• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2006, 2018 Oracle and/or its affiliates. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/kernel.h>
34 #include <linux/moduleparam.h>
35 #include <linux/gfp.h>
36 #include <net/sock.h>
37 #include <linux/in.h>
38 #include <linux/list.h>
39 #include <linux/ratelimit.h>
40 #include <linux/export.h>
41 #include <linux/sizes.h>
42 
43 #include "rds.h"
44 
45 /* When transmitting messages in rds_send_xmit, we need to emerge from
46  * time to time and briefly release the CPU. Otherwise the softlock watchdog
47  * will kick our shin.
48  * Also, it seems fairer to not let one busy connection stall all the
49  * others.
50  *
51  * send_batch_count is the number of times we'll loop in send_xmit. Setting
52  * it to 0 will restore the old behavior (where we looped until we had
53  * drained the queue).
54  */
55 static int send_batch_count = SZ_1K;
56 module_param(send_batch_count, int, 0444);
57 MODULE_PARM_DESC(send_batch_count, " batch factor when working the send queue");
58 
59 static void rds_send_remove_from_sock(struct list_head *messages, int status);
60 
61 /*
62  * Reset the send state.  Callers must ensure that this doesn't race with
63  * rds_send_xmit().
64  */
rds_send_path_reset(struct rds_conn_path * cp)65 void rds_send_path_reset(struct rds_conn_path *cp)
66 {
67 	struct rds_message *rm, *tmp;
68 	unsigned long flags;
69 
70 	if (cp->cp_xmit_rm) {
71 		rm = cp->cp_xmit_rm;
72 		cp->cp_xmit_rm = NULL;
73 		/* Tell the user the RDMA op is no longer mapped by the
74 		 * transport. This isn't entirely true (it's flushed out
75 		 * independently) but as the connection is down, there's
76 		 * no ongoing RDMA to/from that memory */
77 		rds_message_unmapped(rm);
78 		rds_message_put(rm);
79 	}
80 
81 	cp->cp_xmit_sg = 0;
82 	cp->cp_xmit_hdr_off = 0;
83 	cp->cp_xmit_data_off = 0;
84 	cp->cp_xmit_atomic_sent = 0;
85 	cp->cp_xmit_rdma_sent = 0;
86 	cp->cp_xmit_data_sent = 0;
87 
88 	cp->cp_conn->c_map_queued = 0;
89 
90 	cp->cp_unacked_packets = rds_sysctl_max_unacked_packets;
91 	cp->cp_unacked_bytes = rds_sysctl_max_unacked_bytes;
92 
93 	/* Mark messages as retransmissions, and move them to the send q */
94 	spin_lock_irqsave(&cp->cp_lock, flags);
95 	list_for_each_entry_safe(rm, tmp, &cp->cp_retrans, m_conn_item) {
96 		set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
97 		set_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags);
98 	}
99 	list_splice_init(&cp->cp_retrans, &cp->cp_send_queue);
100 	spin_unlock_irqrestore(&cp->cp_lock, flags);
101 }
102 EXPORT_SYMBOL_GPL(rds_send_path_reset);
103 
acquire_in_xmit(struct rds_conn_path * cp)104 static int acquire_in_xmit(struct rds_conn_path *cp)
105 {
106 	return test_and_set_bit(RDS_IN_XMIT, &cp->cp_flags) == 0;
107 }
108 
release_in_xmit(struct rds_conn_path * cp)109 static void release_in_xmit(struct rds_conn_path *cp)
110 {
111 	clear_bit(RDS_IN_XMIT, &cp->cp_flags);
112 	smp_mb__after_atomic();
113 	/*
114 	 * We don't use wait_on_bit()/wake_up_bit() because our waking is in a
115 	 * hot path and finding waiters is very rare.  We don't want to walk
116 	 * the system-wide hashed waitqueue buckets in the fast path only to
117 	 * almost never find waiters.
118 	 */
119 	if (waitqueue_active(&cp->cp_waitq))
120 		wake_up_all(&cp->cp_waitq);
121 }
122 
123 /*
124  * We're making the conscious trade-off here to only send one message
125  * down the connection at a time.
126  *   Pro:
127  *      - tx queueing is a simple fifo list
128  *   	- reassembly is optional and easily done by transports per conn
129  *      - no per flow rx lookup at all, straight to the socket
130  *   	- less per-frag memory and wire overhead
131  *   Con:
132  *      - queued acks can be delayed behind large messages
133  *   Depends:
134  *      - small message latency is higher behind queued large messages
135  *      - large message latency isn't starved by intervening small sends
136  */
rds_send_xmit(struct rds_conn_path * cp)137 int rds_send_xmit(struct rds_conn_path *cp)
138 {
139 	struct rds_connection *conn = cp->cp_conn;
140 	struct rds_message *rm;
141 	unsigned long flags;
142 	unsigned int tmp;
143 	struct scatterlist *sg;
144 	int ret = 0;
145 	LIST_HEAD(to_be_dropped);
146 	int batch_count;
147 	unsigned long send_gen = 0;
148 
149 restart:
150 	batch_count = 0;
151 
152 	/*
153 	 * sendmsg calls here after having queued its message on the send
154 	 * queue.  We only have one task feeding the connection at a time.  If
155 	 * another thread is already feeding the queue then we back off.  This
156 	 * avoids blocking the caller and trading per-connection data between
157 	 * caches per message.
158 	 */
159 	if (!acquire_in_xmit(cp)) {
160 		rds_stats_inc(s_send_lock_contention);
161 		ret = -ENOMEM;
162 		goto out;
163 	}
164 
165 	/*
166 	 * we record the send generation after doing the xmit acquire.
167 	 * if someone else manages to jump in and do some work, we'll use
168 	 * this to avoid a goto restart farther down.
169 	 *
170 	 * The acquire_in_xmit() check above ensures that only one
171 	 * caller can increment c_send_gen at any time.
172 	 */
173 	cp->cp_send_gen++;
174 	send_gen = cp->cp_send_gen;
175 
176 	/*
177 	 * rds_conn_shutdown() sets the conn state and then tests RDS_IN_XMIT,
178 	 * we do the opposite to avoid races.
179 	 */
180 	if (!rds_conn_path_up(cp)) {
181 		release_in_xmit(cp);
182 		ret = 0;
183 		goto out;
184 	}
185 
186 	if (conn->c_trans->xmit_path_prepare)
187 		conn->c_trans->xmit_path_prepare(cp);
188 
189 	/*
190 	 * spin trying to push headers and data down the connection until
191 	 * the connection doesn't make forward progress.
