• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * GICv3 ITS emulation
3  *
4  * Copyright (C) 2015,2016 ARM Ltd.
5  * Author: Andre Przywara <andre.przywara@arm.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include <linux/cpu.h>
21 #include <linux/kvm.h>
22 #include <linux/kvm_host.h>
23 #include <linux/interrupt.h>
24 #include <linux/list.h>
25 #include <linux/uaccess.h>
26 
27 #include <linux/irqchip/arm-gic-v3.h>
28 
29 #include <asm/kvm_emulate.h>
30 #include <asm/kvm_arm.h>
31 #include <asm/kvm_mmu.h>
32 
33 #include "vgic.h"
34 #include "vgic-mmio.h"
35 
36 /*
37  * Creates a new (reference to a) struct vgic_irq for a given LPI.
38  * If this LPI is already mapped on another ITS, we increase its refcount
39  * and return a pointer to the existing structure.
40  * If this is a "new" LPI, we allocate and initialize a new struct vgic_irq.
41  * This function returns a pointer to the _unlocked_ structure.
42  */
vgic_add_lpi(struct kvm * kvm,u32 intid)43 static struct vgic_irq *vgic_add_lpi(struct kvm *kvm, u32 intid)
44 {
45 	struct vgic_dist *dist = &kvm->arch.vgic;
46 	struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intid), *oldirq;
47 
48 	/* In this case there is no put, since we keep the reference. */
49 	if (irq)
50 		return irq;
51 
52 	irq = kzalloc(sizeof(struct vgic_irq), GFP_KERNEL);
53 	if (!irq)
54 		return ERR_PTR(-ENOMEM);
55 
56 	INIT_LIST_HEAD(&irq->lpi_list);
57 	INIT_LIST_HEAD(&irq->ap_list);
58 	spin_lock_init(&irq->irq_lock);
59 
60 	irq->config = VGIC_CONFIG_EDGE;
61 	kref_init(&irq->refcount);
62 	irq->intid = intid;
63 
64 	spin_lock(&dist->lpi_list_lock);
65 
66 	/*
67 	 * There could be a race with another vgic_add_lpi(), so we need to
68 	 * check that we don't add a second list entry with the same LPI.
69 	 */
70 	list_for_each_entry(oldirq, &dist->lpi_list_head, lpi_list) {
71 		if (oldirq->intid != intid)
72 			continue;
73 
74 		/* Someone was faster with adding this LPI, lets use that. */
75 		kfree(irq);
76 		irq = oldirq;
77 
78 		/*
79 		 * This increases the refcount, the caller is expected to
80 		 * call vgic_put_irq() on the returned pointer once it's
81 		 * finished with the IRQ.
82 		 */
83 		vgic_get_irq_kref(irq);
84 
85 		goto out_unlock;
86 	}
87 
88 	list_add_tail(&irq->lpi_list, &dist->lpi_list_head);
89 	dist->lpi_list_count++;
90 
91 out_unlock:
92 	spin_unlock(&dist->lpi_list_lock);
93 
94 	return irq;
95 }
96 
97 struct its_device {
98 	struct list_head dev_list;
99 
100 	/* the head for the list of ITTEs */
101 	struct list_head itt_head;
102 	u32 device_id;
103 };
104 
105 #define COLLECTION_NOT_MAPPED ((u32)~0)
106 
107 struct its_collection {
108 	struct list_head coll_list;
109 
110 	u32 collection_id;
111 	u32 target_addr;
112 };
113 
114 #define its_is_collection_mapped(coll) ((coll) && \
115 				((coll)->target_addr != COLLECTION_NOT_MAPPED))
116 
117 struct its_itte {
118 	struct list_head itte_list;
119 
120 	struct vgic_irq *irq;
121 	struct its_collection *collection;
122 	u32 lpi;
123 	u32 event_id;
124 };
125 
126 /*
127  * Find and returns a device in the device table for an ITS.
128  * Must be called with the its_lock mutex held.
129  */
find_its_device(struct vgic_its * its,u32 device_id)130 static struct its_device *find_its_device(struct vgic_its *its, u32 device_id)
131 {
132 	struct its_device *device;
133 
134 	list_for_each_entry(device, &its->device_list, dev_list)
135 		if (device_id == device->device_id)
136 			return device;
137 
138 	return NULL;
139 }
140 
141 /*
142  * Find and returns an interrupt translation table entry (ITTE) for a given
143  * Device ID/Event ID pair on an ITS.
144  * Must be called with the its_lock mutex held.
145  */
find_itte(struct vgic_its * its,u32 device_id,u32 event_id)146 static struct its_itte *find_itte(struct vgic_its *its, u32 device_id,
147 				  u32 event_id)
148 {
149 	struct its_device *device;
150 	struct its_itte *itte;
151 
152 	device = find_its_device(its, device_id);
153 	if (device == NULL)
154 		return NULL;
155 
156 	list_for_each_entry(itte, &device->itt_head, itte_list)
157 		if (itte->event_id == event_id)
158 			return itte;
159 
160 	return NULL;
161 }
162 
163 /* To be used as an iterator this macro misses the enclosing parentheses */
164 #define for_each_lpi_its(dev, itte, its) \
165 	list_for_each_entry(dev, &(its)->device_list, dev_list) \
166 		list_for_each_entry(itte, &(dev)->itt_head, itte_list)
167 
168 /*
169  * We only implement 48 bits of PA at the moment, although the ITS
170  * supports more. Let's be restrictive here.
171  */
172 #define BASER_ADDRESS(x)	((x) & GENMASK_ULL(47, 16))
173 #define CBASER_ADDRESS(x)	((x) & GENMASK_ULL(47, 12))
174 #define PENDBASER_ADDRESS(x)	((x) & GENMASK_ULL(47, 16))
175 #define PROPBASER_ADDRESS(x)	((x) & GENMASK_ULL(47, 12))
176 
177 #define GIC_LPI_OFFSET 8192
178 
179 /*
180  * Finds and returns a collection in the ITS collection table.
181  * Must be called with the its_lock mutex held.
182  */
find_collection(struct vgic_its * its,int coll_id)183 static struct its_collection *find_collection(struct vgic_its *its, int coll_id)
184 {
185 	struct its_collection *collection;
186 
187 	list_for_each_entry(collection, &its->collection_list, coll_list) {
188 		if (coll_id == collection->collection_id)
189 			return collection;
190 	}
191 
192 	return NULL;
193 }
194 
195 #define LPI_PROP_ENABLE_BIT(p)	((p) & LPI_PROP_ENABLED)
196 #define LPI_PROP_PRIORITY(p)	((p) & 0xfc)
197 
198 /*
199  * Reads the configuration data for a given LPI from guest memory and
200  * updates the fields in struct vgic_irq.
201  * If filter_vcpu is not NULL, applies only if the IRQ is targeting this
202  * VCPU. Unconditionally applies if filter_vcpu is NULL.
203  */
update_lpi_config(struct kvm * kvm,struct vgic_irq * irq,struct kvm_vcpu * filter_vcpu)204 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
205 			     struct kvm_vcpu *filter_vcpu)
206 {
207 	u64 propbase = PROPBASER_ADDRESS(kvm->arch.vgic.propbaser);
208 	u8 prop;
209 	int ret;
210 
211 	ret = kvm_read_guest(kvm, propbase + irq->intid - GIC_LPI_OFFSET,
212 			     &prop, 1);
213 
214 	if (ret)
215 		return ret;
216 
217 	spin_lock(&irq->irq_lock);
218 
219 	if (!filter_vcpu || filter_vcpu == irq->target_vcpu) {
220 		irq->priority = LPI_PROP_PRIORITY(prop);
221 		irq->enabled = LPI_PROP_ENABLE_BIT(prop);
222 
223 		vgic_queue_irq_unlock(kvm, irq);
224 	} else {
225 		spin_unlock(&irq->irq_lock);
226 	}
227 
228 	return 0;
229 }
230 
231 /*
232  * Create a snapshot of the current LPI list, so that we can enumerate all
233  * LPIs without holding any lock.
234  * Returns the array length and puts the kmalloc'ed array into intid_ptr.
