1 /*
2 * amdtp-dot.c - a part of driver for Digidesign Digi 002/003 family
3 *
4 * Copyright (c) 2014-2015 Takashi Sakamoto
5 * Copyright (C) 2012 Robin Gareus <robin@gareus.org>
6 * Copyright (C) 2012 Damien Zammit <damien@zamaudio.com>
7 *
8 * Licensed under the terms of the GNU General Public License, version 2.
9 */
10
11 #include <sound/pcm.h>
12 #include "digi00x.h"
13
14 #define CIP_FMT_AM 0x10
15
16 /* 'Clock-based rate control mode' is just supported. */
17 #define AMDTP_FDF_AM824 0x00
18
19 /*
20 * Nominally 3125 bytes/second, but the MIDI port's clock might be
21 * 1% too slow, and the bus clock 100 ppm too fast.
22 */
23 #define MIDI_BYTES_PER_SECOND 3093
24
25 /*
26 * Several devices look only at the first eight data blocks.
27 * In any case, this is more than enough for the MIDI data rate.
28 */
29 #define MAX_MIDI_RX_BLOCKS 8
30
31 /* 3 = MAX(DOT_MIDI_IN_PORTS, DOT_MIDI_OUT_PORTS) + 1. */
32 #define MAX_MIDI_PORTS 3
33
34 /*
35 * The double-oh-three algorithm was discovered by Robin Gareus and Damien
36 * Zammit in 2012, with reverse-engineering for Digi 003 Rack.
37 */
38 struct dot_state {
39 u8 carry;
40 u8 idx;
41 unsigned int off;
42 };
43
44 struct amdtp_dot {
45 unsigned int pcm_channels;
46 struct dot_state state;
47
48 struct snd_rawmidi_substream *midi[MAX_MIDI_PORTS];
49 int midi_fifo_used[MAX_MIDI_PORTS];
50 int midi_fifo_limit;
51
52 void (*transfer_samples)(struct amdtp_stream *s,
53 struct snd_pcm_substream *pcm,
54 __be32 *buffer, unsigned int frames);
55 };
56
57 /*
58 * double-oh-three look up table
59 *
60 * @param idx index byte (audio-sample data) 0x00..0xff
61 * @param off channel offset shift
62 * @return salt to XOR with given data
63 */
64 #define BYTE_PER_SAMPLE (4)
65 #define MAGIC_DOT_BYTE (2)
66 #define MAGIC_BYTE_OFF(x) (((x) * BYTE_PER_SAMPLE) + MAGIC_DOT_BYTE)
dot_scrt(const u8 idx,const unsigned int off)67 static u8 dot_scrt(const u8 idx, const unsigned int off)
68 {
69 /*
70 * the length of the added pattern only depends on the lower nibble
71 * of the last non-zero data
72 */
73 static const u8 len[16] = {0, 1, 3, 5, 7, 9, 11, 13, 14,
74 12, 10, 8, 6, 4, 2, 0};
75
76 /*
77 * the lower nibble of the salt. Interleaved sequence.
78 * this is walked backwards according to len[]
79 */
80 static const u8 nib[15] = {0x8, 0x7, 0x9, 0x6, 0xa, 0x5, 0xb, 0x4,
81 0xc, 0x3, 0xd, 0x2, 0xe, 0x1, 0xf};
82
83 /* circular list for the salt's hi nibble. */
84 static const u8 hir[15] = {0x0, 0x6, 0xf, 0x8, 0x7, 0x5, 0x3, 0x4,
85 0xc, 0xd, 0xe, 0x1, 0x2, 0xb, 0xa};
86
87 /*
88 * start offset for upper nibble mapping.
89 * note: 9 is /special/. In the case where the high nibble == 0x9,
90 * hir[] is not used and - coincidentally - the salt's hi nibble is
91 * 0x09 regardless of the offset.
92 */
93 static const u8 hio[16] = {0, 11, 12, 6, 7, 5, 1, 4,
94 3, 0x00, 14, 13, 8, 9, 10, 2};
95
96 const u8 ln = idx & 0xf;
97 const u8 hn = (idx >> 4) & 0xf;
98 const u8 hr = (hn == 0x9) ? 0x9 : hir[(hio[hn] + off) % 15];
99
100 if (len[ln] < off)
101 return 0x00;
102
103 return ((nib[14 + off - len[ln]]) | (hr << 4));
104 }
105
dot_encode_step(struct dot_state * state,__be32 * const buffer)106 static void dot_encode_step(struct dot_state *state, __be32 *const buffer)
107 {
108 u8 * const data = (u8 *) buffer;
109
110 if (data[MAGIC_DOT_BYTE] != 0x00) {
111 state->off = 0;
112 state->idx = data[MAGIC_DOT_BYTE] ^ state->carry;
113 }
114 data[MAGIC_DOT_BYTE] ^= state->carry;
115 state->carry = dot_scrt(state->idx, ++(state->off));
116 }
117
amdtp_dot_set_parameters(struct amdtp_stream * s,unsigned int rate,unsigned int pcm_channels)118 int amdtp_dot_set_parameters(struct amdtp_stream *s, unsigned int rate,
119 unsigned int pcm_channels)
120 {
121 struct amdtp_dot *p = s->protocol;
122 int err;
123
124 if (amdtp_stream_running(s))
125 return -EBUSY;
126
127 /*
128 * A first data channel is for MIDI messages, the rest is Multi Bit
129 * Linear Audio data channel.
