1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
58
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65
66 /* Worst case buffer size needed for holding an integer. */
67 #define ITOA_MAX_LEN 12
68
69 MODULE_AUTHOR("Qumranet");
70 MODULE_LICENSE("GPL");
71
72 /* Architectures should define their poll value according to the halt latency */
73 static unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
74 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
75
76 /* Default doubles per-vcpu halt_poll_ns. */
77 static unsigned int halt_poll_ns_grow = 2;
78 module_param(halt_poll_ns_grow, uint, S_IRUGO | S_IWUSR);
79
80 /* Default resets per-vcpu halt_poll_ns . */
81 static unsigned int halt_poll_ns_shrink;
82 module_param(halt_poll_ns_shrink, uint, S_IRUGO | S_IWUSR);
83
84 /*
85 * Ordering of locks:
86 *
87 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
88 */
89
90 DEFINE_SPINLOCK(kvm_lock);
91 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
92 LIST_HEAD(vm_list);
93
94 static cpumask_var_t cpus_hardware_enabled;
95 static int kvm_usage_count;
96 static atomic_t hardware_enable_failed;
97
98 struct kmem_cache *kvm_vcpu_cache;
99 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
100
101 static __read_mostly struct preempt_ops kvm_preempt_ops;
102
103 struct dentry *kvm_debugfs_dir;
104 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
105
106 static int kvm_debugfs_num_entries;
107 static const struct file_operations *stat_fops_per_vm[];
108
109 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
110 unsigned long arg);
111 #ifdef CONFIG_KVM_COMPAT
112 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
113 unsigned long arg);
114 #endif
115 static int hardware_enable_all(void);
116 static void hardware_disable_all(void);
117
118 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
119
120 static void kvm_release_pfn_dirty(kvm_pfn_t pfn);
121 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
122
123 __visible bool kvm_rebooting;
124 EXPORT_SYMBOL_GPL(kvm_rebooting);
125
126 static bool largepages_enabled = true;
127
kvm_arch_mmu_notifier_invalidate_range(struct kvm * kvm,unsigned long start,unsigned long end)128 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
129 unsigned long start, unsigned long end)
130 {
131 }
132
kvm_is_reserved_pfn(kvm_pfn_t pfn)133 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
134 {
135 if (pfn_valid(pfn))
136 return PageReserved(pfn_to_page(pfn));
137
138 return true;
139 }
140
141 /*
142 * Switches to specified vcpu, until a matching vcpu_put()
143 */
vcpu_load(struct kvm_vcpu * vcpu)144 int vcpu_load(struct kvm_vcpu *vcpu)
145 {
146 int cpu;
147
148 if (mutex_lock_killable(&vcpu->mutex))
149 return -EINTR;
150 cpu = get_cpu();
151 preempt_notifier_register(&vcpu->preempt_notifier);
152 kvm_arch_vcpu_load(vcpu, cpu);
153 put_cpu();
154 return 0;
155 }
156 EXPORT_SYMBOL_GPL(vcpu_load);
157
vcpu_put(struct kvm_vcpu * vcpu)158 void vcpu_put(struct kvm_vcpu *vcpu)
159 {
160 preempt_disable();
161 kvm_arch_vcpu_put(vcpu);
162 preempt_notifier_unregister(&vcpu->preempt_notifier);
163 preempt_enable();
164 mutex_unlock(&vcpu->mutex);
165 }
166 EXPORT_SYMBOL_GPL(vcpu_put);
167
ack_flush(void * _completed)168 static void ack_flush(void *_completed)
169 {
170 }
171
kvm_make_all_cpus_request(struct kvm * kvm,unsigned int req)172 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
173 {
174 int i, cpu, me;
175 cpumask_var_t cpus;
176 bool called = true;
177 struct kvm_vcpu *vcpu;
178
179 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
180
181 me = get_cpu();
182 kvm_for_each_vcpu(i, vcpu, kvm) {
183 kvm_make_request(req, vcpu);
184 cpu = vcpu->cpu;
185
186 /* Set ->requests bit before we read ->mode. */
187 smp_mb__after_atomic();
188
189 if (cpus != NULL && cpu != -1 && cpu != me &&
190 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
191 cpumask_set_cpu(cpu, cpus);
192 }
193 if (unlikely(cpus == NULL))
194 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
195 else if (!cpumask_empty(cpus))
196 smp_call_function_many(cpus, ack_flush, NULL, 1);
197 else
198 called = false;
199 put_cpu();
200 free_cpumask_var(cpus);
201 return called;
202 }
203
204 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
kvm_flush_remote_tlbs(struct kvm * kvm)205 void kvm_flush_remote_tlbs(struct kvm *kvm)
206 {
207 /*
208 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
209 * kvm_make_all_cpus_request.
210 */
211 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
212
213 /*
214 * We want to publish modifications to the page tables before reading
215 * mode. Pairs with a memory barrier in arch-specific code.
216 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
217 * and smp_mb in walk_shadow_page_lockless_begin/end.
218 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
219 *
220 * There is already an smp_mb__after_atomic() before
221 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
222 * barrier here.
