• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2007-2014 Nicira, Inc.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16  * 02110-1301, USA
17  */
18 
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20 
21 #include "flow.h"
22 #include "datapath.h"
23 #include <linux/uaccess.h>
24 #include <linux/netdevice.h>
25 #include <linux/etherdevice.h>
26 #include <linux/if_ether.h>
27 #include <linux/if_vlan.h>
28 #include <net/llc_pdu.h>
29 #include <linux/kernel.h>
30 #include <linux/jhash.h>
31 #include <linux/jiffies.h>
32 #include <linux/llc.h>
33 #include <linux/module.h>
34 #include <linux/in.h>
35 #include <linux/rcupdate.h>
36 #include <linux/if_arp.h>
37 #include <linux/ip.h>
38 #include <linux/ipv6.h>
39 #include <linux/sctp.h>
40 #include <linux/tcp.h>
41 #include <linux/udp.h>
42 #include <linux/icmp.h>
43 #include <linux/icmpv6.h>
44 #include <linux/rculist.h>
45 #include <net/geneve.h>
46 #include <net/ip.h>
47 #include <net/ipv6.h>
48 #include <net/ndisc.h>
49 #include <net/mpls.h>
50 #include <net/vxlan.h>
51 
52 #include "flow_netlink.h"
53 
54 struct ovs_len_tbl {
55 	int len;
56 	const struct ovs_len_tbl *next;
57 };
58 
59 #define OVS_ATTR_NESTED -1
60 #define OVS_ATTR_VARIABLE -2
61 
update_range(struct sw_flow_match * match,size_t offset,size_t size,bool is_mask)62 static void update_range(struct sw_flow_match *match,
63 			 size_t offset, size_t size, bool is_mask)
64 {
65 	struct sw_flow_key_range *range;
66 	size_t start = rounddown(offset, sizeof(long));
67 	size_t end = roundup(offset + size, sizeof(long));
68 
69 	if (!is_mask)
70 		range = &match->range;
71 	else
72 		range = &match->mask->range;
73 
74 	if (range->start == range->end) {
75 		range->start = start;
76 		range->end = end;
77 		return;
78 	}
79 
80 	if (range->start > start)
81 		range->start = start;
82 
83 	if (range->end < end)
84 		range->end = end;
85 }
86 
87 #define SW_FLOW_KEY_PUT(match, field, value, is_mask) \
88 	do { \
89 		update_range(match, offsetof(struct sw_flow_key, field),    \
90 			     sizeof((match)->key->field), is_mask);	    \
91 		if (is_mask)						    \
92 			(match)->mask->key.field = value;		    \
93 		else							    \
94 			(match)->key->field = value;		            \
95 	} while (0)
96 
97 #define SW_FLOW_KEY_MEMCPY_OFFSET(match, offset, value_p, len, is_mask)	    \
98 	do {								    \
99 		update_range(match, offset, len, is_mask);		    \
100 		if (is_mask)						    \
101 			memcpy((u8 *)&(match)->mask->key + offset, value_p, \
102 			       len);					   \
103 		else							    \
104 			memcpy((u8 *)(match)->key + offset, value_p, len);  \
105 	} while (0)
106 
107 #define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask)		      \
108 	SW_FLOW_KEY_MEMCPY_OFFSET(match, offsetof(struct sw_flow_key, field), \
109 				  value_p, len, is_mask)
110 
111 #define SW_FLOW_KEY_MEMSET_FIELD(match, field, value, is_mask)		    \
112 	do {								    \
113 		update_range(match, offsetof(struct sw_flow_key, field),    \
114 			     sizeof((match)->key->field), is_mask);	    \
115 		if (is_mask)						    \
116 			memset((u8 *)&(match)->mask->key.field, value,      \
117 			       sizeof((match)->mask->key.field));	    \
118 		else							    \
119 			memset((u8 *)&(match)->key->field, value,           \
120 			       sizeof((match)->key->field));                \
121 	} while (0)
122 
match_validate(const struct sw_flow_match * match,u64 key_attrs,u64 mask_attrs,bool log)123 static bool match_validate(const struct sw_flow_match *match,
124 			   u64 key_attrs, u64 mask_attrs, bool log)
125 {
126 	u64 key_expected = 1 << OVS_KEY_ATTR_ETHERNET;
127 	u64 mask_allowed = key_attrs;  /* At most allow all key attributes */
128 
129 	/* The following mask attributes allowed only if they
130 	 * pass the validation tests. */
131 	mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4)
132 			| (1 << OVS_KEY_ATTR_IPV6)
133 			| (1 << OVS_KEY_ATTR_TCP)
134 			| (1 << OVS_KEY_ATTR_TCP_FLAGS)
135 			| (1 << OVS_KEY_ATTR_UDP)
136 			| (1 << OVS_KEY_ATTR_SCTP)
137 			| (1 << OVS_KEY_ATTR_ICMP)
138 			| (1 << OVS_KEY_ATTR_ICMPV6)
139 			| (1 << OVS_KEY_ATTR_ARP)
140 			| (1 << OVS_KEY_ATTR_ND)
141 			| (1 << OVS_KEY_ATTR_MPLS));
142 
143 	/* Always allowed mask fields. */
144 	mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL)
145 		       | (1 << OVS_KEY_ATTR_IN_PORT)
146 		       | (1 << OVS_KEY_ATTR_ETHERTYPE));
147 
148 	/* Check key attributes. */
149 	if (match->key->eth.type == htons(ETH_P_ARP)
150 			|| match->key->eth.type == htons(ETH_P_RARP)) {
151 		key_expected |= 1 << OVS_KEY_ATTR_ARP;
152 		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
153 			mask_allowed |= 1 << OVS_KEY_ATTR_ARP;
154 	}
155 
156 	if (eth_p_mpls(match->key->eth.type)) {
157 		key_expected |= 1 << OVS_KEY_ATTR_MPLS;
158 		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
159 			mask_allowed |= 1 << OVS_KEY_ATTR_MPLS;
160 	}
161 
162 	if (match->key->eth.type == htons(ETH_P_IP)) {
163 		key_expected |= 1 << OVS_KEY_ATTR_IPV4;
164 		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
165 			mask_allowed |= 1 << OVS_KEY_ATTR_IPV4;
166 
167 		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
168 			if (match->key->ip.proto == IPPROTO_UDP) {
169 				key_expected |= 1 << OVS_KEY_ATTR_UDP;
170 				if (match->mask && (match->mask->key.ip.proto == 0xff))
171 					mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
172 			}
173 
174 			if (match->key->ip.proto == IPPROTO_SCTP) {
175 				key_expected |= 1 << OVS_KEY_ATTR_SCTP;
176 				if (match->mask && (match->mask->key.ip.proto == 0xff))
177 					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
178 			}
179 
180 			if (match->key->ip.proto == IPPROTO_TCP) {
181 				key_expected |= 1 << OVS_KEY_ATTR_TCP;
182 				key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
183 				if (match->mask && (match->mask->key.ip.proto == 0xff)) {
184 					mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
185 					mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
186 				}
187 			}
188 
189 			if (match->key->ip.proto == IPPROTO_ICMP) {
190 				key_expected |= 1 << OVS_KEY_ATTR_ICMP;
191 				if (match->mask && (match->mask->key.ip.proto == 0xff))
192 					mask_allowed |= 1 << OVS_KEY_ATTR_ICMP;
193 			}
194 		}
195 	}
196 
197 	if (match->key->eth.type == htons(ETH_P_IPV6)) {
198 		key_expected |= 1 << OVS_KEY_ATTR_IPV6;
199 		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
200 			mask_allowed |= 1 << OVS_KEY_ATTR_IPV6;
201 
202 		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
203 			if (match->key->ip.proto == IPPROTO_UDP) {
204 				key_expected |= 1 << OVS_KEY_ATTR_UDP;
205 				if (match->mask && (match->mask->key.ip.proto == 0xff))
206 					mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
207 			}
208 
209 			if (match->key->ip.proto == IPPROTO_SCTP) {
210 				key_expected |= 1 << OVS_KEY_ATTR_SCTP;
211 				if (match->mask && (match->mask->key.ip.proto == 0xff))
212 					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
213 			}
214 
215 			if (match->key->ip.proto == IPPROTO_TCP) {
216 				key_expected |= 1 << OVS_KEY_ATTR_TCP;
217 				key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
218 				if (match->mask && (match->mask->key.ip.proto == 0xff)) {
219 					mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
220 					mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
221 				}
222 			}
223 
224 			if (match->key->ip.proto == IPPROTO_ICMPV6) {
225 				key_expected |= 1 << OVS_KEY_ATTR_ICMPV6;
226 				if (match->mask && (match->mask->key.ip.proto == 0xff))
227 					mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6;
228 
229 				if (match->key->tp.src ==
230 						htons(NDISC_NEIGHBOUR_SOLICITATION) ||
231 				    match->key->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
232 					key_expected |= 1 << OVS_KEY_ATTR_ND;
233 					if (match->mask && (match->mask->key.tp.src == htons(0xff)))
234 						mask_allowed |= 1 << OVS_KEY_ATTR_ND;
235 				}
236 			}
237 		}
238 	}
239 
240 	if ((key_attrs & key_expected) != key_expected) {
241 		/* Key attributes check failed. */
242 		OVS_NLERR(log, "Missing key (keys=%llx, expected=%llx)",
243 			  (unsigned long long)key_attrs,
244 			  (unsigned long long)key_expected);
245 		return false;
246 	}
247 
248 	if ((mask_attrs & mask_allowed) != mask_attrs) {
249 		/* Mask attributes check failed. */
250 		OVS_NLERR(log, "Unexpected mask (mask=%llx, allowed=%llx)",
251 			  (unsigned long long)mask_attrs,
252 			  (unsigned long long)mask_allowed);
253 		return false;
254 	}
255 
256 	return true;
257 }
258 
ovs_tun_key_attr_size(void)259 size_t ovs_tun_key_attr_size(void)
260 {
261 	/* Whenever adding new OVS_TUNNEL_KEY_ FIELDS, we should consider
262 	 * updating this function.
263 	 */
264 	return    nla_total_size_64bit(8) /* OVS_TUNNEL_KEY_ATTR_ID */
265 		+ nla_total_size(16)   /* OVS_TUNNEL_KEY_ATTR_IPV[46]_SRC */
266 		+ nla_total_size(16)   /* OVS_TUNNEL_KEY_ATTR_IPV[46]_DST */
267 		+ nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TOS */
268 		+ nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TTL */
269 		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT */
270 		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_CSUM */
271 		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_OAM */
272 		+ nla_total_size(256)  /* OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS */
273 		/* OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS is mutually exclusive with
274 		 * OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS and covered by it.
275 		 */
276 		+ nla_total_size(2)    /* OVS_TUNNEL_KEY_ATTR_TP_SRC */
277 		+ nla_total_size(2);   /* OVS_TUNNEL_KEY_ATTR_TP_DST */
278 }
279 
ovs_key_attr_size(void)280 size_t ovs_key_attr_size(void)
281 {
282 	/* Whenever adding new OVS_KEY_ FIELDS, we should consider
283 	 * updating this function.
