• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SCTP kernel implementation
2  * Copyright (c) 1999-2000 Cisco, Inc.
3  * Copyright (c) 1999-2001 Motorola, Inc.
4  * Copyright (c) 2001-2003 International Business Machines, Corp.
5  * Copyright (c) 2001 Intel Corp.
6  * Copyright (c) 2001 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel implementation
10  *
11  * These functions handle all input from the IP layer into SCTP.
12  *
13  * This SCTP implementation is free software;
14  * you can redistribute it and/or modify it under the terms of
15  * the GNU General Public License as published by
16  * the Free Software Foundation; either version 2, or (at your option)
17  * any later version.
18  *
19  * This SCTP implementation is distributed in the hope that it
20  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
21  *                 ************************
22  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
23  * See the GNU General Public License for more details.
24  *
25  * You should have received a copy of the GNU General Public License
26  * along with GNU CC; see the file COPYING.  If not, see
27  * <http://www.gnu.org/licenses/>.
28  *
29  * Please send any bug reports or fixes you make to the
30  * email address(es):
31  *    lksctp developers <linux-sctp@vger.kernel.org>
32  *
33  * Written or modified by:
34  *    La Monte H.P. Yarroll <piggy@acm.org>
35  *    Karl Knutson <karl@athena.chicago.il.us>
36  *    Xingang Guo <xingang.guo@intel.com>
37  *    Jon Grimm <jgrimm@us.ibm.com>
38  *    Hui Huang <hui.huang@nokia.com>
39  *    Daisy Chang <daisyc@us.ibm.com>
40  *    Sridhar Samudrala <sri@us.ibm.com>
41  *    Ardelle Fan <ardelle.fan@intel.com>
42  */
43 
44 #include <linux/types.h>
45 #include <linux/list.h> /* For struct list_head */
46 #include <linux/socket.h>
47 #include <linux/ip.h>
48 #include <linux/time.h> /* For struct timeval */
49 #include <linux/slab.h>
50 #include <net/ip.h>
51 #include <net/icmp.h>
52 #include <net/snmp.h>
53 #include <net/sock.h>
54 #include <net/xfrm.h>
55 #include <net/sctp/sctp.h>
56 #include <net/sctp/sm.h>
57 #include <net/sctp/checksum.h>
58 #include <net/net_namespace.h>
59 
60 /* Forward declarations for internal helpers. */
61 static int sctp_rcv_ootb(struct sk_buff *);
62 static struct sctp_association *__sctp_rcv_lookup(struct net *net,
63 				      struct sk_buff *skb,
64 				      const union sctp_addr *paddr,
65 				      const union sctp_addr *laddr,
66 				      struct sctp_transport **transportp);
67 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(struct net *net,
68 						const union sctp_addr *laddr);
69 static struct sctp_association *__sctp_lookup_association(
70 					struct net *net,
71 					const union sctp_addr *local,
72 					const union sctp_addr *peer,
73 					struct sctp_transport **pt);
74 
75 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb);
76 
77 
78 /* Calculate the SCTP checksum of an SCTP packet.  */
sctp_rcv_checksum(struct net * net,struct sk_buff * skb)79 static inline int sctp_rcv_checksum(struct net *net, struct sk_buff *skb)
80 {
81 	struct sctphdr *sh = sctp_hdr(skb);
82 	__le32 cmp = sh->checksum;
83 	__le32 val = sctp_compute_cksum(skb, 0);
84 
85 	if (val != cmp) {
86 		/* CRC failure, dump it. */
87 		__SCTP_INC_STATS(net, SCTP_MIB_CHECKSUMERRORS);
88 		return -1;
89 	}
90 	return 0;
91 }
92 
93 /*
94  * This is the routine which IP calls when receiving an SCTP packet.
95  */
sctp_rcv(struct sk_buff * skb)96 int sctp_rcv(struct sk_buff *skb)
97 {
98 	struct sock *sk;
99 	struct sctp_association *asoc;
100 	struct sctp_endpoint *ep = NULL;
101 	struct sctp_ep_common *rcvr;
102 	struct sctp_transport *transport = NULL;
103 	struct sctp_chunk *chunk;
104 	union sctp_addr src;
105 	union sctp_addr dest;
106 	int family;
107 	struct sctp_af *af;
108 	struct net *net = dev_net(skb->dev);
109 
110 	if (skb->pkt_type != PACKET_HOST)
111 		goto discard_it;
112 
113 	__SCTP_INC_STATS(net, SCTP_MIB_INSCTPPACKS);
114 
115 	/* If packet is too small to contain a single chunk, let's not
116 	 * waste time on it anymore.
117 	 */
118 	if (skb->len < sizeof(struct sctphdr) + sizeof(struct sctp_chunkhdr) +
119 		       skb_transport_offset(skb))
120 		goto discard_it;
121 
122 	/* If the packet is fragmented and we need to do crc checking,
123 	 * it's better to just linearize it otherwise crc computing
124 	 * takes longer.
125 	 */
126 	if ((!(skb_shinfo(skb)->gso_type & SKB_GSO_SCTP) &&
127 	     skb_linearize(skb)) ||
128 	    !pskb_may_pull(skb, sizeof(struct sctphdr)))
129 		goto discard_it;
130 
131 	/* Pull up the IP header. */
132 	__skb_pull(skb, skb_transport_offset(skb));
133 
134 	skb->csum_valid = 0; /* Previous value not applicable */
135 	if (skb_csum_unnecessary(skb))
136 		__skb_decr_checksum_unnecessary(skb);
137 	else if (!sctp_checksum_disable &&
138 		 !(skb_shinfo(skb)->gso_type & SKB_GSO_SCTP) &&
139 		 sctp_rcv_checksum(net, skb) < 0)
140 		goto discard_it;
141 	skb->csum_valid = 1;
142 
143 	__skb_pull(skb, sizeof(struct sctphdr));
144 
145 	family = ipver2af(ip_hdr(skb)->version);
146 	af = sctp_get_af_specific(family);
147 	if (unlikely(!af))
148 		goto discard_it;
149 	SCTP_INPUT_CB(skb)->af = af;
150 
151 	/* Initialize local addresses for lookups. */
152 	af->from_skb(&src, skb, 1);
153 	af->from_skb(&dest, skb, 0);
154 
155 	/* If the packet is to or from a non-unicast address,
156 	 * silently discard the packet.