192 	 */
193 	while (1) {
194 
195 		rm = cp->cp_xmit_rm;
196 
197 		/*
198 		 * If between sending messages, we can send a pending congestion
199 		 * map update.
200 		 */
201 		if (!rm && test_and_clear_bit(0, &conn->c_map_queued)) {
202 			rm = rds_cong_update_alloc(conn);
203 			if (IS_ERR(rm)) {
204 				ret = PTR_ERR(rm);
205 				break;
206 			}
207 			rm->data.op_active = 1;
208 			rm->m_inc.i_conn_path = cp;
209 			rm->m_inc.i_conn = cp->cp_conn;
210 
211 			cp->cp_xmit_rm = rm;
212 		}
213 
214 		/*
215 		 * If not already working on one, grab the next message.
216 		 *
217 		 * cp_xmit_rm holds a ref while we're sending this message down
218 		 * the connction.  We can use this ref while holding the
219 		 * send_sem.. rds_send_reset() is serialized with it.
220 		 */
221 		if (!rm) {
222 			unsigned int len;
223 
224 			batch_count++;
225 
226 			/* we want to process as big a batch as we can, but
227 			 * we also want to avoid softlockups.  If we've been
228 			 * through a lot of messages, lets back off and see
229 			 * if anyone else jumps in
230 			 */
231 			if (batch_count >= send_batch_count)
232 				goto over_batch;
233 
234 			spin_lock_irqsave(&cp->cp_lock, flags);
235 
236 			if (!list_empty(&cp->cp_send_queue)) {
237 				rm = list_entry(cp->cp_send_queue.next,
238 						struct rds_message,
239 						m_conn_item);
240 				rds_message_addref(rm);
241 
242 				/*
243 				 * Move the message from the send queue to the retransmit
244 				 * list right away.
245 				 */
246 				list_move_tail(&rm->m_conn_item,
247 					       &cp->cp_retrans);
248 			}
249 
250 			spin_unlock_irqrestore(&cp->cp_lock, flags);
251 
252 			if (!rm)
253 				break;
254 
255 			/* Unfortunately, the way Infiniband deals with
256 			 * RDMA to a bad MR key is by moving the entire
257 			 * queue pair to error state. We cold possibly
258 			 * recover from that, but right now we drop the
259 			 * connection.
260 			 * Therefore, we never retransmit messages with RDMA ops.
261 			 */
262 			if (rm->rdma.op_active &&
263 			    test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags)) {
264 				spin_lock_irqsave(&cp->cp_lock, flags);
265 				if (test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags))
266 					list_move(&rm->m_conn_item, &to_be_dropped);
267 				spin_unlock_irqrestore(&cp->cp_lock, flags);
268 				continue;
269 			}
270 
271 			/* Require an ACK every once in a while */
272 			len = ntohl(rm->m_inc.i_hdr.h_len);
273 			if (cp->cp_unacked_packets == 0 ||
274 			    cp->cp_unacked_bytes < len) {
275 				__set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
276 
277 				cp->cp_unacked_packets =
278 					rds_sysctl_max_unacked_packets;
279 				cp->cp_unacked_bytes =
280 					rds_sysctl_max_unacked_bytes;
281 				rds_stats_inc(s_send_ack_required);
282 			} else {
283 				cp->cp_unacked_bytes -= len;
284 				cp->cp_unacked_packets--;
285 			}
286 
287 			cp->cp_xmit_rm = rm;
288 		}
289 
290 		/* The transport either sends the whole rdma or none of it */
291 		if (rm->rdma.op_active && !cp->cp_xmit_rdma_sent) {
292 			rm->m_final_op = &rm->rdma;
293 			/* The transport owns the mapped memory for now.
294 			 * You can't unmap it while it's on the send queue
295 			 */
296 			set_bit(RDS_MSG_MAPPED, &rm->m_flags);
297 			ret = conn->c_trans->xmit_rdma(conn, &rm->rdma);
298 			if (ret) {
299 				clear_bit(RDS_MSG_MAPPED, &rm->m_flags);
300 				wake_up_interruptible(&rm->m_flush_wait);
301 				break;
302 			}
303 			cp->cp_xmit_rdma_sent = 1;
304 
305 		}
306 
307 		if (rm->atomic.op_active && !cp->cp_xmit_atomic_sent) {
308 			rm->m_final_op = &rm->atomic;
309 			/* The transport owns the mapped memory for now.
310 			 * You can't unmap it while it's on the send queue
311 			 */
312 			set_bit(RDS_MSG_MAPPED, &rm->m_flags);
313 			ret = conn->c_trans->xmit_atomic(conn, &rm->atomic);
314 			if (ret) {
315 				clear_bit(RDS_MSG_MAPPED, &rm->m_flags);
316 				wake_up_interruptible(&rm->m_flush_wait);
317 				break;
318 			}
319 			cp->cp_xmit_atomic_sent = 1;
320 
321 		}
322 
323 		/*
324 		 * A number of cases require an RDS header to be sent
325 		 * even if there is no data.
326 		 * We permit 0-byte sends; rds-ping depends on this.
327 		 * However, if there are exclusively attached silent ops,
328 		 * we skip the hdr/data send, to enable silent operation.
329 		 */
330 		if (rm->data.op_nents == 0) {
331 			int ops_present;
332 			int all_ops_are_silent = 1;
333 
334 			ops_present = (rm->atomic.op_active || rm->rdma.op_active);
335 			if (rm->atomic.op_active && !rm->atomic.op_silent)
336 				all_ops_are_silent = 0;
337 			if (rm->rdma.op_active && !rm->rdma.op_silent)
338 				all_ops_are_silent = 0;
339 
340 			if (ops_present && all_ops_are_silent
341 			    && !rm->m_rdma_cookie)
342 				rm->data.op_active = 0;
343 		}
344 
345 		if (rm->data.op_active && !cp->cp_xmit_data_sent) {
346 			rm->m_final_op = &rm->data;
347 
348 			ret = conn->c_trans->xmit(conn, rm,
349 						  cp->cp_xmit_hdr_off,
350 						  cp->cp_xmit_sg,
351 						  cp->cp_xmit_data_off);
352 			if (ret <= 0)
353 				break;
354 
355 			if (cp->cp_xmit_hdr_off < sizeof(struct rds_header)) {
356 				tmp = min_t(int, ret,
357 					    sizeof(struct rds_header) -
358 					    cp->cp_xmit_hdr_off);
359 				cp->cp_xmit_hdr_off += tmp;
360 				ret -= tmp;
361 			}
362 
363 			sg = &rm->data.op_sg[cp->cp_xmit_sg];
364 			while (ret) {
365 				tmp = min_t(int, ret, sg->length -
366 						      cp->cp_xmit_data_off);
367 				cp->cp_xmit_data_off += tmp;
368 				ret -= tmp;
369 				if (cp->cp_xmit_data_off == sg->length) {
370 					cp->cp_xmit_data_off = 0;
371 					sg++;
372 					cp->cp_xmit_sg++;
373 					BUG_ON(ret != 0 && cp->cp_xmit_sg ==
374 					       rm->data.op_nents);
375 				}
376 			}
377 
378 			if (cp->cp_xmit_hdr_off == sizeof(struct rds_header) &&
379 			    (cp->cp_xmit_sg == rm->data.op_nents))
380 				cp->cp_xmit_data_sent = 1;
381 		}
382 
383 		/*
384 		 * A rm will only take multiple times through this loop
385 		 * if there is a data op. Thus, if the data is sent (or there was
386 		 * none), then we're done with the rm.
