• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Basic authentication token and access key management
2  *
3  * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
4  * Written by David Howells (dhowells@redhat.com)
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/poison.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/security.h>
18 #include <linux/workqueue.h>
19 #include <linux/random.h>
20 #include <linux/err.h>
21 #include "internal.h"
22 
23 struct kmem_cache *key_jar;
24 struct rb_root		key_serial_tree; /* tree of keys indexed by serial */
25 DEFINE_SPINLOCK(key_serial_lock);
26 
27 struct rb_root	key_user_tree; /* tree of quota records indexed by UID */
28 DEFINE_SPINLOCK(key_user_lock);
29 
30 unsigned int key_quota_root_maxkeys = 1000000;	/* root's key count quota */
31 unsigned int key_quota_root_maxbytes = 25000000; /* root's key space quota */
32 unsigned int key_quota_maxkeys = 200;		/* general key count quota */
33 unsigned int key_quota_maxbytes = 20000;	/* general key space quota */
34 
35 static LIST_HEAD(key_types_list);
36 static DECLARE_RWSEM(key_types_sem);
37 
38 /* We serialise key instantiation and link */
39 DEFINE_MUTEX(key_construction_mutex);
40 
41 #ifdef KEY_DEBUGGING
__key_check(const struct key * key)42 void __key_check(const struct key *key)
43 {
44 	printk("__key_check: key %p {%08x} should be {%08x}\n",
45 	       key, key->magic, KEY_DEBUG_MAGIC);
46 	BUG();
47 }
48 #endif
49 
50 /*
51  * Get the key quota record for a user, allocating a new record if one doesn't
52  * already exist.
53  */
key_user_lookup(kuid_t uid)54 struct key_user *key_user_lookup(kuid_t uid)
55 {
56 	struct key_user *candidate = NULL, *user;
57 	struct rb_node *parent = NULL;
58 	struct rb_node **p;
59 
60 try_again:
61 	p = &key_user_tree.rb_node;
62 	spin_lock(&key_user_lock);
63 
64 	/* search the tree for a user record with a matching UID */
65 	while (*p) {
66 		parent = *p;
67 		user = rb_entry(parent, struct key_user, node);
68 
69 		if (uid_lt(uid, user->uid))
70 			p = &(*p)->rb_left;
71 		else if (uid_gt(uid, user->uid))
72 			p = &(*p)->rb_right;
73 		else
74 			goto found;
75 	}
76 
77 	/* if we get here, we failed to find a match in the tree */
78 	if (!candidate) {
79 		/* allocate a candidate user record if we don't already have
80 		 * one */
81 		spin_unlock(&key_user_lock);
82 
83 		user = NULL;
84 		candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
85 		if (unlikely(!candidate))
86 			goto out;
87 
88 		/* the allocation may have scheduled, so we need to repeat the
89 		 * search lest someone else added the record whilst we were
90 		 * asleep */
91 		goto try_again;
92 	}
93 
94 	/* if we get here, then the user record still hadn't appeared on the
95 	 * second pass - so we use the candidate record */
96 	atomic_set(&candidate->usage, 1);
97 	atomic_set(&candidate->nkeys, 0);
98 	atomic_set(&candidate->nikeys, 0);
99 	candidate->uid = uid;
100 	candidate->qnkeys = 0;
101 	candidate->qnbytes = 0;
102 	spin_lock_init(&candidate->lock);
103 	mutex_init(&candidate->cons_lock);
104 
105 	rb_link_node(&candidate->node, parent, p);
106 	rb_insert_color(&candidate->node, &key_user_tree);
107 	spin_unlock(&key_user_lock);
108 	user = candidate;
109 	goto out;
110 
111 	/* okay - we found a user record for this UID */
112 found:
113 	atomic_inc(&user->usage);
114 	spin_unlock(&key_user_lock);
115 	kfree(candidate);
116 out:
117 	return user;
118 }
119 
120 /*
121  * Dispose of a user structure
122  */
key_user_put(struct key_user * user)123 void key_user_put(struct key_user *user)
124 {
125 	if (atomic_dec_and_lock(&user->usage, &key_user_lock)) {
126 		rb_erase(&user->node, &key_user_tree);
127 		spin_unlock(&key_user_lock);
128 
129 		kfree(user);
130 	}
131 }
132 
133 /*
134  * Allocate a serial number for a key.  These are assigned randomly to avoid
135  * security issues through covert channel problems.
