• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Keyring handling
2  *
3  * Copyright (C) 2004-2005, 2008, 2013 Red Hat, Inc. All Rights Reserved.
4  * Written by David Howells (dhowells@redhat.com)
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/sched.h>
15 #include <linux/slab.h>
16 #include <linux/security.h>
17 #include <linux/seq_file.h>
18 #include <linux/err.h>
19 #include <keys/keyring-type.h>
20 #include <keys/user-type.h>
21 #include <linux/assoc_array_priv.h>
22 #include <linux/uaccess.h>
23 #include "internal.h"
24 
25 /*
26  * When plumbing the depths of the key tree, this sets a hard limit
27  * set on how deep we're willing to go.
28  */
29 #define KEYRING_SEARCH_MAX_DEPTH 6
30 
31 /*
32  * We keep all named keyrings in a hash to speed looking them up.
33  */
34 #define KEYRING_NAME_HASH_SIZE	(1 << 5)
35 
36 /*
37  * We mark pointers we pass to the associative array with bit 1 set if
38  * they're keyrings and clear otherwise.
39  */
40 #define KEYRING_PTR_SUBTYPE	0x2UL
41 
keyring_ptr_is_keyring(const struct assoc_array_ptr * x)42 static inline bool keyring_ptr_is_keyring(const struct assoc_array_ptr *x)
43 {
44 	return (unsigned long)x & KEYRING_PTR_SUBTYPE;
45 }
keyring_ptr_to_key(const struct assoc_array_ptr * x)46 static inline struct key *keyring_ptr_to_key(const struct assoc_array_ptr *x)
47 {
48 	void *object = assoc_array_ptr_to_leaf(x);
49 	return (struct key *)((unsigned long)object & ~KEYRING_PTR_SUBTYPE);
50 }
keyring_key_to_ptr(struct key * key)51 static inline void *keyring_key_to_ptr(struct key *key)
52 {
53 	if (key->type == &key_type_keyring)
54 		return (void *)((unsigned long)key | KEYRING_PTR_SUBTYPE);
55 	return key;
56 }
57 
58 static struct list_head	keyring_name_hash[KEYRING_NAME_HASH_SIZE];
59 static DEFINE_RWLOCK(keyring_name_lock);
60 
keyring_hash(const char * desc)61 static inline unsigned keyring_hash(const char *desc)
62 {
63 	unsigned bucket = 0;
64 
65 	for (; *desc; desc++)
66 		bucket += (unsigned char)*desc;
67 
68 	return bucket & (KEYRING_NAME_HASH_SIZE - 1);
69 }
70 
71 /*
72  * The keyring key type definition.  Keyrings are simply keys of this type and
73  * can be treated as ordinary keys in addition to having their own special
74  * operations.
75  */
76 static int keyring_preparse(struct key_preparsed_payload *prep);
77 static void keyring_free_preparse(struct key_preparsed_payload *prep);
78 static int keyring_instantiate(struct key *keyring,
79 			       struct key_preparsed_payload *prep);
80 static void keyring_revoke(struct key *keyring);
81 static void keyring_destroy(struct key *keyring);
82 static void keyring_describe(const struct key *keyring, struct seq_file *m);
83 static long keyring_read(const struct key *keyring,
84 			 char __user *buffer, size_t buflen);
85 
86 struct key_type key_type_keyring = {
87 	.name		= "keyring",
88 	.def_datalen	= 0,
89 	.preparse	= keyring_preparse,
90 	.free_preparse	= keyring_free_preparse,
91 	.instantiate	= keyring_instantiate,
92 	.revoke		= keyring_revoke,
93 	.destroy	= keyring_destroy,
94 	.describe	= keyring_describe,
95 	.read		= keyring_read,
96 };
97 EXPORT_SYMBOL(key_type_keyring);
98 
99 /*
100  * Semaphore to serialise link/link calls to prevent two link calls in parallel
101  * introducing a cycle.
102  */
103 static DECLARE_RWSEM(keyring_serialise_link_sem);
104 
105 /*
106  * Publish the name of a keyring so that it can be found by name (if it has
107  * one).
108  */
keyring_publish_name(struct key * keyring)109 static void keyring_publish_name(struct key *keyring)
110 {
111 	int bucket;
112 
113 	if (keyring->description) {
114 		bucket = keyring_hash(keyring->description);
115 
116 		write_lock(&keyring_name_lock);
117 
118 		if (!keyring_name_hash[bucket].next)
119 			INIT_LIST_HEAD(&keyring_name_hash[bucket]);
120 
121 		list_add_tail(&keyring->name_link,
122 			      &keyring_name_hash[bucket]);
123 
124 		write_unlock(&keyring_name_lock);
125 	}
126 }
127 
128 /*
129  * Preparse a keyring payload
130  */
keyring_preparse(struct key_preparsed_payload * prep)131 static int keyring_preparse(struct key_preparsed_payload *prep)
132 {
133 	return prep->datalen != 0 ? -EINVAL : 0;
134 }
135 
136 /*
137  * Free a preparse of a user defined key payload
138  */
keyring_free_preparse(struct key_preparsed_payload * prep)139 static void keyring_free_preparse(struct key_preparsed_payload *prep)
140 {
141 }
142 
143 /*
144  * Initialise a keyring.
145  *
146  * Returns 0 on success, -EINVAL if given any data.
147  */
keyring_instantiate(struct key * keyring,struct key_preparsed_payload * prep)148 static int keyring_instantiate(struct key *keyring,
149 			       struct key_preparsed_payload *prep)
150 {
151 	assoc_array_init(&keyring->keys);
152 	/* make the keyring available by name if it has one */
153 	keyring_publish_name(keyring);
154 	return 0;
155 }
156 
157 /*
158  * Multiply 64-bits by 32-bits to 96-bits and fold back to 64-bit.  Ideally we'd
159  * fold the carry back too, but that requires inline asm.
160  */
mult_64x32_and_fold(u64 x,u32 y)161 static u64 mult_64x32_and_fold(u64 x, u32 y)
162 {
163 	u64 hi = (u64)(u32)(x >> 32) * y;
164 	u64 lo = (u64)(u32)(x) * y;
165 	return lo + ((u64)(u32)hi << 32) + (u32)(hi >> 32);
166 }
167 
168 /*
169  * Hash a key type and description.