387 		 */
388 		if (!rm->data.op_active || cp->cp_xmit_data_sent) {
389 			cp->cp_xmit_rm = NULL;
390 			cp->cp_xmit_sg = 0;
391 			cp->cp_xmit_hdr_off = 0;
392 			cp->cp_xmit_data_off = 0;
393 			cp->cp_xmit_rdma_sent = 0;
394 			cp->cp_xmit_atomic_sent = 0;
395 			cp->cp_xmit_data_sent = 0;
396 
397 			rds_message_put(rm);
398 		}
399 	}
400 
401 over_batch:
402 	if (conn->c_trans->xmit_path_complete)
403 		conn->c_trans->xmit_path_complete(cp);
404 	release_in_xmit(cp);
405 
406 	/* Nuke any messages we decided not to retransmit. */
407 	if (!list_empty(&to_be_dropped)) {
408 		/* irqs on here, so we can put(), unlike above */
409 		list_for_each_entry(rm, &to_be_dropped, m_conn_item)
410 			rds_message_put(rm);
411 		rds_send_remove_from_sock(&to_be_dropped, RDS_RDMA_DROPPED);
412 	}
413 
414 	/*
415 	 * Other senders can queue a message after we last test the send queue
416 	 * but before we clear RDS_IN_XMIT.  In that case they'd back off and
417 	 * not try and send their newly queued message.  We need to check the
418 	 * send queue after having cleared RDS_IN_XMIT so that their message
419 	 * doesn't get stuck on the send queue.
420 	 *
421 	 * If the transport cannot continue (i.e ret != 0), then it must
422 	 * call us when more room is available, such as from the tx
423 	 * completion handler.
424 	 *
425 	 * We have an extra generation check here so that if someone manages
426 	 * to jump in after our release_in_xmit, we'll see that they have done
427 	 * some work and we will skip our goto
428 	 */
429 	if (ret == 0) {
430 		smp_mb();
431 		if ((test_bit(0, &conn->c_map_queued) ||
432 		     !list_empty(&cp->cp_send_queue)) &&
433 		    send_gen == cp->cp_send_gen) {
434 			rds_stats_inc(s_send_lock_queue_raced);
435 			if (batch_count < send_batch_count)
436 				goto restart;
437 			queue_delayed_work(rds_wq, &cp->cp_send_w, 1);
438 		}
439 	}
440 out:
441 	return ret;
442 }
443 EXPORT_SYMBOL_GPL(rds_send_xmit);
444 
rds_send_sndbuf_remove(struct rds_sock * rs,struct rds_message * rm)445 static void rds_send_sndbuf_remove(struct rds_sock *rs, struct rds_message *rm)
446 {
447 	u32 len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
448 
449 	assert_spin_locked(&rs->rs_lock);
450 
451 	BUG_ON(rs->rs_snd_bytes < len);
452 	rs->rs_snd_bytes -= len;
453 
454 	if (rs->rs_snd_bytes == 0)
455 		rds_stats_inc(s_send_queue_empty);
456 }
457 
rds_send_is_acked(struct rds_message * rm,u64 ack,is_acked_func is_acked)458 static inline int rds_send_is_acked(struct rds_message *rm, u64 ack,
459 				    is_acked_func is_acked)
460 {
461 	if (is_acked)
462 		return is_acked(rm, ack);
463 	return be64_to_cpu(rm->m_inc.i_hdr.h_sequence) <= ack;
464 }
465 
466 /*
467  * This is pretty similar to what happens below in the ACK
468  * handling code - except that we call here as soon as we get
469  * the IB send completion on the RDMA op and the accompanying
470  * message.
471  */
rds_rdma_send_complete(struct rds_message * rm,int status)472 void rds_rdma_send_complete(struct rds_message *rm, int status)
473 {
474 	struct rds_sock *rs = NULL;
475 	struct rm_rdma_op *ro;
476 	struct rds_notifier *notifier;
477 	unsigned long flags;
478 	unsigned int notify = 0;
479 
480 	spin_lock_irqsave(&rm->m_rs_lock, flags);
481 
482 	notify =  rm->rdma.op_notify | rm->data.op_notify;
483 	ro = &rm->rdma;
484 	if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags) &&
485 	    ro->op_active && notify && ro->op_notifier) {
486 		notifier = ro->op_notifier;
487 		rs = rm->m_rs;
488 		sock_hold(rds_rs_to_sk(rs));
489 
490 		notifier->n_status = status;
491 		spin_lock(&rs->rs_lock);
492 		list_add_tail(&notifier->n_list, &rs->rs_notify_queue);
493 		spin_unlock(&rs->rs_lock);
494 
495 		ro->op_notifier = NULL;
496 	}
497 
498 	spin_unlock_irqrestore(&rm->m_rs_lock, flags);
499 
500 	if (rs) {
501 		rds_wake_sk_sleep(rs);
502 		sock_put(rds_rs_to_sk(rs));
503 	}
504 }
505 EXPORT_SYMBOL_GPL(rds_rdma_send_complete);
506 
507 /*
508  * Just like above, except looks at atomic op
509  */
rds_atomic_send_complete(struct rds_message * rm,int status)510 void rds_atomic_send_complete(struct rds_message *rm, int status)
511 {
512 	struct rds_sock *rs = NULL;
513 	struct rm_atomic_op *ao;
514 	struct rds_notifier *notifier;
515 	unsigned long flags;
516 
517 	spin_lock_irqsave(&rm->m_rs_lock, flags);
518 
519 	ao = &rm->atomic;
520 	if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags)
521 	    && ao->op_active && ao->op_notify && ao->op_notifier) {
522 		notifier = ao->op_notifier;
523 		rs = rm->m_rs;
524 		sock_hold(rds_rs_to_sk(rs));
525 
526 		notifier->n_status = status;
527 		spin_lock(&rs->rs_lock);
528 		list_add_tail(&notifier->n_list, &rs->rs_notify_queue);
529 		spin_unlock(&rs->rs_lock);
530 
531 		ao->op_notifier = NULL;
532 	}
533 
534 	spin_unlock_irqrestore(&rm->m_rs_lock, flags);
535 
536 	if (rs) {
537 		rds_wake_sk_sleep(rs);
538 		sock_put(rds_rs_to_sk(rs));
539 	}
540 }
541 EXPORT_SYMBOL_GPL(rds_atomic_send_complete);
542 
543 /*
544  * This is the same as rds_rdma_send_complete except we
545  * don't do any locking - we have all the ingredients (message,
546  * socket, socket lock) and can just move the notifier.
