• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * VGICv3 MMIO handling functions
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  */
13 
14 #include <linux/irqchip/arm-gic-v3.h>
15 #include <linux/kvm.h>
16 #include <linux/kvm_host.h>
17 #include <kvm/iodev.h>
18 #include <kvm/arm_vgic.h>
19 
20 #include <asm/kvm_emulate.h>
21 
22 #include "vgic.h"
23 #include "vgic-mmio.h"
24 
25 /* extract @num bytes at @offset bytes offset in data */
extract_bytes(u64 data,unsigned int offset,unsigned int num)26 unsigned long extract_bytes(u64 data, unsigned int offset,
27 			    unsigned int num)
28 {
29 	return (data >> (offset * 8)) & GENMASK_ULL(num * 8 - 1, 0);
30 }
31 
32 /* allows updates of any half of a 64-bit register (or the whole thing) */
update_64bit_reg(u64 reg,unsigned int offset,unsigned int len,unsigned long val)33 u64 update_64bit_reg(u64 reg, unsigned int offset, unsigned int len,
34 		     unsigned long val)
35 {
36 	int lower = (offset & 4) * 8;
37 	int upper = lower + 8 * len - 1;
38 
39 	reg &= ~GENMASK_ULL(upper, lower);
40 	val &= GENMASK_ULL(len * 8 - 1, 0);
41 
42 	return reg | ((u64)val << lower);
43 }
44 
45 #ifdef CONFIG_KVM_ARM_VGIC_V3_ITS
vgic_has_its(struct kvm * kvm)46 bool vgic_has_its(struct kvm *kvm)
47 {
48 	struct vgic_dist *dist = &kvm->arch.vgic;
49 
50 	if (dist->vgic_model != KVM_DEV_TYPE_ARM_VGIC_V3)
51 		return false;
52 
53 	return dist->has_its;
54 }
55 #endif
56 
vgic_mmio_read_v3_misc(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)57 static unsigned long vgic_mmio_read_v3_misc(struct kvm_vcpu *vcpu,
58 					    gpa_t addr, unsigned int len)
59 {
60 	u32 value = 0;
61 
62 	switch (addr & 0x0c) {
63 	case GICD_CTLR:
64 		if (vcpu->kvm->arch.vgic.enabled)
65 			value |= GICD_CTLR_ENABLE_SS_G1;
66 		value |= GICD_CTLR_ARE_NS | GICD_CTLR_DS;
67 		break;
68 	case GICD_TYPER:
69 		value = vcpu->kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
70 		value = (value >> 5) - 1;
71 		if (vgic_has_its(vcpu->kvm)) {
72 			value |= (INTERRUPT_ID_BITS_ITS - 1) << 19;
73 			value |= GICD_TYPER_LPIS;
74 		} else {
75 			value |= (INTERRUPT_ID_BITS_SPIS - 1) << 19;
76 		}
77 		break;
78 	case GICD_IIDR:
79 		value = (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
80 		break;
81 	default:
82 		return 0;
83 	}
84 
85 	return value;
86 }
87 
vgic_mmio_write_v3_misc(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)88 static void vgic_mmio_write_v3_misc(struct kvm_vcpu *vcpu,
89 				    gpa_t addr, unsigned int len,
90 				    unsigned long val)
91 {
92 	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
93 	bool was_enabled = dist->enabled;
94 
95 	switch (addr & 0x0c) {
96 	case GICD_CTLR:
97 		dist->enabled = val & GICD_CTLR_ENABLE_SS_G1;
98 
99 		if (!was_enabled && dist->enabled)
100 			vgic_kick_vcpus(vcpu->kvm);
101 		break;
102 	case GICD_TYPER:
103 	case GICD_IIDR:
104 		return;
105 	}
106 }
107 
vgic_mmio_read_irouter(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)108 static unsigned long vgic_mmio_read_irouter(struct kvm_vcpu *vcpu,
109 					    gpa_t addr, unsigned int len)
110 {
111 	int intid = VGIC_ADDR_TO_INTID(addr, 64);
112 	struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, NULL, intid);
113 	unsigned long ret = 0;
114 
115 	if (!irq)
116 		return 0;
117 
118 	/* The upper word is RAZ for us. */
119 	if (!(addr & 4))