284 	 */
285 	BUILD_BUG_ON(OVS_KEY_ATTR_TUNNEL_INFO != 26);
286 
287 	return    nla_total_size(4)   /* OVS_KEY_ATTR_PRIORITY */
288 		+ nla_total_size(0)   /* OVS_KEY_ATTR_TUNNEL */
289 		  + ovs_tun_key_attr_size()
290 		+ nla_total_size(4)   /* OVS_KEY_ATTR_IN_PORT */
291 		+ nla_total_size(4)   /* OVS_KEY_ATTR_SKB_MARK */
292 		+ nla_total_size(4)   /* OVS_KEY_ATTR_DP_HASH */
293 		+ nla_total_size(4)   /* OVS_KEY_ATTR_RECIRC_ID */
294 		+ nla_total_size(4)   /* OVS_KEY_ATTR_CT_STATE */
295 		+ nla_total_size(2)   /* OVS_KEY_ATTR_CT_ZONE */
296 		+ nla_total_size(4)   /* OVS_KEY_ATTR_CT_MARK */
297 		+ nla_total_size(16)  /* OVS_KEY_ATTR_CT_LABELS */
298 		+ nla_total_size(12)  /* OVS_KEY_ATTR_ETHERNET */
299 		+ nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
300 		+ nla_total_size(4)   /* OVS_KEY_ATTR_VLAN */
301 		+ nla_total_size(0)   /* OVS_KEY_ATTR_ENCAP */
302 		+ nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
303 		+ nla_total_size(40)  /* OVS_KEY_ATTR_IPV6 */
304 		+ nla_total_size(2)   /* OVS_KEY_ATTR_ICMPV6 */
305 		+ nla_total_size(28); /* OVS_KEY_ATTR_ND */
306 }
307 
308 static const struct ovs_len_tbl ovs_vxlan_ext_key_lens[OVS_VXLAN_EXT_MAX + 1] = {
309 	[OVS_VXLAN_EXT_GBP]	    = { .len = sizeof(u32) },
310 };
311 
312 static const struct ovs_len_tbl ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = {
313 	[OVS_TUNNEL_KEY_ATTR_ID]	    = { .len = sizeof(u64) },
314 	[OVS_TUNNEL_KEY_ATTR_IPV4_SRC]	    = { .len = sizeof(u32) },
315 	[OVS_TUNNEL_KEY_ATTR_IPV4_DST]	    = { .len = sizeof(u32) },
316 	[OVS_TUNNEL_KEY_ATTR_TOS]	    = { .len = 1 },
317 	[OVS_TUNNEL_KEY_ATTR_TTL]	    = { .len = 1 },
318 	[OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = { .len = 0 },
319 	[OVS_TUNNEL_KEY_ATTR_CSUM]	    = { .len = 0 },
320 	[OVS_TUNNEL_KEY_ATTR_TP_SRC]	    = { .len = sizeof(u16) },
321 	[OVS_TUNNEL_KEY_ATTR_TP_DST]	    = { .len = sizeof(u16) },
322 	[OVS_TUNNEL_KEY_ATTR_OAM]	    = { .len = 0 },
323 	[OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS]   = { .len = OVS_ATTR_VARIABLE },
324 	[OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS]    = { .len = OVS_ATTR_NESTED,
325 						.next = ovs_vxlan_ext_key_lens },
326 	[OVS_TUNNEL_KEY_ATTR_IPV6_SRC]      = { .len = sizeof(struct in6_addr) },
327 	[OVS_TUNNEL_KEY_ATTR_IPV6_DST]      = { .len = sizeof(struct in6_addr) },
328 };
329 
330 /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute.  */
331 static const struct ovs_len_tbl ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
332 	[OVS_KEY_ATTR_ENCAP]	 = { .len = OVS_ATTR_NESTED },
333 	[OVS_KEY_ATTR_PRIORITY]	 = { .len = sizeof(u32) },
334 	[OVS_KEY_ATTR_IN_PORT]	 = { .len = sizeof(u32) },
335 	[OVS_KEY_ATTR_SKB_MARK]	 = { .len = sizeof(u32) },
336 	[OVS_KEY_ATTR_ETHERNET]	 = { .len = sizeof(struct ovs_key_ethernet) },
337 	[OVS_KEY_ATTR_VLAN]	 = { .len = sizeof(__be16) },
338 	[OVS_KEY_ATTR_ETHERTYPE] = { .len = sizeof(__be16) },
339 	[OVS_KEY_ATTR_IPV4]	 = { .len = sizeof(struct ovs_key_ipv4) },
340 	[OVS_KEY_ATTR_IPV6]	 = { .len = sizeof(struct ovs_key_ipv6) },
341 	[OVS_KEY_ATTR_TCP]	 = { .len = sizeof(struct ovs_key_tcp) },
342 	[OVS_KEY_ATTR_TCP_FLAGS] = { .len = sizeof(__be16) },
343 	[OVS_KEY_ATTR_UDP]	 = { .len = sizeof(struct ovs_key_udp) },
344 	[OVS_KEY_ATTR_SCTP]	 = { .len = sizeof(struct ovs_key_sctp) },
345 	[OVS_KEY_ATTR_ICMP]	 = { .len = sizeof(struct ovs_key_icmp) },
346 	[OVS_KEY_ATTR_ICMPV6]	 = { .len = sizeof(struct ovs_key_icmpv6) },
347 	[OVS_KEY_ATTR_ARP]	 = { .len = sizeof(struct ovs_key_arp) },
348 	[OVS_KEY_ATTR_ND]	 = { .len = sizeof(struct ovs_key_nd) },
349 	[OVS_KEY_ATTR_RECIRC_ID] = { .len = sizeof(u32) },
350 	[OVS_KEY_ATTR_DP_HASH]	 = { .len = sizeof(u32) },
351 	[OVS_KEY_ATTR_TUNNEL]	 = { .len = OVS_ATTR_NESTED,
352 				     .next = ovs_tunnel_key_lens, },
353 	[OVS_KEY_ATTR_MPLS]	 = { .len = sizeof(struct ovs_key_mpls) },
354 	[OVS_KEY_ATTR_CT_STATE]	 = { .len = sizeof(u32) },
355 	[OVS_KEY_ATTR_CT_ZONE]	 = { .len = sizeof(u16) },
356 	[OVS_KEY_ATTR_CT_MARK]	 = { .len = sizeof(u32) },
357 	[OVS_KEY_ATTR_CT_LABELS] = { .len = sizeof(struct ovs_key_ct_labels) },
358 };
359 
check_attr_len(unsigned int attr_len,unsigned int expected_len)360 static bool check_attr_len(unsigned int attr_len, unsigned int expected_len)
361 {
362 	return expected_len == attr_len ||
363 	       expected_len == OVS_ATTR_NESTED ||
364 	       expected_len == OVS_ATTR_VARIABLE;
365 }
366 
is_all_zero(const u8 * fp,size_t size)367 static bool is_all_zero(const u8 *fp, size_t size)
368 {
369 	int i;
370 
371 	if (!fp)
372 		return false;
373 
374 	for (i = 0; i < size; i++)
375 		if (fp[i])
376 			return false;
377 
378 	return true;
379 }
380 
__parse_flow_nlattrs(const struct nlattr * attr,const struct nlattr * a[],u64 * attrsp,bool log,bool nz)381 static int __parse_flow_nlattrs(const struct nlattr *attr,
382 				const struct nlattr *a[],
383 				u64 *attrsp, bool log, bool nz)
384 {
385 	const struct nlattr *nla;
386 	u64 attrs;
387 	int rem;
388 
389 	attrs = *attrsp;
390 	nla_for_each_nested(nla, attr, rem) {
391 		u16 type = nla_type(nla);
392 		int expected_len;
393 
394 		if (type > OVS_KEY_ATTR_MAX) {
395 			OVS_NLERR(log, "Key type %d is out of range max %d",
396 				  type, OVS_KEY_ATTR_MAX);
397 			return -EINVAL;
398 		}
399 
400 		if (attrs & (1 << type)) {
401 			OVS_NLERR(log, "Duplicate key (type %d).", type);
402 			return -EINVAL;
403 		}
404 
405 		expected_len = ovs_key_lens[type].len;
406 		if (!check_attr_len(nla_len(nla), expected_len)) {
407 			OVS_NLERR(log, "Key %d has unexpected len %d expected %d",
408 				  type, nla_len(nla), expected_len);
409 			return -EINVAL;
410 		}
411 
412 		if (!nz || !is_all_zero(nla_data(nla), expected_len)) {
413 			attrs |= 1 << type;
414 			a[type] = nla;
415 		}
416 	}
417 	if (rem) {
418 		OVS_NLERR(log, "Message has %d unknown bytes.", rem);
419 		return -EINVAL;
420 	}
421 
422 	*attrsp = attrs;
423 	return 0;
424 }
425 
parse_flow_mask_nlattrs(const struct nlattr * attr,const struct nlattr * a[],u64 * attrsp,bool log)426 static int parse_flow_mask_nlattrs(const struct nlattr *attr,
427 				   const struct nlattr *a[], u64 *attrsp,
428 				   bool log)
429 {
430 	return __parse_flow_nlattrs(attr, a, attrsp, log, true);
431 }
432 
parse_flow_nlattrs(const struct nlattr * attr,const struct nlattr * a[],u64 * attrsp,bool log)433 static int parse_flow_nlattrs(const struct nlattr *attr,
434 			      const struct nlattr *a[], u64 *attrsp,
435 			      bool log)
436 {
437 	return __parse_flow_nlattrs(attr, a, attrsp, log, false);
438 }
439 
genev_tun_opt_from_nlattr(const struct nlattr * a,struct sw_flow_match * match,bool is_mask,bool log)440 static int genev_tun_opt_from_nlattr(const struct nlattr *a,
441 				     struct sw_flow_match *match, bool is_mask,
442 				     bool log)
443 {
444 	unsigned long opt_key_offset;
445 
446 	if (nla_len(a) > sizeof(match->key->tun_opts)) {
447 		OVS_NLERR(log, "Geneve option length err (len %d, max %zu).",
448 			  nla_len(a), sizeof(match->key->tun_opts));
449 		return -EINVAL;
450 	}
451 
452 	if (nla_len(a) % 4 != 0) {
453 		OVS_NLERR(log, "Geneve opt len %d is not a multiple of 4.",
454 			  nla_len(a));
455 		return -EINVAL;
456 	}
457 
458 	/* We need to record the length of the options passed
459 	 * down, otherwise packets with the same format but
460 	 * additional options will be silently matched.
461 	 */
462 	if (!is_mask) {
463 		SW_FLOW_KEY_PUT(match, tun_opts_len, nla_len(a),
464 				false);
465 	} else {
466 		/* This is somewhat unusual because it looks at
467 		 * both the key and mask while parsing the
468 		 * attributes (and by extension assumes the key
469 		 * is parsed first). Normally, we would verify
470 		 * that each is the correct length and that the
471 		 * attributes line up in the validate function.
472 		 * However, that is difficult because this is
473 		 * variable length and we won't have the
474 		 * information later.
475 		 */
476 		if (match->key->tun_opts_len != nla_len(a)) {
477 			OVS_NLERR(log, "Geneve option len %d != mask len %d",
478 				  match->key->tun_opts_len, nla_len(a));
479 			return -EINVAL;
480 		}
481 
482 		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
483 	}
484 
485 	opt_key_offset = TUN_METADATA_OFFSET(nla_len(a));
486 	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
487 				  nla_len(a), is_mask);
488 	return 0;
489 }
490 
vxlan_tun_opt_from_nlattr(const struct nlattr * attr,struct sw_flow_match * match,bool is_mask,bool log)491 static int vxlan_tun_opt_from_nlattr(const struct nlattr *attr,
492 				     struct sw_flow_match *match, bool is_mask,
493 				     bool log)
494 {
495 	struct nlattr *a;
496 	int rem;
497 	unsigned long opt_key_offset;
498 	struct vxlan_metadata opts;
499 
500 	BUILD_BUG_ON(sizeof(opts) > sizeof(match->key->tun_opts));
501 
502 	memset(&opts, 0, sizeof(opts));
503 	nla_for_each_nested(a, attr, rem) {
504 		int type = nla_type(a);
505 
506 		if (type > OVS_VXLAN_EXT_MAX) {
507 			OVS_NLERR(log, "VXLAN extension %d out of range max %d",
508 				  type, OVS_VXLAN_EXT_MAX);
509 			return -EINVAL;
510 		}
511 
512 		if (!check_attr_len(nla_len(a),
513 				    ovs_vxlan_ext_key_lens[type].len)) {
514 			OVS_NLERR(log, "VXLAN extension %d has unexpected len %d expected %d",
515 				  type, nla_len(a),
516 				  ovs_vxlan_ext_key_lens[type].len);
517 			return -EINVAL;
518 		}
519 
520 		switch (type) {
521 		case OVS_VXLAN_EXT_GBP:
522 			opts.gbp = nla_get_u32(a);
523 			break;
524 		default:
525 			OVS_NLERR(log, "Unknown VXLAN extension attribute %d",
526 				  type);
527 			return -EINVAL;
528 		}
529 	}
530 	if (rem) {
531 		OVS_NLERR(log, "VXLAN extension message has %d unknown bytes.",
532 			  rem);
533 		return -EINVAL;
534 	}
535 
536 	if (!is_mask)
537 		SW_FLOW_KEY_PUT(match, tun_opts_len, sizeof(opts), false);
538 	else
539 		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
540 
541 	opt_key_offset = TUN_METADATA_OFFSET(sizeof(opts));
542 	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, &opts, sizeof(opts),
543 				  is_mask);
544 	return 0;
545 }
546 
ip_tun_from_nlattr(const struct nlattr * attr,struct sw_flow_match * match,bool is_mask,bool log)547 static int ip_tun_from_nlattr(const struct nlattr *attr,
548 			      struct sw_flow_match *match, bool is_mask,
549 			      bool log)
550 {
551 	bool ttl = false, ipv4 = false, ipv6 = false;
552 	__be16 tun_flags = 0;
553 	int opts_type = 0;
554 	struct nlattr *a;
555 	int rem;
556 
557 	nla_for_each_nested(a, attr, rem) {
558 		int type = nla_type(a);
559 		int err;
560 
561 		if (type > OVS_TUNNEL_KEY_ATTR_MAX) {
562 			OVS_NLERR(log, "Tunnel attr %d out of range max %d",
563 				  type, OVS_TUNNEL_KEY_ATTR_MAX);
564 			return -EINVAL;
565 		}
566 
567 		if (!check_attr_len(nla_len(a),
568 				    ovs_tunnel_key_lens[type].len)) {
569 			OVS_NLERR(log, "Tunnel attr %d has unexpected len %d expected %d",
570 				  type, nla_len(a), ovs_tunnel_key_lens[type].len);
571 			return -EINVAL;
572 		}
573 
574 		switch (type) {
575 		case OVS_TUNNEL_KEY_ATTR_ID:
576 			SW_FLOW_KEY_PUT(match, tun_key.tun_id,
577 					nla_get_be64(a), is_mask);
578 			tun_flags |= TUNNEL_KEY;
579 			break;
580 		case OVS_TUNNEL_KEY_ATTR_IPV4_SRC:
581 			SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.src,
582 					nla_get_in_addr(a), is_mask);
583 			ipv4 = true;
584 			break;
585 		case OVS_TUNNEL_KEY_ATTR_IPV4_DST:
586 			SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.dst,
587 					nla_get_in_addr(a), is_mask);
588 			ipv4 = true;
589 			break;
590 		case OVS_TUNNEL_KEY_ATTR_IPV6_SRC:
591 			SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.src,
592 					nla_get_in6_addr(a), is_mask);
593 			ipv6 = true;
594 			break;
595 		case OVS_TUNNEL_KEY_ATTR_IPV6_DST:
596 			SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.dst,
597 					nla_get_in6_addr(a), is_mask);
598 			ipv6 = true;
599 			break;
600 		case OVS_TUNNEL_KEY_ATTR_TOS:
601 			SW_FLOW_KEY_PUT(match, tun_key.tos,
602 					nla_get_u8(a), is_mask);
603 			break;
604 		case OVS_TUNNEL_KEY_ATTR_TTL:
605 			SW_FLOW_KEY_PUT(match, tun_key.ttl,
606 					nla_get_u8(a), is_mask);
607 			ttl = true;
608 			break;
609 		case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT:
610 			tun_flags |= TUNNEL_DONT_FRAGMENT;
611 			break;
612 		case OVS_TUNNEL_KEY_ATTR_CSUM:
613 			tun_flags |= TUNNEL_CSUM;
614 			break;
615 		case OVS_TUNNEL_KEY_ATTR_TP_SRC:
616 			SW_FLOW_KEY_PUT(match, tun_key.tp_src,
617 					nla_get_be16(a), is_mask);
618 			break;
