1 /* SCTP kernel implementation
2 * Copyright (c) 1999-2000 Cisco, Inc.
3 * Copyright (c) 1999-2001 Motorola, Inc.
4 * Copyright (c) 2001-2003 International Business Machines, Corp.
5 * Copyright (c) 2001 Intel Corp.
6 * Copyright (c) 2001 Nokia, Inc.
7 * Copyright (c) 2001 La Monte H.P. Yarroll
8 *
9 * This file is part of the SCTP kernel implementation
10 *
11 * These functions handle all input from the IP layer into SCTP.
12 *
13 * This SCTP implementation is free software;
14 * you can redistribute it and/or modify it under the terms of
15 * the GNU General Public License as published by
16 * the Free Software Foundation; either version 2, or (at your option)
17 * any later version.
18 *
19 * This SCTP implementation is distributed in the hope that it
20 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
21 * ************************
22 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
23 * See the GNU General Public License for more details.
24 *
25 * You should have received a copy of the GNU General Public License
26 * along with GNU CC; see the file COPYING. If not, see
27 * <http://www.gnu.org/licenses/>.
28 *
29 * Please send any bug reports or fixes you make to the
30 * email address(es):
31 * lksctp developers <linux-sctp@vger.kernel.org>
32 *
33 * Written or modified by:
34 * La Monte H.P. Yarroll <piggy@acm.org>
35 * Karl Knutson <karl@athena.chicago.il.us>
36 * Xingang Guo <xingang.guo@intel.com>
37 * Jon Grimm <jgrimm@us.ibm.com>
38 * Hui Huang <hui.huang@nokia.com>
39 * Daisy Chang <daisyc@us.ibm.com>
40 * Sridhar Samudrala <sri@us.ibm.com>
41 * Ardelle Fan <ardelle.fan@intel.com>
42 */
43
44 #include <linux/types.h>
45 #include <linux/list.h> /* For struct list_head */
46 #include <linux/socket.h>
47 #include <linux/ip.h>
48 #include <linux/time.h> /* For struct timeval */
49 #include <linux/slab.h>
50 #include <net/ip.h>
51 #include <net/icmp.h>
52 #include <net/snmp.h>
53 #include <net/sock.h>
54 #include <net/xfrm.h>
55 #include <net/sctp/sctp.h>
56 #include <net/sctp/sm.h>
57 #include <net/sctp/checksum.h>
58 #include <net/net_namespace.h>
59
60 /* Forward declarations for internal helpers. */
61 static int sctp_rcv_ootb(struct sk_buff *);
62 static struct sctp_association *__sctp_rcv_lookup(struct net *net,
63 struct sk_buff *skb,
64 const union sctp_addr *paddr,
65 const union sctp_addr *laddr,
66 struct sctp_transport **transportp);
67 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(struct net *net,
68 const union sctp_addr *laddr);
69 static struct sctp_association *__sctp_lookup_association(
70 struct net *net,
71 const union sctp_addr *local,
72 const union sctp_addr *peer,
73 struct sctp_transport **pt);
74
75 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb);
76
77
78 /* Calculate the SCTP checksum of an SCTP packet. */
sctp_rcv_checksum(struct net * net,struct sk_buff * skb)79 static inline int sctp_rcv_checksum(struct net *net, struct sk_buff *skb)
80 {
81 struct sctphdr *sh = sctp_hdr(skb);
82 __le32 cmp = sh->checksum;
83 __le32 val = sctp_compute_cksum(skb, 0);
84
85 if (val != cmp) {
86 /* CRC failure, dump it. */
87 __SCTP_INC_STATS(net, SCTP_MIB_CHECKSUMERRORS);
88 return -1;
89 }
90 return 0;
91 }
92
93 /*
94 * This is the routine which IP calls when receiving an SCTP packet.
95 */
sctp_rcv(struct sk_buff * skb)96 int sctp_rcv(struct sk_buff *skb)
97 {
98 struct sock *sk;
99 struct sctp_association *asoc;
100 struct sctp_endpoint *ep = NULL;
101 struct sctp_ep_common *rcvr;
102 struct sctp_transport *transport = NULL;
103 struct sctp_chunk *chunk;
104 union sctp_addr src;
105 union sctp_addr dest;
106 int family;
107 struct sctp_af *af;
108 struct net *net = dev_net(skb->dev);
109
110 if (skb->pkt_type != PACKET_HOST)
111 goto discard_it;
112
113 __SCTP_INC_STATS(net, SCTP_MIB_INSCTPPACKS);
114
115 /* If packet is too small to contain a single chunk, let's not
116 * waste time on it anymore.
117 */
118 if (skb->len < sizeof(struct sctphdr) + sizeof(struct sctp_chunkhdr) +
119 skb_transport_offset(skb))
120 goto discard_it;
121
122 /* If the packet is fragmented and we need to do crc checking,
123 * it's better to just linearize it otherwise crc computing
124 * takes longer.
125 */
126 if ((!(skb_shinfo(skb)->gso_type & SKB_GSO_SCTP) &&
127 skb_linearize(skb)) ||
128 !pskb_may_pull(skb, sizeof(struct sctphdr)))
129 goto discard_it;
130
131 /* Pull up the IP header. */
132 __skb_pull(skb, skb_transport_offset(skb));
133
134 skb->csum_valid = 0; /* Previous value not applicable */
135 if (skb_csum_unnecessary(skb))
136 __skb_decr_checksum_unnecessary(skb);
137 else if (!sctp_checksum_disable &&
138 !(skb_shinfo(skb)->gso_type & SKB_GSO_SCTP) &&
139 sctp_rcv_checksum(net, skb) < 0)
140 goto discard_it;
141 skb->csum_valid = 1;
142
143 __skb_pull(skb, sizeof(struct sctphdr));
144
145 family = ipver2af(ip_hdr(skb)->version);
146 af = sctp_get_af_specific(family);
147 if (unlikely(!af))
148 goto discard_it;
149 SCTP_INPUT_CB(skb)->af = af;
150
151 /* Initialize local addresses for lookups. */
152 af->from_skb(&src, skb, 1);
153 af->from_skb(&dest, skb, 0);
154
155 /* If the packet is to or from a non-unicast address,
156 * silently discard the packet.