136  */
key_alloc_serial(struct key * key)137 static inline void key_alloc_serial(struct key *key)
138 {
139 	struct rb_node *parent, **p;
140 	struct key *xkey;
141 
142 	/* propose a random serial number and look for a hole for it in the
143 	 * serial number tree */
144 	do {
145 		get_random_bytes(&key->serial, sizeof(key->serial));
146 
147 		key->serial >>= 1; /* negative numbers are not permitted */
148 	} while (key->serial < 3);
149 
150 	spin_lock(&key_serial_lock);
151 
152 attempt_insertion:
153 	parent = NULL;
154 	p = &key_serial_tree.rb_node;
155 
156 	while (*p) {
157 		parent = *p;
158 		xkey = rb_entry(parent, struct key, serial_node);
159 
160 		if (key->serial < xkey->serial)
161 			p = &(*p)->rb_left;
162 		else if (key->serial > xkey->serial)
163 			p = &(*p)->rb_right;
164 		else
165 			goto serial_exists;
166 	}
167 
168 	/* we've found a suitable hole - arrange for this key to occupy it */
169 	rb_link_node(&key->serial_node, parent, p);
170 	rb_insert_color(&key->serial_node, &key_serial_tree);
171 
172 	spin_unlock(&key_serial_lock);
173 	return;
174 
175 	/* we found a key with the proposed serial number - walk the tree from
176 	 * that point looking for the next unused serial number */
177 serial_exists:
178 	for (;;) {
179 		key->serial++;
180 		if (key->serial < 3) {
181 			key->serial = 3;
182 			goto attempt_insertion;
183 		}
184 
185 		parent = rb_next(parent);
186 		if (!parent)
187 			goto attempt_insertion;
188 
189 		xkey = rb_entry(parent, struct key, serial_node);
190 		if (key->serial < xkey->serial)
191 			goto attempt_insertion;
192 	}
193 }
194 
195 /**
196  * key_alloc - Allocate a key of the specified type.
197  * @type: The type of key to allocate.
198  * @desc: The key description to allow the key to be searched out.
199  * @uid: The owner of the new key.
200  * @gid: The group ID for the new key's group permissions.
201  * @cred: The credentials specifying UID namespace.
202  * @perm: The permissions mask of the new key.
203  * @flags: Flags specifying quota properties.
204  * @restrict_link: Optional link restriction method for new keyrings.
205  *
206  * Allocate a key of the specified type with the attributes given.  The key is
207  * returned in an uninstantiated state and the caller needs to instantiate the
208  * key before returning.
209  *
210  * The user's key count quota is updated to reflect the creation of the key and
211  * the user's key data quota has the default for the key type reserved.  The
212  * instantiation function should amend this as necessary.  If insufficient
213  * quota is available, -EDQUOT will be returned.
214  *
215  * The LSM security modules can prevent a key being created, in which case
216  * -EACCES will be returned.
217  *
218  * Returns a pointer to the new key if successful and an error code otherwise.
219  *
220  * Note that the caller needs to ensure the key type isn't uninstantiated.
221  * Internally this can be done by locking key_types_sem.  Externally, this can
222  * be done by either never unregistering the key type, or making sure
223  * key_alloc() calls don't race with module unloading.
224  */
key_alloc(struct key_type * type,const char * desc,kuid_t uid,kgid_t gid,const struct cred * cred,key_perm_t perm,unsigned long flags,int (* restrict_link)(struct key *,const struct key_type *,const union key_payload *))225 struct key *key_alloc(struct key_type *type, const char *desc,
226 		      kuid_t uid, kgid_t gid, const struct cred *cred,
227 		      key_perm_t perm, unsigned long flags,
228 		      int (*restrict_link)(struct key *,
229 					   const struct key_type *,
230 					   const union key_payload *))
231 {
232 	struct key_user *user = NULL;
233 	struct key *key;
234 	size_t desclen, quotalen;
235 	int ret;
236 
237 	key = ERR_PTR(-EINVAL);
238 	if (!desc || !*desc)
239 		goto error;
240 
241 	if (type->vet_description) {
242 		ret = type->vet_description(desc);
243 		if (ret < 0) {
244 			key = ERR_PTR(ret);
245 			goto error;
246 		}
247 	}
248 
249 	desclen = strlen(desc);
250 	quotalen = desclen + 1 + type->def_datalen;
251 
252 	/* get hold of the key tracking for this user */
253 	user = key_user_lookup(uid);
254 	if (!user)
255 		goto no_memory_1;
256 
257 	/* check that the user's quota permits allocation of another key and
258 	 * its description */
259 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
260 		unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ?
261 			key_quota_root_maxkeys : key_quota_maxkeys;
262 		unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ?
