1 /* Keyring handling
2 *
3 * Copyright (C) 2004-2005, 2008, 2013 Red Hat, Inc. All Rights Reserved.
4 * Written by David Howells (dhowells@redhat.com)
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/sched.h>
15 #include <linux/slab.h>
16 #include <linux/security.h>
17 #include <linux/seq_file.h>
18 #include <linux/err.h>
19 #include <keys/keyring-type.h>
20 #include <keys/user-type.h>
21 #include <linux/assoc_array_priv.h>
22 #include <linux/uaccess.h>
23 #include "internal.h"
24
25 /*
26 * When plumbing the depths of the key tree, this sets a hard limit
27 * set on how deep we're willing to go.
28 */
29 #define KEYRING_SEARCH_MAX_DEPTH 6
30
31 /*
32 * We keep all named keyrings in a hash to speed looking them up.
33 */
34 #define KEYRING_NAME_HASH_SIZE (1 << 5)
35
36 /*
37 * We mark pointers we pass to the associative array with bit 1 set if
38 * they're keyrings and clear otherwise.
39 */
40 #define KEYRING_PTR_SUBTYPE 0x2UL
41
keyring_ptr_is_keyring(const struct assoc_array_ptr * x)42 static inline bool keyring_ptr_is_keyring(const struct assoc_array_ptr *x)
43 {
44 return (unsigned long)x & KEYRING_PTR_SUBTYPE;
45 }
keyring_ptr_to_key(const struct assoc_array_ptr * x)46 static inline struct key *keyring_ptr_to_key(const struct assoc_array_ptr *x)
47 {
48 void *object = assoc_array_ptr_to_leaf(x);
49 return (struct key *)((unsigned long)object & ~KEYRING_PTR_SUBTYPE);
50 }
keyring_key_to_ptr(struct key * key)51 static inline void *keyring_key_to_ptr(struct key *key)
52 {
53 if (key->type == &key_type_keyring)
54 return (void *)((unsigned long)key | KEYRING_PTR_SUBTYPE);
55 return key;
56 }
57
58 static struct list_head keyring_name_hash[KEYRING_NAME_HASH_SIZE];
59 static DEFINE_RWLOCK(keyring_name_lock);
60
keyring_hash(const char * desc)61 static inline unsigned keyring_hash(const char *desc)
62 {
63 unsigned bucket = 0;
64
65 for (; *desc; desc++)
66 bucket += (unsigned char)*desc;
67
68 return bucket & (KEYRING_NAME_HASH_SIZE - 1);
69 }
70
71 /*
72 * The keyring key type definition. Keyrings are simply keys of this type and
73 * can be treated as ordinary keys in addition to having their own special
74 * operations.
75 */
76 static int keyring_preparse(struct key_preparsed_payload *prep);
77 static void keyring_free_preparse(struct key_preparsed_payload *prep);
78 static int keyring_instantiate(struct key *keyring,
79 struct key_preparsed_payload *prep);
80 static void keyring_revoke(struct key *keyring);
81 static void keyring_destroy(struct key *keyring);
82 static void keyring_describe(const struct key *keyring, struct seq_file *m);
83 static long keyring_read(const struct key *keyring,
84 char __user *buffer, size_t buflen);
85
86 struct key_type key_type_keyring = {
87 .name = "keyring",
88 .def_datalen = 0,
89 .preparse = keyring_preparse,
90 .free_preparse = keyring_free_preparse,
91 .instantiate = keyring_instantiate,
92 .revoke = keyring_revoke,
93 .destroy = keyring_destroy,
94 .describe = keyring_describe,
95 .read = keyring_read,
96 };
97 EXPORT_SYMBOL(key_type_keyring);
98
99 /*
100 * Semaphore to serialise link/link calls to prevent two link calls in parallel
101 * introducing a cycle.
102 */
103 static DECLARE_RWSEM(keyring_serialise_link_sem);
104
105 /*
106 * Publish the name of a keyring so that it can be found by name (if it has
107 * one).
108 */
keyring_publish_name(struct key * keyring)109 static void keyring_publish_name(struct key *keyring)
110 {
111 int bucket;
112
113 if (keyring->description) {
114 bucket = keyring_hash(keyring->description);
115
116 write_lock(&keyring_name_lock);
117
118 if (!keyring_name_hash[bucket].next)
119 INIT_LIST_HEAD(&keyring_name_hash[bucket]);
120
121 list_add_tail(&keyring->name_link,
122 &keyring_name_hash[bucket]);
123
124 write_unlock(&keyring_name_lock);
125 }
126 }
127
128 /*
129 * Preparse a keyring payload
130 */
keyring_preparse(struct key_preparsed_payload * prep)131 static int keyring_preparse(struct key_preparsed_payload *prep)
132 {
133 return prep->datalen != 0 ? -EINVAL : 0;
134 }
135
136 /*
137 * Free a preparse of a user defined key payload
138 */
keyring_free_preparse(struct key_preparsed_payload * prep)139 static void keyring_free_preparse(struct key_preparsed_payload *prep)
140 {
141 }
142
143 /*
144 * Initialise a keyring.
145 *
146 * Returns 0 on success, -EINVAL if given any data.
147 */
keyring_instantiate(struct key * keyring,struct key_preparsed_payload * prep)148 static int keyring_instantiate(struct key *keyring,
149 struct key_preparsed_payload *prep)
150 {
151 assoc_array_init(&keyring->keys);
152 /* make the keyring available by name if it has one */
153 keyring_publish_name(keyring);
154 return 0;
155 }
156
157 /*
158 * Multiply 64-bits by 32-bits to 96-bits and fold back to 64-bit. Ideally we'd
159 * fold the carry back too, but that requires inline asm.
160 */
mult_64x32_and_fold(u64 x,u32 y)161 static u64 mult_64x32_and_fold(u64 x, u32 y)
162 {
163 u64 hi = (u64)(u32)(x >> 32) * y;
164 u64 lo = (u64)(u32)(x) * y;
165 return lo + ((u64)(u32)hi << 32) + (u32)(hi >> 32);
166 }
167
168 /*
169 * Hash a key type and description.