157 *
158 * This is not clearly defined in the RFC except in section
159 * 8.4 - OOTB handling. However, based on the book "Stream Control
160 * Transmission Protocol" 2.1, "It is important to note that the
161 * IP address of an SCTP transport address must be a routable
162 * unicast address. In other words, IP multicast addresses and
163 * IP broadcast addresses cannot be used in an SCTP transport
164 * address."
165 */
166 if (!af->addr_valid(&src, NULL, skb) ||
167 !af->addr_valid(&dest, NULL, skb))
168 goto discard_it;
169
170 asoc = __sctp_rcv_lookup(net, skb, &src, &dest, &transport);
171
172 if (!asoc)
173 ep = __sctp_rcv_lookup_endpoint(net, &dest);
174
175 /* Retrieve the common input handling substructure. */
176 rcvr = asoc ? &asoc->base : &ep->base;
177 sk = rcvr->sk;
178
179 /*
180 * If a frame arrives on an interface and the receiving socket is
181 * bound to another interface, via SO_BINDTODEVICE, treat it as OOTB
182 */
183 if (sk->sk_bound_dev_if && (sk->sk_bound_dev_if != af->skb_iif(skb))) {
184 if (transport) {
185 sctp_transport_put(transport);
186 asoc = NULL;
187 transport = NULL;
188 } else {
189 sctp_endpoint_put(ep);
190 ep = NULL;
191 }
192 sk = net->sctp.ctl_sock;
193 ep = sctp_sk(sk)->ep;
194 sctp_endpoint_hold(ep);
195 rcvr = &ep->base;
196 }
197
198 /*
199 * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
200 * An SCTP packet is called an "out of the blue" (OOTB)
201 * packet if it is correctly formed, i.e., passed the
202 * receiver's checksum check, but the receiver is not
203 * able to identify the association to which this
204 * packet belongs.
205 */
206 if (!asoc) {
207 if (sctp_rcv_ootb(skb)) {
208 __SCTP_INC_STATS(net, SCTP_MIB_OUTOFBLUES);
209 goto discard_release;
210 }
211 }
212
213 if (!xfrm_policy_check(sk, XFRM_POLICY_IN, skb, family))
214 goto discard_release;
215 nf_reset(skb);
216
217 if (sk_filter(sk, skb))
218 goto discard_release;
219
220 /* Create an SCTP packet structure. */
221 chunk = sctp_chunkify(skb, asoc, sk, GFP_ATOMIC);
222 if (!chunk)
223 goto discard_release;
224 SCTP_INPUT_CB(skb)->chunk = chunk;
225
226 /* Remember what endpoint is to handle this packet. */
227 chunk->rcvr = rcvr;
228
229 /* Remember the SCTP header. */
230 chunk->sctp_hdr = sctp_hdr(skb);
231
232 /* Set the source and destination addresses of the incoming chunk. */
233 sctp_init_addrs(chunk, &src, &dest);
234
235 /* Remember where we came from. */
236 chunk->transport = transport;
237
238 /* Acquire access to the sock lock. Note: We are safe from other
239 * bottom halves on this lock, but a user may be in the lock too,
240 * so check if it is busy.
241 */
242 bh_lock_sock(sk);
243
244 if (sk != rcvr->sk) {
245 /* Our cached sk is different from the rcvr->sk. This is
246 * because migrate()/accept() may have moved the association
247 * to a new socket and released all the sockets. So now we
248 * are holding a lock on the old socket while the user may
249 * be doing something with the new socket. Switch our veiw
250 * of the current sk.
251 */
252 bh_unlock_sock(sk);
253 sk = rcvr->sk;
254 bh_lock_sock(sk);
255 }
256
257 if (sock_owned_by_user(sk)) {
258 if (sctp_add_backlog(sk, skb)) {
259 bh_unlock_sock(sk);
260 sctp_chunk_free(chunk);
261 skb = NULL; /* sctp_chunk_free already freed the skb */
262 goto discard_release;
263 }
264 __SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_BACKLOG);
265 } else {
266 __SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_SOFTIRQ);
267 sctp_inq_push(&chunk->rcvr->inqueue, chunk);
268 }
269
270 bh_unlock_sock(sk);
271
272 /* Release the asoc/ep ref we took in the lookup calls. */
273 if (transport)
274 sctp_transport_put(transport);
275 else
276 sctp_endpoint_put(ep);
277
278 return 0;
279
280 discard_it:
281 __SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_DISCARDS);
282 kfree_skb(skb);
283 return 0;
284
285 discard_release:
286 /* Release the asoc/ep ref we took in the lookup calls. */
287 if (transport)
288 sctp_transport_put(transport);
289 else
290 sctp_endpoint_put(ep);
291
292 goto discard_it;
293 }
294
295 /* Process the backlog queue of the socket. Every skb on
296 * the backlog holds a ref on an association or endpoint.
297 * We hold this ref throughout the state machine to make
298 * sure that the structure we need is still around.
299 */
sctp_backlog_rcv(struct sock * sk,struct sk_buff * skb)300 int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb)
301 {
302 struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
303 struct sctp_inq *inqueue = &chunk->rcvr->inqueue;
304 struct sctp_transport *t = chunk->transport;
305 struct sctp_ep_common *rcvr = NULL;
306 int backloged = 0;
307
308 rcvr = chunk->rcvr;
309
310 /* If the rcvr is dead then the association or endpoint
311 * has been deleted and we can safely drop the chunk
312 * and refs that we are holding.
