• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * VGIC MMIO handling functions
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  */
13 
14 #include <linux/bitops.h>
15 #include <linux/bsearch.h>
16 #include <linux/kvm.h>
17 #include <linux/kvm_host.h>
18 #include <kvm/iodev.h>
19 #include <kvm/arm_vgic.h>
20 
21 #include "vgic.h"
22 #include "vgic-mmio.h"
23 
vgic_mmio_read_raz(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)24 unsigned long vgic_mmio_read_raz(struct kvm_vcpu *vcpu,
25 				 gpa_t addr, unsigned int len)
26 {
27 	return 0;
28 }
29 
vgic_mmio_read_rao(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)30 unsigned long vgic_mmio_read_rao(struct kvm_vcpu *vcpu,
31 				 gpa_t addr, unsigned int len)
32 {
33 	return -1UL;
34 }
35 
vgic_mmio_write_wi(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)36 void vgic_mmio_write_wi(struct kvm_vcpu *vcpu, gpa_t addr,
37 			unsigned int len, unsigned long val)
38 {
39 	/* Ignore */
40 }
41 
42 /*
43  * Read accesses to both GICD_ICENABLER and GICD_ISENABLER return the value
44  * of the enabled bit, so there is only one function for both here.
45  */
vgic_mmio_read_enable(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)46 unsigned long vgic_mmio_read_enable(struct kvm_vcpu *vcpu,
47 				    gpa_t addr, unsigned int len)
48 {
49 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
50 	u32 value = 0;
51 	int i;
52 
53 	/* Loop over all IRQs affected by this read */
54 	for (i = 0; i < len * 8; i++) {
55 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
56 
57 		if (irq->enabled)
58 			value |= (1U << i);
59 
60 		vgic_put_irq(vcpu->kvm, irq);
61 	}
62 
63 	return value;
64 }
65 
vgic_mmio_write_senable(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)66 void vgic_mmio_write_senable(struct kvm_vcpu *vcpu,
67 			     gpa_t addr, unsigned int len,
68 			     unsigned long val)
69 {
70 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
71 	int i;
72 
73 	for_each_set_bit(i, &val, len * 8) {
74 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
75 
76 		spin_lock(&irq->irq_lock);
77 		irq->enabled = true;
78 		vgic_queue_irq_unlock(vcpu->kvm, irq);
79 
80 		vgic_put_irq(vcpu->kvm, irq);
81 	}
82 }
83 
vgic_mmio_write_cenable(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)84 void vgic_mmio_write_cenable(struct kvm_vcpu *vcpu,
85 			     gpa_t addr, unsigned int len,
86 			     unsigned long val)
87 {
88 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
89 	int i;
90 
91 	for_each_set_bit(i, &val, len * 8) {
92 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
93 
94 		spin_lock(&irq->irq_lock);
95 
96 		irq->enabled = false;
97 
98 		spin_unlock(&irq->irq_lock);
99 		vgic_put_irq(vcpu->kvm, irq);
100 	}
101 }
102 
vgic_mmio_read_pending(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)103 unsigned long vgic_mmio_read_pending(struct kvm_vcpu *vcpu,
104 				     gpa_t addr, unsigned int len)
105 {
106 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
107 	u32 value = 0;
108 	int i;
109 
110 	/* Loop over all IRQs affected by this read */
111 	for (i = 0; i < len * 8; i++) {
112 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
113 
114 		if (irq->pending)
115 			value |= (1U << i);
116 
117 		vgic_put_irq(vcpu->kvm, irq);
118 	}
119 
120 	return value;
121 }
122 
vgic_mmio_write_spending(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)123 void vgic_mmio_write_spending(struct kvm_vcpu *vcpu,
124 			      gpa_t addr, unsigned int len,
125 			      unsigned long val)
126 {
127 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
128 	int i;
129 
130 	for_each_set_bit(i, &val, len * 8) {
131 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
132 
133 		spin_lock(&irq->irq_lock);
134 		irq->pending = true;
135 		if (irq->config == VGIC_CONFIG_LEVEL)
136 			irq->soft_pending = true;
137 