170 */
hash_key_type_and_desc(const struct keyring_index_key * index_key)171 static unsigned long hash_key_type_and_desc(const struct keyring_index_key *index_key)
172 {
173 const unsigned level_shift = ASSOC_ARRAY_LEVEL_STEP;
174 const unsigned long fan_mask = ASSOC_ARRAY_FAN_MASK;
175 const char *description = index_key->description;
176 unsigned long hash, type;
177 u32 piece;
178 u64 acc;
179 int n, desc_len = index_key->desc_len;
180
181 type = (unsigned long)index_key->type;
182
183 acc = mult_64x32_and_fold(type, desc_len + 13);
184 acc = mult_64x32_and_fold(acc, 9207);
185 for (;;) {
186 n = desc_len;
187 if (n <= 0)
188 break;
189 if (n > 4)
190 n = 4;
191 piece = 0;
192 memcpy(&piece, description, n);
193 description += n;
194 desc_len -= n;
195 acc = mult_64x32_and_fold(acc, piece);
196 acc = mult_64x32_and_fold(acc, 9207);
197 }
198
199 /* Fold the hash down to 32 bits if need be. */
200 hash = acc;
201 if (ASSOC_ARRAY_KEY_CHUNK_SIZE == 32)
202 hash ^= acc >> 32;
203
204 /* Squidge all the keyrings into a separate part of the tree to
205 * ordinary keys by making sure the lowest level segment in the hash is
206 * zero for keyrings and non-zero otherwise.
207 */
208 if (index_key->type != &key_type_keyring && (hash & fan_mask) == 0)
209 return hash | (hash >> (ASSOC_ARRAY_KEY_CHUNK_SIZE - level_shift)) | 1;
210 if (index_key->type == &key_type_keyring && (hash & fan_mask) != 0)
211 return (hash + (hash << level_shift)) & ~fan_mask;
212 return hash;
213 }
214
215 /*
216 * Build the next index key chunk.
217 *
218 * On 32-bit systems the index key is laid out as:
219 *
220 * 0 4 5 9...
221 * hash desclen typeptr desc[]
222 *
223 * On 64-bit systems:
224 *
225 * 0 8 9 17...
226 * hash desclen typeptr desc[]
227 *
228 * We return it one word-sized chunk at a time.
229 */
keyring_get_key_chunk(const void * data,int level)230 static unsigned long keyring_get_key_chunk(const void *data, int level)
231 {
232 const struct keyring_index_key *index_key = data;
233 unsigned long chunk = 0;
234 long offset = 0;
235 int desc_len = index_key->desc_len, n = sizeof(chunk);
236
237 level /= ASSOC_ARRAY_KEY_CHUNK_SIZE;
238 switch (level) {
239 case 0:
240 return hash_key_type_and_desc(index_key);
241 case 1:
242 return ((unsigned long)index_key->type << 8) | desc_len;
243 case 2:
244 if (desc_len == 0)
245 return (u8)((unsigned long)index_key->type >>
246 (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8));
247 n--;
248 offset = 1;
249 default:
250 offset += sizeof(chunk) - 1;
251 offset += (level - 3) * sizeof(chunk);
252 if (offset >= desc_len)
253 return 0;
254 desc_len -= offset;
255 if (desc_len > n)
256 desc_len = n;
257 offset += desc_len;
258 do {
259 chunk <<= 8;
260 chunk |= ((u8*)index_key->description)[--offset];
261 } while (--desc_len > 0);
262
263 if (level == 2) {
264 chunk <<= 8;
265 chunk |= (u8)((unsigned long)index_key->type >>
266 (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8));
267 }
268 return chunk;
269 }
270 }
271
keyring_get_object_key_chunk(const void * object,int level)272 static unsigned long keyring_get_object_key_chunk(const void *object, int level)
273 {
274 const struct key *key = keyring_ptr_to_key(object);
275 return keyring_get_key_chunk(&key->index_key, level);
276 }
277
keyring_compare_object(const void * object,const void * data)278 static bool keyring_compare_object(const void *object, const void *data)
279 {
280 const struct keyring_index_key *index_key = data;
281 const struct key *key = keyring_ptr_to_key(object);
282
283 return key->index_key.type == index_key->type &&
284 key->index_key.desc_len == index_key->desc_len &&
285 memcmp(key->index_key.description, index_key->description,
286 index_key->desc_len) == 0;
287 }
288
289 /*
290 * Compare the index keys of a pair of objects and determine the bit position
291 * at which they differ - if they differ.
292 */
keyring_diff_objects(const void * object,const void * data)293 static int keyring_diff_objects(const void *object, const void *data)
294 {
295 const struct key *key_a = keyring_ptr_to_key(object);
296 const struct keyring_index_key *a = &key_a->index_key;
297 const struct keyring_index_key *b = data;
298 unsigned long seg_a, seg_b;
299 int level, i;
300
301 level = 0;
302 seg_a = hash_key_type_and_desc(a);
303 seg_b = hash_key_type_and_desc(b);
304 if ((seg_a ^ seg_b) != 0)
305 goto differ;
306
307 /* The number of bits contributed by the hash is controlled by a
308 * constant in the assoc_array headers. Everything else thereafter we
309 * can deal with as being machine word-size dependent.
310 */
311 level += ASSOC_ARRAY_KEY_CHUNK_SIZE / 8;
312 seg_a = a->desc_len;
313 seg_b = b->desc_len;
314 if ((seg_a ^ seg_b) != 0)
315 goto differ;
316
317 /* The next bit may not work on big endian */
318 level++;
319 seg_a = (unsigned long)a->type;
320 seg_b = (unsigned long)b->type;
321 if ((seg_a ^ seg_b) != 0)
322 goto differ;
323
324 level += sizeof(unsigned long);
325 if (a->desc_len == 0)
326 goto same;
327
328 i = 0;
329 if (((unsigned long)a->description | (unsigned long)b->description) &
330 (sizeof(unsigned long) - 1)) {
331 do {
332 seg_a = *(unsigned long *)(a->description + i);
333 seg_b = *(unsigned long *)(b->description + i);
334 if ((seg_a ^ seg_b) != 0)
335 goto differ_plus_i;
336 i += sizeof(unsigned long);
337 } while (i < (a->desc_len & (sizeof(unsigned long) - 1)));
338 }
339
340 for (; i < a->desc_len; i++) {
341 seg_a = *(unsigned char *)(a->description + i);
342 seg_b = *(unsigned char *)(b->description + i);
343 if ((seg_a ^ seg_b) != 0)
344 goto differ_plus_i;
345 }
346
347 same:
348 return -1;
349
350 differ_plus_i:
351 level += i;
352 differ:
353 i = level * 8 + __ffs(seg_a ^ seg_b);
354 return i;
355 }
356
357 /*
358 * Free an object after stripping the keyring flag off of the pointer.