313 */
314 if (rcvr->dead) {
315 sctp_chunk_free(chunk);
316 goto done;
317 }
318
319 if (unlikely(rcvr->sk != sk)) {
320 /* In this case, the association moved from one socket to
321 * another. We are currently sitting on the backlog of the
322 * old socket, so we need to move.
323 * However, since we are here in the process context we
324 * need to take make sure that the user doesn't own
325 * the new socket when we process the packet.
326 * If the new socket is user-owned, queue the chunk to the
327 * backlog of the new socket without dropping any refs.
328 * Otherwise, we can safely push the chunk on the inqueue.
329 */
330
331 sk = rcvr->sk;
332 local_bh_disable();
333 bh_lock_sock(sk);
334
335 if (sock_owned_by_user(sk)) {
336 if (sk_add_backlog(sk, skb, sk->sk_rcvbuf))
337 sctp_chunk_free(chunk);
338 else
339 backloged = 1;
340 } else
341 sctp_inq_push(inqueue, chunk);
342
343 bh_unlock_sock(sk);
344 local_bh_enable();
345
346 /* If the chunk was backloged again, don't drop refs */
347 if (backloged)
348 return 0;
349 } else {
350 sctp_inq_push(inqueue, chunk);
351 }
352
353 done:
354 /* Release the refs we took in sctp_add_backlog */
355 if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
356 sctp_transport_put(t);
357 else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
358 sctp_endpoint_put(sctp_ep(rcvr));
359 else
360 BUG();
361
362 return 0;
363 }
364
sctp_add_backlog(struct sock * sk,struct sk_buff * skb)365 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb)
366 {
367 struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
368 struct sctp_transport *t = chunk->transport;
369 struct sctp_ep_common *rcvr = chunk->rcvr;
370 int ret;
371
372 ret = sk_add_backlog(sk, skb, sk->sk_rcvbuf);
373 if (!ret) {
374 /* Hold the assoc/ep while hanging on the backlog queue.
375 * This way, we know structures we need will not disappear
376 * from us
377 */
378 if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
379 sctp_transport_hold(t);
380 else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
381 sctp_endpoint_hold(sctp_ep(rcvr));
382 else
383 BUG();
384 }
385 return ret;
386
387 }
388
389 /* Handle icmp frag needed error. */
sctp_icmp_frag_needed(struct sock * sk,struct sctp_association * asoc,struct sctp_transport * t,__u32 pmtu)390 void sctp_icmp_frag_needed(struct sock *sk, struct sctp_association *asoc,
391 struct sctp_transport *t, __u32 pmtu)
392 {
393 if (!t || (t->pathmtu <= pmtu))
394 return;
395
396 if (sock_owned_by_user(sk)) {
397 asoc->pmtu_pending = 1;
398 t->pmtu_pending = 1;
399 return;
400 }
401
402 if (t->param_flags & SPP_PMTUD_ENABLE) {
403 /* Update transports view of the MTU */
404 sctp_transport_update_pmtu(sk, t, pmtu);
405
406 /* Update association pmtu. */
407 sctp_assoc_sync_pmtu(sk, asoc);
408 }
409
410 /* Retransmit with the new pmtu setting.
411 * Normally, if PMTU discovery is disabled, an ICMP Fragmentation
412 * Needed will never be sent, but if a message was sent before
413 * PMTU discovery was disabled that was larger than the PMTU, it
414 * would not be fragmented, so it must be re-transmitted fragmented.
415 */
416 sctp_retransmit(&asoc->outqueue, t, SCTP_RTXR_PMTUD);
417 }
418
sctp_icmp_redirect(struct sock * sk,struct sctp_transport * t,struct sk_buff * skb)419 void sctp_icmp_redirect(struct sock *sk, struct sctp_transport *t,
420 struct sk_buff *skb)
421 {
422 struct dst_entry *dst;
423
424 if (sock_owned_by_user(sk) || !t)
425 return;
426 dst = sctp_transport_dst_check(t);
427 if (dst)
428 dst->ops->redirect(dst, sk, skb);
429 }
430
431 /*
432 * SCTP Implementer's Guide, 2.37 ICMP handling procedures
433 *
434 * ICMP8) If the ICMP code is a "Unrecognized next header type encountered"
435 * or a "Protocol Unreachable" treat this message as an abort
436 * with the T bit set.
437 *
438 * This function sends an event to the state machine, which will abort the
439 * association.
440 *
441 */
sctp_icmp_proto_unreachable(struct sock * sk,struct sctp_association * asoc,struct sctp_transport * t)442 void sctp_icmp_proto_unreachable(struct sock *sk,
443 struct sctp_association *asoc,
444 struct sctp_transport *t)
445 {
446 if (sock_owned_by_user(sk)) {
447 if (timer_pending(&t->proto_unreach_timer))
448 return;
449 else {
450 if (!mod_timer(&t->proto_unreach_timer,
451 jiffies + (HZ/20)))
452 sctp_association_hold(asoc);
453 }
454 } else {
455 struct net *net = sock_net(sk);
456
457 pr_debug("%s: unrecognized next header type "
458 "encountered!\n", __func__);
459
460 if (del_timer(&t->proto_unreach_timer))
461 sctp_association_put(asoc);
462
463 sctp_do_sm(net, SCTP_EVENT_T_OTHER,
464 SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH),
465 asoc->state, asoc->ep, asoc, t,
466 GFP_ATOMIC);
467 }
468 }
469
470 /* Common lookup code for icmp/icmpv6 error handler. */
sctp_err_lookup(struct net * net,int family,struct sk_buff * skb,struct sctphdr * sctphdr,struct sctp_association ** app,struct sctp_transport ** tpp)471 struct sock *sctp_err_lookup(struct net *net, int family, struct sk_buff *skb,
472 struct sctphdr *sctphdr,
473 struct sctp_association **app,
474 struct sctp_transport **tpp)
475 {
476 struct sctp_init_chunk *chunkhdr, _chunkhdr;
477 union sctp_addr saddr;
478 union sctp_addr daddr;
479 struct sctp_af *af;
480 struct sock *sk = NULL;
481 struct sctp_association *asoc;
482 struct sctp_transport *transport = NULL;
483 __u32 vtag = ntohl(sctphdr->vtag);
484
485 *app = NULL; *tpp = NULL;
486
487 af = sctp_get_af_specific(family);
488 if (unlikely(!af)) {
489 return NULL;
490 }
491
492 /* Initialize local addresses for lookups. */
493 af->from_skb(&saddr, skb, 1);
494 af->from_skb(&daddr, skb, 0);
495
496 /* Look for an association that matches the incoming ICMP error
497 * packet.