138 		vgic_queue_irq_unlock(vcpu->kvm, irq);
139 		vgic_put_irq(vcpu->kvm, irq);
140 	}
141 }
142 
vgic_mmio_write_cpending(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)143 void vgic_mmio_write_cpending(struct kvm_vcpu *vcpu,
144 			      gpa_t addr, unsigned int len,
145 			      unsigned long val)
146 {
147 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
148 	int i;
149 
150 	for_each_set_bit(i, &val, len * 8) {
151 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
152 
153 		spin_lock(&irq->irq_lock);
154 
155 		if (irq->config == VGIC_CONFIG_LEVEL) {
156 			irq->soft_pending = false;
157 			irq->pending = irq->line_level;
158 		} else {
159 			irq->pending = false;
160 		}
161 
162 		spin_unlock(&irq->irq_lock);
163 		vgic_put_irq(vcpu->kvm, irq);
164 	}
165 }
166 
vgic_mmio_read_active(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)167 unsigned long vgic_mmio_read_active(struct kvm_vcpu *vcpu,
168 				    gpa_t addr, unsigned int len)
169 {
170 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
171 	u32 value = 0;
172 	int i;
173 
174 	/* Loop over all IRQs affected by this read */
175 	for (i = 0; i < len * 8; i++) {
176 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
177 
178 		if (irq->active)
179 			value |= (1U << i);
180 
181 		vgic_put_irq(vcpu->kvm, irq);
182 	}
183 
184 	return value;
185 }
186 
vgic_mmio_change_active(struct kvm_vcpu * vcpu,struct vgic_irq * irq,bool new_active_state)187 static void vgic_mmio_change_active(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
188 				    bool new_active_state)
189 {
190 	struct kvm_vcpu *requester_vcpu;
191 	spin_lock(&irq->irq_lock);
192 
193 	/*
194 	 * The vcpu parameter here can mean multiple things depending on how
195 	 * this function is called; when handling a trap from the kernel it
196 	 * depends on the GIC version, and these functions are also called as
197 	 * part of save/restore from userspace.
198 	 *
199 	 * Therefore, we have to figure out the requester in a reliable way.
200 	 *
201 	 * When accessing VGIC state from user space, the requester_vcpu is
202 	 * NULL, which is fine, because we guarantee that no VCPUs are running
203 	 * when accessing VGIC state from user space so irq->vcpu->cpu is
204 	 * always -1.
205 	 */
206 	requester_vcpu = kvm_arm_get_running_vcpu();
207 
208 	/*
209 	 * If this virtual IRQ was written into a list register, we
210 	 * have to make sure the CPU that runs the VCPU thread has
211 	 * synced back the LR state to the struct vgic_irq.
212 	 *
213 	 * As long as the conditions below are true, we know the VCPU thread
214 	 * may be on its way back from the guest (we kicked the VCPU thread in
215 	 * vgic_change_active_prepare)  and still has to sync back this IRQ,
216 	 * so we release and re-acquire the spin_lock to let the other thread
217 	 * sync back the IRQ.
218 	 */
219 	while (irq->vcpu && /* IRQ may have state in an LR somewhere */
220 	       irq->vcpu != requester_vcpu && /* Current thread is not the VCPU thread */
221 	       irq->vcpu->cpu != -1) /* VCPU thread is running */
222 		cond_resched_lock(&irq->irq_lock);
223 
224 	irq->active = new_active_state;
225 	if (new_active_state)
226 		vgic_queue_irq_unlock(vcpu->kvm, irq);
227 	else
228 		spin_unlock(&irq->irq_lock);
229 }
230 
231 /*
232  * If we are fiddling with an IRQ's active state, we have to make sure the IRQ
233  * is not queued on some running VCPU's LRs, because then the change to the
234  * active state can be overwritten when the VCPU's state is synced coming back
235  * from the guest.
236  *
237  * For shared interrupts, we have to stop all the VCPUs because interrupts can
238  * be migrated while we don't hold the IRQ locks and we don't want to be
239  * chasing moving targets.
240  *
241  * For private interrupts, we only have to make sure the single and only VCPU
242  * that can potentially queue the IRQ is stopped.