619 		case OVS_TUNNEL_KEY_ATTR_TP_DST:
620 			SW_FLOW_KEY_PUT(match, tun_key.tp_dst,
621 					nla_get_be16(a), is_mask);
622 			break;
623 		case OVS_TUNNEL_KEY_ATTR_OAM:
624 			tun_flags |= TUNNEL_OAM;
625 			break;
626 		case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
627 			if (opts_type) {
628 				OVS_NLERR(log, "Multiple metadata blocks provided");
629 				return -EINVAL;
630 			}
631 
632 			err = genev_tun_opt_from_nlattr(a, match, is_mask, log);
633 			if (err)
634 				return err;
635 
636 			tun_flags |= TUNNEL_GENEVE_OPT;
637 			opts_type = type;
638 			break;
639 		case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
640 			if (opts_type) {
641 				OVS_NLERR(log, "Multiple metadata blocks provided");
642 				return -EINVAL;
643 			}
644 
645 			err = vxlan_tun_opt_from_nlattr(a, match, is_mask, log);
646 			if (err)
647 				return err;
648 
649 			tun_flags |= TUNNEL_VXLAN_OPT;
650 			opts_type = type;
651 			break;
652 		case OVS_TUNNEL_KEY_ATTR_PAD:
653 			break;
654 		default:
655 			OVS_NLERR(log, "Unknown IP tunnel attribute %d",
656 				  type);
657 			return -EINVAL;
658 		}
659 	}
660 
661 	SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask);
662 	if (is_mask)
663 		SW_FLOW_KEY_MEMSET_FIELD(match, tun_proto, 0xff, true);
664 	else
665 		SW_FLOW_KEY_PUT(match, tun_proto, ipv6 ? AF_INET6 : AF_INET,
666 				false);
667 
668 	if (rem > 0) {
669 		OVS_NLERR(log, "IP tunnel attribute has %d unknown bytes.",
670 			  rem);
671 		return -EINVAL;
672 	}
673 
674 	if (ipv4 && ipv6) {
675 		OVS_NLERR(log, "Mixed IPv4 and IPv6 tunnel attributes");
676 		return -EINVAL;
677 	}
678 
679 	if (!is_mask) {
680 		if (!ipv4 && !ipv6) {
681 			OVS_NLERR(log, "IP tunnel dst address not specified");
682 			return -EINVAL;
683 		}
684 		if (ipv4 && !match->key->tun_key.u.ipv4.dst) {
685 			OVS_NLERR(log, "IPv4 tunnel dst address is zero");
686 			return -EINVAL;
687 		}
688 		if (ipv6 && ipv6_addr_any(&match->key->tun_key.u.ipv6.dst)) {
689 			OVS_NLERR(log, "IPv6 tunnel dst address is zero");
690 			return -EINVAL;
691 		}
692 
693 		if (!ttl) {
694 			OVS_NLERR(log, "IP tunnel TTL not specified.");
695 			return -EINVAL;
696 		}
697 	}
698 
699 	return opts_type;
700 }
701 
vxlan_opt_to_nlattr(struct sk_buff * skb,const void * tun_opts,int swkey_tun_opts_len)702 static int vxlan_opt_to_nlattr(struct sk_buff *skb,
703 			       const void *tun_opts, int swkey_tun_opts_len)
704 {
705 	const struct vxlan_metadata *opts = tun_opts;
706 	struct nlattr *nla;
707 
708 	nla = nla_nest_start(skb, OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS);
709 	if (!nla)
710 		return -EMSGSIZE;
711 
712 	if (nla_put_u32(skb, OVS_VXLAN_EXT_GBP, opts->gbp) < 0)
713 		return -EMSGSIZE;
714 
715 	nla_nest_end(skb, nla);
716 	return 0;
717 }
718 
__ip_tun_to_nlattr(struct sk_buff * skb,const struct ip_tunnel_key * output,const void * tun_opts,int swkey_tun_opts_len,unsigned short tun_proto)719 static int __ip_tun_to_nlattr(struct sk_buff *skb,
720 			      const struct ip_tunnel_key *output,
721 			      const void *tun_opts, int swkey_tun_opts_len,
722 			      unsigned short tun_proto)
723 {
724 	if (output->tun_flags & TUNNEL_KEY &&
725 	    nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id,
726 			 OVS_TUNNEL_KEY_ATTR_PAD))
727 		return -EMSGSIZE;
728 	switch (tun_proto) {
729 	case AF_INET:
730 		if (output->u.ipv4.src &&
731 		    nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC,
732 				    output->u.ipv4.src))
733 			return -EMSGSIZE;
734 		if (output->u.ipv4.dst &&
735 		    nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST,
736 				    output->u.ipv4.dst))
737 			return -EMSGSIZE;
738 		break;
739 	case AF_INET6:
740 		if (!ipv6_addr_any(&output->u.ipv6.src) &&
741 		    nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_SRC,
742 				     &output->u.ipv6.src))
743 			return -EMSGSIZE;
744 		if (!ipv6_addr_any(&output->u.ipv6.dst) &&
745 		    nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_DST,
746 				     &output->u.ipv6.dst))
747 			return -EMSGSIZE;
748 		break;
749 	}
750 	if (output->tos &&
751 	    nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->tos))
752 		return -EMSGSIZE;
753 	if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ttl))
754 		return -EMSGSIZE;
755 	if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) &&
756 	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT))
757 		return -EMSGSIZE;
758 	if ((output->tun_flags & TUNNEL_CSUM) &&
759 	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM))
760 		return -EMSGSIZE;
761 	if (output->tp_src &&
762 	    nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_SRC, output->tp_src))
763 		return -EMSGSIZE;
764 	if (output->tp_dst &&
765 	    nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_DST, output->tp_dst))
766 		return -EMSGSIZE;
767 	if ((output->tun_flags & TUNNEL_OAM) &&
768 	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_OAM))
769 		return -EMSGSIZE;
770 	if (swkey_tun_opts_len) {
771 		if (output->tun_flags & TUNNEL_GENEVE_OPT &&
772 		    nla_put(skb, OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS,
773 			    swkey_tun_opts_len, tun_opts))
774 			return -EMSGSIZE;
775 		else if (output->tun_flags & TUNNEL_VXLAN_OPT &&
776 			 vxlan_opt_to_nlattr(skb, tun_opts, swkey_tun_opts_len))
777 			return -EMSGSIZE;
778 	}
779 
780 	return 0;
781 }
782 
ip_tun_to_nlattr(struct sk_buff * skb,const struct ip_tunnel_key * output,const void * tun_opts,int swkey_tun_opts_len,unsigned short tun_proto)783 static int ip_tun_to_nlattr(struct sk_buff *skb,
784 			    const struct ip_tunnel_key *output,
785 			    const void *tun_opts, int swkey_tun_opts_len,
786 			    unsigned short tun_proto)
787 {
788 	struct nlattr *nla;
789 	int err;
790 
791 	nla = nla_nest_start(skb, OVS_KEY_ATTR_TUNNEL);
792 	if (!nla)
793 		return -EMSGSIZE;
794 
795 	err = __ip_tun_to_nlattr(skb, output, tun_opts, swkey_tun_opts_len,
796 				 tun_proto);
797 	if (err)
798 		return err;
799 
800 	nla_nest_end(skb, nla);
801 	return 0;
802 }
803 
ovs_nla_put_tunnel_info(struct sk_buff * skb,struct ip_tunnel_info * tun_info)804 int ovs_nla_put_tunnel_info(struct sk_buff *skb,
805 			    struct ip_tunnel_info *tun_info)
806 {
807 	return __ip_tun_to_nlattr(skb, &tun_info->key,
808 				  ip_tunnel_info_opts(tun_info),
809 				  tun_info->options_len,
810 				  ip_tunnel_info_af(tun_info));
811 }
812 
encode_vlan_from_nlattrs(struct sw_flow_match * match,const struct nlattr * a[],bool is_mask,bool inner)813 static int encode_vlan_from_nlattrs(struct sw_flow_match *match,
814 				    const struct nlattr *a[],
815 				    bool is_mask, bool inner)
816 {
817 	__be16 tci = 0;
818 	__be16 tpid = 0;
819 
820 	if (a[OVS_KEY_ATTR_VLAN])
821 		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
822 
823 	if (a[OVS_KEY_ATTR_ETHERTYPE])
824 		tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
825 
826 	if (likely(!inner)) {
827 		SW_FLOW_KEY_PUT(match, eth.vlan.tpid, tpid, is_mask);
828 		SW_FLOW_KEY_PUT(match, eth.vlan.tci, tci, is_mask);
829 	} else {
830 		SW_FLOW_KEY_PUT(match, eth.cvlan.tpid, tpid, is_mask);
831 		SW_FLOW_KEY_PUT(match, eth.cvlan.tci, tci, is_mask);
832 	}
833 	return 0;
834 }
835 
validate_vlan_from_nlattrs(const struct sw_flow_match * match,u64 key_attrs,bool inner,const struct nlattr ** a,bool log)836 static int validate_vlan_from_nlattrs(const struct sw_flow_match *match,
837 				      u64 key_attrs, bool inner,
838 				      const struct nlattr **a, bool log)
839 {
840 	__be16 tci = 0;
841 
842 	if (!((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) &&
843 	      (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) &&
844 	       eth_type_vlan(nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE])))) {
845 		/* Not a VLAN. */
846 		return 0;
847 	}
848 
849 	if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) &&
850 	      (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) {
851 		OVS_NLERR(log, "Invalid %s frame", (inner) ? "C-VLAN" : "VLAN");
852 		return -EINVAL;
853 	}
854 
855 	if (a[OVS_KEY_ATTR_VLAN])
856 		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
857 
858 	if (!(tci & htons(VLAN_TAG_PRESENT))) {
859 		if (tci) {
860 			OVS_NLERR(log, "%s TCI does not have VLAN_TAG_PRESENT bit set.",
861 				  (inner) ? "C-VLAN" : "VLAN");
862 			return -EINVAL;
863 		} else if (nla_len(a[OVS_KEY_ATTR_ENCAP])) {
864 			/* Corner case for truncated VLAN header. */
865 			OVS_NLERR(log, "Truncated %s header has non-zero encap attribute.",
866 				  (inner) ? "C-VLAN" : "VLAN");
867 			return -EINVAL;
868 		}
869 	}
870 
871 	return 1;
872 }
873 
validate_vlan_mask_from_nlattrs(const struct sw_flow_match * match,u64 key_attrs,bool inner,const struct nlattr ** a,bool log)874 static int validate_vlan_mask_from_nlattrs(const struct sw_flow_match *match,
875 					   u64 key_attrs, bool inner,
876 					   const struct nlattr **a, bool log)
877 {
878 	__be16 tci = 0;
879 	__be16 tpid = 0;
880 	bool encap_valid = !!(match->key->eth.vlan.tci &
881 			      htons(VLAN_TAG_PRESENT));
882 	bool i_encap_valid = !!(match->key->eth.cvlan.tci &
883 				htons(VLAN_TAG_PRESENT));
884 
885 	if (!(key_attrs & (1 << OVS_KEY_ATTR_ENCAP))) {
886 		/* Not a VLAN. */
887 		return 0;
888 	}
889 
890 	if ((!inner && !encap_valid) || (inner && !i_encap_valid)) {
891 		OVS_NLERR(log, "Encap mask attribute is set for non-%s frame.",
892 			  (inner) ? "C-VLAN" : "VLAN");
893 		return -EINVAL;
894 	}
895 
896 	if (a[OVS_KEY_ATTR_VLAN])
897 		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
898 
899 	if (a[OVS_KEY_ATTR_ETHERTYPE])
900 		tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
901 
902 	if (tpid != htons(0xffff)) {
903 		OVS_NLERR(log, "Must have an exact match on %s TPID (mask=%x).",
904 			  (inner) ? "C-VLAN" : "VLAN", ntohs(tpid));
905 		return -EINVAL;
906 	}
907 	if (!(tci & htons(VLAN_TAG_PRESENT))) {
908 		OVS_NLERR(log, "%s TCI mask does not have exact match for VLAN_TAG_PRESENT bit.",
909 			  (inner) ? "C-VLAN" : "VLAN");
910 		return -EINVAL;
911 	}
912 
913 	return 1;
914 }
915 
__parse_vlan_from_nlattrs(struct sw_flow_match * match,u64 * key_attrs,bool inner,const struct nlattr ** a,bool is_mask,bool log)916 static int __parse_vlan_from_nlattrs(struct sw_flow_match *match,
917 				     u64 *key_attrs, bool inner,
918 				     const struct nlattr **a, bool is_mask,
919 				     bool log)
920 {
921 	int err;
922 	const struct nlattr *encap;
923 
924 	if (!is_mask)
925 		err = validate_vlan_from_nlattrs(match, *key_attrs, inner,
926 						 a, log);
927 	else
928 		err = validate_vlan_mask_from_nlattrs(match, *key_attrs, inner,
929 						      a, log);
930 	if (err <= 0)
931 		return err;
932 
933 	err = encode_vlan_from_nlattrs(match, a, is_mask, inner);
934 	if (err)
935 		return err;
936 
937 	*key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
938 	*key_attrs &= ~(1 << OVS_KEY_ATTR_VLAN);
939 	*key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
940 
941 	encap = a[OVS_KEY_ATTR_ENCAP];
942 
943 	if (!is_mask)
944 		err = parse_flow_nlattrs(encap, a, key_attrs, log);
945 	else
946 		err = parse_flow_mask_nlattrs(encap, a, key_attrs, log);
947 
948 	return err;
949 }
950 
parse_vlan_from_nlattrs(struct sw_flow_match * match,u64 * key_attrs,const struct nlattr ** a,bool is_mask,bool log)951 static int parse_vlan_from_nlattrs(struct sw_flow_match *match,
952 				   u64 *key_attrs, const struct nlattr **a,
953 				   bool is_mask, bool log)
954 {
955 	int err;
956 	bool encap_valid = false;
957 
958 	err = __parse_vlan_from_nlattrs(match, key_attrs, false, a,
959 					is_mask, log);
960 	if (err)
961 		return err;
962 
963 	encap_valid = !!(match->key->eth.vlan.tci & htons(VLAN_TAG_PRESENT));
964 	if (encap_valid) {
965 		err = __parse_vlan_from_nlattrs(match, key_attrs, true, a,
966 						is_mask, log);
967 		if (err)
968 			return err;
969 	}
970 
971 	return 0;
972 }
973 
metadata_from_nlattrs(struct net * net,struct sw_flow_match * match,u64 * attrs,const struct nlattr ** a,bool is_mask,bool log)974 static int metadata_from_nlattrs(struct net *net, struct sw_flow_match *match,
975 				 u64 *attrs, const struct nlattr **a,
976 				 bool is_mask, bool log)
977 {
978 	if (*attrs & (1 << OVS_KEY_ATTR_DP_HASH)) {
979 		u32 hash_val = nla_get_u32(a[OVS_KEY_ATTR_DP_HASH]);
980 
981 		SW_FLOW_KEY_PUT(match, ovs_flow_hash, hash_val, is_mask);
982 		*attrs &= ~(1 << OVS_KEY_ATTR_DP_HASH);
983 	}
984 
985 	if (*attrs & (1 << OVS_KEY_ATTR_RECIRC_ID)) {
986 		u32 recirc_id = nla_get_u32(a[OVS_KEY_ATTR_RECIRC_ID]);