498 */
499 asoc = __sctp_lookup_association(net, &saddr, &daddr, &transport);
500 if (!asoc)
501 return NULL;
502
503 sk = asoc->base.sk;
504
505 /* RFC 4960, Appendix C. ICMP Handling
506 *
507 * ICMP6) An implementation MUST validate that the Verification Tag
508 * contained in the ICMP message matches the Verification Tag of
509 * the peer. If the Verification Tag is not 0 and does NOT
510 * match, discard the ICMP message. If it is 0 and the ICMP
511 * message contains enough bytes to verify that the chunk type is
512 * an INIT chunk and that the Initiate Tag matches the tag of the
513 * peer, continue with ICMP7. If the ICMP message is too short
514 * or the chunk type or the Initiate Tag does not match, silently
515 * discard the packet.
516 */
517 if (vtag == 0) {
518 /* chunk header + first 4 octects of init header */
519 chunkhdr = skb_header_pointer(skb, skb_transport_offset(skb) +
520 sizeof(struct sctphdr),
521 sizeof(struct sctp_chunkhdr) +
522 sizeof(__be32), &_chunkhdr);
523 if (!chunkhdr ||
524 chunkhdr->chunk_hdr.type != SCTP_CID_INIT ||
525 ntohl(chunkhdr->init_hdr.init_tag) != asoc->c.my_vtag)
526 goto out;
527
528 } else if (vtag != asoc->c.peer_vtag) {
529 goto out;
530 }
531
532 bh_lock_sock(sk);
533
534 /* If too many ICMPs get dropped on busy
535 * servers this needs to be solved differently.
536 */
537 if (sock_owned_by_user(sk))
538 __NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS);
539
540 *app = asoc;
541 *tpp = transport;
542 return sk;
543
544 out:
545 sctp_transport_put(transport);
546 return NULL;
547 }
548
549 /* Common cleanup code for icmp/icmpv6 error handler. */
sctp_err_finish(struct sock * sk,struct sctp_transport * t)550 void sctp_err_finish(struct sock *sk, struct sctp_transport *t)
551 {
552 bh_unlock_sock(sk);
553 sctp_transport_put(t);
554 }
555
556 /*
557 * This routine is called by the ICMP module when it gets some
558 * sort of error condition. If err < 0 then the socket should
559 * be closed and the error returned to the user. If err > 0
560 * it's just the icmp type << 8 | icmp code. After adjustment
561 * header points to the first 8 bytes of the sctp header. We need
562 * to find the appropriate port.
563 *
564 * The locking strategy used here is very "optimistic". When
565 * someone else accesses the socket the ICMP is just dropped
566 * and for some paths there is no check at all.
567 * A more general error queue to queue errors for later handling
568 * is probably better.
569 *
570 */
sctp_v4_err(struct sk_buff * skb,__u32 info)571 void sctp_v4_err(struct sk_buff *skb, __u32 info)
572 {
573 const struct iphdr *iph = (const struct iphdr *)skb->data;
574 const int ihlen = iph->ihl * 4;
575 const int type = icmp_hdr(skb)->type;
576 const int code = icmp_hdr(skb)->code;
577 struct sock *sk;
578 struct sctp_association *asoc = NULL;
579 struct sctp_transport *transport;
580 struct inet_sock *inet;
581 __u16 saveip, savesctp;
582 int err;
583 struct net *net = dev_net(skb->dev);
584
585 /* Fix up skb to look at the embedded net header. */
586 saveip = skb->network_header;
587 savesctp = skb->transport_header;
588 skb_reset_network_header(skb);
589 skb_set_transport_header(skb, ihlen);
590 sk = sctp_err_lookup(net, AF_INET, skb, sctp_hdr(skb), &asoc, &transport);
591 /* Put back, the original values. */
592 skb->network_header = saveip;
593 skb->transport_header = savesctp;
594 if (!sk) {
595 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
596 return;
597 }
598 /* Warning: The sock lock is held. Remember to call
599 * sctp_err_finish!
600 */
601
602 switch (type) {
603 case ICMP_PARAMETERPROB:
604 err = EPROTO;
605 break;
606 case ICMP_DEST_UNREACH:
607 if (code > NR_ICMP_UNREACH)
608 goto out_unlock;
609
610 /* PMTU discovery (RFC1191) */
611 if (ICMP_FRAG_NEEDED == code) {
612 sctp_icmp_frag_needed(sk, asoc, transport,
613 SCTP_TRUNC4(info));
614 goto out_unlock;
615 } else {
616 if (ICMP_PROT_UNREACH == code) {
617 sctp_icmp_proto_unreachable(sk, asoc,
618 transport);
619 goto out_unlock;
620 }
621 }
622 err = icmp_err_convert[code].errno;
623 break;
624 case ICMP_TIME_EXCEEDED:
625 /* Ignore any time exceeded errors due to fragment reassembly
626 * timeouts.