120 		ret = extract_bytes(READ_ONCE(irq->mpidr), addr & 7, len);
121 
122 	vgic_put_irq(vcpu->kvm, irq);
123 	return ret;
124 }
125 
vgic_mmio_write_irouter(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)126 static void vgic_mmio_write_irouter(struct kvm_vcpu *vcpu,
127 				    gpa_t addr, unsigned int len,
128 				    unsigned long val)
129 {
130 	int intid = VGIC_ADDR_TO_INTID(addr, 64);
131 	struct vgic_irq *irq;
132 
133 	/* The upper word is WI for us since we don't implement Aff3. */
134 	if (addr & 4)
135 		return;
136 
137 	irq = vgic_get_irq(vcpu->kvm, NULL, intid);
138 
139 	if (!irq)
140 		return;
141 
142 	spin_lock(&irq->irq_lock);
143 
144 	/* We only care about and preserve Aff0, Aff1 and Aff2. */
145 	irq->mpidr = val & GENMASK(23, 0);
146 	irq->target_vcpu = kvm_mpidr_to_vcpu(vcpu->kvm, irq->mpidr);
147 
148 	spin_unlock(&irq->irq_lock);
149 	vgic_put_irq(vcpu->kvm, irq);
150 }
151 
vgic_mmio_read_v3r_ctlr(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)152 static unsigned long vgic_mmio_read_v3r_ctlr(struct kvm_vcpu *vcpu,
153 					     gpa_t addr, unsigned int len)
154 {
155 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
156 
157 	return vgic_cpu->lpis_enabled ? GICR_CTLR_ENABLE_LPIS : 0;
158 }
159 
160 
vgic_mmio_write_v3r_ctlr(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)161 static void vgic_mmio_write_v3r_ctlr(struct kvm_vcpu *vcpu,
162 				     gpa_t addr, unsigned int len,
163 				     unsigned long val)
164 {
165 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
166 	bool was_enabled = vgic_cpu->lpis_enabled;
167 
168 	if (!vgic_has_its(vcpu->kvm))
169 		return;
170 
171 	vgic_cpu->lpis_enabled = val & GICR_CTLR_ENABLE_LPIS;
172 
173 	if (!was_enabled && vgic_cpu->lpis_enabled)
174 		vgic_enable_lpis(vcpu);
175 }
176 
vgic_mmio_read_v3r_typer(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)177 static unsigned long vgic_mmio_read_v3r_typer(struct kvm_vcpu *vcpu,
178 					      gpa_t addr, unsigned int len)
179 {
180 	unsigned long mpidr = kvm_vcpu_get_mpidr_aff(vcpu);
181 	int target_vcpu_id = vcpu->vcpu_id;
182 	u64 value;
183 
184 	value = (u64)(mpidr & GENMASK(23, 0)) << 32;
185 	value |= ((target_vcpu_id & 0xffff) << 8);
186 	if (target_vcpu_id == atomic_read(&vcpu->kvm->online_vcpus) - 1)
187 		value |= GICR_TYPER_LAST;
188 	if (vgic_has_its(vcpu->kvm))
189 		value |= GICR_TYPER_PLPIS;
190 
191 	return extract_bytes(value, addr & 7, len);
192 }
193 
vgic_mmio_read_v3r_iidr(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)194 static unsigned long vgic_mmio_read_v3r_iidr(struct kvm_vcpu *vcpu,
195 					     gpa_t addr, unsigned int len)
196 {
197 	return (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
198 }
199 
vgic_mmio_read_v3_idregs(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)200 static unsigned long vgic_mmio_read_v3_idregs(struct kvm_vcpu *vcpu,
201 					      gpa_t addr, unsigned int len)
202 {
203 	switch (addr & 0xffff) {
204 	case GICD_PIDR2:
205 		/* report a GICv3 compliant implementation */
206 		return 0x3b;
207 	}
208 
209 	return 0;
210 }
211 
212 /* We want to avoid outer shareable. */
vgic_sanitise_shareability(u64 field)213 u64 vgic_sanitise_shareability(u64 field)
214 {
215 	switch (field) {
216 	case GIC_BASER_OuterShareable:
217 		return GIC_BASER_InnerShareable;
218 	default:
219 		return field;
220 	}
221 }
222 