987 
988 		SW_FLOW_KEY_PUT(match, recirc_id, recirc_id, is_mask);
989 		*attrs &= ~(1 << OVS_KEY_ATTR_RECIRC_ID);
990 	}
991 
992 	if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
993 		SW_FLOW_KEY_PUT(match, phy.priority,
994 			  nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask);
995 		*attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
996 	}
997 
998 	if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
999 		u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
1000 
1001 		if (is_mask) {
1002 			in_port = 0xffffffff; /* Always exact match in_port. */
1003 		} else if (in_port >= DP_MAX_PORTS) {
1004 			OVS_NLERR(log, "Port %d exceeds max allowable %d",
1005 				  in_port, DP_MAX_PORTS);
1006 			return -EINVAL;
1007 		}
1008 
1009 		SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask);
1010 		*attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
1011 	} else if (!is_mask) {
1012 		SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask);
1013 	}
1014 
1015 	if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) {
1016 		uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]);
1017 
1018 		SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask);
1019 		*attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK);
1020 	}
1021 	if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) {
1022 		if (ip_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match,
1023 				       is_mask, log) < 0)
1024 			return -EINVAL;
1025 		*attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL);
1026 	}
1027 
1028 	if (*attrs & (1 << OVS_KEY_ATTR_CT_STATE) &&
1029 	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_STATE)) {
1030 		u32 ct_state = nla_get_u32(a[OVS_KEY_ATTR_CT_STATE]);
1031 
1032 		if (ct_state & ~CT_SUPPORTED_MASK) {
1033 			OVS_NLERR(log, "ct_state flags %08x unsupported",
1034 				  ct_state);
1035 			return -EINVAL;
1036 		}
1037 
1038 		SW_FLOW_KEY_PUT(match, ct.state, ct_state, is_mask);
1039 		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_STATE);
1040 	}
1041 	if (*attrs & (1 << OVS_KEY_ATTR_CT_ZONE) &&
1042 	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_ZONE)) {
1043 		u16 ct_zone = nla_get_u16(a[OVS_KEY_ATTR_CT_ZONE]);
1044 
1045 		SW_FLOW_KEY_PUT(match, ct.zone, ct_zone, is_mask);
1046 		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ZONE);
1047 	}
1048 	if (*attrs & (1 << OVS_KEY_ATTR_CT_MARK) &&
1049 	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_MARK)) {
1050 		u32 mark = nla_get_u32(a[OVS_KEY_ATTR_CT_MARK]);
1051 
1052 		SW_FLOW_KEY_PUT(match, ct.mark, mark, is_mask);
1053 		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_MARK);
1054 	}
1055 	if (*attrs & (1 << OVS_KEY_ATTR_CT_LABELS) &&
1056 	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_LABELS)) {
1057 		const struct ovs_key_ct_labels *cl;
1058 
1059 		cl = nla_data(a[OVS_KEY_ATTR_CT_LABELS]);
1060 		SW_FLOW_KEY_MEMCPY(match, ct.labels, cl->ct_labels,
1061 				   sizeof(*cl), is_mask);
1062 		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_LABELS);
1063 	}
1064 	return 0;
1065 }
1066 
ovs_key_from_nlattrs(struct net * net,struct sw_flow_match * match,u64 attrs,const struct nlattr ** a,bool is_mask,bool log)1067 static int ovs_key_from_nlattrs(struct net *net, struct sw_flow_match *match,
1068 				u64 attrs, const struct nlattr **a,
1069 				bool is_mask, bool log)
1070 {
1071 	int err;
1072 
1073 	err = metadata_from_nlattrs(net, match, &attrs, a, is_mask, log);
1074 	if (err)
1075 		return err;
1076 
1077 	if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) {
1078 		const struct ovs_key_ethernet *eth_key;
1079 
1080 		eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
1081 		SW_FLOW_KEY_MEMCPY(match, eth.src,
1082 				eth_key->eth_src, ETH_ALEN, is_mask);
1083 		SW_FLOW_KEY_MEMCPY(match, eth.dst,
1084 				eth_key->eth_dst, ETH_ALEN, is_mask);
1085 		attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
1086 	}
1087 
1088 	if (attrs & (1 << OVS_KEY_ATTR_VLAN)) {
1089 		/* VLAN attribute is always parsed before getting here since it
1090 		 * may occur multiple times.
1091 		 */
1092 		OVS_NLERR(log, "VLAN attribute unexpected.");
1093 		return -EINVAL;
1094 	}
1095 
1096 	if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
1097 		__be16 eth_type;
1098 
1099 		eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1100 		if (is_mask) {
1101 			/* Always exact match EtherType. */
1102 			eth_type = htons(0xffff);
1103 		} else if (!eth_proto_is_802_3(eth_type)) {
1104 			OVS_NLERR(log, "EtherType %x is less than min %x",
1105 				  ntohs(eth_type), ETH_P_802_3_MIN);
1106 			return -EINVAL;
1107 		}
1108 
1109 		SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask);
1110 		attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1111 	} else if (!is_mask) {
1112 		SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask);
1113 	}
1114 
1115 	if (attrs & (1 << OVS_KEY_ATTR_IPV4)) {
1116 		const struct ovs_key_ipv4 *ipv4_key;
1117 
1118 		ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
1119 		if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) {
1120 			OVS_NLERR(log, "IPv4 frag type %d is out of range max %d",
1121 				  ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX);
1122 			return -EINVAL;
1123 		}
1124 		SW_FLOW_KEY_PUT(match, ip.proto,
1125 				ipv4_key->ipv4_proto, is_mask);
1126 		SW_FLOW_KEY_PUT(match, ip.tos,
1127 				ipv4_key->ipv4_tos, is_mask);
1128 		SW_FLOW_KEY_PUT(match, ip.ttl,
1129 				ipv4_key->ipv4_ttl, is_mask);
1130 		SW_FLOW_KEY_PUT(match, ip.frag,
1131 				ipv4_key->ipv4_frag, is_mask);
1132 		SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1133 				ipv4_key->ipv4_src, is_mask);
1134 		SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1135 				ipv4_key->ipv4_dst, is_mask);
1136 		attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
1137 	}
1138 
1139 	if (attrs & (1 << OVS_KEY_ATTR_IPV6)) {
1140 		const struct ovs_key_ipv6 *ipv6_key;
1141 
1142 		ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
1143 		if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) {
1144 			OVS_NLERR(log, "IPv6 frag type %d is out of range max %d",
1145 				  ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX);
1146 			return -EINVAL;
1147 		}
1148 
1149 		if (!is_mask && ipv6_key->ipv6_label & htonl(0xFFF00000)) {
1150 			OVS_NLERR(log, "IPv6 flow label %x is out of range (max=%x).\n",
1151 				  ntohl(ipv6_key->ipv6_label), (1 << 20) - 1);
1152 			return -EINVAL;
1153 		}
1154 
1155 		SW_FLOW_KEY_PUT(match, ipv6.label,
1156 				ipv6_key->ipv6_label, is_mask);
1157 		SW_FLOW_KEY_PUT(match, ip.proto,
1158 				ipv6_key->ipv6_proto, is_mask);
1159 		SW_FLOW_KEY_PUT(match, ip.tos,
1160 				ipv6_key->ipv6_tclass, is_mask);
1161 		SW_FLOW_KEY_PUT(match, ip.ttl,
1162 				ipv6_key->ipv6_hlimit, is_mask);
1163 		SW_FLOW_KEY_PUT(match, ip.frag,
1164 				ipv6_key->ipv6_frag, is_mask);
1165 		SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src,
1166 				ipv6_key->ipv6_src,
1167 				sizeof(match->key->ipv6.addr.src),
1168 				is_mask);
1169 		SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst,
1170 				ipv6_key->ipv6_dst,
1171 				sizeof(match->key->ipv6.addr.dst),
1172 				is_mask);
1173 
1174 		attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
1175 	}
1176 
1177 	if (attrs & (1 << OVS_KEY_ATTR_ARP)) {
1178 		const struct ovs_key_arp *arp_key;
1179 
1180 		arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
1181 		if (!is_mask && (arp_key->arp_op & htons(0xff00))) {
1182 			OVS_NLERR(log, "Unknown ARP opcode (opcode=%d).",
1183 				  arp_key->arp_op);
1184 			return -EINVAL;
1185 		}
1186 
1187 		SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1188 				arp_key->arp_sip, is_mask);
1189 		SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1190 			arp_key->arp_tip, is_mask);
1191 		SW_FLOW_KEY_PUT(match, ip.proto,
1192 				ntohs(arp_key->arp_op), is_mask);
1193 		SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha,
1194 				arp_key->arp_sha, ETH_ALEN, is_mask);
1195 		SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha,
1196 				arp_key->arp_tha, ETH_ALEN, is_mask);
1197 
1198 		attrs &= ~(1 << OVS_KEY_ATTR_ARP);
1199 	}
1200 
1201 	if (attrs & (1 << OVS_KEY_ATTR_MPLS)) {
1202 		const struct ovs_key_mpls *mpls_key;
1203 
1204 		mpls_key = nla_data(a[OVS_KEY_ATTR_MPLS]);
1205 		SW_FLOW_KEY_PUT(match, mpls.top_lse,
1206 				mpls_key->mpls_lse, is_mask);
1207 
1208 		attrs &= ~(1 << OVS_KEY_ATTR_MPLS);
1209 	 }
1210 
1211 	if (attrs & (1 << OVS_KEY_ATTR_TCP)) {
1212 		const struct ovs_key_tcp *tcp_key;
1213 
1214 		tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
1215 		SW_FLOW_KEY_PUT(match, tp.src, tcp_key->tcp_src, is_mask);
1216 		SW_FLOW_KEY_PUT(match, tp.dst, tcp_key->tcp_dst, is_mask);
1217 		attrs &= ~(1 << OVS_KEY_ATTR_TCP);
1218 	}
1219 
1220 	if (attrs & (1 << OVS_KEY_ATTR_TCP_FLAGS)) {
1221 		SW_FLOW_KEY_PUT(match, tp.flags,
1222 				nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]),
1223 				is_mask);
1224 		attrs &= ~(1 << OVS_KEY_ATTR_TCP_FLAGS);
1225 	}
1226 
1227 	if (attrs & (1 << OVS_KEY_ATTR_UDP)) {
1228 		const struct ovs_key_udp *udp_key;
1229 
1230 		udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
1231 		SW_FLOW_KEY_PUT(match, tp.src, udp_key->udp_src, is_mask);
1232 		SW_FLOW_KEY_PUT(match, tp.dst, udp_key->udp_dst, is_mask);
1233 		attrs &= ~(1 << OVS_KEY_ATTR_UDP);
1234 	}
1235 
1236 	if (attrs & (1 << OVS_KEY_ATTR_SCTP)) {
1237 		const struct ovs_key_sctp *sctp_key;
1238 
1239 		sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]);
1240 		SW_FLOW_KEY_PUT(match, tp.src, sctp_key->sctp_src, is_mask);
1241 		SW_FLOW_KEY_PUT(match, tp.dst, sctp_key->sctp_dst, is_mask);
1242 		attrs &= ~(1 << OVS_KEY_ATTR_SCTP);
1243 	}
1244 
1245 	if (attrs & (1 << OVS_KEY_ATTR_ICMP)) {
1246 		const struct ovs_key_icmp *icmp_key;
1247 
1248 		icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
1249 		SW_FLOW_KEY_PUT(match, tp.src,
1250 				htons(icmp_key->icmp_type), is_mask);
1251 		SW_FLOW_KEY_PUT(match, tp.dst,
1252 				htons(icmp_key->icmp_code), is_mask);
1253 		attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
1254 	}
1255 
1256 	if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) {
1257 		const struct ovs_key_icmpv6 *icmpv6_key;
1258 
1259 		icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
1260 		SW_FLOW_KEY_PUT(match, tp.src,
1261 				htons(icmpv6_key->icmpv6_type), is_mask);
1262 		SW_FLOW_KEY_PUT(match, tp.dst,
1263 				htons(icmpv6_key->icmpv6_code), is_mask);
1264 		attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
1265 	}
1266 
1267 	if (attrs & (1 << OVS_KEY_ATTR_ND)) {
1268 		const struct ovs_key_nd *nd_key;
1269 
1270 		nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
1271 		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target,
1272 			nd_key->nd_target,
1273 			sizeof(match->key->ipv6.nd.target),
1274 			is_mask);
1275 		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll,
1276 			nd_key->nd_sll, ETH_ALEN, is_mask);
1277 		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll,
1278 				nd_key->nd_tll, ETH_ALEN, is_mask);
1279 		attrs &= ~(1 << OVS_KEY_ATTR_ND);
1280 	}
1281 
1282 	if (attrs != 0) {
1283 		OVS_NLERR(log, "Unknown key attributes %llx",
1284 			  (unsigned long long)attrs);
1285 		return -EINVAL;
1286 	}
1287 
1288 	return 0;
1289 }
1290 
nlattr_set(struct nlattr * attr,u8 val,const struct ovs_len_tbl * tbl)1291 static void nlattr_set(struct nlattr *attr, u8 val,
1292 		       const struct ovs_len_tbl *tbl)
1293 {
1294 	struct nlattr *nla;
1295 	int rem;
1296 
1297 	/* The nlattr stream should already have been validated */
1298 	nla_for_each_nested(nla, attr, rem) {
1299 		if (tbl[nla_type(nla)].len == OVS_ATTR_NESTED) {
1300 			if (tbl[nla_type(nla)].next)
1301 				tbl = tbl[nla_type(nla)].next;
1302 			nlattr_set(nla, val, tbl);
1303 		} else {
1304 			memset(nla_data(nla), val, nla_len(nla));
1305 		}
1306 
1307 		if (nla_type(nla) == OVS_KEY_ATTR_CT_STATE)
1308 			*(u32 *)nla_data(nla) &= CT_SUPPORTED_MASK;
1309 	}
1310 }
1311 
mask_set_nlattr(struct nlattr * attr,u8 val)1312 static void mask_set_nlattr(struct nlattr *attr, u8 val)
1313 {
1314 	nlattr_set(attr, val, ovs_key_lens);
1315 }
1316 
1317 /**
1318  * ovs_nla_get_match - parses Netlink attributes into a flow key and
1319  * mask. In case the 'mask' is NULL, the flow is treated as exact match
1320  * flow. Otherwise, it is treated as a wildcarded flow, except the mask
1321  * does not include any don't care bit.
