359
fib6_dump_done(struct netlink_callback * cb)360 static int fib6_dump_done(struct netlink_callback *cb)
361 {
362 fib6_dump_end(cb);
363 return cb->done ? cb->done(cb) : 0;
364 }
365
fib6_dump_table(struct fib6_table * table,struct sk_buff * skb,struct netlink_callback * cb)366 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
367 struct netlink_callback *cb)
368 {
369 struct net *net = sock_net(skb->sk);
370 struct fib6_walker *w;
371 int res;
372
373 w = (void *)cb->args[2];
374 w->root = &table->tb6_root;
375
376 if (cb->args[4] == 0) {
377 w->count = 0;
378 w->skip = 0;
379
380 read_lock_bh(&table->tb6_lock);
381 res = fib6_walk(net, w);
382 read_unlock_bh(&table->tb6_lock);
383 if (res > 0) {
384 cb->args[4] = 1;
385 cb->args[5] = w->root->fn_sernum;
386 }
387 } else {
388 if (cb->args[5] != w->root->fn_sernum) {
389 /* Begin at the root if the tree changed */
390 cb->args[5] = w->root->fn_sernum;
391 w->state = FWS_INIT;
392 w->node = w->root;
393 w->skip = w->count;
394 } else
395 w->skip = 0;
396
397 read_lock_bh(&table->tb6_lock);
398 res = fib6_walk_continue(w);
399 read_unlock_bh(&table->tb6_lock);
400 if (res <= 0) {
401 fib6_walker_unlink(net, w);
402 cb->args[4] = 0;
403 }
404 }
405
406 return res;
407 }
408
inet6_dump_fib(struct sk_buff * skb,struct netlink_callback * cb)409 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
410 {
411 struct net *net = sock_net(skb->sk);
412 unsigned int h, s_h;
413 unsigned int e = 0, s_e;
414 struct rt6_rtnl_dump_arg arg;
415 struct fib6_walker *w;
416 struct fib6_table *tb;
417 struct hlist_head *head;
418 int res = 0;
419
420 s_h = cb->args[0];
421 s_e = cb->args[1];
422
423 w = (void *)cb->args[2];
424 if (!w) {
425 /* New dump:
426 *
427 * 1. hook callback destructor.
428 */
429 cb->args[3] = (long)cb->done;
430 cb->done = fib6_dump_done;
431
432 /*
433 * 2. allocate and initialize walker.
434 */
435 w = kzalloc(sizeof(*w), GFP_ATOMIC);
436 if (!w)
437 return -ENOMEM;
438 w->func = fib6_dump_node;
439 cb->args[2] = (long)w;
440 }
441
442 arg.skb = skb;
443 arg.cb = cb;
444 arg.net = net;
445 w->args = &arg;
446
447 rcu_read_lock();
448 for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
449 e = 0;
450 head = &net->ipv6.fib_table_hash[h];
451 hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
452 if (e < s_e)
453 goto next;
454 res = fib6_dump_table(tb, skb, cb);
455 if (res != 0)
456 goto out;
457 next:
458 e++;
459 }
460 }
461 out:
462 rcu_read_unlock();
463 cb->args[1] = e;
464 cb->args[0] = h;
465
466 res = res < 0 ? res : skb->len;
467 if (res <= 0)
468 fib6_dump_end(cb);
469 return res;
470 }
471
472 /*
473 * Routing Table
474 *
475 * return the appropriate node for a routing tree "add" operation
476 * by either creating and inserting or by returning an existing
477 * node.
478 */
479
fib6_add_1(struct fib6_node * root,struct in6_addr * addr,int plen,int offset,int allow_create,int replace_required,int sernum)480 static struct fib6_node *fib6_add_1(struct fib6_node *root,
481 struct in6_addr *addr, int plen,
482 int offset, int allow_create,
483 int replace_required, int sernum)
484 {
485 struct fib6_node *fn, *in, *ln;
486 struct fib6_node *pn = NULL;
487 struct rt6key *key;
488 int bit;
489 __be32 dir = 0;
490
491 RT6_TRACE("fib6_add_1\n");
492
493 /* insert node in tree */
494
495 fn = root;
496
497 do {
498 key = (struct rt6key *)((u8 *)fn->leaf + offset);
499
500 /*
501 * Prefix match
502 */
503 if (plen < fn->fn_bit ||
504 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
505 if (!allow_create) {
506 if (replace_required) {
507 pr_warn("Can't replace route, no match found\n");
508 return ERR_PTR(-ENOENT);
509 }
510 pr_warn("NLM_F_CREATE should be set when creating new route\n");
511 }
512 goto insert_above;
513 }
514
515 /*
516 * Exact match ?
517 */
518
519 if (plen == fn->fn_bit) {
520 /* clean up an intermediate node */
521 if (!(fn->fn_flags & RTN_RTINFO)) {
522 rt6_release(fn->leaf);
523 fn->leaf = NULL;
524 }
525
526 fn->fn_sernum = sernum;
527
528 return fn;
529 }
530
531 /*
532 * We have more bits to go
533 */
534
535 /* Try to walk down on tree. */
536 fn->fn_sernum = sernum;
537 dir = addr_bit_set(addr, fn->fn_bit);
538 pn = fn;
539 fn = dir ? fn->right : fn->left;
540 } while (fn);
541
542 if (!allow_create) {
543 /* We should not create new node because
544 * NLM_F_REPLACE was specified without NLM_F_CREATE
545 * I assume it is safe to require NLM_F_CREATE when
546 * REPLACE flag is used! Later we may want to remove the
547 * check for replace_required, because according
548 * to netlink specification, NLM_F_CREATE
549 * MUST be specified if new route is created.
550 * That would keep IPv6 consistent with IPv4
551 */
552 if (replace_required) {
553 pr_warn("Can't replace route, no match found\n");
554 return ERR_PTR(-ENOENT);
555 }
556 pr_warn("NLM_F_CREATE should be set when creating new route\n");
557 }
558 /*
559 * We walked to the bottom of tree.
560 * Create new leaf node without children.
561 */
562
563 ln = node_alloc();
564
565 if (!ln)
566 return ERR_PTR(-ENOMEM);
567 ln->fn_bit = plen;
568
569 ln->parent = pn;
570 ln->fn_sernum = sernum;
571
572 if (dir)
573 pn->right = ln;
574 else
575 pn->left = ln;
576
577 return ln;
578
579
580 insert_above:
581 /*
582 * split since we don't have a common prefix anymore or
583 * we have a less significant route.
584 * we've to insert an intermediate node on the list
585 * this new node will point to the one we need to create
586 * and the current
587 */
588
589 pn = fn->parent;
590
591 /* find 1st bit in difference between the 2 addrs.
592
593 See comment in __ipv6_addr_diff: bit may be an invalid value,
594 but if it is >= plen, the value is ignored in any case.
595 */
596
597 bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr));
598
599 /*
600 * (intermediate)[in]
601 * / \
602 * (new leaf node)[ln] (old node)[fn]
603 */
604 if (plen > bit) {
605 in = node_alloc();
606 ln = node_alloc();
607
608 if (!in || !ln) {
609 if (in)
610 node_free_immediate(in);
611 if (ln)
612 node_free_immediate(ln);
613 return ERR_PTR(-ENOMEM);
614 }
615
616 /*
617 * new intermediate node.