223 */
224 if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
225 ++kvm->stat.remote_tlb_flush;
226 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
227 }
228 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
229 #endif
230
kvm_reload_remote_mmus(struct kvm * kvm)231 void kvm_reload_remote_mmus(struct kvm *kvm)
232 {
233 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
234 }
235
kvm_vcpu_init(struct kvm_vcpu * vcpu,struct kvm * kvm,unsigned id)236 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
237 {
238 struct page *page;
239 int r;
240
241 mutex_init(&vcpu->mutex);
242 vcpu->cpu = -1;
243 vcpu->kvm = kvm;
244 vcpu->vcpu_id = id;
245 vcpu->pid = NULL;
246 init_swait_queue_head(&vcpu->wq);
247 kvm_async_pf_vcpu_init(vcpu);
248
249 vcpu->pre_pcpu = -1;
250 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
251
252 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
253 if (!page) {
254 r = -ENOMEM;
255 goto fail;
256 }
257 vcpu->run = page_address(page);
258
259 kvm_vcpu_set_in_spin_loop(vcpu, false);
260 kvm_vcpu_set_dy_eligible(vcpu, false);
261 vcpu->preempted = false;
262
263 r = kvm_arch_vcpu_init(vcpu);
264 if (r < 0)
265 goto fail_free_run;
266 return 0;
267
268 fail_free_run:
269 free_page((unsigned long)vcpu->run);
270 fail:
271 return r;
272 }
273 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
274
kvm_vcpu_uninit(struct kvm_vcpu * vcpu)275 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
276 {
277 put_pid(vcpu->pid);
278 kvm_arch_vcpu_uninit(vcpu);
279 free_page((unsigned long)vcpu->run);
280 }
281 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
282
283 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
mmu_notifier_to_kvm(struct mmu_notifier * mn)284 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
285 {
286 return container_of(mn, struct kvm, mmu_notifier);
287 }
288
kvm_mmu_notifier_invalidate_page(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long address)289 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
290 struct mm_struct *mm,
291 unsigned long address)
292 {
293 struct kvm *kvm = mmu_notifier_to_kvm(mn);
294 int need_tlb_flush, idx;
295
296 /*
297 * When ->invalidate_page runs, the linux pte has been zapped
298 * already but the page is still allocated until
299 * ->invalidate_page returns. So if we increase the sequence
300 * here the kvm page fault will notice if the spte can't be
301 * established because the page is going to be freed. If
302 * instead the kvm page fault establishes the spte before
303 * ->invalidate_page runs, kvm_unmap_hva will release it
304 * before returning.
305 *
306 * The sequence increase only need to be seen at spin_unlock
307 * time, and not at spin_lock time.
308 *
309 * Increasing the sequence after the spin_unlock would be
310 * unsafe because the kvm page fault could then establish the
311 * pte after kvm_unmap_hva returned, without noticing the page
312 * is going to be freed.
313 */
314 idx = srcu_read_lock(&kvm->srcu);
315 spin_lock(&kvm->mmu_lock);
316
317 kvm->mmu_notifier_seq++;
318 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
319 /* we've to flush the tlb before the pages can be freed */
320 if (need_tlb_flush)
321 kvm_flush_remote_tlbs(kvm);
322
323 spin_unlock(&kvm->mmu_lock);
324
325 kvm_arch_mmu_notifier_invalidate_page(kvm, address);
326
327 srcu_read_unlock(&kvm->srcu, idx);
328 }
329
kvm_mmu_notifier_change_pte(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long address,pte_t pte)330 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
331 struct mm_struct *mm,
332 unsigned long address,
333 pte_t pte)
334 {
335 struct kvm *kvm = mmu_notifier_to_kvm(mn);
336 int idx;
337
338 idx = srcu_read_lock(&kvm->srcu);
339 spin_lock(&kvm->mmu_lock);
340 kvm->mmu_notifier_seq++;
341 kvm_set_spte_hva(kvm, address, pte);
342 spin_unlock(&kvm->mmu_lock);
343 srcu_read_unlock(&kvm->srcu, idx);
344 }
345
kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)346 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
347 struct mm_struct *mm,
348 unsigned long start,
349 unsigned long end)
350 {
351 struct kvm *kvm = mmu_notifier_to_kvm(mn);
352 int need_tlb_flush = 0, idx;
353
354 idx = srcu_read_lock(&kvm->srcu);
355 spin_lock(&kvm->mmu_lock);
356 /*
357 * The count increase must become visible at unlock time as no
358 * spte can be established without taking the mmu_lock and
359 * count is also read inside the mmu_lock critical section.
360 */
361 kvm->mmu_notifier_count++;
362 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
363 need_tlb_flush |= kvm->tlbs_dirty;
364 /* we've to flush the tlb before the pages can be freed */
365 if (need_tlb_flush)
366 kvm_flush_remote_tlbs(kvm);
367
368 spin_unlock(&kvm->mmu_lock);
369
370 kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
371
372 srcu_read_unlock(&kvm->srcu, idx);
373 }
374
kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)375 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
376 struct mm_struct *mm,
377 unsigned long start,
378 unsigned long end)
379 {
380 struct kvm *kvm = mmu_notifier_to_kvm(mn);
381
382 spin_lock(&kvm->mmu_lock);
383 /*
384 * This sequence increase will notify the kvm page fault that
385 * the page that is going to be mapped in the spte could have
386 * been freed.
387 */
388 kvm->mmu_notifier_seq++;
389 smp_wmb();
390 /*
391 * The above sequence increase must be visible before the
392 * below count decrease, which is ensured by the smp_wmb above
393 * in conjunction with the smp_rmb in mmu_notifier_retry().
394 */
395 kvm->mmu_notifier_count--;
396 spin_unlock(&kvm->mmu_lock);
397
398 BUG_ON(kvm->mmu_notifier_count < 0);
399 }
400
kvm_mmu_notifier_clear_flush_young(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)401 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
402 struct mm_struct *mm,
403 unsigned long start,
404 unsigned long end)
405 {
406 struct kvm *kvm = mmu_notifier_to_kvm(mn);
407 int young, idx;
408
409 idx = srcu_read_lock(&kvm->srcu);
410 spin_lock(&kvm->mmu_lock);
411
412 young = kvm_age_hva(kvm, start, end);
413 if (young)
414 kvm_flush_remote_tlbs(kvm);
415
416 spin_unlock(&kvm->mmu_lock);
417 srcu_read_unlock(&kvm->srcu, idx);
418
419 return young;
420 }
421
kvm_mmu_notifier_clear_young(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)422 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
423 struct mm_struct *mm,
424 unsigned long start,
425 unsigned long end)
426 {
427 struct kvm *kvm = mmu_notifier_to_kvm(mn);
428 int young, idx;
429
430 idx = srcu_read_lock(&kvm->srcu);
431 spin_lock(&kvm->mmu_lock);
432 /*
433 * Even though we do not flush TLB, this will still adversely
434 * affect performance on pre-Haswell Intel EPT, where there is
435 * no EPT Access Bit to clear so that we have to tear down EPT
436 * tables instead. If we find this unacceptable, we can always
437 * add a parameter to kvm_age_hva so that it effectively doesn't
438 * do anything on clear_young.