1322  * @net: Used to determine per-namespace field support.
1323  * @match: receives the extracted flow match information.
1324  * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1325  * sequence. The fields should of the packet that triggered the creation
1326  * of this flow.
1327  * @mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink
1328  * attribute specifies the mask field of the wildcarded flow.
1329  * @log: Boolean to allow kernel error logging.  Normally true, but when
1330  * probing for feature compatibility this should be passed in as false to
1331  * suppress unnecessary error logging.
1332  */
ovs_nla_get_match(struct net * net,struct sw_flow_match * match,const struct nlattr * nla_key,const struct nlattr * nla_mask,bool log)1333 int ovs_nla_get_match(struct net *net, struct sw_flow_match *match,
1334 		      const struct nlattr *nla_key,
1335 		      const struct nlattr *nla_mask,
1336 		      bool log)
1337 {
1338 	const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1339 	struct nlattr *newmask = NULL;
1340 	u64 key_attrs = 0;
1341 	u64 mask_attrs = 0;
1342 	int err;
1343 
1344 	err = parse_flow_nlattrs(nla_key, a, &key_attrs, log);
1345 	if (err)
1346 		return err;
1347 
1348 	err = parse_vlan_from_nlattrs(match, &key_attrs, a, false, log);
1349 	if (err)
1350 		return err;
1351 
1352 	err = ovs_key_from_nlattrs(net, match, key_attrs, a, false, log);
1353 	if (err)
1354 		return err;
1355 
1356 	if (match->mask) {
1357 		if (!nla_mask) {
1358 			/* Create an exact match mask. We need to set to 0xff
1359 			 * all the 'match->mask' fields that have been touched
1360 			 * in 'match->key'. We cannot simply memset
1361 			 * 'match->mask', because padding bytes and fields not
1362 			 * specified in 'match->key' should be left to 0.
1363 			 * Instead, we use a stream of netlink attributes,
1364 			 * copied from 'key' and set to 0xff.
1365 			 * ovs_key_from_nlattrs() will take care of filling
1366 			 * 'match->mask' appropriately.
1367 			 */
1368 			newmask = kmemdup(nla_key,
1369 					  nla_total_size(nla_len(nla_key)),
1370 					  GFP_KERNEL);
1371 			if (!newmask)
1372 				return -ENOMEM;
1373 
1374 			mask_set_nlattr(newmask, 0xff);
1375 
1376 			/* The userspace does not send tunnel attributes that
1377 			 * are 0, but we should not wildcard them nonetheless.
1378 			 */
1379 			if (match->key->tun_proto)
1380 				SW_FLOW_KEY_MEMSET_FIELD(match, tun_key,
1381 							 0xff, true);
1382 
1383 			nla_mask = newmask;
1384 		}
1385 
1386 		err = parse_flow_mask_nlattrs(nla_mask, a, &mask_attrs, log);
1387 		if (err)
1388 			goto free_newmask;
1389 
1390 		/* Always match on tci. */
1391 		SW_FLOW_KEY_PUT(match, eth.vlan.tci, htons(0xffff), true);
1392 		SW_FLOW_KEY_PUT(match, eth.cvlan.tci, htons(0xffff), true);
1393 
1394 		err = parse_vlan_from_nlattrs(match, &mask_attrs, a, true, log);
1395 		if (err)
1396 			goto free_newmask;
1397 
1398 		err = ovs_key_from_nlattrs(net, match, mask_attrs, a, true,
1399 					   log);
1400 		if (err)
1401 			goto free_newmask;
1402 	}
1403 
1404 	if (!match_validate(match, key_attrs, mask_attrs, log))
1405 		err = -EINVAL;
1406 
1407 free_newmask:
1408 	kfree(newmask);
1409 	return err;
1410 }
1411 
get_ufid_len(const struct nlattr * attr,bool log)1412 static size_t get_ufid_len(const struct nlattr *attr, bool log)
1413 {
1414 	size_t len;
1415 
1416 	if (!attr)
1417 		return 0;
1418 
1419 	len = nla_len(attr);
1420 	if (len < 1 || len > MAX_UFID_LENGTH) {
1421 		OVS_NLERR(log, "ufid size %u bytes exceeds the range (1, %d)",
1422 			  nla_len(attr), MAX_UFID_LENGTH);
1423 		return 0;
1424 	}
1425 
1426 	return len;
1427 }
1428 
1429 /* Initializes 'flow->ufid', returning true if 'attr' contains a valid UFID,
1430  * or false otherwise.
1431  */
ovs_nla_get_ufid(struct sw_flow_id * sfid,const struct nlattr * attr,bool log)1432 bool ovs_nla_get_ufid(struct sw_flow_id *sfid, const struct nlattr *attr,
1433 		      bool log)
1434 {
1435 	sfid->ufid_len = get_ufid_len(attr, log);
1436 	if (sfid->ufid_len)
1437 		memcpy(sfid->ufid, nla_data(attr), sfid->ufid_len);
1438 
1439 	return sfid->ufid_len;
1440 }
1441 
ovs_nla_get_identifier(struct sw_flow_id * sfid,const struct nlattr * ufid,const struct sw_flow_key * key,bool log)1442 int ovs_nla_get_identifier(struct sw_flow_id *sfid, const struct nlattr *ufid,
1443 			   const struct sw_flow_key *key, bool log)
1444 {
1445 	struct sw_flow_key *new_key;
1446 
1447 	if (ovs_nla_get_ufid(sfid, ufid, log))
1448 		return 0;
1449 
1450 	/* If UFID was not provided, use unmasked key. */
1451 	new_key = kmalloc(sizeof(*new_key), GFP_KERNEL);
1452 	if (!new_key)
1453 		return -ENOMEM;
1454 	memcpy(new_key, key, sizeof(*key));
1455 	sfid->unmasked_key = new_key;
1456 
1457 	return 0;
1458 }
1459 
ovs_nla_get_ufid_flags(const struct nlattr * attr)1460 u32 ovs_nla_get_ufid_flags(const struct nlattr *attr)
1461 {
1462 	return attr ? nla_get_u32(attr) : 0;
1463 }
1464 
1465 /**
1466  * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key.
1467  * @key: Receives extracted in_port, priority, tun_key and skb_mark.
1468  * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1469  * sequence.
1470  * @log: Boolean to allow kernel error logging.  Normally true, but when
1471  * probing for feature compatibility this should be passed in as false to
1472  * suppress unnecessary error logging.
1473  *
1474  * This parses a series of Netlink attributes that form a flow key, which must
1475  * take the same form accepted by flow_from_nlattrs(), but only enough of it to
1476  * get the metadata, that is, the parts of the flow key that cannot be
1477  * extracted from the packet itself.
1478  */
1479 
ovs_nla_get_flow_metadata(struct net * net,const struct nlattr * attr,struct sw_flow_key * key,bool log)1480 int ovs_nla_get_flow_metadata(struct net *net, const struct nlattr *attr,
1481 			      struct sw_flow_key *key,
1482 			      bool log)
1483 {
1484 	const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1485 	struct sw_flow_match match;
1486 	u64 attrs = 0;
1487 	int err;
1488 
1489 	err = parse_flow_nlattrs(attr, a, &attrs, log);
1490 	if (err)
1491 		return -EINVAL;
1492 
1493 	memset(&match, 0, sizeof(match));
1494 	match.key = key;
1495 
1496 	memset(&key->ct, 0, sizeof(key->ct));
1497 	key->phy.in_port = DP_MAX_PORTS;
1498 
1499 	return metadata_from_nlattrs(net, &match, &attrs, a, false, log);
1500 }
1501 
ovs_nla_put_vlan(struct sk_buff * skb,const struct vlan_head * vh,bool is_mask)1502 static int ovs_nla_put_vlan(struct sk_buff *skb, const struct vlan_head *vh,
1503 			    bool is_mask)
1504 {
1505 	__be16 eth_type = !is_mask ? vh->tpid : htons(0xffff);
1506 
1507 	if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) ||
1508 	    nla_put_be16(skb, OVS_KEY_ATTR_VLAN, vh->tci))
1509 		return -EMSGSIZE;
1510 	return 0;
1511 }
1512 
__ovs_nla_put_key(const struct sw_flow_key * swkey,const struct sw_flow_key * output,bool is_mask,struct sk_buff * skb)1513 static int __ovs_nla_put_key(const struct sw_flow_key *swkey,
1514 			     const struct sw_flow_key *output, bool is_mask,
1515 			     struct sk_buff *skb)
1516 {
1517 	struct ovs_key_ethernet *eth_key;
1518 	struct nlattr *nla;
1519 	struct nlattr *encap = NULL;
1520 	struct nlattr *in_encap = NULL;
1521 
1522 	if (nla_put_u32(skb, OVS_KEY_ATTR_RECIRC_ID, output->recirc_id))
1523 		goto nla_put_failure;
1524 
1525 	if (nla_put_u32(skb, OVS_KEY_ATTR_DP_HASH, output->ovs_flow_hash))
1526 		goto nla_put_failure;
1527 
1528 	if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority))
1529 		goto nla_put_failure;
1530 
1531 	if ((swkey->tun_proto || is_mask)) {
1532 		const void *opts = NULL;
1533 
1534 		if (output->tun_key.tun_flags & TUNNEL_OPTIONS_PRESENT)
1535 			opts = TUN_METADATA_OPTS(output, swkey->tun_opts_len);
1536 
1537 		if (ip_tun_to_nlattr(skb, &output->tun_key, opts,
1538 				     swkey->tun_opts_len, swkey->tun_proto))
1539 			goto nla_put_failure;
1540 	}
1541 
1542 	if (swkey->phy.in_port == DP_MAX_PORTS) {
1543 		if (is_mask && (output->phy.in_port == 0xffff))
1544 			if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff))
1545 				goto nla_put_failure;
1546 	} else {
1547 		u16 upper_u16;
1548 		upper_u16 = !is_mask ? 0 : 0xffff;
1549 
1550 		if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT,
1551 				(upper_u16 << 16) | output->phy.in_port))
1552 			goto nla_put_failure;
1553 	}
1554 
1555 	if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark))
1556 		goto nla_put_failure;
1557 
1558 	if (ovs_ct_put_key(output, skb))
1559 		goto nla_put_failure;
1560 
1561 	nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
1562 	if (!nla)
1563 		goto nla_put_failure;
1564 
1565 	eth_key = nla_data(nla);
1566 	ether_addr_copy(eth_key->eth_src, output->eth.src);
1567 	ether_addr_copy(eth_key->eth_dst, output->eth.dst);
1568 
1569 	if (swkey->eth.vlan.tci || eth_type_vlan(swkey->eth.type)) {
1570 		if (ovs_nla_put_vlan(skb, &output->eth.vlan, is_mask))
1571 			goto nla_put_failure;
1572 		encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
1573 		if (!swkey->eth.vlan.tci)
1574 			goto unencap;
1575 
1576 		if (swkey->eth.cvlan.tci || eth_type_vlan(swkey->eth.type)) {
1577 			if (ovs_nla_put_vlan(skb, &output->eth.cvlan, is_mask))
1578 				goto nla_put_failure;
1579 			in_encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
1580 			if (!swkey->eth.cvlan.tci)
1581 				goto unencap;
1582 		}
1583 	}
1584 
1585 	if (swkey->eth.type == htons(ETH_P_802_2)) {
1586 		/*
1587 		 * Ethertype 802.2 is represented in the netlink with omitted
1588 		 * OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and
1589 		 * 0xffff in the mask attribute.  Ethertype can also
1590 		 * be wildcarded.
1591 		 */
1592 		if (is_mask && output->eth.type)
1593 			if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE,
1594 						output->eth.type))
1595 				goto nla_put_failure;
1596 		goto unencap;
1597 	}
1598 
1599 	if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type))
1600 		goto nla_put_failure;
1601 
1602 	if (eth_type_vlan(swkey->eth.type)) {
1603 		/* There are 3 VLAN tags, we don't know anything about the rest
1604 		 * of the packet, so truncate here.