547  */
548 static inline void
__rds_send_complete(struct rds_sock * rs,struct rds_message * rm,int status)549 __rds_send_complete(struct rds_sock *rs, struct rds_message *rm, int status)
550 {
551 	struct rm_rdma_op *ro;
552 	struct rm_atomic_op *ao;
553 
554 	ro = &rm->rdma;
555 	if (ro->op_active && ro->op_notify && ro->op_notifier) {
556 		ro->op_notifier->n_status = status;
557 		list_add_tail(&ro->op_notifier->n_list, &rs->rs_notify_queue);
558 		ro->op_notifier = NULL;
559 	}
560 
561 	ao = &rm->atomic;
562 	if (ao->op_active && ao->op_notify && ao->op_notifier) {
563 		ao->op_notifier->n_status = status;
564 		list_add_tail(&ao->op_notifier->n_list, &rs->rs_notify_queue);
565 		ao->op_notifier = NULL;
566 	}
567 
568 	/* No need to wake the app - caller does this */
569 }
570 
571 /*
572  * This removes messages from the socket's list if they're on it.  The list
573  * argument must be private to the caller, we must be able to modify it
574  * without locks.  The messages must have a reference held for their
575  * position on the list.  This function will drop that reference after
576  * removing the messages from the 'messages' list regardless of if it found
577  * the messages on the socket list or not.
578  */
rds_send_remove_from_sock(struct list_head * messages,int status)579 static void rds_send_remove_from_sock(struct list_head *messages, int status)
580 {
581 	unsigned long flags;
582 	struct rds_sock *rs = NULL;
583 	struct rds_message *rm;
584 
585 	while (!list_empty(messages)) {
586 		int was_on_sock = 0;
587 
588 		rm = list_entry(messages->next, struct rds_message,
589 				m_conn_item);
590 		list_del_init(&rm->m_conn_item);
591 
592 		/*
593 		 * If we see this flag cleared then we're *sure* that someone
594 		 * else beat us to removing it from the sock.  If we race
595 		 * with their flag update we'll get the lock and then really
596 		 * see that the flag has been cleared.
597 		 *
598 		 * The message spinlock makes sure nobody clears rm->m_rs
599 		 * while we're messing with it. It does not prevent the
600 		 * message from being removed from the socket, though.
601 		 */
602 		spin_lock_irqsave(&rm->m_rs_lock, flags);
603 		if (!test_bit(RDS_MSG_ON_SOCK, &rm->m_flags))
604 			goto unlock_and_drop;
605 
606 		if (rs != rm->m_rs) {
607 			if (rs) {
608 				rds_wake_sk_sleep(rs);
609 				sock_put(rds_rs_to_sk(rs));
610 			}
611 			rs = rm->m_rs;
612 			if (rs)
613 				sock_hold(rds_rs_to_sk(rs));
614 		}
615 		if (!rs)
616 			goto unlock_and_drop;
617 		spin_lock(&rs->rs_lock);
618 
619 		if (test_and_clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags)) {
620 			struct rm_rdma_op *ro = &rm->rdma;
621 			struct rds_notifier *notifier;
622 
623 			list_del_init(&rm->m_sock_item);
624 			rds_send_sndbuf_remove(rs, rm);
625 
626 			if (ro->op_active && ro->op_notifier &&
627 			       (ro->op_notify || (ro->op_recverr && status))) {
628 				notifier = ro->op_notifier;
629 				list_add_tail(&notifier->n_list,
630 						&rs->rs_notify_queue);
631 				if (!notifier->n_status)
632 					notifier->n_status = status;
633 				rm->rdma.op_notifier = NULL;
634 			}
635 			was_on_sock = 1;
636 			rm->m_rs = NULL;
637 		}
638 		spin_unlock(&rs->rs_lock);
639 
640 unlock_and_drop:
641 		spin_unlock_irqrestore(&rm->m_rs_lock, flags);
642 		rds_message_put(rm);
643 		if (was_on_sock)
644 			rds_message_put(rm);
645 	}
646 
647 	if (rs) {
648 		rds_wake_sk_sleep(rs);
649 		sock_put(rds_rs_to_sk(rs));
650 	}
651 }
652 
653 /*
654  * Transports call here when they've determined that the receiver queued
655  * messages up to, and including, the given sequence number.  Messages are
656  * moved to the retrans queue when rds_send_xmit picks them off the send
657  * queue. This means that in the TCP case, the message may not have been
658  * assigned the m_ack_seq yet - but that's fine as long as tcp_is_acked
659  * checks the RDS_MSG_HAS_ACK_SEQ bit.