157 	 *
158 	 * This is not clearly defined in the RFC except in section
159 	 * 8.4 - OOTB handling.  However, based on the book "Stream Control
160 	 * Transmission Protocol" 2.1, "It is important to note that the
161 	 * IP address of an SCTP transport address must be a routable
162 	 * unicast address.  In other words, IP multicast addresses and
163 	 * IP broadcast addresses cannot be used in an SCTP transport
164 	 * address."
165 	 */
166 	if (!af->addr_valid(&src, NULL, skb) ||
167 	    !af->addr_valid(&dest, NULL, skb))
168 		goto discard_it;
169 
170 	asoc = __sctp_rcv_lookup(net, skb, &src, &dest, &transport);
171 
172 	if (!asoc)
173 		ep = __sctp_rcv_lookup_endpoint(net, &dest);
174 
175 	/* Retrieve the common input handling substructure. */
176 	rcvr = asoc ? &asoc->base : &ep->base;
177 	sk = rcvr->sk;
178 
179 	/*
180 	 * If a frame arrives on an interface and the receiving socket is
181 	 * bound to another interface, via SO_BINDTODEVICE, treat it as OOTB
182 	 */
183 	if (sk->sk_bound_dev_if && (sk->sk_bound_dev_if != af->skb_iif(skb))) {
184 		if (transport) {
185 			sctp_transport_put(transport);
186 			asoc = NULL;
187 			transport = NULL;
188 		} else {
189 			sctp_endpoint_put(ep);
190 			ep = NULL;
191 		}
192 		sk = net->sctp.ctl_sock;
193 		ep = sctp_sk(sk)->ep;
194 		sctp_endpoint_hold(ep);
195 		rcvr = &ep->base;
196 	}
197 
198 	/*
199 	 * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
200 	 * An SCTP packet is called an "out of the blue" (OOTB)
201 	 * packet if it is correctly formed, i.e., passed the
202 	 * receiver's checksum check, but the receiver is not
203 	 * able to identify the association to which this
204 	 * packet belongs.
205 	 */
206 	if (!asoc) {
207 		if (sctp_rcv_ootb(skb)) {
208 			__SCTP_INC_STATS(net, SCTP_MIB_OUTOFBLUES);
209 			goto discard_release;
210 		}
211 	}
212 
213 	if (!xfrm_policy_check(sk, XFRM_POLICY_IN, skb, family))
214 		goto discard_release;
215 	nf_reset(skb);
216 
217 	if (sk_filter(sk, skb))
218 		goto discard_release;
219 
220 	/* Create an SCTP packet structure. */
221 	chunk = sctp_chunkify(skb, asoc, sk, GFP_ATOMIC);
222 	if (!chunk)
223 		goto discard_release;
224 	SCTP_INPUT_CB(skb)->chunk = chunk;
225 
226 	/* Remember what endpoint is to handle this packet. */
227 	chunk->rcvr = rcvr;
228 
229 	/* Remember the SCTP header. */
230 	chunk->sctp_hdr = sctp_hdr(skb);
231 
232 	/* Set the source and destination addresses of the incoming chunk.  */
233 	sctp_init_addrs(chunk, &src, &dest);
234 
235 	/* Remember where we came from.  */
236 	chunk->transport = transport;
237 
238 	/* Acquire access to the sock lock. Note: We are safe from other
239 	 * bottom halves on this lock, but a user may be in the lock too,
240 	 * so check if it is busy.
241 	 */
242 	bh_lock_sock(sk);
243 
244 	if (sk != rcvr->sk) {
245 		/* Our cached sk is different from the rcvr->sk.  This is
246 		 * because migrate()/accept() may have moved the association
247 		 * to a new socket and released all the sockets.  So now we
248 		 * are holding a lock on the old socket while the user may
249 		 * be doing something with the new socket.  Switch our veiw
250 		 * of the current sk.
251 		 */
252 		bh_unlock_sock(sk);
253 		sk = rcvr->sk;
254 		bh_lock_sock(sk);
255 	}
256 
257 	if (sock_owned_by_user(sk)) {
258 		if (sctp_add_backlog(sk, skb)) {
259 			bh_unlock_sock(sk);
260 			sctp_chunk_free(chunk);
261 			skb = NULL; /* sctp_chunk_free already freed the skb */
262 			goto discard_release;
263 		}
264 		__SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_BACKLOG);
265 	} else {
266 		__SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_SOFTIRQ);
267 		sctp_inq_push(&chunk->rcvr->inqueue, chunk);
268 	}
269 
270 	bh_unlock_sock(sk);
271 
272 	/* Release the asoc/ep ref we took in the lookup calls. */
273 	if (transport)
274 		sctp_transport_put(transport);
275 	else
276 		sctp_endpoint_put(ep);
277 
278 	return 0;
279 
280 discard_it:
281 	__SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_DISCARDS);
282 	kfree_skb(skb);
283 	return 0;
284 
285 discard_release:
286 	/* Release the asoc/ep ref we took in the lookup calls. */
287 	if (transport)
288 		sctp_transport_put(transport);
289 	else
290 		sctp_endpoint_put(ep);
291 
292 	goto discard_it;
293 }
294 
295 /* Process the backlog queue of the socket.  Every skb on
296  * the backlog holds a ref on an association or endpoint.
297  * We hold this ref throughout the state machine to make
298  * sure that the structure we need is still around.
299  */
sctp_backlog_rcv(struct sock * sk,struct sk_buff * skb)300 int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb)
301 {
302 	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
303 	struct sctp_inq *inqueue = &chunk->rcvr->inqueue;
304 	struct sctp_transport *t = chunk->transport;
305 	struct sctp_ep_common *rcvr = NULL;
306 	int backloged = 0;
307 
308 	rcvr = chunk->rcvr;
309 
310 	/* If the rcvr is dead then the association or endpoint
311 	 * has been deleted and we can safely drop the chunk
312 	 * and refs that we are holding.