223 /* Avoid any inner non-cacheable mapping. */
vgic_sanitise_inner_cacheability(u64 field)224 u64 vgic_sanitise_inner_cacheability(u64 field)
225 {
226 	switch (field) {
227 	case GIC_BASER_CACHE_nCnB:
228 	case GIC_BASER_CACHE_nC:
229 		return GIC_BASER_CACHE_RaWb;
230 	default:
231 		return field;
232 	}
233 }
234 
235 /* Non-cacheable or same-as-inner are OK. */
vgic_sanitise_outer_cacheability(u64 field)236 u64 vgic_sanitise_outer_cacheability(u64 field)
237 {
238 	switch (field) {
239 	case GIC_BASER_CACHE_SameAsInner:
240 	case GIC_BASER_CACHE_nC:
241 		return field;
242 	default:
243 		return GIC_BASER_CACHE_nC;
244 	}
245 }
246 
vgic_sanitise_field(u64 reg,u64 field_mask,int field_shift,u64 (* sanitise_fn)(u64))247 u64 vgic_sanitise_field(u64 reg, u64 field_mask, int field_shift,
248 			u64 (*sanitise_fn)(u64))
249 {
250 	u64 field = (reg & field_mask) >> field_shift;
251 
252 	field = sanitise_fn(field) << field_shift;
253 	return (reg & ~field_mask) | field;
254 }
255 
256 #define PROPBASER_RES0_MASK						\
257 	(GENMASK_ULL(63, 59) | GENMASK_ULL(55, 52) | GENMASK_ULL(6, 5))
258 #define PENDBASER_RES0_MASK						\
259 	(BIT_ULL(63) | GENMASK_ULL(61, 59) | GENMASK_ULL(55, 52) |	\
260 	 GENMASK_ULL(15, 12) | GENMASK_ULL(6, 0))
261 
vgic_sanitise_pendbaser(u64 reg)262 static u64 vgic_sanitise_pendbaser(u64 reg)
263 {
264 	reg = vgic_sanitise_field(reg, GICR_PENDBASER_SHAREABILITY_MASK,
265 				  GICR_PENDBASER_SHAREABILITY_SHIFT,
266 				  vgic_sanitise_shareability);
267 	reg = vgic_sanitise_field(reg, GICR_PENDBASER_INNER_CACHEABILITY_MASK,
268 				  GICR_PENDBASER_INNER_CACHEABILITY_SHIFT,
269 				  vgic_sanitise_inner_cacheability);
270 	reg = vgic_sanitise_field(reg, GICR_PENDBASER_OUTER_CACHEABILITY_MASK,
271 				  GICR_PENDBASER_OUTER_CACHEABILITY_SHIFT,
272 				  vgic_sanitise_outer_cacheability);
273 
274 	reg &= ~PENDBASER_RES0_MASK;
275 	reg &= ~GENMASK_ULL(51, 48);
276 
277 	return reg;
278 }
279 
vgic_sanitise_propbaser(u64 reg)280 static u64 vgic_sanitise_propbaser(u64 reg)
281 {
282 	reg = vgic_sanitise_field(reg, GICR_PROPBASER_SHAREABILITY_MASK,
283 				  GICR_PROPBASER_SHAREABILITY_SHIFT,
284 				  vgic_sanitise_shareability);
285 	reg = vgic_sanitise_field(reg, GICR_PROPBASER_INNER_CACHEABILITY_MASK,
286 				  GICR_PROPBASER_INNER_CACHEABILITY_SHIFT,
287 				  vgic_sanitise_inner_cacheability);
288 	reg = vgic_sanitise_field(reg, GICR_PROPBASER_OUTER_CACHEABILITY_MASK,
289 				  GICR_PROPBASER_OUTER_CACHEABILITY_SHIFT,
290 				  vgic_sanitise_outer_cacheability);
291 
292 	reg &= ~PROPBASER_RES0_MASK;
293 	reg &= ~GENMASK_ULL(51, 48);
294 	return reg;
295 }
296 
vgic_mmio_read_propbase(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)297 static unsigned long vgic_mmio_read_propbase(struct kvm_vcpu *vcpu,
298 					     gpa_t addr, unsigned int len)
299 {
300 	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
301 
302 	return extract_bytes(dist->propbaser, addr & 7, len);
303 }
304 
vgic_mmio_write_propbase(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)305 static void vgic_mmio_write_propbase(struct kvm_vcpu *vcpu,
306 				     gpa_t addr, unsigned int len,
307 				     unsigned long val)
308 {
309 	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
310 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
311 	u64 old_propbaser, propbaser;
312 
313 	/* Storing a value with LPIs already enabled is undefined */