130 */
131 err = amdtp_stream_set_parameters(s, rate, pcm_channels + 1);
132 if (err < 0)
133 return err;
134
135 s->fdf = AMDTP_FDF_AM824 | s->sfc;
136
137 p->pcm_channels = pcm_channels;
138
139 /*
140 * We do not know the actual MIDI FIFO size of most devices. Just
141 * assume two bytes, i.e., one byte can be received over the bus while
142 * the previous one is transmitted over MIDI.
143 * (The value here is adjusted for midi_ratelimit_per_packet().)
144 */
145 p->midi_fifo_limit = rate - MIDI_BYTES_PER_SECOND * s->syt_interval + 1;
146
147 return 0;
148 }
149
write_pcm_s32(struct amdtp_stream * s,struct snd_pcm_substream * pcm,__be32 * buffer,unsigned int frames)150 static void write_pcm_s32(struct amdtp_stream *s, struct snd_pcm_substream *pcm,
151 __be32 *buffer, unsigned int frames)
152 {
153 struct amdtp_dot *p = s->protocol;
154 struct snd_pcm_runtime *runtime = pcm->runtime;
155 unsigned int channels, remaining_frames, i, c;
156 const u32 *src;
157
158 channels = p->pcm_channels;
159 src = (void *)runtime->dma_area +
160 frames_to_bytes(runtime, s->pcm_buffer_pointer);
161 remaining_frames = runtime->buffer_size - s->pcm_buffer_pointer;
162
163 buffer++;
164 for (i = 0; i < frames; ++i) {
165 for (c = 0; c < channels; ++c) {
166 buffer[c] = cpu_to_be32((*src >> 8) | 0x40000000);
167 dot_encode_step(&p->state, &buffer[c]);
168 src++;
169 }
170 buffer += s->data_block_quadlets;
171 if (--remaining_frames == 0)
172 src = (void *)runtime->dma_area;
173 }
174 }
175
write_pcm_s16(struct amdtp_stream * s,struct snd_pcm_substream * pcm,__be32 * buffer,unsigned int frames)176 static void write_pcm_s16(struct amdtp_stream *s, struct snd_pcm_substream *pcm,
177 __be32 *buffer, unsigned int frames)
178 {
179 struct amdtp_dot *p = s->protocol;
180 struct snd_pcm_runtime *runtime = pcm->runtime;
181 unsigned int channels, remaining_frames, i, c;
182 const u16 *src;
183
184 channels = p->pcm_channels;
185 src = (void *)runtime->dma_area +
186 frames_to_bytes(runtime, s->pcm_buffer_pointer);
187 remaining_frames = runtime->buffer_size - s->pcm_buffer_pointer;
188
189 buffer++;
190 for (i = 0; i < frames; ++i) {
191 for (c = 0; c < channels; ++c) {
192 buffer[c] = cpu_to_be32((*src << 8) | 0x40000000);
193 dot_encode_step(&p->state, &buffer[c]);
194 src++;
195 }
196 buffer += s->data_block_quadlets;
197 if (--remaining_frames == 0)
198 src = (void *)runtime->dma_area;
199 }
200 }
201
read_pcm_s32(struct amdtp_stream * s,struct snd_pcm_substream * pcm,__be32 * buffer,unsigned int frames)202 static void read_pcm_s32(struct amdtp_stream *s, struct snd_pcm_substream *pcm,
203 __be32 *buffer, unsigned int frames)
204 {
205 struct amdtp_dot *p = s->protocol;
206 struct snd_pcm_runtime *runtime = pcm->runtime;
207 unsigned int channels, remaining_frames, i, c;
208 u32 *dst;
209
210 channels = p->pcm_channels;
211 dst = (void *)runtime->dma_area +
212 frames_to_bytes(runtime, s->pcm_buffer_pointer);
213 remaining_frames = runtime->buffer_size - s->pcm_buffer_pointer;
214
215 buffer++;
216 for (i = 0; i < frames; ++i) {