439 *
440 * Also note that currently we never issue secondary TLB flushes
441 * from clear_young, leaving this job up to the regular system
442 * cadence. If we find this inaccurate, we might come up with a
443 * more sophisticated heuristic later.
444 */
445 young = kvm_age_hva(kvm, start, end);
446 spin_unlock(&kvm->mmu_lock);
447 srcu_read_unlock(&kvm->srcu, idx);
448
449 return young;
450 }
451
kvm_mmu_notifier_test_young(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long address)452 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
453 struct mm_struct *mm,
454 unsigned long address)
455 {
456 struct kvm *kvm = mmu_notifier_to_kvm(mn);
457 int young, idx;
458
459 idx = srcu_read_lock(&kvm->srcu);
460 spin_lock(&kvm->mmu_lock);
461 young = kvm_test_age_hva(kvm, address);
462 spin_unlock(&kvm->mmu_lock);
463 srcu_read_unlock(&kvm->srcu, idx);
464
465 return young;
466 }
467
kvm_mmu_notifier_release(struct mmu_notifier * mn,struct mm_struct * mm)468 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
469 struct mm_struct *mm)
470 {
471 struct kvm *kvm = mmu_notifier_to_kvm(mn);
472 int idx;
473
474 idx = srcu_read_lock(&kvm->srcu);
475 kvm_arch_flush_shadow_all(kvm);
476 srcu_read_unlock(&kvm->srcu, idx);
477 }
478
479 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
480 .invalidate_page = kvm_mmu_notifier_invalidate_page,
481 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
482 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
483 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
484 .clear_young = kvm_mmu_notifier_clear_young,
485 .test_young = kvm_mmu_notifier_test_young,
486 .change_pte = kvm_mmu_notifier_change_pte,
487 .release = kvm_mmu_notifier_release,
488 };
489
kvm_init_mmu_notifier(struct kvm * kvm)490 static int kvm_init_mmu_notifier(struct kvm *kvm)
491 {
492 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
493 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
494 }
495
496 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
497
kvm_init_mmu_notifier(struct kvm * kvm)498 static int kvm_init_mmu_notifier(struct kvm *kvm)
499 {
500 return 0;
501 }
502
503 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
504
kvm_alloc_memslots(void)505 static struct kvm_memslots *kvm_alloc_memslots(void)
506 {
507 int i;
508 struct kvm_memslots *slots;
509
510 slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
511 if (!slots)
512 return NULL;
513
514 /*
515 * Init kvm generation close to the maximum to easily test the
516 * code of handling generation number wrap-around.
517 */
518 slots->generation = -150;
519 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
520 slots->id_to_index[i] = slots->memslots[i].id = i;
521
522 return slots;
523 }
524
kvm_destroy_dirty_bitmap(struct kvm_memory_slot * memslot)525 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
526 {
527 if (!memslot->dirty_bitmap)
528 return;
529
530 kvfree(memslot->dirty_bitmap);
531 memslot->dirty_bitmap = NULL;
532 }
533
534 /*
535 * Free any memory in @free but not in @dont.
536 */
kvm_free_memslot(struct kvm * kvm,struct kvm_memory_slot * free,struct kvm_memory_slot * dont)537 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
538 struct kvm_memory_slot *dont)
539 {
540 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
541 kvm_destroy_dirty_bitmap(free);
542
543 kvm_arch_free_memslot(kvm, free, dont);
544
545 free->npages = 0;
546 }
547
kvm_free_memslots(struct kvm * kvm,struct kvm_memslots * slots)548 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
549 {
550 struct kvm_memory_slot *memslot;
551
552 if (!slots)
553 return;
554
555 kvm_for_each_memslot(memslot, slots)
556 kvm_free_memslot(kvm, memslot, NULL);
557
558 kvfree(slots);
559 }
560
kvm_destroy_vm_debugfs(struct kvm * kvm)561 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
562 {
563 int i;
564
565 if (!kvm->debugfs_dentry)
566 return;
567
568 debugfs_remove_recursive(kvm->debugfs_dentry);
569
570 if (kvm->debugfs_stat_data) {
571 for (i = 0; i < kvm_debugfs_num_entries; i++)
572 kfree(kvm->debugfs_stat_data[i]);
573 kfree(kvm->debugfs_stat_data);
574 }
575 }
576
kvm_create_vm_debugfs(struct kvm * kvm,int fd)577 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
578 {
579 char dir_name[ITOA_MAX_LEN * 2];
580 struct kvm_stat_data *stat_data;
581 struct kvm_stats_debugfs_item *p;
582
583 if (!debugfs_initialized())
584 return 0;
585
586 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
587 kvm->debugfs_dentry = debugfs_create_dir(dir_name,
588 kvm_debugfs_dir);
589 if (!kvm->debugfs_dentry)
590 return -ENOMEM;
591
592 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
593 sizeof(*kvm->debugfs_stat_data),
594 GFP_KERNEL);
595 if (!kvm->debugfs_stat_data)
596 return -ENOMEM;
597
598 for (p = debugfs_entries; p->name; p++) {