314 	if (vgic_cpu->lpis_enabled)
315 		return;
316 
317 	do {
318 		old_propbaser = dist->propbaser;
319 		propbaser = old_propbaser;
320 		propbaser = update_64bit_reg(propbaser, addr & 4, len, val);
321 		propbaser = vgic_sanitise_propbaser(propbaser);
322 	} while (cmpxchg64(&dist->propbaser, old_propbaser,
323 			   propbaser) != old_propbaser);
324 }
325 
vgic_mmio_read_pendbase(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)326 static unsigned long vgic_mmio_read_pendbase(struct kvm_vcpu *vcpu,
327 					     gpa_t addr, unsigned int len)
328 {
329 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
330 
331 	return extract_bytes(vgic_cpu->pendbaser, addr & 7, len);
332 }
333 
vgic_mmio_write_pendbase(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)334 static void vgic_mmio_write_pendbase(struct kvm_vcpu *vcpu,
335 				     gpa_t addr, unsigned int len,
336 				     unsigned long val)
337 {
338 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
339 	u64 old_pendbaser, pendbaser;
340 
341 	/* Storing a value with LPIs already enabled is undefined */
342 	if (vgic_cpu->lpis_enabled)
343 		return;
344 
345 	do {
346 		old_pendbaser = vgic_cpu->pendbaser;
347 		pendbaser = old_pendbaser;
348 		pendbaser = update_64bit_reg(pendbaser, addr & 4, len, val);
349 		pendbaser = vgic_sanitise_pendbaser(pendbaser);
350 	} while (cmpxchg64(&vgic_cpu->pendbaser, old_pendbaser,
351 			   pendbaser) != old_pendbaser);
352 }
353 
354 /*
355  * The GICv3 per-IRQ registers are split to control PPIs and SGIs in the
356  * redistributors, while SPIs are covered by registers in the distributor
357  * block. Trying to set private IRQs in this block gets ignored.
358  * We take some special care here to fix the calculation of the register
359  * offset.
360  */
361 #define REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(off, rd, wr, bpi, acc)	\
362 	{								\
363 		.reg_offset = off,					\
364 		.bits_per_irq = bpi,					\
365 		.len = (bpi * VGIC_NR_PRIVATE_IRQS) / 8,		\
366 		.access_flags = acc,					\
367 		.read = vgic_mmio_read_raz,				\
368 		.write = vgic_mmio_write_wi,				\
369 	}, {								\
370 		.reg_offset = off + (bpi * VGIC_NR_PRIVATE_IRQS) / 8,	\
371 		.bits_per_irq = bpi,					\
372 		.len = (bpi * (1024 - VGIC_NR_PRIVATE_IRQS)) / 8,	\
373 		.access_flags = acc,					\
374 		.read = rd,						\
375 		.write = wr,						\
376 	}
377 
378 static const struct vgic_register_region vgic_v3_dist_registers[] = {
379 	REGISTER_DESC_WITH_LENGTH(GICD_CTLR,
380 		vgic_mmio_read_v3_misc, vgic_mmio_write_v3_misc, 16,
381 		VGIC_ACCESS_32bit),
382 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGROUPR,
383 		vgic_mmio_read_rao, vgic_mmio_write_wi, 1,
384 		VGIC_ACCESS_32bit),
385 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISENABLER,
386 		vgic_mmio_read_enable, vgic_mmio_write_senable, 1,
387 		VGIC_ACCESS_32bit),
388 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICENABLER,
389 		vgic_mmio_read_enable, vgic_mmio_write_cenable, 1,
390 		VGIC_ACCESS_32bit),
391 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISPENDR,
392 		vgic_mmio_read_pending, vgic_mmio_write_spending, 1,
393 		VGIC_ACCESS_32bit),
394 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICPENDR,
395 		vgic_mmio_read_pending, vgic_mmio_write_cpending, 1,
396 		VGIC_ACCESS_32bit),