235  */
vgic_copy_lpi_list(struct kvm * kvm,u32 ** intid_ptr)236 static int vgic_copy_lpi_list(struct kvm *kvm, u32 **intid_ptr)
237 {
238 	struct vgic_dist *dist = &kvm->arch.vgic;
239 	struct vgic_irq *irq;
240 	u32 *intids;
241 	int irq_count = dist->lpi_list_count, i = 0;
242 
243 	/*
244 	 * We use the current value of the list length, which may change
245 	 * after the kmalloc. We don't care, because the guest shouldn't
246 	 * change anything while the command handling is still running,
247 	 * and in the worst case we would miss a new IRQ, which one wouldn't
248 	 * expect to be covered by this command anyway.
249 	 */
250 	intids = kmalloc_array(irq_count, sizeof(intids[0]), GFP_KERNEL);
251 	if (!intids)
252 		return -ENOMEM;
253 
254 	spin_lock(&dist->lpi_list_lock);
255 	list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
256 		/* We don't need to "get" the IRQ, as we hold the list lock. */
257 		intids[i] = irq->intid;
258 		if (++i == irq_count)
259 			break;
260 	}
261 	spin_unlock(&dist->lpi_list_lock);
262 
263 	*intid_ptr = intids;
264 	return irq_count;
265 }
266 
267 /*
268  * Promotes the ITS view of affinity of an ITTE (which redistributor this LPI
269  * is targeting) to the VGIC's view, which deals with target VCPUs.
270  * Needs to be called whenever either the collection for a LPIs has
271  * changed or the collection itself got retargeted.
272  */
update_affinity_itte(struct kvm * kvm,struct its_itte * itte)273 static void update_affinity_itte(struct kvm *kvm, struct its_itte *itte)
274 {
275 	struct kvm_vcpu *vcpu;
276 
277 	if (!its_is_collection_mapped(itte->collection))
278 		return;
279 
280 	vcpu = kvm_get_vcpu(kvm, itte->collection->target_addr);
281 
282 	spin_lock(&itte->irq->irq_lock);
283 	itte->irq->target_vcpu = vcpu;
284 	spin_unlock(&itte->irq->irq_lock);
285 }
286 
287 /*
288  * Updates the target VCPU for every LPI targeting this collection.
289  * Must be called with the its_lock mutex held.
290  */
update_affinity_collection(struct kvm * kvm,struct vgic_its * its,struct its_collection * coll)291 static void update_affinity_collection(struct kvm *kvm, struct vgic_its *its,
292 				       struct its_collection *coll)
293 {
294 	struct its_device *device;
295 	struct its_itte *itte;
296 
297 	for_each_lpi_its(device, itte, its) {
298 		if (!itte->collection || coll != itte->collection)
299 			continue;
300 
301 		update_affinity_itte(kvm, itte);
302 	}
303 }
304 
max_lpis_propbaser(u64 propbaser)305 static u32 max_lpis_propbaser(u64 propbaser)
306 {
307 	int nr_idbits = (propbaser & 0x1f) + 1;
308 
309 	return 1U << min(nr_idbits, INTERRUPT_ID_BITS_ITS);
310 }
311 
312 /*
313  * Scan the whole LPI pending table and sync the pending bit in there
314  * with our own data structures. This relies on the LPI being
315  * mapped before.
316  */
its_sync_lpi_pending_table(struct kvm_vcpu * vcpu)317 static int its_sync_lpi_pending_table(struct kvm_vcpu *vcpu)
318 {
319 	gpa_t pendbase = PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
320 	struct vgic_irq *irq;
321 	int last_byte_offset = -1;
322 	int ret = 0;
323 	u32 *intids;
324 	int nr_irqs, i;
325 	u8 pendmask;
326 
327 	nr_irqs = vgic_copy_lpi_list(vcpu->kvm, &intids);
328 	if (nr_irqs < 0)
329 		return nr_irqs;
330 
331 	for (i = 0; i < nr_irqs; i++) {
332 		int byte_offset, bit_nr;
333 
334 		byte_offset = intids[i] / BITS_PER_BYTE;
335 		bit_nr = intids[i] % BITS_PER_BYTE;
336 
337 		/*
338 		 * For contiguously allocated LPIs chances are we just read
339 		 * this very same byte in the last iteration. Reuse that.
340 		 */
341 		if (byte_offset != last_byte_offset) {
342 			ret = kvm_read_guest(vcpu->kvm, pendbase + byte_offset,
343 					     &pendmask, 1);
344 			if (ret) {
345 				kfree(intids);
346 				return ret;
347 			}
348 			last_byte_offset = byte_offset;
349 		}
350 
351 		irq = vgic_get_irq(vcpu->kvm, NULL, intids[i]);
352 		spin_lock(&irq->irq_lock);
353 		irq->pending = pendmask & (1U << bit_nr);
354 		vgic_queue_irq_unlock(vcpu->kvm, irq);
355 		vgic_put_irq(vcpu->kvm, irq);
356 	}
357 
358 	kfree(intids);
359 
360 	return ret;
361 }
362 
vgic_mmio_read_its_typer(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)363 static unsigned long vgic_mmio_read_its_typer(struct kvm *kvm,
364 					      struct vgic_its *its,
365 					      gpa_t addr, unsigned int len)
366 {
367 	u64 reg = GITS_TYPER_PLPIS;
368 
369 	/*
370 	 * We use linear CPU numbers for redistributor addressing,
371 	 * so GITS_TYPER.PTA is 0.
372 	 * Also we force all PROPBASER registers to be the same, so
373 	 * CommonLPIAff is 0 as well.
374 	 * To avoid memory waste in the guest, we keep the number of IDBits and
375 	 * DevBits low - as least for the time being.
376 	 */
377 	reg |= 0x0f << GITS_TYPER_DEVBITS_SHIFT;
378 	reg |= 0x0f << GITS_TYPER_IDBITS_SHIFT;
379 
380 	return extract_bytes(reg, addr & 7, len);
381 }
382 
vgic_mmio_read_its_iidr(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)383 static unsigned long vgic_mmio_read_its_iidr(struct kvm *kvm,
384 					     struct vgic_its *its,
385 					     gpa_t addr, unsigned int len)
386 {
387 	return (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
388 }
389 
vgic_mmio_read_its_idregs(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)390 static unsigned long vgic_mmio_read_its_idregs(struct kvm *kvm,
391 					       struct vgic_its *its,
392 					       gpa_t addr, unsigned int len)
393 {
394 	switch (addr & 0xffff) {
395 	case GITS_PIDR0:
396 		return 0x92;	/* part number, bits[7:0] */
397 	case GITS_PIDR1:
398 		return 0xb4;	/* part number, bits[11:8] */
399 	case GITS_PIDR2:
400 		return GIC_PIDR2_ARCH_GICv3 | 0x0b;
401 	case GITS_PIDR4:
402 		return 0x40;	/* This is a 64K software visible page */
403 	/* The following are the ID registers for (any) GIC. */
404 	case GITS_CIDR0:
405 		return 0x0d;
406 	case GITS_CIDR1:
407 		return 0xf0;
408 	case GITS_CIDR2:
409 		return 0x05;
410 	case GITS_CIDR3:
411 		return 0xb1;
412 	}
413 
414 	return 0;
415 }
416 
417 /*
418  * Find the target VCPU and the LPI number for a given devid/eventid pair
419  * and make this IRQ pending, possibly injecting it.
420  * Must be called with the its_lock mutex held.
421  * Returns 0 on success, a positive error value for any ITS mapping
422  * related errors and negative error values for generic errors.