660  */
rds_send_path_drop_acked(struct rds_conn_path * cp,u64 ack,is_acked_func is_acked)661 void rds_send_path_drop_acked(struct rds_conn_path *cp, u64 ack,
662 			      is_acked_func is_acked)
663 {
664 	struct rds_message *rm, *tmp;
665 	unsigned long flags;
666 	LIST_HEAD(list);
667 
668 	spin_lock_irqsave(&cp->cp_lock, flags);
669 
670 	list_for_each_entry_safe(rm, tmp, &cp->cp_retrans, m_conn_item) {
671 		if (!rds_send_is_acked(rm, ack, is_acked))
672 			break;
673 
674 		list_move(&rm->m_conn_item, &list);
675 		clear_bit(RDS_MSG_ON_CONN, &rm->m_flags);
676 	}
677 
678 	/* order flag updates with spin locks */
679 	if (!list_empty(&list))
680 		smp_mb__after_atomic();
681 
682 	spin_unlock_irqrestore(&cp->cp_lock, flags);
683 
684 	/* now remove the messages from the sock list as needed */
685 	rds_send_remove_from_sock(&list, RDS_RDMA_SUCCESS);
686 }
687 EXPORT_SYMBOL_GPL(rds_send_path_drop_acked);
688 
rds_send_drop_acked(struct rds_connection * conn,u64 ack,is_acked_func is_acked)689 void rds_send_drop_acked(struct rds_connection *conn, u64 ack,
690 			 is_acked_func is_acked)
691 {
692 	WARN_ON(conn->c_trans->t_mp_capable);
693 	rds_send_path_drop_acked(&conn->c_path[0], ack, is_acked);
694 }
695 EXPORT_SYMBOL_GPL(rds_send_drop_acked);
696 
rds_send_drop_to(struct rds_sock * rs,struct sockaddr_in * dest)697 void rds_send_drop_to(struct rds_sock *rs, struct sockaddr_in *dest)
698 {
699 	struct rds_message *rm, *tmp;
700 	struct rds_connection *conn;
701 	struct rds_conn_path *cp;
702 	unsigned long flags;
703 	LIST_HEAD(list);
704 
705 	/* get all the messages we're dropping under the rs lock */
706 	spin_lock_irqsave(&rs->rs_lock, flags);
707 
708 	list_for_each_entry_safe(rm, tmp, &rs->rs_send_queue, m_sock_item) {
709 		if (dest && (dest->sin_addr.s_addr != rm->m_daddr ||
710 			     dest->sin_port != rm->m_inc.i_hdr.h_dport))
711 			continue;
712 
713 		list_move(&rm->m_sock_item, &list);
714 		rds_send_sndbuf_remove(rs, rm);
715 		clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
716 	}
717 
718 	/* order flag updates with the rs lock */
719 	smp_mb__after_atomic();
720 
721 	spin_unlock_irqrestore(&rs->rs_lock, flags);
722 
723 	if (list_empty(&list))
724 		return;
725 
726 	/* Remove the messages from the conn */
727 	list_for_each_entry(rm, &list, m_sock_item) {
728 
729 		conn = rm->m_inc.i_conn;
730 		if (conn->c_trans->t_mp_capable)
731 			cp = rm->m_inc.i_conn_path;
732 		else
733 			cp = &conn->c_path[0];
734 
735 		spin_lock_irqsave(&cp->cp_lock, flags);
736 		/*
737 		 * Maybe someone else beat us to removing rm from the conn.
738 		 * If we race with their flag update we'll get the lock and
739 		 * then really see that the flag has been cleared.
740 		 */
741 		if (!test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags)) {
742 			spin_unlock_irqrestore(&cp->cp_lock, flags);
743 			spin_lock_irqsave(&rm->m_rs_lock, flags);
744 			rm->m_rs = NULL;
745 			spin_unlock_irqrestore(&rm->m_rs_lock, flags);
746 			continue;
747 		}
748 		list_del_init(&rm->m_conn_item);
749 		spin_unlock_irqrestore(&cp->cp_lock, flags);
750 
751 		/*
752 		 * Couldn't grab m_rs_lock in top loop (lock ordering),
753 		 * but we can now.
754 		 */
755 		spin_lock_irqsave(&rm->m_rs_lock, flags);
756 
757 		spin_lock(&rs->rs_lock);
758 		__rds_send_complete(rs, rm, RDS_RDMA_CANCELED);
759 		spin_unlock(&rs->rs_lock);
760 
761 		rm->m_rs = NULL;
762 		spin_unlock_irqrestore(&rm->m_rs_lock, flags);
763 
764 		rds_message_put(rm);
765 	}
766 
767 	rds_wake_sk_sleep(rs);
768 
769 	while (!list_empty(&list)) {
770 		rm = list_entry(list.next, struct rds_message, m_sock_item);
771 		list_del_init(&rm->m_sock_item);
772 		rds_message_wait(rm);
773 
774 		/* just in case the code above skipped this message
775 		 * because RDS_MSG_ON_CONN wasn't set, run it again here
776 		 * taking m_rs_lock is the only thing that keeps us
777 		 * from racing with ack processing.
778 		 */
779 		spin_lock_irqsave(&rm->m_rs_lock, flags);
780 
781 		spin_lock(&rs->rs_lock);
782 		__rds_send_complete(rs, rm, RDS_RDMA_CANCELED);
783 		spin_unlock(&rs->rs_lock);
784 
785 		rm->m_rs = NULL;
786 		spin_unlock_irqrestore(&rm->m_rs_lock, flags);
787 
788 		rds_message_put(rm);
789 	}
790 }
791 
792 /*
793  * we only want this to fire once so we use the callers 'queued'.  It's
794  * possible that another thread can race with us and remove the
795  * message from the flow with RDS_CANCEL_SENT_TO.
796  */
rds_send_queue_rm(struct rds_sock * rs,struct rds_connection * conn,struct rds_conn_path * cp,struct rds_message * rm,__be16 sport,__be16 dport,int * queued)797 static int rds_send_queue_rm(struct rds_sock *rs, struct rds_connection *conn,
798 			     struct rds_conn_path *cp,
799 			     struct rds_message *rm, __be16 sport,
800 			     __be16 dport, int *queued)
801 {
802 	unsigned long flags;
803 	u32 len;
804 
805 	if (*queued)
806 		goto out;
807 
808 	len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
809 
810 	/* this is the only place which holds both the socket's rs_lock
811 	 * and the connection's c_lock */
812 	spin_lock_irqsave(&rs->rs_lock, flags);
813 
814 	/*
815 	 * If there is a little space in sndbuf, we don't queue anything,
816 	 * and userspace gets -EAGAIN. But poll() indicates there's send
817 	 * room. This can lead to bad behavior (spinning) if snd_bytes isn't
818 	 * freed up by incoming acks. So we check the *old* value of
819 	 * rs_snd_bytes here to allow the last msg to exceed the buffer,
820 	 * and poll() now knows no more data can be sent.
821 	 */
822 	if (rs->rs_snd_bytes < rds_sk_sndbuf(rs)) {
823 		rs->rs_snd_bytes += len;
824 
825 		/* let recv side know we are close to send space exhaustion.
826 		 * This is probably not the optimal way to do it, as this
827 		 * means we set the flag on *all* messages as soon as our
828 		 * throughput hits a certain threshold.