397 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISACTIVER,
398 		vgic_mmio_read_active, vgic_mmio_write_sactive, 1,
399 		VGIC_ACCESS_32bit),
400 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICACTIVER,
401 		vgic_mmio_read_active, vgic_mmio_write_cactive, 1,
402 		VGIC_ACCESS_32bit),
403 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IPRIORITYR,
404 		vgic_mmio_read_priority, vgic_mmio_write_priority, 8,
405 		VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
406 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ITARGETSR,
407 		vgic_mmio_read_raz, vgic_mmio_write_wi, 8,
408 		VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
409 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICFGR,
410 		vgic_mmio_read_config, vgic_mmio_write_config, 2,
411 		VGIC_ACCESS_32bit),
412 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGRPMODR,
413 		vgic_mmio_read_raz, vgic_mmio_write_wi, 1,
414 		VGIC_ACCESS_32bit),
415 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IROUTER,
416 		vgic_mmio_read_irouter, vgic_mmio_write_irouter, 64,
417 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
418 	REGISTER_DESC_WITH_LENGTH(GICD_IDREGS,
419 		vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
420 		VGIC_ACCESS_32bit),
421 };
422 
423 static const struct vgic_register_region vgic_v3_rdbase_registers[] = {
424 	REGISTER_DESC_WITH_LENGTH(GICR_CTLR,
425 		vgic_mmio_read_v3r_ctlr, vgic_mmio_write_v3r_ctlr, 4,
426 		VGIC_ACCESS_32bit),
427 	REGISTER_DESC_WITH_LENGTH(GICR_IIDR,
428 		vgic_mmio_read_v3r_iidr, vgic_mmio_write_wi, 4,
429 		VGIC_ACCESS_32bit),
430 	REGISTER_DESC_WITH_LENGTH(GICR_TYPER,
431 		vgic_mmio_read_v3r_typer, vgic_mmio_write_wi, 8,
432 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
433 	REGISTER_DESC_WITH_LENGTH(GICR_PROPBASER,
434 		vgic_mmio_read_propbase, vgic_mmio_write_propbase, 8,
435 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
436 	REGISTER_DESC_WITH_LENGTH(GICR_PENDBASER,
437 		vgic_mmio_read_pendbase, vgic_mmio_write_pendbase, 8,
438 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
439 	REGISTER_DESC_WITH_LENGTH(GICR_IDREGS,
440 		vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
441 		VGIC_ACCESS_32bit),
442 };
443 
444 static const struct vgic_register_region vgic_v3_sgibase_registers[] = {
445 	REGISTER_DESC_WITH_LENGTH(GICR_IGROUPR0,
446 		vgic_mmio_read_rao, vgic_mmio_write_wi, 4,
447 		VGIC_ACCESS_32bit),
448 	REGISTER_DESC_WITH_LENGTH(GICR_ISENABLER0,
449 		vgic_mmio_read_enable, vgic_mmio_write_senable, 4,
450 		VGIC_ACCESS_32bit),
451 	REGISTER_DESC_WITH_LENGTH(GICR_ICENABLER0,
452 		vgic_mmio_read_enable, vgic_mmio_write_cenable, 4,
453 		VGIC_ACCESS_32bit),
454 	REGISTER_DESC_WITH_LENGTH(GICR_ISPENDR0,
455 		vgic_mmio_read_pending, vgic_mmio_write_spending, 4,
456 		VGIC_ACCESS_32bit),
457 	REGISTER_DESC_WITH_LENGTH(GICR_ICPENDR0,
458 		vgic_mmio_read_pending, vgic_mmio_write_cpending, 4,
459 		VGIC_ACCESS_32bit),
460 	REGISTER_DESC_WITH_LENGTH(GICR_ISACTIVER0,
461 		vgic_mmio_read_active, vgic_mmio_write_sactive, 4,
462 		VGIC_ACCESS_32bit),
463 	REGISTER_DESC_WITH_LENGTH(GICR_ICACTIVER0,
464 		vgic_mmio_read_active, vgic_mmio_write_cactive, 4,
465 		VGIC_ACCESS_32bit),
466 	REGISTER_DESC_WITH_LENGTH(GICR_IPRIORITYR0,
467 		vgic_mmio_read_priority, vgic_mmio_write_priority, 32,
468 		VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