423  */
vgic_its_trigger_msi(struct kvm * kvm,struct vgic_its * its,u32 devid,u32 eventid)424 static int vgic_its_trigger_msi(struct kvm *kvm, struct vgic_its *its,
425 				u32 devid, u32 eventid)
426 {
427 	struct kvm_vcpu *vcpu;
428 	struct its_itte *itte;
429 
430 	if (!its->enabled)
431 		return -EBUSY;
432 
433 	itte = find_itte(its, devid, eventid);
434 	if (!itte || !its_is_collection_mapped(itte->collection))
435 		return E_ITS_INT_UNMAPPED_INTERRUPT;
436 
437 	vcpu = kvm_get_vcpu(kvm, itte->collection->target_addr);
438 	if (!vcpu)
439 		return E_ITS_INT_UNMAPPED_INTERRUPT;
440 
441 	if (!vcpu->arch.vgic_cpu.lpis_enabled)
442 		return -EBUSY;
443 
444 	spin_lock(&itte->irq->irq_lock);
445 	itte->irq->pending = true;
446 	vgic_queue_irq_unlock(kvm, itte->irq);
447 
448 	return 0;
449 }
450 
vgic_get_its_iodev(struct kvm_io_device * dev)451 static struct vgic_io_device *vgic_get_its_iodev(struct kvm_io_device *dev)
452 {
453 	struct vgic_io_device *iodev;
454 
455 	if (dev->ops != &kvm_io_gic_ops)
456 		return NULL;
457 
458 	iodev = container_of(dev, struct vgic_io_device, dev);
459 
460 	if (iodev->iodev_type != IODEV_ITS)
461 		return NULL;
462 
463 	return iodev;
464 }
465 
466 /*
467  * Queries the KVM IO bus framework to get the ITS pointer from the given
468  * doorbell address.
469  * We then call vgic_its_trigger_msi() with the decoded data.
470  * According to the KVM_SIGNAL_MSI API description returns 1 on success.
471  */
vgic_its_inject_msi(struct kvm * kvm,struct kvm_msi * msi)472 int vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi)
473 {
474 	u64 address;
475 	struct kvm_io_device *kvm_io_dev;
476 	struct vgic_io_device *iodev;
477 	int ret;
478 
479 	if (!vgic_has_its(kvm))
480 		return -ENODEV;
481 
482 	if (!(msi->flags & KVM_MSI_VALID_DEVID))
483 		return -EINVAL;
484 
485 	address = (u64)msi->address_hi << 32 | msi->address_lo;
486 
487 	kvm_io_dev = kvm_io_bus_get_dev(kvm, KVM_MMIO_BUS, address);
488 	if (!kvm_io_dev)
489 		return -EINVAL;
490 
491 	iodev = vgic_get_its_iodev(kvm_io_dev);
492 	if (!iodev)
493 		return -EINVAL;
494 
495 	mutex_lock(&iodev->its->its_lock);
496 	ret = vgic_its_trigger_msi(kvm, iodev->its, msi->devid, msi->data);
497 	mutex_unlock(&iodev->its->its_lock);
498 
499 	if (ret < 0)
500 		return ret;
501 
502 	/*
503 	 * KVM_SIGNAL_MSI demands a return value > 0 for success and 0
504 	 * if the guest has blocked the MSI. So we map any LPI mapping
505 	 * related error to that.
506 	 */
507 	if (ret)
508 		return 0;
509 	else
510 		return 1;
511 }
512 
513 /* Requires the its_lock to be held. */
its_free_itte(struct kvm * kvm,struct its_itte * itte)514 static void its_free_itte(struct kvm *kvm, struct its_itte *itte)
515 {
516 	list_del(&itte->itte_list);
517 
518 	/* This put matches the get in vgic_add_lpi. */
519 	if (itte->irq)
520 		vgic_put_irq(kvm, itte->irq);
521 
522 	kfree(itte);
523 }
524 
its_cmd_mask_field(u64 * its_cmd,int word,int shift,int size)525 static u64 its_cmd_mask_field(u64 *its_cmd, int word, int shift, int size)
526 {
527 	return (le64_to_cpu(its_cmd[word]) >> shift) & (BIT_ULL(size) - 1);
528 }
529 
530 #define its_cmd_get_command(cmd)	its_cmd_mask_field(cmd, 0,  0,  8)
531 #define its_cmd_get_deviceid(cmd)	its_cmd_mask_field(cmd, 0, 32, 32)
532 #define its_cmd_get_id(cmd)		its_cmd_mask_field(cmd, 1,  0, 32)
533 #define its_cmd_get_physical_id(cmd)	its_cmd_mask_field(cmd, 1, 32, 32)
534 #define its_cmd_get_collection(cmd)	its_cmd_mask_field(cmd, 2,  0, 16)
535 #define its_cmd_get_target_addr(cmd)	its_cmd_mask_field(cmd, 2, 16, 32)
536 #define its_cmd_get_validbit(cmd)	its_cmd_mask_field(cmd, 2, 63,  1)
537 
538 /*
539  * The DISCARD command frees an Interrupt Translation Table Entry (ITTE).
540  * Must be called with the its_lock mutex held.
541  */
vgic_its_cmd_handle_discard(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)542 static int vgic_its_cmd_handle_discard(struct kvm *kvm, struct vgic_its *its,
543 				       u64 *its_cmd)
544 {
545 	u32 device_id = its_cmd_get_deviceid(its_cmd);
546 	u32 event_id = its_cmd_get_id(its_cmd);
547 	struct its_itte *itte;
548 
549 
550 	itte = find_itte(its, device_id, event_id);
551 	if (itte && itte->collection) {
552 		/*
553 		 * Though the spec talks about removing the pending state, we
554 		 * don't bother here since we clear the ITTE anyway and the
555 		 * pending state is a property of the ITTE struct.
556 		 */
557 		its_free_itte(kvm, itte);
558 		return 0;
559 	}
560 
561 	return E_ITS_DISCARD_UNMAPPED_INTERRUPT;
562 }
563 
564 /*
565  * The MOVI command moves an ITTE to a different collection.
566  * Must be called with the its_lock mutex held.
567  */
vgic_its_cmd_handle_movi(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)568 static int vgic_its_cmd_handle_movi(struct kvm *kvm, struct vgic_its *its,
569 				    u64 *its_cmd)
570 {
571 	u32 device_id = its_cmd_get_deviceid(its_cmd);
572 	u32 event_id = its_cmd_get_id(its_cmd);
573 	u32 coll_id = its_cmd_get_collection(its_cmd);
574 	struct kvm_vcpu *vcpu;
575 	struct its_itte *itte;
576 	struct its_collection *collection;
577 
578 	itte = find_itte(its, device_id, event_id);
579 	if (!itte)
580 		return E_ITS_MOVI_UNMAPPED_INTERRUPT;
581 
582 	if (!its_is_collection_mapped(itte->collection))
583 		return E_ITS_MOVI_UNMAPPED_COLLECTION;
584 
585 	collection = find_collection(its, coll_id);
586 	if (!its_is_collection_mapped(collection))
587 		return E_ITS_MOVI_UNMAPPED_COLLECTION;
588 
589 	itte->collection = collection;
590 	vcpu = kvm_get_vcpu(kvm, collection->target_addr);
591 
592 	spin_lock(&itte->irq->irq_lock);
593 	itte->irq->target_vcpu = vcpu;
594 	spin_unlock(&itte->irq->irq_lock);
595 
596 	return 0;
597 }
598 
599 /*
600  * Check whether an ID can be stored into the corresponding guest table.
601  * For a direct table this is pretty easy, but gets a bit nasty for
602  * indirect tables. We check whether the resulting guest physical address
603  * is actually valid (covered by a memslot and guest accessbible).
604  * For this we have to read the respective first level entry.
605  */
vgic_its_check_id(struct vgic_its * its,u64 baser,int id)606 static bool vgic_its_check_id(struct vgic_its *its, u64 baser, int id)
607 {
608 	int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
609 	int index;
610 	u64 indirect_ptr;
611 	gfn_t gfn;
612 
613 	if (!(baser & GITS_BASER_INDIRECT)) {
614 		phys_addr_t addr;
615 
616 		if (id >= (l1_tbl_size / GITS_BASER_ENTRY_SIZE(baser)))
617 			return false;
618 
619 		addr = BASER_ADDRESS(baser) + id * GITS_BASER_ENTRY_SIZE(baser);
620 		gfn = addr >> PAGE_SHIFT;
621 
622 		return kvm_is_visible_gfn(its->dev->kvm, gfn);
623 	}
624 
625 	/* calculate and check the index into the 1st level */
626 	index = id / (SZ_64K / GITS_BASER_ENTRY_SIZE(baser));
627 	if (index >= (l1_tbl_size / sizeof(u64)))
628 		return false;
629 
630 	/* Each 1st level entry is represented by a 64-bit value. */
631 	if (kvm_read_guest(its->dev->kvm,
632 			   BASER_ADDRESS(baser) + index * sizeof(indirect_ptr),
633 			   &indirect_ptr, sizeof(indirect_ptr)))
634 		return false;
635 
636 	indirect_ptr = le64_to_cpu(indirect_ptr);
637 
638 	/* check the valid bit of the first level entry */
639 	if (!(indirect_ptr & BIT_ULL(63)))
640 		return false;
641 
642 	/*
643 	 * Mask the guest physical address and calculate the frame number.