618 * RTN_RTINFO will
619 * be off since that an address that chooses one of
620 * the branches would not match less specific routes
621 * in the other branch
622 */
623
624 in->fn_bit = bit;
625
626 in->parent = pn;
627 in->leaf = fn->leaf;
628 atomic_inc(&in->leaf->rt6i_ref);
629
630 in->fn_sernum = sernum;
631
632 /* update parent pointer */
633 if (dir)
634 pn->right = in;
635 else
636 pn->left = in;
637
638 ln->fn_bit = plen;
639
640 ln->parent = in;
641 fn->parent = in;
642
643 ln->fn_sernum = sernum;
644
645 if (addr_bit_set(addr, bit)) {
646 in->right = ln;
647 in->left = fn;
648 } else {
649 in->left = ln;
650 in->right = fn;
651 }
652 } else { /* plen <= bit */
653
654 /*
655 * (new leaf node)[ln]
656 * / \
657 * (old node)[fn] NULL
658 */
659
660 ln = node_alloc();
661
662 if (!ln)
663 return ERR_PTR(-ENOMEM);
664
665 ln->fn_bit = plen;
666
667 ln->parent = pn;
668
669 ln->fn_sernum = sernum;
670
671 if (dir)
672 pn->right = ln;
673 else
674 pn->left = ln;
675
676 if (addr_bit_set(&key->addr, plen))
677 ln->right = fn;
678 else
679 ln->left = fn;
680
681 fn->parent = ln;
682 }
683 return ln;
684 }
685
rt6_qualify_for_ecmp(struct rt6_info * rt)686 static bool rt6_qualify_for_ecmp(struct rt6_info *rt)
687 {
688 return (rt->rt6i_flags & (RTF_GATEWAY|RTF_ADDRCONF|RTF_DYNAMIC)) ==
689 RTF_GATEWAY;
690 }
691
fib6_copy_metrics(u32 * mp,const struct mx6_config * mxc)692 static void fib6_copy_metrics(u32 *mp, const struct mx6_config *mxc)
693 {
694 int i;
695
696 for (i = 0; i < RTAX_MAX; i++) {
697 if (test_bit(i, mxc->mx_valid))
698 mp[i] = mxc->mx[i];
699 }
700 }
701
fib6_commit_metrics(struct dst_entry * dst,struct mx6_config * mxc)702 static int fib6_commit_metrics(struct dst_entry *dst, struct mx6_config *mxc)
703 {
704 if (!mxc->mx)
705 return 0;
706
707 if (dst->flags & DST_HOST) {
708 u32 *mp = dst_metrics_write_ptr(dst);
709
710 if (unlikely(!mp))
711 return -ENOMEM;
712
713 fib6_copy_metrics(mp, mxc);
714 } else {
715 dst_init_metrics(dst, mxc->mx, false);
716
717 /* We've stolen mx now. */
718 mxc->mx = NULL;
719 }
720
721 return 0;
722 }
723
fib6_purge_rt(struct rt6_info * rt,struct fib6_node * fn,struct net * net)724 static void fib6_purge_rt(struct rt6_info *rt, struct fib6_node *fn,
725 struct net *net)
726 {
727 if (atomic_read(&rt->rt6i_ref) != 1) {
728 /* This route is used as dummy address holder in some split
729 * nodes. It is not leaked, but it still holds other resources,
730 * which must be released in time. So, scan ascendant nodes
731 * and replace dummy references to this route with references
732 * to still alive ones.
733 */
734 while (fn) {
735 if (!(fn->fn_flags & RTN_RTINFO) && fn->leaf == rt) {
736 fn->leaf = fib6_find_prefix(net, fn);
737 atomic_inc(&fn->leaf->rt6i_ref);
738 rt6_release(rt);
739 }
740 fn = fn->parent;
741 }
742 /* No more references are possible at this point. */
743 BUG_ON(atomic_read(&rt->rt6i_ref) != 1);
744 }
745 }
746
747 /*
748 * Insert routing information in a node.
749 */
750
fib6_add_rt2node(struct fib6_node * fn,struct rt6_info * rt,struct nl_info * info,struct mx6_config * mxc)751 static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
752 struct nl_info *info, struct mx6_config *mxc)
753 {
754 struct rt6_info *iter = NULL;
755 struct rt6_info **ins;
756 struct rt6_info **fallback_ins = NULL;
757 int replace = (info->nlh &&
758 (info->nlh->nlmsg_flags & NLM_F_REPLACE));
759 int add = (!info->nlh ||
760 (info->nlh->nlmsg_flags & NLM_F_CREATE));
761 int found = 0;
762 bool rt_can_ecmp = rt6_qualify_for_ecmp(rt);
763 u16 nlflags = NLM_F_EXCL;
764 int err;
765
766 ins = &fn->leaf;
767
768 for (iter = fn->leaf; iter; iter = iter->dst.rt6_next) {
769 /*
770 * Search for duplicates
771 */
772
773 if (iter->rt6i_metric == rt->rt6i_metric) {
774 /*
775 * Same priority level
776 */
777 if (info->nlh &&
778 (info->nlh->nlmsg_flags & NLM_F_EXCL))
779 return -EEXIST;
780
781 nlflags &= ~NLM_F_EXCL;
782 if (replace) {
783 if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) {
784 found++;
785 break;
786 }
787 if (rt_can_ecmp)
788 fallback_ins = fallback_ins ?: ins;
789 goto next_iter;
790 }
791
792 if (rt6_duplicate_nexthop(iter, rt)) {
793 if (rt->rt6i_nsiblings)
794 rt->rt6i_nsiblings = 0;
795 if (!(iter->rt6i_flags & RTF_EXPIRES))
796 return -EEXIST;
797 if (!(rt->rt6i_flags & RTF_EXPIRES))
798 rt6_clean_expires(iter);
799 else
800 rt6_set_expires(iter, rt->dst.expires);
801 iter->rt6i_pmtu = rt->rt6i_pmtu;
802 return -EEXIST;
803 }
804 /* If we have the same destination and the same metric,
805 * but not the same gateway, then the route we try to
806 * add is sibling to this route, increment our counter
807 * of siblings, and later we will add our route to the
808 * list.
809 * Only static routes (which don't have flag
810 * RTF_EXPIRES) are used for ECMPv6.
811 *
812 * To avoid long list, we only had siblings if the
813 * route have a gateway.
814 */
815 if (rt_can_ecmp &&
816 rt6_qualify_for_ecmp(iter))
817 rt->rt6i_nsiblings++;
818 }
819
820 if (iter->rt6i_metric > rt->rt6i_metric)
821 break;
822
823 next_iter:
824 ins = &iter->dst.rt6_next;
825 }
826
827 if (fallback_ins && !found) {
828 /* No ECMP-able route found, replace first non-ECMP one */
829 ins = fallback_ins;
830 iter = *ins;
831 found++;
832 }
833
834 /* Reset round-robin state, if necessary */
835 if (ins == &fn->leaf)
836 fn->rr_ptr = NULL;
837
838 /* Link this route to others same route. */
839 if (rt->rt6i_nsiblings) {
840 unsigned int rt6i_nsiblings;
841 struct rt6_info *sibling, *temp_sibling;
842
843 /* Find the first route that have the same metric */
844 sibling = fn->leaf;
845 while (sibling) {
846 if (sibling->rt6i_metric == rt->rt6i_metric &&
847 rt6_qualify_for_ecmp(sibling)) {
848 list_add_tail(&rt->rt6i_siblings,
849 &sibling->rt6i_siblings);
850 break;
851 }
852 sibling = sibling->dst.rt6_next;
853 }
854 /* For each sibling in the list, increment the counter of
855 * siblings. BUG() if counters does not match, list of siblings
856 * is broken!