469 	REGISTER_DESC_WITH_LENGTH(GICR_ICFGR0,
470 		vgic_mmio_read_config, vgic_mmio_write_config, 8,
471 		VGIC_ACCESS_32bit),
472 	REGISTER_DESC_WITH_LENGTH(GICR_IGRPMODR0,
473 		vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
474 		VGIC_ACCESS_32bit),
475 	REGISTER_DESC_WITH_LENGTH(GICR_NSACR,
476 		vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
477 		VGIC_ACCESS_32bit),
478 };
479 
vgic_v3_init_dist_iodev(struct vgic_io_device * dev)480 unsigned int vgic_v3_init_dist_iodev(struct vgic_io_device *dev)
481 {
482 	dev->regions = vgic_v3_dist_registers;
483 	dev->nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
484 
485 	kvm_iodevice_init(&dev->dev, &kvm_io_gic_ops);
486 
487 	return SZ_64K;
488 }
489 
vgic_register_redist_iodevs(struct kvm * kvm,gpa_t redist_base_address)490 int vgic_register_redist_iodevs(struct kvm *kvm, gpa_t redist_base_address)
491 {
492 	struct kvm_vcpu *vcpu;
493 	int c, ret = 0;
494 
495 	kvm_for_each_vcpu(c, vcpu, kvm) {
496 		gpa_t rd_base = redist_base_address + c * SZ_64K * 2;
497 		gpa_t sgi_base = rd_base + SZ_64K;
498 		struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
499 		struct vgic_io_device *sgi_dev = &vcpu->arch.vgic_cpu.sgi_iodev;
500 
501 		kvm_iodevice_init(&rd_dev->dev, &kvm_io_gic_ops);
502 		rd_dev->base_addr = rd_base;
503 		rd_dev->iodev_type = IODEV_REDIST;
504 		rd_dev->regions = vgic_v3_rdbase_registers;
505 		rd_dev->nr_regions = ARRAY_SIZE(vgic_v3_rdbase_registers);
506 		rd_dev->redist_vcpu = vcpu;
507 
508 		mutex_lock(&kvm->slots_lock);
509 		ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, rd_base,
510 					      SZ_64K, &rd_dev->dev);
511 		mutex_unlock(&kvm->slots_lock);
512 
513 		if (ret)
514 			break;
515 
516 		kvm_iodevice_init(&sgi_dev->dev, &kvm_io_gic_ops);
517 		sgi_dev->base_addr = sgi_base;
518 		sgi_dev->iodev_type = IODEV_REDIST;
519 		sgi_dev->regions = vgic_v3_sgibase_registers;
520 		sgi_dev->nr_regions = ARRAY_SIZE(vgic_v3_sgibase_registers);
521 		sgi_dev->redist_vcpu = vcpu;
522 
523 		mutex_lock(&kvm->slots_lock);
524 		ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, sgi_base,
525 					      SZ_64K, &sgi_dev->dev);
526 		mutex_unlock(&kvm->slots_lock);
527 		if (ret) {
528 			kvm_io_bus_unregister_dev(kvm, KVM_MMIO_BUS,
529 						  &rd_dev->dev);
530 			break;
531 		}
532 	}
533 
534 	if (ret) {
535 		/* The current c failed, so we start with the previous one. */
536 		for (c--; c >= 0; c--) {
537 			struct vgic_cpu *vgic_cpu;
538 
539 			vcpu = kvm_get_vcpu(kvm, c);
540 			vgic_cpu = &vcpu->arch.vgic_cpu;
541 			kvm_io_bus_unregister_dev(kvm, KVM_MMIO_BUS,
542 						  &vgic_cpu->rd_iodev.dev);
543 			kvm_io_bus_unregister_dev(kvm, KVM_MMIO_BUS,
544 						  &vgic_cpu->sgi_iodev.dev);
545 		}
546 	}
547 
548 	return ret;
549 }
550 
551 /*
552  * Compare a given affinity (level 1-3 and a level 0 mask, from the SGI
553  * generation register ICC_SGI1R_EL1) with a given VCPU.
554  * If the VCPU's MPIDR matches, return the level0 affinity, otherwise
555  * return -1.
556  */
match_mpidr(u64 sgi_aff,u16 sgi_cpu_mask,struct kvm_vcpu * vcpu)557 static int match_mpidr(u64 sgi_aff, u16 sgi_cpu_mask, struct kvm_vcpu *vcpu)
558 {
559 	unsigned long affinity;
560 	int level0;
561 
562 	/*
563 	 * Split the current VCPU's MPIDR into affinity level 0 and the
564 	 * rest as this is what we have to compare against.