829 		 */
830 		if (rs->rs_snd_bytes >= rds_sk_sndbuf(rs) / 2)
831 			__set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
832 
833 		list_add_tail(&rm->m_sock_item, &rs->rs_send_queue);
834 		set_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
835 		rds_message_addref(rm);
836 		rm->m_rs = rs;
837 
838 		/* The code ordering is a little weird, but we're
839 		   trying to minimize the time we hold c_lock */
840 		rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport, 0);
841 		rm->m_inc.i_conn = conn;
842 		rm->m_inc.i_conn_path = cp;
843 		rds_message_addref(rm);
844 
845 		spin_lock(&cp->cp_lock);
846 		rm->m_inc.i_hdr.h_sequence = cpu_to_be64(cp->cp_next_tx_seq++);
847 		list_add_tail(&rm->m_conn_item, &cp->cp_send_queue);
848 		set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
849 		spin_unlock(&cp->cp_lock);
850 
851 		rdsdebug("queued msg %p len %d, rs %p bytes %d seq %llu\n",
852 			 rm, len, rs, rs->rs_snd_bytes,
853 			 (unsigned long long)be64_to_cpu(rm->m_inc.i_hdr.h_sequence));
854 
855 		*queued = 1;
856 	}
857 
858 	spin_unlock_irqrestore(&rs->rs_lock, flags);
859 out:
860 	return *queued;
861 }
862 
863 /*
864  * rds_message is getting to be quite complicated, and we'd like to allocate
865  * it all in one go. This figures out how big it needs to be up front.
866  */
rds_rm_size(struct msghdr * msg,int data_len)867 static int rds_rm_size(struct msghdr *msg, int data_len)
868 {
869 	struct cmsghdr *cmsg;
870 	int size = 0;
871 	int cmsg_groups = 0;
872 	int retval;
873 
874 	for_each_cmsghdr(cmsg, msg) {
875 		if (!CMSG_OK(msg, cmsg))
876 			return -EINVAL;
877 
878 		if (cmsg->cmsg_level != SOL_RDS)
879 			continue;
880 
881 		switch (cmsg->cmsg_type) {
882 		case RDS_CMSG_RDMA_ARGS:
883 			cmsg_groups |= 1;
884 			retval = rds_rdma_extra_size(CMSG_DATA(cmsg));
885 			if (retval < 0)
886 				return retval;
887 			size += retval;
888 
889 			break;
890 
891 		case RDS_CMSG_RDMA_DEST:
892 		case RDS_CMSG_RDMA_MAP:
893 			cmsg_groups |= 2;
894 			/* these are valid but do no add any size */
895 			break;
896 
897 		case RDS_CMSG_ATOMIC_CSWP:
898 		case RDS_CMSG_ATOMIC_FADD:
899 		case RDS_CMSG_MASKED_ATOMIC_CSWP:
900 		case RDS_CMSG_MASKED_ATOMIC_FADD:
901 			cmsg_groups |= 1;
902 			size += sizeof(struct scatterlist);
903 			break;
904 
905 		default:
906 			return -EINVAL;
907 		}
908 
909 	}
910 
911 	size += ceil(data_len, PAGE_SIZE) * sizeof(struct scatterlist);
912 
913 	/* Ensure (DEST, MAP) are never used with (ARGS, ATOMIC) */
914 	if (cmsg_groups == 3)
915 		return -EINVAL;
916 
917 	return size;
918 }
919 
rds_cmsg_send(struct rds_sock * rs,struct rds_message * rm,struct msghdr * msg,int * allocated_mr)920 static int rds_cmsg_send(struct rds_sock *rs, struct rds_message *rm,
921 			 struct msghdr *msg, int *allocated_mr)
922 {
923 	struct cmsghdr *cmsg;
924 	int ret = 0;
925 
926 	for_each_cmsghdr(cmsg, msg) {
927 		if (!CMSG_OK(msg, cmsg))
928 			return -EINVAL;
929 
930 		if (cmsg->cmsg_level != SOL_RDS)
931 			continue;
932 
933 		/* As a side effect, RDMA_DEST and RDMA_MAP will set
934 		 * rm->rdma.m_rdma_cookie and rm->rdma.m_rdma_mr.
935 		 */
936 		switch (cmsg->cmsg_type) {
937 		case RDS_CMSG_RDMA_ARGS:
938 			ret = rds_cmsg_rdma_args(rs, rm, cmsg);
939 			break;
940 
941 		case RDS_CMSG_RDMA_DEST:
942 			ret = rds_cmsg_rdma_dest(rs, rm, cmsg);
943 			break;
944 
945 		case RDS_CMSG_RDMA_MAP:
946 			ret = rds_cmsg_rdma_map(rs, rm, cmsg);
947 			if (!ret)
948 				*allocated_mr = 1;
949 			else if (ret == -ENODEV)
950 				/* Accommodate the get_mr() case which can fail
951 				 * if connection isn't established yet.
952 				 */
953 				ret = -EAGAIN;
954 			break;
955 		case RDS_CMSG_ATOMIC_CSWP:
956 		case RDS_CMSG_ATOMIC_FADD:
957 		case RDS_CMSG_MASKED_ATOMIC_CSWP:
958 		case RDS_CMSG_MASKED_ATOMIC_FADD:
959 			ret = rds_cmsg_atomic(rs, rm, cmsg);
960 			break;
961 
962 		default:
963 			return -EINVAL;
964 		}
965 
966 		if (ret)
967 			break;
968 	}
969 
970 	return ret;
971 }
972 
973 static void rds_send_ping(struct rds_connection *conn);
974 
rds_send_mprds_hash(struct rds_sock * rs,struct rds_connection * conn)975 static int rds_send_mprds_hash(struct rds_sock *rs, struct rds_connection *conn)
976 {
977 	int hash;
978 
979 	if (conn->c_npaths == 0)
980 		hash = RDS_MPATH_HASH(rs, RDS_MPATH_WORKERS);
981 	else
982 		hash = RDS_MPATH_HASH(rs, conn->c_npaths);
983 	if (conn->c_npaths == 0 && hash != 0) {
984 		rds_send_ping(conn);
985 
986 		/* The underlying connection is not up yet.  Need to wait
987 		 * until it is up to be sure that the non-zero c_path can be
988 		 * used.  But if we are interrupted, we have to use the zero
989 		 * c_path in case the connection ends up being non-MP capable.