1605 		 */
1606 		WARN_ON_ONCE(!(encap && in_encap));
1607 		goto unencap;
1608 	}
1609 
1610 	if (swkey->eth.type == htons(ETH_P_IP)) {
1611 		struct ovs_key_ipv4 *ipv4_key;
1612 
1613 		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
1614 		if (!nla)
1615 			goto nla_put_failure;
1616 		ipv4_key = nla_data(nla);
1617 		ipv4_key->ipv4_src = output->ipv4.addr.src;
1618 		ipv4_key->ipv4_dst = output->ipv4.addr.dst;
1619 		ipv4_key->ipv4_proto = output->ip.proto;
1620 		ipv4_key->ipv4_tos = output->ip.tos;
1621 		ipv4_key->ipv4_ttl = output->ip.ttl;
1622 		ipv4_key->ipv4_frag = output->ip.frag;
1623 	} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1624 		struct ovs_key_ipv6 *ipv6_key;
1625 
1626 		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
1627 		if (!nla)
1628 			goto nla_put_failure;
1629 		ipv6_key = nla_data(nla);
1630 		memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src,
1631 				sizeof(ipv6_key->ipv6_src));
1632 		memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst,
1633 				sizeof(ipv6_key->ipv6_dst));
1634 		ipv6_key->ipv6_label = output->ipv6.label;
1635 		ipv6_key->ipv6_proto = output->ip.proto;
1636 		ipv6_key->ipv6_tclass = output->ip.tos;
1637 		ipv6_key->ipv6_hlimit = output->ip.ttl;
1638 		ipv6_key->ipv6_frag = output->ip.frag;
1639 	} else if (swkey->eth.type == htons(ETH_P_ARP) ||
1640 		   swkey->eth.type == htons(ETH_P_RARP)) {
1641 		struct ovs_key_arp *arp_key;
1642 
1643 		nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
1644 		if (!nla)
1645 			goto nla_put_failure;
1646 		arp_key = nla_data(nla);
1647 		memset(arp_key, 0, sizeof(struct ovs_key_arp));
1648 		arp_key->arp_sip = output->ipv4.addr.src;
1649 		arp_key->arp_tip = output->ipv4.addr.dst;
1650 		arp_key->arp_op = htons(output->ip.proto);
1651 		ether_addr_copy(arp_key->arp_sha, output->ipv4.arp.sha);
1652 		ether_addr_copy(arp_key->arp_tha, output->ipv4.arp.tha);
1653 	} else if (eth_p_mpls(swkey->eth.type)) {
1654 		struct ovs_key_mpls *mpls_key;
1655 
1656 		nla = nla_reserve(skb, OVS_KEY_ATTR_MPLS, sizeof(*mpls_key));
1657 		if (!nla)
1658 			goto nla_put_failure;
1659 		mpls_key = nla_data(nla);
1660 		mpls_key->mpls_lse = output->mpls.top_lse;
1661 	}
1662 
1663 	if ((swkey->eth.type == htons(ETH_P_IP) ||
1664 	     swkey->eth.type == htons(ETH_P_IPV6)) &&
1665 	     swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1666 
1667 		if (swkey->ip.proto == IPPROTO_TCP) {
1668 			struct ovs_key_tcp *tcp_key;
1669 
1670 			nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
1671 			if (!nla)
1672 				goto nla_put_failure;
1673 			tcp_key = nla_data(nla);
1674 			tcp_key->tcp_src = output->tp.src;
1675 			tcp_key->tcp_dst = output->tp.dst;
1676 			if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS,
1677 					 output->tp.flags))
1678 				goto nla_put_failure;
1679 		} else if (swkey->ip.proto == IPPROTO_UDP) {
1680 			struct ovs_key_udp *udp_key;
1681 
1682 			nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
1683 			if (!nla)
1684 				goto nla_put_failure;
1685 			udp_key = nla_data(nla);
1686 			udp_key->udp_src = output->tp.src;
1687 			udp_key->udp_dst = output->tp.dst;
1688 		} else if (swkey->ip.proto == IPPROTO_SCTP) {
1689 			struct ovs_key_sctp *sctp_key;
1690 
1691 			nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key));
1692 			if (!nla)
1693 				goto nla_put_failure;
1694 			sctp_key = nla_data(nla);
1695 			sctp_key->sctp_src = output->tp.src;
1696 			sctp_key->sctp_dst = output->tp.dst;
1697 		} else if (swkey->eth.type == htons(ETH_P_IP) &&
1698 			   swkey->ip.proto == IPPROTO_ICMP) {
1699 			struct ovs_key_icmp *icmp_key;
1700 
1701 			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
1702 			if (!nla)
1703 				goto nla_put_failure;
1704 			icmp_key = nla_data(nla);
1705 			icmp_key->icmp_type = ntohs(output->tp.src);
1706 			icmp_key->icmp_code = ntohs(output->tp.dst);
1707 		} else if (swkey->eth.type == htons(ETH_P_IPV6) &&
1708 			   swkey->ip.proto == IPPROTO_ICMPV6) {
1709 			struct ovs_key_icmpv6 *icmpv6_key;
1710 
1711 			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
1712 						sizeof(*icmpv6_key));
1713 			if (!nla)
1714 				goto nla_put_failure;
1715 			icmpv6_key = nla_data(nla);
1716 			icmpv6_key->icmpv6_type = ntohs(output->tp.src);
1717 			icmpv6_key->icmpv6_code = ntohs(output->tp.dst);
1718 
1719 			if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
1720 			    icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
1721 				struct ovs_key_nd *nd_key;
1722 
1723 				nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
1724 				if (!nla)
1725 					goto nla_put_failure;
1726 				nd_key = nla_data(nla);
1727 				memcpy(nd_key->nd_target, &output->ipv6.nd.target,
1728 							sizeof(nd_key->nd_target));
1729 				ether_addr_copy(nd_key->nd_sll, output->ipv6.nd.sll);
1730 				ether_addr_copy(nd_key->nd_tll, output->ipv6.nd.tll);
1731 			}
1732 		}
1733 	}
1734 
1735 unencap:
1736 	if (in_encap)
1737 		nla_nest_end(skb, in_encap);
1738 	if (encap)
1739 		nla_nest_end(skb, encap);
1740 
1741 	return 0;
1742 
1743 nla_put_failure:
1744 	return -EMSGSIZE;
1745 }
1746 
ovs_nla_put_key(const struct sw_flow_key * swkey,const struct sw_flow_key * output,int attr,bool is_mask,struct sk_buff * skb)1747 int ovs_nla_put_key(const struct sw_flow_key *swkey,
1748 		    const struct sw_flow_key *output, int attr, bool is_mask,
1749 		    struct sk_buff *skb)
1750 {
1751 	int err;
1752 	struct nlattr *nla;
1753 
1754 	nla = nla_nest_start(skb, attr);
1755 	if (!nla)
1756 		return -EMSGSIZE;
1757 	err = __ovs_nla_put_key(swkey, output, is_mask, skb);
1758 	if (err)
1759 		return err;
1760 	nla_nest_end(skb, nla);
1761 
1762 	return 0;
1763 }
1764 
1765 /* Called with ovs_mutex or RCU read lock. */
ovs_nla_put_identifier(const struct sw_flow * flow,struct sk_buff * skb)1766 int ovs_nla_put_identifier(const struct sw_flow *flow, struct sk_buff *skb)
1767 {
1768 	if (ovs_identifier_is_ufid(&flow->id))
1769 		return nla_put(skb, OVS_FLOW_ATTR_UFID, flow->id.ufid_len,
1770 			       flow->id.ufid);
1771 
1772 	return ovs_nla_put_key(flow->id.unmasked_key, flow->id.unmasked_key,
1773 			       OVS_FLOW_ATTR_KEY, false, skb);
1774 }
1775 
1776 /* Called with ovs_mutex or RCU read lock. */
ovs_nla_put_masked_key(const struct sw_flow * flow,struct sk_buff * skb)1777 int ovs_nla_put_masked_key(const struct sw_flow *flow, struct sk_buff *skb)
1778 {
1779 	return ovs_nla_put_key(&flow->key, &flow->key,
1780 				OVS_FLOW_ATTR_KEY, false, skb);
1781 }
1782 
1783 /* Called with ovs_mutex or RCU read lock. */
ovs_nla_put_mask(const struct sw_flow * flow,struct sk_buff * skb)1784 int ovs_nla_put_mask(const struct sw_flow *flow, struct sk_buff *skb)
1785 {
1786 	return ovs_nla_put_key(&flow->key, &flow->mask->key,
1787 				OVS_FLOW_ATTR_MASK, true, skb);
1788 }
1789 
1790 #define MAX_ACTIONS_BUFSIZE	(32 * 1024)
1791 
nla_alloc_flow_actions(int size)1792 static struct sw_flow_actions *nla_alloc_flow_actions(int size)
1793 {
1794 	struct sw_flow_actions *sfa;
1795 
1796 	WARN_ON_ONCE(size > MAX_ACTIONS_BUFSIZE);
1797 
1798 	sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL);
1799 	if (!sfa)
1800 		return ERR_PTR(-ENOMEM);
1801 
1802 	sfa->actions_len = 0;
1803 	return sfa;
1804 }
1805 
ovs_nla_free_set_action(const struct nlattr * a)1806 static void ovs_nla_free_set_action(const struct nlattr *a)
1807 {
1808 	const struct nlattr *ovs_key = nla_data(a);
1809 	struct ovs_tunnel_info *ovs_tun;
1810 
1811 	switch (nla_type(ovs_key)) {
1812 	case OVS_KEY_ATTR_TUNNEL_INFO:
1813 		ovs_tun = nla_data(ovs_key);
1814 		dst_release((struct dst_entry *)ovs_tun->tun_dst);
1815 		break;
1816 	}
1817 }
1818 
ovs_nla_free_flow_actions(struct sw_flow_actions * sf_acts)1819 void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts)
1820 {
1821 	const struct nlattr *a;
1822 	int rem;
1823 
1824 	if (!sf_acts)
1825 		return;
1826 
1827 	nla_for_each_attr(a, sf_acts->actions, sf_acts->actions_len, rem) {
1828 		switch (nla_type(a)) {
1829 		case OVS_ACTION_ATTR_SET:
1830 			ovs_nla_free_set_action(a);
1831 			break;
1832 		case OVS_ACTION_ATTR_CT:
1833 			ovs_ct_free_action(a);
1834 			break;
1835 		}
1836 	}
1837 
1838 	kfree(sf_acts);
1839 }
1840 
__ovs_nla_free_flow_actions(struct rcu_head * head)1841 static void __ovs_nla_free_flow_actions(struct rcu_head *head)
1842 {
1843 	ovs_nla_free_flow_actions(container_of(head, struct sw_flow_actions, rcu));
1844 }
1845 
1846 /* Schedules 'sf_acts' to be freed after the next RCU grace period.