263 			key_quota_root_maxbytes : key_quota_maxbytes;
264 
265 		spin_lock(&user->lock);
266 		if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
267 			if (user->qnkeys + 1 >= maxkeys ||
268 			    user->qnbytes + quotalen >= maxbytes ||
269 			    user->qnbytes + quotalen < user->qnbytes)
270 				goto no_quota;
271 		}
272 
273 		user->qnkeys++;
274 		user->qnbytes += quotalen;
275 		spin_unlock(&user->lock);
276 	}
277 
278 	/* allocate and initialise the key and its description */
279 	key = kmem_cache_zalloc(key_jar, GFP_KERNEL);
280 	if (!key)
281 		goto no_memory_2;
282 
283 	key->index_key.desc_len = desclen;
284 	key->index_key.description = kmemdup(desc, desclen + 1, GFP_KERNEL);
285 	if (!key->index_key.description)
286 		goto no_memory_3;
287 
288 	atomic_set(&key->usage, 1);
289 	init_rwsem(&key->sem);
290 	lockdep_set_class(&key->sem, &type->lock_class);
291 	key->index_key.type = type;
292 	key->user = user;
293 	key->quotalen = quotalen;
294 	key->datalen = type->def_datalen;
295 	key->uid = uid;
296 	key->gid = gid;
297 	key->perm = perm;
298 	key->restrict_link = restrict_link;
299 
300 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
301 		key->flags |= 1 << KEY_FLAG_IN_QUOTA;
302 	if (flags & KEY_ALLOC_BUILT_IN)
303 		key->flags |= 1 << KEY_FLAG_BUILTIN;
304 	if (flags & KEY_ALLOC_UID_KEYRING)
305 		key->flags |= 1 << KEY_FLAG_UID_KEYRING;
306 
307 #ifdef KEY_DEBUGGING
308 	key->magic = KEY_DEBUG_MAGIC;
309 #endif
310 
311 	/* let the security module know about the key */
312 	ret = security_key_alloc(key, cred, flags);
313 	if (ret < 0)
314 		goto security_error;
315 
316 	/* publish the key by giving it a serial number */
317 	atomic_inc(&user->nkeys);
318 	key_alloc_serial(key);
319 
320 error:
321 	return key;
322 
323 security_error:
324 	kfree(key->description);
325 	kmem_cache_free(key_jar, key);
326 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
327 		spin_lock(&user->lock);
328 		user->qnkeys--;
329 		user->qnbytes -= quotalen;
330 		spin_unlock(&user->lock);
331 	}
332 	key_user_put(user);
333 	key = ERR_PTR(ret);
334 	goto error;
335 
336 no_memory_3:
337 	kmem_cache_free(key_jar, key);
338 no_memory_2:
339 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
340 		spin_lock(&user->lock);
341 		user->qnkeys--;
342 		user->qnbytes -= quotalen;
343 		spin_unlock(&user->lock);
344 	}
345 	key_user_put(user);
346 no_memory_1:
347 	key = ERR_PTR(-ENOMEM);
348 	goto error;
349 
350 no_quota:
351 	spin_unlock(&user->lock);
352 	key_user_put(user);
353 	key = ERR_PTR(-EDQUOT);
354 	goto error;
355 }
356 EXPORT_SYMBOL(key_alloc);
357 
358 /**
359  * key_payload_reserve - Adjust data quota reservation for the key's payload
360  * @key: The key to make the reservation for.
361  * @datalen: The amount of data payload the caller now wants.
362  *
363  * Adjust the amount of the owning user's key data quota that a key reserves.
364  * If the amount is increased, then -EDQUOT may be returned if there isn't
365  * enough free quota available.
366  *
367  * If successful, 0 is returned.
368  */
key_payload_reserve(struct key * key,size_t datalen)369 int key_payload_reserve(struct key *key, size_t datalen)
370 {
371 	int delta = (int)datalen - key->datalen;
372 	int ret = 0;
373 
374 	key_check(key);
375 
376 	/* contemplate the quota adjustment */
377 	if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
378 		unsigned maxbytes = uid_eq(key->user->uid, GLOBAL_ROOT_UID) ?
379 			key_quota_root_maxbytes : key_quota_maxbytes;
380 
381 		spin_lock(&key->user->lock);
382 
383 		if (delta > 0 &&
384 		    (key->user->qnbytes + delta >= maxbytes ||
385 		     key->user->qnbytes + delta < key->user->qnbytes)) {
386 			ret = -EDQUOT;
387 		}
388 		else {
389 			key->user->qnbytes += delta;
390 			key->quotalen += delta;
391 		}
392 		spin_unlock(&key->user->lock);
393 	}
394 
395 	/* change the recorded data length if that didn't generate an error */
396 	if (ret == 0)
397 		key->datalen = datalen;
398 
399 	return ret;
400 }
401 EXPORT_SYMBOL(key_payload_reserve);
402 
403 /*
404  * Change the key state to being instantiated.
405  */
mark_key_instantiated(struct key * key,int reject_error)406 static void mark_key_instantiated(struct key *key, int reject_error)
407 {
408 	/* Commit the payload before setting the state; barrier versus
409 	 * key_read_state().
410 	 */
411 	smp_store_release(&key->state,
412 			  (reject_error < 0) ? reject_error : KEY_IS_POSITIVE);
413 }
414 
415 /*
416  * Instantiate a key and link it into the target keyring atomically.  Must be
417  * called with the target keyring's semaphore writelocked.  The target key's
418  * semaphore need not be locked as instantiation is serialised by
419  * key_construction_mutex.