627 */
628 if (ICMP_EXC_FRAGTIME == code)
629 goto out_unlock;
630
631 err = EHOSTUNREACH;
632 break;
633 case ICMP_REDIRECT:
634 sctp_icmp_redirect(sk, transport, skb);
635 /* Fall through to out_unlock. */
636 default:
637 goto out_unlock;
638 }
639
640 inet = inet_sk(sk);
641 if (!sock_owned_by_user(sk) && inet->recverr) {
642 sk->sk_err = err;
643 sk->sk_error_report(sk);
644 } else { /* Only an error on timeout */
645 sk->sk_err_soft = err;
646 }
647
648 out_unlock:
649 sctp_err_finish(sk, transport);
650 }
651
652 /*
653 * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
654 *
655 * This function scans all the chunks in the OOTB packet to determine if
656 * the packet should be discarded right away. If a response might be needed
657 * for this packet, or, if further processing is possible, the packet will
658 * be queued to a proper inqueue for the next phase of handling.
659 *
660 * Output:
661 * Return 0 - If further processing is needed.
662 * Return 1 - If the packet can be discarded right away.
663 */
sctp_rcv_ootb(struct sk_buff * skb)664 static int sctp_rcv_ootb(struct sk_buff *skb)
665 {
666 sctp_chunkhdr_t *ch, _ch;
667 int ch_end, offset = 0;
668
669 /* Scan through all the chunks in the packet. */
670 do {
671 /* Make sure we have at least the header there */
672 if (offset + sizeof(sctp_chunkhdr_t) > skb->len)
673 break;
674
675 ch = skb_header_pointer(skb, offset, sizeof(*ch), &_ch);
676
677 /* Break out if chunk length is less then minimal. */
678 if (ntohs(ch->length) < sizeof(sctp_chunkhdr_t))
679 break;
680
681 ch_end = offset + SCTP_PAD4(ntohs(ch->length));
682 if (ch_end > skb->len)
683 break;
684
685 /* RFC 8.4, 2) If the OOTB packet contains an ABORT chunk, the
686 * receiver MUST silently discard the OOTB packet and take no
687 * further action.
688 */
689 if (SCTP_CID_ABORT == ch->type)
690 goto discard;
691
692 /* RFC 8.4, 6) If the packet contains a SHUTDOWN COMPLETE
693 * chunk, the receiver should silently discard the packet
694 * and take no further action.
695 */
696 if (SCTP_CID_SHUTDOWN_COMPLETE == ch->type)
697 goto discard;
698
699 /* RFC 4460, 2.11.2
700 * This will discard packets with INIT chunk bundled as
701 * subsequent chunks in the packet. When INIT is first,
702 * the normal INIT processing will discard the chunk.
703 */
704 if (SCTP_CID_INIT == ch->type && (void *)ch != skb->data)
705 goto discard;
706
707 offset = ch_end;
708 } while (ch_end < skb->len);
709
710 return 0;
711
712 discard:
713 return 1;
714 }
715
716 /* Insert endpoint into the hash table. */
__sctp_hash_endpoint(struct sctp_endpoint * ep)717 static void __sctp_hash_endpoint(struct sctp_endpoint *ep)
718 {
719 struct net *net = sock_net(ep->base.sk);
720 struct sctp_ep_common *epb;
721 struct sctp_hashbucket *head;
722
723 epb = &ep->base;
724
725 epb->hashent = sctp_ep_hashfn(net, epb->bind_addr.port);
726 head = &sctp_ep_hashtable[epb->hashent];
727
728 write_lock(&head->lock);
729 hlist_add_head(&epb->node, &head->chain);
730 write_unlock(&head->lock);
731 }
732
733 /* Add an endpoint to the hash. Local BH-safe. */
sctp_hash_endpoint(struct sctp_endpoint * ep)734 void sctp_hash_endpoint(struct sctp_endpoint *ep)
735 {
736 local_bh_disable();
737 __sctp_hash_endpoint(ep);
738 local_bh_enable();
739 }
740
741 /* Remove endpoint from the hash table. */
__sctp_unhash_endpoint(struct sctp_endpoint * ep)742 static void __sctp_unhash_endpoint(struct sctp_endpoint *ep)
743 {
744 struct net *net = sock_net(ep->base.sk);
745 struct sctp_hashbucket *head;
746 struct sctp_ep_common *epb;
747
748 epb = &ep->base;
749
750 epb->hashent = sctp_ep_hashfn(net, epb->bind_addr.port);
751
752 head = &sctp_ep_hashtable[epb->hashent];
753
754 write_lock(&head->lock);
755 hlist_del_init(&epb->node);
756 write_unlock(&head->lock);
757 }
758
759 /* Remove endpoint from the hash. Local BH-safe. */
sctp_unhash_endpoint(struct sctp_endpoint * ep)760 void sctp_unhash_endpoint(struct sctp_endpoint *ep)
761 {
762 local_bh_disable();
763 __sctp_unhash_endpoint(ep);
764 local_bh_enable();
765 }
766
767 /* Look up an endpoint. */
__sctp_rcv_lookup_endpoint(struct net * net,const union sctp_addr * laddr)768 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(struct net *net,
769 const union sctp_addr *laddr)
770 {
771 struct sctp_hashbucket *head;
772 struct sctp_ep_common *epb;
773 struct sctp_endpoint *ep;
774 int hash;
775
776 hash = sctp_ep_hashfn(net, ntohs(laddr->v4.sin_port));
777 head = &sctp_ep_hashtable[hash];
778 read_lock(&head->lock);
779 sctp_for_each_hentry(epb, &head->chain) {
780 ep = sctp_ep(epb);
781 if (sctp_endpoint_is_match(ep, net, laddr))
782 goto hit;
783 }
784
785 ep = sctp_sk(net->sctp.ctl_sock)->ep;
786
787 hit:
788 sctp_endpoint_hold(ep);
789 read_unlock(&head->lock);
790 return ep;
791 }
792
793 /* rhashtable for transport */
794 struct sctp_hash_cmp_arg {
795 const struct sctp_endpoint *ep;
796 const union sctp_addr *laddr;
797 const union sctp_addr *paddr;
798 const struct net *net;
799 };
800
sctp_hash_cmp(struct rhashtable_compare_arg * arg,const void * ptr)801 static inline int sctp_hash_cmp(struct rhashtable_compare_arg *arg,