857 */
858 rt6i_nsiblings = 0;
859 list_for_each_entry_safe(sibling, temp_sibling,
860 &rt->rt6i_siblings, rt6i_siblings) {
861 sibling->rt6i_nsiblings++;
862 BUG_ON(sibling->rt6i_nsiblings != rt->rt6i_nsiblings);
863 rt6i_nsiblings++;
864 }
865 BUG_ON(rt6i_nsiblings != rt->rt6i_nsiblings);
866 }
867
868 /*
869 * insert node
870 */
871 if (!replace) {
872 if (!add)
873 pr_warn("NLM_F_CREATE should be set when creating new route\n");
874
875 add:
876 nlflags |= NLM_F_CREATE;
877 err = fib6_commit_metrics(&rt->dst, mxc);
878 if (err)
879 return err;
880
881 rt->dst.rt6_next = iter;
882 *ins = rt;
883 rcu_assign_pointer(rt->rt6i_node, fn);
884 atomic_inc(&rt->rt6i_ref);
885 inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags);
886 info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
887
888 if (!(fn->fn_flags & RTN_RTINFO)) {
889 info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
890 fn->fn_flags |= RTN_RTINFO;
891 }
892
893 } else {
894 int nsiblings;
895
896 if (!found) {
897 if (add)
898 goto add;
899 pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
900 return -ENOENT;
901 }
902
903 err = fib6_commit_metrics(&rt->dst, mxc);
904 if (err)
905 return err;
906
907 *ins = rt;
908 rcu_assign_pointer(rt->rt6i_node, fn);
909 rt->dst.rt6_next = iter->dst.rt6_next;
910 atomic_inc(&rt->rt6i_ref);
911 inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE);
912 if (!(fn->fn_flags & RTN_RTINFO)) {
913 info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
914 fn->fn_flags |= RTN_RTINFO;
915 }
916 nsiblings = iter->rt6i_nsiblings;
917 iter->rt6i_node = NULL;
918 fib6_purge_rt(iter, fn, info->nl_net);
919 if (fn->rr_ptr == iter)
920 fn->rr_ptr = NULL;
921 rt6_release(iter);
922
923 if (nsiblings) {
924 /* Replacing an ECMP route, remove all siblings */
925 ins = &rt->dst.rt6_next;
926 iter = *ins;
927 while (iter) {
928 if (iter->rt6i_metric > rt->rt6i_metric)
929 break;
930 if (rt6_qualify_for_ecmp(iter)) {
931 *ins = iter->dst.rt6_next;
932 iter->rt6i_node = NULL;
933 fib6_purge_rt(iter, fn, info->nl_net);
934 if (fn->rr_ptr == iter)
935 fn->rr_ptr = NULL;
936 rt6_release(iter);
937 nsiblings--;
938 } else {
939 ins = &iter->dst.rt6_next;
940 }
941 iter = *ins;
942 }
943 WARN_ON(nsiblings != 0);
944 }
945 }
946
947 return 0;
948 }
949
fib6_start_gc(struct net * net,struct rt6_info * rt)950 static void fib6_start_gc(struct net *net, struct rt6_info *rt)
951 {
952 if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
953 (rt->rt6i_flags & (RTF_EXPIRES | RTF_CACHE)))
954 mod_timer(&net->ipv6.ip6_fib_timer,
955 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
956 }
957
fib6_force_start_gc(struct net * net)958 void fib6_force_start_gc(struct net *net)
959 {
960 if (!timer_pending(&net->ipv6.ip6_fib_timer))
961 mod_timer(&net->ipv6.ip6_fib_timer,
962 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
963 }
964
965 /*
966 * Add routing information to the routing tree.
967 * <destination addr>/<source addr>
968 * with source addr info in sub-trees
969 */
970
fib6_add(struct fib6_node * root,struct rt6_info * rt,struct nl_info * info,struct mx6_config * mxc)971 int fib6_add(struct fib6_node *root, struct rt6_info *rt,
972 struct nl_info *info, struct mx6_config *mxc)
973 {
974 struct fib6_node *fn, *pn = NULL;
975 int err = -ENOMEM;
976 int allow_create = 1;
977 int replace_required = 0;
978 int sernum = fib6_new_sernum(info->nl_net);
979
980 if (WARN_ON_ONCE((rt->dst.flags & DST_NOCACHE) &&
981 !atomic_read(&rt->dst.__refcnt)))
982 return -EINVAL;
983
984 if (info->nlh) {
985 if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
986 allow_create = 0;
987 if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
988 replace_required = 1;
989 }
990 if (!allow_create && !replace_required)
991 pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
992
993 fn = fib6_add_1(root, &rt->rt6i_dst.addr, rt->rt6i_dst.plen,
994 offsetof(struct rt6_info, rt6i_dst), allow_create,
995 replace_required, sernum);
996 if (IS_ERR(fn)) {
997 err = PTR_ERR(fn);
998 fn = NULL;
999 goto out;
1000 }
1001
1002 pn = fn;
1003
1004 #ifdef CONFIG_IPV6_SUBTREES
1005 if (rt->rt6i_src.plen) {
1006 struct fib6_node *sn;
1007
1008 if (!fn->subtree) {
1009 struct fib6_node *sfn;
1010
1011 /*
1012 * Create subtree.
1013 *
1014 * fn[main tree]
1015 * |
1016 * sfn[subtree root]
1017 * \
1018 * sn[new leaf node]
1019 */
1020
1021 /* Create subtree root node */
1022 sfn = node_alloc();
1023 if (!sfn)
1024 goto failure;
1025
1026 sfn->leaf = info->nl_net->ipv6.ip6_null_entry;
1027 atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
1028 sfn->fn_flags = RTN_ROOT;
1029 sfn->fn_sernum = sernum;
1030
1031 /* Now add the first leaf node to new subtree */
1032
1033 sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
1034 rt->rt6i_src.plen,
1035 offsetof(struct rt6_info, rt6i_src),
1036 allow_create, replace_required, sernum);
1037
1038 if (IS_ERR(sn)) {
1039 /* If it is failed, discard just allocated
1040 root, and then (in failure) stale node
1041 in main tree.
1042 */
1043 node_free_immediate(sfn);
1044 err = PTR_ERR(sn);
1045 goto failure;
1046 }
1047
1048 /* Now link new subtree to main tree */
1049 sfn->parent = fn;
1050 fn->subtree = sfn;
1051 } else {
1052 sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
1053 rt->rt6i_src.plen,
1054 offsetof(struct rt6_info, rt6i_src),
1055 allow_create, replace_required, sernum);
1056
1057 if (IS_ERR(sn)) {
1058 err = PTR_ERR(sn);
1059 goto failure;
1060 }
1061 }
1062
1063 if (!fn->leaf) {
1064 fn->leaf = rt;
1065 atomic_inc(&rt->rt6i_ref);
1066 }
1067 fn = sn;
1068 }
1069 #endif
1070
1071 err = fib6_add_rt2node(fn, rt, info, mxc);
1072 if (!err) {
1073 fib6_start_gc(info->nl_net, rt);
1074 if (!(rt->rt6i_flags & RTF_CACHE))
1075 fib6_prune_clones(info->nl_net, pn);
1076 rt->dst.flags &= ~DST_NOCACHE;
1077 }
1078
1079 out:
1080 if (err) {
1081 #ifdef CONFIG_IPV6_SUBTREES
1082 /*
1083 * If fib6_add_1 has cleared the old leaf pointer in the
1084 * super-tree leaf node we have to find a new one for it.