170  */
hash_key_type_and_desc(const struct keyring_index_key * index_key)171 static unsigned long hash_key_type_and_desc(const struct keyring_index_key *index_key)
172 {
173 	const unsigned level_shift = ASSOC_ARRAY_LEVEL_STEP;
174 	const unsigned long fan_mask = ASSOC_ARRAY_FAN_MASK;
175 	const char *description = index_key->description;
176 	unsigned long hash, type;
177 	u32 piece;
178 	u64 acc;
179 	int n, desc_len = index_key->desc_len;
180 
181 	type = (unsigned long)index_key->type;
182 
183 	acc = mult_64x32_and_fold(type, desc_len + 13);
184 	acc = mult_64x32_and_fold(acc, 9207);
185 	for (;;) {
186 		n = desc_len;
187 		if (n <= 0)
188 			break;
189 		if (n > 4)
190 			n = 4;
191 		piece = 0;
192 		memcpy(&piece, description, n);
193 		description += n;
194 		desc_len -= n;
195 		acc = mult_64x32_and_fold(acc, piece);
196 		acc = mult_64x32_and_fold(acc, 9207);
197 	}
198 
199 	/* Fold the hash down to 32 bits if need be. */
200 	hash = acc;
201 	if (ASSOC_ARRAY_KEY_CHUNK_SIZE == 32)
202 		hash ^= acc >> 32;
203 
204 	/* Squidge all the keyrings into a separate part of the tree to
205 	 * ordinary keys by making sure the lowest level segment in the hash is
206 	 * zero for keyrings and non-zero otherwise.
207 	 */
208 	if (index_key->type != &key_type_keyring && (hash & fan_mask) == 0)
209 		return hash | (hash >> (ASSOC_ARRAY_KEY_CHUNK_SIZE - level_shift)) | 1;
210 	if (index_key->type == &key_type_keyring && (hash & fan_mask) != 0)
211 		return (hash + (hash << level_shift)) & ~fan_mask;
212 	return hash;
213 }
214 
215 /*
216  * Build the next index key chunk.
217  *
218  * On 32-bit systems the index key is laid out as:
219  *
220  *	0	4	5	9...
221  *	hash	desclen	typeptr	desc[]
222  *
223  * On 64-bit systems:
224  *
225  *	0	8	9	17...
226  *	hash	desclen	typeptr	desc[]
227  *
228  * We return it one word-sized chunk at a time.
229  */
keyring_get_key_chunk(const void * data,int level)230 static unsigned long keyring_get_key_chunk(const void *data, int level)
231 {
232 	const struct keyring_index_key *index_key = data;
233 	unsigned long chunk = 0;
234 	long offset = 0;
235 	int desc_len = index_key->desc_len, n = sizeof(chunk);
236 
237 	level /= ASSOC_ARRAY_KEY_CHUNK_SIZE;
238 	switch (level) {
239 	case 0:
240 		return hash_key_type_and_desc(index_key);
241 	case 1:
242 		return ((unsigned long)index_key->type << 8) | desc_len;
243 	case 2:
244 		if (desc_len == 0)
245 			return (u8)((unsigned long)index_key->type >>
246 				    (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8));
247 		n--;
248 		offset = 1;
249 	default:
250 		offset += sizeof(chunk) - 1;
251 		offset += (level - 3) * sizeof(chunk);
252 		if (offset >= desc_len)
253 			return 0;
254 		desc_len -= offset;
255 		if (desc_len > n)
256 			desc_len = n;
257 		offset += desc_len;
258 		do {
259 			chunk <<= 8;
260 			chunk |= ((u8*)index_key->description)[--offset];
261 		} while (--desc_len > 0);
262 
263 		if (level == 2) {
264 			chunk <<= 8;
265 			chunk |= (u8)((unsigned long)index_key->type >>
266 				      (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8));
267 		}
268 		return chunk;
269 	}
270 }
271 
keyring_get_object_key_chunk(const void * object,int level)272 static unsigned long keyring_get_object_key_chunk(const void *object, int level)
273 {
274 	const struct key *key = keyring_ptr_to_key(object);
275 	return keyring_get_key_chunk(&key->index_key, level);
276 }
277 
keyring_compare_object(const void * object,const void * data)278 static bool keyring_compare_object(const void *object, const void *data)
279 {
280 	const struct keyring_index_key *index_key = data;
281 	const struct key *key = keyring_ptr_to_key(object);
282 
283 	return key->index_key.type == index_key->type &&
284 		key->index_key.desc_len == index_key->desc_len &&
285 		memcmp(key->index_key.description, index_key->description,
286 		       index_key->desc_len) == 0;
287 }
288 
289 /*
290  * Compare the index keys of a pair of objects and determine the bit position
291  * at which they differ - if they differ.
292  */
keyring_diff_objects(const void * object,const void * data)293 static int keyring_diff_objects(const void *object, const void *data)
294 {
295 	const struct key *key_a = keyring_ptr_to_key(object);
296 	const struct keyring_index_key *a = &key_a->index_key;
297 	const struct keyring_index_key *b = data;
298 	unsigned long seg_a, seg_b;
299 	int level, i;
300 
301 	level = 0;
302 	seg_a = hash_key_type_and_desc(a);
303 	seg_b = hash_key_type_and_desc(b);
304 	if ((seg_a ^ seg_b) != 0)
305 		goto differ;
306 
307 	/* The number of bits contributed by the hash is controlled by a
308 	 * constant in the assoc_array headers.  Everything else thereafter we
309 	 * can deal with as being machine word-size dependent.
310 	 */
311 	level += ASSOC_ARRAY_KEY_CHUNK_SIZE / 8;
312 	seg_a = a->desc_len;
313 	seg_b = b->desc_len;
314 	if ((seg_a ^ seg_b) != 0)
315 		goto differ;
316 
317 	/* The next bit may not work on big endian */
318 	level++;
319 	seg_a = (unsigned long)a->type;
320 	seg_b = (unsigned long)b->type;
321 	if ((seg_a ^ seg_b) != 0)
322 		goto differ;
323 
324 	level += sizeof(unsigned long);
325 	if (a->desc_len == 0)
326 		goto same;
327 
328 	i = 0;
329 	if (((unsigned long)a->description | (unsigned long)b->description) &
330 	    (sizeof(unsigned long) - 1)) {
331 		do {
332 			seg_a = *(unsigned long *)(a->description + i);
333 			seg_b = *(unsigned long *)(b->description + i);
334 			if ((seg_a ^ seg_b) != 0)
335 				goto differ_plus_i;
336 			i += sizeof(unsigned long);
337 		} while (i < (a->desc_len & (sizeof(unsigned long) - 1)));
338 	}
339 
340 	for (; i < a->desc_len; i++) {
341 		seg_a = *(unsigned char *)(a->description + i);
342 		seg_b = *(unsigned char *)(b->description + i);
343 		if ((seg_a ^ seg_b) != 0)
344 			goto differ_plus_i;
345 	}
346 
347 same:
348 	return -1;
349 
350 differ_plus_i:
351 	level += i;
352 differ:
353 	i = level * 8 + __ffs(seg_a ^ seg_b);
354 	return i;
355 }
356 
357 /*
358  * Free an object after stripping the keyring flag off of the pointer.
359  */
keyring_free_object(void * object)360 static void keyring_free_object(void *object)
361 {
362 	key_put(keyring_ptr_to_key(object));
363 }
364 
365 /*
366  * Operations for keyring management by the index-tree routines.