802 const void *ptr)
803 {
804 struct sctp_transport *t = (struct sctp_transport *)ptr;
805 const struct sctp_hash_cmp_arg *x = arg->key;
806 struct sctp_association *asoc;
807 int err = 1;
808
809 if (!sctp_cmp_addr_exact(&t->ipaddr, x->paddr))
810 return err;
811 if (!sctp_transport_hold(t))
812 return err;
813
814 asoc = t->asoc;
815 if (!net_eq(sock_net(asoc->base.sk), x->net))
816 goto out;
817 if (x->ep) {
818 if (x->ep != asoc->ep)
819 goto out;
820 } else {
821 if (x->laddr->v4.sin_port != htons(asoc->base.bind_addr.port))
822 goto out;
823 if (!sctp_bind_addr_match(&asoc->base.bind_addr,
824 x->laddr, sctp_sk(asoc->base.sk)))
825 goto out;
826 }
827
828 err = 0;
829 out:
830 sctp_transport_put(t);
831 return err;
832 }
833
sctp_hash_obj(const void * data,u32 len,u32 seed)834 static inline u32 sctp_hash_obj(const void *data, u32 len, u32 seed)
835 {
836 const struct sctp_transport *t = data;
837 const union sctp_addr *paddr = &t->ipaddr;
838 const struct net *net = sock_net(t->asoc->base.sk);
839 u16 lport = htons(t->asoc->base.bind_addr.port);
840 u32 addr;
841
842 if (paddr->sa.sa_family == AF_INET6)
843 addr = jhash(&paddr->v6.sin6_addr, 16, seed);
844 else
845 addr = paddr->v4.sin_addr.s_addr;
846
847 return jhash_3words(addr, ((__u32)paddr->v4.sin_port) << 16 |
848 (__force __u32)lport, net_hash_mix(net), seed);
849 }
850
sctp_hash_key(const void * data,u32 len,u32 seed)851 static inline u32 sctp_hash_key(const void *data, u32 len, u32 seed)
852 {
853 const struct sctp_hash_cmp_arg *x = data;
854 const union sctp_addr *paddr = x->paddr;
855 const struct net *net = x->net;
856 u16 lport;
857 u32 addr;
858
859 lport = x->ep ? htons(x->ep->base.bind_addr.port) :
860 x->laddr->v4.sin_port;
861 if (paddr->sa.sa_family == AF_INET6)
862 addr = jhash(&paddr->v6.sin6_addr, 16, seed);
863 else
864 addr = paddr->v4.sin_addr.s_addr;
865
866 return jhash_3words(addr, ((__u32)paddr->v4.sin_port) << 16 |
867 (__force __u32)lport, net_hash_mix(net), seed);
868 }
869
870 static const struct rhashtable_params sctp_hash_params = {
871 .head_offset = offsetof(struct sctp_transport, node),
872 .hashfn = sctp_hash_key,
873 .obj_hashfn = sctp_hash_obj,
874 .obj_cmpfn = sctp_hash_cmp,
875 .automatic_shrinking = true,
876 };
877
sctp_transport_hashtable_init(void)878 int sctp_transport_hashtable_init(void)
879 {
880 return rhashtable_init(&sctp_transport_hashtable, &sctp_hash_params);
881 }
882
sctp_transport_hashtable_destroy(void)883 void sctp_transport_hashtable_destroy(void)
884 {
885 rhashtable_destroy(&sctp_transport_hashtable);
886 }
887
sctp_hash_transport(struct sctp_transport * t)888 void sctp_hash_transport(struct sctp_transport *t)
889 {
890 struct sctp_hash_cmp_arg arg;
891
892 if (t->asoc->temp)
893 return;
894
895 arg.ep = t->asoc->ep;
896 arg.paddr = &t->ipaddr;
897 arg.net = sock_net(t->asoc->base.sk);
898
899 reinsert:
900 if (rhashtable_lookup_insert_key(&sctp_transport_hashtable, &arg,
901 &t->node, sctp_hash_params) == -EBUSY)
902 goto reinsert;
903 }
904
sctp_unhash_transport(struct sctp_transport * t)905 void sctp_unhash_transport(struct sctp_transport *t)
906 {
907 if (t->asoc->temp)
908 return;
909
910 rhashtable_remove_fast(&sctp_transport_hashtable, &t->node,
911 sctp_hash_params);
912 }
913
sctp_addrs_lookup_transport(struct net * net,const union sctp_addr * laddr,const union sctp_addr * paddr)914 struct sctp_transport *sctp_addrs_lookup_transport(
915 struct net *net,
916 const union sctp_addr *laddr,
917 const union sctp_addr *paddr)
918 {
919 struct sctp_hash_cmp_arg arg = {
920 .ep = NULL,
921 .laddr = laddr,
922 .paddr = paddr,
923 .net = net,
924 };
925
926 return rhashtable_lookup_fast(&sctp_transport_hashtable, &arg,
927 sctp_hash_params);
928 }
929
sctp_epaddr_lookup_transport(const struct sctp_endpoint * ep,const union sctp_addr * paddr)930 struct sctp_transport *sctp_epaddr_lookup_transport(
931 const struct sctp_endpoint *ep,
932 const union sctp_addr *paddr)
933 {
934 struct net *net = sock_net(ep->base.sk);
935 struct sctp_hash_cmp_arg arg = {
936 .ep = ep,
937 .paddr = paddr,
938 .net = net,
939 };
940
941 return rhashtable_lookup_fast(&sctp_transport_hashtable, &arg,
942 sctp_hash_params);
943 }
944
945 /* Look up an association. */
__sctp_lookup_association(struct net * net,const union sctp_addr * local,const union sctp_addr * peer,struct sctp_transport ** pt)946 static struct sctp_association *__sctp_lookup_association(
947 struct net *net,
948 const union sctp_addr *local,
949 const union sctp_addr *peer,
950 struct sctp_transport **pt)
951 {
952 struct sctp_transport *t;
953 struct sctp_association *asoc = NULL;
954
955 t = sctp_addrs_lookup_transport(net, local, peer);
956 if (!t || !sctp_transport_hold(t))
957 goto out;
958
959 asoc = t->asoc;
960 *pt = t;
961
962 out:
963 return asoc;
964 }
965
966 /* Look up an association. protected by RCU read lock */
967 static
sctp_lookup_association(struct net * net,const union sctp_addr * laddr,const union sctp_addr * paddr,struct sctp_transport ** transportp)968 struct sctp_association *sctp_lookup_association(struct net *net,