359 */
keyring_free_object(void * object)360 static void keyring_free_object(void *object)
361 {
362 key_put(keyring_ptr_to_key(object));
363 }
364
365 /*
366 * Operations for keyring management by the index-tree routines.
367 */
368 static const struct assoc_array_ops keyring_assoc_array_ops = {
369 .get_key_chunk = keyring_get_key_chunk,
370 .get_object_key_chunk = keyring_get_object_key_chunk,
371 .compare_object = keyring_compare_object,
372 .diff_objects = keyring_diff_objects,
373 .free_object = keyring_free_object,
374 };
375
376 /*
377 * Clean up a keyring when it is destroyed. Unpublish its name if it had one
378 * and dispose of its data.
379 *
380 * The garbage collector detects the final key_put(), removes the keyring from
381 * the serial number tree and then does RCU synchronisation before coming here,
382 * so we shouldn't need to worry about code poking around here with the RCU
383 * readlock held by this time.
384 */
keyring_destroy(struct key * keyring)385 static void keyring_destroy(struct key *keyring)
386 {
387 if (keyring->description) {
388 write_lock(&keyring_name_lock);
389
390 if (keyring->name_link.next != NULL &&
391 !list_empty(&keyring->name_link))
392 list_del(&keyring->name_link);
393
394 write_unlock(&keyring_name_lock);
395 }
396
397 assoc_array_destroy(&keyring->keys, &keyring_assoc_array_ops);
398 }
399
400 /*
401 * Describe a keyring for /proc.
402 */
keyring_describe(const struct key * keyring,struct seq_file * m)403 static void keyring_describe(const struct key *keyring, struct seq_file *m)
404 {
405 if (keyring->description)
406 seq_puts(m, keyring->description);
407 else
408 seq_puts(m, "[anon]");
409
410 if (key_is_positive(keyring)) {
411 if (keyring->keys.nr_leaves_on_tree != 0)
412 seq_printf(m, ": %lu", keyring->keys.nr_leaves_on_tree);
413 else
414 seq_puts(m, ": empty");
415 }
416 }
417
418 struct keyring_read_iterator_context {
419 size_t buflen;
420 size_t count;
421 key_serial_t __user *buffer;
422 };
423
keyring_read_iterator(const void * object,void * data)424 static int keyring_read_iterator(const void *object, void *data)
425 {
426 struct keyring_read_iterator_context *ctx = data;
427 const struct key *key = keyring_ptr_to_key(object);
428 int ret;
429
430 kenter("{%s,%d},,{%zu/%zu}",
431 key->type->name, key->serial, ctx->count, ctx->buflen);
432
433 if (ctx->count >= ctx->buflen)
434 return 1;
435
436 ret = put_user(key->serial, ctx->buffer);
437 if (ret < 0)
438 return ret;
439 ctx->buffer++;
440 ctx->count += sizeof(key->serial);
441 return 0;
442 }
443
444 /*
445 * Read a list of key IDs from the keyring's contents in binary form
446 *
447 * The keyring's semaphore is read-locked by the caller. This prevents someone
448 * from modifying it under us - which could cause us to read key IDs multiple
449 * times.
450 */
keyring_read(const struct key * keyring,char __user * buffer,size_t buflen)451 static long keyring_read(const struct key *keyring,
452 char __user *buffer, size_t buflen)
453 {
454 struct keyring_read_iterator_context ctx;
455 long ret;
456
457 kenter("{%d},,%zu", key_serial(keyring), buflen);
458
459 if (buflen & (sizeof(key_serial_t) - 1))
460 return -EINVAL;
461
462 /* Copy as many key IDs as fit into the buffer */
463 if (buffer && buflen) {
464 ctx.buffer = (key_serial_t __user *)buffer;
465 ctx.buflen = buflen;
466 ctx.count = 0;
467 ret = assoc_array_iterate(&keyring->keys,
468 keyring_read_iterator, &ctx);
469 if (ret < 0) {
470 kleave(" = %ld [iterate]", ret);
471 return ret;
472 }
473 }
474
475 /* Return the size of the buffer needed */
476 ret = keyring->keys.nr_leaves_on_tree * sizeof(key_serial_t);
477 if (ret <= buflen)
478 kleave("= %ld [ok]", ret);
479 else
480 kleave("= %ld [buffer too small]", ret);
481 return ret;
482 }
483
484 /*
485 * Allocate a keyring and link into the destination keyring.
486 */
keyring_alloc(const char * description,kuid_t uid,kgid_t gid,const struct cred * cred,key_perm_t perm,unsigned long flags,int (* restrict_link)(struct key *,const struct key_type *,const union key_payload *),struct key * dest)487 struct key *keyring_alloc(const char *description, kuid_t uid, kgid_t gid,
488 const struct cred *cred, key_perm_t perm,
489 unsigned long flags,
490 int (*restrict_link)(struct key *,
491 const struct key_type *,
492 const union key_payload *),
493 struct key *dest)
494 {
495 struct key *keyring;
496 int ret;
497
498 keyring = key_alloc(&key_type_keyring, description,
499 uid, gid, cred, perm, flags, restrict_link);
500 if (!IS_ERR(keyring)) {
501 ret = key_instantiate_and_link(keyring, NULL, 0, dest, NULL);
502 if (ret < 0) {
503 key_put(keyring);
504 keyring = ERR_PTR(ret);
505 }
506 }
507
508 return keyring;
509 }
510 EXPORT_SYMBOL(keyring_alloc);
511
512 /**
513 * restrict_link_reject - Give -EPERM to restrict link
514 * @keyring: The keyring being added to.
515 * @type: The type of key being added.
516 * @payload: The payload of the key intended to be added.
517 *
518 * Reject the addition of any links to a keyring. It can be overridden by
519 * passing KEY_ALLOC_BYPASS_RESTRICTION to key_instantiate_and_link() when
520 * adding a key to a keyring.
521 *
522 * This is meant to be passed as the restrict_link parameter to
523 * keyring_alloc().
524 */
restrict_link_reject(struct key * keyring,const struct key_type * type,const union key_payload * payload)525 int restrict_link_reject(struct key *keyring,
526 const struct key_type *type,
527 const union key_payload *payload)
528 {
529 return -EPERM;
530 }
531
532 /*
533 * By default, we keys found by getting an exact match on their descriptions.
534 */
key_default_cmp(const struct key * key,const struct key_match_data * match_data)535 bool key_default_cmp(const struct key *key,
536 const struct key_match_data *match_data)
537 {
538 return strcmp(key->description, match_data->raw_data) == 0;
539 }
540
541 /*
542 * Iteration function to consider each key found.