599 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
600 if (!stat_data)
601 return -ENOMEM;
602
603 stat_data->kvm = kvm;
604 stat_data->offset = p->offset;
605 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
606 if (!debugfs_create_file(p->name, 0444,
607 kvm->debugfs_dentry,
608 stat_data,
609 stat_fops_per_vm[p->kind]))
610 return -ENOMEM;
611 }
612 return 0;
613 }
614
kvm_create_vm(unsigned long type)615 static struct kvm *kvm_create_vm(unsigned long type)
616 {
617 int r, i;
618 struct kvm *kvm = kvm_arch_alloc_vm();
619
620 if (!kvm)
621 return ERR_PTR(-ENOMEM);
622
623 spin_lock_init(&kvm->mmu_lock);
624 atomic_inc(¤t->mm->mm_count);
625 kvm->mm = current->mm;
626 kvm_eventfd_init(kvm);
627 mutex_init(&kvm->lock);
628 mutex_init(&kvm->irq_lock);
629 mutex_init(&kvm->slots_lock);
630 atomic_set(&kvm->users_count, 1);
631 INIT_LIST_HEAD(&kvm->devices);
632
633 r = kvm_arch_init_vm(kvm, type);
634 if (r)
635 goto out_err_no_disable;
636
637 r = hardware_enable_all();
638 if (r)
639 goto out_err_no_disable;
640
641 #ifdef CONFIG_HAVE_KVM_IRQFD
642 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
643 #endif
644
645 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
646
647 r = -ENOMEM;
648 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
649 kvm->memslots[i] = kvm_alloc_memslots();
650 if (!kvm->memslots[i])
651 goto out_err_no_srcu;
652 }
653
654 if (init_srcu_struct(&kvm->srcu))
655 goto out_err_no_srcu;
656 if (init_srcu_struct(&kvm->irq_srcu))
657 goto out_err_no_irq_srcu;
658 for (i = 0; i < KVM_NR_BUSES; i++) {
659 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
660 GFP_KERNEL);
661 if (!kvm->buses[i])
662 goto out_err;
663 }
664
665 r = kvm_init_mmu_notifier(kvm);
666 if (r)
667 goto out_err;
668
669 spin_lock(&kvm_lock);
670 list_add(&kvm->vm_list, &vm_list);
671 spin_unlock(&kvm_lock);
672
673 preempt_notifier_inc();
674
675 return kvm;
676
677 out_err:
678 cleanup_srcu_struct(&kvm->irq_srcu);
679 out_err_no_irq_srcu:
680 cleanup_srcu_struct(&kvm->srcu);
681 out_err_no_srcu:
682 hardware_disable_all();
683 out_err_no_disable:
684 for (i = 0; i < KVM_NR_BUSES; i++)
685 kfree(kvm->buses[i]);
686 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
687 kvm_free_memslots(kvm, kvm->memslots[i]);
688 kvm_arch_free_vm(kvm);
689 mmdrop(current->mm);
690 return ERR_PTR(r);
691 }
692
693 /*
694 * Avoid using vmalloc for a small buffer.
695 * Should not be used when the size is statically known.
696 */
kvm_kvzalloc(unsigned long size)697 void *kvm_kvzalloc(unsigned long size)
698 {
699 if (size > PAGE_SIZE)
700 return vzalloc(size);
701 else
702 return kzalloc(size, GFP_KERNEL);
703 }
704
kvm_destroy_devices(struct kvm * kvm)705 static void kvm_destroy_devices(struct kvm *kvm)
706 {
707 struct kvm_device *dev, *tmp;
708
709 /*
710 * We do not need to take the kvm->lock here, because nobody else
711 * has a reference to the struct kvm at this point and therefore
712 * cannot access the devices list anyhow.
713 */
714 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
715 list_del(&dev->vm_node);
716 dev->ops->destroy(dev);
717 }
718 }
719
kvm_destroy_vm(struct kvm * kvm)720 static void kvm_destroy_vm(struct kvm *kvm)
721 {
722 int i;
723 struct mm_struct *mm = kvm->mm;
724
725 kvm_destroy_vm_debugfs(kvm);
726 kvm_arch_sync_events(kvm);
727 spin_lock(&kvm_lock);
728 list_del(&kvm->vm_list);
729 spin_unlock(&kvm_lock);
730 kvm_free_irq_routing(kvm);
731 for (i = 0; i < KVM_NR_BUSES; i++) {
732 if (kvm->buses[i])
733 kvm_io_bus_destroy(kvm->buses[i]);
734 kvm->buses[i] = NULL;
735 }
736 kvm_coalesced_mmio_free(kvm);
737 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
738 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
739 #else
740 kvm_arch_flush_shadow_all(kvm);
741 #endif
742 kvm_arch_destroy_vm(kvm);
743 kvm_destroy_devices(kvm);
744 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
745 kvm_free_memslots(kvm, kvm->memslots[i]);
746 cleanup_srcu_struct(&kvm->irq_srcu);
747 cleanup_srcu_struct(&kvm->srcu);
748 kvm_arch_free_vm(kvm);
749 preempt_notifier_dec();
750 hardware_disable_all();
751 mmdrop(mm);
752 }
753
kvm_get_kvm(struct kvm * kvm)754 void kvm_get_kvm(struct kvm *kvm)
755 {
756 atomic_inc(&kvm->users_count);
757 }
758 EXPORT_SYMBOL_GPL(kvm_get_kvm);
759
kvm_put_kvm(struct kvm * kvm)760 void kvm_put_kvm(struct kvm *kvm)
761 {
762 if (atomic_dec_and_test(&kvm->users_count))
763 kvm_destroy_vm(kvm);
764 }
765 EXPORT_SYMBOL_GPL(kvm_put_kvm);
766
767
kvm_vm_release(struct inode * inode,struct file * filp)768 static int kvm_vm_release(struct inode *inode, struct file *filp)
769 {
770 struct kvm *kvm = filp->private_data;
771
772 kvm_irqfd_release(kvm);
773
774 kvm_put_kvm(kvm);
775 return 0;
776 }
777
778 /*
779 * Allocation size is twice as large as the actual dirty bitmap size.