367  */
368 static const struct assoc_array_ops keyring_assoc_array_ops = {
369 	.get_key_chunk		= keyring_get_key_chunk,
370 	.get_object_key_chunk	= keyring_get_object_key_chunk,
371 	.compare_object		= keyring_compare_object,
372 	.diff_objects		= keyring_diff_objects,
373 	.free_object		= keyring_free_object,
374 };
375 
376 /*
377  * Clean up a keyring when it is destroyed.  Unpublish its name if it had one
378  * and dispose of its data.
379  *
380  * The garbage collector detects the final key_put(), removes the keyring from
381  * the serial number tree and then does RCU synchronisation before coming here,
382  * so we shouldn't need to worry about code poking around here with the RCU
383  * readlock held by this time.
384  */
keyring_destroy(struct key * keyring)385 static void keyring_destroy(struct key *keyring)
386 {
387 	if (keyring->description) {
388 		write_lock(&keyring_name_lock);
389 
390 		if (keyring->name_link.next != NULL &&
391 		    !list_empty(&keyring->name_link))
392 			list_del(&keyring->name_link);
393 
394 		write_unlock(&keyring_name_lock);
395 	}
396 
397 	assoc_array_destroy(&keyring->keys, &keyring_assoc_array_ops);
398 }
399 
400 /*
401  * Describe a keyring for /proc.
402  */
keyring_describe(const struct key * keyring,struct seq_file * m)403 static void keyring_describe(const struct key *keyring, struct seq_file *m)
404 {
405 	if (keyring->description)
406 		seq_puts(m, keyring->description);
407 	else
408 		seq_puts(m, "[anon]");
409 
410 	if (key_is_positive(keyring)) {
411 		if (keyring->keys.nr_leaves_on_tree != 0)
412 			seq_printf(m, ": %lu", keyring->keys.nr_leaves_on_tree);
413 		else
414 			seq_puts(m, ": empty");
415 	}
416 }
417 
418 struct keyring_read_iterator_context {
419 	size_t			buflen;
420 	size_t			count;
421 	key_serial_t __user	*buffer;
422 };
423 
keyring_read_iterator(const void * object,void * data)424 static int keyring_read_iterator(const void *object, void *data)
425 {
426 	struct keyring_read_iterator_context *ctx = data;
427 	const struct key *key = keyring_ptr_to_key(object);
428 	int ret;
429 
430 	kenter("{%s,%d},,{%zu/%zu}",
431 	       key->type->name, key->serial, ctx->count, ctx->buflen);
432 
433 	if (ctx->count >= ctx->buflen)
434 		return 1;
435 
436 	ret = put_user(key->serial, ctx->buffer);
437 	if (ret < 0)
438 		return ret;
439 	ctx->buffer++;
440 	ctx->count += sizeof(key->serial);
441 	return 0;
442 }
443 
444 /*
445  * Read a list of key IDs from the keyring's contents in binary form
446  *
447  * The keyring's semaphore is read-locked by the caller.  This prevents someone
448  * from modifying it under us - which could cause us to read key IDs multiple
449  * times.
450  */
keyring_read(const struct key * keyring,char __user * buffer,size_t buflen)451 static long keyring_read(const struct key *keyring,
452 			 char __user *buffer, size_t buflen)
453 {
454 	struct keyring_read_iterator_context ctx;
455 	long ret;
456 
457 	kenter("{%d},,%zu", key_serial(keyring), buflen);
458 
459 	if (buflen & (sizeof(key_serial_t) - 1))
460 		return -EINVAL;
461 
462 	/* Copy as many key IDs as fit into the buffer */
463 	if (buffer && buflen) {
464 		ctx.buffer = (key_serial_t __user *)buffer;
465 		ctx.buflen = buflen;
466 		ctx.count = 0;
467 		ret = assoc_array_iterate(&keyring->keys,
468 					  keyring_read_iterator, &ctx);
469 		if (ret < 0) {
470 			kleave(" = %ld [iterate]", ret);
471 			return ret;
472 		}
473 	}
474 
475 	/* Return the size of the buffer needed */
476 	ret = keyring->keys.nr_leaves_on_tree * sizeof(key_serial_t);
477 	if (ret <= buflen)
478 		kleave("= %ld [ok]", ret);
479 	else
480 		kleave("= %ld [buffer too small]", ret);
481 	return ret;
482 }
483 
484 /*
485  * Allocate a keyring and link into the destination keyring.
486  */
keyring_alloc(const char * description,kuid_t uid,kgid_t gid,const struct cred * cred,key_perm_t perm,unsigned long flags,int (* restrict_link)(struct key *,const struct key_type *,const union key_payload *),struct key * dest)487 struct key *keyring_alloc(const char *description, kuid_t uid, kgid_t gid,
488 			  const struct cred *cred, key_perm_t perm,
489 			  unsigned long flags,
490 			  int (*restrict_link)(struct key *,
491 					       const struct key_type *,
492 					       const union key_payload *),
493 			  struct key *dest)
494 {
495 	struct key *keyring;
496 	int ret;
497 
498 	keyring = key_alloc(&key_type_keyring, description,
499 			    uid, gid, cred, perm, flags, restrict_link);
500 	if (!IS_ERR(keyring)) {
501 		ret = key_instantiate_and_link(keyring, NULL, 0, dest, NULL);
502 		if (ret < 0) {
503 			key_put(keyring);
504 			keyring = ERR_PTR(ret);
505 		}
506 	}
507 
508 	return keyring;
509 }
510 EXPORT_SYMBOL(keyring_alloc);
511 
512 /**
513  * restrict_link_reject - Give -EPERM to restrict link
514  * @keyring: The keyring being added to.
515  * @type: The type of key being added.
516  * @payload: The payload of the key intended to be added.
517  *
518  * Reject the addition of any links to a keyring.  It can be overridden by
519  * passing KEY_ALLOC_BYPASS_RESTRICTION to key_instantiate_and_link() when
520  * adding a key to a keyring.
521  *
522  * This is meant to be passed as the restrict_link parameter to
523  * keyring_alloc().
524  */
restrict_link_reject(struct key * keyring,const struct key_type * type,const union key_payload * payload)525 int restrict_link_reject(struct key *keyring,
526 			 const struct key_type *type,
527 			 const union key_payload *payload)
528 {
529 	return -EPERM;
530 }
531 
532 /*
533  * By default, we keys found by getting an exact match on their descriptions.
534  */
key_default_cmp(const struct key * key,const struct key_match_data * match_data)535 bool key_default_cmp(const struct key *key,
536 		     const struct key_match_data *match_data)
537 {
538 	return strcmp(key->description, match_data->raw_data) == 0;
539 }
540 
541 /*
542  * Iteration function to consider each key found.