1085 */
1086 if (pn != fn && pn->leaf == rt) {
1087 pn->leaf = NULL;
1088 atomic_dec(&rt->rt6i_ref);
1089 }
1090 if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) {
1091 pn->leaf = fib6_find_prefix(info->nl_net, pn);
1092 #if RT6_DEBUG >= 2
1093 if (!pn->leaf) {
1094 WARN_ON(pn->leaf == NULL);
1095 pn->leaf = info->nl_net->ipv6.ip6_null_entry;
1096 }
1097 #endif
1098 atomic_inc(&pn->leaf->rt6i_ref);
1099 }
1100 #endif
1101 goto failure;
1102 }
1103 return err;
1104
1105 failure:
1106 /* fn->leaf could be NULL if fn is an intermediate node and we
1107 * failed to add the new route to it in both subtree creation
1108 * failure and fib6_add_rt2node() failure case.
1109 * In both cases, fib6_repair_tree() should be called to fix
1110 * fn->leaf.
1111 */
1112 if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
1113 fib6_repair_tree(info->nl_net, fn);
1114 if (!(rt->dst.flags & DST_NOCACHE))
1115 dst_free(&rt->dst);
1116 return err;
1117 }
1118
1119 /*
1120 * Routing tree lookup
1121 *
1122 */
1123
1124 struct lookup_args {
1125 int offset; /* key offset on rt6_info */
1126 const struct in6_addr *addr; /* search key */
1127 };
1128
fib6_lookup_1(struct fib6_node * root,struct lookup_args * args)1129 static struct fib6_node *fib6_lookup_1(struct fib6_node *root,
1130 struct lookup_args *args)
1131 {
1132 struct fib6_node *fn;
1133 __be32 dir;
1134
1135 if (unlikely(args->offset == 0))
1136 return NULL;
1137
1138 /*
1139 * Descend on a tree
1140 */
1141
1142 fn = root;
1143
1144 for (;;) {
1145 struct fib6_node *next;
1146
1147 dir = addr_bit_set(args->addr, fn->fn_bit);
1148
1149 next = dir ? fn->right : fn->left;
1150
1151 if (next) {
1152 fn = next;
1153 continue;
1154 }
1155 break;
1156 }
1157
1158 while (fn) {
1159 if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) {
1160 struct rt6key *key;
1161
1162 key = (struct rt6key *) ((u8 *) fn->leaf +
1163 args->offset);
1164
1165 if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
1166 #ifdef CONFIG_IPV6_SUBTREES
1167 if (fn->subtree) {
1168 struct fib6_node *sfn;
1169 sfn = fib6_lookup_1(fn->subtree,
1170 args + 1);
1171 if (!sfn)
1172 goto backtrack;
1173 fn = sfn;
1174 }
1175 #endif
1176 if (fn->fn_flags & RTN_RTINFO)
1177 return fn;
1178 }
1179 }
1180 #ifdef CONFIG_IPV6_SUBTREES
1181 backtrack:
1182 #endif
1183 if (fn->fn_flags & RTN_ROOT)
1184 break;
1185
1186 fn = fn->parent;
1187 }
1188
1189 return NULL;
1190 }
1191
fib6_lookup(struct fib6_node * root,const struct in6_addr * daddr,const struct in6_addr * saddr)1192 struct fib6_node *fib6_lookup(struct fib6_node *root, const struct in6_addr *daddr,
1193 const struct in6_addr *saddr)
1194 {
1195 struct fib6_node *fn;
1196 struct lookup_args args[] = {
1197 {
1198 .offset = offsetof(struct rt6_info, rt6i_dst),
1199 .addr = daddr,
1200 },
1201 #ifdef CONFIG_IPV6_SUBTREES
1202 {
1203 .offset = offsetof(struct rt6_info, rt6i_src),
1204 .addr = saddr,
1205 },
1206 #endif
1207 {
1208 .offset = 0, /* sentinel */
1209 }
1210 };
1211
1212 fn = fib6_lookup_1(root, daddr ? args : args + 1);
1213 if (!fn || fn->fn_flags & RTN_TL_ROOT)
1214 fn = root;
1215
1216 return fn;
1217 }
1218
1219 /*
1220 * Get node with specified destination prefix (and source prefix,
1221 * if subtrees are used)
1222 */
1223
1224
fib6_locate_1(struct fib6_node * root,const struct in6_addr * addr,int plen,int offset)1225 static struct fib6_node *fib6_locate_1(struct fib6_node *root,
1226 const struct in6_addr *addr,
1227 int plen, int offset)
1228 {
1229 struct fib6_node *fn;
1230
1231 for (fn = root; fn ; ) {
1232 struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
1233
1234 /*
1235 * Prefix match
1236 */
1237 if (plen < fn->fn_bit ||
1238 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1239 return NULL;
1240
1241 if (plen == fn->fn_bit)
1242 return fn;
1243
1244 /*
1245 * We have more bits to go
1246 */
1247 if (addr_bit_set(addr, fn->fn_bit))
1248 fn = fn->right;
1249 else
1250 fn = fn->left;
1251 }
1252 return NULL;
1253 }
1254
fib6_locate(struct fib6_node * root,const struct in6_addr * daddr,int dst_len,const struct in6_addr * saddr,int src_len)1255 struct fib6_node *fib6_locate(struct fib6_node *root,
1256 const struct in6_addr *daddr, int dst_len,
1257 const struct in6_addr *saddr, int src_len)
1258 {
1259 struct fib6_node *fn;
1260
1261 fn = fib6_locate_1(root, daddr, dst_len,
1262 offsetof(struct rt6_info, rt6i_dst));
1263
1264 #ifdef CONFIG_IPV6_SUBTREES
1265 if (src_len) {
1266 WARN_ON(saddr == NULL);
1267 if (fn && fn->subtree)
1268 fn = fib6_locate_1(fn->subtree, saddr, src_len,
1269 offsetof(struct rt6_info, rt6i_src));
1270 }
1271 #endif
1272
1273 if (fn && fn->fn_flags & RTN_RTINFO)
1274 return fn;
1275
1276 return NULL;
1277 }
1278
1279
1280 /*
1281 * Deletion
1282 *
1283 */
1284
fib6_find_prefix(struct net * net,struct fib6_node * fn)1285 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn)
1286 {
1287 if (fn->fn_flags & RTN_ROOT)
1288 return net->ipv6.ip6_null_entry;
1289
1290 while (fn) {
1291 if (fn->left)
1292 return fn->left->leaf;
1293 if (fn->right)
1294 return fn->right->leaf;
1295
1296 fn = FIB6_SUBTREE(fn);
1297 }
1298 return NULL;
1299 }
1300
1301 /*
1302 * Called to trim the tree of intermediate nodes when possible. "fn"
1303 * is the node we want to try and remove.