780 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
781 */
kvm_create_dirty_bitmap(struct kvm_memory_slot * memslot)782 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
783 {
784 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
785
786 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
787 if (!memslot->dirty_bitmap)
788 return -ENOMEM;
789
790 return 0;
791 }
792
793 /*
794 * Insert memslot and re-sort memslots based on their GFN,
795 * so binary search could be used to lookup GFN.
796 * Sorting algorithm takes advantage of having initially
797 * sorted array and known changed memslot position.
798 */
update_memslots(struct kvm_memslots * slots,struct kvm_memory_slot * new)799 static void update_memslots(struct kvm_memslots *slots,
800 struct kvm_memory_slot *new)
801 {
802 int id = new->id;
803 int i = slots->id_to_index[id];
804 struct kvm_memory_slot *mslots = slots->memslots;
805
806 WARN_ON(mslots[i].id != id);
807 if (!new->npages) {
808 WARN_ON(!mslots[i].npages);
809 if (mslots[i].npages)
810 slots->used_slots--;
811 } else {
812 if (!mslots[i].npages)
813 slots->used_slots++;
814 }
815
816 while (i < KVM_MEM_SLOTS_NUM - 1 &&
817 new->base_gfn <= mslots[i + 1].base_gfn) {
818 if (!mslots[i + 1].npages)
819 break;
820 mslots[i] = mslots[i + 1];
821 slots->id_to_index[mslots[i].id] = i;
822 i++;
823 }
824
825 /*
826 * The ">=" is needed when creating a slot with base_gfn == 0,
827 * so that it moves before all those with base_gfn == npages == 0.
828 *
829 * On the other hand, if new->npages is zero, the above loop has
830 * already left i pointing to the beginning of the empty part of
831 * mslots, and the ">=" would move the hole backwards in this
832 * case---which is wrong. So skip the loop when deleting a slot.
833 */
834 if (new->npages) {
835 while (i > 0 &&
836 new->base_gfn >= mslots[i - 1].base_gfn) {
837 mslots[i] = mslots[i - 1];
838 slots->id_to_index[mslots[i].id] = i;
839 i--;
840 }
841 } else
842 WARN_ON_ONCE(i != slots->used_slots);
843
844 mslots[i] = *new;
845 slots->id_to_index[mslots[i].id] = i;
846 }
847
check_memory_region_flags(const struct kvm_userspace_memory_region * mem)848 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
849 {
850 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
851
852 #ifdef __KVM_HAVE_READONLY_MEM
853 valid_flags |= KVM_MEM_READONLY;
854 #endif
855
856 if (mem->flags & ~valid_flags)
857 return -EINVAL;
858
859 return 0;
860 }
861
install_new_memslots(struct kvm * kvm,int as_id,struct kvm_memslots * slots)862 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
863 int as_id, struct kvm_memslots *slots)
864 {
865 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
866
867 /*
868 * Set the low bit in the generation, which disables SPTE caching
869 * until the end of synchronize_srcu_expedited.
870 */
871 WARN_ON(old_memslots->generation & 1);
872 slots->generation = old_memslots->generation + 1;
873
874 rcu_assign_pointer(kvm->memslots[as_id], slots);
875 synchronize_srcu_expedited(&kvm->srcu);
876
877 /*
878 * Increment the new memslot generation a second time. This prevents
879 * vm exits that race with memslot updates from caching a memslot
880 * generation that will (potentially) be valid forever.
881 */
882 slots->generation++;
883
884 kvm_arch_memslots_updated(kvm, slots);
885
886 return old_memslots;
887 }
888
889 /*
890 * Allocate some memory and give it an address in the guest physical address
891 * space.
892 *
893 * Discontiguous memory is allowed, mostly for framebuffers.
894 *
895 * Must be called holding kvm->slots_lock for write.
896 */
__kvm_set_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region * mem)897 int __kvm_set_memory_region(struct kvm *kvm,
898 const struct kvm_userspace_memory_region *mem)
899 {
900 int r;
901 gfn_t base_gfn;
902 unsigned long npages;
903 struct kvm_memory_slot *slot;
904 struct kvm_memory_slot old, new;
905 struct kvm_memslots *slots = NULL, *old_memslots;
906 int as_id, id;
907 enum kvm_mr_change change;
908
909 r = check_memory_region_flags(mem);
910 if (r)
911 goto out;
912
913 r = -EINVAL;
914 as_id = mem->slot >> 16;
915 id = (u16)mem->slot;
916
917 /* General sanity checks */
918 if (mem->memory_size & (PAGE_SIZE - 1))
919 goto out;
920 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
921 goto out;
922 /* We can read the guest memory with __xxx_user() later on. */
923 if ((id < KVM_USER_MEM_SLOTS) &&
924 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
925 !access_ok(VERIFY_WRITE,
926 (void __user *)(unsigned long)mem->userspace_addr,
927 mem->memory_size)))
928 goto out;
929 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
930 goto out;
931 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
932 goto out;
933
934 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
935 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
936 npages = mem->memory_size >> PAGE_SHIFT;
937
938 if (npages > KVM_MEM_MAX_NR_PAGES)
939 goto out;
940
941 new = old = *slot;
942
943 new.id = id;
944 new.base_gfn = base_gfn;
945 new.npages = npages;
946 new.flags = mem->flags;
947
948 if (npages) {
949 if (!old.npages)
950 change = KVM_MR_CREATE;
951 else { /* Modify an existing slot. */
952 if ((mem->userspace_addr != old.userspace_addr) ||
953 (npages != old.npages) ||
954 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
955 goto out;
956
957 if (base_gfn != old.base_gfn)
958 change = KVM_MR_MOVE;
959 else if (new.flags != old.flags)
960 change = KVM_MR_FLAGS_ONLY;
961 else { /* Nothing to change. */
962 r = 0;
963 goto out;
964 }
965 }
966 } else {
967 if (!old.npages)
968 goto out;
969
970 change = KVM_MR_DELETE;
971 new.base_gfn = 0;
972 new.flags = 0;
973 }
974
975 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
976 /* Check for overlaps */
977 r = -EEXIST;
978 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
979 if (slot->id == id)
980 continue;
981 if (!((base_gfn + npages <= slot->base_gfn) ||
982 (base_gfn >= slot->base_gfn + slot->npages)))
983 goto out;
984 }
985 }
986
987 /* Free page dirty bitmap if unneeded */
988 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
989 new.dirty_bitmap = NULL;
990
991 r = -ENOMEM;
992 if (change == KVM_MR_CREATE) {
993 new.userspace_addr = mem->userspace_addr;
994
995 if (kvm_arch_create_memslot(kvm, &new, npages))
996 goto out_free;
997 }
998
999 /* Allocate page dirty bitmap if needed */
1000 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1001 if (kvm_create_dirty_bitmap(&new) < 0)
1002 goto out_free;
1003 }
1004
1005 slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
1006 if (!slots)
1007 goto out_free;
1008 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1009
1010 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1011 slot = id_to_memslot(slots, id);
1012 slot->flags |= KVM_MEMSLOT_INVALID;
1013
1014 old_memslots = install_new_memslots(kvm, as_id, slots);
1015
1016 /* slot was deleted or moved, clear iommu mapping */
1017 kvm_iommu_unmap_pages(kvm, &old);
1018 /* From this point no new shadow pages pointing to a deleted,
1019 * or moved, memslot will be created.
