• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * amdtp-dot.c - a part of driver for Digidesign Digi 002/003 family
3  *
4  * Copyright (c) 2014-2015 Takashi Sakamoto
5  * Copyright (C) 2012 Robin Gareus <robin@gareus.org>
6  * Copyright (C) 2012 Damien Zammit <damien@zamaudio.com>
7  *
8  * Licensed under the terms of the GNU General Public License, version 2.
9  */
10 
11 #include <sound/pcm.h>
12 #include "digi00x.h"
13 
14 #define CIP_FMT_AM		0x10
15 
16 /* 'Clock-based rate control mode' is just supported. */
17 #define AMDTP_FDF_AM824		0x00
18 
19 /*
20  * Nominally 3125 bytes/second, but the MIDI port's clock might be
21  * 1% too slow, and the bus clock 100 ppm too fast.
22  */
23 #define MIDI_BYTES_PER_SECOND	3093
24 
25 /*
26  * Several devices look only at the first eight data blocks.
27  * In any case, this is more than enough for the MIDI data rate.
28  */
29 #define MAX_MIDI_RX_BLOCKS	8
30 
31 /* 3 = MAX(DOT_MIDI_IN_PORTS, DOT_MIDI_OUT_PORTS) + 1. */
32 #define MAX_MIDI_PORTS		3
33 
34 /*
35  * The double-oh-three algorithm was discovered by Robin Gareus and Damien
36  * Zammit in 2012, with reverse-engineering for Digi 003 Rack.
37  */
38 struct dot_state {
39 	u8 carry;
40 	u8 idx;
41 	unsigned int off;
42 };
43 
44 struct amdtp_dot {
45 	unsigned int pcm_channels;
46 	struct dot_state state;
47 
48 	struct snd_rawmidi_substream *midi[MAX_MIDI_PORTS];
49 	int midi_fifo_used[MAX_MIDI_PORTS];
50 	int midi_fifo_limit;
51 
52 	void (*transfer_samples)(struct amdtp_stream *s,
53 				 struct snd_pcm_substream *pcm,
54 				 __be32 *buffer, unsigned int frames);
55 };
56 
57 /*
58  * double-oh-three look up table
59  *
60  * @param idx index byte (audio-sample data) 0x00..0xff
61  * @param off channel offset shift
62  * @return salt to XOR with given data
63  */
64 #define BYTE_PER_SAMPLE (4)
65 #define MAGIC_DOT_BYTE (2)
66 #define MAGIC_BYTE_OFF(x) (((x) * BYTE_PER_SAMPLE) + MAGIC_DOT_BYTE)
dot_scrt(const u8 idx,const unsigned int off)67 static u8 dot_scrt(const u8 idx, const unsigned int off)
68 {
69 	/*
70 	 * the length of the added pattern only depends on the lower nibble
71 	 * of the last non-zero data
72 	 */
73 	static const u8 len[16] = {0, 1, 3, 5, 7, 9, 11, 13, 14,
74 				   12, 10, 8, 6, 4, 2, 0};
75 
76 	/*
77 	 * the lower nibble of the salt. Interleaved sequence.
78 	 * this is walked backwards according to len[]
79 	 */
80 	static const u8 nib[15] = {0x8, 0x7, 0x9, 0x6, 0xa, 0x5, 0xb, 0x4,
81 				   0xc, 0x3, 0xd, 0x2, 0xe, 0x1, 0xf};
82 
83 	/* circular list for the salt's hi nibble. */
84 	static const u8 hir[15] = {0x0, 0x6, 0xf, 0x8, 0x7, 0x5, 0x3, 0x4,
85 				   0xc, 0xd, 0xe, 0x1, 0x2, 0xb, 0xa};
86 
87 	/*
88 	 * start offset for upper nibble mapping.
89 	 * note: 9 is /special/. In the case where the high nibble == 0x9,
90 	 * hir[] is not used and - coincidentally - the salt's hi nibble is
91 	 * 0x09 regardless of the offset.