969 const union sctp_addr *laddr,
970 const union sctp_addr *paddr,
971 struct sctp_transport **transportp)
972 {
973 struct sctp_association *asoc;
974
975 rcu_read_lock();
976 asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
977 rcu_read_unlock();
978
979 return asoc;
980 }
981
982 /* Is there an association matching the given local and peer addresses? */
sctp_has_association(struct net * net,const union sctp_addr * laddr,const union sctp_addr * paddr)983 int sctp_has_association(struct net *net,
984 const union sctp_addr *laddr,
985 const union sctp_addr *paddr)
986 {
987 struct sctp_association *asoc;
988 struct sctp_transport *transport;
989
990 if ((asoc = sctp_lookup_association(net, laddr, paddr, &transport))) {
991 sctp_transport_put(transport);
992 return 1;
993 }
994
995 return 0;
996 }
997
998 /*
999 * SCTP Implementors Guide, 2.18 Handling of address
1000 * parameters within the INIT or INIT-ACK.
1001 *
1002 * D) When searching for a matching TCB upon reception of an INIT
1003 * or INIT-ACK chunk the receiver SHOULD use not only the
1004 * source address of the packet (containing the INIT or
1005 * INIT-ACK) but the receiver SHOULD also use all valid
1006 * address parameters contained within the chunk.
1007 *
1008 * 2.18.3 Solution description
1009 *
1010 * This new text clearly specifies to an implementor the need
1011 * to look within the INIT or INIT-ACK. Any implementation that
1012 * does not do this, may not be able to establish associations
1013 * in certain circumstances.
1014 *
1015 */
__sctp_rcv_init_lookup(struct net * net,struct sk_buff * skb,const union sctp_addr * laddr,struct sctp_transport ** transportp)1016 static struct sctp_association *__sctp_rcv_init_lookup(struct net *net,
1017 struct sk_buff *skb,
1018 const union sctp_addr *laddr, struct sctp_transport **transportp)
1019 {
1020 struct sctp_association *asoc;
1021 union sctp_addr addr;
1022 union sctp_addr *paddr = &addr;
1023 struct sctphdr *sh = sctp_hdr(skb);
1024 union sctp_params params;
1025 sctp_init_chunk_t *init;
1026 struct sctp_af *af;
1027
1028 /*
1029 * This code will NOT touch anything inside the chunk--it is
1030 * strictly READ-ONLY.
1031 *
1032 * RFC 2960 3 SCTP packet Format
1033 *
1034 * Multiple chunks can be bundled into one SCTP packet up to
1035 * the MTU size, except for the INIT, INIT ACK, and SHUTDOWN
1036 * COMPLETE chunks. These chunks MUST NOT be bundled with any
1037 * other chunk in a packet. See Section 6.10 for more details
1038 * on chunk bundling.
1039 */
1040
1041 /* Find the start of the TLVs and the end of the chunk. This is
1042 * the region we search for address parameters.
1043 */
1044 init = (sctp_init_chunk_t *)skb->data;
1045
1046 /* Walk the parameters looking for embedded addresses. */
1047 sctp_walk_params(params, init, init_hdr.params) {
1048
1049 /* Note: Ignoring hostname addresses. */
1050 af = sctp_get_af_specific(param_type2af(params.p->type));
1051 if (!af)
1052 continue;
1053
1054 af->from_addr_param(paddr, params.addr, sh->source, 0);
1055
1056 asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
1057 if (asoc)
1058 return asoc;
1059 }
1060
1061 return NULL;
1062 }
1063
1064 /* ADD-IP, Section 5.2
1065 * When an endpoint receives an ASCONF Chunk from the remote peer
1066 * special procedures may be needed to identify the association the
1067 * ASCONF Chunk is associated with. To properly find the association
1068 * the following procedures SHOULD be followed:
1069 *
1070 * D2) If the association is not found, use the address found in the
1071 * Address Parameter TLV combined with the port number found in the
1072 * SCTP common header. If found proceed to rule D4.
1073 *
1074 * D2-ext) If more than one ASCONF Chunks are packed together, use the
1075 * address found in the ASCONF Address Parameter TLV of each of the
1076 * subsequent ASCONF Chunks. If found, proceed to rule D4.
1077 */
__sctp_rcv_asconf_lookup(struct net * net,sctp_chunkhdr_t * ch,const union sctp_addr * laddr,__be16 peer_port,struct sctp_transport ** transportp)1078 static struct sctp_association *__sctp_rcv_asconf_lookup(
1079 struct net *net,
1080 sctp_chunkhdr_t *ch,
1081 const union sctp_addr *laddr,
1082 __be16 peer_port,
1083 struct sctp_transport **transportp)
1084 {
1085 sctp_addip_chunk_t *asconf = (struct sctp_addip_chunk *)ch;
1086 struct sctp_af *af;
1087 union sctp_addr_param *param;
1088 union sctp_addr paddr;
1089
1090 /* Skip over the ADDIP header and find the Address parameter */
1091 param = (union sctp_addr_param *)(asconf + 1);
1092
1093 af = sctp_get_af_specific(param_type2af(param->p.type));
1094 if (unlikely(!af))
1095 return NULL;
1096
1097 af->from_addr_param(&paddr, param, peer_port, 0);
1098
1099 return __sctp_lookup_association(net, laddr, &paddr, transportp);
1100 }
1101
1102
1103 /* SCTP-AUTH, Section 6.3:
1104 * If the receiver does not find a STCB for a packet containing an AUTH
1105 * chunk as the first chunk and not a COOKIE-ECHO chunk as the second
1106 * chunk, it MUST use the chunks after the AUTH chunk to look up an existing
1107 * association.
