• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Large capacity key type
2  *
3  * Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
4  * Copyright (C) 2013 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public Licence
9  * as published by the Free Software Foundation; either version
10  * 2 of the Licence, or (at your option) any later version.
11  */
12 
13 #define pr_fmt(fmt) "big_key: "fmt
14 #include <linux/init.h>
15 #include <linux/seq_file.h>
16 #include <linux/file.h>
17 #include <linux/shmem_fs.h>
18 #include <linux/err.h>
19 #include <linux/scatterlist.h>
20 #include <linux/random.h>
21 #include <keys/user-type.h>
22 #include <keys/big_key-type.h>
23 #include <crypto/aead.h>
24 
25 /*
26  * Layout of key payload words.
27  */
28 enum {
29 	big_key_data,
30 	big_key_path,
31 	big_key_path_2nd_part,
32 	big_key_len,
33 };
34 
35 /*
36  * Crypto operation with big_key data
37  */
38 enum big_key_op {
39 	BIG_KEY_ENC,
40 	BIG_KEY_DEC,
41 };
42 
43 /*
44  * If the data is under this limit, there's no point creating a shm file to
45  * hold it as the permanently resident metadata for the shmem fs will be at
46  * least as large as the data.
47  */
48 #define BIG_KEY_FILE_THRESHOLD (sizeof(struct inode) + sizeof(struct dentry))
49 
50 /*
51  * Key size for big_key data encryption
52  */
53 #define ENC_KEY_SIZE 32
54 
55 /*
56  * Authentication tag length
57  */
58 #define ENC_AUTHTAG_SIZE 16
59 
60 /*
61  * big_key defined keys take an arbitrary string as the description and an
62  * arbitrary blob of data as the payload
63  */
64 struct key_type key_type_big_key = {
65 	.name			= "big_key",
66 	.preparse		= big_key_preparse,
67 	.free_preparse		= big_key_free_preparse,
68 	.instantiate		= generic_key_instantiate,
69 	.revoke			= big_key_revoke,
70 	.destroy		= big_key_destroy,
71 	.describe		= big_key_describe,
72 	.read			= big_key_read,
73 	/* no ->update(); don't add it without changing big_key_crypt() nonce */
74 };
75 
76 /*
77  * Crypto names for big_key data authenticated encryption
78  */
79 static const char big_key_alg_name[] = "gcm(aes)";
80 
81 /*
82  * Crypto algorithms for big_key data authenticated encryption
83  */
84 static struct crypto_aead *big_key_aead;
85 
86 /*
87  * Since changing the key affects the entire object, we need a mutex.
88  */
89 static DEFINE_MUTEX(big_key_aead_lock);
90 
91 /*
92  * Encrypt/decrypt big_key data
93  */
big_key_crypt(enum big_key_op op,u8 * data,size_t datalen,u8 * key)94 static int big_key_crypt(enum big_key_op op, u8 *data, size_t datalen, u8 *key)
95 {
96 	int ret;
97 	struct scatterlist sgio;
98 	struct aead_request *aead_req;
99 	/* We always use a zero nonce. The reason we can get away with this is
100 	 * because we're using a different randomly generated key for every
101 	 * different encryption. Notably, too, key_type_big_key doesn't define
102 	 * an .update function, so there's no chance we'll wind up reusing the
103 	 * key to encrypt updated data. Simply put: one key, one encryption.