543  */
keyring_search_iterator(const void * object,void * iterator_data)544 static int keyring_search_iterator(const void *object, void *iterator_data)
545 {
546 	struct keyring_search_context *ctx = iterator_data;
547 	const struct key *key = keyring_ptr_to_key(object);
548 	unsigned long kflags = READ_ONCE(key->flags);
549 	short state = READ_ONCE(key->state);
550 
551 	kenter("{%d}", key->serial);
552 
553 	/* ignore keys not of this type */
554 	if (key->type != ctx->index_key.type) {
555 		kleave(" = 0 [!type]");
556 		return 0;
557 	}
558 
559 	/* skip invalidated, revoked and expired keys */
560 	if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
561 		if (kflags & ((1 << KEY_FLAG_INVALIDATED) |
562 			      (1 << KEY_FLAG_REVOKED))) {
563 			ctx->result = ERR_PTR(-EKEYREVOKED);
564 			kleave(" = %d [invrev]", ctx->skipped_ret);
565 			goto skipped;
566 		}
567 
568 		if (key->expiry && ctx->now.tv_sec >= key->expiry) {
569 			if (!(ctx->flags & KEYRING_SEARCH_SKIP_EXPIRED))
570 				ctx->result = ERR_PTR(-EKEYEXPIRED);
571 			kleave(" = %d [expire]", ctx->skipped_ret);
572 			goto skipped;
573 		}
574 	}
575 
576 	/* keys that don't match */
577 	if (!ctx->match_data.cmp(key, &ctx->match_data)) {
578 		kleave(" = 0 [!match]");
579 		return 0;
580 	}
581 
582 	/* key must have search permissions */
583 	if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
584 	    key_task_permission(make_key_ref(key, ctx->possessed),
585 				ctx->cred, KEY_NEED_SEARCH) < 0) {
586 		ctx->result = ERR_PTR(-EACCES);
587 		kleave(" = %d [!perm]", ctx->skipped_ret);
588 		goto skipped;
589 	}
590 
591 	if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
592 		/* we set a different error code if we pass a negative key */
593 		if (state < 0) {
594 			ctx->result = ERR_PTR(state);
595 			kleave(" = %d [neg]", ctx->skipped_ret);
596 			goto skipped;
597 		}
598 	}
599 
600 	/* Found */
601 	ctx->result = make_key_ref(key, ctx->possessed);
602 	kleave(" = 1 [found]");
603 	return 1;
604 
605 skipped:
606 	return ctx->skipped_ret;
607 }
608 
609 /*
610  * Search inside a keyring for a key.  We can search by walking to it
611  * directly based on its index-key or we can iterate over the entire
612  * tree looking for it, based on the match function.
613  */
search_keyring(struct key * keyring,struct keyring_search_context * ctx)614 static int search_keyring(struct key *keyring, struct keyring_search_context *ctx)
615 {
616 	if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_DIRECT) {
617 		const void *object;
618 
619 		object = assoc_array_find(&keyring->keys,
620 					  &keyring_assoc_array_ops,
621 					  &ctx->index_key);
622 		return object ? ctx->iterator(object, ctx) : 0;
623 	}
624 	return assoc_array_iterate(&keyring->keys, ctx->iterator, ctx);
625 }
626 
627 /*
628  * Search a tree of keyrings that point to other keyrings up to the maximum
629  * depth.
630  */
search_nested_keyrings(struct key * keyring,struct keyring_search_context * ctx)631 static bool search_nested_keyrings(struct key *keyring,
632 				   struct keyring_search_context *ctx)
633 {
634 	struct {
635 		struct key *keyring;
636 		struct assoc_array_node *node;
637 		int slot;
638 	} stack[KEYRING_SEARCH_MAX_DEPTH];
639 
640 	struct assoc_array_shortcut *shortcut;
641 	struct assoc_array_node *node;
642 	struct assoc_array_ptr *ptr;
643 	struct key *key;
644 	int sp = 0, slot;
645 
646 	kenter("{%d},{%s,%s}",
647 	       keyring->serial,
648 	       ctx->index_key.type->name,
649 	       ctx->index_key.description);
650 
651 #define STATE_CHECKS (KEYRING_SEARCH_NO_STATE_CHECK | KEYRING_SEARCH_DO_STATE_CHECK)
652 	BUG_ON((ctx->flags & STATE_CHECKS) == 0 ||
653 	       (ctx->flags & STATE_CHECKS) == STATE_CHECKS);
654 
655 	if (ctx->index_key.description)
656 		ctx->index_key.desc_len = strlen(ctx->index_key.description);
657 
658 	/* Check to see if this top-level keyring is what we are looking for
659 	 * and whether it is valid or not.
660 	 */
661 	if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_ITERATE ||
662 	    keyring_compare_object(keyring, &ctx->index_key)) {
663 		ctx->skipped_ret = 2;
664 		switch (ctx->iterator(keyring_key_to_ptr(keyring), ctx)) {
665 		case 1:
666 			goto found;
667 		case 2:
668 			return false;
669 		default:
670 			break;
671 		}
672 	}
673 
674 	ctx->skipped_ret = 0;
675 
676 	/* Start processing a new keyring */
677 descend_to_keyring:
678 	kdebug("descend to %d", keyring->serial);
679 	if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
680 			      (1 << KEY_FLAG_REVOKED)))
681 		goto not_this_keyring;
682 
683 	/* Search through the keys in this keyring before its searching its
684 	 * subtrees.
685 	 */
686 	if (search_keyring(keyring, ctx))
687 		goto found;
688 
689 	/* Then manually iterate through the keyrings nested in this one.
690 	 *
691 	 * Start from the root node of the index tree.  Because of the way the
692 	 * hash function has been set up, keyrings cluster on the leftmost
693 	 * branch of the root node (root slot 0) or in the root node itself.
694 	 * Non-keyrings avoid the leftmost branch of the root entirely (root
695 	 * slots 1-15).
696 	 */
697 	ptr = ACCESS_ONCE(keyring->keys.root);
698 	if (!ptr)
699 		goto not_this_keyring;
700 
701 	if (assoc_array_ptr_is_shortcut(ptr)) {
702 		/* If the root is a shortcut, either the keyring only contains
703 		 * keyring pointers (everything clusters behind root slot 0) or
704 		 * doesn't contain any keyring pointers.
705 		 */
706 		shortcut = assoc_array_ptr_to_shortcut(ptr);
707 		smp_read_barrier_depends();
708 		if ((shortcut->index_key[0] & ASSOC_ARRAY_FAN_MASK) != 0)
709 			goto not_this_keyring;
710 
711 		ptr = ACCESS_ONCE(shortcut->next_node);
712 		node = assoc_array_ptr_to_node(ptr);
713 		goto begin_node;
714 	}
715 
716 	node = assoc_array_ptr_to_node(ptr);
717 	smp_read_barrier_depends();
718 
719 	ptr = node->slots[0];
720 	if (!assoc_array_ptr_is_meta(ptr))
721 		goto begin_node;
722 
723 descend_to_node:
724 	/* Descend to a more distal node in this keyring's content tree and go
725 	 * through that.