565 	 */
566 	affinity = kvm_vcpu_get_mpidr_aff(vcpu);
567 	level0 = MPIDR_AFFINITY_LEVEL(affinity, 0);
568 	affinity &= ~MPIDR_LEVEL_MASK;
569 
570 	/* bail out if the upper three levels don't match */
571 	if (sgi_aff != affinity)
572 		return -1;
573 
574 	/* Is this VCPU's bit set in the mask ? */
575 	if (!(sgi_cpu_mask & BIT(level0)))
576 		return -1;
577 
578 	return level0;
579 }
580 
581 /*
582  * The ICC_SGI* registers encode the affinity differently from the MPIDR,
583  * so provide a wrapper to use the existing defines to isolate a certain
584  * affinity level.
585  */
586 #define SGI_AFFINITY_LEVEL(reg, level) \
587 	((((reg) & ICC_SGI1R_AFFINITY_## level ##_MASK) \
588 	>> ICC_SGI1R_AFFINITY_## level ##_SHIFT) << MPIDR_LEVEL_SHIFT(level))
589 
590 /**
591  * vgic_v3_dispatch_sgi - handle SGI requests from VCPUs
592  * @vcpu: The VCPU requesting a SGI
593  * @reg: The value written into the ICC_SGI1R_EL1 register by that VCPU
594  *
595  * With GICv3 (and ARE=1) CPUs trigger SGIs by writing to a system register.
596  * This will trap in sys_regs.c and call this function.
597  * This ICC_SGI1R_EL1 register contains the upper three affinity levels of the
598  * target processors as well as a bitmask of 16 Aff0 CPUs.
599  * If the interrupt routing mode bit is not set, we iterate over all VCPUs to
600  * check for matching ones. If this bit is set, we signal all, but not the
601  * calling VCPU.
602  */
vgic_v3_dispatch_sgi(struct kvm_vcpu * vcpu,u64 reg)603 void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg)
604 {
605 	struct kvm *kvm = vcpu->kvm;
606 	struct kvm_vcpu *c_vcpu;
607 	u16 target_cpus;
608 	u64 mpidr;
609 	int sgi, c;
610 	int vcpu_id = vcpu->vcpu_id;
611 	bool broadcast;
612 
613 	sgi = (reg & ICC_SGI1R_SGI_ID_MASK) >> ICC_SGI1R_SGI_ID_SHIFT;
614 	broadcast = reg & BIT_ULL(ICC_SGI1R_IRQ_ROUTING_MODE_BIT);
615 	target_cpus = (reg & ICC_SGI1R_TARGET_LIST_MASK) >> ICC_SGI1R_TARGET_LIST_SHIFT;
616 	mpidr = SGI_AFFINITY_LEVEL(reg, 3);
617 	mpidr |= SGI_AFFINITY_LEVEL(reg, 2);
618 	mpidr |= SGI_AFFINITY_LEVEL(reg, 1);
619 
620 	/*
621 	 * We iterate over all VCPUs to find the MPIDRs matching the request.
622 	 * If we have handled one CPU, we clear its bit to detect early
623 	 * if we are already finished. This avoids iterating through all
624 	 * VCPUs when most of the times we just signal a single VCPU.
625 	 */
626 	kvm_for_each_vcpu(c, c_vcpu, kvm) {
627 		struct vgic_irq *irq;
628 
629 		/* Exit early if we have dealt with all requested CPUs */
630 		if (!broadcast && target_cpus == 0)
631 			break;
632 
633 		/* Don't signal the calling VCPU */
634 		if (broadcast && c == vcpu_id)
635 			continue;
636 
637 		if (!broadcast) {
638 			int level0;
639 
640 			level0 = match_mpidr(mpidr, target_cpus, c_vcpu);
641 			if (level0 == -1)
642 				continue;
643 
644 			/* remove this matching VCPU from the mask */
645 			target_cpus &= ~BIT(level0);
646 		}
647 
648 		irq = vgic_get_irq(vcpu->kvm, c_vcpu, sgi);
649 
650 		spin_lock(&irq->irq_lock);
651 		irq->pending = true;
652 
653 		vgic_queue_irq_unlock(vcpu->kvm, irq);
654 		vgic_put_irq(vcpu->kvm, irq);
655 	}
656 }
657