644 	 * Any address beyond our supported 48 bits of PA will be caught
645 	 * by the actual check in the final step.
646 	 */
647 	indirect_ptr &= GENMASK_ULL(51, 16);
648 
649 	/* Find the address of the actual entry */
650 	index = id % (SZ_64K / GITS_BASER_ENTRY_SIZE(baser));
651 	indirect_ptr += index * GITS_BASER_ENTRY_SIZE(baser);
652 	gfn = indirect_ptr >> PAGE_SHIFT;
653 
654 	return kvm_is_visible_gfn(its->dev->kvm, gfn);
655 }
656 
vgic_its_alloc_collection(struct vgic_its * its,struct its_collection ** colp,u32 coll_id)657 static int vgic_its_alloc_collection(struct vgic_its *its,
658 				     struct its_collection **colp,
659 				     u32 coll_id)
660 {
661 	struct its_collection *collection;
662 
663 	if (!vgic_its_check_id(its, its->baser_coll_table, coll_id))
664 		return E_ITS_MAPC_COLLECTION_OOR;
665 
666 	collection = kzalloc(sizeof(*collection), GFP_KERNEL);
667 	if (!collection)
668 		return -ENOMEM;
669 
670 	collection->collection_id = coll_id;
671 	collection->target_addr = COLLECTION_NOT_MAPPED;
672 
673 	list_add_tail(&collection->coll_list, &its->collection_list);
674 	*colp = collection;
675 
676 	return 0;
677 }
678 
vgic_its_free_collection(struct vgic_its * its,u32 coll_id)679 static void vgic_its_free_collection(struct vgic_its *its, u32 coll_id)
680 {
681 	struct its_collection *collection;
682 	struct its_device *device;
683 	struct its_itte *itte;
684 
685 	/*
686 	 * Clearing the mapping for that collection ID removes the
687 	 * entry from the list. If there wasn't any before, we can
688 	 * go home early.
689 	 */
690 	collection = find_collection(its, coll_id);
691 	if (!collection)
692 		return;
693 
694 	for_each_lpi_its(device, itte, its)
695 		if (itte->collection &&
696 		    itte->collection->collection_id == coll_id)
697 			itte->collection = NULL;
698 
699 	list_del(&collection->coll_list);
700 	kfree(collection);
701 }
702 
703 /*
704  * The MAPTI and MAPI commands map LPIs to ITTEs.
705  * Must be called with its_lock mutex held.
706  */
vgic_its_cmd_handle_mapi(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)707 static int vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its,
708 				    u64 *its_cmd)
709 {
710 	u32 device_id = its_cmd_get_deviceid(its_cmd);
711 	u32 event_id = its_cmd_get_id(its_cmd);
712 	u32 coll_id = its_cmd_get_collection(its_cmd);
713 	struct its_itte *itte;
714 	struct its_device *device;
715 	struct its_collection *collection, *new_coll = NULL;
716 	int lpi_nr;
717 	struct vgic_irq *irq;
718 
719 	device = find_its_device(its, device_id);
720 	if (!device)
721 		return E_ITS_MAPTI_UNMAPPED_DEVICE;
722 
723 	if (its_cmd_get_command(its_cmd) == GITS_CMD_MAPTI)
724 		lpi_nr = its_cmd_get_physical_id(its_cmd);
725 	else
726 		lpi_nr = event_id;
727 	if (lpi_nr < GIC_LPI_OFFSET ||
728 	    lpi_nr >= max_lpis_propbaser(kvm->arch.vgic.propbaser))
729 		return E_ITS_MAPTI_PHYSICALID_OOR;
730 
731 	/* If there is an existing mapping, behavior is UNPREDICTABLE. */
732 	if (find_itte(its, device_id, event_id))
733 		return 0;
734 
735 	collection = find_collection(its, coll_id);
736 	if (!collection) {
737 		int ret = vgic_its_alloc_collection(its, &collection, coll_id);
738 		if (ret)
739 			return ret;
740 		new_coll = collection;
741 	}
742 
743 	itte = kzalloc(sizeof(struct its_itte), GFP_KERNEL);
744 	if (!itte) {
745 		if (new_coll)
746 			vgic_its_free_collection(its, coll_id);
747 		return -ENOMEM;
748 	}
749 
750 	itte->event_id	= event_id;
751 	list_add_tail(&itte->itte_list, &device->itt_head);
752 
753 	itte->collection = collection;
754 	itte->lpi = lpi_nr;
755 
756 	irq = vgic_add_lpi(kvm, lpi_nr);
757 	if (IS_ERR(irq)) {
758 		if (new_coll)
759 			vgic_its_free_collection(its, coll_id);
760 		its_free_itte(kvm, itte);
761 		return PTR_ERR(irq);
762 	}
763 	itte->irq = irq;
764 
765 	update_affinity_itte(kvm, itte);
766 
767 	/*
768 	 * We "cache" the configuration table entries in out struct vgic_irq's.
769 	 * However we only have those structs for mapped IRQs, so we read in
770 	 * the respective config data from memory here upon mapping the LPI.
771 	 */
772 	update_lpi_config(kvm, itte->irq, NULL);
773 
774 	return 0;
775 }
776 
777 /* Requires the its_lock to be held. */
vgic_its_unmap_device(struct kvm * kvm,struct its_device * device)778 static void vgic_its_unmap_device(struct kvm *kvm, struct its_device *device)
779 {
780 	struct its_itte *itte, *temp;
781 
782 	/*
783 	 * The spec says that unmapping a device with still valid
784 	 * ITTEs associated is UNPREDICTABLE. We remove all ITTEs,
785 	 * since we cannot leave the memory unreferenced.
786 	 */
787 	list_for_each_entry_safe(itte, temp, &device->itt_head, itte_list)
788 		its_free_itte(kvm, itte);
789 
790 	list_del(&device->dev_list);
791 	kfree(device);
792 }
793 
794 /*
795  * MAPD maps or unmaps a device ID to Interrupt Translation Tables (ITTs).
796  * Must be called with the its_lock mutex held.
797  */
vgic_its_cmd_handle_mapd(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)798 static int vgic_its_cmd_handle_mapd(struct kvm *kvm, struct vgic_its *its,
799 				    u64 *its_cmd)
800 {
801 	u32 device_id = its_cmd_get_deviceid(its_cmd);
802 	bool valid = its_cmd_get_validbit(its_cmd);
803 	struct its_device *device;
804 
805 	if (!vgic_its_check_id(its, its->baser_device_table, device_id))
806 		return E_ITS_MAPD_DEVICE_OOR;
807 
808 	device = find_its_device(its, device_id);
809 
810 	/*
811 	 * The spec says that calling MAPD on an already mapped device
812 	 * invalidates all cached data for this device. We implement this
813 	 * by removing the mapping and re-establishing it.
814 	 */
815 	if (device)
816 		vgic_its_unmap_device(kvm, device);
817 
818 	/*
819 	 * The spec does not say whether unmapping a not-mapped device
820 	 * is an error, so we are done in any case.
821 	 */
822 	if (!valid)
823 		return 0;
824 
825 	device = kzalloc(sizeof(struct its_device), GFP_KERNEL);
826 	if (!device)
827 		return -ENOMEM;
828 
829 	device->device_id = device_id;
830 	INIT_LIST_HEAD(&device->itt_head);
831 
832 	list_add_tail(&device->dev_list, &its->device_list);
833 
834 	return 0;
835 }
836 
837 /*
838  * The MAPC command maps collection IDs to redistributors.
839  * Must be called with the its_lock mutex held.