543 */
keyring_search_iterator(const void * object,void * iterator_data)544 static int keyring_search_iterator(const void *object, void *iterator_data)
545 {
546 struct keyring_search_context *ctx = iterator_data;
547 const struct key *key = keyring_ptr_to_key(object);
548 unsigned long kflags = READ_ONCE(key->flags);
549 short state = READ_ONCE(key->state);
550
551 kenter("{%d}", key->serial);
552
553 /* ignore keys not of this type */
554 if (key->type != ctx->index_key.type) {
555 kleave(" = 0 [!type]");
556 return 0;
557 }
558
559 /* skip invalidated, revoked and expired keys */
560 if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
561 if (kflags & ((1 << KEY_FLAG_INVALIDATED) |
562 (1 << KEY_FLAG_REVOKED))) {
563 ctx->result = ERR_PTR(-EKEYREVOKED);
564 kleave(" = %d [invrev]", ctx->skipped_ret);
565 goto skipped;
566 }
567
568 if (key->expiry && ctx->now.tv_sec >= key->expiry) {
569 if (!(ctx->flags & KEYRING_SEARCH_SKIP_EXPIRED))
570 ctx->result = ERR_PTR(-EKEYEXPIRED);
571 kleave(" = %d [expire]", ctx->skipped_ret);
572 goto skipped;
573 }
574 }
575
576 /* keys that don't match */
577 if (!ctx->match_data.cmp(key, &ctx->match_data)) {
578 kleave(" = 0 [!match]");
579 return 0;
580 }
581
582 /* key must have search permissions */
583 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
584 key_task_permission(make_key_ref(key, ctx->possessed),
585 ctx->cred, KEY_NEED_SEARCH) < 0) {
586 ctx->result = ERR_PTR(-EACCES);
587 kleave(" = %d [!perm]", ctx->skipped_ret);
588 goto skipped;
589 }
590
591 if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
592 /* we set a different error code if we pass a negative key */
593 if (state < 0) {
594 ctx->result = ERR_PTR(state);
595 kleave(" = %d [neg]", ctx->skipped_ret);
596 goto skipped;
597 }
598 }
599
600 /* Found */
601 ctx->result = make_key_ref(key, ctx->possessed);
602 kleave(" = 1 [found]");
603 return 1;
604
605 skipped:
606 return ctx->skipped_ret;
607 }
608
609 /*
610 * Search inside a keyring for a key. We can search by walking to it
611 * directly based on its index-key or we can iterate over the entire
612 * tree looking for it, based on the match function.
613 */
search_keyring(struct key * keyring,struct keyring_search_context * ctx)614 static int search_keyring(struct key *keyring, struct keyring_search_context *ctx)
615 {
616 if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_DIRECT) {
617 const void *object;
618
619 object = assoc_array_find(&keyring->keys,
620 &keyring_assoc_array_ops,
621 &ctx->index_key);
622 return object ? ctx->iterator(object, ctx) : 0;
623 }
624 return assoc_array_iterate(&keyring->keys, ctx->iterator, ctx);
625 }
626
627 /*
628 * Search a tree of keyrings that point to other keyrings up to the maximum
629 * depth.
630 */
search_nested_keyrings(struct key * keyring,struct keyring_search_context * ctx)631 static bool search_nested_keyrings(struct key *keyring,
632 struct keyring_search_context *ctx)
633 {
634 struct {
635 struct key *keyring;
636 struct assoc_array_node *node;
637 int slot;
638 } stack[KEYRING_SEARCH_MAX_DEPTH];
639
640 struct assoc_array_shortcut *shortcut;
641 struct assoc_array_node *node;
642 struct assoc_array_ptr *ptr;
643 struct key *key;
644 int sp = 0, slot;
645
646 kenter("{%d},{%s,%s}",
647 keyring->serial,
648 ctx->index_key.type->name,
649 ctx->index_key.description);
650
651 #define STATE_CHECKS (KEYRING_SEARCH_NO_STATE_CHECK | KEYRING_SEARCH_DO_STATE_CHECK)
652 BUG_ON((ctx->flags & STATE_CHECKS) == 0 ||
653 (ctx->flags & STATE_CHECKS) == STATE_CHECKS);
654
655 if (ctx->index_key.description)
656 ctx->index_key.desc_len = strlen(ctx->index_key.description);
657
658 /* Check to see if this top-level keyring is what we are looking for
659 * and whether it is valid or not.
660 */
661 if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_ITERATE ||
662 keyring_compare_object(keyring, &ctx->index_key)) {
663 ctx->skipped_ret = 2;
664 switch (ctx->iterator(keyring_key_to_ptr(keyring), ctx)) {
665 case 1:
666 goto found;
667 case 2:
668 return false;
669 default:
670 break;
671 }
672 }
673
674 ctx->skipped_ret = 0;
675
676 /* Start processing a new keyring */
677 descend_to_keyring:
678 kdebug("descend to %d", keyring->serial);
679 if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
680 (1 << KEY_FLAG_REVOKED)))
681 goto not_this_keyring;
682
683 /* Search through the keys in this keyring before its searching its
684 * subtrees.
685 */
686 if (search_keyring(keyring, ctx))
687 goto found;
688
689 /* Then manually iterate through the keyrings nested in this one.
690 *
691 * Start from the root node of the index tree. Because of the way the
692 * hash function has been set up, keyrings cluster on the leftmost
693 * branch of the root node (root slot 0) or in the root node itself.
694 * Non-keyrings avoid the leftmost branch of the root entirely (root
695 * slots 1-15).
696 */
697 ptr = ACCESS_ONCE(keyring->keys.root);
698 if (!ptr)
699 goto not_this_keyring;
700
701 if (assoc_array_ptr_is_shortcut(ptr)) {
702 /* If the root is a shortcut, either the keyring only contains
703 * keyring pointers (everything clusters behind root slot 0) or
704 * doesn't contain any keyring pointers.
705 */
706 shortcut = assoc_array_ptr_to_shortcut(ptr);
707 smp_read_barrier_depends();
708 if ((shortcut->index_key[0] & ASSOC_ARRAY_FAN_MASK) != 0)
709 goto not_this_keyring;
710
711 ptr = ACCESS_ONCE(shortcut->next_node);
712 node = assoc_array_ptr_to_node(ptr);
713 goto begin_node;
714 }
715
716 node = assoc_array_ptr_to_node(ptr);
717 smp_read_barrier_depends();
718
719 ptr = node->slots[0];
720 if (!assoc_array_ptr_is_meta(ptr))
721 goto begin_node;
722
723 descend_to_node:
724 /* Descend to a more distal node in this keyring's content tree and go
725 * through that.