313 	 */
314 	if (rcvr->dead) {
315 		sctp_chunk_free(chunk);
316 		goto done;
317 	}
318 
319 	if (unlikely(rcvr->sk != sk)) {
320 		/* In this case, the association moved from one socket to
321 		 * another.  We are currently sitting on the backlog of the
322 		 * old socket, so we need to move.
323 		 * However, since we are here in the process context we
324 		 * need to take make sure that the user doesn't own
325 		 * the new socket when we process the packet.
326 		 * If the new socket is user-owned, queue the chunk to the
327 		 * backlog of the new socket without dropping any refs.
328 		 * Otherwise, we can safely push the chunk on the inqueue.
329 		 */
330 
331 		sk = rcvr->sk;
332 		local_bh_disable();
333 		bh_lock_sock(sk);
334 
335 		if (sock_owned_by_user(sk)) {
336 			if (sk_add_backlog(sk, skb, sk->sk_rcvbuf))
337 				sctp_chunk_free(chunk);
338 			else
339 				backloged = 1;
340 		} else
341 			sctp_inq_push(inqueue, chunk);
342 
343 		bh_unlock_sock(sk);
344 		local_bh_enable();
345 
346 		/* If the chunk was backloged again, don't drop refs */
347 		if (backloged)
348 			return 0;
349 	} else {
350 		sctp_inq_push(inqueue, chunk);
351 	}
352 
353 done:
354 	/* Release the refs we took in sctp_add_backlog */
355 	if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
356 		sctp_transport_put(t);
357 	else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
358 		sctp_endpoint_put(sctp_ep(rcvr));
359 	else
360 		BUG();
361 
362 	return 0;
363 }
364 
sctp_add_backlog(struct sock * sk,struct sk_buff * skb)365 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb)
366 {
367 	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
368 	struct sctp_transport *t = chunk->transport;
369 	struct sctp_ep_common *rcvr = chunk->rcvr;
370 	int ret;
371 
372 	ret = sk_add_backlog(sk, skb, sk->sk_rcvbuf);
373 	if (!ret) {
374 		/* Hold the assoc/ep while hanging on the backlog queue.
375 		 * This way, we know structures we need will not disappear
376 		 * from us
377 		 */
378 		if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
379 			sctp_transport_hold(t);
380 		else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
381 			sctp_endpoint_hold(sctp_ep(rcvr));
382 		else
383 			BUG();
384 	}
385 	return ret;
386 
387 }
388 
389 /* Handle icmp frag needed error. */
sctp_icmp_frag_needed(struct sock * sk,struct sctp_association * asoc,struct sctp_transport * t,__u32 pmtu)390 void sctp_icmp_frag_needed(struct sock *sk, struct sctp_association *asoc,
391 			   struct sctp_transport *t, __u32 pmtu)
392 {
393 	if (!t || (t->pathmtu <= pmtu))
394 		return;
395 
396 	if (sock_owned_by_user(sk)) {
397 		asoc->pmtu_pending = 1;
398 		t->pmtu_pending = 1;
399 		return;
400 	}
401 
402 	if (t->param_flags & SPP_PMTUD_ENABLE) {
403 		/* Update transports view of the MTU */
404 		sctp_transport_update_pmtu(sk, t, pmtu);
405 
406 		/* Update association pmtu. */
407 		sctp_assoc_sync_pmtu(sk, asoc);
408 	}
409 
410 	/* Retransmit with the new pmtu setting.
411 	 * Normally, if PMTU discovery is disabled, an ICMP Fragmentation
412 	 * Needed will never be sent, but if a message was sent before
413 	 * PMTU discovery was disabled that was larger than the PMTU, it
414 	 * would not be fragmented, so it must be re-transmitted fragmented.
415 	 */
416 	sctp_retransmit(&asoc->outqueue, t, SCTP_RTXR_PMTUD);
417 }
418 
sctp_icmp_redirect(struct sock * sk,struct sctp_transport * t,struct sk_buff * skb)419 void sctp_icmp_redirect(struct sock *sk, struct sctp_transport *t,
420 			struct sk_buff *skb)
421 {
422 	struct dst_entry *dst;
423 
424 	if (sock_owned_by_user(sk) || !t)
425 		return;
426 	dst = sctp_transport_dst_check(t);
427 	if (dst)
428 		dst->ops->redirect(dst, sk, skb);
429 }
430 
431 /*
432  * SCTP Implementer's Guide, 2.37 ICMP handling procedures
433  *
434  * ICMP8) If the ICMP code is a "Unrecognized next header type encountered"
435  *        or a "Protocol Unreachable" treat this message as an abort
436  *        with the T bit set.
437  *
438  * This function sends an event to the state machine, which will abort the
439  * association.
440  *
441  */
sctp_icmp_proto_unreachable(struct sock * sk,struct sctp_association * asoc,struct sctp_transport * t)442 void sctp_icmp_proto_unreachable(struct sock *sk,
443 			   struct sctp_association *asoc,
444 			   struct sctp_transport *t)
445 {
446 	if (sock_owned_by_user(sk)) {
447 		if (timer_pending(&t->proto_unreach_timer))
448 			return;
449 		else {
450 			if (!mod_timer(&t->proto_unreach_timer,
451 						jiffies + (HZ/20)))
452 				sctp_association_hold(asoc);
453 		}
454 	} else {
455 		struct net *net = sock_net(sk);
456 
457 		pr_debug("%s: unrecognized next header type "
458 			 "encountered!\n", __func__);
459 
460 		if (del_timer(&t->proto_unreach_timer))
461 			sctp_association_put(asoc);
462 
463 		sctp_do_sm(net, SCTP_EVENT_T_OTHER,
464 			   SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH),
465 			   asoc->state, asoc->ep, asoc, t,
466 			   GFP_ATOMIC);
467 	}
468 }
469 
470 /* Common lookup code for icmp/icmpv6 error handler. */
sctp_err_lookup(struct net * net,int family,struct sk_buff * skb,struct sctphdr * sctphdr,struct sctp_association ** app,struct sctp_transport ** tpp)471 struct sock *sctp_err_lookup(struct net *net, int family, struct sk_buff *skb,
472 			     struct sctphdr *sctphdr,
473 			     struct sctp_association **app,
474 			     struct sctp_transport **tpp)
475 {
476 	struct sctp_init_chunk *chunkhdr, _chunkhdr;
477 	union sctp_addr saddr;
478 	union sctp_addr daddr;
479 	struct sctp_af *af;
480 	struct sock *sk = NULL;
481 	struct sctp_association *asoc;
482 	struct sctp_transport *transport = NULL;
483 	__u32 vtag = ntohl(sctphdr->vtag);
484 
485 	*app = NULL; *tpp = NULL;
486 
487 	af = sctp_get_af_specific(family);
488 	if (unlikely(!af)) {
489 		return NULL;
490 	}
491 
492 	/* Initialize local addresses for lookups. */
493 	af->from_skb(&saddr, skb, 1);
494 	af->from_skb(&daddr, skb, 0);
495 
496 	/* Look for an association that matches the incoming ICMP error
497 	 * packet.