1847  * The caller must hold rcu_read_lock for this to be sensible. */
ovs_nla_free_flow_actions_rcu(struct sw_flow_actions * sf_acts)1848 void ovs_nla_free_flow_actions_rcu(struct sw_flow_actions *sf_acts)
1849 {
1850 	call_rcu(&sf_acts->rcu, __ovs_nla_free_flow_actions);
1851 }
1852 
reserve_sfa_size(struct sw_flow_actions ** sfa,int attr_len,bool log)1853 static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa,
1854 				       int attr_len, bool log)
1855 {
1856 
1857 	struct sw_flow_actions *acts;
1858 	int new_acts_size;
1859 	int req_size = NLA_ALIGN(attr_len);
1860 	int next_offset = offsetof(struct sw_flow_actions, actions) +
1861 					(*sfa)->actions_len;
1862 
1863 	if (req_size <= (ksize(*sfa) - next_offset))
1864 		goto out;
1865 
1866 	new_acts_size = ksize(*sfa) * 2;
1867 
1868 	if (new_acts_size > MAX_ACTIONS_BUFSIZE) {
1869 		if ((MAX_ACTIONS_BUFSIZE - next_offset) < req_size) {
1870 			OVS_NLERR(log, "Flow action size exceeds max %u",
1871 				  MAX_ACTIONS_BUFSIZE);
1872 			return ERR_PTR(-EMSGSIZE);
1873 		}
1874 		new_acts_size = MAX_ACTIONS_BUFSIZE;
1875 	}
1876 
1877 	acts = nla_alloc_flow_actions(new_acts_size);
1878 	if (IS_ERR(acts))
1879 		return (void *)acts;
1880 
1881 	memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len);
1882 	acts->actions_len = (*sfa)->actions_len;
1883 	acts->orig_len = (*sfa)->orig_len;
1884 	kfree(*sfa);
1885 	*sfa = acts;
1886 
1887 out:
1888 	(*sfa)->actions_len += req_size;
1889 	return  (struct nlattr *) ((unsigned char *)(*sfa) + next_offset);
1890 }
1891 
__add_action(struct sw_flow_actions ** sfa,int attrtype,void * data,int len,bool log)1892 static struct nlattr *__add_action(struct sw_flow_actions **sfa,
1893 				   int attrtype, void *data, int len, bool log)
1894 {
1895 	struct nlattr *a;
1896 
1897 	a = reserve_sfa_size(sfa, nla_attr_size(len), log);
1898 	if (IS_ERR(a))
1899 		return a;
1900 
1901 	a->nla_type = attrtype;
1902 	a->nla_len = nla_attr_size(len);
1903 
1904 	if (data)
1905 		memcpy(nla_data(a), data, len);
1906 	memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len));
1907 
1908 	return a;
1909 }
1910 
ovs_nla_add_action(struct sw_flow_actions ** sfa,int attrtype,void * data,int len,bool log)1911 int ovs_nla_add_action(struct sw_flow_actions **sfa, int attrtype, void *data,
1912 		       int len, bool log)
1913 {
1914 	struct nlattr *a;
1915 
1916 	a = __add_action(sfa, attrtype, data, len, log);
1917 
1918 	return PTR_ERR_OR_ZERO(a);
1919 }
1920 
add_nested_action_start(struct sw_flow_actions ** sfa,int attrtype,bool log)1921 static inline int add_nested_action_start(struct sw_flow_actions **sfa,
1922 					  int attrtype, bool log)
1923 {
1924 	int used = (*sfa)->actions_len;
1925 	int err;
1926 
1927 	err = ovs_nla_add_action(sfa, attrtype, NULL, 0, log);
1928 	if (err)
1929 		return err;
1930 
1931 	return used;
1932 }
1933 
add_nested_action_end(struct sw_flow_actions * sfa,int st_offset)1934 static inline void add_nested_action_end(struct sw_flow_actions *sfa,
1935 					 int st_offset)
1936 {
1937 	struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions +
1938 							       st_offset);
1939 
1940 	a->nla_len = sfa->actions_len - st_offset;
1941 }
1942 
1943 static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
1944 				  const struct sw_flow_key *key,
1945 				  int depth, struct sw_flow_actions **sfa,
1946 				  __be16 eth_type, __be16 vlan_tci, bool log);
1947 
validate_and_copy_sample(struct net * net,const struct nlattr * attr,const struct sw_flow_key * key,int depth,struct sw_flow_actions ** sfa,__be16 eth_type,__be16 vlan_tci,bool log)1948 static int validate_and_copy_sample(struct net *net, const struct nlattr *attr,
1949 				    const struct sw_flow_key *key, int depth,
1950 				    struct sw_flow_actions **sfa,
1951 				    __be16 eth_type, __be16 vlan_tci, bool log)
1952 {
1953 	const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1];
1954 	const struct nlattr *probability, *actions;
1955 	const struct nlattr *a;
1956 	int rem, start, err, st_acts;
1957 
1958 	memset(attrs, 0, sizeof(attrs));
1959 	nla_for_each_nested(a, attr, rem) {
1960 		int type = nla_type(a);
1961 		if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type])
1962 			return -EINVAL;
1963 		attrs[type] = a;
1964 	}
1965 	if (rem)
1966 		return -EINVAL;
1967 
1968 	probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY];
1969 	if (!probability || nla_len(probability) != sizeof(u32))
1970 		return -EINVAL;
1971 
1972 	actions = attrs[OVS_SAMPLE_ATTR_ACTIONS];
1973 	if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN))
1974 		return -EINVAL;
1975 
1976 	/* validation done, copy sample action. */
1977 	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE, log);
1978 	if (start < 0)
1979 		return start;
1980 	err = ovs_nla_add_action(sfa, OVS_SAMPLE_ATTR_PROBABILITY,
1981 				 nla_data(probability), sizeof(u32), log);
1982 	if (err)
1983 		return err;
1984 	st_acts = add_nested_action_start(sfa, OVS_SAMPLE_ATTR_ACTIONS, log);
1985 	if (st_acts < 0)
1986 		return st_acts;
1987 
1988 	err = __ovs_nla_copy_actions(net, actions, key, depth + 1, sfa,
1989 				     eth_type, vlan_tci, log);
1990 	if (err)
1991 		return err;
1992 
1993 	add_nested_action_end(*sfa, st_acts);
1994 	add_nested_action_end(*sfa, start);
1995 
1996 	return 0;
1997 }
1998 
ovs_match_init(struct sw_flow_match * match,struct sw_flow_key * key,bool reset_key,struct sw_flow_mask * mask)1999 void ovs_match_init(struct sw_flow_match *match,
2000 		    struct sw_flow_key *key,
2001 		    bool reset_key,
2002 		    struct sw_flow_mask *mask)
2003 {
2004 	memset(match, 0, sizeof(*match));
2005 	match->key = key;
2006 	match->mask = mask;
2007 
2008 	if (reset_key)
2009 		memset(key, 0, sizeof(*key));
2010 
2011 	if (mask) {
2012 		memset(&mask->key, 0, sizeof(mask->key));
2013 		mask->range.start = mask->range.end = 0;
2014 	}
2015 }
2016 
validate_geneve_opts(struct sw_flow_key * key)2017 static int validate_geneve_opts(struct sw_flow_key *key)
2018 {
2019 	struct geneve_opt *option;
2020 	int opts_len = key->tun_opts_len;
2021 	bool crit_opt = false;
2022 
2023 	option = (struct geneve_opt *)TUN_METADATA_OPTS(key, key->tun_opts_len);
2024 	while (opts_len > 0) {
2025 		int len;
2026 
2027 		if (opts_len < sizeof(*option))
2028 			return -EINVAL;
2029 
2030 		len = sizeof(*option) + option->length * 4;
2031 		if (len > opts_len)
2032 			return -EINVAL;
2033 
2034 		crit_opt |= !!(option->type & GENEVE_CRIT_OPT_TYPE);
2035 
2036 		option = (struct geneve_opt *)((u8 *)option + len);
2037 		opts_len -= len;
2038 	};
2039 
2040 	key->tun_key.tun_flags |= crit_opt ? TUNNEL_CRIT_OPT : 0;
2041 
2042 	return 0;
2043 }
2044 
validate_and_copy_set_tun(const struct nlattr * attr,struct sw_flow_actions ** sfa,bool log)2045 static int validate_and_copy_set_tun(const struct nlattr *attr,
2046 				     struct sw_flow_actions **sfa, bool log)
2047 {
2048 	struct sw_flow_match match;
2049 	struct sw_flow_key key;
2050 	struct metadata_dst *tun_dst;
2051 	struct ip_tunnel_info *tun_info;
2052 	struct ovs_tunnel_info *ovs_tun;
2053 	struct nlattr *a;
2054 	int err = 0, start, opts_type;
2055 
2056 	ovs_match_init(&match, &key, true, NULL);
2057 	opts_type = ip_tun_from_nlattr(nla_data(attr), &match, false, log);
2058 	if (opts_type < 0)
2059 		return opts_type;
2060 
2061 	if (key.tun_opts_len) {
2062 		switch (opts_type) {
2063 		case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
2064 			err = validate_geneve_opts(&key);
2065 			if (err < 0)
2066 				return err;
2067 			break;
2068 		case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
2069 			break;
2070 		}
2071 	};
2072 
2073 	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET, log);
2074 	if (start < 0)
2075 		return start;
2076 
2077 	tun_dst = metadata_dst_alloc(key.tun_opts_len, GFP_KERNEL);
2078 	if (!tun_dst)
2079 		return -ENOMEM;
2080 
2081 	err = dst_cache_init(&tun_dst->u.tun_info.dst_cache, GFP_KERNEL);
2082 	if (err) {
2083 		dst_release((struct dst_entry *)tun_dst);
2084 		return err;
2085 	}
2086 
2087 	a = __add_action(sfa, OVS_KEY_ATTR_TUNNEL_INFO, NULL,
2088 			 sizeof(*ovs_tun), log);
2089 	if (IS_ERR(a)) {
2090 		dst_release((struct dst_entry *)tun_dst);
2091 		return PTR_ERR(a);
2092 	}
2093 
2094 	ovs_tun = nla_data(a);
2095 	ovs_tun->tun_dst = tun_dst;
2096 
2097 	tun_info = &tun_dst->u.tun_info;
2098 	tun_info->mode = IP_TUNNEL_INFO_TX;
2099 	if (key.tun_proto == AF_INET6)
2100 		tun_info->mode |= IP_TUNNEL_INFO_IPV6;
2101 	tun_info->key = key.tun_key;
2102 
2103 	/* We need to store the options in the action itself since
2104 	 * everything else will go away after flow setup. We can append
2105 	 * it to tun_info and then point there.
2106 	 */
2107 	ip_tunnel_info_opts_set(tun_info,
2108 				TUN_METADATA_OPTS(&key, key.tun_opts_len),
2109 				key.tun_opts_len);
2110 	add_nested_action_end(*sfa, start);
2111 
2112 	return err;
2113 }
2114 
2115 /* Return false if there are any non-masked bits set.
2116  * Mask follows data immediately, before any netlink padding.
2117  */
validate_masked(u8 * data,int len)2118 static bool validate_masked(u8 *data, int len)
2119 {
2120 	u8 *mask = data + len;
2121 
2122 	while (len--)
2123 		if (*data++ & ~*mask++)
2124 			return false;
2125 
2126 	return true;
2127 }
2128 
validate_set(const struct nlattr * a,const struct sw_flow_key * flow_key,struct sw_flow_actions ** sfa,bool * skip_copy,__be16 eth_type,bool masked,bool log)2129 static int validate_set(const struct nlattr *a,
2130 			const struct sw_flow_key *flow_key,
2131 			struct sw_flow_actions **sfa,
2132 			bool *skip_copy, __be16 eth_type, bool masked, bool log)
2133 {
2134 	const struct nlattr *ovs_key = nla_data(a);
2135 	int key_type = nla_type(ovs_key);
2136 	size_t key_len;
2137 
2138 	/* There can be only one key in a action */
2139 	if (nla_total_size(nla_len(ovs_key)) != nla_len(a))
2140 		return -EINVAL;
2141 
2142 	key_len = nla_len(ovs_key);
2143 	if (masked)
2144 		key_len /= 2;
2145 
2146 	if (key_type > OVS_KEY_ATTR_MAX ||
2147 	    !check_attr_len(key_len, ovs_key_lens[key_type].len))
2148 		return -EINVAL;
2149 
2150 	if (masked && !validate_masked(nla_data(ovs_key), key_len))
2151 		return -EINVAL;
2152 
2153 	switch (key_type) {
2154 	const struct ovs_key_ipv4 *ipv4_key;
2155 	const struct ovs_key_ipv6 *ipv6_key;
2156 	int err;
2157 
2158 	case OVS_KEY_ATTR_PRIORITY:
2159 	case OVS_KEY_ATTR_SKB_MARK:
2160 	case OVS_KEY_ATTR_CT_MARK:
2161 	case OVS_KEY_ATTR_CT_LABELS:
2162 	case OVS_KEY_ATTR_ETHERNET:
2163 		break;
2164 
2165 	case OVS_KEY_ATTR_TUNNEL:
2166 		if (masked)
2167 			return -EINVAL; /* Masked tunnel set not supported. */
2168 
2169 		*skip_copy = true;
2170 		err = validate_and_copy_set_tun(a, sfa, log);
2171 		if (err)
2172 			return err;
2173 		break;
2174 
2175 	case OVS_KEY_ATTR_IPV4:
2176 		if (eth_type != htons(ETH_P_IP))
2177 			return -EINVAL;
2178 
2179 		ipv4_key = nla_data(ovs_key);
2180 
2181 		if (masked) {
2182 			const struct ovs_key_ipv4 *mask = ipv4_key + 1;
2183 
2184 			/* Non-writeable fields. */
2185 			if (mask->ipv4_proto || mask->ipv4_frag)
2186 				return -EINVAL;
2187 		} else {
2188 			if (ipv4_key->ipv4_proto != flow_key->ip.proto)
2189 				return -EINVAL;
2190 
2191 			if (ipv4_key->ipv4_frag != flow_key->ip.frag)
2192 				return -EINVAL;
2193 		}
2194 		break;
2195 
2196 	case OVS_KEY_ATTR_IPV6:
2197 		if (eth_type != htons(ETH_P_IPV6))
2198 			return -EINVAL;
2199 
2200 		ipv6_key = nla_data(ovs_key);
2201 
2202 		if (masked) {
2203 			const struct ovs_key_ipv6 *mask = ipv6_key + 1;
2204 
2205 			/* Non-writeable fields. */
2206 			if (mask->ipv6_proto || mask->ipv6_frag)
2207 				return -EINVAL;
2208 
2209 			/* Invalid bits in the flow label mask? */
2210 			if (ntohl(mask->ipv6_label) & 0xFFF00000)
2211 				return -EINVAL;
2212 		} else {
2213 			if (ipv6_key->ipv6_proto != flow_key->ip.proto)
2214 				return -EINVAL;
2215 
2216 			if (ipv6_key->ipv6_frag != flow_key->ip.frag)
2217 				return -EINVAL;
2218 		}
2219 		if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000)
2220 			return -EINVAL;
2221 
2222 		break;
2223 
2224 	case OVS_KEY_ATTR_TCP:
2225 		if ((eth_type != htons(ETH_P_IP) &&
2226 		     eth_type != htons(ETH_P_IPV6)) ||
2227 		    flow_key->ip.proto != IPPROTO_TCP)
2228 			return -EINVAL;
2229 
2230 		break;
2231 
2232 	case OVS_KEY_ATTR_UDP:
2233 		if ((eth_type != htons(ETH_P_IP) &&
2234 		     eth_type != htons(ETH_P_IPV6)) ||