1304 */
1305
fib6_repair_tree(struct net * net,struct fib6_node * fn)1306 static struct fib6_node *fib6_repair_tree(struct net *net,
1307 struct fib6_node *fn)
1308 {
1309 int children;
1310 int nstate;
1311 struct fib6_node *child, *pn;
1312 struct fib6_walker *w;
1313 int iter = 0;
1314
1315 for (;;) {
1316 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1317 iter++;
1318
1319 WARN_ON(fn->fn_flags & RTN_RTINFO);
1320 WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1321 WARN_ON(fn->leaf);
1322
1323 children = 0;
1324 child = NULL;
1325 if (fn->right)
1326 child = fn->right, children |= 1;
1327 if (fn->left)
1328 child = fn->left, children |= 2;
1329
1330 if (children == 3 || FIB6_SUBTREE(fn)
1331 #ifdef CONFIG_IPV6_SUBTREES
1332 /* Subtree root (i.e. fn) may have one child */
1333 || (children && fn->fn_flags & RTN_ROOT)
1334 #endif
1335 ) {
1336 fn->leaf = fib6_find_prefix(net, fn);
1337 #if RT6_DEBUG >= 2
1338 if (!fn->leaf) {
1339 WARN_ON(!fn->leaf);
1340 fn->leaf = net->ipv6.ip6_null_entry;
1341 }
1342 #endif
1343 atomic_inc(&fn->leaf->rt6i_ref);
1344 return fn->parent;
1345 }
1346
1347 pn = fn->parent;
1348 #ifdef CONFIG_IPV6_SUBTREES
1349 if (FIB6_SUBTREE(pn) == fn) {
1350 WARN_ON(!(fn->fn_flags & RTN_ROOT));
1351 FIB6_SUBTREE(pn) = NULL;
1352 nstate = FWS_L;
1353 } else {
1354 WARN_ON(fn->fn_flags & RTN_ROOT);
1355 #endif
1356 if (pn->right == fn)
1357 pn->right = child;
1358 else if (pn->left == fn)
1359 pn->left = child;
1360 #if RT6_DEBUG >= 2
1361 else
1362 WARN_ON(1);
1363 #endif
1364 if (child)
1365 child->parent = pn;
1366 nstate = FWS_R;
1367 #ifdef CONFIG_IPV6_SUBTREES
1368 }
1369 #endif
1370
1371 read_lock(&net->ipv6.fib6_walker_lock);
1372 FOR_WALKERS(net, w) {
1373 if (!child) {
1374 if (w->root == fn) {
1375 w->root = w->node = NULL;
1376 RT6_TRACE("W %p adjusted by delroot 1\n", w);
1377 } else if (w->node == fn) {
1378 RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1379 w->node = pn;
1380 w->state = nstate;
1381 }
1382 } else {
1383 if (w->root == fn) {
1384 w->root = child;
1385 RT6_TRACE("W %p adjusted by delroot 2\n", w);
1386 }
1387 if (w->node == fn) {
1388 w->node = child;
1389 if (children&2) {
1390 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1391 w->state = w->state >= FWS_R ? FWS_U : FWS_INIT;
1392 } else {
1393 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1394 w->state = w->state >= FWS_C ? FWS_U : FWS_INIT;
1395 }
1396 }
1397 }
1398 }
1399 read_unlock(&net->ipv6.fib6_walker_lock);
1400
1401 node_free(fn);
1402 if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1403 return pn;
1404
1405 rt6_release(pn->leaf);
1406 pn->leaf = NULL;
1407 fn = pn;
1408 }
1409 }
1410
fib6_del_route(struct fib6_node * fn,struct rt6_info ** rtp,struct nl_info * info)1411 static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
1412 struct nl_info *info)
1413 {
1414 struct fib6_walker *w;
1415 struct rt6_info *rt = *rtp;
1416 struct net *net = info->nl_net;
1417
1418 RT6_TRACE("fib6_del_route\n");
1419
1420 /* Unlink it */
1421 *rtp = rt->dst.rt6_next;
1422 rt->rt6i_node = NULL;
1423 net->ipv6.rt6_stats->fib_rt_entries--;
1424 net->ipv6.rt6_stats->fib_discarded_routes++;
1425
1426 /* Reset round-robin state, if necessary */
1427 if (fn->rr_ptr == rt)
1428 fn->rr_ptr = NULL;
1429
1430 /* Remove this entry from other siblings */
1431 if (rt->rt6i_nsiblings) {
1432 struct rt6_info *sibling, *next_sibling;
1433
1434 list_for_each_entry_safe(sibling, next_sibling,
1435 &rt->rt6i_siblings, rt6i_siblings)
1436 sibling->rt6i_nsiblings--;
1437 rt->rt6i_nsiblings = 0;
1438 list_del_init(&rt->rt6i_siblings);
1439 }
1440
1441 /* Adjust walkers */
1442 read_lock(&net->ipv6.fib6_walker_lock);
1443 FOR_WALKERS(net, w) {
1444 if (w->state == FWS_C && w->leaf == rt) {
1445 RT6_TRACE("walker %p adjusted by delroute\n", w);
1446 w->leaf = rt->dst.rt6_next;
1447 if (!w->leaf)
1448 w->state = FWS_U;
1449 }
1450 }
1451 read_unlock(&net->ipv6.fib6_walker_lock);
1452
1453 rt->dst.rt6_next = NULL;
1454
1455 /* If it was last route, expunge its radix tree node */
1456 if (!fn->leaf) {
1457 fn->fn_flags &= ~RTN_RTINFO;
1458 net->ipv6.rt6_stats->fib_route_nodes--;
1459 fn = fib6_repair_tree(net, fn);
1460 }
1461
1462 fib6_purge_rt(rt, fn, net);
1463
1464 inet6_rt_notify(RTM_DELROUTE, rt, info, 0);
1465 rt6_release(rt);
1466 }
1467
fib6_del(struct rt6_info * rt,struct nl_info * info)1468 int fib6_del(struct rt6_info *rt, struct nl_info *info)
1469 {
1470 struct fib6_node *fn = rcu_dereference_protected(rt->rt6i_node,
1471 lockdep_is_held(&rt->rt6i_table->tb6_lock));
1472 struct net *net = info->nl_net;
1473 struct rt6_info **rtp;
1474
1475 #if RT6_DEBUG >= 2
1476 if (rt->dst.obsolete > 0) {
1477 WARN_ON(fn);
1478 return -ENOENT;
1479 }
1480 #endif
1481 if (!fn || rt == net->ipv6.ip6_null_entry)
1482 return -ENOENT;
1483
1484 WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1485
1486 if (!(rt->rt6i_flags & RTF_CACHE)) {
1487 struct fib6_node *pn = fn;
1488 #ifdef CONFIG_IPV6_SUBTREES
1489 /* clones of this route might be in another subtree */
1490 if (rt->rt6i_src.plen) {
1491 while (!(pn->fn_flags & RTN_ROOT))
1492 pn = pn->parent;
1493 pn = pn->parent;
1494 }
1495 #endif
1496 fib6_prune_clones(info->nl_net, pn);
1497 }
1498
1499 /*
1500 * Walk the leaf entries looking for ourself
1501 */
1502
1503 for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->dst.rt6_next) {
1504 if (*rtp == rt) {
1505 fib6_del_route(fn, rtp, info);
1506 return 0;
1507 }
1508 }
1509 return -ENOENT;
1510 }
1511
1512 /*
1513 * Tree traversal function.
1514 *
1515 * Certainly, it is not interrupt safe.
1516 * However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1517 * It means, that we can modify tree during walking
1518 * and use this function for garbage collection, clone pruning,
1519 * cleaning tree when a device goes down etc. etc.
1520 *
1521 * It guarantees that every node will be traversed,
1522 * and that it will be traversed only once.
1523 *
1524 * Callback function w->func may return:
1525 * 0 -> continue walking.