243  */
vgic_change_active_prepare(struct kvm_vcpu * vcpu,u32 intid)244 static void vgic_change_active_prepare(struct kvm_vcpu *vcpu, u32 intid)
245 {
246 	if (intid < VGIC_NR_PRIVATE_IRQS)
247 		kvm_arm_halt_vcpu(vcpu);
248 	else
249 		kvm_arm_halt_guest(vcpu->kvm);
250 }
251 
252 /* See vgic_change_active_prepare */
vgic_change_active_finish(struct kvm_vcpu * vcpu,u32 intid)253 static void vgic_change_active_finish(struct kvm_vcpu *vcpu, u32 intid)
254 {
255 	if (intid < VGIC_NR_PRIVATE_IRQS)
256 		kvm_arm_resume_vcpu(vcpu);
257 	else
258 		kvm_arm_resume_guest(vcpu->kvm);
259 }
260 
vgic_mmio_write_cactive(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)261 void vgic_mmio_write_cactive(struct kvm_vcpu *vcpu,
262 			     gpa_t addr, unsigned int len,
263 			     unsigned long val)
264 {
265 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
266 	int i;
267 
268 	vgic_change_active_prepare(vcpu, intid);
269 	for_each_set_bit(i, &val, len * 8) {
270 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
271 		vgic_mmio_change_active(vcpu, irq, false);
272 		vgic_put_irq(vcpu->kvm, irq);
273 	}
274 	vgic_change_active_finish(vcpu, intid);
275 }
276 
vgic_mmio_write_sactive(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)277 void vgic_mmio_write_sactive(struct kvm_vcpu *vcpu,
278 			     gpa_t addr, unsigned int len,
279 			     unsigned long val)
280 {
281 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
282 	int i;
283 
284 	vgic_change_active_prepare(vcpu, intid);
285 	for_each_set_bit(i, &val, len * 8) {
286 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
287 		vgic_mmio_change_active(vcpu, irq, true);
288 		vgic_put_irq(vcpu->kvm, irq);
289 	}
290 	vgic_change_active_finish(vcpu, intid);
291 }
292 
vgic_mmio_read_priority(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)293 unsigned long vgic_mmio_read_priority(struct kvm_vcpu *vcpu,
294 				      gpa_t addr, unsigned int len)
295 {
296 	u32 intid = VGIC_ADDR_TO_INTID(addr, 8);
297 	int i;
298 	u64 val = 0;
299 
300 	for (i = 0; i < len; i++) {
301 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
302 
303 		val |= (u64)irq->priority << (i * 8);
304 
305 		vgic_put_irq(vcpu->kvm, irq);
306 	}
307 
308 	return val;
309 }
310 
311 /*
312  * We currently don't handle changing the priority of an interrupt that
313  * is already pending on a VCPU. If there is a need for this, we would
314  * need to make this VCPU exit and re-evaluate the priorities, potentially
315  * leading to this interrupt getting presented now to the guest (if it has
316  * been masked by the priority mask before).
317  */
vgic_mmio_write_priority(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)318 void vgic_mmio_write_priority(struct kvm_vcpu *vcpu,
319 			      gpa_t addr, unsigned int len,
320 			      unsigned long val)
321 {
322 	u32 intid = VGIC_ADDR_TO_INTID(addr, 8);
323 	int i;
324 
325 	for (i = 0; i < len; i++) {
326 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
327 
328 		spin_lock(&irq->irq_lock);
329 		/* Narrow the priority range to what we actually support */
330 		irq->priority = (val >> (i * 8)) & GENMASK(7, 8 - VGIC_PRI_BITS);
331 		spin_unlock(&irq->irq_lock);
332 
333 		vgic_put_irq(vcpu->kvm, irq);
334 	}
335 }
336 
vgic_mmio_read_config(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)337 unsigned long vgic_mmio_read_config(struct kvm_vcpu *vcpu,
338 				    gpa_t addr, unsigned int len)
339 {
340 	u32 intid = VGIC_ADDR_TO_INTID(addr, 2);
341 	u32 value = 0;
342 	int i;
343 
344 	for (i = 0; i < len * 4; i++) {
345 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
346 
347 		if (irq->config == VGIC_CONFIG_EDGE)
348 			value |= (2U << (i * 2));
349 
350 		vgic_put_irq(vcpu->kvm, irq);
351 	}
352 
353 	return value;
354 }
355 
vgic_mmio_write_config(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)356 void vgic_mmio_write_config(struct kvm_vcpu *vcpu,
357 			    gpa_t addr, unsigned int len,
358 			    unsigned long val)
359 {
360 	u32 intid = VGIC_ADDR_TO_INTID(addr, 2);
361 	int i;
362 
363 	for (i = 0; i < len * 4; i++) {
364 		struct vgic_irq *irq;
365 
366 		/*
367 		 * The configuration cannot be changed for SGIs in general,
368 		 * for PPIs this is IMPLEMENTATION DEFINED. The arch timer
369 		 * code relies on PPIs being level triggered, so we also
370 		 * make them read-only here.