2235 		    flow_key->ip.proto != IPPROTO_UDP)
2236 			return -EINVAL;
2237 
2238 		break;
2239 
2240 	case OVS_KEY_ATTR_MPLS:
2241 		if (!eth_p_mpls(eth_type))
2242 			return -EINVAL;
2243 		break;
2244 
2245 	case OVS_KEY_ATTR_SCTP:
2246 		if ((eth_type != htons(ETH_P_IP) &&
2247 		     eth_type != htons(ETH_P_IPV6)) ||
2248 		    flow_key->ip.proto != IPPROTO_SCTP)
2249 			return -EINVAL;
2250 
2251 		break;
2252 
2253 	default:
2254 		return -EINVAL;
2255 	}
2256 
2257 	/* Convert non-masked non-tunnel set actions to masked set actions. */
2258 	if (!masked && key_type != OVS_KEY_ATTR_TUNNEL) {
2259 		int start, len = key_len * 2;
2260 		struct nlattr *at;
2261 
2262 		*skip_copy = true;
2263 
2264 		start = add_nested_action_start(sfa,
2265 						OVS_ACTION_ATTR_SET_TO_MASKED,
2266 						log);
2267 		if (start < 0)
2268 			return start;
2269 
2270 		at = __add_action(sfa, key_type, NULL, len, log);
2271 		if (IS_ERR(at))
2272 			return PTR_ERR(at);
2273 
2274 		memcpy(nla_data(at), nla_data(ovs_key), key_len); /* Key. */
2275 		memset(nla_data(at) + key_len, 0xff, key_len);    /* Mask. */
2276 		/* Clear non-writeable bits from otherwise writeable fields. */
2277 		if (key_type == OVS_KEY_ATTR_IPV6) {
2278 			struct ovs_key_ipv6 *mask = nla_data(at) + key_len;
2279 
2280 			mask->ipv6_label &= htonl(0x000FFFFF);
2281 		}
2282 		add_nested_action_end(*sfa, start);
2283 	}
2284 
2285 	return 0;
2286 }
2287 
validate_userspace(const struct nlattr * attr)2288 static int validate_userspace(const struct nlattr *attr)
2289 {
2290 	static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = {
2291 		[OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 },
2292 		[OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC },
2293 		[OVS_USERSPACE_ATTR_EGRESS_TUN_PORT] = {.type = NLA_U32 },
2294 	};
2295 	struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1];
2296 	int error;
2297 
2298 	error = nla_parse_nested(a, OVS_USERSPACE_ATTR_MAX,
2299 				 attr, userspace_policy);
2300 	if (error)
2301 		return error;
2302 
2303 	if (!a[OVS_USERSPACE_ATTR_PID] ||
2304 	    !nla_get_u32(a[OVS_USERSPACE_ATTR_PID]))
2305 		return -EINVAL;
2306 
2307 	return 0;
2308 }
2309 
copy_action(const struct nlattr * from,struct sw_flow_actions ** sfa,bool log)2310 static int copy_action(const struct nlattr *from,
2311 		       struct sw_flow_actions **sfa, bool log)
2312 {
2313 	int totlen = NLA_ALIGN(from->nla_len);
2314 	struct nlattr *to;
2315 
2316 	to = reserve_sfa_size(sfa, from->nla_len, log);
2317 	if (IS_ERR(to))
2318 		return PTR_ERR(to);
2319 
2320 	memcpy(to, from, totlen);
2321 	return 0;
2322 }
2323 
__ovs_nla_copy_actions(struct net * net,const struct nlattr * attr,const struct sw_flow_key * key,int depth,struct sw_flow_actions ** sfa,__be16 eth_type,__be16 vlan_tci,bool log)2324 static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2325 				  const struct sw_flow_key *key,
2326 				  int depth, struct sw_flow_actions **sfa,
2327 				  __be16 eth_type, __be16 vlan_tci, bool log)
2328 {
2329 	const struct nlattr *a;
2330 	int rem, err;
2331 
2332 	if (depth >= SAMPLE_ACTION_DEPTH)
2333 		return -EOVERFLOW;
2334 
2335 	nla_for_each_nested(a, attr, rem) {
2336 		/* Expected argument lengths, (u32)-1 for variable length. */
2337 		static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = {
2338 			[OVS_ACTION_ATTR_OUTPUT] = sizeof(u32),
2339 			[OVS_ACTION_ATTR_RECIRC] = sizeof(u32),
2340 			[OVS_ACTION_ATTR_USERSPACE] = (u32)-1,
2341 			[OVS_ACTION_ATTR_PUSH_MPLS] = sizeof(struct ovs_action_push_mpls),
2342 			[OVS_ACTION_ATTR_POP_MPLS] = sizeof(__be16),
2343 			[OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan),
2344 			[OVS_ACTION_ATTR_POP_VLAN] = 0,
2345 			[OVS_ACTION_ATTR_SET] = (u32)-1,
2346 			[OVS_ACTION_ATTR_SET_MASKED] = (u32)-1,
2347 			[OVS_ACTION_ATTR_SAMPLE] = (u32)-1,
2348 			[OVS_ACTION_ATTR_HASH] = sizeof(struct ovs_action_hash),
2349 			[OVS_ACTION_ATTR_CT] = (u32)-1,
2350 			[OVS_ACTION_ATTR_TRUNC] = sizeof(struct ovs_action_trunc),
2351 		};
2352 		const struct ovs_action_push_vlan *vlan;
2353 		int type = nla_type(a);
2354 		bool skip_copy;
2355 
2356 		if (type > OVS_ACTION_ATTR_MAX ||
2357 		    (action_lens[type] != nla_len(a) &&
2358 		     action_lens[type] != (u32)-1))
2359 			return -EINVAL;
2360 
2361 		skip_copy = false;
2362 		switch (type) {
2363 		case OVS_ACTION_ATTR_UNSPEC:
2364 			return -EINVAL;
2365 
2366 		case OVS_ACTION_ATTR_USERSPACE:
2367 			err = validate_userspace(a);
2368 			if (err)
2369 				return err;
2370 			break;
2371 
2372 		case OVS_ACTION_ATTR_OUTPUT:
2373 			if (nla_get_u32(a) >= DP_MAX_PORTS)
2374 				return -EINVAL;
2375 			break;
2376 
2377 		case OVS_ACTION_ATTR_TRUNC: {
2378 			const struct ovs_action_trunc *trunc = nla_data(a);
2379 
2380 			if (trunc->max_len < ETH_HLEN)
2381 				return -EINVAL;
2382 			break;
2383 		}
2384 
2385 		case OVS_ACTION_ATTR_HASH: {
2386 			const struct ovs_action_hash *act_hash = nla_data(a);
2387 
2388 			switch (act_hash->hash_alg) {
2389 			case OVS_HASH_ALG_L4:
2390 				break;
2391 			default:
2392 				return  -EINVAL;
2393 			}
2394 
2395 			break;
2396 		}
2397 
2398 		case OVS_ACTION_ATTR_POP_VLAN:
2399 			vlan_tci = htons(0);
2400 			break;
2401 
2402 		case OVS_ACTION_ATTR_PUSH_VLAN:
2403 			vlan = nla_data(a);
2404 			if (!eth_type_vlan(vlan->vlan_tpid))
2405 				return -EINVAL;
2406 			if (!(vlan->vlan_tci & htons(VLAN_TAG_PRESENT)))
2407 				return -EINVAL;
2408 			vlan_tci = vlan->vlan_tci;
2409 			break;
2410 
2411 		case OVS_ACTION_ATTR_RECIRC:
2412 			break;
2413 
2414 		case OVS_ACTION_ATTR_PUSH_MPLS: {
2415 			const struct ovs_action_push_mpls *mpls = nla_data(a);
2416 
2417 			if (!eth_p_mpls(mpls->mpls_ethertype))
2418 				return -EINVAL;
2419 			/* Prohibit push MPLS other than to a white list
2420 			 * for packets that have a known tag order.
2421 			 */
2422 			if (vlan_tci & htons(VLAN_TAG_PRESENT) ||
2423 			    (eth_type != htons(ETH_P_IP) &&
2424 			     eth_type != htons(ETH_P_IPV6) &&
2425 			     eth_type != htons(ETH_P_ARP) &&
2426 			     eth_type != htons(ETH_P_RARP) &&
2427 			     !eth_p_mpls(eth_type)))
2428 				return -EINVAL;
2429 			eth_type = mpls->mpls_ethertype;
2430 			break;
2431 		}
2432 
2433 		case OVS_ACTION_ATTR_POP_MPLS:
2434 			if (vlan_tci & htons(VLAN_TAG_PRESENT) ||
2435 			    !eth_p_mpls(eth_type))
2436 				return -EINVAL;
2437 
2438 			/* Disallow subsequent L2.5+ set and mpls_pop actions
2439 			 * as there is no check here to ensure that the new
2440 			 * eth_type is valid and thus set actions could
2441 			 * write off the end of the packet or otherwise
2442 			 * corrupt it.
2443 			 *
2444 			 * Support for these actions is planned using packet
2445 			 * recirculation.
2446 			 */
2447 			eth_type = htons(0);
2448 			break;
2449 
2450 		case OVS_ACTION_ATTR_SET:
2451 			err = validate_set(a, key, sfa,
2452 					   &skip_copy, eth_type, false, log);
2453 			if (err)
2454 				return err;
2455 			break;
2456 
2457 		case OVS_ACTION_ATTR_SET_MASKED:
2458 			err = validate_set(a, key, sfa,
2459 					   &skip_copy, eth_type, true, log);
2460 			if (err)
2461 				return err;
2462 			break;
2463 
2464 		case OVS_ACTION_ATTR_SAMPLE:
2465 			err = validate_and_copy_sample(net, a, key, depth, sfa,
2466 						       eth_type, vlan_tci, log);
2467 			if (err)
2468 				return err;
2469 			skip_copy = true;
2470 			break;
2471 
2472 		case OVS_ACTION_ATTR_CT:
2473 			err = ovs_ct_copy_action(net, a, key, sfa, log);
2474 			if (err)
2475 				return err;
2476 			skip_copy = true;
2477 			break;
2478 
2479 		default:
2480 			OVS_NLERR(log, "Unknown Action type %d", type);
2481 			return -EINVAL;
2482 		}
2483 		if (!skip_copy) {
2484 			err = copy_action(a, sfa, log);
2485 			if (err)
2486 				return err;
2487 		}
2488 	}
2489 
2490 	if (rem > 0)
2491 		return -EINVAL;
2492 
2493 	return 0;
2494 }
2495 
2496 /* 'key' must be the masked key. */
ovs_nla_copy_actions(struct net * net,const struct nlattr * attr,const struct sw_flow_key * key,struct sw_flow_actions ** sfa,bool log)2497 int ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2498 			 const struct sw_flow_key *key,
2499 			 struct sw_flow_actions **sfa, bool log)
2500 {
2501 	int err;
2502 
2503 	*sfa = nla_alloc_flow_actions(min(nla_len(attr), MAX_ACTIONS_BUFSIZE));
2504 	if (IS_ERR(*sfa))
2505 		return PTR_ERR(*sfa);
2506 
2507 	(*sfa)->orig_len = nla_len(attr);
2508 	err = __ovs_nla_copy_actions(net, attr, key, 0, sfa, key->eth.type,
2509 				     key->eth.vlan.tci, log);
2510 	if (err)
2511 		ovs_nla_free_flow_actions(*sfa);
2512 
2513 	return err;
2514 }
2515 
sample_action_to_attr(const struct nlattr * attr,struct sk_buff * skb)2516 static int sample_action_to_attr(const struct nlattr *attr, struct sk_buff *skb)
2517 {
2518 	const struct nlattr *a;
2519 	struct nlattr *start;
2520 	int err = 0, rem;
2521 
2522 	start = nla_nest_start(skb, OVS_ACTION_ATTR_SAMPLE);
2523 	if (!start)
2524 		return -EMSGSIZE;
2525 
2526 	nla_for_each_nested(a, attr, rem) {
2527 		int type = nla_type(a);
2528 		struct nlattr *st_sample;
2529 
2530 		switch (type) {
2531 		case OVS_SAMPLE_ATTR_PROBABILITY:
2532 			if (nla_put(skb, OVS_SAMPLE_ATTR_PROBABILITY,
2533 				    sizeof(u32), nla_data(a)))
2534 				return -EMSGSIZE;
2535 			break;
2536 		case OVS_SAMPLE_ATTR_ACTIONS:
2537 			st_sample = nla_nest_start(skb, OVS_SAMPLE_ATTR_ACTIONS);
2538 			if (!st_sample)
2539 				return -EMSGSIZE;
2540 			err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
2541 			if (err)
2542 				return err;
2543 			nla_nest_end(skb, st_sample);
2544 			break;
2545 		}
2546 	}
2547 
2548 	nla_nest_end(skb, start);
2549 	return err;
2550 }
2551 
set_action_to_attr(const struct nlattr * a,struct sk_buff * skb)2552 static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb)
2553 {
2554 	const struct nlattr *ovs_key = nla_data(a);
2555 	int key_type = nla_type(ovs_key);
2556 	struct nlattr *start;
2557 	int err;
2558 
2559 	switch (key_type) {
2560 	case OVS_KEY_ATTR_TUNNEL_INFO: {
2561 		struct ovs_tunnel_info *ovs_tun = nla_data(ovs_key);
2562 		struct ip_tunnel_info *tun_info = &ovs_tun->tun_dst->u.tun_info;
2563 
2564 		start = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
2565 		if (!start)
2566 			return -EMSGSIZE;
2567 
2568 		err =  ip_tun_to_nlattr(skb, &tun_info->key,
2569 					ip_tunnel_info_opts(tun_info),
2570 					tun_info->options_len,
2571 					ip_tunnel_info_af(tun_info));
2572 		if (err)
2573 			return err;
2574 		nla_nest_end(skb, start);
2575 		break;
2576 	}
2577 	default:
2578 		if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key))
2579 			return -EMSGSIZE;
2580 		break;
2581 	}
2582 
2583 	return 0;
2584 }
2585 
masked_set_action_to_set_action_attr(const struct nlattr * a,struct sk_buff * skb)2586 static int masked_set_action_to_set_action_attr(const struct nlattr *a,
2587 						struct sk_buff *skb)
2588 {
2589 	const struct nlattr *ovs_key = nla_data(a);
2590 	struct nlattr *nla;
2591 	size_t key_len = nla_len(ovs_key) / 2;
2592 
2593 	/* Revert the conversion we did from a non-masked set action to
2594 	 * masked set action.
2595 	 */
2596 	nla = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
2597 	if (!nla)
2598 		return -EMSGSIZE;
2599 
2600 	if (nla_put(skb, nla_type(ovs_key), key_len, nla_data(ovs_key)))
2601 		return -EMSGSIZE;
2602 
2603 	nla_nest_end(skb, nla);
2604 	return 0;
2605 }
2606 
ovs_nla_put_actions(const struct nlattr * attr,int len,struct sk_buff * skb)2607 int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb)
2608 {
2609 	const struct nlattr *a;
2610 	int rem, err;
2611 
2612 	nla_for_each_attr(a, attr, len, rem) {
2613 		int type = nla_type(a);
2614 
2615 		switch (type) {
2616 		case OVS_ACTION_ATTR_SET:
2617 			err = set_action_to_attr(a, skb);
2618 			if (err)
2619 				return err;
2620 			break;
2621 
2622 		case OVS_ACTION_ATTR_SET_TO_MASKED:
2623 			err = masked_set_action_to_set_action_attr(a, skb);
2624 			if (err)
2625 				return err;
2626 			break;
2627 
2628 		case OVS_ACTION_ATTR_SAMPLE:
2629 			err = sample_action_to_attr(a, skb);
2630 			if (err)
2631 				return err;
2632 			break;
2633 
2634 		case OVS_ACTION_ATTR_CT:
2635 			err = ovs_ct_action_to_attr(nla_data(a), skb);
2636 			if (err)
2637 				return err;
2638 			break;
2639 
2640 		default:
2641 			if (nla_put(skb, type, nla_len(a), nla_data(a)))
2642 				return -EMSGSIZE;
2643 			break;
2644 		}
2645 	}
2646 
2647 	return 0;
2648 }
2649