1526 * positive value -> walking is suspended (used by tree dumps,
1527 * and probably by gc, if it will be split to several slices)
1528 * negative value -> terminate walking.
1529 *
1530 * The function itself returns:
1531 * 0 -> walk is complete.
1532 * >0 -> walk is incomplete (i.e. suspended)
1533 * <0 -> walk is terminated by an error.
1534 */
1535
fib6_walk_continue(struct fib6_walker * w)1536 static int fib6_walk_continue(struct fib6_walker *w)
1537 {
1538 struct fib6_node *fn, *pn;
1539
1540 for (;;) {
1541 fn = w->node;
1542 if (!fn)
1543 return 0;
1544
1545 if (w->prune && fn != w->root &&
1546 fn->fn_flags & RTN_RTINFO && w->state < FWS_C) {
1547 w->state = FWS_C;
1548 w->leaf = fn->leaf;
1549 }
1550 switch (w->state) {
1551 #ifdef CONFIG_IPV6_SUBTREES
1552 case FWS_S:
1553 if (FIB6_SUBTREE(fn)) {
1554 w->node = FIB6_SUBTREE(fn);
1555 continue;
1556 }
1557 w->state = FWS_L;
1558 #endif
1559 case FWS_L:
1560 if (fn->left) {
1561 w->node = fn->left;
1562 w->state = FWS_INIT;
1563 continue;
1564 }
1565 w->state = FWS_R;
1566 case FWS_R:
1567 if (fn->right) {
1568 w->node = fn->right;
1569 w->state = FWS_INIT;
1570 continue;
1571 }
1572 w->state = FWS_C;
1573 w->leaf = fn->leaf;
1574 case FWS_C:
1575 if (w->leaf && fn->fn_flags & RTN_RTINFO) {
1576 int err;
1577
1578 if (w->skip) {
1579 w->skip--;
1580 goto skip;
1581 }
1582
1583 err = w->func(w);
1584 if (err)
1585 return err;
1586
1587 w->count++;
1588 continue;
1589 }
1590 skip:
1591 w->state = FWS_U;
1592 case FWS_U:
1593 if (fn == w->root)
1594 return 0;
1595 pn = fn->parent;
1596 w->node = pn;
1597 #ifdef CONFIG_IPV6_SUBTREES
1598 if (FIB6_SUBTREE(pn) == fn) {
1599 WARN_ON(!(fn->fn_flags & RTN_ROOT));
1600 w->state = FWS_L;
1601 continue;
1602 }
1603 #endif
1604 if (pn->left == fn) {
1605 w->state = FWS_R;
1606 continue;
1607 }
1608 if (pn->right == fn) {
1609 w->state = FWS_C;
1610 w->leaf = w->node->leaf;
1611 continue;
1612 }
1613 #if RT6_DEBUG >= 2
1614 WARN_ON(1);
1615 #endif
1616 }
1617 }
1618 }
1619
fib6_walk(struct net * net,struct fib6_walker * w)1620 static int fib6_walk(struct net *net, struct fib6_walker *w)
1621 {
1622 int res;
1623
1624 w->state = FWS_INIT;
1625 w->node = w->root;
1626
1627 fib6_walker_link(net, w);
1628 res = fib6_walk_continue(w);
1629 if (res <= 0)
1630 fib6_walker_unlink(net, w);
1631 return res;
1632 }
1633
fib6_clean_node(struct fib6_walker * w)1634 static int fib6_clean_node(struct fib6_walker *w)
1635 {
1636 int res;
1637 struct rt6_info *rt;
1638 struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w);
1639 struct nl_info info = {
1640 .nl_net = c->net,
1641 };
1642
1643 if (c->sernum != FIB6_NO_SERNUM_CHANGE &&
1644 w->node->fn_sernum != c->sernum)
1645 w->node->fn_sernum = c->sernum;
1646
1647 if (!c->func) {
1648 WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE);
1649 w->leaf = NULL;
1650 return 0;
1651 }
1652
1653 for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
1654 res = c->func(rt, c->arg);
1655 if (res < 0) {
1656 w->leaf = rt;
1657 res = fib6_del(rt, &info);
1658 if (res) {
1659 #if RT6_DEBUG >= 2
1660 pr_debug("%s: del failed: rt=%p@%p err=%d\n",
1661 __func__, rt,
1662 rcu_access_pointer(rt->rt6i_node),
1663 res);
1664 #endif
1665 continue;
1666 }
1667 return 0;
1668 }
1669 WARN_ON(res != 0);
1670 }
1671 w->leaf = rt;
1672 return 0;
1673 }
1674
1675 /*
1676 * Convenient frontend to tree walker.
1677 *
1678 * func is called on each route.
1679 * It may return -1 -> delete this route.
1680 * 0 -> continue walking
1681 *
1682 * prune==1 -> only immediate children of node (certainly,
1683 * ignoring pure split nodes) will be scanned.
1684 */
1685
fib6_clean_tree(struct net * net,struct fib6_node * root,int (* func)(struct rt6_info *,void * arg),bool prune,int sernum,void * arg)1686 static void fib6_clean_tree(struct net *net, struct fib6_node *root,
1687 int (*func)(struct rt6_info *, void *arg),
1688 bool prune, int sernum, void *arg)
1689 {
1690 struct fib6_cleaner c;
1691
1692 c.w.root = root;
1693 c.w.func = fib6_clean_node;
1694 c.w.prune = prune;
1695 c.w.count = 0;
1696 c.w.skip = 0;
1697 c.func = func;
1698 c.sernum = sernum;
1699 c.arg = arg;
1700 c.net = net;
1701
1702 fib6_walk(net, &c.w);
1703 }
1704
__fib6_clean_all(struct net * net,int (* func)(struct rt6_info *,void *),int sernum,void * arg)1705 static void __fib6_clean_all(struct net *net,
1706 int (*func)(struct rt6_info *, void *),
1707 int sernum, void *arg)
1708 {
1709 struct fib6_table *table;
1710 struct hlist_head *head;
1711 unsigned int h;
1712
1713 rcu_read_lock();
1714 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1715 head = &net->ipv6.fib_table_hash[h];
1716 hlist_for_each_entry_rcu(table, head, tb6_hlist) {
1717 write_lock_bh(&table->tb6_lock);
1718 fib6_clean_tree(net, &table->tb6_root,
1719 func, false, sernum, arg);
1720 write_unlock_bh(&table->tb6_lock);
1721 }
1722 }
1723 rcu_read_unlock();
1724 }
1725
fib6_clean_all(struct net * net,int (* func)(struct rt6_info *,void *),void * arg)1726 void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *),
1727 void *arg)
1728 {
1729 __fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg);
1730 }
1731
fib6_prune_clone(struct rt6_info * rt,void * arg)1732 static int fib6_prune_clone(struct rt6_info *rt, void *arg)
1733 {
1734 if (rt->rt6i_flags & RTF_CACHE) {
1735 RT6_TRACE("pruning clone %p\n", rt);
1736 return -1;
1737 }
1738
1739 return 0;
1740 }
1741
fib6_prune_clones(struct net * net,struct fib6_node * fn)1742 static void fib6_prune_clones(struct net *net, struct fib6_node *fn)
1743 {
1744 fib6_clean_tree(net, fn, fib6_prune_clone, true,
1745 FIB6_NO_SERNUM_CHANGE, NULL);
1746 }
1747
fib6_flush_trees(struct net * net)1748 static void fib6_flush_trees(struct net *net)
1749 {
1750 int new_sernum = fib6_new_sernum(net);
1751
1752 __fib6_clean_all(net, NULL, new_sernum, NULL);
1753 }
1754
1755 /*
1756 * Garbage collection
1757 */
1758
1759 struct fib6_gc_args
1760 {
1761 int timeout;
1762 int more;
1763 };
1764
fib6_age(struct rt6_info * rt,void * arg)1765 static int fib6_age(struct rt6_info *rt, void *arg)
1766 {
1767 struct fib6_gc_args *gc_args = arg;
1768 unsigned long now = jiffies;
1769
1770 /*
1771 * check addrconf expiration here.