92 	 */
93 	static const u8 hio[16] = {0, 11, 12, 6, 7, 5, 1, 4,
94 				   3, 0x00, 14, 13, 8, 9, 10, 2};
95 
96 	const u8 ln = idx & 0xf;
97 	const u8 hn = (idx >> 4) & 0xf;
98 	const u8 hr = (hn == 0x9) ? 0x9 : hir[(hio[hn] + off) % 15];
99 
100 	if (len[ln] < off)
101 		return 0x00;
102 
103 	return ((nib[14 + off - len[ln]]) | (hr << 4));
104 }
105 
dot_encode_step(struct dot_state * state,__be32 * const buffer)106 static void dot_encode_step(struct dot_state *state, __be32 *const buffer)
107 {
108 	u8 * const data = (u8 *) buffer;
109 
110 	if (data[MAGIC_DOT_BYTE] != 0x00) {
111 		state->off = 0;
112 		state->idx = data[MAGIC_DOT_BYTE] ^ state->carry;
113 	}
114 	data[MAGIC_DOT_BYTE] ^= state->carry;
115 	state->carry = dot_scrt(state->idx, ++(state->off));
116 }
117 
amdtp_dot_set_parameters(struct amdtp_stream * s,unsigned int rate,unsigned int pcm_channels)118 int amdtp_dot_set_parameters(struct amdtp_stream *s, unsigned int rate,
119 			     unsigned int pcm_channels)
120 {
121 	struct amdtp_dot *p = s->protocol;
122 	int err;
123 
124 	if (amdtp_stream_running(s))
125 		return -EBUSY;
126 
127 	/*
128 	 * A first data channel is for MIDI messages, the rest is Multi Bit
129 	 * Linear Audio data channel.
130 	 */
131 	err = amdtp_stream_set_parameters(s, rate, pcm_channels + 1);
132 	if (err < 0)
133 		return err;
134 
135 	s->fdf = AMDTP_FDF_AM824 | s->sfc;
136 
137 	p->pcm_channels = pcm_channels;
138 
139 	/*
140 	 * We do not know the actual MIDI FIFO size of most devices.  Just
141 	 * assume two bytes, i.e., one byte can be received over the bus while
142 	 * the previous one is transmitted over MIDI.
143 	 * (The value here is adjusted for midi_ratelimit_per_packet().)
144 	 */
145 	p->midi_fifo_limit = rate - MIDI_BYTES_PER_SECOND * s->syt_interval + 1;
146 
147 	return 0;
148 }
149 
write_pcm_s32(struct amdtp_stream * s,struct snd_pcm_substream * pcm,__be32 * buffer,unsigned int frames)150 static void write_pcm_s32(struct amdtp_stream *s, struct snd_pcm_substream *pcm,
151 			  __be32 *buffer, unsigned int frames)
152 {
153 	struct amdtp_dot *p = s->protocol;
154 	struct snd_pcm_runtime *runtime = pcm->runtime;
155 	unsigned int channels, remaining_frames, i, c;
156 	const u32 *src;
157 
158 	channels = p->pcm_channels;
159 	src = (void *)runtime->dma_area +
160 			frames_to_bytes(runtime, s->pcm_buffer_pointer);
161 	remaining_frames = runtime->buffer_size - s->pcm_buffer_pointer;
162 
163 	buffer++;
164 	for (i = 0; i < frames; ++i) {
165 		for (c = 0; c < channels; ++c) {
166 			buffer[c] = cpu_to_be32((*src >> 8) | 0x40000000);
167 			dot_encode_step(&p->state, &buffer[c]);
168 			src++;
169 		}
170 		buffer += s->data_block_quadlets;
171 		if (--remaining_frames == 0)
172 			src = (void *)runtime->dma_area;
173 	}
174 }
175 
write_pcm_s16(struct amdtp_stream * s,struct snd_pcm_substream * pcm,__be32 * buffer,unsigned int frames)176 static void write_pcm_s16(struct amdtp_stream *s, struct snd_pcm_substream *pcm,
177 			  __be32 *buffer, unsigned int frames)
178 {
179 	struct amdtp_dot *p = s->protocol;
180 	struct snd_pcm_runtime *runtime = pcm->runtime;
181 	unsigned int channels, remaining_frames, i, c;
182 	const u16 *src;
183 
184 	channels = p->pcm_channels;
185 	src = (void *)runtime->dma_area +
186 			frames_to_bytes(runtime, s->pcm_buffer_pointer);