726 */
727 kdebug("descend");
728 if (assoc_array_ptr_is_shortcut(ptr)) {
729 shortcut = assoc_array_ptr_to_shortcut(ptr);
730 smp_read_barrier_depends();
731 ptr = ACCESS_ONCE(shortcut->next_node);
732 BUG_ON(!assoc_array_ptr_is_node(ptr));
733 }
734 node = assoc_array_ptr_to_node(ptr);
735
736 begin_node:
737 kdebug("begin_node");
738 smp_read_barrier_depends();
739 slot = 0;
740 ascend_to_node:
741 /* Go through the slots in a node */
742 for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
743 ptr = ACCESS_ONCE(node->slots[slot]);
744
745 if (assoc_array_ptr_is_meta(ptr) && node->back_pointer)
746 goto descend_to_node;
747
748 if (!keyring_ptr_is_keyring(ptr))
749 continue;
750
751 key = keyring_ptr_to_key(ptr);
752
753 if (sp >= KEYRING_SEARCH_MAX_DEPTH) {
754 if (ctx->flags & KEYRING_SEARCH_DETECT_TOO_DEEP) {
755 ctx->result = ERR_PTR(-ELOOP);
756 return false;
757 }
758 goto not_this_keyring;
759 }
760
761 /* Search a nested keyring */
762 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
763 key_task_permission(make_key_ref(key, ctx->possessed),
764 ctx->cred, KEY_NEED_SEARCH) < 0)
765 continue;
766
767 /* stack the current position */
768 stack[sp].keyring = keyring;
769 stack[sp].node = node;
770 stack[sp].slot = slot;
771 sp++;
772
773 /* begin again with the new keyring */
774 keyring = key;
775 goto descend_to_keyring;
776 }
777
778 /* We've dealt with all the slots in the current node, so now we need
779 * to ascend to the parent and continue processing there.
780 */
781 ptr = ACCESS_ONCE(node->back_pointer);
782 slot = node->parent_slot;
783
784 if (ptr && assoc_array_ptr_is_shortcut(ptr)) {
785 shortcut = assoc_array_ptr_to_shortcut(ptr);
786 smp_read_barrier_depends();
787 ptr = ACCESS_ONCE(shortcut->back_pointer);
788 slot = shortcut->parent_slot;
789 }
790 if (!ptr)
791 goto not_this_keyring;
792 node = assoc_array_ptr_to_node(ptr);
793 smp_read_barrier_depends();
794 slot++;
795
796 /* If we've ascended to the root (zero backpointer), we must have just
797 * finished processing the leftmost branch rather than the root slots -
798 * so there can't be any more keyrings for us to find.
799 */
800 if (node->back_pointer) {
801 kdebug("ascend %d", slot);
802 goto ascend_to_node;
803 }
804
805 /* The keyring we're looking at was disqualified or didn't contain a
806 * matching key.
807 */
808 not_this_keyring:
809 kdebug("not_this_keyring %d", sp);
810 if (sp <= 0) {
811 kleave(" = false");
812 return false;
813 }
814
815 /* Resume the processing of a keyring higher up in the tree */
816 sp--;
817 keyring = stack[sp].keyring;
818 node = stack[sp].node;
819 slot = stack[sp].slot + 1;
820 kdebug("ascend to %d [%d]", keyring->serial, slot);
821 goto ascend_to_node;
822
823 /* We found a viable match */
824 found:
825 key = key_ref_to_ptr(ctx->result);
826 key_check(key);
827 if (!(ctx->flags & KEYRING_SEARCH_NO_UPDATE_TIME)) {
828 key->last_used_at = ctx->now.tv_sec;
829 keyring->last_used_at = ctx->now.tv_sec;
830 while (sp > 0)
831 stack[--sp].keyring->last_used_at = ctx->now.tv_sec;
832 }
833 kleave(" = true");
834 return true;
835 }
836
837 /**
838 * keyring_search_aux - Search a keyring tree for a key matching some criteria
839 * @keyring_ref: A pointer to the keyring with possession indicator.
840 * @ctx: The keyring search context.
841 *
842 * Search the supplied keyring tree for a key that matches the criteria given.
843 * The root keyring and any linked keyrings must grant Search permission to the
844 * caller to be searchable and keys can only be found if they too grant Search
845 * to the caller. The possession flag on the root keyring pointer controls use
846 * of the possessor bits in permissions checking of the entire tree. In
847 * addition, the LSM gets to forbid keyring searches and key matches.
848 *
849 * The search is performed as a breadth-then-depth search up to the prescribed
850 * limit (KEYRING_SEARCH_MAX_DEPTH).
851 *
852 * Keys are matched to the type provided and are then filtered by the match
853 * function, which is given the description to use in any way it sees fit. The
854 * match function may use any attributes of a key that it wishes to to
855 * determine the match. Normally the match function from the key type would be
856 * used.
857 *
858 * RCU can be used to prevent the keyring key lists from disappearing without
859 * the need to take lots of locks.
860 *
861 * Returns a pointer to the found key and increments the key usage count if
862 * successful; -EAGAIN if no matching keys were found, or if expired or revoked
863 * keys were found; -ENOKEY if only negative keys were found; -ENOTDIR if the
864 * specified keyring wasn't a keyring.
865 *
866 * In the case of a successful return, the possession attribute from
867 * @keyring_ref is propagated to the returned key reference.
868 */
keyring_search_aux(key_ref_t keyring_ref,struct keyring_search_context * ctx)869 key_ref_t keyring_search_aux(key_ref_t keyring_ref,
870 struct keyring_search_context *ctx)
871 {
872 struct key *keyring;
873 long err;
874
875 ctx->iterator = keyring_search_iterator;
876 ctx->possessed = is_key_possessed(keyring_ref);
877 ctx->result = ERR_PTR(-EAGAIN);
878
879 keyring = key_ref_to_ptr(keyring_ref);
880 key_check(keyring);
881
882 if (keyring->type != &key_type_keyring)
883 return ERR_PTR(-ENOTDIR);
884
885 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM)) {
886 err = key_task_permission(keyring_ref, ctx->cred, KEY_NEED_SEARCH);
887 if (err < 0)
888 return ERR_PTR(err);
889 }
890
891 rcu_read_lock();
892 ctx->now = current_kernel_time();
893 if (search_nested_keyrings(keyring, ctx))
894 __key_get(key_ref_to_ptr(ctx->result));
895 rcu_read_unlock();
896 return ctx->result;
897 }
898
899 /**
900 * keyring_search - Search the supplied keyring tree for a matching key
901 * @keyring: The root of the keyring tree to be searched.