1772 * Routes are expired even if they are in use.
1773 *
1774 * Also age clones. Note, that clones are aged out
1775 * only if they are not in use now.
1776 */
1777
1778 if (rt->rt6i_flags & RTF_EXPIRES && rt->dst.expires) {
1779 if (time_after(now, rt->dst.expires)) {
1780 RT6_TRACE("expiring %p\n", rt);
1781 return -1;
1782 }
1783 gc_args->more++;
1784 } else if (rt->rt6i_flags & RTF_CACHE) {
1785 if (atomic_read(&rt->dst.__refcnt) == 0 &&
1786 time_after_eq(now, rt->dst.lastuse + gc_args->timeout)) {
1787 RT6_TRACE("aging clone %p\n", rt);
1788 return -1;
1789 } else if (rt->rt6i_flags & RTF_GATEWAY) {
1790 struct neighbour *neigh;
1791 __u8 neigh_flags = 0;
1792
1793 neigh = dst_neigh_lookup(&rt->dst, &rt->rt6i_gateway);
1794 if (neigh) {
1795 neigh_flags = neigh->flags;
1796 neigh_release(neigh);
1797 }
1798 if (!(neigh_flags & NTF_ROUTER)) {
1799 RT6_TRACE("purging route %p via non-router but gateway\n",
1800 rt);
1801 return -1;
1802 }
1803 }
1804 gc_args->more++;
1805 }
1806
1807 return 0;
1808 }
1809
fib6_run_gc(unsigned long expires,struct net * net,bool force)1810 void fib6_run_gc(unsigned long expires, struct net *net, bool force)
1811 {
1812 struct fib6_gc_args gc_args;
1813 unsigned long now;
1814
1815 if (force) {
1816 spin_lock_bh(&net->ipv6.fib6_gc_lock);
1817 } else if (!spin_trylock_bh(&net->ipv6.fib6_gc_lock)) {
1818 mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
1819 return;
1820 }
1821 gc_args.timeout = expires ? (int)expires :
1822 net->ipv6.sysctl.ip6_rt_gc_interval;
1823
1824 gc_args.more = icmp6_dst_gc();
1825
1826 fib6_clean_all(net, fib6_age, &gc_args);
1827 now = jiffies;
1828 net->ipv6.ip6_rt_last_gc = now;
1829
1830 if (gc_args.more)
1831 mod_timer(&net->ipv6.ip6_fib_timer,
1832 round_jiffies(now
1833 + net->ipv6.sysctl.ip6_rt_gc_interval));
1834 else
1835 del_timer(&net->ipv6.ip6_fib_timer);
1836 spin_unlock_bh(&net->ipv6.fib6_gc_lock);
1837 }
1838
fib6_gc_timer_cb(unsigned long arg)1839 static void fib6_gc_timer_cb(unsigned long arg)
1840 {
1841 fib6_run_gc(0, (struct net *)arg, true);
1842 }
1843
fib6_net_init(struct net * net)1844 static int __net_init fib6_net_init(struct net *net)
1845 {
1846 size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
1847
1848 spin_lock_init(&net->ipv6.fib6_gc_lock);
1849 rwlock_init(&net->ipv6.fib6_walker_lock);
1850 INIT_LIST_HEAD(&net->ipv6.fib6_walkers);
1851 setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net);
1852
1853 net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
1854 if (!net->ipv6.rt6_stats)
1855 goto out_timer;
1856
1857 /* Avoid false sharing : Use at least a full cache line */
1858 size = max_t(size_t, size, L1_CACHE_BYTES);
1859
1860 net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
1861 if (!net->ipv6.fib_table_hash)
1862 goto out_rt6_stats;
1863
1864 net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
1865 GFP_KERNEL);
1866 if (!net->ipv6.fib6_main_tbl)
1867 goto out_fib_table_hash;
1868
1869 net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
1870 net->ipv6.fib6_main_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1871 net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
1872 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1873 inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
1874
1875 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1876 net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
1877 GFP_KERNEL);
1878 if (!net->ipv6.fib6_local_tbl)
1879 goto out_fib6_main_tbl;
1880 net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
1881 net->ipv6.fib6_local_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1882 net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
1883 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1884 inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
1885 #endif
1886 fib6_tables_init(net);
1887
1888 return 0;
1889
1890 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1891 out_fib6_main_tbl:
1892 kfree(net->ipv6.fib6_main_tbl);
1893 #endif
1894 out_fib_table_hash:
1895 kfree(net->ipv6.fib_table_hash);
1896 out_rt6_stats:
1897 kfree(net->ipv6.rt6_stats);
1898 out_timer:
1899 return -ENOMEM;
1900 }
1901
fib6_net_exit(struct net * net)1902 static void fib6_net_exit(struct net *net)
1903 {
1904 unsigned int i;
1905
1906 rt6_ifdown(net, NULL);
1907 del_timer_sync(&net->ipv6.ip6_fib_timer);
1908
1909 for (i = 0; i < FIB6_TABLE_HASHSZ; i++) {
1910 struct hlist_head *head = &net->ipv6.fib_table_hash[i];
1911 struct hlist_node *tmp;
1912 struct fib6_table *tb;
1913
1914 hlist_for_each_entry_safe(tb, tmp, head, tb6_hlist) {
1915 hlist_del(&tb->tb6_hlist);
1916 fib6_free_table(tb);
1917 }
1918 }
1919
1920 kfree(net->ipv6.fib_table_hash);
1921 kfree(net->ipv6.rt6_stats);
1922 }
1923
1924 static struct pernet_operations fib6_net_ops = {
1925 .init = fib6_net_init,
1926 .exit = fib6_net_exit,
1927 };
1928
fib6_init(void)1929 int __init fib6_init(void)
1930 {
1931 int ret = -ENOMEM;
1932
1933 fib6_node_kmem = kmem_cache_create("fib6_nodes",
1934 sizeof(struct fib6_node),
1935 0, SLAB_HWCACHE_ALIGN,
1936 NULL);
1937 if (!fib6_node_kmem)
1938 goto out;
1939
1940 ret = register_pernet_subsys(&fib6_net_ops);
1941 if (ret)
1942 goto out_kmem_cache_create;
1943
1944 ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib,
1945 NULL);
1946 if (ret)
1947 goto out_unregister_subsys;
1948
1949 __fib6_flush_trees = fib6_flush_trees;
1950 out:
1951 return ret;
1952
1953 out_unregister_subsys:
1954 unregister_pernet_subsys(&fib6_net_ops);
1955 out_kmem_cache_create:
1956 kmem_cache_destroy(fib6_node_kmem);
1957 goto out;
1958 }
1959
fib6_gc_cleanup(void)1960 void fib6_gc_cleanup(void)
1961 {