187 	remaining_frames = runtime->buffer_size - s->pcm_buffer_pointer;
188 
189 	buffer++;
190 	for (i = 0; i < frames; ++i) {
191 		for (c = 0; c < channels; ++c) {
192 			buffer[c] = cpu_to_be32((*src << 8) | 0x40000000);
193 			dot_encode_step(&p->state, &buffer[c]);
194 			src++;
195 		}
196 		buffer += s->data_block_quadlets;
197 		if (--remaining_frames == 0)
198 			src = (void *)runtime->dma_area;
199 	}
200 }
201 
read_pcm_s32(struct amdtp_stream * s,struct snd_pcm_substream * pcm,__be32 * buffer,unsigned int frames)202 static void read_pcm_s32(struct amdtp_stream *s, struct snd_pcm_substream *pcm,
203 			 __be32 *buffer, unsigned int frames)
204 {
205 	struct amdtp_dot *p = s->protocol;
206 	struct snd_pcm_runtime *runtime = pcm->runtime;
207 	unsigned int channels, remaining_frames, i, c;
208 	u32 *dst;
209 
210 	channels = p->pcm_channels;
211 	dst  = (void *)runtime->dma_area +
212 			frames_to_bytes(runtime, s->pcm_buffer_pointer);
213 	remaining_frames = runtime->buffer_size - s->pcm_buffer_pointer;
214 
215 	buffer++;
216 	for (i = 0; i < frames; ++i) {
217 		for (c = 0; c < channels; ++c) {
218 			*dst = be32_to_cpu(buffer[c]) << 8;
219 			dst++;
220 		}
221 		buffer += s->data_block_quadlets;
222 		if (--remaining_frames == 0)
223 			dst = (void *)runtime->dma_area;
224 	}
225 }
226 
write_pcm_silence(struct amdtp_stream * s,__be32 * buffer,unsigned int data_blocks)227 static void write_pcm_silence(struct amdtp_stream *s, __be32 *buffer,
228 			      unsigned int data_blocks)
229 {
230 	struct amdtp_dot *p = s->protocol;
231 	unsigned int channels, i, c;
232 
233 	channels = p->pcm_channels;
234 
235 	buffer++;
236 	for (i = 0; i < data_blocks; ++i) {
237 		for (c = 0; c < channels; ++c)
238 			buffer[c] = cpu_to_be32(0x40000000);
239 		buffer += s->data_block_quadlets;
240 	}
241 }
242 
midi_ratelimit_per_packet(struct amdtp_stream * s,unsigned int port)243 static bool midi_ratelimit_per_packet(struct amdtp_stream *s, unsigned int port)
244 {
245 	struct amdtp_dot *p = s->protocol;
246 	int used;
247 
248 	used = p->midi_fifo_used[port];
249 	if (used == 0)
250 		return true;
251 
252 	used -= MIDI_BYTES_PER_SECOND * s->syt_interval;
253 	used = max(used, 0);
254 	p->midi_fifo_used[port] = used;
255 
256 	return used < p->midi_fifo_limit;
257 }
258 
midi_use_bytes(struct amdtp_stream * s,unsigned int port,unsigned int count)259 static inline void midi_use_bytes(struct amdtp_stream *s,
260 				  unsigned int port, unsigned int count)
261 {
262 	struct amdtp_dot *p = s->protocol;
263 
264 	p->midi_fifo_used[port] += amdtp_rate_table[s->sfc] * count;
265 }
266 
write_midi_messages(struct amdtp_stream * s,__be32 * buffer,unsigned int data_blocks)267 static void write_midi_messages(struct amdtp_stream *s, __be32 *buffer,
268 				unsigned int data_blocks)
269 {
270 	struct amdtp_dot *p = s->protocol;
271 	unsigned int f, port;
272 	int len;
273 	u8 *b;
274 
275 	for (f = 0; f < data_blocks; f++) {
276 		port = (s->data_block_counter + f) % 8;
277 		b = (u8 *)&buffer[0];
278 
279 		len = 0;
280 		if (port < MAX_MIDI_PORTS &&
281 		    midi_ratelimit_per_packet(s, port) &&
282 		    p->midi[port] != NULL)
283 			len = snd_rawmidi_transmit(p->midi[port], b + 1, 2);
284 
285 		if (len > 0) {
286 			/*
287 			 * Upper 4 bits of LSB represent port number.