840  */
vgic_its_cmd_handle_mapc(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)841 static int vgic_its_cmd_handle_mapc(struct kvm *kvm, struct vgic_its *its,
842 				    u64 *its_cmd)
843 {
844 	u16 coll_id;
845 	u32 target_addr;
846 	struct its_collection *collection;
847 	bool valid;
848 
849 	valid = its_cmd_get_validbit(its_cmd);
850 	coll_id = its_cmd_get_collection(its_cmd);
851 	target_addr = its_cmd_get_target_addr(its_cmd);
852 
853 	if (target_addr >= atomic_read(&kvm->online_vcpus))
854 		return E_ITS_MAPC_PROCNUM_OOR;
855 
856 	if (!valid) {
857 		vgic_its_free_collection(its, coll_id);
858 	} else {
859 		collection = find_collection(its, coll_id);
860 
861 		if (!collection) {
862 			int ret;
863 
864 			ret = vgic_its_alloc_collection(its, &collection,
865 							coll_id);
866 			if (ret)
867 				return ret;
868 			collection->target_addr = target_addr;
869 		} else {
870 			collection->target_addr = target_addr;
871 			update_affinity_collection(kvm, its, collection);
872 		}
873 	}
874 
875 	return 0;
876 }
877 
878 /*
879  * The CLEAR command removes the pending state for a particular LPI.
880  * Must be called with the its_lock mutex held.
881  */
vgic_its_cmd_handle_clear(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)882 static int vgic_its_cmd_handle_clear(struct kvm *kvm, struct vgic_its *its,
883 				     u64 *its_cmd)
884 {
885 	u32 device_id = its_cmd_get_deviceid(its_cmd);
886 	u32 event_id = its_cmd_get_id(its_cmd);
887 	struct its_itte *itte;
888 
889 
890 	itte = find_itte(its, device_id, event_id);
891 	if (!itte)
892 		return E_ITS_CLEAR_UNMAPPED_INTERRUPT;
893 
894 	itte->irq->pending = false;
895 
896 	return 0;
897 }
898 
899 /*
900  * The INV command syncs the configuration bits from the memory table.
901  * Must be called with the its_lock mutex held.
902  */
vgic_its_cmd_handle_inv(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)903 static int vgic_its_cmd_handle_inv(struct kvm *kvm, struct vgic_its *its,
904 				   u64 *its_cmd)
905 {
906 	u32 device_id = its_cmd_get_deviceid(its_cmd);
907 	u32 event_id = its_cmd_get_id(its_cmd);
908 	struct its_itte *itte;
909 
910 
911 	itte = find_itte(its, device_id, event_id);
912 	if (!itte)
913 		return E_ITS_INV_UNMAPPED_INTERRUPT;
914 
915 	return update_lpi_config(kvm, itte->irq, NULL);
916 }
917 
918 /*
919  * The INVALL command requests flushing of all IRQ data in this collection.
920  * Find the VCPU mapped to that collection, then iterate over the VM's list
921  * of mapped LPIs and update the configuration for each IRQ which targets
922  * the specified vcpu. The configuration will be read from the in-memory
923  * configuration table.
924  * Must be called with the its_lock mutex held.
925  */
vgic_its_cmd_handle_invall(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)926 static int vgic_its_cmd_handle_invall(struct kvm *kvm, struct vgic_its *its,
927 				      u64 *its_cmd)
928 {
929 	u32 coll_id = its_cmd_get_collection(its_cmd);
930 	struct its_collection *collection;
931 	struct kvm_vcpu *vcpu;
932 	struct vgic_irq *irq;
933 	u32 *intids;
934 	int irq_count, i;
935 
936 	collection = find_collection(its, coll_id);
937 	if (!its_is_collection_mapped(collection))
938 		return E_ITS_INVALL_UNMAPPED_COLLECTION;
939 
940 	vcpu = kvm_get_vcpu(kvm, collection->target_addr);
941 
942 	irq_count = vgic_copy_lpi_list(kvm, &intids);
943 	if (irq_count < 0)
944 		return irq_count;
945 
946 	for (i = 0; i < irq_count; i++) {
947 		irq = vgic_get_irq(kvm, NULL, intids[i]);
948 		if (!irq)
949 			continue;
950 		update_lpi_config(kvm, irq, vcpu);
951 		vgic_put_irq(kvm, irq);
952 	}
953 
954 	kfree(intids);
955 
956 	return 0;
957 }
958 
959 /*
960  * The MOVALL command moves the pending state of all IRQs targeting one
961  * redistributor to another. We don't hold the pending state in the VCPUs,
962  * but in the IRQs instead, so there is really not much to do for us here.
963  * However the spec says that no IRQ must target the old redistributor
964  * afterwards, so we make sure that no LPI is using the associated target_vcpu.
965  * This command affects all LPIs in the system that target that redistributor.
966  */
vgic_its_cmd_handle_movall(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)967 static int vgic_its_cmd_handle_movall(struct kvm *kvm, struct vgic_its *its,
968 				      u64 *its_cmd)
969 {
970 	struct vgic_dist *dist = &kvm->arch.vgic;
971 	u32 target1_addr = its_cmd_get_target_addr(its_cmd);
972 	u32 target2_addr = its_cmd_mask_field(its_cmd, 3, 16, 32);
973 	struct kvm_vcpu *vcpu1, *vcpu2;
974 	struct vgic_irq *irq;
975 
976 	if (target1_addr >= atomic_read(&kvm->online_vcpus) ||
977 	    target2_addr >= atomic_read(&kvm->online_vcpus))
978 		return E_ITS_MOVALL_PROCNUM_OOR;
979 
980 	if (target1_addr == target2_addr)
981 		return 0;
982 
983 	vcpu1 = kvm_get_vcpu(kvm, target1_addr);
984 	vcpu2 = kvm_get_vcpu(kvm, target2_addr);
985 
986 	spin_lock(&dist->lpi_list_lock);
987 
988 	list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
989 		spin_lock(&irq->irq_lock);
990 
991 		if (irq->target_vcpu == vcpu1)
992 			irq->target_vcpu = vcpu2;
993 
994 		spin_unlock(&irq->irq_lock);
995 	}
996 
997 	spin_unlock(&dist->lpi_list_lock);
998 
999 	return 0;
1000 }
1001 
1002 /*
1003  * The INT command injects the LPI associated with that DevID/EvID pair.
1004  * Must be called with the its_lock mutex held.
1005  */
vgic_its_cmd_handle_int(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1006 static int vgic_its_cmd_handle_int(struct kvm *kvm, struct vgic_its *its,
1007 				   u64 *its_cmd)
1008 {
1009 	u32 msi_data = its_cmd_get_id(its_cmd);
1010 	u64 msi_devid = its_cmd_get_deviceid(its_cmd);
1011 
1012 	return vgic_its_trigger_msi(kvm, its, msi_devid, msi_data);
1013 }
1014 
1015 /*
1016  * This function is called with the its_cmd lock held, but the ITS data
1017  * structure lock dropped.