902 * @type: The type of keyring we want to find.
903 * @description: The name of the keyring we want to find.
904 *
905 * As keyring_search_aux() above, but using the current task's credentials and
906 * type's default matching function and preferred search method.
907 */
keyring_search(key_ref_t keyring,struct key_type * type,const char * description)908 key_ref_t keyring_search(key_ref_t keyring,
909 struct key_type *type,
910 const char *description)
911 {
912 struct keyring_search_context ctx = {
913 .index_key.type = type,
914 .index_key.description = description,
915 .cred = current_cred(),
916 .match_data.cmp = key_default_cmp,
917 .match_data.raw_data = description,
918 .match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT,
919 .flags = KEYRING_SEARCH_DO_STATE_CHECK,
920 };
921 key_ref_t key;
922 int ret;
923
924 if (type->match_preparse) {
925 ret = type->match_preparse(&ctx.match_data);
926 if (ret < 0)
927 return ERR_PTR(ret);
928 }
929
930 key = keyring_search_aux(keyring, &ctx);
931
932 if (type->match_free)
933 type->match_free(&ctx.match_data);
934 return key;
935 }
936 EXPORT_SYMBOL(keyring_search);
937
938 /*
939 * Search the given keyring for a key that might be updated.
940 *
941 * The caller must guarantee that the keyring is a keyring and that the
942 * permission is granted to modify the keyring as no check is made here. The
943 * caller must also hold a lock on the keyring semaphore.
944 *
945 * Returns a pointer to the found key with usage count incremented if
946 * successful and returns NULL if not found. Revoked and invalidated keys are
947 * skipped over.
948 *
949 * If successful, the possession indicator is propagated from the keyring ref
950 * to the returned key reference.
951 */
find_key_to_update(key_ref_t keyring_ref,const struct keyring_index_key * index_key)952 key_ref_t find_key_to_update(key_ref_t keyring_ref,
953 const struct keyring_index_key *index_key)
954 {
955 struct key *keyring, *key;
956 const void *object;
957
958 keyring = key_ref_to_ptr(keyring_ref);
959
960 kenter("{%d},{%s,%s}",
961 keyring->serial, index_key->type->name, index_key->description);
962
963 object = assoc_array_find(&keyring->keys, &keyring_assoc_array_ops,
964 index_key);
965
966 if (object)
967 goto found;
968
969 kleave(" = NULL");
970 return NULL;
971
972 found:
973 key = keyring_ptr_to_key(object);
974 if (key->flags & ((1 << KEY_FLAG_INVALIDATED) |
975 (1 << KEY_FLAG_REVOKED))) {
976 kleave(" = NULL [x]");
977 return NULL;
978 }
979 __key_get(key);
980 kleave(" = {%d}", key->serial);
981 return make_key_ref(key, is_key_possessed(keyring_ref));
982 }
983
984 /*
985 * Find a keyring with the specified name.
986 *
987 * Only keyrings that have nonzero refcount, are not revoked, and are owned by a
988 * user in the current user namespace are considered. If @uid_keyring is %true,
989 * the keyring additionally must have been allocated as a user or user session
990 * keyring; otherwise, it must grant Search permission directly to the caller.
991 *
992 * Returns a pointer to the keyring with the keyring's refcount having being
993 * incremented on success. -ENOKEY is returned if a key could not be found.
994 */
find_keyring_by_name(const char * name,bool uid_keyring)995 struct key *find_keyring_by_name(const char *name, bool uid_keyring)
996 {
997 struct key *keyring;
998 int bucket;
999
1000 if (!name)
1001 return ERR_PTR(-EINVAL);
1002
1003 bucket = keyring_hash(name);
1004
1005 read_lock(&keyring_name_lock);
1006
1007 if (keyring_name_hash[bucket].next) {
1008 /* search this hash bucket for a keyring with a matching name
1009 * that's readable and that hasn't been revoked */
1010 list_for_each_entry(keyring,
1011 &keyring_name_hash[bucket],
1012 name_link
1013 ) {
1014 if (!kuid_has_mapping(current_user_ns(), keyring->user->uid))
1015 continue;
1016
1017 if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
1018 continue;
1019
1020 if (strcmp(keyring->description, name) != 0)
1021 continue;
1022
1023 if (uid_keyring) {
1024 if (!test_bit(KEY_FLAG_UID_KEYRING,
1025 &keyring->flags))
1026 continue;
1027 } else {
1028 if (key_permission(make_key_ref(keyring, 0),
1029 KEY_NEED_SEARCH) < 0)
1030 continue;
1031 }
1032
1033 /* we've got a match but we might end up racing with
1034 * key_cleanup() if the keyring is currently 'dead'
1035 * (ie. it has a zero usage count) */
1036 if (!atomic_inc_not_zero(&keyring->usage))
1037 continue;
1038 keyring->last_used_at = current_kernel_time().tv_sec;
1039 goto out;
1040 }
1041 }
1042
1043 keyring = ERR_PTR(-ENOKEY);
1044 out:
1045 read_unlock(&keyring_name_lock);
1046 return keyring;
1047 }
1048
keyring_detect_cycle_iterator(const void * object,void * iterator_data)1049 static int keyring_detect_cycle_iterator(const void *object,
1050 void *iterator_data)
1051 {
1052 struct keyring_search_context *ctx = iterator_data;
1053 const struct key *key = keyring_ptr_to_key(object);
1054
1055 kenter("{%d}", key->serial);
1056
1057 /* We might get a keyring with matching index-key that is nonetheless a
1058 * different keyring. */
1059 if (key != ctx->match_data.raw_data)
1060 return 0;
1061
1062 ctx->result = ERR_PTR(-EDEADLK);
1063 return 1;
1064 }
1065
1066 /*
1067 * See if a cycle will will be created by inserting acyclic tree B in acyclic
1068 * tree A at the topmost level (ie: as a direct child of A).
1069 *
1070 * Since we are adding B to A at the top level, checking for cycles should just
1071 * be a matter of seeing if node A is somewhere in tree B.