371 		 */
372 		if (intid + i < VGIC_NR_PRIVATE_IRQS)
373 			continue;
374 
375 		irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
376 		spin_lock(&irq->irq_lock);
377 
378 		if (test_bit(i * 2 + 1, &val)) {
379 			irq->config = VGIC_CONFIG_EDGE;
380 		} else {
381 			irq->config = VGIC_CONFIG_LEVEL;
382 			irq->pending = irq->line_level | irq->soft_pending;
383 		}
384 
385 		spin_unlock(&irq->irq_lock);
386 		vgic_put_irq(vcpu->kvm, irq);
387 	}
388 }
389 
match_region(const void * key,const void * elt)390 static int match_region(const void *key, const void *elt)
391 {
392 	const unsigned int offset = (unsigned long)key;
393 	const struct vgic_register_region *region = elt;
394 
395 	if (offset < region->reg_offset)
396 		return -1;
397 
398 	if (offset >= region->reg_offset + region->len)
399 		return 1;
400 
401 	return 0;
402 }
403 
404 /* Find the proper register handler entry given a certain address offset. */
405 static const struct vgic_register_region *
vgic_find_mmio_region(const struct vgic_register_region * region,int nr_regions,unsigned int offset)406 vgic_find_mmio_region(const struct vgic_register_region *region, int nr_regions,
407 		      unsigned int offset)
408 {
409 	return bsearch((void *)(uintptr_t)offset, region, nr_regions,
410 		       sizeof(region[0]), match_region);
411 }
412 
413 /*
414  * kvm_mmio_read_buf() returns a value in a format where it can be converted
415  * to a byte array and be directly observed as the guest wanted it to appear
416  * in memory if it had done the store itself, which is LE for the GIC, as the
417  * guest knows the GIC is always LE.
418  *
419  * We convert this value to the CPUs native format to deal with it as a data
420  * value.
421  */
vgic_data_mmio_bus_to_host(const void * val,unsigned int len)422 unsigned long vgic_data_mmio_bus_to_host(const void *val, unsigned int len)
423 {
424 	unsigned long data = kvm_mmio_read_buf(val, len);
425 
426 	switch (len) {
427 	case 1:
428 		return data;
429 	case 2:
430 		return le16_to_cpu(data);
431 	case 4:
432 		return le32_to_cpu(data);
433 	default:
434 		return le64_to_cpu(data);
435 	}
436 }
437 
438 /*
439  * kvm_mmio_write_buf() expects a value in a format such that if converted to
440  * a byte array it is observed as the guest would see it if it could perform
441  * the load directly.  Since the GIC is LE, and the guest knows this, the
442  * guest expects a value in little endian format.
443  *
444  * We convert the data value from the CPUs native format to LE so that the
445  * value is returned in the proper format.
446  */
vgic_data_host_to_mmio_bus(void * buf,unsigned int len,unsigned long data)447 void vgic_data_host_to_mmio_bus(void *buf, unsigned int len,
448 				unsigned long data)
449 {
450 	switch (len) {
451 	case 1:
452 		break;
453 	case 2:
454 		data = cpu_to_le16(data);
455 		break;
456 	case 4:
457 		data = cpu_to_le32(data);
458 		break;
459 	default:
460 		data = cpu_to_le64(data);
461 	}
462 
463 	kvm_mmio_write_buf(buf, len, data);
464 }
465 
466 static
kvm_to_vgic_iodev(const struct kvm_io_device * dev)467 struct vgic_io_device *kvm_to_vgic_iodev(const struct kvm_io_device *dev)
468 {
469 	return container_of(dev, struct vgic_io_device, dev);
470 }
471 
check_region(const struct kvm * kvm,const struct vgic_register_region * region,gpa_t addr,int len)472 static bool check_region(const struct kvm *kvm,
473 			 const struct vgic_register_region *region,
474 			 gpa_t addr, int len)
475 {
476 	int flags, nr_irqs = kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
477 
478 	switch (len) {
479 	case sizeof(u8):
480 		flags = VGIC_ACCESS_8bit;