1962 unregister_pernet_subsys(&fib6_net_ops);
1963 kmem_cache_destroy(fib6_node_kmem);
1964 }
1965
1966 #ifdef CONFIG_PROC_FS
1967
1968 struct ipv6_route_iter {
1969 struct seq_net_private p;
1970 struct fib6_walker w;
1971 loff_t skip;
1972 struct fib6_table *tbl;
1973 int sernum;
1974 };
1975
ipv6_route_seq_show(struct seq_file * seq,void * v)1976 static int ipv6_route_seq_show(struct seq_file *seq, void *v)
1977 {
1978 struct rt6_info *rt = v;
1979 struct ipv6_route_iter *iter = seq->private;
1980
1981 seq_printf(seq, "%pi6 %02x ", &rt->rt6i_dst.addr, rt->rt6i_dst.plen);
1982
1983 #ifdef CONFIG_IPV6_SUBTREES
1984 seq_printf(seq, "%pi6 %02x ", &rt->rt6i_src.addr, rt->rt6i_src.plen);
1985 #else
1986 seq_puts(seq, "00000000000000000000000000000000 00 ");
1987 #endif
1988 if (rt->rt6i_flags & RTF_GATEWAY)
1989 seq_printf(seq, "%pi6", &rt->rt6i_gateway);
1990 else
1991 seq_puts(seq, "00000000000000000000000000000000");
1992
1993 seq_printf(seq, " %08x %08x %08x %08x %8s\n",
1994 rt->rt6i_metric, atomic_read(&rt->dst.__refcnt),
1995 rt->dst.__use, rt->rt6i_flags,
1996 rt->dst.dev ? rt->dst.dev->name : "");
1997 iter->w.leaf = NULL;
1998 return 0;
1999 }
2000
ipv6_route_yield(struct fib6_walker * w)2001 static int ipv6_route_yield(struct fib6_walker *w)
2002 {
2003 struct ipv6_route_iter *iter = w->args;
2004
2005 if (!iter->skip)
2006 return 1;
2007
2008 do {
2009 iter->w.leaf = iter->w.leaf->dst.rt6_next;
2010 iter->skip--;
2011 if (!iter->skip && iter->w.leaf)
2012 return 1;
2013 } while (iter->w.leaf);
2014
2015 return 0;
2016 }
2017
ipv6_route_seq_setup_walk(struct ipv6_route_iter * iter,struct net * net)2018 static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter,
2019 struct net *net)
2020 {
2021 memset(&iter->w, 0, sizeof(iter->w));
2022 iter->w.func = ipv6_route_yield;
2023 iter->w.root = &iter->tbl->tb6_root;
2024 iter->w.state = FWS_INIT;
2025 iter->w.node = iter->w.root;
2026 iter->w.args = iter;
2027 iter->sernum = iter->w.root->fn_sernum;
2028 INIT_LIST_HEAD(&iter->w.lh);
2029 fib6_walker_link(net, &iter->w);
2030 }
2031
ipv6_route_seq_next_table(struct fib6_table * tbl,struct net * net)2032 static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl,
2033 struct net *net)
2034 {
2035 unsigned int h;
2036 struct hlist_node *node;
2037
2038 if (tbl) {
2039 h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1;
2040 node = rcu_dereference_bh(hlist_next_rcu(&tbl->tb6_hlist));
2041 } else {
2042 h = 0;
2043 node = NULL;
2044 }
2045
2046 while (!node && h < FIB6_TABLE_HASHSZ) {
2047 node = rcu_dereference_bh(
2048 hlist_first_rcu(&net->ipv6.fib_table_hash[h++]));
2049 }
2050 return hlist_entry_safe(node, struct fib6_table, tb6_hlist);
2051 }
2052
ipv6_route_check_sernum(struct ipv6_route_iter * iter)2053 static void ipv6_route_check_sernum(struct ipv6_route_iter *iter)
2054 {
2055 if (iter->sernum != iter->w.root->fn_sernum) {
2056 iter->sernum = iter->w.root->fn_sernum;
2057 iter->w.state = FWS_INIT;
2058 iter->w.node = iter->w.root;
2059 WARN_ON(iter->w.skip);
2060 iter->w.skip = iter->w.count;
2061 }
2062 }
2063
ipv6_route_seq_next(struct seq_file * seq,void * v,loff_t * pos)2064 static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2065 {
2066 int r;
2067 struct rt6_info *n;
2068 struct net *net = seq_file_net(seq);
2069 struct ipv6_route_iter *iter = seq->private;
2070
2071 if (!v)
2072 goto iter_table;
2073
2074 n = ((struct rt6_info *)v)->dst.rt6_next;
2075 if (n) {
2076 ++*pos;
2077 return n;
2078 }
2079
2080 iter_table:
2081 ipv6_route_check_sernum(iter);
2082 read_lock(&iter->tbl->tb6_lock);
2083 r = fib6_walk_continue(&iter->w);
2084 read_unlock(&iter->tbl->tb6_lock);
2085 if (r > 0) {
2086 if (v)
2087 ++*pos;
2088 return iter->w.leaf;
2089 } else if (r < 0) {
2090 fib6_walker_unlink(net, &iter->w);
2091 return NULL;
2092 }
2093 fib6_walker_unlink(net, &iter->w);
2094
2095 iter->tbl = ipv6_route_seq_next_table(iter->tbl, net);
2096 if (!iter->tbl)
2097 return NULL;
2098
2099 ipv6_route_seq_setup_walk(iter, net);
2100 goto iter_table;
2101 }
2102
ipv6_route_seq_start(struct seq_file * seq,loff_t * pos)2103 static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos)
2104 __acquires(RCU_BH)
2105 {
2106 struct net *net = seq_file_net(seq);
2107 struct ipv6_route_iter *iter = seq->private;
2108
2109 rcu_read_lock_bh();
2110 iter->tbl = ipv6_route_seq_next_table(NULL, net);
2111 iter->skip = *pos;
2112
2113 if (iter->tbl) {
2114 ipv6_route_seq_setup_walk(iter, net);
2115 return ipv6_route_seq_next(seq, NULL, pos);
2116 } else {
2117 return NULL;
2118 }
2119 }
2120
ipv6_route_iter_active(struct ipv6_route_iter * iter)2121 static bool ipv6_route_iter_active(struct ipv6_route_iter *iter)
2122 {
2123 struct fib6_walker *w = &iter->w;
2124 return w->node && !(w->state == FWS_U && w->node == w->root);
2125 }
2126
ipv6_route_seq_stop(struct seq_file * seq,void * v)2127 static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2128 __releases(RCU_BH)
2129 {
2130 struct net *net = seq_file_net(seq);
2131 struct ipv6_route_iter *iter = seq->private;
2132
2133 if (ipv6_route_iter_active(iter))
2134 fib6_walker_unlink(net, &iter->w);
2135
2136 rcu_read_unlock_bh();
2137 }
2138
2139 static const struct seq_operations ipv6_route_seq_ops = {
2140 .start = ipv6_route_seq_start,
2141 .next = ipv6_route_seq_next,
2142 .stop = ipv6_route_seq_stop,
2143 .show = ipv6_route_seq_show
2144 };
2145
ipv6_route_open(struct inode * inode,struct file * file)2146 int ipv6_route_open(struct inode *inode, struct file *file)
2147 {
2148 return seq_open_net(inode, file, &ipv6_route_seq_ops,
2149 sizeof(struct ipv6_route_iter));
2150 }
2151
2152 #endif /* CONFIG_PROC_FS */
2153