498 	 */
499 	asoc = __sctp_lookup_association(net, &saddr, &daddr, &transport);
500 	if (!asoc)
501 		return NULL;
502 
503 	sk = asoc->base.sk;
504 
505 	/* RFC 4960, Appendix C. ICMP Handling
506 	 *
507 	 * ICMP6) An implementation MUST validate that the Verification Tag
508 	 * contained in the ICMP message matches the Verification Tag of
509 	 * the peer.  If the Verification Tag is not 0 and does NOT
510 	 * match, discard the ICMP message.  If it is 0 and the ICMP
511 	 * message contains enough bytes to verify that the chunk type is
512 	 * an INIT chunk and that the Initiate Tag matches the tag of the
513 	 * peer, continue with ICMP7.  If the ICMP message is too short
514 	 * or the chunk type or the Initiate Tag does not match, silently
515 	 * discard the packet.
516 	 */
517 	if (vtag == 0) {
518 		/* chunk header + first 4 octects of init header */
519 		chunkhdr = skb_header_pointer(skb, skb_transport_offset(skb) +
520 					      sizeof(struct sctphdr),
521 					      sizeof(struct sctp_chunkhdr) +
522 					      sizeof(__be32), &_chunkhdr);
523 		if (!chunkhdr ||
524 		    chunkhdr->chunk_hdr.type != SCTP_CID_INIT ||
525 		    ntohl(chunkhdr->init_hdr.init_tag) != asoc->c.my_vtag)
526 			goto out;
527 
528 	} else if (vtag != asoc->c.peer_vtag) {
529 		goto out;
530 	}
531 
532 	bh_lock_sock(sk);
533 
534 	/* If too many ICMPs get dropped on busy
535 	 * servers this needs to be solved differently.
536 	 */
537 	if (sock_owned_by_user(sk))
538 		__NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS);
539 
540 	*app = asoc;
541 	*tpp = transport;
542 	return sk;
543 
544 out:
545 	sctp_transport_put(transport);
546 	return NULL;
547 }
548 
549 /* Common cleanup code for icmp/icmpv6 error handler. */
sctp_err_finish(struct sock * sk,struct sctp_transport * t)550 void sctp_err_finish(struct sock *sk, struct sctp_transport *t)
551 {
552 	bh_unlock_sock(sk);
553 	sctp_transport_put(t);
554 }
555 
556 /*
557  * This routine is called by the ICMP module when it gets some
558  * sort of error condition.  If err < 0 then the socket should
559  * be closed and the error returned to the user.  If err > 0
560  * it's just the icmp type << 8 | icmp code.  After adjustment
561  * header points to the first 8 bytes of the sctp header.  We need
562  * to find the appropriate port.
563  *
564  * The locking strategy used here is very "optimistic". When
565  * someone else accesses the socket the ICMP is just dropped
566  * and for some paths there is no check at all.
567  * A more general error queue to queue errors for later handling
568  * is probably better.
569  *
570  */
sctp_v4_err(struct sk_buff * skb,__u32 info)571 void sctp_v4_err(struct sk_buff *skb, __u32 info)
572 {
573 	const struct iphdr *iph = (const struct iphdr *)skb->data;
574 	const int ihlen = iph->ihl * 4;
575 	const int type = icmp_hdr(skb)->type;
576 	const int code = icmp_hdr(skb)->code;
577 	struct sock *sk;
578 	struct sctp_association *asoc = NULL;
579 	struct sctp_transport *transport;
580 	struct inet_sock *inet;
581 	__u16 saveip, savesctp;
582 	int err;
583 	struct net *net = dev_net(skb->dev);
584 
585 	/* Fix up skb to look at the embedded net header. */
586 	saveip = skb->network_header;
587 	savesctp = skb->transport_header;
588 	skb_reset_network_header(skb);
589 	skb_set_transport_header(skb, ihlen);
590 	sk = sctp_err_lookup(net, AF_INET, skb, sctp_hdr(skb), &asoc, &transport);
591 	/* Put back, the original values. */
592 	skb->network_header = saveip;
593 	skb->transport_header = savesctp;
594 	if (!sk) {
595 		__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
596 		return;
597 	}
598 	/* Warning:  The sock lock is held.  Remember to call
599 	 * sctp_err_finish!
600 	 */
601 
602 	switch (type) {
603 	case ICMP_PARAMETERPROB:
604 		err = EPROTO;
605 		break;
606 	case ICMP_DEST_UNREACH:
607 		if (code > NR_ICMP_UNREACH)
608 			goto out_unlock;
609 
610 		/* PMTU discovery (RFC1191) */
611 		if (ICMP_FRAG_NEEDED == code) {
612 			sctp_icmp_frag_needed(sk, asoc, transport,
613 					      SCTP_TRUNC4(info));
614 			goto out_unlock;
615 		} else {
616 			if (ICMP_PROT_UNREACH == code) {
617 				sctp_icmp_proto_unreachable(sk, asoc,
618 							    transport);
619 				goto out_unlock;
620 			}
621 		}
622 		err = icmp_err_convert[code].errno;
623 		break;
624 	case ICMP_TIME_EXCEEDED:
625 		/* Ignore any time exceeded errors due to fragment reassembly
626 		 * timeouts.