420  */
__key_instantiate_and_link(struct key * key,struct key_preparsed_payload * prep,struct key * keyring,struct key * authkey,struct assoc_array_edit ** _edit)421 static int __key_instantiate_and_link(struct key *key,
422 				      struct key_preparsed_payload *prep,
423 				      struct key *keyring,
424 				      struct key *authkey,
425 				      struct assoc_array_edit **_edit)
426 {
427 	int ret, awaken;
428 
429 	key_check(key);
430 	key_check(keyring);
431 
432 	awaken = 0;
433 	ret = -EBUSY;
434 
435 	mutex_lock(&key_construction_mutex);
436 
437 	/* can't instantiate twice */
438 	if (key->state == KEY_IS_UNINSTANTIATED) {
439 		/* instantiate the key */
440 		ret = key->type->instantiate(key, prep);
441 
442 		if (ret == 0) {
443 			/* mark the key as being instantiated */
444 			atomic_inc(&key->user->nikeys);
445 			mark_key_instantiated(key, 0);
446 
447 			if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
448 				awaken = 1;
449 
450 			/* and link it into the destination keyring */
451 			if (keyring) {
452 				if (test_bit(KEY_FLAG_KEEP, &keyring->flags))
453 					set_bit(KEY_FLAG_KEEP, &key->flags);
454 
455 				__key_link(key, _edit);
456 			}
457 
458 			/* disable the authorisation key */
459 			if (authkey)
460 				key_revoke(authkey);
461 
462 			if (prep->expiry != TIME_T_MAX) {
463 				key->expiry = prep->expiry;
464 				key_schedule_gc(prep->expiry + key_gc_delay);
465 			}
466 		}
467 	}
468 
469 	mutex_unlock(&key_construction_mutex);
470 
471 	/* wake up anyone waiting for a key to be constructed */
472 	if (awaken)
473 		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
474 
475 	return ret;
476 }
477 
478 /**
479  * key_instantiate_and_link - Instantiate a key and link it into the keyring.
480  * @key: The key to instantiate.
481  * @data: The data to use to instantiate the keyring.
482  * @datalen: The length of @data.
483  * @keyring: Keyring to create a link in on success (or NULL).
484  * @authkey: The authorisation token permitting instantiation.
485  *
486  * Instantiate a key that's in the uninstantiated state using the provided data
487  * and, if successful, link it in to the destination keyring if one is
488  * supplied.
489  *
490  * If successful, 0 is returned, the authorisation token is revoked and anyone
491  * waiting for the key is woken up.  If the key was already instantiated,
492  * -EBUSY will be returned.
493  */
key_instantiate_and_link(struct key * key,const void * data,size_t datalen,struct key * keyring,struct key * authkey)494 int key_instantiate_and_link(struct key *key,
495 			     const void *data,
496 			     size_t datalen,
497 			     struct key *keyring,
498 			     struct key *authkey)
499 {
500 	struct key_preparsed_payload prep;
501 	struct assoc_array_edit *edit;
502 	int ret;
503 
504 	memset(&prep, 0, sizeof(prep));
505 	prep.data = data;
506 	prep.datalen = datalen;
507 	prep.quotalen = key->type->def_datalen;
508 	prep.expiry = TIME_T_MAX;
509 	if (key->type->preparse) {
510 		ret = key->type->preparse(&prep);
511 		if (ret < 0)
512 			goto error;
513 	}
514 
515 	if (keyring) {
516 		if (keyring->restrict_link) {
517 			ret = keyring->restrict_link(keyring, key->type,
518 						     &prep.payload);
519 			if (ret < 0)
520 				goto error;
521 		}
522 		ret = __key_link_begin(keyring, &key->index_key, &edit);
523 		if (ret < 0)
524 			goto error;
525 	}
526 
527 	ret = __key_instantiate_and_link(key, &prep, keyring, authkey, &edit);
528 
529 	if (keyring)
530 		__key_link_end(keyring, &key->index_key, edit);
531 
532 error:
533 	if (key->type->preparse)
534 		key->type->free_preparse(&prep);
535 	return ret;
536 }
537 
538 EXPORT_SYMBOL(key_instantiate_and_link);
539 
540 /**
541  * key_reject_and_link - Negatively instantiate a key and link it into the keyring.
542  * @key: The key to instantiate.
543  * @timeout: The timeout on the negative key.
544  * @error: The error to return when the key is hit.
545  * @keyring: Keyring to create a link in on success (or NULL).
546  * @authkey: The authorisation token permitting instantiation.
547  *
548  * Negatively instantiate a key that's in the uninstantiated state and, if
549  * successful, set its timeout and stored error and link it in to the
550  * destination keyring if one is supplied.  The key and any links to the key
551  * will be automatically garbage collected after the timeout expires.
552  *
553  * Negative keys are used to rate limit repeated request_key() calls by causing
554  * them to return the stored error code (typically ENOKEY) until the negative
555  * key expires.
556  *
557  * If successful, 0 is returned, the authorisation token is revoked and anyone
558  * waiting for the key is woken up.  If the key was already instantiated,
559  * -EBUSY will be returned.