104 	 */
105 	u8 zero_nonce[crypto_aead_ivsize(big_key_aead)];
106 
107 	aead_req = aead_request_alloc(big_key_aead, GFP_KERNEL);
108 	if (!aead_req)
109 		return -ENOMEM;
110 
111 	memset(zero_nonce, 0, sizeof(zero_nonce));
112 	sg_init_one(&sgio, data, datalen + (op == BIG_KEY_ENC ? ENC_AUTHTAG_SIZE : 0));
113 	aead_request_set_crypt(aead_req, &sgio, &sgio, datalen, zero_nonce);
114 	aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
115 	aead_request_set_ad(aead_req, 0);
116 
117 	mutex_lock(&big_key_aead_lock);
118 	if (crypto_aead_setkey(big_key_aead, key, ENC_KEY_SIZE)) {
119 		ret = -EAGAIN;
120 		goto error;
121 	}
122 	if (op == BIG_KEY_ENC)
123 		ret = crypto_aead_encrypt(aead_req);
124 	else
125 		ret = crypto_aead_decrypt(aead_req);
126 error:
127 	mutex_unlock(&big_key_aead_lock);
128 	aead_request_free(aead_req);
129 	return ret;
130 }
131 
132 /*
133  * Preparse a big key
134  */
big_key_preparse(struct key_preparsed_payload * prep)135 int big_key_preparse(struct key_preparsed_payload *prep)
136 {
137 	struct path *path = (struct path *)&prep->payload.data[big_key_path];
138 	struct file *file;
139 	u8 *enckey;
140 	u8 *data = NULL;
141 	ssize_t written;
142 	size_t datalen = prep->datalen;
143 	int ret;
144 
145 	ret = -EINVAL;
146 	if (datalen <= 0 || datalen > 1024 * 1024 || !prep->data)
147 		goto error;
148 
149 	/* Set an arbitrary quota */
150 	prep->quotalen = 16;
151 
152 	prep->payload.data[big_key_len] = (void *)(unsigned long)datalen;
153 
154 	if (datalen > BIG_KEY_FILE_THRESHOLD) {
155 		/* Create a shmem file to store the data in.  This will permit the data
156 		 * to be swapped out if needed.
157 		 *
158 		 * File content is stored encrypted with randomly generated key.
159 		 */
160 		size_t enclen = datalen + ENC_AUTHTAG_SIZE;
161 
162 		data = kmalloc(enclen, GFP_KERNEL);
163 		if (!data)
164 			return -ENOMEM;
165 
166 		memcpy(data, prep->data, datalen);
167 
168 		/* generate random key */
169 		enckey = kmalloc(ENC_KEY_SIZE, GFP_KERNEL);
170 		if (!enckey) {
171 			ret = -ENOMEM;
172 			goto error;
173 		}
174 		get_random_bytes(enckey, ENC_KEY_SIZE);
175 
176 		/* encrypt aligned data */
177 		ret = big_key_crypt(BIG_KEY_ENC, data, datalen, enckey);
178 		if (ret)
179 			goto err_enckey;
180 
181 		/* save aligned data to file */
182 		file = shmem_kernel_file_setup("", enclen, 0);
183 		if (IS_ERR(file)) {
184 			ret = PTR_ERR(file);
185 			goto err_enckey;
186 		}
187 
188 		written = kernel_write(file, data, enclen, 0);
189 		if (written != enclen) {
190 			ret = written;
191 			if (written >= 0)
192 				ret = -ENOMEM;
193 			goto err_fput;
194 		}
195 
196 		/* Pin the mount and dentry to the key so that we can open it again
197 		 * later
198 		 */
199 		prep->payload.data[big_key_data] = enckey;
200 		*path = file->f_path;
201 		path_get(path);
202 		fput(file);
203 		kzfree(data);
204 	} else {
205 		/* Just store the data in a buffer */
206 		void *data = kmalloc(datalen, GFP_KERNEL);
207 
208 		if (!data)
209 			return -ENOMEM;
210 
211 		prep->payload.data[big_key_data] = data;
212 		memcpy(data, prep->data, prep->datalen);
213 	}
214 	return 0;
215 
216 err_fput:
217 	fput(file);
218 err_enckey:
219 	kzfree(enckey);
220 error:
221 	kzfree(data);
222 	return ret;
223 }
224 
225 /*
226  * Clear preparsement.