627 		 */
628 		if (ICMP_EXC_FRAGTIME == code)
629 			goto out_unlock;
630 
631 		err = EHOSTUNREACH;
632 		break;
633 	case ICMP_REDIRECT:
634 		sctp_icmp_redirect(sk, transport, skb);
635 		/* Fall through to out_unlock. */
636 	default:
637 		goto out_unlock;
638 	}
639 
640 	inet = inet_sk(sk);
641 	if (!sock_owned_by_user(sk) && inet->recverr) {
642 		sk->sk_err = err;
643 		sk->sk_error_report(sk);
644 	} else {  /* Only an error on timeout */
645 		sk->sk_err_soft = err;
646 	}
647 
648 out_unlock:
649 	sctp_err_finish(sk, transport);
650 }
651 
652 /*
653  * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
654  *
655  * This function scans all the chunks in the OOTB packet to determine if
656  * the packet should be discarded right away.  If a response might be needed
657  * for this packet, or, if further processing is possible, the packet will
658  * be queued to a proper inqueue for the next phase of handling.
659  *
660  * Output:
661  * Return 0 - If further processing is needed.
662  * Return 1 - If the packet can be discarded right away.
663  */
sctp_rcv_ootb(struct sk_buff * skb)664 static int sctp_rcv_ootb(struct sk_buff *skb)
665 {
666 	sctp_chunkhdr_t *ch, _ch;
667 	int ch_end, offset = 0;
668 
669 	/* Scan through all the chunks in the packet.  */
670 	do {
671 		/* Make sure we have at least the header there */
672 		if (offset + sizeof(sctp_chunkhdr_t) > skb->len)
673 			break;
674 
675 		ch = skb_header_pointer(skb, offset, sizeof(*ch), &_ch);
676 
677 		/* Break out if chunk length is less then minimal. */
678 		if (ntohs(ch->length) < sizeof(sctp_chunkhdr_t))
679 			break;
680 
681 		ch_end = offset + SCTP_PAD4(ntohs(ch->length));
682 		if (ch_end > skb->len)
683 			break;
684 
685 		/* RFC 8.4, 2) If the OOTB packet contains an ABORT chunk, the
686 		 * receiver MUST silently discard the OOTB packet and take no
687 		 * further action.
688 		 */
689 		if (SCTP_CID_ABORT == ch->type)
690 			goto discard;
691 
692 		/* RFC 8.4, 6) If the packet contains a SHUTDOWN COMPLETE
693 		 * chunk, the receiver should silently discard the packet
694 		 * and take no further action.
695 		 */
696 		if (SCTP_CID_SHUTDOWN_COMPLETE == ch->type)
697 			goto discard;
698 
699 		/* RFC 4460, 2.11.2
700 		 * This will discard packets with INIT chunk bundled as
701 		 * subsequent chunks in the packet.  When INIT is first,
702 		 * the normal INIT processing will discard the chunk.
703 		 */
704 		if (SCTP_CID_INIT == ch->type && (void *)ch != skb->data)
705 			goto discard;
706 
707 		offset = ch_end;
708 	} while (ch_end < skb->len);
709 
710 	return 0;
711 
712 discard:
713 	return 1;
714 }
715 
716 /* Insert endpoint into the hash table.  */
__sctp_hash_endpoint(struct sctp_endpoint * ep)717 static void __sctp_hash_endpoint(struct sctp_endpoint *ep)
718 {
719 	struct net *net = sock_net(ep->base.sk);
720 	struct sctp_ep_common *epb;
721 	struct sctp_hashbucket *head;
722 
723 	epb = &ep->base;
724 
725 	epb->hashent = sctp_ep_hashfn(net, epb->bind_addr.port);
726 	head = &sctp_ep_hashtable[epb->hashent];
727 
728 	write_lock(&head->lock);
729 	hlist_add_head(&epb->node, &head->chain);
730 	write_unlock(&head->lock);
731 }
732 
733 /* Add an endpoint to the hash. Local BH-safe. */
sctp_hash_endpoint(struct sctp_endpoint * ep)734 void sctp_hash_endpoint(struct sctp_endpoint *ep)
735 {
736 	local_bh_disable();
737 	__sctp_hash_endpoint(ep);
738 	local_bh_enable();
739 }
740 
741 /* Remove endpoint from the hash table.  */
__sctp_unhash_endpoint(struct sctp_endpoint * ep)742 static void __sctp_unhash_endpoint(struct sctp_endpoint *ep)
743 {
744 	struct net *net = sock_net(ep->base.sk);
745 	struct sctp_hashbucket *head;
746 	struct sctp_ep_common *epb;
747 
748 	epb = &ep->base;
749 
750 	epb->hashent = sctp_ep_hashfn(net, epb->bind_addr.port);
751 
752 	head = &sctp_ep_hashtable[epb->hashent];
753 
754 	write_lock(&head->lock);
755 	hlist_del_init(&epb->node);
756 	write_unlock(&head->lock);
757 }
758 
759 /* Remove endpoint from the hash.  Local BH-safe. */
sctp_unhash_endpoint(struct sctp_endpoint * ep)760 void sctp_unhash_endpoint(struct sctp_endpoint *ep)
761 {
762 	local_bh_disable();
763 	__sctp_unhash_endpoint(ep);
764 	local_bh_enable();
765 }
766 
767 /* Look up an endpoint. */
__sctp_rcv_lookup_endpoint(struct net * net,const union sctp_addr * laddr)768 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(struct net *net,
769 						const union sctp_addr *laddr)
770 {
771 	struct sctp_hashbucket *head;
772 	struct sctp_ep_common *epb;
773 	struct sctp_endpoint *ep;
774 	int hash;
775 
776 	hash = sctp_ep_hashfn(net, ntohs(laddr->v4.sin_port));
777 	head = &sctp_ep_hashtable[hash];
778 	read_lock(&head->lock);
779 	sctp_for_each_hentry(epb, &head->chain) {
780 		ep = sctp_ep(epb);
781 		if (sctp_endpoint_is_match(ep, net, laddr))
782 			goto hit;
783 	}
784 
785 	ep = sctp_sk(net->sctp.ctl_sock)->ep;
786 
787 hit:
788 	sctp_endpoint_hold(ep);
789 	read_unlock(&head->lock);
790 	return ep;
791 }
792 
793 /* rhashtable for transport */
794 struct sctp_hash_cmp_arg {
795 	const struct sctp_endpoint	*ep;
796 	const union sctp_addr		*laddr;
797 	const union sctp_addr		*paddr;
798 	const struct net		*net;
799 };
800 
sctp_hash_cmp(struct rhashtable_compare_arg * arg,const void * ptr)801 static inline int sctp_hash_cmp(struct rhashtable_compare_arg *arg,