726 	 */
727 	kdebug("descend");
728 	if (assoc_array_ptr_is_shortcut(ptr)) {
729 		shortcut = assoc_array_ptr_to_shortcut(ptr);
730 		smp_read_barrier_depends();
731 		ptr = ACCESS_ONCE(shortcut->next_node);
732 		BUG_ON(!assoc_array_ptr_is_node(ptr));
733 	}
734 	node = assoc_array_ptr_to_node(ptr);
735 
736 begin_node:
737 	kdebug("begin_node");
738 	smp_read_barrier_depends();
739 	slot = 0;
740 ascend_to_node:
741 	/* Go through the slots in a node */
742 	for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
743 		ptr = ACCESS_ONCE(node->slots[slot]);
744 
745 		if (assoc_array_ptr_is_meta(ptr) && node->back_pointer)
746 			goto descend_to_node;
747 
748 		if (!keyring_ptr_is_keyring(ptr))
749 			continue;
750 
751 		key = keyring_ptr_to_key(ptr);
752 
753 		if (sp >= KEYRING_SEARCH_MAX_DEPTH) {
754 			if (ctx->flags & KEYRING_SEARCH_DETECT_TOO_DEEP) {
755 				ctx->result = ERR_PTR(-ELOOP);
756 				return false;
757 			}
758 			goto not_this_keyring;
759 		}
760 
761 		/* Search a nested keyring */
762 		if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
763 		    key_task_permission(make_key_ref(key, ctx->possessed),
764 					ctx->cred, KEY_NEED_SEARCH) < 0)
765 			continue;
766 
767 		/* stack the current position */
768 		stack[sp].keyring = keyring;
769 		stack[sp].node = node;
770 		stack[sp].slot = slot;
771 		sp++;
772 
773 		/* begin again with the new keyring */
774 		keyring = key;
775 		goto descend_to_keyring;
776 	}
777 
778 	/* We've dealt with all the slots in the current node, so now we need
779 	 * to ascend to the parent and continue processing there.
780 	 */
781 	ptr = ACCESS_ONCE(node->back_pointer);
782 	slot = node->parent_slot;
783 
784 	if (ptr && assoc_array_ptr_is_shortcut(ptr)) {
785 		shortcut = assoc_array_ptr_to_shortcut(ptr);
786 		smp_read_barrier_depends();
787 		ptr = ACCESS_ONCE(shortcut->back_pointer);
788 		slot = shortcut->parent_slot;
789 	}
790 	if (!ptr)
791 		goto not_this_keyring;
792 	node = assoc_array_ptr_to_node(ptr);
793 	smp_read_barrier_depends();
794 	slot++;
795 
796 	/* If we've ascended to the root (zero backpointer), we must have just
797 	 * finished processing the leftmost branch rather than the root slots -
798 	 * so there can't be any more keyrings for us to find.
799 	 */
800 	if (node->back_pointer) {
801 		kdebug("ascend %d", slot);
802 		goto ascend_to_node;
803 	}
804 
805 	/* The keyring we're looking at was disqualified or didn't contain a
806 	 * matching key.
807 	 */
808 not_this_keyring:
809 	kdebug("not_this_keyring %d", sp);
810 	if (sp <= 0) {
811 		kleave(" = false");
812 		return false;
813 	}
814 
815 	/* Resume the processing of a keyring higher up in the tree */
816 	sp--;
817 	keyring = stack[sp].keyring;
818 	node = stack[sp].node;
819 	slot = stack[sp].slot + 1;
820 	kdebug("ascend to %d [%d]", keyring->serial, slot);
821 	goto ascend_to_node;
822 
823 	/* We found a viable match */
824 found:
825 	key = key_ref_to_ptr(ctx->result);
826 	key_check(key);
827 	if (!(ctx->flags & KEYRING_SEARCH_NO_UPDATE_TIME)) {
828 		key->last_used_at = ctx->now.tv_sec;
829 		keyring->last_used_at = ctx->now.tv_sec;
830 		while (sp > 0)
831 			stack[--sp].keyring->last_used_at = ctx->now.tv_sec;
832 	}
833 	kleave(" = true");
834 	return true;
835 }
836 
837 /**
838  * keyring_search_aux - Search a keyring tree for a key matching some criteria
839  * @keyring_ref: A pointer to the keyring with possession indicator.
840  * @ctx: The keyring search context.
841  *
842  * Search the supplied keyring tree for a key that matches the criteria given.
843  * The root keyring and any linked keyrings must grant Search permission to the
844  * caller to be searchable and keys can only be found if they too grant Search
845  * to the caller. The possession flag on the root keyring pointer controls use
846  * of the possessor bits in permissions checking of the entire tree.  In
847  * addition, the LSM gets to forbid keyring searches and key matches.
848  *
849  * The search is performed as a breadth-then-depth search up to the prescribed
850  * limit (KEYRING_SEARCH_MAX_DEPTH).
851  *
852  * Keys are matched to the type provided and are then filtered by the match
853  * function, which is given the description to use in any way it sees fit.  The
854  * match function may use any attributes of a key that it wishes to to
855  * determine the match.  Normally the match function from the key type would be
856  * used.
857  *
858  * RCU can be used to prevent the keyring key lists from disappearing without
859  * the need to take lots of locks.
860  *
861  * Returns a pointer to the found key and increments the key usage count if
862  * successful; -EAGAIN if no matching keys were found, or if expired or revoked
863  * keys were found; -ENOKEY if only negative keys were found; -ENOTDIR if the
864  * specified keyring wasn't a keyring.
865  *
866  * In the case of a successful return, the possession attribute from
867  * @keyring_ref is propagated to the returned key reference.
868  */
keyring_search_aux(key_ref_t keyring_ref,struct keyring_search_context * ctx)869 key_ref_t keyring_search_aux(key_ref_t keyring_ref,
870 			     struct keyring_search_context *ctx)
871 {
872 	struct key *keyring;
873 	long err;
874 
875 	ctx->iterator = keyring_search_iterator;
876 	ctx->possessed = is_key_possessed(keyring_ref);
877 	ctx->result = ERR_PTR(-EAGAIN);
878 
879 	keyring = key_ref_to_ptr(keyring_ref);
880 	key_check(keyring);
881 
882 	if (keyring->type != &key_type_keyring)
883 		return ERR_PTR(-ENOTDIR);
884 
885 	if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM)) {
886 		err = key_task_permission(keyring_ref, ctx->cred, KEY_NEED_SEARCH);
887 		if (err < 0)
888 			return ERR_PTR(err);
889 	}
890 
891 	rcu_read_lock();
892 	ctx->now = current_kernel_time();
893 	if (search_nested_keyrings(keyring, ctx))
894 		__key_get(key_ref_to_ptr(ctx->result));
895 	rcu_read_unlock();
896 	return ctx->result;
897 }
898 
899 /**
900  * keyring_search - Search the supplied keyring tree for a matching key
901  * @keyring: The root of the keyring tree to be searched.