1020 *
1021 * validation of sp->gfn happens in:
1022 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1023 * - kvm_is_visible_gfn (mmu_check_roots)
1024 */
1025 kvm_arch_flush_shadow_memslot(kvm, slot);
1026
1027 /*
1028 * We can re-use the old_memslots from above, the only difference
1029 * from the currently installed memslots is the invalid flag. This
1030 * will get overwritten by update_memslots anyway.
1031 */
1032 slots = old_memslots;
1033 }
1034
1035 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1036 if (r)
1037 goto out_slots;
1038
1039 /* actual memory is freed via old in kvm_free_memslot below */
1040 if (change == KVM_MR_DELETE) {
1041 new.dirty_bitmap = NULL;
1042 memset(&new.arch, 0, sizeof(new.arch));
1043 }
1044
1045 update_memslots(slots, &new);
1046 old_memslots = install_new_memslots(kvm, as_id, slots);
1047
1048 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1049
1050 kvm_free_memslot(kvm, &old, &new);
1051 kvfree(old_memslots);
1052
1053 /*
1054 * IOMMU mapping: New slots need to be mapped. Old slots need to be
1055 * un-mapped and re-mapped if their base changes. Since base change
1056 * unmapping is handled above with slot deletion, mapping alone is
1057 * needed here. Anything else the iommu might care about for existing
1058 * slots (size changes, userspace addr changes and read-only flag
1059 * changes) is disallowed above, so any other attribute changes getting
1060 * here can be skipped.
1061 */
1062 if (as_id == 0 && (change == KVM_MR_CREATE || change == KVM_MR_MOVE)) {
1063 r = kvm_iommu_map_pages(kvm, &new);
1064 return r;
1065 }
1066
1067 return 0;
1068
1069 out_slots:
1070 kvfree(slots);
1071 out_free:
1072 kvm_free_memslot(kvm, &new, &old);
1073 out:
1074 return r;
1075 }
1076 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1077
kvm_set_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region * mem)1078 int kvm_set_memory_region(struct kvm *kvm,
1079 const struct kvm_userspace_memory_region *mem)
1080 {
1081 int r;
1082
1083 mutex_lock(&kvm->slots_lock);
1084 r = __kvm_set_memory_region(kvm, mem);
1085 mutex_unlock(&kvm->slots_lock);
1086 return r;
1087 }
1088 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1089
kvm_vm_ioctl_set_memory_region(struct kvm * kvm,struct kvm_userspace_memory_region * mem)1090 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1091 struct kvm_userspace_memory_region *mem)
1092 {
1093 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1094 return -EINVAL;
1095
1096 return kvm_set_memory_region(kvm, mem);
1097 }
1098
kvm_get_dirty_log(struct kvm * kvm,struct kvm_dirty_log * log,int * is_dirty)1099 int kvm_get_dirty_log(struct kvm *kvm,
1100 struct kvm_dirty_log *log, int *is_dirty)
1101 {
1102 struct kvm_memslots *slots;
1103 struct kvm_memory_slot *memslot;
1104 int r, i, as_id, id;
1105 unsigned long n;
1106 unsigned long any = 0;
1107
1108 r = -EINVAL;
1109 as_id = log->slot >> 16;
1110 id = (u16)log->slot;
1111 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1112 goto out;
1113
1114 slots = __kvm_memslots(kvm, as_id);
1115 memslot = id_to_memslot(slots, id);
1116 r = -ENOENT;
1117 if (!memslot->dirty_bitmap)
1118 goto out;
1119
1120 n = kvm_dirty_bitmap_bytes(memslot);
1121
1122 for (i = 0; !any && i < n/sizeof(long); ++i)
1123 any = memslot->dirty_bitmap[i];
1124
1125 r = -EFAULT;
1126 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1127 goto out;
1128
1129 if (any)
1130 *is_dirty = 1;
1131
1132 r = 0;
1133 out:
1134 return r;
1135 }
1136 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1137
1138 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1139 /**
1140 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1141 * are dirty write protect them for next write.
1142 * @kvm: pointer to kvm instance
1143 * @log: slot id and address to which we copy the log
1144 * @is_dirty: flag set if any page is dirty
1145 *
1146 * We need to keep it in mind that VCPU threads can write to the bitmap
1147 * concurrently. So, to avoid losing track of dirty pages we keep the
1148 * following order:
1149 *
1150 * 1. Take a snapshot of the bit and clear it if needed.