802 				const void *ptr)
803 {
804 	struct sctp_transport *t = (struct sctp_transport *)ptr;
805 	const struct sctp_hash_cmp_arg *x = arg->key;
806 	struct sctp_association *asoc;
807 	int err = 1;
808 
809 	if (!sctp_cmp_addr_exact(&t->ipaddr, x->paddr))
810 		return err;
811 	if (!sctp_transport_hold(t))
812 		return err;
813 
814 	asoc = t->asoc;
815 	if (!net_eq(sock_net(asoc->base.sk), x->net))
816 		goto out;
817 	if (x->ep) {
818 		if (x->ep != asoc->ep)
819 			goto out;
820 	} else {
821 		if (x->laddr->v4.sin_port != htons(asoc->base.bind_addr.port))
822 			goto out;
823 		if (!sctp_bind_addr_match(&asoc->base.bind_addr,
824 					  x->laddr, sctp_sk(asoc->base.sk)))
825 			goto out;
826 	}
827 
828 	err = 0;
829 out:
830 	sctp_transport_put(t);
831 	return err;
832 }
833 
sctp_hash_obj(const void * data,u32 len,u32 seed)834 static inline u32 sctp_hash_obj(const void *data, u32 len, u32 seed)
835 {
836 	const struct sctp_transport *t = data;
837 	const union sctp_addr *paddr = &t->ipaddr;
838 	const struct net *net = sock_net(t->asoc->base.sk);
839 	u16 lport = htons(t->asoc->base.bind_addr.port);
840 	u32 addr;
841 
842 	if (paddr->sa.sa_family == AF_INET6)
843 		addr = jhash(&paddr->v6.sin6_addr, 16, seed);
844 	else
845 		addr = paddr->v4.sin_addr.s_addr;
846 
847 	return  jhash_3words(addr, ((__u32)paddr->v4.sin_port) << 16 |
848 			     (__force __u32)lport, net_hash_mix(net), seed);
849 }
850 
sctp_hash_key(const void * data,u32 len,u32 seed)851 static inline u32 sctp_hash_key(const void *data, u32 len, u32 seed)
852 {
853 	const struct sctp_hash_cmp_arg *x = data;
854 	const union sctp_addr *paddr = x->paddr;
855 	const struct net *net = x->net;
856 	u16 lport;
857 	u32 addr;
858 
859 	lport = x->ep ? htons(x->ep->base.bind_addr.port) :
860 			x->laddr->v4.sin_port;
861 	if (paddr->sa.sa_family == AF_INET6)
862 		addr = jhash(&paddr->v6.sin6_addr, 16, seed);
863 	else
864 		addr = paddr->v4.sin_addr.s_addr;
865 
866 	return  jhash_3words(addr, ((__u32)paddr->v4.sin_port) << 16 |
867 			     (__force __u32)lport, net_hash_mix(net), seed);
868 }
869 
870 static const struct rhashtable_params sctp_hash_params = {
871 	.head_offset		= offsetof(struct sctp_transport, node),
872 	.hashfn			= sctp_hash_key,
873 	.obj_hashfn		= sctp_hash_obj,
874 	.obj_cmpfn		= sctp_hash_cmp,
875 	.automatic_shrinking	= true,
876 };
877 
sctp_transport_hashtable_init(void)878 int sctp_transport_hashtable_init(void)
879 {
880 	return rhashtable_init(&sctp_transport_hashtable, &sctp_hash_params);
881 }
882 
sctp_transport_hashtable_destroy(void)883 void sctp_transport_hashtable_destroy(void)
884 {
885 	rhashtable_destroy(&sctp_transport_hashtable);
886 }
887 
sctp_hash_transport(struct sctp_transport * t)888 void sctp_hash_transport(struct sctp_transport *t)
889 {
890 	struct sctp_hash_cmp_arg arg;
891 
892 	if (t->asoc->temp)
893 		return;
894 
895 	arg.ep = t->asoc->ep;
896 	arg.paddr = &t->ipaddr;
897 	arg.net   = sock_net(t->asoc->base.sk);
898 
899 reinsert:
900 	if (rhashtable_lookup_insert_key(&sctp_transport_hashtable, &arg,
901 					 &t->node, sctp_hash_params) == -EBUSY)
902 		goto reinsert;
903 }
904 
sctp_unhash_transport(struct sctp_transport * t)905 void sctp_unhash_transport(struct sctp_transport *t)
906 {
907 	if (t->asoc->temp)
908 		return;
909 
910 	rhashtable_remove_fast(&sctp_transport_hashtable, &t->node,
911 			       sctp_hash_params);
912 }
913 
sctp_addrs_lookup_transport(struct net * net,const union sctp_addr * laddr,const union sctp_addr * paddr)914 struct sctp_transport *sctp_addrs_lookup_transport(
915 				struct net *net,
916 				const union sctp_addr *laddr,
917 				const union sctp_addr *paddr)
918 {
919 	struct sctp_hash_cmp_arg arg = {
920 		.ep    = NULL,
921 		.laddr = laddr,
922 		.paddr = paddr,
923 		.net   = net,
924 	};
925 
926 	return rhashtable_lookup_fast(&sctp_transport_hashtable, &arg,
927 				      sctp_hash_params);
928 }
929 
sctp_epaddr_lookup_transport(const struct sctp_endpoint * ep,const union sctp_addr * paddr)930 struct sctp_transport *sctp_epaddr_lookup_transport(
931 				const struct sctp_endpoint *ep,
932 				const union sctp_addr *paddr)
933 {
934 	struct net *net = sock_net(ep->base.sk);
935 	struct sctp_hash_cmp_arg arg = {
936 		.ep    = ep,
937 		.paddr = paddr,
938 		.net   = net,
939 	};
940 
941 	return rhashtable_lookup_fast(&sctp_transport_hashtable, &arg,
942 				      sctp_hash_params);
943 }
944 
945 /* Look up an association. */
__sctp_lookup_association(struct net * net,const union sctp_addr * local,const union sctp_addr * peer,struct sctp_transport ** pt)946 static struct sctp_association *__sctp_lookup_association(
947 					struct net *net,
948 					const union sctp_addr *local,
949 					const union sctp_addr *peer,
950 					struct sctp_transport **pt)
951 {
952 	struct sctp_transport *t;
953 	struct sctp_association *asoc = NULL;
954 
955 	t = sctp_addrs_lookup_transport(net, local, peer);
956 	if (!t || !sctp_transport_hold(t))
957 		goto out;
958 
959 	asoc = t->asoc;
960 	*pt = t;
961 
962 out:
963 	return asoc;
964 }
965 
966 /* Look up an association. protected by RCU read lock */
967 static
sctp_lookup_association(struct net * net,const union sctp_addr * laddr,const union sctp_addr * paddr,struct sctp_transport ** transportp)968 struct sctp_association *sctp_lookup_association(struct net *net,