902  * @type: The type of keyring we want to find.
903  * @description: The name of the keyring we want to find.
904  *
905  * As keyring_search_aux() above, but using the current task's credentials and
906  * type's default matching function and preferred search method.
907  */
keyring_search(key_ref_t keyring,struct key_type * type,const char * description)908 key_ref_t keyring_search(key_ref_t keyring,
909 			 struct key_type *type,
910 			 const char *description)
911 {
912 	struct keyring_search_context ctx = {
913 		.index_key.type		= type,
914 		.index_key.description	= description,
915 		.cred			= current_cred(),
916 		.match_data.cmp		= key_default_cmp,
917 		.match_data.raw_data	= description,
918 		.match_data.lookup_type	= KEYRING_SEARCH_LOOKUP_DIRECT,
919 		.flags			= KEYRING_SEARCH_DO_STATE_CHECK,
920 	};
921 	key_ref_t key;
922 	int ret;
923 
924 	if (type->match_preparse) {
925 		ret = type->match_preparse(&ctx.match_data);
926 		if (ret < 0)
927 			return ERR_PTR(ret);
928 	}
929 
930 	key = keyring_search_aux(keyring, &ctx);
931 
932 	if (type->match_free)
933 		type->match_free(&ctx.match_data);
934 	return key;
935 }
936 EXPORT_SYMBOL(keyring_search);
937 
938 /*
939  * Search the given keyring for a key that might be updated.
940  *
941  * The caller must guarantee that the keyring is a keyring and that the
942  * permission is granted to modify the keyring as no check is made here.  The
943  * caller must also hold a lock on the keyring semaphore.
944  *
945  * Returns a pointer to the found key with usage count incremented if
946  * successful and returns NULL if not found.  Revoked and invalidated keys are
947  * skipped over.
948  *
949  * If successful, the possession indicator is propagated from the keyring ref
950  * to the returned key reference.
951  */
find_key_to_update(key_ref_t keyring_ref,const struct keyring_index_key * index_key)952 key_ref_t find_key_to_update(key_ref_t keyring_ref,
953 			     const struct keyring_index_key *index_key)
954 {
955 	struct key *keyring, *key;
956 	const void *object;
957 
958 	keyring = key_ref_to_ptr(keyring_ref);
959 
960 	kenter("{%d},{%s,%s}",
961 	       keyring->serial, index_key->type->name, index_key->description);
962 
963 	object = assoc_array_find(&keyring->keys, &keyring_assoc_array_ops,
964 				  index_key);
965 
966 	if (object)
967 		goto found;
968 
969 	kleave(" = NULL");
970 	return NULL;
971 
972 found:
973 	key = keyring_ptr_to_key(object);
974 	if (key->flags & ((1 << KEY_FLAG_INVALIDATED) |
975 			  (1 << KEY_FLAG_REVOKED))) {
976 		kleave(" = NULL [x]");
977 		return NULL;
978 	}
979 	__key_get(key);
980 	kleave(" = {%d}", key->serial);
981 	return make_key_ref(key, is_key_possessed(keyring_ref));
982 }
983 
984 /*
985  * Find a keyring with the specified name.
986  *
987  * Only keyrings that have nonzero refcount, are not revoked, and are owned by a
988  * user in the current user namespace are considered.  If @uid_keyring is %true,
989  * the keyring additionally must have been allocated as a user or user session
990  * keyring; otherwise, it must grant Search permission directly to the caller.
991  *
992  * Returns a pointer to the keyring with the keyring's refcount having being
993  * incremented on success.  -ENOKEY is returned if a key could not be found.
994  */
find_keyring_by_name(const char * name,bool uid_keyring)995 struct key *find_keyring_by_name(const char *name, bool uid_keyring)
996 {
997 	struct key *keyring;
998 	int bucket;
999 
1000 	if (!name)
1001 		return ERR_PTR(-EINVAL);
1002 
1003 	bucket = keyring_hash(name);
1004 
1005 	read_lock(&keyring_name_lock);
1006 
1007 	if (keyring_name_hash[bucket].next) {
1008 		/* search this hash bucket for a keyring with a matching name
1009 		 * that's readable and that hasn't been revoked */
1010 		list_for_each_entry(keyring,
1011 				    &keyring_name_hash[bucket],
1012 				    name_link
1013 				    ) {
1014 			if (!kuid_has_mapping(current_user_ns(), keyring->user->uid))
1015 				continue;
1016 
1017 			if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
1018 				continue;
1019 
1020 			if (strcmp(keyring->description, name) != 0)
1021 				continue;
1022 
1023 			if (uid_keyring) {
1024 				if (!test_bit(KEY_FLAG_UID_KEYRING,
1025 					      &keyring->flags))
1026 					continue;
1027 			} else {
1028 				if (key_permission(make_key_ref(keyring, 0),
1029 						   KEY_NEED_SEARCH) < 0)
1030 					continue;
1031 			}
1032 
1033 			/* we've got a match but we might end up racing with
1034 			 * key_cleanup() if the keyring is currently 'dead'
1035 			 * (ie. it has a zero usage count) */
1036 			if (!atomic_inc_not_zero(&keyring->usage))
1037 				continue;
1038 			keyring->last_used_at = current_kernel_time().tv_sec;
1039 			goto out;
1040 		}
1041 	}
1042 
1043 	keyring = ERR_PTR(-ENOKEY);
1044 out:
1045 	read_unlock(&keyring_name_lock);
1046 	return keyring;
1047 }
1048 
keyring_detect_cycle_iterator(const void * object,void * iterator_data)1049 static int keyring_detect_cycle_iterator(const void *object,
1050 					 void *iterator_data)
1051 {
1052 	struct keyring_search_context *ctx = iterator_data;
1053 	const struct key *key = keyring_ptr_to_key(object);
1054 
1055 	kenter("{%d}", key->serial);
1056 
1057 	/* We might get a keyring with matching index-key that is nonetheless a
1058 	 * different keyring. */
1059 	if (key != ctx->match_data.raw_data)
1060 		return 0;
1061 
1062 	ctx->result = ERR_PTR(-EDEADLK);
1063 	return 1;
1064 }
1065 
1066 /*
1067  * See if a cycle will will be created by inserting acyclic tree B in acyclic
1068  * tree A at the topmost level (ie: as a direct child of A).
1069  *
1070  * Since we are adding B to A at the top level, checking for cycles should just
1071  * be a matter of seeing if node A is somewhere in tree B.