1018  */
vgic_its_handle_command(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1019 static int vgic_its_handle_command(struct kvm *kvm, struct vgic_its *its,
1020 				   u64 *its_cmd)
1021 {
1022 	int ret = -ENODEV;
1023 
1024 	mutex_lock(&its->its_lock);
1025 	switch (its_cmd_get_command(its_cmd)) {
1026 	case GITS_CMD_MAPD:
1027 		ret = vgic_its_cmd_handle_mapd(kvm, its, its_cmd);
1028 		break;
1029 	case GITS_CMD_MAPC:
1030 		ret = vgic_its_cmd_handle_mapc(kvm, its, its_cmd);
1031 		break;
1032 	case GITS_CMD_MAPI:
1033 		ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1034 		break;
1035 	case GITS_CMD_MAPTI:
1036 		ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1037 		break;
1038 	case GITS_CMD_MOVI:
1039 		ret = vgic_its_cmd_handle_movi(kvm, its, its_cmd);
1040 		break;
1041 	case GITS_CMD_DISCARD:
1042 		ret = vgic_its_cmd_handle_discard(kvm, its, its_cmd);
1043 		break;
1044 	case GITS_CMD_CLEAR:
1045 		ret = vgic_its_cmd_handle_clear(kvm, its, its_cmd);
1046 		break;
1047 	case GITS_CMD_MOVALL:
1048 		ret = vgic_its_cmd_handle_movall(kvm, its, its_cmd);
1049 		break;
1050 	case GITS_CMD_INT:
1051 		ret = vgic_its_cmd_handle_int(kvm, its, its_cmd);
1052 		break;
1053 	case GITS_CMD_INV:
1054 		ret = vgic_its_cmd_handle_inv(kvm, its, its_cmd);
1055 		break;
1056 	case GITS_CMD_INVALL:
1057 		ret = vgic_its_cmd_handle_invall(kvm, its, its_cmd);
1058 		break;
1059 	case GITS_CMD_SYNC:
1060 		/* we ignore this command: we are in sync all of the time */
1061 		ret = 0;
1062 		break;
1063 	}
1064 	mutex_unlock(&its->its_lock);
1065 
1066 	return ret;
1067 }
1068 
vgic_sanitise_its_baser(u64 reg)1069 static u64 vgic_sanitise_its_baser(u64 reg)
1070 {
1071 	reg = vgic_sanitise_field(reg, GITS_BASER_SHAREABILITY_MASK,
1072 				  GITS_BASER_SHAREABILITY_SHIFT,
1073 				  vgic_sanitise_shareability);
1074 	reg = vgic_sanitise_field(reg, GITS_BASER_INNER_CACHEABILITY_MASK,
1075 				  GITS_BASER_INNER_CACHEABILITY_SHIFT,
1076 				  vgic_sanitise_inner_cacheability);
1077 	reg = vgic_sanitise_field(reg, GITS_BASER_OUTER_CACHEABILITY_MASK,
1078 				  GITS_BASER_OUTER_CACHEABILITY_SHIFT,
1079 				  vgic_sanitise_outer_cacheability);
1080 
1081 	/* Bits 15:12 contain bits 51:48 of the PA, which we don't support. */
1082 	reg &= ~GENMASK_ULL(15, 12);
1083 
1084 	/* We support only one (ITS) page size: 64K */
1085 	reg = (reg & ~GITS_BASER_PAGE_SIZE_MASK) | GITS_BASER_PAGE_SIZE_64K;
1086 
1087 	return reg;
1088 }
1089 
vgic_sanitise_its_cbaser(u64 reg)1090 static u64 vgic_sanitise_its_cbaser(u64 reg)
1091 {
1092 	reg = vgic_sanitise_field(reg, GITS_CBASER_SHAREABILITY_MASK,
1093 				  GITS_CBASER_SHAREABILITY_SHIFT,
1094 				  vgic_sanitise_shareability);
1095 	reg = vgic_sanitise_field(reg, GITS_CBASER_INNER_CACHEABILITY_MASK,
1096 				  GITS_CBASER_INNER_CACHEABILITY_SHIFT,
1097 				  vgic_sanitise_inner_cacheability);
1098 	reg = vgic_sanitise_field(reg, GITS_CBASER_OUTER_CACHEABILITY_MASK,
1099 				  GITS_CBASER_OUTER_CACHEABILITY_SHIFT,
1100 				  vgic_sanitise_outer_cacheability);
1101 
1102 	/*
1103 	 * Sanitise the physical address to be 64k aligned.
1104 	 * Also limit the physical addresses to 48 bits.
1105 	 */
1106 	reg &= ~(GENMASK_ULL(51, 48) | GENMASK_ULL(15, 12));
1107 
1108 	return reg;
1109 }
1110 
vgic_mmio_read_its_cbaser(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)1111 static unsigned long vgic_mmio_read_its_cbaser(struct kvm *kvm,
1112 					       struct vgic_its *its,
1113 					       gpa_t addr, unsigned int len)
1114 {
1115 	return extract_bytes(its->cbaser, addr & 7, len);
1116 }
1117 
vgic_mmio_write_its_cbaser(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1118 static void vgic_mmio_write_its_cbaser(struct kvm *kvm, struct vgic_its *its,
1119 				       gpa_t addr, unsigned int len,
1120 				       unsigned long val)
1121 {
1122 	/* When GITS_CTLR.Enable is 1, this register is RO. */
1123 	if (its->enabled)
1124 		return;
1125 
1126 	mutex_lock(&its->cmd_lock);
1127 	its->cbaser = update_64bit_reg(its->cbaser, addr & 7, len, val);
1128 	its->cbaser = vgic_sanitise_its_cbaser(its->cbaser);
1129 	its->creadr = 0;
1130 	/*
1131 	 * CWRITER is architecturally UNKNOWN on reset, but we need to reset
1132 	 * it to CREADR to make sure we start with an empty command buffer.
1133 	 */
1134 	its->cwriter = its->creadr;
1135 	mutex_unlock(&its->cmd_lock);
1136 }
1137 
1138 #define ITS_CMD_BUFFER_SIZE(baser)	((((baser) & 0xff) + 1) << 12)
1139 #define ITS_CMD_SIZE			32
1140 #define ITS_CMD_OFFSET(reg)		((reg) & GENMASK(19, 5))
1141 
1142 /* Must be called with the cmd_lock held. */
vgic_its_process_commands(struct kvm * kvm,struct vgic_its * its)1143 static void vgic_its_process_commands(struct kvm *kvm, struct vgic_its *its)
1144 {
1145 	gpa_t cbaser;
1146 	u64 cmd_buf[4];
1147 
1148 	/* Commands are only processed when the ITS is enabled. */
1149 	if (!its->enabled)
1150 		return;
1151 
1152 	cbaser = CBASER_ADDRESS(its->cbaser);
1153 
1154 	while (its->cwriter != its->creadr) {
1155 		int ret = kvm_read_guest(kvm, cbaser + its->creadr,
1156 					 cmd_buf, ITS_CMD_SIZE);
1157 		/*
1158 		 * If kvm_read_guest() fails, this could be due to the guest
1159 		 * programming a bogus value in CBASER or something else going
1160 		 * wrong from which we cannot easily recover.
1161 		 * According to section 6.3.2 in the GICv3 spec we can just
1162 		 * ignore that command then.
1163 		 */
1164 		if (!ret)
1165 			vgic_its_handle_command(kvm, its, cmd_buf);
1166 
1167 		its->creadr += ITS_CMD_SIZE;
1168 		if (its->creadr == ITS_CMD_BUFFER_SIZE(its->cbaser))
1169 			its->creadr = 0;
1170 	}
1171 }
1172 
1173 /*
1174  * By writing to CWRITER the guest announces new commands to be processed.
1175  * To avoid any races in the first place, we take the its_cmd lock, which
1176  * protects our ring buffer variables, so that there is only one user
1177  * per ITS handling commands at a given time.