288 			 * - 0000b: physical MIDI port 1.
289 			 * - 0010b: physical MIDI port 2.
290 			 * - 1110b: console MIDI port.
291 			 */
292 			if (port == 2)
293 				b[3] = 0xe0;
294 			else if (port == 1)
295 				b[3] = 0x20;
296 			else
297 				b[3] = 0x00;
298 			b[3] |= len;
299 			midi_use_bytes(s, port, len);
300 		} else {
301 			b[1] = 0;
302 			b[2] = 0;
303 			b[3] = 0;
304 		}
305 		b[0] = 0x80;
306 
307 		buffer += s->data_block_quadlets;
308 	}
309 }
310 
read_midi_messages(struct amdtp_stream * s,__be32 * buffer,unsigned int data_blocks)311 static void read_midi_messages(struct amdtp_stream *s, __be32 *buffer,
312 			       unsigned int data_blocks)
313 {
314 	struct amdtp_dot *p = s->protocol;
315 	unsigned int f, port, len;
316 	u8 *b;
317 
318 	for (f = 0; f < data_blocks; f++) {
319 		b = (u8 *)&buffer[0];
320 
321 		len = b[3] & 0x0f;
322 		if (len > 0) {
323 			/*
324 			 * Upper 4 bits of LSB represent port number.
325 			 * - 0000b: physical MIDI port 1. Use port 0.
326 			 * - 1110b: console MIDI port. Use port 2.
327 			 */
328 			if (b[3] >> 4 > 0)
329 				port = 2;
330 			else
331 				port = 0;
332 
333 			if (port < MAX_MIDI_PORTS && p->midi[port])
334 				snd_rawmidi_receive(p->midi[port], b + 1, len);
335 		}
336 
337 		buffer += s->data_block_quadlets;
338 	}
339 }
340 
amdtp_dot_add_pcm_hw_constraints(struct amdtp_stream * s,struct snd_pcm_runtime * runtime)341 int amdtp_dot_add_pcm_hw_constraints(struct amdtp_stream *s,
342 				     struct snd_pcm_runtime *runtime)
343 {
344 	int err;
345 
346 	/* This protocol delivers 24 bit data in 32bit data channel. */
347 	err = snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
348 	if (err < 0)
349 		return err;
350 
351 	return amdtp_stream_add_pcm_hw_constraints(s, runtime);
352 }
353 
amdtp_dot_set_pcm_format(struct amdtp_stream * s,snd_pcm_format_t format)354 void amdtp_dot_set_pcm_format(struct amdtp_stream *s, snd_pcm_format_t format)
355 {
356 	struct amdtp_dot *p = s->protocol;
357 
358 	if (WARN_ON(amdtp_stream_pcm_running(s)))
359 		return;
360 
361 	switch (format) {
362 	default:
363 		WARN_ON(1);
364 		/* fall through */
365 	case SNDRV_PCM_FORMAT_S16:
366 		if (s->direction == AMDTP_OUT_STREAM) {
367 			p->transfer_samples = write_pcm_s16;
368 			break;
369 		}
370 		WARN_ON(1);
371 		/* fall through */
372 	case SNDRV_PCM_FORMAT_S32:
373 		if (s->direction == AMDTP_OUT_STREAM)
374 			p->transfer_samples = write_pcm_s32;
375 		else
376 			p->transfer_samples = read_pcm_s32;
377 		break;
378 	}
379 }
380 
amdtp_dot_midi_trigger(struct amdtp_stream * s,unsigned int port,struct snd_rawmidi_substream * midi)381 void amdtp_dot_midi_trigger(struct amdtp_stream *s, unsigned int port,