1072  */
keyring_detect_cycle(struct key * A,struct key * B)1073 static int keyring_detect_cycle(struct key *A, struct key *B)
1074 {
1075 	struct keyring_search_context ctx = {
1076 		.index_key		= A->index_key,
1077 		.match_data.raw_data	= A,
1078 		.match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT,
1079 		.iterator		= keyring_detect_cycle_iterator,
1080 		.flags			= (KEYRING_SEARCH_NO_STATE_CHECK |
1081 					   KEYRING_SEARCH_NO_UPDATE_TIME |
1082 					   KEYRING_SEARCH_NO_CHECK_PERM |
1083 					   KEYRING_SEARCH_DETECT_TOO_DEEP),
1084 	};
1085 
1086 	rcu_read_lock();
1087 	search_nested_keyrings(B, &ctx);
1088 	rcu_read_unlock();
1089 	return PTR_ERR(ctx.result) == -EAGAIN ? 0 : PTR_ERR(ctx.result);
1090 }
1091 
1092 /*
1093  * Preallocate memory so that a key can be linked into to a keyring.
1094  */
__key_link_begin(struct key * keyring,const struct keyring_index_key * index_key,struct assoc_array_edit ** _edit)1095 int __key_link_begin(struct key *keyring,
1096 		     const struct keyring_index_key *index_key,
1097 		     struct assoc_array_edit **_edit)
1098 	__acquires(&keyring->sem)
1099 	__acquires(&keyring_serialise_link_sem)
1100 {
1101 	struct assoc_array_edit *edit;
1102 	int ret;
1103 
1104 	kenter("%d,%s,%s,",
1105 	       keyring->serial, index_key->type->name, index_key->description);
1106 
1107 	BUG_ON(index_key->desc_len == 0);
1108 
1109 	if (keyring->type != &key_type_keyring)
1110 		return -ENOTDIR;
1111 
1112 	down_write(&keyring->sem);
1113 
1114 	ret = -EKEYREVOKED;
1115 	if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
1116 		goto error_krsem;
1117 
1118 	/* serialise link/link calls to prevent parallel calls causing a cycle
1119 	 * when linking two keyring in opposite orders */
1120 	if (index_key->type == &key_type_keyring)
1121 		down_write(&keyring_serialise_link_sem);
1122 
1123 	/* Create an edit script that will insert/replace the key in the
1124 	 * keyring tree.
1125 	 */
1126 	edit = assoc_array_insert(&keyring->keys,
1127 				  &keyring_assoc_array_ops,
1128 				  index_key,
1129 				  NULL);
1130 	if (IS_ERR(edit)) {
1131 		ret = PTR_ERR(edit);
1132 		goto error_sem;
1133 	}
1134 
1135 	/* If we're not replacing a link in-place then we're going to need some
1136 	 * extra quota.
1137 	 */
1138 	if (!edit->dead_leaf) {
1139 		ret = key_payload_reserve(keyring,
1140 					  keyring->datalen + KEYQUOTA_LINK_BYTES);
1141 		if (ret < 0)
1142 			goto error_cancel;
1143 	}
1144 
1145 	*_edit = edit;
1146 	kleave(" = 0");
1147 	return 0;
1148 
1149 error_cancel:
1150 	assoc_array_cancel_edit(edit);
1151 error_sem:
1152 	if (index_key->type == &key_type_keyring)
1153 		up_write(&keyring_serialise_link_sem);
1154 error_krsem:
1155 	up_write(&keyring->sem);
1156 	kleave(" = %d", ret);
1157 	return ret;
1158 }
1159 
1160 /*
1161  * Check already instantiated keys aren't going to be a problem.
1162  *
1163  * The caller must have called __key_link_begin(). Don't need to call this for
1164  * keys that were created since __key_link_begin() was called.
1165  */
__key_link_check_live_key(struct key * keyring,struct key * key)1166 int __key_link_check_live_key(struct key *keyring, struct key *key)
1167 {
1168 	if (key->type == &key_type_keyring)
1169 		/* check that we aren't going to create a cycle by linking one
1170 		 * keyring to another */
1171 		return keyring_detect_cycle(keyring, key);
1172 	return 0;
1173 }
1174 
1175 /*
1176  * Link a key into to a keyring.
1177  *
1178  * Must be called with __key_link_begin() having being called.  Discards any
1179  * already extant link to matching key if there is one, so that each keyring
1180  * holds at most one link to any given key of a particular type+description
1181  * combination.
1182  */
__key_link(struct key * key,struct assoc_array_edit ** _edit)1183 void __key_link(struct key *key, struct assoc_array_edit **_edit)
1184 {
1185 	__key_get(key);
1186 	assoc_array_insert_set_object(*_edit, keyring_key_to_ptr(key));
1187 	assoc_array_apply_edit(*_edit);
1188 	*_edit = NULL;
1189 }
1190 
1191 /*
1192  * Finish linking a key into to a keyring.
1193  *
1194  * Must be called with __key_link_begin() having being called.
1195  */
__key_link_end(struct key * keyring,const struct keyring_index_key * index_key,struct assoc_array_edit * edit)1196 void __key_link_end(struct key *keyring,
1197 		    const struct keyring_index_key *index_key,
1198 		    struct assoc_array_edit *edit)
1199 	__releases(&keyring->sem)
1200 	__releases(&keyring_serialise_link_sem)
1201 {
1202 	BUG_ON(index_key->type == NULL);
1203 	kenter("%d,%s,", keyring->serial, index_key->type->name);
1204 
1205 	if (index_key->type == &key_type_keyring)
1206 		up_write(&keyring_serialise_link_sem);
1207 
1208 	if (edit) {
1209 		if (!edit->dead_leaf) {
1210 			key_payload_reserve(keyring,
1211 				keyring->datalen - KEYQUOTA_LINK_BYTES);
1212 		}
1213 		assoc_array_cancel_edit(edit);
1214 	}
1215 	up_write(&keyring->sem);
1216 }
1217 
1218 /*
1219  * Check addition of keys to restricted keyrings.
1220  */
__key_link_check_restriction(struct key * keyring,struct key * key)1221 static int __key_link_check_restriction(struct key *keyring, struct key *key)
1222 {
1223 	if (!keyring->restrict_link)
1224 		return 0;
1225 	return keyring->restrict_link(keyring, key->type, &key->payload);
1226 }
1227 
1228 /**
1229  * key_link - Link a key to a keyring
1230  * @keyring: The keyring to make the link in.
1231  * @key: The key to link to.
1232  *
1233  * Make a link in a keyring to a key, such that the keyring holds a reference
1234  * on that key and the key can potentially be found by searching that keyring.
1235  *
1236  * This function will write-lock the keyring's semaphore and will consume some
1237  * of the user's key data quota to hold the link.
1238  *
1239  * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring,
1240  * -EKEYREVOKED if the keyring has been revoked, -ENFILE if the keyring is
1241  * full, -EDQUOT if there is insufficient key data quota remaining to add
1242  * another link or -ENOMEM if there's insufficient memory.