560  */
key_reject_and_link(struct key * key,unsigned timeout,unsigned error,struct key * keyring,struct key * authkey)561 int key_reject_and_link(struct key *key,
562 			unsigned timeout,
563 			unsigned error,
564 			struct key *keyring,
565 			struct key *authkey)
566 {
567 	struct assoc_array_edit *edit;
568 	struct timespec now;
569 	int ret, awaken, link_ret = 0;
570 
571 	key_check(key);
572 	key_check(keyring);
573 
574 	awaken = 0;
575 	ret = -EBUSY;
576 
577 	if (keyring) {
578 		if (keyring->restrict_link)
579 			return -EPERM;
580 
581 		link_ret = __key_link_begin(keyring, &key->index_key, &edit);
582 	}
583 
584 	mutex_lock(&key_construction_mutex);
585 
586 	/* can't instantiate twice */
587 	if (key->state == KEY_IS_UNINSTANTIATED) {
588 		/* mark the key as being negatively instantiated */
589 		atomic_inc(&key->user->nikeys);
590 		mark_key_instantiated(key, -error);
591 		now = current_kernel_time();
592 		key->expiry = now.tv_sec + timeout;
593 		key_schedule_gc(key->expiry + key_gc_delay);
594 
595 		if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
596 			awaken = 1;
597 
598 		ret = 0;
599 
600 		/* and link it into the destination keyring */
601 		if (keyring && link_ret == 0)
602 			__key_link(key, &edit);
603 
604 		/* disable the authorisation key */
605 		if (authkey)
606 			key_revoke(authkey);
607 	}
608 
609 	mutex_unlock(&key_construction_mutex);
610 
611 	if (keyring && link_ret == 0)
612 		__key_link_end(keyring, &key->index_key, edit);
613 
614 	/* wake up anyone waiting for a key to be constructed */
615 	if (awaken)
616 		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
617 
618 	return ret == 0 ? link_ret : ret;
619 }
620 EXPORT_SYMBOL(key_reject_and_link);
621 
622 /**
623  * key_put - Discard a reference to a key.
624  * @key: The key to discard a reference from.
625  *
626  * Discard a reference to a key, and when all the references are gone, we
627  * schedule the cleanup task to come and pull it out of the tree in process
628  * context at some later time.
629  */
key_put(struct key * key)630 void key_put(struct key *key)
631 {
632 	if (key) {
633 		key_check(key);
634 
635 		if (atomic_dec_and_test(&key->usage))
636 			schedule_work(&key_gc_work);
637 	}
638 }
639 EXPORT_SYMBOL(key_put);
640 
641 /*
642  * Find a key by its serial number.
643  */
key_lookup(key_serial_t id)644 struct key *key_lookup(key_serial_t id)
645 {
646 	struct rb_node *n;
647 	struct key *key;
648 
649 	spin_lock(&key_serial_lock);
650 
651 	/* search the tree for the specified key */
652 	n = key_serial_tree.rb_node;
653 	while (n) {
654 		key = rb_entry(n, struct key, serial_node);
655 
656 		if (id < key->serial)
657 			n = n->rb_left;
658 		else if (id > key->serial)
659 			n = n->rb_right;
660 		else
661 			goto found;
662 	}
663 
664 not_found:
665 	key = ERR_PTR(-ENOKEY);
666 	goto error;
667 
668 found:
669 	/* pretend it doesn't exist if it is awaiting deletion */
670 	if (atomic_read(&key->usage) == 0)
671 		goto not_found;
672 
673 	/* this races with key_put(), but that doesn't matter since key_put()
674 	 * doesn't actually change the key
675 	 */
676 	__key_get(key);
677 
678 error:
679 	spin_unlock(&key_serial_lock);
680 	return key;
681 }
682 
683 /*
684  * Find and lock the specified key type against removal.
685  *
686  * We return with the sem read-locked if successful.  If the type wasn't
687  * available -ENOKEY is returned instead.
688  */
key_type_lookup(const char * type)689 struct key_type *key_type_lookup(const char *type)
690 {
691 	struct key_type *ktype;
692 
693 	down_read(&key_types_sem);
694 
695 	/* look up the key type to see if it's one of the registered kernel
696 	 * types */
697 	list_for_each_entry(ktype, &key_types_list, link) {
698 		if (strcmp(ktype->name, type) == 0)
699 			goto found_kernel_type;
700 	}
701 
702 	up_read(&key_types_sem);
703 	ktype = ERR_PTR(-ENOKEY);
704 
705 found_kernel_type:
706 	return ktype;
707 }
708 
key_set_timeout(struct key * key,unsigned timeout)709 void key_set_timeout(struct key *key, unsigned timeout)
710 {
711 	struct timespec now;
712 	time_t expiry = 0;
713 
714 	/* make the changes with the locks held to prevent races */
715 	down_write(&key->sem);
716 
717 	if (timeout > 0) {
718 		now = current_kernel_time();
719 		expiry = now.tv_sec + timeout;
720 	}
721 
722 	key->expiry = expiry;
723 	key_schedule_gc(key->expiry + key_gc_delay);
724 
725 	up_write(&key->sem);
726 }
727 EXPORT_SYMBOL_GPL(key_set_timeout);
728 
729 /*
730  * Unlock a key type locked by key_type_lookup().
731  */
key_type_put(struct key_type * ktype)732 void key_type_put(struct key_type *ktype)
733 {
734 	up_read(&key_types_sem);
735 }
736 
737 /*
738  * Attempt to update an existing key.
739  *
740  * The key is given to us with an incremented refcount that we need to discard
741  * if we get an error.