990 		 */
991 		if (conn->c_npaths == 0)
992 			if (wait_event_interruptible(conn->c_hs_waitq,
993 						     conn->c_npaths != 0))
994 				hash = 0;
995 		if (conn->c_npaths == 1)
996 			hash = 0;
997 	}
998 	return hash;
999 }
1000 
rds_rdma_bytes(struct msghdr * msg,size_t * rdma_bytes)1001 static int rds_rdma_bytes(struct msghdr *msg, size_t *rdma_bytes)
1002 {
1003 	struct rds_rdma_args *args;
1004 	struct cmsghdr *cmsg;
1005 
1006 	for_each_cmsghdr(cmsg, msg) {
1007 		if (!CMSG_OK(msg, cmsg))
1008 			return -EINVAL;
1009 
1010 		if (cmsg->cmsg_level != SOL_RDS)
1011 			continue;
1012 
1013 		if (cmsg->cmsg_type == RDS_CMSG_RDMA_ARGS) {
1014 			if (cmsg->cmsg_len <
1015 			    CMSG_LEN(sizeof(struct rds_rdma_args)))
1016 				return -EINVAL;
1017 			args = CMSG_DATA(cmsg);
1018 			*rdma_bytes += args->remote_vec.bytes;
1019 		}
1020 	}
1021 	return 0;
1022 }
1023 
rds_sendmsg(struct socket * sock,struct msghdr * msg,size_t payload_len)1024 int rds_sendmsg(struct socket *sock, struct msghdr *msg, size_t payload_len)
1025 {
1026 	struct sock *sk = sock->sk;
1027 	struct rds_sock *rs = rds_sk_to_rs(sk);
1028 	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1029 	__be32 daddr;
1030 	__be16 dport;
1031 	struct rds_message *rm = NULL;
1032 	struct rds_connection *conn;
1033 	int ret = 0;
1034 	int queued = 0, allocated_mr = 0;
1035 	int nonblock = msg->msg_flags & MSG_DONTWAIT;
1036 	long timeo = sock_sndtimeo(sk, nonblock);
1037 	struct rds_conn_path *cpath;
1038 	size_t total_payload_len = payload_len, rdma_payload_len = 0;
1039 
1040 	/* Mirror Linux UDP mirror of BSD error message compatibility */
1041 	/* XXX: Perhaps MSG_MORE someday */
1042 	if (msg->msg_flags & ~(MSG_DONTWAIT | MSG_CMSG_COMPAT)) {
1043 		ret = -EOPNOTSUPP;
1044 		goto out;
1045 	}
1046 
1047 	if (msg->msg_namelen) {
1048 		/* XXX fail non-unicast destination IPs? */
1049 		if (msg->msg_namelen < sizeof(*usin) || usin->sin_family != AF_INET) {
1050 			ret = -EINVAL;
1051 			goto out;
1052 		}
1053 		daddr = usin->sin_addr.s_addr;
1054 		dport = usin->sin_port;
1055 	} else {
1056 		/* We only care about consistency with ->connect() */
1057 		lock_sock(sk);
1058 		daddr = rs->rs_conn_addr;
1059 		dport = rs->rs_conn_port;
1060 		release_sock(sk);
1061 	}
1062 
1063 	lock_sock(sk);
1064 	if (daddr == 0 || rs->rs_bound_addr == 0) {
1065 		release_sock(sk);
1066 		ret = -ENOTCONN; /* XXX not a great errno */
1067 		goto out;
1068 	}
1069 	release_sock(sk);
1070 
1071 	ret = rds_rdma_bytes(msg, &rdma_payload_len);
1072 	if (ret)
1073 		goto out;
1074 
1075 	total_payload_len += rdma_payload_len;
1076 	if (max_t(size_t, payload_len, rdma_payload_len) > RDS_MAX_MSG_SIZE) {
1077 		ret = -EMSGSIZE;
1078 		goto out;
1079 	}
1080 
1081 	if (payload_len > rds_sk_sndbuf(rs)) {
1082 		ret = -EMSGSIZE;
1083 		goto out;
1084 	}
1085 
1086 	/* size of rm including all sgs */
1087 	ret = rds_rm_size(msg, payload_len);
1088 	if (ret < 0)
1089 		goto out;
1090 
1091 	rm = rds_message_alloc(ret, GFP_KERNEL);
1092 	if (!rm) {
1093 		ret = -ENOMEM;
1094 		goto out;
1095 	}
1096 
1097 	/* Attach data to the rm */
1098 	if (payload_len) {
1099 		rm->data.op_sg = rds_message_alloc_sgs(rm, ceil(payload_len, PAGE_SIZE));
1100 		if (!rm->data.op_sg) {
1101 			ret = -ENOMEM;
1102 			goto out;
1103 		}
1104 		ret = rds_message_copy_from_user(rm, &msg->msg_iter);
1105 		if (ret)
1106 			goto out;
1107 	}
1108 	rm->data.op_active = 1;
1109 
1110 	rm->m_daddr = daddr;
1111 
1112 	/* rds_conn_create has a spinlock that runs with IRQ off.