1243  *
1244  * It is assumed that the caller has checked that it is permitted for a link to
1245  * be made (the keyring should have Write permission and the key Link
1246  * permission).
1247  */
key_link(struct key * keyring,struct key * key)1248 int key_link(struct key *keyring, struct key *key)
1249 {
1250 	struct assoc_array_edit *edit;
1251 	int ret;
1252 
1253 	kenter("{%d,%d}", keyring->serial, atomic_read(&keyring->usage));
1254 
1255 	key_check(keyring);
1256 	key_check(key);
1257 
1258 	ret = __key_link_begin(keyring, &key->index_key, &edit);
1259 	if (ret == 0) {
1260 		kdebug("begun {%d,%d}", keyring->serial, atomic_read(&keyring->usage));
1261 		ret = __key_link_check_restriction(keyring, key);
1262 		if (ret == 0)
1263 			ret = __key_link_check_live_key(keyring, key);
1264 		if (ret == 0)
1265 			__key_link(key, &edit);
1266 		__key_link_end(keyring, &key->index_key, edit);
1267 	}
1268 
1269 	kleave(" = %d {%d,%d}", ret, keyring->serial, atomic_read(&keyring->usage));
1270 	return ret;
1271 }
1272 EXPORT_SYMBOL(key_link);
1273 
1274 /**
1275  * key_unlink - Unlink the first link to a key from a keyring.
1276  * @keyring: The keyring to remove the link from.
1277  * @key: The key the link is to.
1278  *
1279  * Remove a link from a keyring to a key.
1280  *
1281  * This function will write-lock the keyring's semaphore.
1282  *
1283  * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, -ENOENT if
1284  * the key isn't linked to by the keyring or -ENOMEM if there's insufficient
1285  * memory.
1286  *
1287  * It is assumed that the caller has checked that it is permitted for a link to
1288  * be removed (the keyring should have Write permission; no permissions are
1289  * required on the key).
1290  */
key_unlink(struct key * keyring,struct key * key)1291 int key_unlink(struct key *keyring, struct key *key)
1292 {
1293 	struct assoc_array_edit *edit;
1294 	int ret;
1295 
1296 	key_check(keyring);
1297 	key_check(key);
1298 
1299 	if (keyring->type != &key_type_keyring)
1300 		return -ENOTDIR;
1301 
1302 	down_write(&keyring->sem);
1303 
1304 	edit = assoc_array_delete(&keyring->keys, &keyring_assoc_array_ops,
1305 				  &key->index_key);
1306 	if (IS_ERR(edit)) {
1307 		ret = PTR_ERR(edit);
1308 		goto error;
1309 	}
1310 	ret = -ENOENT;
1311 	if (edit == NULL)
1312 		goto error;
1313 
1314 	assoc_array_apply_edit(edit);
1315 	key_payload_reserve(keyring, keyring->datalen - KEYQUOTA_LINK_BYTES);
1316 	ret = 0;
1317 
1318 error:
1319 	up_write(&keyring->sem);
1320 	return ret;
1321 }
1322 EXPORT_SYMBOL(key_unlink);
1323 
1324 /**
1325  * keyring_clear - Clear a keyring
1326  * @keyring: The keyring to clear.
1327  *
1328  * Clear the contents of the specified keyring.
1329  *
1330  * Returns 0 if successful or -ENOTDIR if the keyring isn't a keyring.
1331  */
keyring_clear(struct key * keyring)1332 int keyring_clear(struct key *keyring)
1333 {
1334 	struct assoc_array_edit *edit;
1335 	int ret;
1336 
1337 	if (keyring->type != &key_type_keyring)
1338 		return -ENOTDIR;
1339 
1340 	down_write(&keyring->sem);
1341 
1342 	edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1343 	if (IS_ERR(edit)) {
1344 		ret = PTR_ERR(edit);
1345 	} else {
1346 		if (edit)
1347 			assoc_array_apply_edit(edit);
1348 		key_payload_reserve(keyring, 0);
1349 		ret = 0;
1350 	}
1351 
1352 	up_write(&keyring->sem);
1353 	return ret;
1354 }
1355 EXPORT_SYMBOL(keyring_clear);
1356 
1357 /*
1358  * Dispose of the links from a revoked keyring.
1359  *
1360  * This is called with the key sem write-locked.
1361  */
keyring_revoke(struct key * keyring)1362 static void keyring_revoke(struct key *keyring)
1363 {
1364 	struct assoc_array_edit *edit;
1365 
1366 	edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1367 	if (!IS_ERR(edit)) {
1368 		if (edit)
1369 			assoc_array_apply_edit(edit);
1370 		key_payload_reserve(keyring, 0);
1371 	}
1372 }
1373 
keyring_gc_select_iterator(void * object,void * iterator_data)1374 static bool keyring_gc_select_iterator(void *object, void *iterator_data)
1375 {
1376 	struct key *key = keyring_ptr_to_key(object);
1377 	time_t *limit = iterator_data;
1378 
1379 	if (key_is_dead(key, *limit))
1380 		return false;
1381 	key_get(key);
1382 	return true;
1383 }
1384 
keyring_gc_check_iterator(const void * object,void * iterator_data)1385 static int keyring_gc_check_iterator(const void *object, void *iterator_data)
1386 {
1387 	const struct key *key = keyring_ptr_to_key(object);
1388 	time_t *limit = iterator_data;
1389 
1390 	key_check(key);
1391 	return key_is_dead(key, *limit);
1392 }
1393 
1394 /*
1395  * Garbage collect pointers from a keyring.
1396  *
1397  * Not called with any locks held.  The keyring's key struct will not be
1398  * deallocated under us as only our caller may deallocate it.
1399  */
keyring_gc(struct key * keyring,time_t limit)1400 void keyring_gc(struct key *keyring, time_t limit)
1401 {
1402 	int result;
1403 
1404 	kenter("%x{%s}", keyring->serial, keyring->description ?: "");
1405 
1406 	if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
1407 			      (1 << KEY_FLAG_REVOKED)))
1408 		goto dont_gc;
1409 
1410 	/* scan the keyring looking for dead keys */
1411 	rcu_read_lock();
1412 	result = assoc_array_iterate(&keyring->keys,
1413 				     keyring_gc_check_iterator, &limit);
1414 	rcu_read_unlock();
1415 	if (result == true)
1416 		goto do_gc;
1417 
1418 dont_gc:
1419 	kleave(" [no gc]");
1420 	return;
1421 
1422 do_gc:
1423 	down_write(&keyring->sem);
1424 	assoc_array_gc(&keyring->keys, &keyring_assoc_array_ops,
1425 		       keyring_gc_select_iterator, &limit);
1426 	up_write(&keyring->sem);
1427 	kleave(" [gc]");
1428 }
1429