1072 */
keyring_detect_cycle(struct key * A,struct key * B)1073 static int keyring_detect_cycle(struct key *A, struct key *B)
1074 {
1075 struct keyring_search_context ctx = {
1076 .index_key = A->index_key,
1077 .match_data.raw_data = A,
1078 .match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT,
1079 .iterator = keyring_detect_cycle_iterator,
1080 .flags = (KEYRING_SEARCH_NO_STATE_CHECK |
1081 KEYRING_SEARCH_NO_UPDATE_TIME |
1082 KEYRING_SEARCH_NO_CHECK_PERM |
1083 KEYRING_SEARCH_DETECT_TOO_DEEP),
1084 };
1085
1086 rcu_read_lock();
1087 search_nested_keyrings(B, &ctx);
1088 rcu_read_unlock();
1089 return PTR_ERR(ctx.result) == -EAGAIN ? 0 : PTR_ERR(ctx.result);
1090 }
1091
1092 /*
1093 * Preallocate memory so that a key can be linked into to a keyring.
1094 */
__key_link_begin(struct key * keyring,const struct keyring_index_key * index_key,struct assoc_array_edit ** _edit)1095 int __key_link_begin(struct key *keyring,
1096 const struct keyring_index_key *index_key,
1097 struct assoc_array_edit **_edit)
1098 __acquires(&keyring->sem)
1099 __acquires(&keyring_serialise_link_sem)
1100 {
1101 struct assoc_array_edit *edit;
1102 int ret;
1103
1104 kenter("%d,%s,%s,",
1105 keyring->serial, index_key->type->name, index_key->description);
1106
1107 BUG_ON(index_key->desc_len == 0);
1108
1109 if (keyring->type != &key_type_keyring)
1110 return -ENOTDIR;
1111
1112 down_write(&keyring->sem);
1113
1114 ret = -EKEYREVOKED;
1115 if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
1116 goto error_krsem;
1117
1118 /* serialise link/link calls to prevent parallel calls causing a cycle
1119 * when linking two keyring in opposite orders */
1120 if (index_key->type == &key_type_keyring)
1121 down_write(&keyring_serialise_link_sem);
1122
1123 /* Create an edit script that will insert/replace the key in the
1124 * keyring tree.
1125 */
1126 edit = assoc_array_insert(&keyring->keys,
1127 &keyring_assoc_array_ops,
1128 index_key,
1129 NULL);
1130 if (IS_ERR(edit)) {
1131 ret = PTR_ERR(edit);
1132 goto error_sem;
1133 }
1134
1135 /* If we're not replacing a link in-place then we're going to need some
1136 * extra quota.
1137 */
1138 if (!edit->dead_leaf) {
1139 ret = key_payload_reserve(keyring,
1140 keyring->datalen + KEYQUOTA_LINK_BYTES);
1141 if (ret < 0)
1142 goto error_cancel;
1143 }
1144
1145 *_edit = edit;
1146 kleave(" = 0");
1147 return 0;
1148
1149 error_cancel:
1150 assoc_array_cancel_edit(edit);
1151 error_sem:
1152 if (index_key->type == &key_type_keyring)
1153 up_write(&keyring_serialise_link_sem);
1154 error_krsem:
1155 up_write(&keyring->sem);
1156 kleave(" = %d", ret);
1157 return ret;
1158 }
1159
1160 /*
1161 * Check already instantiated keys aren't going to be a problem.
1162 *
1163 * The caller must have called __key_link_begin(). Don't need to call this for
1164 * keys that were created since __key_link_begin() was called.
1165 */
__key_link_check_live_key(struct key * keyring,struct key * key)1166 int __key_link_check_live_key(struct key *keyring, struct key *key)
1167 {
1168 if (key->type == &key_type_keyring)
1169 /* check that we aren't going to create a cycle by linking one
1170 * keyring to another */
1171 return keyring_detect_cycle(keyring, key);
1172 return 0;
1173 }
1174
1175 /*
1176 * Link a key into to a keyring.
1177 *
1178 * Must be called with __key_link_begin() having being called. Discards any
1179 * already extant link to matching key if there is one, so that each keyring
1180 * holds at most one link to any given key of a particular type+description
1181 * combination.
1182 */
__key_link(struct key * key,struct assoc_array_edit ** _edit)1183 void __key_link(struct key *key, struct assoc_array_edit **_edit)
1184 {
1185 __key_get(key);
1186 assoc_array_insert_set_object(*_edit, keyring_key_to_ptr(key));
1187 assoc_array_apply_edit(*_edit);
1188 *_edit = NULL;
1189 }
1190
1191 /*
1192 * Finish linking a key into to a keyring.
1193 *
1194 * Must be called with __key_link_begin() having being called.
1195 */
__key_link_end(struct key * keyring,const struct keyring_index_key * index_key,struct assoc_array_edit * edit)1196 void __key_link_end(struct key *keyring,
1197 const struct keyring_index_key *index_key,
1198 struct assoc_array_edit *edit)
1199 __releases(&keyring->sem)
1200 __releases(&keyring_serialise_link_sem)
1201 {
1202 BUG_ON(index_key->type == NULL);
1203 kenter("%d,%s,", keyring->serial, index_key->type->name);
1204
1205 if (index_key->type == &key_type_keyring)
1206 up_write(&keyring_serialise_link_sem);
1207
1208 if (edit) {
1209 if (!edit->dead_leaf) {
1210 key_payload_reserve(keyring,
1211 keyring->datalen - KEYQUOTA_LINK_BYTES);
1212 }
1213 assoc_array_cancel_edit(edit);
1214 }
1215 up_write(&keyring->sem);
1216 }
1217
1218 /*
1219 * Check addition of keys to restricted keyrings.
1220 */
__key_link_check_restriction(struct key * keyring,struct key * key)1221 static int __key_link_check_restriction(struct key *keyring, struct key *key)
1222 {
1223 if (!keyring->restrict_link)
1224 return 0;
1225 return keyring->restrict_link(keyring, key->type, &key->payload);
1226 }
1227
1228 /**
1229 * key_link - Link a key to a keyring
1230 * @keyring: The keyring to make the link in.
1231 * @key: The key to link to.
1232 *
1233 * Make a link in a keyring to a key, such that the keyring holds a reference
1234 * on that key and the key can potentially be found by searching that keyring.
1235 *
1236 * This function will write-lock the keyring's semaphore and will consume some
1237 * of the user's key data quota to hold the link.
1238 *
1239 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring,
1240 * -EKEYREVOKED if the keyring has been revoked, -ENFILE if the keyring is
1241 * full, -EDQUOT if there is insufficient key data quota remaining to add
1242 * another link or -ENOMEM if there's insufficient memory.