1151 * 2. Write protect the corresponding page.
1152 * 3. Copy the snapshot to the userspace.
1153 * 4. Upon return caller flushes TLB's if needed.
1154 *
1155 * Between 2 and 4, the guest may write to the page using the remaining TLB
1156 * entry. This is not a problem because the page is reported dirty using
1157 * the snapshot taken before and step 4 ensures that writes done after
1158 * exiting to userspace will be logged for the next call.
1159 *
1160 */
kvm_get_dirty_log_protect(struct kvm * kvm,struct kvm_dirty_log * log,bool * is_dirty)1161 int kvm_get_dirty_log_protect(struct kvm *kvm,
1162 struct kvm_dirty_log *log, bool *is_dirty)
1163 {
1164 struct kvm_memslots *slots;
1165 struct kvm_memory_slot *memslot;
1166 int r, i, as_id, id;
1167 unsigned long n;
1168 unsigned long *dirty_bitmap;
1169 unsigned long *dirty_bitmap_buffer;
1170
1171 r = -EINVAL;
1172 as_id = log->slot >> 16;
1173 id = (u16)log->slot;
1174 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1175 goto out;
1176
1177 slots = __kvm_memslots(kvm, as_id);
1178 memslot = id_to_memslot(slots, id);
1179
1180 dirty_bitmap = memslot->dirty_bitmap;
1181 r = -ENOENT;
1182 if (!dirty_bitmap)
1183 goto out;
1184
1185 n = kvm_dirty_bitmap_bytes(memslot);
1186
1187 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1188 memset(dirty_bitmap_buffer, 0, n);
1189
1190 spin_lock(&kvm->mmu_lock);
1191 *is_dirty = false;
1192 for (i = 0; i < n / sizeof(long); i++) {
1193 unsigned long mask;
1194 gfn_t offset;
1195
1196 if (!dirty_bitmap[i])
1197 continue;
1198
1199 *is_dirty = true;
1200
1201 mask = xchg(&dirty_bitmap[i], 0);
1202 dirty_bitmap_buffer[i] = mask;
1203
1204 if (mask) {
1205 offset = i * BITS_PER_LONG;
1206 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1207 offset, mask);
1208 }
1209 }
1210
1211 spin_unlock(&kvm->mmu_lock);
1212
1213 r = -EFAULT;
1214 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1215 goto out;
1216
1217 r = 0;
1218 out:
1219 return r;
1220 }
1221 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1222 #endif
1223
kvm_largepages_enabled(void)1224 bool kvm_largepages_enabled(void)
1225 {
1226 return largepages_enabled;
1227 }
1228
kvm_disable_largepages(void)1229 void kvm_disable_largepages(void)
1230 {
1231 largepages_enabled = false;
1232 }
1233 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1234
gfn_to_memslot(struct kvm * kvm,gfn_t gfn)1235 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1236 {
1237 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1238 }
1239 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1240
kvm_vcpu_gfn_to_memslot(struct kvm_vcpu * vcpu,gfn_t gfn)1241 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1242 {
1243 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1244 }
1245
kvm_is_visible_gfn(struct kvm * kvm,gfn_t gfn)1246 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1247 {
1248 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1249
1250 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1251 memslot->flags & KVM_MEMSLOT_INVALID)
1252 return false;
1253
1254 return true;
1255 }
1256 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1257
kvm_host_page_size(struct kvm * kvm,gfn_t gfn)1258 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1259 {
1260 struct vm_area_struct *vma;
1261 unsigned long addr, size;
1262
1263 size = PAGE_SIZE;
1264
1265 addr = gfn_to_hva(kvm, gfn);
1266 if (kvm_is_error_hva(addr))
1267 return PAGE_SIZE;
1268
1269 down_read(¤t->mm->mmap_sem);
1270 vma = find_vma(current->mm, addr);
1271 if (!vma)
1272 goto out;
1273
1274 size = vma_kernel_pagesize(vma);
1275
1276 out:
1277 up_read(¤t->mm->mmap_sem);
1278
1279 return size;
1280 }
1281
memslot_is_readonly(struct kvm_memory_slot * slot)1282 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1283 {
1284 return slot->flags & KVM_MEM_READONLY;
1285 }
1286
__gfn_to_hva_many(struct kvm_memory_slot * slot,gfn_t gfn,gfn_t * nr_pages,bool write)1287 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1288 gfn_t *nr_pages, bool write)
1289 {
1290 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1291 return KVM_HVA_ERR_BAD;
1292
1293 if (memslot_is_readonly(slot) && write)
1294 return KVM_HVA_ERR_RO_BAD;
1295
1296 if (nr_pages)
1297 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1298
1299 return __gfn_to_hva_memslot(slot, gfn);
1300 }
1301
gfn_to_hva_many(struct kvm_memory_slot * slot,gfn_t gfn,gfn_t * nr_pages)1302 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1303 gfn_t *nr_pages)
1304 {
1305 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1306 }
1307
gfn_to_hva_memslot(struct kvm_memory_slot * slot,gfn_t gfn)1308 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1309 gfn_t gfn)
1310 {
1311 return gfn_to_hva_many(slot, gfn, NULL);
1312 }
1313 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1314
gfn_to_hva(struct kvm * kvm,gfn_t gfn)1315 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1316 {
1317 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1318 }
1319 EXPORT_SYMBOL_GPL(gfn_to_hva);
1320
kvm_vcpu_gfn_to_hva(struct kvm_vcpu * vcpu,gfn_t gfn)1321 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1322 {
1323 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1324 }
1325 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1326
1327 /*
1328 * If writable is set to false, the hva returned by this function is only
1329 * allowed to be read.