1113 	 * Caching the conn in the socket helps a lot. */
1114 	if (rs->rs_conn && rs->rs_conn->c_faddr == daddr)
1115 		conn = rs->rs_conn;
1116 	else {
1117 		conn = rds_conn_create_outgoing(sock_net(sock->sk),
1118 						rs->rs_bound_addr, daddr,
1119 					rs->rs_transport,
1120 					sock->sk->sk_allocation);
1121 		if (IS_ERR(conn)) {
1122 			ret = PTR_ERR(conn);
1123 			goto out;
1124 		}
1125 		rs->rs_conn = conn;
1126 	}
1127 
1128 	/* Parse any control messages the user may have included. */
1129 	ret = rds_cmsg_send(rs, rm, msg, &allocated_mr);
1130 	if (ret) {
1131 		/* Trigger connection so that its ready for the next retry */
1132 		if (ret ==  -EAGAIN)
1133 			rds_conn_connect_if_down(conn);
1134 		goto out;
1135 	}
1136 
1137 	if (rm->rdma.op_active && !conn->c_trans->xmit_rdma) {
1138 		printk_ratelimited(KERN_NOTICE "rdma_op %p conn xmit_rdma %p\n",
1139 			       &rm->rdma, conn->c_trans->xmit_rdma);
1140 		ret = -EOPNOTSUPP;
1141 		goto out;
1142 	}
1143 
1144 	if (rm->atomic.op_active && !conn->c_trans->xmit_atomic) {
1145 		printk_ratelimited(KERN_NOTICE "atomic_op %p conn xmit_atomic %p\n",
1146 			       &rm->atomic, conn->c_trans->xmit_atomic);
1147 		ret = -EOPNOTSUPP;
1148 		goto out;
1149 	}
1150 
1151 	if (conn->c_trans->t_mp_capable)
1152 		cpath = &conn->c_path[rds_send_mprds_hash(rs, conn)];
1153 	else
1154 		cpath = &conn->c_path[0];
1155 
1156 	rds_conn_path_connect_if_down(cpath);
1157 
1158 	ret = rds_cong_wait(conn->c_fcong, dport, nonblock, rs);
1159 	if (ret) {
1160 		rs->rs_seen_congestion = 1;
1161 		goto out;
1162 	}
1163 	while (!rds_send_queue_rm(rs, conn, cpath, rm, rs->rs_bound_port,
1164 				  dport, &queued)) {
1165 		rds_stats_inc(s_send_queue_full);
1166 
1167 		if (nonblock) {
1168 			ret = -EAGAIN;
1169 			goto out;
1170 		}
1171 
1172 		timeo = wait_event_interruptible_timeout(*sk_sleep(sk),
1173 					rds_send_queue_rm(rs, conn, cpath, rm,
1174 							  rs->rs_bound_port,
1175 							  dport,
1176 							  &queued),
1177 					timeo);
1178 		rdsdebug("sendmsg woke queued %d timeo %ld\n", queued, timeo);
1179 		if (timeo > 0 || timeo == MAX_SCHEDULE_TIMEOUT)
1180 			continue;
1181 
1182 		ret = timeo;
1183 		if (ret == 0)
1184 			ret = -ETIMEDOUT;
1185 		goto out;
1186 	}
1187 
1188 	/*
1189 	 * By now we've committed to the send.  We reuse rds_send_worker()
1190 	 * to retry sends in the rds thread if the transport asks us to.
1191 	 */
1192 	rds_stats_inc(s_send_queued);
1193 
1194 	ret = rds_send_xmit(cpath);
1195 	if (ret == -ENOMEM || ret == -EAGAIN)
1196 		queue_delayed_work(rds_wq, &cpath->cp_send_w, 1);
1197 
1198 	rds_message_put(rm);
1199 	return payload_len;
1200 
1201 out:
1202 	/* If the user included a RDMA_MAP cmsg, we allocated a MR on the fly.
1203 	 * If the sendmsg goes through, we keep the MR. If it fails with EAGAIN
1204 	 * or in any other way, we need to destroy the MR again */
1205 	if (allocated_mr)
1206 		rds_rdma_unuse(rs, rds_rdma_cookie_key(rm->m_rdma_cookie), 1);
1207 
1208 	if (rm)
1209 		rds_message_put(rm);
1210 	return ret;
1211 }
1212 
1213 /*
1214  * send out a probe. Can be shared by rds_send_ping,
1215  * rds_send_pong, rds_send_hb.
1216  * rds_send_hb should use h_flags
1217  *   RDS_FLAG_HB_PING|RDS_FLAG_ACK_REQUIRED
1218  * or
1219  *   RDS_FLAG_HB_PONG|RDS_FLAG_ACK_REQUIRED
1220  */
1221 int
rds_send_probe(struct rds_conn_path * cp,__be16 sport,__be16 dport,u8 h_flags)1222 rds_send_probe(struct rds_conn_path *cp, __be16 sport,
1223 	       __be16 dport, u8 h_flags)
1224 {
1225 	struct rds_message *rm;
1226 	unsigned long flags;
1227 	int ret = 0;
1228 
1229 	rm = rds_message_alloc(0, GFP_ATOMIC);
1230 	if (!rm) {
1231 		ret = -ENOMEM;
1232 		goto out;
1233 	}
1234 
1235 	rm->m_daddr = cp->cp_conn->c_faddr;
1236 	rm->data.op_active = 1;
1237 
1238 	rds_conn_path_connect_if_down(cp);
1239 
1240 	ret = rds_cong_wait(cp->cp_conn->c_fcong, dport, 1, NULL);
1241 	if (ret)
1242 		goto out;
1243 
1244 	spin_lock_irqsave(&cp->cp_lock, flags);
1245 	list_add_tail(&rm->m_conn_item, &cp->cp_send_queue);
1246 	set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
1247 	rds_message_addref(rm);
1248 	rm->m_inc.i_conn = cp->cp_conn;
1249 	rm->m_inc.i_conn_path = cp;
1250 
1251 	rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport,
1252 				    cp->cp_next_tx_seq);
1253 	rm->m_inc.i_hdr.h_flags |= h_flags;
1254 	cp->cp_next_tx_seq++;
1255 
1256 	if (RDS_HS_PROBE(sport, dport) && cp->cp_conn->c_trans->t_mp_capable) {
1257 		u16 npaths = RDS_MPATH_WORKERS;
1258 
1259 		rds_message_add_extension(&rm->m_inc.i_hdr,
1260 					  RDS_EXTHDR_NPATHS, &npaths,
1261 					  sizeof(npaths));
1262 	}
1263 	spin_unlock_irqrestore(&cp->cp_lock, flags);
1264 
1265 	rds_stats_inc(s_send_queued);
1266 	rds_stats_inc(s_send_pong);
1267 
1268 	/* schedule the send work on rds_wq */
1269 	queue_delayed_work(rds_wq, &cp->cp_send_w, 1);
1270 
1271 	rds_message_put(rm);
1272 	return 0;
1273 
1274 out:
1275 	if (rm)
1276 		rds_message_put(rm);
1277 	return ret;
1278 }
1279 
1280 int
rds_send_pong(struct rds_conn_path * cp,__be16 dport)1281 rds_send_pong(struct rds_conn_path *cp, __be16 dport)
1282 {
1283 	return rds_send_probe(cp, 0, dport, 0);
1284 }
1285 
1286 void
rds_send_ping(struct rds_connection * conn)1287 rds_send_ping(struct rds_connection *conn)
1288 {
1289 	unsigned long flags;
1290 	struct rds_conn_path *cp = &conn->c_path[0];
1291 
1292 	spin_lock_irqsave(&cp->cp_lock, flags);
1293 	if (conn->c_ping_triggered) {
1294 		spin_unlock_irqrestore(&cp->cp_lock, flags);
1295 		return;
1296 	}
1297 	conn->c_ping_triggered = 1;
1298 	spin_unlock_irqrestore(&cp->cp_lock, flags);
1299 	rds_send_probe(&conn->c_path[0], RDS_FLAG_PROBE_PORT, 0, 0);
1300 }
1301