217 for (c = 0; c < channels; ++c) {
218 *dst = be32_to_cpu(buffer[c]) << 8;
219 dst++;
220 }
221 buffer += s->data_block_quadlets;
222 if (--remaining_frames == 0)
223 dst = (void *)runtime->dma_area;
224 }
225 }
226
write_pcm_silence(struct amdtp_stream * s,__be32 * buffer,unsigned int data_blocks)227 static void write_pcm_silence(struct amdtp_stream *s, __be32 *buffer,
228 unsigned int data_blocks)
229 {
230 struct amdtp_dot *p = s->protocol;
231 unsigned int channels, i, c;
232
233 channels = p->pcm_channels;
234
235 buffer++;
236 for (i = 0; i < data_blocks; ++i) {
237 for (c = 0; c < channels; ++c)
238 buffer[c] = cpu_to_be32(0x40000000);
239 buffer += s->data_block_quadlets;
240 }
241 }
242
midi_ratelimit_per_packet(struct amdtp_stream * s,unsigned int port)243 static bool midi_ratelimit_per_packet(struct amdtp_stream *s, unsigned int port)
244 {
245 struct amdtp_dot *p = s->protocol;
246 int used;
247
248 used = p->midi_fifo_used[port];
249 if (used == 0)
250 return true;
251
252 used -= MIDI_BYTES_PER_SECOND * s->syt_interval;
253 used = max(used, 0);
254 p->midi_fifo_used[port] = used;
255
256 return used < p->midi_fifo_limit;
257 }
258
midi_use_bytes(struct amdtp_stream * s,unsigned int port,unsigned int count)259 static inline void midi_use_bytes(struct amdtp_stream *s,
260 unsigned int port, unsigned int count)
261 {
262 struct amdtp_dot *p = s->protocol;
263
264 p->midi_fifo_used[port] += amdtp_rate_table[s->sfc] * count;
265 }
266
write_midi_messages(struct amdtp_stream * s,__be32 * buffer,unsigned int data_blocks)267 static void write_midi_messages(struct amdtp_stream *s, __be32 *buffer,
268 unsigned int data_blocks)
269 {
270 struct amdtp_dot *p = s->protocol;
271 unsigned int f, port;
272 int len;
273 u8 *b;
274
275 for (f = 0; f < data_blocks; f++) {
276 port = (s->data_block_counter + f) % 8;
277 b = (u8 *)&buffer[0];
278
279 len = 0;
280 if (port < MAX_MIDI_PORTS &&
281 midi_ratelimit_per_packet(s, port) &&
282 p->midi[port] != NULL)
283 len = snd_rawmidi_transmit(p->midi[port], b + 1, 2);
284
285 if (len > 0) {
286 /*
287 * Upper 4 bits of LSB represent port number.
288 * - 0000b: physical MIDI port 1.
289 * - 0010b: physical MIDI port 2.
290 * - 1110b: console MIDI port.
291 */
292 if (port == 2)
293 b[3] = 0xe0;
294 else if (port == 1)
295 b[3] = 0x20;
296 else
297 b[3] = 0x00;
298 b[3] |= len;
299 midi_use_bytes(s, port, len);
300 } else {
301 b[1] = 0;
302 b[2] = 0;
303 b[3] = 0;
304 }
305 b[0] = 0x80;
306
307 buffer += s->data_block_quadlets;
308 }
309 }
310
read_midi_messages(struct amdtp_stream * s,__be32 * buffer,unsigned int data_blocks)311 static void read_midi_messages(struct amdtp_stream *s, __be32 *buffer,
312 unsigned int data_blocks)
313 {
314 struct amdtp_dot *p = s->protocol;
315 unsigned int f, port, len;
316 u8 *b;
317
318 for (f = 0; f < data_blocks; f++) {
319 b = (u8 *)&buffer[0];
320
321 len = b[3] & 0x0f;
322 if (len > 0) {
323 /*
324 * Upper 4 bits of LSB represent port number.
325 * - 0000b: physical MIDI port 1. Use port 0.
326 * - 1110b: console MIDI port. Use port 2.