382 			  struct snd_rawmidi_substream *midi)
383 {
384 	struct amdtp_dot *p = s->protocol;
385 
386 	if (port < MAX_MIDI_PORTS)
387 		ACCESS_ONCE(p->midi[port]) = midi;
388 }
389 
process_tx_data_blocks(struct amdtp_stream * s,__be32 * buffer,unsigned int data_blocks,unsigned int * syt)390 static unsigned int process_tx_data_blocks(struct amdtp_stream *s,
391 					   __be32 *buffer,
392 					   unsigned int data_blocks,
393 					   unsigned int *syt)
394 {
395 	struct amdtp_dot *p = (struct amdtp_dot *)s->protocol;
396 	struct snd_pcm_substream *pcm;
397 	unsigned int pcm_frames;
398 
399 	pcm = ACCESS_ONCE(s->pcm);
400 	if (pcm) {
401 		p->transfer_samples(s, pcm, buffer, data_blocks);
402 		pcm_frames = data_blocks;
403 	} else {
404 		pcm_frames = 0;
405 	}
406 
407 	read_midi_messages(s, buffer, data_blocks);
408 
409 	return pcm_frames;
410 }
411 
process_rx_data_blocks(struct amdtp_stream * s,__be32 * buffer,unsigned int data_blocks,unsigned int * syt)412 static unsigned int process_rx_data_blocks(struct amdtp_stream *s,
413 					   __be32 *buffer,
414 					   unsigned int data_blocks,
415 					   unsigned int *syt)
416 {
417 	struct amdtp_dot *p = (struct amdtp_dot *)s->protocol;
418 	struct snd_pcm_substream *pcm;
419 	unsigned int pcm_frames;
420 
421 	pcm = ACCESS_ONCE(s->pcm);
422 	if (pcm) {
423 		p->transfer_samples(s, pcm, buffer, data_blocks);
424 		pcm_frames = data_blocks;
425 	} else {
426 		write_pcm_silence(s, buffer, data_blocks);
427 		pcm_frames = 0;
428 	}
429 
430 	write_midi_messages(s, buffer, data_blocks);
431 
432 	return pcm_frames;
433 }
434 
amdtp_dot_init(struct amdtp_stream * s,struct fw_unit * unit,enum amdtp_stream_direction dir)435 int amdtp_dot_init(struct amdtp_stream *s, struct fw_unit *unit,
436 		 enum amdtp_stream_direction dir)
437 {
438 	amdtp_stream_process_data_blocks_t process_data_blocks;
439 	enum cip_flags flags;
440 
441 	/* Use different mode between incoming/outgoing. */
442 	if (dir == AMDTP_IN_STREAM) {
443 		flags = CIP_NONBLOCKING;
444 		process_data_blocks = process_tx_data_blocks;
445 	} else {
446 		flags = CIP_BLOCKING;
447 		process_data_blocks = process_rx_data_blocks;
448 	}
449 
450 	return amdtp_stream_init(s, unit, dir, flags, CIP_FMT_AM,
451 				 process_data_blocks, sizeof(struct amdtp_dot));
452 }
453 
amdtp_dot_reset(struct amdtp_stream * s)454 void amdtp_dot_reset(struct amdtp_stream *s)
455 {
456 	struct amdtp_dot *p = s->protocol;
457 
458 	p->state.carry = 0x00;
459 	p->state.idx = 0x00;
460 	p->state.off = 0;
461 }
462