969 						 const union sctp_addr *laddr,
970 						 const union sctp_addr *paddr,
971 						 struct sctp_transport **transportp)
972 {
973 	struct sctp_association *asoc;
974 
975 	rcu_read_lock();
976 	asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
977 	rcu_read_unlock();
978 
979 	return asoc;
980 }
981 
982 /* Is there an association matching the given local and peer addresses? */
sctp_has_association(struct net * net,const union sctp_addr * laddr,const union sctp_addr * paddr)983 int sctp_has_association(struct net *net,
984 			 const union sctp_addr *laddr,
985 			 const union sctp_addr *paddr)
986 {
987 	struct sctp_association *asoc;
988 	struct sctp_transport *transport;
989 
990 	if ((asoc = sctp_lookup_association(net, laddr, paddr, &transport))) {
991 		sctp_transport_put(transport);
992 		return 1;
993 	}
994 
995 	return 0;
996 }
997 
998 /*
999  * SCTP Implementors Guide, 2.18 Handling of address
1000  * parameters within the INIT or INIT-ACK.
1001  *
1002  * D) When searching for a matching TCB upon reception of an INIT
1003  *    or INIT-ACK chunk the receiver SHOULD use not only the
1004  *    source address of the packet (containing the INIT or
1005  *    INIT-ACK) but the receiver SHOULD also use all valid
1006  *    address parameters contained within the chunk.
1007  *
1008  * 2.18.3 Solution description
1009  *
1010  * This new text clearly specifies to an implementor the need
1011  * to look within the INIT or INIT-ACK. Any implementation that
1012  * does not do this, may not be able to establish associations
1013  * in certain circumstances.
1014  *
1015  */
__sctp_rcv_init_lookup(struct net * net,struct sk_buff * skb,const union sctp_addr * laddr,struct sctp_transport ** transportp)1016 static struct sctp_association *__sctp_rcv_init_lookup(struct net *net,
1017 	struct sk_buff *skb,
1018 	const union sctp_addr *laddr, struct sctp_transport **transportp)
1019 {
1020 	struct sctp_association *asoc;
1021 	union sctp_addr addr;
1022 	union sctp_addr *paddr = &addr;
1023 	struct sctphdr *sh = sctp_hdr(skb);
1024 	union sctp_params params;
1025 	sctp_init_chunk_t *init;
1026 	struct sctp_af *af;
1027 
1028 	/*
1029 	 * This code will NOT touch anything inside the chunk--it is
1030 	 * strictly READ-ONLY.
1031 	 *
1032 	 * RFC 2960 3  SCTP packet Format
1033 	 *
1034 	 * Multiple chunks can be bundled into one SCTP packet up to
1035 	 * the MTU size, except for the INIT, INIT ACK, and SHUTDOWN
1036 	 * COMPLETE chunks.  These chunks MUST NOT be bundled with any
1037 	 * other chunk in a packet.  See Section 6.10 for more details
1038 	 * on chunk bundling.
1039 	 */
1040 
1041 	/* Find the start of the TLVs and the end of the chunk.  This is
1042 	 * the region we search for address parameters.
1043 	 */
1044 	init = (sctp_init_chunk_t *)skb->data;
1045 
1046 	/* Walk the parameters looking for embedded addresses. */
1047 	sctp_walk_params(params, init, init_hdr.params) {
1048 
1049 		/* Note: Ignoring hostname addresses. */
1050 		af = sctp_get_af_specific(param_type2af(params.p->type));
1051 		if (!af)
1052 			continue;
1053 
1054 		af->from_addr_param(paddr, params.addr, sh->source, 0);
1055 
1056 		asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
1057 		if (asoc)
1058 			return asoc;
1059 	}
1060 
1061 	return NULL;
1062 }
1063 
1064 /* ADD-IP, Section 5.2
1065  * When an endpoint receives an ASCONF Chunk from the remote peer
1066  * special procedures may be needed to identify the association the
1067  * ASCONF Chunk is associated with. To properly find the association
1068  * the following procedures SHOULD be followed:
1069  *
1070  * D2) If the association is not found, use the address found in the
1071  * Address Parameter TLV combined with the port number found in the
1072  * SCTP common header. If found proceed to rule D4.
1073  *
1074  * D2-ext) If more than one ASCONF Chunks are packed together, use the
1075  * address found in the ASCONF Address Parameter TLV of each of the
1076  * subsequent ASCONF Chunks. If found, proceed to rule D4.
1077  */
__sctp_rcv_asconf_lookup(struct net * net,sctp_chunkhdr_t * ch,const union sctp_addr * laddr,__be16 peer_port,struct sctp_transport ** transportp)1078 static struct sctp_association *__sctp_rcv_asconf_lookup(
1079 					struct net *net,
1080 					sctp_chunkhdr_t *ch,
1081 					const union sctp_addr *laddr,
1082 					__be16 peer_port,
1083 					struct sctp_transport **transportp)
1084 {
1085 	sctp_addip_chunk_t *asconf = (struct sctp_addip_chunk *)ch;
1086 	struct sctp_af *af;
1087 	union sctp_addr_param *param;
1088 	union sctp_addr paddr;
1089 
1090 	/* Skip over the ADDIP header and find the Address parameter */
1091 	param = (union sctp_addr_param *)(asconf + 1);
1092 
1093 	af = sctp_get_af_specific(param_type2af(param->p.type));
1094 	if (unlikely(!af))
1095 		return NULL;
1096 
1097 	af->from_addr_param(&paddr, param, peer_port, 0);
1098 
1099 	return __sctp_lookup_association(net, laddr, &paddr, transportp);
1100 }
1101 
1102 
1103 /* SCTP-AUTH, Section 6.3:
1104 *    If the receiver does not find a STCB for a packet containing an AUTH
1105 *    chunk as the first chunk and not a COOKIE-ECHO chunk as the second
1106 *    chunk, it MUST use the chunks after the AUTH chunk to look up an existing
1107 *    association.