742  */
__key_update(key_ref_t key_ref,struct key_preparsed_payload * prep)743 static inline key_ref_t __key_update(key_ref_t key_ref,
744 				     struct key_preparsed_payload *prep)
745 {
746 	struct key *key = key_ref_to_ptr(key_ref);
747 	int ret;
748 
749 	/* need write permission on the key to update it */
750 	ret = key_permission(key_ref, KEY_NEED_WRITE);
751 	if (ret < 0)
752 		goto error;
753 
754 	ret = -EEXIST;
755 	if (!key->type->update)
756 		goto error;
757 
758 	down_write(&key->sem);
759 
760 	ret = key->type->update(key, prep);
761 	if (ret == 0)
762 		/* Updating a negative key positively instantiates it */
763 		mark_key_instantiated(key, 0);
764 
765 	up_write(&key->sem);
766 
767 	if (ret < 0)
768 		goto error;
769 out:
770 	return key_ref;
771 
772 error:
773 	key_put(key);
774 	key_ref = ERR_PTR(ret);
775 	goto out;
776 }
777 
778 /**
779  * key_create_or_update - Update or create and instantiate a key.
780  * @keyring_ref: A pointer to the destination keyring with possession flag.
781  * @type: The type of key.
782  * @description: The searchable description for the key.
783  * @payload: The data to use to instantiate or update the key.
784  * @plen: The length of @payload.
785  * @perm: The permissions mask for a new key.
786  * @flags: The quota flags for a new key.
787  *
788  * Search the destination keyring for a key of the same description and if one
789  * is found, update it, otherwise create and instantiate a new one and create a
790  * link to it from that keyring.
791  *
792  * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
793  * concocted.
794  *
795  * Returns a pointer to the new key if successful, -ENODEV if the key type
796  * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
797  * caller isn't permitted to modify the keyring or the LSM did not permit
798  * creation of the key.
799  *
800  * On success, the possession flag from the keyring ref will be tacked on to
801  * the key ref before it is returned.
802  */
key_create_or_update(key_ref_t keyring_ref,const char * type,const char * description,const void * payload,size_t plen,key_perm_t perm,unsigned long flags)803 key_ref_t key_create_or_update(key_ref_t keyring_ref,
804 			       const char *type,
805 			       const char *description,
806 			       const void *payload,
807 			       size_t plen,
808 			       key_perm_t perm,
809 			       unsigned long flags)
810 {
811 	struct keyring_index_key index_key = {
812 		.description	= description,
813 	};
814 	struct key_preparsed_payload prep;
815 	struct assoc_array_edit *edit;
816 	const struct cred *cred = current_cred();
817 	struct key *keyring, *key = NULL;
818 	key_ref_t key_ref;
819 	int ret;
820 	int (*restrict_link)(struct key *,
821 			     const struct key_type *,
822 			     const union key_payload *) = NULL;
823 
824 	/* look up the key type to see if it's one of the registered kernel
825 	 * types */
826 	index_key.type = key_type_lookup(type);
827 	if (IS_ERR(index_key.type)) {
828 		key_ref = ERR_PTR(-ENODEV);
829 		goto error;
830 	}
831 
832 	key_ref = ERR_PTR(-EINVAL);
833 	if (!index_key.type->instantiate ||
834 	    (!index_key.description && !index_key.type->preparse))
835 		goto error_put_type;
836 
837 	keyring = key_ref_to_ptr(keyring_ref);
838 
839 	key_check(keyring);
840 
841 	key_ref = ERR_PTR(-EPERM);
842 	if (!(flags & KEY_ALLOC_BYPASS_RESTRICTION))
843 		restrict_link = keyring->restrict_link;
844 
845 	key_ref = ERR_PTR(-ENOTDIR);
846 	if (keyring->type != &key_type_keyring)
847 		goto error_put_type;
848 
849 	memset(&prep, 0, sizeof(prep));
850 	prep.data = payload;
851 	prep.datalen = plen;
852 	prep.quotalen = index_key.type->def_datalen;
853 	prep.expiry = TIME_T_MAX;
854 	if (index_key.type->preparse) {
855 		ret = index_key.type->preparse(&prep);
856 		if (ret < 0) {
857 			key_ref = ERR_PTR(ret);
858 			goto error_free_prep;
859 		}
860 		if (!index_key.description)
861 			index_key.description = prep.description;
862 		key_ref = ERR_PTR(-EINVAL);
863 		if (!index_key.description)
864 			goto error_free_prep;
865 	}
866 	index_key.desc_len = strlen(index_key.description);
867 
868 	if (restrict_link) {
869 		ret = restrict_link(keyring, index_key.type, &prep.payload);
870 		if (ret < 0) {
871 			key_ref = ERR_PTR(ret);
872 			goto error_free_prep;
873 		}
874 	}
875 
876 	ret = __key_link_begin(keyring, &index_key, &edit);
877 	if (ret < 0) {
878 		key_ref = ERR_PTR(ret);
879 		goto error_free_prep;
880 	}
881 
882 	/* if we're going to allocate a new key, we're going to have
883 	 * to modify the keyring */
884 	ret = key_permission(keyring_ref, KEY_NEED_WRITE);
885 	if (ret < 0) {
886 		key_ref = ERR_PTR(ret);
887 		goto error_link_end;
888 	}
889 
890 	/* if it's possible to update this type of key, search for an existing
891 	 * key of the same type and description in the destination keyring and
892 	 * update that instead if possible
893 	 */
894 	if (index_key.type->update) {
895 		key_ref = find_key_to_update(keyring_ref, &index_key);