327 */
328 if (b[3] >> 4 > 0)
329 port = 2;
330 else
331 port = 0;
332
333 if (port < MAX_MIDI_PORTS && p->midi[port])
334 snd_rawmidi_receive(p->midi[port], b + 1, len);
335 }
336
337 buffer += s->data_block_quadlets;
338 }
339 }
340
amdtp_dot_add_pcm_hw_constraints(struct amdtp_stream * s,struct snd_pcm_runtime * runtime)341 int amdtp_dot_add_pcm_hw_constraints(struct amdtp_stream *s,
342 struct snd_pcm_runtime *runtime)
343 {
344 int err;
345
346 /* This protocol delivers 24 bit data in 32bit data channel. */
347 err = snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
348 if (err < 0)
349 return err;
350
351 return amdtp_stream_add_pcm_hw_constraints(s, runtime);
352 }
353
amdtp_dot_set_pcm_format(struct amdtp_stream * s,snd_pcm_format_t format)354 void amdtp_dot_set_pcm_format(struct amdtp_stream *s, snd_pcm_format_t format)
355 {
356 struct amdtp_dot *p = s->protocol;
357
358 if (WARN_ON(amdtp_stream_pcm_running(s)))
359 return;
360
361 switch (format) {
362 default:
363 WARN_ON(1);
364 /* fall through */
365 case SNDRV_PCM_FORMAT_S16:
366 if (s->direction == AMDTP_OUT_STREAM) {
367 p->transfer_samples = write_pcm_s16;
368 break;
369 }
370 WARN_ON(1);
371 /* fall through */
372 case SNDRV_PCM_FORMAT_S32:
373 if (s->direction == AMDTP_OUT_STREAM)
374 p->transfer_samples = write_pcm_s32;
375 else
376 p->transfer_samples = read_pcm_s32;
377 break;
378 }
379 }
380
amdtp_dot_midi_trigger(struct amdtp_stream * s,unsigned int port,struct snd_rawmidi_substream * midi)381 void amdtp_dot_midi_trigger(struct amdtp_stream *s, unsigned int port,
382 struct snd_rawmidi_substream *midi)
383 {
384 struct amdtp_dot *p = s->protocol;
385
386 if (port < MAX_MIDI_PORTS)
387 ACCESS_ONCE(p->midi[port]) = midi;
388 }
389
process_tx_data_blocks(struct amdtp_stream * s,__be32 * buffer,unsigned int data_blocks,unsigned int * syt)390 static unsigned int process_tx_data_blocks(struct amdtp_stream *s,
391 __be32 *buffer,
392 unsigned int data_blocks,
393 unsigned int *syt)
394 {
395 struct amdtp_dot *p = (struct amdtp_dot *)s->protocol;
396 struct snd_pcm_substream *pcm;
397 unsigned int pcm_frames;
398
399 pcm = ACCESS_ONCE(s->pcm);
400 if (pcm) {
401 p->transfer_samples(s, pcm, buffer, data_blocks);
402 pcm_frames = data_blocks;
403 } else {
404 pcm_frames = 0;
405 }
406
407 read_midi_messages(s, buffer, data_blocks);
408
409 return pcm_frames;
410 }
411
process_rx_data_blocks(struct amdtp_stream * s,__be32 * buffer,unsigned int data_blocks,unsigned int * syt)412 static unsigned int process_rx_data_blocks(struct amdtp_stream *s,
413 __be32 *buffer,
414 unsigned int data_blocks,
415 unsigned int *syt)
416 {
417 struct amdtp_dot *p = (struct amdtp_dot *)s->protocol;
418 struct snd_pcm_substream *pcm;
419 unsigned int pcm_frames;
420
421 pcm = ACCESS_ONCE(s->pcm);
422 if (pcm) {
423 p->transfer_samples(s, pcm, buffer, data_blocks);
424 pcm_frames = data_blocks;
425 } else {
426 write_pcm_silence(s, buffer, data_blocks);
427 pcm_frames = 0;
428 }
429
430 write_midi_messages(s, buffer, data_blocks);
431
432 return pcm_frames;
433 }
434
amdtp_dot_init(struct amdtp_stream * s,struct fw_unit * unit,enum amdtp_stream_direction dir)435 int amdtp_dot_init(struct amdtp_stream *s, struct fw_unit *unit,
436 enum amdtp_stream_direction dir)
437 {
438 amdtp_stream_process_data_blocks_t process_data_blocks;
439 enum cip_flags flags;
440
441 /* Use different mode between incoming/outgoing. */
442 if (dir == AMDTP_IN_STREAM) {
443 flags = CIP_NONBLOCKING;
444 process_data_blocks = process_tx_data_blocks;
445 } else {
446 flags = CIP_BLOCKING;
447 process_data_blocks = process_rx_data_blocks;
448 }
449
450 return amdtp_stream_init(s, unit, dir, flags, CIP_FMT_AM,
451 process_data_blocks, sizeof(struct amdtp_dot));
452 }
453
amdtp_dot_reset(struct amdtp_stream * s)454 void amdtp_dot_reset(struct amdtp_stream *s)
455 {
456 struct amdtp_dot *p = s->protocol;
457
458 p->state.carry = 0x00;
459 p->state.idx = 0x00;
460 p->state.off = 0;
461 }
462