1178  */
vgic_mmio_write_its_cwriter(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1179 static void vgic_mmio_write_its_cwriter(struct kvm *kvm, struct vgic_its *its,
1180 					gpa_t addr, unsigned int len,
1181 					unsigned long val)
1182 {
1183 	u64 reg;
1184 
1185 	if (!its)
1186 		return;
1187 
1188 	mutex_lock(&its->cmd_lock);
1189 
1190 	reg = update_64bit_reg(its->cwriter, addr & 7, len, val);
1191 	reg = ITS_CMD_OFFSET(reg);
1192 	if (reg >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1193 		mutex_unlock(&its->cmd_lock);
1194 		return;
1195 	}
1196 	its->cwriter = reg;
1197 
1198 	vgic_its_process_commands(kvm, its);
1199 
1200 	mutex_unlock(&its->cmd_lock);
1201 }
1202 
vgic_mmio_read_its_cwriter(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)1203 static unsigned long vgic_mmio_read_its_cwriter(struct kvm *kvm,
1204 						struct vgic_its *its,
1205 						gpa_t addr, unsigned int len)
1206 {
1207 	return extract_bytes(its->cwriter, addr & 0x7, len);
1208 }
1209 
vgic_mmio_read_its_creadr(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)1210 static unsigned long vgic_mmio_read_its_creadr(struct kvm *kvm,
1211 					       struct vgic_its *its,
1212 					       gpa_t addr, unsigned int len)
1213 {
1214 	return extract_bytes(its->creadr, addr & 0x7, len);
1215 }
1216 
1217 #define BASER_INDEX(addr) (((addr) / sizeof(u64)) & 0x7)
vgic_mmio_read_its_baser(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)1218 static unsigned long vgic_mmio_read_its_baser(struct kvm *kvm,
1219 					      struct vgic_its *its,
1220 					      gpa_t addr, unsigned int len)
1221 {
1222 	u64 reg;
1223 
1224 	switch (BASER_INDEX(addr)) {
1225 	case 0:
1226 		reg = its->baser_device_table;
1227 		break;
1228 	case 1:
1229 		reg = its->baser_coll_table;
1230 		break;
1231 	default:
1232 		reg = 0;
1233 		break;
1234 	}
1235 
1236 	return extract_bytes(reg, addr & 7, len);
1237 }
1238 
1239 #define GITS_BASER_RO_MASK	(GENMASK_ULL(52, 48) | GENMASK_ULL(58, 56))
vgic_mmio_write_its_baser(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1240 static void vgic_mmio_write_its_baser(struct kvm *kvm,
1241 				      struct vgic_its *its,
1242 				      gpa_t addr, unsigned int len,
1243 				      unsigned long val)
1244 {
1245 	u64 entry_size, device_type;
1246 	u64 reg, *regptr, clearbits = 0;
1247 
1248 	/* When GITS_CTLR.Enable is 1, we ignore write accesses. */
1249 	if (its->enabled)
1250 		return;
1251 
1252 	switch (BASER_INDEX(addr)) {
1253 	case 0:
1254 		regptr = &its->baser_device_table;
1255 		entry_size = 8;
1256 		device_type = GITS_BASER_TYPE_DEVICE;
1257 		break;
1258 	case 1:
1259 		regptr = &its->baser_coll_table;
1260 		entry_size = 8;
1261 		device_type = GITS_BASER_TYPE_COLLECTION;
1262 		clearbits = GITS_BASER_INDIRECT;
1263 		break;
1264 	default:
1265 		return;
1266 	}
1267 
1268 	reg = update_64bit_reg(*regptr, addr & 7, len, val);
1269 	reg &= ~GITS_BASER_RO_MASK;
1270 	reg &= ~clearbits;
1271 
1272 	reg |= (entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT;
1273 	reg |= device_type << GITS_BASER_TYPE_SHIFT;
1274 	reg = vgic_sanitise_its_baser(reg);
1275 
1276 	*regptr = reg;
1277 }
1278 
vgic_mmio_read_its_ctlr(struct kvm * vcpu,struct vgic_its * its,gpa_t addr,unsigned int len)1279 static unsigned long vgic_mmio_read_its_ctlr(struct kvm *vcpu,
1280 					     struct vgic_its *its,
1281 					     gpa_t addr, unsigned int len)
1282 {
1283 	u32 reg = 0;
1284 
1285 	mutex_lock(&its->cmd_lock);
1286 	if (its->creadr == its->cwriter)
1287 		reg |= GITS_CTLR_QUIESCENT;
1288 	if (its->enabled)
1289 		reg |= GITS_CTLR_ENABLE;
1290 	mutex_unlock(&its->cmd_lock);
1291 
1292 	return reg;
1293 }
1294 
vgic_mmio_write_its_ctlr(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1295 static void vgic_mmio_write_its_ctlr(struct kvm *kvm, struct vgic_its *its,
1296 				     gpa_t addr, unsigned int len,
1297 				     unsigned long val)
1298 {
1299 	mutex_lock(&its->cmd_lock);
1300 
1301 	its->enabled = !!(val & GITS_CTLR_ENABLE);
1302 
1303 	/*
1304 	 * Try to process any pending commands. This function bails out early
1305 	 * if the ITS is disabled or no commands have been queued.
1306 	 */
1307 	vgic_its_process_commands(kvm, its);
1308 
1309 	mutex_unlock(&its->cmd_lock);
1310 }
1311 
1312 #define REGISTER_ITS_DESC(off, rd, wr, length, acc)		\
1313 {								\
1314 	.reg_offset = off,					\
1315 	.len = length,						\
1316 	.access_flags = acc,					\
1317 	.its_read = rd,						\
1318 	.its_write = wr,					\
1319 }
1320 
its_mmio_write_wi(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1321 static void its_mmio_write_wi(struct kvm *kvm, struct vgic_its *its,
1322 			      gpa_t addr, unsigned int len, unsigned long val)
1323 {
1324 	/* Ignore */
1325 }
1326 
1327 static struct vgic_register_region its_registers[] = {
1328 	REGISTER_ITS_DESC(GITS_CTLR,
1329 		vgic_mmio_read_its_ctlr, vgic_mmio_write_its_ctlr, 4,
1330 		VGIC_ACCESS_32bit),
1331 	REGISTER_ITS_DESC(GITS_IIDR,
1332 		vgic_mmio_read_its_iidr, its_mmio_write_wi, 4,
1333 		VGIC_ACCESS_32bit),
1334 	REGISTER_ITS_DESC(GITS_TYPER,
1335 		vgic_mmio_read_its_typer, its_mmio_write_wi, 8,
1336 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1337 	REGISTER_ITS_DESC(GITS_CBASER,
1338 		vgic_mmio_read_its_cbaser, vgic_mmio_write_its_cbaser, 8,
1339 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1340 	REGISTER_ITS_DESC(GITS_CWRITER,
1341 		vgic_mmio_read_its_cwriter, vgic_mmio_write_its_cwriter, 8,
1342 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1343 	REGISTER_ITS_DESC(GITS_CREADR,
1344 		vgic_mmio_read_its_creadr, its_mmio_write_wi, 8,
1345 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1346 	REGISTER_ITS_DESC(GITS_BASER,
1347 		vgic_mmio_read_its_baser, vgic_mmio_write_its_baser, 0x40,
1348 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1349 	REGISTER_ITS_DESC(GITS_IDREGS_BASE,
1350 		vgic_mmio_read_its_idregs, its_mmio_write_wi, 0x30,
1351 		VGIC_ACCESS_32bit),
1352 };
1353 
1354 /* This is called on setting the LPI enable bit in the redistributor. */
vgic_enable_lpis(struct kvm_vcpu * vcpu)1355 void vgic_enable_lpis(struct kvm_vcpu *vcpu)
1356 {
1357 	if (!(vcpu->arch.vgic_cpu.pendbaser & GICR_PENDBASER_PTZ))
1358 		its_sync_lpi_pending_table(vcpu);
1359 }
1360 
vgic_register_its_iodev(struct kvm * kvm,struct vgic_its * its)1361 static int vgic_register_its_iodev(struct kvm *kvm, struct vgic_its *its)
1362 {
1363 	struct vgic_io_device *iodev = &its->iodev;
1364 	int ret;
1365 
1366 	if (!its->initialized)
1367 		return -EBUSY;
1368 
1369 	if (IS_VGIC_ADDR_UNDEF(its->vgic_its_base))
1370 		return -ENXIO;
1371 
1372 	iodev->regions = its_registers;
1373 	iodev->nr_regions = ARRAY_SIZE(its_registers);
1374 	kvm_iodevice_init(&iodev->dev, &kvm_io_gic_ops);
1375 
1376 	iodev->base_addr = its->vgic_its_base;
1377 	iodev->iodev_type = IODEV_ITS;
1378 	iodev->its = its;
1379 	mutex_lock(&kvm->slots_lock);
1380 	ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, iodev->base_addr,
1381 				      KVM_VGIC_V3_ITS_SIZE, &iodev->dev);
1382 	mutex_unlock(&kvm->slots_lock);
1383 
1384 	return ret;
1385 }
1386 
1387 #define INITIAL_BASER_VALUE						  \
1388 	(GIC_BASER_CACHEABILITY(GITS_BASER, INNER, RaWb)		| \
1389 	 GIC_BASER_CACHEABILITY(GITS_BASER, OUTER, SameAsInner)		| \
1390 	 GIC_BASER_SHAREABILITY(GITS_BASER, InnerShareable)		| \
1391 	 ((8ULL - 1) << GITS_BASER_ENTRY_SIZE_SHIFT)			| \
1392 	 GITS_BASER_PAGE_SIZE_64K)
1393 
1394 #define INITIAL_PROPBASER_VALUE						  \
1395 	(GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, RaWb)		| \
1396 	 GIC_BASER_CACHEABILITY(GICR_PROPBASER, OUTER, SameAsInner)	| \
1397 	 GIC_BASER_SHAREABILITY(GICR_PROPBASER, InnerShareable))
1398 
vgic_its_create(struct kvm_device * dev,u32 type)1399 static int vgic_its_create(struct kvm_device *dev, u32 type)
1400 {
1401 	struct vgic_its *its;
1402 
1403 	if (type != KVM_DEV_TYPE_ARM_VGIC_ITS)
1404 		return -ENODEV;
1405 
1406 	its = kzalloc(sizeof(struct vgic_its), GFP_KERNEL);
1407 	if (!its)
1408 		return -ENOMEM;
1409 
1410 	mutex_init(&its->its_lock);
1411 	mutex_init(&its->cmd_lock);
1412 
1413 	its->vgic_its_base = VGIC_ADDR_UNDEF;
1414 
1415 	INIT_LIST_HEAD(&its->device_list);
1416 	INIT_LIST_HEAD(&its->collection_list);
1417 
1418 	dev->kvm->arch.vgic.has_its = true;
1419 	its->initialized = false;
1420 	its->enabled = false;
1421 	its->dev = dev;
1422 
1423 	its->baser_device_table = INITIAL_BASER_VALUE			|
1424 		((u64)GITS_BASER_TYPE_DEVICE << GITS_BASER_TYPE_SHIFT);
1425 	its->baser_coll_table = INITIAL_BASER_VALUE |
1426 		((u64)GITS_BASER_TYPE_COLLECTION << GITS_BASER_TYPE_SHIFT);
1427 	dev->kvm->arch.vgic.propbaser = INITIAL_PROPBASER_VALUE;
1428 
1429 	dev->private = its;
1430 
1431 	return 0;
1432 }
1433 
vgic_its_destroy(struct kvm_device * kvm_dev)1434 static void vgic_its_destroy(struct kvm_device *kvm_dev)
1435 {
1436 	struct kvm *kvm = kvm_dev->kvm;
1437 	struct vgic_its *its = kvm_dev->private;
1438 	struct its_device *dev;
1439 	struct its_itte *itte;
1440 	struct list_head *dev_cur, *dev_temp;
1441 	struct list_head *cur, *temp;
1442 
1443 	/*
1444 	 * We may end up here without the lists ever having been initialized.