481 		break;
482 	case sizeof(u32):
483 		flags = VGIC_ACCESS_32bit;
484 		break;
485 	case sizeof(u64):
486 		flags = VGIC_ACCESS_64bit;
487 		break;
488 	default:
489 		return false;
490 	}
491 
492 	if ((region->access_flags & flags) && IS_ALIGNED(addr, len)) {
493 		if (!region->bits_per_irq)
494 			return true;
495 
496 		/* Do we access a non-allocated IRQ? */
497 		return VGIC_ADDR_TO_INTID(addr, region->bits_per_irq) < nr_irqs;
498 	}
499 
500 	return false;
501 }
502 
dispatch_mmio_read(struct kvm_vcpu * vcpu,struct kvm_io_device * dev,gpa_t addr,int len,void * val)503 static int dispatch_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
504 			      gpa_t addr, int len, void *val)
505 {
506 	struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev);
507 	const struct vgic_register_region *region;
508 	unsigned long data = 0;
509 
510 	region = vgic_find_mmio_region(iodev->regions, iodev->nr_regions,
511 				       addr - iodev->base_addr);
512 	if (!region || !check_region(vcpu->kvm, region, addr, len)) {
513 		memset(val, 0, len);
514 		return 0;
515 	}
516 
517 	switch (iodev->iodev_type) {
518 	case IODEV_CPUIF:
519 		data = region->read(vcpu, addr, len);
520 		break;
521 	case IODEV_DIST:
522 		data = region->read(vcpu, addr, len);
523 		break;
524 	case IODEV_REDIST:
525 		data = region->read(iodev->redist_vcpu, addr, len);
526 		break;
527 	case IODEV_ITS:
528 		data = region->its_read(vcpu->kvm, iodev->its, addr, len);
529 		break;
530 	}
531 
532 	vgic_data_host_to_mmio_bus(val, len, data);
533 	return 0;
534 }
535 
dispatch_mmio_write(struct kvm_vcpu * vcpu,struct kvm_io_device * dev,gpa_t addr,int len,const void * val)536 static int dispatch_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
537 			       gpa_t addr, int len, const void *val)
538 {
539 	struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev);
540 	const struct vgic_register_region *region;
541 	unsigned long data = vgic_data_mmio_bus_to_host(val, len);
542 
543 	region = vgic_find_mmio_region(iodev->regions, iodev->nr_regions,
544 				       addr - iodev->base_addr);
545 	if (!region || !check_region(vcpu->kvm, region, addr, len))
546 		return 0;
547 
548 	switch (iodev->iodev_type) {
549 	case IODEV_CPUIF:
550 		region->write(vcpu, addr, len, data);
551 		break;
552 	case IODEV_DIST:
553 		region->write(vcpu, addr, len, data);
554 		break;
555 	case IODEV_REDIST:
556 		region->write(iodev->redist_vcpu, addr, len, data);
557 		break;
558 	case IODEV_ITS:
559 		region->its_write(vcpu->kvm, iodev->its, addr, len, data);
560 		break;
561 	}
562 
563 	return 0;
564 }
565 
566 struct kvm_io_device_ops kvm_io_gic_ops = {
567 	.read = dispatch_mmio_read,
568 	.write = dispatch_mmio_write,
569 };
570 
vgic_register_dist_iodev(struct kvm * kvm,gpa_t dist_base_address,enum vgic_type type)571 int vgic_register_dist_iodev(struct kvm *kvm, gpa_t dist_base_address,
572 			     enum vgic_type type)
573 {
574 	struct vgic_io_device *io_device = &kvm->arch.vgic.dist_iodev;
575 	int ret = 0;
576 	unsigned int len;
577 
578 	switch (type) {
579 	case VGIC_V2:
580 		len = vgic_v2_init_dist_iodev(io_device);
581 		break;
582 	case VGIC_V3:
583 		len = vgic_v3_init_dist_iodev(io_device);
584 		break;
585 	default:
586 		BUG_ON(1);
587 	}
588 
589 	io_device->base_addr = dist_base_address;
590 	io_device->iodev_type = IODEV_DIST;
591 	io_device->redist_vcpu = NULL;
592 
593 	mutex_lock(&kvm->slots_lock);
594 	ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, dist_base_address,
595 				      len, &io_device->dev);
596 	mutex_unlock(&kvm->slots_lock);
597 
598 	return ret;
599 }
600