896 		if (key_ref)
897 			goto found_matching_key;
898 	}
899 
900 	/* if the client doesn't provide, decide on the permissions we want */
901 	if (perm == KEY_PERM_UNDEF) {
902 		perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
903 		perm |= KEY_USR_VIEW;
904 
905 		if (index_key.type->read)
906 			perm |= KEY_POS_READ;
907 
908 		if (index_key.type == &key_type_keyring ||
909 		    index_key.type->update)
910 			perm |= KEY_POS_WRITE;
911 	}
912 
913 	/* allocate a new key */
914 	key = key_alloc(index_key.type, index_key.description,
915 			cred->fsuid, cred->fsgid, cred, perm, flags, NULL);
916 	if (IS_ERR(key)) {
917 		key_ref = ERR_CAST(key);
918 		goto error_link_end;
919 	}
920 
921 	/* instantiate it and link it into the target keyring */
922 	ret = __key_instantiate_and_link(key, &prep, keyring, NULL, &edit);
923 	if (ret < 0) {
924 		key_put(key);
925 		key_ref = ERR_PTR(ret);
926 		goto error_link_end;
927 	}
928 
929 	key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
930 
931 error_link_end:
932 	__key_link_end(keyring, &index_key, edit);
933 error_free_prep:
934 	if (index_key.type->preparse)
935 		index_key.type->free_preparse(&prep);
936 error_put_type:
937 	key_type_put(index_key.type);
938 error:
939 	return key_ref;
940 
941  found_matching_key:
942 	/* we found a matching key, so we're going to try to update it
943 	 * - we can drop the locks first as we have the key pinned
944 	 */
945 	__key_link_end(keyring, &index_key, edit);
946 
947 	key = key_ref_to_ptr(key_ref);
948 	if (test_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) {
949 		ret = wait_for_key_construction(key, true);
950 		if (ret < 0) {
951 			key_ref_put(key_ref);
952 			key_ref = ERR_PTR(ret);
953 			goto error_free_prep;
954 		}
955 	}
956 
957 	key_ref = __key_update(key_ref, &prep);
958 	goto error_free_prep;
959 }
960 EXPORT_SYMBOL(key_create_or_update);
961 
962 /**
963  * key_update - Update a key's contents.
964  * @key_ref: The pointer (plus possession flag) to the key.
965  * @payload: The data to be used to update the key.
966  * @plen: The length of @payload.
967  *
968  * Attempt to update the contents of a key with the given payload data.  The
969  * caller must be granted Write permission on the key.  Negative keys can be
970  * instantiated by this method.
971  *
972  * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
973  * type does not support updating.  The key type may return other errors.
974  */
key_update(key_ref_t key_ref,const void * payload,size_t plen)975 int key_update(key_ref_t key_ref, const void *payload, size_t plen)
976 {
977 	struct key_preparsed_payload prep;
978 	struct key *key = key_ref_to_ptr(key_ref);
979 	int ret;
980 
981 	key_check(key);
982 
983 	/* the key must be writable */
984 	ret = key_permission(key_ref, KEY_NEED_WRITE);
985 	if (ret < 0)
986 		return ret;
987 
988 	/* attempt to update it if supported */
989 	if (!key->type->update)
990 		return -EOPNOTSUPP;
991 
992 	memset(&prep, 0, sizeof(prep));
993 	prep.data = payload;
994 	prep.datalen = plen;
995 	prep.quotalen = key->type->def_datalen;
996 	prep.expiry = TIME_T_MAX;
997 	if (key->type->preparse) {
998 		ret = key->type->preparse(&prep);
999 		if (ret < 0)
1000 			goto error;
1001 	}
1002 
1003 	down_write(&key->sem);
1004 
1005 	ret = key->type->update(key, &prep);
1006 	if (ret == 0)
1007 		/* Updating a negative key positively instantiates it */
1008 		mark_key_instantiated(key, 0);
1009 
1010 	up_write(&key->sem);
1011 
1012 error:
1013 	if (key->type->preparse)
1014 		key->type->free_preparse(&prep);
1015 	return ret;
1016 }
1017 EXPORT_SYMBOL(key_update);
1018 
1019 /**
1020  * key_revoke - Revoke a key.
1021  * @key: The key to be revoked.
1022  *
1023  * Mark a key as being revoked and ask the type to free up its resources.  The
1024  * revocation timeout is set and the key and all its links will be
1025  * automatically garbage collected after key_gc_delay amount of time if they
1026  * are not manually dealt with first.
1027  */
key_revoke(struct key * key)1028 void key_revoke(struct key *key)
1029 {
1030 	struct timespec now;
1031 	time_t time;
1032 
1033 	key_check(key);
1034 
1035 	/* make sure no one's trying to change or use the key when we mark it
1036 	 * - we tell lockdep that we might nest because we might be revoking an
1037 	 *   authorisation key whilst holding the sem on a key we've just
1038 	 *   instantiated
1039 	 */
1040 	down_write_nested(&key->sem, 1);
1041 	if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags) &&
1042 	    key->type->revoke)
1043 		key->type->revoke(key);
1044 
1045 	/* set the death time to no more than the expiry time */
1046 	now = current_kernel_time();
1047 	time = now.tv_sec;
1048 	if (key->revoked_at == 0 || key->revoked_at > time) {
1049 		key->revoked_at = time;
1050 		key_schedule_gc(key->revoked_at + key_gc_delay);
1051 	}
1052 
1053 	up_write(&key->sem);
1054 }
1055 EXPORT_SYMBOL(key_revoke);
1056 
1057 /**
1058  * key_invalidate - Invalidate a key.