1108 *
1109 * This means that any chunks that can help us identify the association need
1110 * to be looked at to find this association.
1111 */
__sctp_rcv_walk_lookup(struct net * net,struct sk_buff * skb,const union sctp_addr * laddr,struct sctp_transport ** transportp)1112 static struct sctp_association *__sctp_rcv_walk_lookup(struct net *net,
1113 				      struct sk_buff *skb,
1114 				      const union sctp_addr *laddr,
1115 				      struct sctp_transport **transportp)
1116 {
1117 	struct sctp_association *asoc = NULL;
1118 	sctp_chunkhdr_t *ch;
1119 	int have_auth = 0;
1120 	unsigned int chunk_num = 1;
1121 	__u8 *ch_end;
1122 
1123 	/* Walk through the chunks looking for AUTH or ASCONF chunks
1124 	 * to help us find the association.
1125 	 */
1126 	ch = (sctp_chunkhdr_t *) skb->data;
1127 	do {
1128 		/* Break out if chunk length is less then minimal. */
1129 		if (ntohs(ch->length) < sizeof(sctp_chunkhdr_t))
1130 			break;
1131 
1132 		ch_end = ((__u8 *)ch) + SCTP_PAD4(ntohs(ch->length));
1133 		if (ch_end > skb_tail_pointer(skb))
1134 			break;
1135 
1136 		switch (ch->type) {
1137 		case SCTP_CID_AUTH:
1138 			have_auth = chunk_num;
1139 			break;
1140 
1141 		case SCTP_CID_COOKIE_ECHO:
1142 			/* If a packet arrives containing an AUTH chunk as
1143 			 * a first chunk, a COOKIE-ECHO chunk as the second
1144 			 * chunk, and possibly more chunks after them, and
1145 			 * the receiver does not have an STCB for that
1146 			 * packet, then authentication is based on
1147 			 * the contents of the COOKIE- ECHO chunk.
1148 			 */
1149 			if (have_auth == 1 && chunk_num == 2)
1150 				return NULL;
1151 			break;
1152 
1153 		case SCTP_CID_ASCONF:
1154 			if (have_auth || net->sctp.addip_noauth)
1155 				asoc = __sctp_rcv_asconf_lookup(
1156 						net, ch, laddr,
1157 						sctp_hdr(skb)->source,
1158 						transportp);
1159 		default:
1160 			break;
1161 		}
1162 
1163 		if (asoc)
1164 			break;
1165 
1166 		ch = (sctp_chunkhdr_t *) ch_end;
1167 		chunk_num++;
1168 	} while (ch_end < skb_tail_pointer(skb));
1169 
1170 	return asoc;
1171 }
1172 
1173 /*
1174  * There are circumstances when we need to look inside the SCTP packet
1175  * for information to help us find the association.   Examples
1176  * include looking inside of INIT/INIT-ACK chunks or after the AUTH
1177  * chunks.
1178  */
__sctp_rcv_lookup_harder(struct net * net,struct sk_buff * skb,const union sctp_addr * laddr,struct sctp_transport ** transportp)1179 static struct sctp_association *__sctp_rcv_lookup_harder(struct net *net,
1180 				      struct sk_buff *skb,
1181 				      const union sctp_addr *laddr,
1182 				      struct sctp_transport **transportp)
1183 {
1184 	sctp_chunkhdr_t *ch;
1185 
1186 	/* We do not allow GSO frames here as we need to linearize and
1187 	 * then cannot guarantee frame boundaries. This shouldn't be an
1188 	 * issue as packets hitting this are mostly INIT or INIT-ACK and
1189 	 * those cannot be on GSO-style anyway.
1190 	 */
1191 	if ((skb_shinfo(skb)->gso_type & SKB_GSO_SCTP) == SKB_GSO_SCTP)
1192 		return NULL;
1193 
1194 	ch = (sctp_chunkhdr_t *) skb->data;
1195 
1196 	/* The code below will attempt to walk the chunk and extract
1197 	 * parameter information.  Before we do that, we need to verify
1198 	 * that the chunk length doesn't cause overflow.  Otherwise, we'll
1199 	 * walk off the end.
1200 	 */
1201 	if (SCTP_PAD4(ntohs(ch->length)) > skb->len)
1202 		return NULL;
1203 
1204 	/* If this is INIT/INIT-ACK look inside the chunk too. */
1205 	if (ch->type == SCTP_CID_INIT || ch->type == SCTP_CID_INIT_ACK)
1206 		return __sctp_rcv_init_lookup(net, skb, laddr, transportp);
1207 
1208 	return __sctp_rcv_walk_lookup(net, skb, laddr, transportp);
1209 }
1210 
1211 /* Lookup an association for an inbound skb. */
__sctp_rcv_lookup(struct net * net,struct sk_buff * skb,const union sctp_addr * paddr,const union sctp_addr * laddr,struct sctp_transport ** transportp)1212 static struct sctp_association *__sctp_rcv_lookup(struct net *net,
1213 				      struct sk_buff *skb,
1214 				      const union sctp_addr *paddr,
1215 				      const union sctp_addr *laddr,
1216 				      struct sctp_transport **transportp)
1217 {
1218 	struct sctp_association *asoc;
1219 
1220 	asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
1221 
1222 	/* Further lookup for INIT/INIT-ACK packets.
1223 	 * SCTP Implementors Guide, 2.18 Handling of address
1224 	 * parameters within the INIT or INIT-ACK.
1225 	 */
1226 	if (!asoc)
1227 		asoc = __sctp_rcv_lookup_harder(net, skb, laddr, transportp);
1228 
1229 	return asoc;
1230 }
1231