1445 	 * Check this and bail out early to avoid dereferencing a NULL pointer.
1446 	 */
1447 	if (!its->device_list.next)
1448 		return;
1449 
1450 	mutex_lock(&its->its_lock);
1451 	list_for_each_safe(dev_cur, dev_temp, &its->device_list) {
1452 		dev = container_of(dev_cur, struct its_device, dev_list);
1453 		list_for_each_safe(cur, temp, &dev->itt_head) {
1454 			itte = (container_of(cur, struct its_itte, itte_list));
1455 			its_free_itte(kvm, itte);
1456 		}
1457 		list_del(dev_cur);
1458 		kfree(dev);
1459 	}
1460 
1461 	list_for_each_safe(cur, temp, &its->collection_list) {
1462 		list_del(cur);
1463 		kfree(container_of(cur, struct its_collection, coll_list));
1464 	}
1465 	mutex_unlock(&its->its_lock);
1466 
1467 	kfree(its);
1468 }
1469 
vgic_its_has_attr(struct kvm_device * dev,struct kvm_device_attr * attr)1470 static int vgic_its_has_attr(struct kvm_device *dev,
1471 			     struct kvm_device_attr *attr)
1472 {
1473 	switch (attr->group) {
1474 	case KVM_DEV_ARM_VGIC_GRP_ADDR:
1475 		switch (attr->attr) {
1476 		case KVM_VGIC_ITS_ADDR_TYPE:
1477 			return 0;
1478 		}
1479 		break;
1480 	case KVM_DEV_ARM_VGIC_GRP_CTRL:
1481 		switch (attr->attr) {
1482 		case KVM_DEV_ARM_VGIC_CTRL_INIT:
1483 			return 0;
1484 		}
1485 		break;
1486 	}
1487 	return -ENXIO;
1488 }
1489 
vgic_its_set_attr(struct kvm_device * dev,struct kvm_device_attr * attr)1490 static int vgic_its_set_attr(struct kvm_device *dev,
1491 			     struct kvm_device_attr *attr)
1492 {
1493 	struct vgic_its *its = dev->private;
1494 	int ret;
1495 
1496 	switch (attr->group) {
1497 	case KVM_DEV_ARM_VGIC_GRP_ADDR: {
1498 		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
1499 		unsigned long type = (unsigned long)attr->attr;
1500 		u64 addr;
1501 
1502 		if (type != KVM_VGIC_ITS_ADDR_TYPE)
1503 			return -ENODEV;
1504 
1505 		if (copy_from_user(&addr, uaddr, sizeof(addr)))
1506 			return -EFAULT;
1507 
1508 		ret = vgic_check_ioaddr(dev->kvm, &its->vgic_its_base,
1509 					addr, SZ_64K);
1510 		if (ret)
1511 			return ret;
1512 
1513 		its->vgic_its_base = addr;
1514 
1515 		return 0;
1516 	}
1517 	case KVM_DEV_ARM_VGIC_GRP_CTRL:
1518 		switch (attr->attr) {
1519 		case KVM_DEV_ARM_VGIC_CTRL_INIT:
1520 			its->initialized = true;
1521 
1522 			return 0;
1523 		}
1524 		break;
1525 	}
1526 	return -ENXIO;
1527 }
1528 
vgic_its_get_attr(struct kvm_device * dev,struct kvm_device_attr * attr)1529 static int vgic_its_get_attr(struct kvm_device *dev,
1530 			     struct kvm_device_attr *attr)
1531 {
1532 	switch (attr->group) {
1533 	case KVM_DEV_ARM_VGIC_GRP_ADDR: {
1534 		struct vgic_its *its = dev->private;
1535 		u64 addr = its->vgic_its_base;
1536 		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
1537 		unsigned long type = (unsigned long)attr->attr;
1538 
1539 		if (type != KVM_VGIC_ITS_ADDR_TYPE)
1540 			return -ENODEV;
1541 
1542 		if (copy_to_user(uaddr, &addr, sizeof(addr)))
1543 			return -EFAULT;
1544 		break;
1545 	default:
1546 		return -ENXIO;
1547 	}
1548 	}
1549 
1550 	return 0;
1551 }
1552 
1553 static struct kvm_device_ops kvm_arm_vgic_its_ops = {
1554 	.name = "kvm-arm-vgic-its",
1555 	.create = vgic_its_create,
1556 	.destroy = vgic_its_destroy,
1557 	.set_attr = vgic_its_set_attr,
1558 	.get_attr = vgic_its_get_attr,
1559 	.has_attr = vgic_its_has_attr,
1560 };
1561 
kvm_vgic_register_its_device(void)1562 int kvm_vgic_register_its_device(void)
1563 {
1564 	return kvm_register_device_ops(&kvm_arm_vgic_its_ops,
1565 				       KVM_DEV_TYPE_ARM_VGIC_ITS);
1566 }
1567 
1568 /*
1569  * Registers all ITSes with the kvm_io_bus framework.
1570  * To follow the existing VGIC initialization sequence, this has to be
1571  * done as late as possible, just before the first VCPU runs.
1572  */
vgic_register_its_iodevs(struct kvm * kvm)1573 int vgic_register_its_iodevs(struct kvm *kvm)
1574 {
1575 	struct kvm_device *dev;
1576 	int ret = 0;
1577 
1578 	list_for_each_entry(dev, &kvm->devices, vm_node) {
1579 		if (dev->ops != &kvm_arm_vgic_its_ops)
1580 			continue;
1581 
1582 		ret = vgic_register_its_iodev(kvm, dev->private);
1583 		if (ret)
1584 			return ret;
1585 		/*
1586 		 * We don't need to care about tearing down previously
1587 		 * registered ITSes, as the kvm_io_bus framework removes
1588 		 * them for us if the VM gets destroyed.
1589 		 */
1590 	}
1591 
1592 	return ret;
1593 }
1594