1108 *
1109 * This means that any chunks that can help us identify the association need
1110 * to be looked at to find this association.
1111 */
__sctp_rcv_walk_lookup(struct net * net,struct sk_buff * skb,const union sctp_addr * laddr,struct sctp_transport ** transportp)1112 static struct sctp_association *__sctp_rcv_walk_lookup(struct net *net,
1113 struct sk_buff *skb,
1114 const union sctp_addr *laddr,
1115 struct sctp_transport **transportp)
1116 {
1117 struct sctp_association *asoc = NULL;
1118 sctp_chunkhdr_t *ch;
1119 int have_auth = 0;
1120 unsigned int chunk_num = 1;
1121 __u8 *ch_end;
1122
1123 /* Walk through the chunks looking for AUTH or ASCONF chunks
1124 * to help us find the association.
1125 */
1126 ch = (sctp_chunkhdr_t *) skb->data;
1127 do {
1128 /* Break out if chunk length is less then minimal. */
1129 if (ntohs(ch->length) < sizeof(sctp_chunkhdr_t))
1130 break;
1131
1132 ch_end = ((__u8 *)ch) + SCTP_PAD4(ntohs(ch->length));
1133 if (ch_end > skb_tail_pointer(skb))
1134 break;
1135
1136 switch (ch->type) {
1137 case SCTP_CID_AUTH:
1138 have_auth = chunk_num;
1139 break;
1140
1141 case SCTP_CID_COOKIE_ECHO:
1142 /* If a packet arrives containing an AUTH chunk as
1143 * a first chunk, a COOKIE-ECHO chunk as the second
1144 * chunk, and possibly more chunks after them, and
1145 * the receiver does not have an STCB for that
1146 * packet, then authentication is based on
1147 * the contents of the COOKIE- ECHO chunk.
1148 */
1149 if (have_auth == 1 && chunk_num == 2)
1150 return NULL;
1151 break;
1152
1153 case SCTP_CID_ASCONF:
1154 if (have_auth || net->sctp.addip_noauth)
1155 asoc = __sctp_rcv_asconf_lookup(
1156 net, ch, laddr,
1157 sctp_hdr(skb)->source,
1158 transportp);
1159 default:
1160 break;
1161 }
1162
1163 if (asoc)
1164 break;
1165
1166 ch = (sctp_chunkhdr_t *) ch_end;
1167 chunk_num++;
1168 } while (ch_end < skb_tail_pointer(skb));
1169
1170 return asoc;
1171 }
1172
1173 /*
1174 * There are circumstances when we need to look inside the SCTP packet
1175 * for information to help us find the association. Examples
1176 * include looking inside of INIT/INIT-ACK chunks or after the AUTH
1177 * chunks.
1178 */
__sctp_rcv_lookup_harder(struct net * net,struct sk_buff * skb,const union sctp_addr * laddr,struct sctp_transport ** transportp)1179 static struct sctp_association *__sctp_rcv_lookup_harder(struct net *net,
1180 struct sk_buff *skb,
1181 const union sctp_addr *laddr,
1182 struct sctp_transport **transportp)
1183 {
1184 sctp_chunkhdr_t *ch;
1185
1186 /* We do not allow GSO frames here as we need to linearize and
1187 * then cannot guarantee frame boundaries. This shouldn't be an
1188 * issue as packets hitting this are mostly INIT or INIT-ACK and
1189 * those cannot be on GSO-style anyway.
1190 */
1191 if ((skb_shinfo(skb)->gso_type & SKB_GSO_SCTP) == SKB_GSO_SCTP)
1192 return NULL;
1193
1194 ch = (sctp_chunkhdr_t *) skb->data;
1195
1196 /* The code below will attempt to walk the chunk and extract
1197 * parameter information. Before we do that, we need to verify
1198 * that the chunk length doesn't cause overflow. Otherwise, we'll
1199 * walk off the end.
1200 */
1201 if (SCTP_PAD4(ntohs(ch->length)) > skb->len)
1202 return NULL;
1203
1204 /* If this is INIT/INIT-ACK look inside the chunk too. */
1205 if (ch->type == SCTP_CID_INIT || ch->type == SCTP_CID_INIT_ACK)
1206 return __sctp_rcv_init_lookup(net, skb, laddr, transportp);
1207
1208 return __sctp_rcv_walk_lookup(net, skb, laddr, transportp);
1209 }
1210
1211 /* Lookup an association for an inbound skb. */
__sctp_rcv_lookup(struct net * net,struct sk_buff * skb,const union sctp_addr * paddr,const union sctp_addr * laddr,struct sctp_transport ** transportp)1212 static struct sctp_association *__sctp_rcv_lookup(struct net *net,
1213 struct sk_buff *skb,
1214 const union sctp_addr *paddr,
1215 const union sctp_addr *laddr,
1216 struct sctp_transport **transportp)
1217 {
1218 struct sctp_association *asoc;
1219
1220 asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
1221
1222 /* Further lookup for INIT/INIT-ACK packets.
1223 * SCTP Implementors Guide, 2.18 Handling of address
1224 * parameters within the INIT or INIT-ACK.
1225 */
1226 if (!asoc)
1227 asoc = __sctp_rcv_lookup_harder(net, skb, laddr, transportp);
1228
1229 return asoc;
1230 }
1231