227  */
big_key_free_preparse(struct key_preparsed_payload * prep)228 void big_key_free_preparse(struct key_preparsed_payload *prep)
229 {
230 	if (prep->datalen > BIG_KEY_FILE_THRESHOLD) {
231 		struct path *path = (struct path *)&prep->payload.data[big_key_path];
232 
233 		path_put(path);
234 	}
235 	kzfree(prep->payload.data[big_key_data]);
236 }
237 
238 /*
239  * dispose of the links from a revoked keyring
240  * - called with the key sem write-locked
241  */
big_key_revoke(struct key * key)242 void big_key_revoke(struct key *key)
243 {
244 	struct path *path = (struct path *)&key->payload.data[big_key_path];
245 
246 	/* clear the quota */
247 	key_payload_reserve(key, 0);
248 	if (key_is_positive(key) &&
249 	    (size_t)key->payload.data[big_key_len] > BIG_KEY_FILE_THRESHOLD)
250 		vfs_truncate(path, 0);
251 }
252 
253 /*
254  * dispose of the data dangling from the corpse of a big_key key
255  */
big_key_destroy(struct key * key)256 void big_key_destroy(struct key *key)
257 {
258 	size_t datalen = (size_t)key->payload.data[big_key_len];
259 
260 	if (datalen > BIG_KEY_FILE_THRESHOLD) {
261 		struct path *path = (struct path *)&key->payload.data[big_key_path];
262 
263 		path_put(path);
264 		path->mnt = NULL;
265 		path->dentry = NULL;
266 	}
267 	kzfree(key->payload.data[big_key_data]);
268 	key->payload.data[big_key_data] = NULL;
269 }
270 
271 /*
272  * describe the big_key key
273  */
big_key_describe(const struct key * key,struct seq_file * m)274 void big_key_describe(const struct key *key, struct seq_file *m)
275 {
276 	size_t datalen = (size_t)key->payload.data[big_key_len];
277 
278 	seq_puts(m, key->description);
279 
280 	if (key_is_positive(key))
281 		seq_printf(m, ": %zu [%s]",
282 			   datalen,
283 			   datalen > BIG_KEY_FILE_THRESHOLD ? "file" : "buff");
284 }
285 
286 /*
287  * read the key data
288  * - the key's semaphore is read-locked
289  */
big_key_read(const struct key * key,char __user * buffer,size_t buflen)290 long big_key_read(const struct key *key, char __user *buffer, size_t buflen)
291 {
292 	size_t datalen = (size_t)key->payload.data[big_key_len];
293 	long ret;
294 
295 	if (!buffer || buflen < datalen)
296 		return datalen;
297 
298 	if (datalen > BIG_KEY_FILE_THRESHOLD) {
299 		struct path *path = (struct path *)&key->payload.data[big_key_path];
300 		struct file *file;
301 		u8 *data;
302 		u8 *enckey = (u8 *)key->payload.data[big_key_data];
303 		size_t enclen = datalen + ENC_AUTHTAG_SIZE;
304 
305 		data = kmalloc(enclen, GFP_KERNEL);
306 		if (!data)
307 			return -ENOMEM;
308 
309 		file = dentry_open(path, O_RDONLY, current_cred());
310 		if (IS_ERR(file)) {
311 			ret = PTR_ERR(file);
312 			goto error;
313 		}
314 
315 		/* read file to kernel and decrypt */
316 		ret = kernel_read(file, 0, data, enclen);
317 		if (ret >= 0 && ret != enclen) {
318 			ret = -EIO;
319 			goto err_fput;
320 		}
321 
322 		ret = big_key_crypt(BIG_KEY_DEC, data, enclen, enckey);
323 		if (ret)
324 			goto err_fput;
325 
326 		ret = datalen;
327 
328 		/* copy decrypted data to user */
329 		if (copy_to_user(buffer, data, datalen) != 0)
330 			ret = -EFAULT;
331 
332 err_fput:
333 		fput(file);
334 error:
335 		kzfree(data);
336 	} else {
337 		ret = datalen;
338 		if (copy_to_user(buffer, key->payload.data[big_key_data],
339 				 datalen) != 0)
340 			ret = -EFAULT;
341 	}
342 
343 	return ret;
344 }
345 
346 /*
347  * Register key type
348  */
big_key_init(void)349 static int __init big_key_init(void)
350 {
351 	int ret;
352 
353 	/* init block cipher */
354 	big_key_aead = crypto_alloc_aead(big_key_alg_name, 0, CRYPTO_ALG_ASYNC);
355 	if (IS_ERR(big_key_aead)) {
356 		ret = PTR_ERR(big_key_aead);
357 		pr_err("Can't alloc crypto: %d\n", ret);
358 		return ret;
359 	}
360 	ret = crypto_aead_setauthsize(big_key_aead, ENC_AUTHTAG_SIZE);
361 	if (ret < 0) {
362 		pr_err("Can't set crypto auth tag len: %d\n", ret);
363 		goto free_aead;
364 	}
365 
366 	ret = register_key_type(&key_type_big_key);
367 	if (ret < 0) {
368 		pr_err("Can't register type: %d\n", ret);
369 		goto free_aead;
370 	}
371 
372 	return 0;
373 
374 free_aead:
375 	crypto_free_aead(big_key_aead);
376 	return ret;
377 }
378 
379 late_initcall(big_key_init);
380