1059  * @key: The key to be invalidated.
1060  *
1061  * Mark a key as being invalidated and have it cleaned up immediately.  The key
1062  * is ignored by all searches and other operations from this point.
1063  */
key_invalidate(struct key * key)1064 void key_invalidate(struct key *key)
1065 {
1066 	kenter("%d", key_serial(key));
1067 
1068 	key_check(key);
1069 
1070 	if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1071 		down_write_nested(&key->sem, 1);
1072 		if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags))
1073 			key_schedule_gc_links();
1074 		up_write(&key->sem);
1075 	}
1076 }
1077 EXPORT_SYMBOL(key_invalidate);
1078 
1079 /**
1080  * generic_key_instantiate - Simple instantiation of a key from preparsed data
1081  * @key: The key to be instantiated
1082  * @prep: The preparsed data to load.
1083  *
1084  * Instantiate a key from preparsed data.  We assume we can just copy the data
1085  * in directly and clear the old pointers.
1086  *
1087  * This can be pointed to directly by the key type instantiate op pointer.
1088  */
generic_key_instantiate(struct key * key,struct key_preparsed_payload * prep)1089 int generic_key_instantiate(struct key *key, struct key_preparsed_payload *prep)
1090 {
1091 	int ret;
1092 
1093 	pr_devel("==>%s()\n", __func__);
1094 
1095 	ret = key_payload_reserve(key, prep->quotalen);
1096 	if (ret == 0) {
1097 		rcu_assign_keypointer(key, prep->payload.data[0]);
1098 		key->payload.data[1] = prep->payload.data[1];
1099 		key->payload.data[2] = prep->payload.data[2];
1100 		key->payload.data[3] = prep->payload.data[3];
1101 		prep->payload.data[0] = NULL;
1102 		prep->payload.data[1] = NULL;
1103 		prep->payload.data[2] = NULL;
1104 		prep->payload.data[3] = NULL;
1105 	}
1106 	pr_devel("<==%s() = %d\n", __func__, ret);
1107 	return ret;
1108 }
1109 EXPORT_SYMBOL(generic_key_instantiate);
1110 
1111 /**
1112  * register_key_type - Register a type of key.
1113  * @ktype: The new key type.
1114  *
1115  * Register a new key type.
1116  *
1117  * Returns 0 on success or -EEXIST if a type of this name already exists.
1118  */
register_key_type(struct key_type * ktype)1119 int register_key_type(struct key_type *ktype)
1120 {
1121 	struct key_type *p;
1122 	int ret;
1123 
1124 	memset(&ktype->lock_class, 0, sizeof(ktype->lock_class));
1125 
1126 	ret = -EEXIST;
1127 	down_write(&key_types_sem);
1128 
1129 	/* disallow key types with the same name */
1130 	list_for_each_entry(p, &key_types_list, link) {
1131 		if (strcmp(p->name, ktype->name) == 0)
1132 			goto out;
1133 	}
1134 
1135 	/* store the type */
1136 	list_add(&ktype->link, &key_types_list);
1137 
1138 	pr_notice("Key type %s registered\n", ktype->name);
1139 	ret = 0;
1140 
1141 out:
1142 	up_write(&key_types_sem);
1143 	return ret;
1144 }
1145 EXPORT_SYMBOL(register_key_type);
1146 
1147 /**
1148  * unregister_key_type - Unregister a type of key.
1149  * @ktype: The key type.
1150  *
1151  * Unregister a key type and mark all the extant keys of this type as dead.
1152  * Those keys of this type are then destroyed to get rid of their payloads and
1153  * they and their links will be garbage collected as soon as possible.
1154  */
unregister_key_type(struct key_type * ktype)1155 void unregister_key_type(struct key_type *ktype)
1156 {
1157 	down_write(&key_types_sem);
1158 	list_del_init(&ktype->link);
1159 	downgrade_write(&key_types_sem);
1160 	key_gc_keytype(ktype);
1161 	pr_notice("Key type %s unregistered\n", ktype->name);
1162 	up_read(&key_types_sem);
1163 }
1164 EXPORT_SYMBOL(unregister_key_type);
1165 
1166 /*
1167  * Initialise the key management state.
1168  */
key_init(void)1169 void __init key_init(void)
1170 {
1171 	/* allocate a slab in which we can store keys */
1172 	key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1173 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1174 
1175 	/* add the special key types */
1176 	list_add_tail(&key_type_keyring.link, &key_types_list);
1177 	list_add_tail(&key_type_dead.link, &key_types_list);
1178 	list_add_tail(&key_type_user.link, &key_types_list);
1179 	list_add_tail(&key_type_logon.link, &key_types_list);
1180 
1181 	/* record the root user tracking */
1182 	rb_link_node(&root_key_user.node,
1183 		     NULL,
1184 		     &key_user_tree.rb_node);
1185 
1186 	rb_insert_color(&root_key_user.node,
1187 			&key_user_tree);
1188 }
1189