1243 *
1244 * It is assumed that the caller has checked that it is permitted for a link to
1245 * be made (the keyring should have Write permission and the key Link
1246 * permission).
1247 */
key_link(struct key * keyring,struct key * key)1248 int key_link(struct key *keyring, struct key *key)
1249 {
1250 struct assoc_array_edit *edit;
1251 int ret;
1252
1253 kenter("{%d,%d}", keyring->serial, atomic_read(&keyring->usage));
1254
1255 key_check(keyring);
1256 key_check(key);
1257
1258 ret = __key_link_begin(keyring, &key->index_key, &edit);
1259 if (ret == 0) {
1260 kdebug("begun {%d,%d}", keyring->serial, atomic_read(&keyring->usage));
1261 ret = __key_link_check_restriction(keyring, key);
1262 if (ret == 0)
1263 ret = __key_link_check_live_key(keyring, key);
1264 if (ret == 0)
1265 __key_link(key, &edit);
1266 __key_link_end(keyring, &key->index_key, edit);
1267 }
1268
1269 kleave(" = %d {%d,%d}", ret, keyring->serial, atomic_read(&keyring->usage));
1270 return ret;
1271 }
1272 EXPORT_SYMBOL(key_link);
1273
1274 /**
1275 * key_unlink - Unlink the first link to a key from a keyring.
1276 * @keyring: The keyring to remove the link from.
1277 * @key: The key the link is to.
1278 *
1279 * Remove a link from a keyring to a key.
1280 *
1281 * This function will write-lock the keyring's semaphore.
1282 *
1283 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, -ENOENT if
1284 * the key isn't linked to by the keyring or -ENOMEM if there's insufficient
1285 * memory.
1286 *
1287 * It is assumed that the caller has checked that it is permitted for a link to
1288 * be removed (the keyring should have Write permission; no permissions are
1289 * required on the key).
1290 */
key_unlink(struct key * keyring,struct key * key)1291 int key_unlink(struct key *keyring, struct key *key)
1292 {
1293 struct assoc_array_edit *edit;
1294 int ret;
1295
1296 key_check(keyring);
1297 key_check(key);
1298
1299 if (keyring->type != &key_type_keyring)
1300 return -ENOTDIR;
1301
1302 down_write(&keyring->sem);
1303
1304 edit = assoc_array_delete(&keyring->keys, &keyring_assoc_array_ops,
1305 &key->index_key);
1306 if (IS_ERR(edit)) {
1307 ret = PTR_ERR(edit);
1308 goto error;
1309 }
1310 ret = -ENOENT;
1311 if (edit == NULL)
1312 goto error;
1313
1314 assoc_array_apply_edit(edit);
1315 key_payload_reserve(keyring, keyring->datalen - KEYQUOTA_LINK_BYTES);
1316 ret = 0;
1317
1318 error:
1319 up_write(&keyring->sem);
1320 return ret;
1321 }
1322 EXPORT_SYMBOL(key_unlink);
1323
1324 /**
1325 * keyring_clear - Clear a keyring
1326 * @keyring: The keyring to clear.
1327 *
1328 * Clear the contents of the specified keyring.
1329 *
1330 * Returns 0 if successful or -ENOTDIR if the keyring isn't a keyring.
1331 */
keyring_clear(struct key * keyring)1332 int keyring_clear(struct key *keyring)
1333 {
1334 struct assoc_array_edit *edit;
1335 int ret;
1336
1337 if (keyring->type != &key_type_keyring)
1338 return -ENOTDIR;
1339
1340 down_write(&keyring->sem);
1341
1342 edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1343 if (IS_ERR(edit)) {
1344 ret = PTR_ERR(edit);
1345 } else {
1346 if (edit)
1347 assoc_array_apply_edit(edit);
1348 key_payload_reserve(keyring, 0);
1349 ret = 0;
1350 }
1351
1352 up_write(&keyring->sem);
1353 return ret;
1354 }
1355 EXPORT_SYMBOL(keyring_clear);
1356
1357 /*
1358 * Dispose of the links from a revoked keyring.
1359 *
1360 * This is called with the key sem write-locked.
1361 */
keyring_revoke(struct key * keyring)1362 static void keyring_revoke(struct key *keyring)
1363 {
1364 struct assoc_array_edit *edit;
1365
1366 edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1367 if (!IS_ERR(edit)) {
1368 if (edit)
1369 assoc_array_apply_edit(edit);
1370 key_payload_reserve(keyring, 0);
1371 }
1372 }
1373
keyring_gc_select_iterator(void * object,void * iterator_data)1374 static bool keyring_gc_select_iterator(void *object, void *iterator_data)
1375 {
1376 struct key *key = keyring_ptr_to_key(object);
1377 time_t *limit = iterator_data;
1378
1379 if (key_is_dead(key, *limit))
1380 return false;
1381 key_get(key);
1382 return true;
1383 }
1384
keyring_gc_check_iterator(const void * object,void * iterator_data)1385 static int keyring_gc_check_iterator(const void *object, void *iterator_data)
1386 {
1387 const struct key *key = keyring_ptr_to_key(object);
1388 time_t *limit = iterator_data;
1389
1390 key_check(key);
1391 return key_is_dead(key, *limit);
1392 }
1393
1394 /*
1395 * Garbage collect pointers from a keyring.
1396 *
1397 * Not called with any locks held. The keyring's key struct will not be
1398 * deallocated under us as only our caller may deallocate it.
1399 */
keyring_gc(struct key * keyring,time_t limit)1400 void keyring_gc(struct key *keyring, time_t limit)
1401 {
1402 int result;
1403
1404 kenter("%x{%s}", keyring->serial, keyring->description ?: "");
1405
1406 if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
1407 (1 << KEY_FLAG_REVOKED)))
1408 goto dont_gc;
1409
1410 /* scan the keyring looking for dead keys */
1411 rcu_read_lock();
1412 result = assoc_array_iterate(&keyring->keys,
1413 keyring_gc_check_iterator, &limit);
1414 rcu_read_unlock();
1415 if (result == true)
1416 goto do_gc;
1417
1418 dont_gc:
1419 kleave(" [no gc]");
1420 return;
1421
1422 do_gc:
1423 down_write(&keyring->sem);
1424 assoc_array_gc(&keyring->keys, &keyring_assoc_array_ops,
1425 keyring_gc_select_iterator, &limit);
1426 up_write(&keyring->sem);
1427 kleave(" [gc]");
1428 }
1429