1330 */
gfn_to_hva_memslot_prot(struct kvm_memory_slot * slot,gfn_t gfn,bool * writable)1331 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1332 gfn_t gfn, bool *writable)
1333 {
1334 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1335
1336 if (!kvm_is_error_hva(hva) && writable)
1337 *writable = !memslot_is_readonly(slot);
1338
1339 return hva;
1340 }
1341
gfn_to_hva_prot(struct kvm * kvm,gfn_t gfn,bool * writable)1342 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1343 {
1344 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1345
1346 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1347 }
1348
kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu * vcpu,gfn_t gfn,bool * writable)1349 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1350 {
1351 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1352
1353 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1354 }
1355
get_user_page_nowait(unsigned long start,int write,struct page ** page)1356 static int get_user_page_nowait(unsigned long start, int write,
1357 struct page **page)
1358 {
1359 int flags = FOLL_NOWAIT | FOLL_HWPOISON;
1360
1361 if (write)
1362 flags |= FOLL_WRITE;
1363
1364 return get_user_pages(start, 1, flags, page, NULL);
1365 }
1366
check_user_page_hwpoison(unsigned long addr)1367 static inline int check_user_page_hwpoison(unsigned long addr)
1368 {
1369 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1370
1371 rc = get_user_pages(addr, 1, flags, NULL, NULL);
1372 return rc == -EHWPOISON;
1373 }
1374
1375 /*
1376 * The atomic path to get the writable pfn which will be stored in @pfn,
1377 * true indicates success, otherwise false is returned.
1378 */
hva_to_pfn_fast(unsigned long addr,bool atomic,bool * async,bool write_fault,bool * writable,kvm_pfn_t * pfn)1379 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1380 bool write_fault, bool *writable, kvm_pfn_t *pfn)
1381 {
1382 struct page *page[1];
1383 int npages;
1384
1385 if (!(async || atomic))
1386 return false;
1387
1388 /*
1389 * Fast pin a writable pfn only if it is a write fault request
1390 * or the caller allows to map a writable pfn for a read fault
1391 * request.
1392 */
1393 if (!(write_fault || writable))
1394 return false;
1395
1396 npages = __get_user_pages_fast(addr, 1, 1, page);
1397 if (npages == 1) {
1398 *pfn = page_to_pfn(page[0]);
1399
1400 if (writable)
1401 *writable = true;
1402 return true;
1403 }
1404
1405 return false;
1406 }
1407
1408 /*
1409 * The slow path to get the pfn of the specified host virtual address,
1410 * 1 indicates success, -errno is returned if error is detected.
1411 */
hva_to_pfn_slow(unsigned long addr,bool * async,bool write_fault,bool * writable,kvm_pfn_t * pfn)1412 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1413 bool *writable, kvm_pfn_t *pfn)
1414 {
1415 struct page *page[1];
1416 int npages = 0;
1417
1418 might_sleep();
1419
1420 if (writable)
1421 *writable = write_fault;
1422
1423 if (async) {
1424 down_read(¤t->mm->mmap_sem);
1425 npages = get_user_page_nowait(addr, write_fault, page);
1426 up_read(¤t->mm->mmap_sem);
1427 } else {
1428 unsigned int flags = FOLL_TOUCH | FOLL_HWPOISON;
1429
1430 if (write_fault)
1431 flags |= FOLL_WRITE;
1432
1433 npages = __get_user_pages_unlocked(current, current->mm, addr, 1,
1434 page, flags);
1435 }
1436 if (npages != 1)
1437 return npages;
1438
1439 /* map read fault as writable if possible */
1440 if (unlikely(!write_fault) && writable) {
1441 struct page *wpage[1];
1442
1443 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1444 if (npages == 1) {
1445 *writable = true;
1446 put_page(page[0]);
1447 page[0] = wpage[0];
1448 }
1449
1450 npages = 1;
1451 }
1452 *pfn = page_to_pfn(page[0]);
1453 return npages;
1454 }
1455
vma_is_valid(struct vm_area_struct * vma,bool write_fault)1456 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1457 {
1458 if (unlikely(!(vma->vm_flags & VM_READ)))
1459 return false;
1460
1461 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1462 return false;
1463
1464 return true;
1465 }
1466
hva_to_pfn_remapped(struct vm_area_struct * vma,unsigned long addr,bool * async,bool write_fault,kvm_pfn_t * p_pfn)1467 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1468 unsigned long addr, bool *async,
1469 bool write_fault, kvm_pfn_t *p_pfn)
1470 {
1471 unsigned long pfn;
1472 int r;
1473
1474 r = follow_pfn(vma, addr, &pfn);
1475 if (r) {
1476 /*
1477 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1478 * not call the fault handler, so do it here.
1479 */
1480 bool unlocked = false;
1481 r = fixup_user_fault(current, current->mm, addr,
1482 (write_fault ? FAULT_FLAG_WRITE : 0),
1483 &unlocked);
1484 if (unlocked)
1485 return -EAGAIN;
1486 if (r)
1487 return r;
1488
1489 r = follow_pfn(vma, addr, &pfn);
1490 if (r)
1491 return r;
1492
1493 }
1494
1495
1496 /*
1497 * Get a reference here because callers of *hva_to_pfn* and
1498 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1499 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
1500 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1501 * simply do nothing for reserved pfns.
1502 *
1503 * Whoever called remap_pfn_range is also going to call e.g.
1504 * unmap_mapping_range before the underlying pages are freed,
1505 * causing a call to our MMU notifier.
1506 */
1507 kvm_get_pfn(pfn);
1508
1509 *p_pfn = pfn;
1510 return 0;
1511 }
1512
1513 /*
1514 * Pin guest page in memory and return its pfn.
1515 * @addr: host virtual address which maps memory to the guest
1516 * @atomic: whether this function can sleep
1517 * @async: whether this function need to wait IO complete if the
1518 * host page is not in the memory
1519 * @write_fault: whether we should get a writable host page
1520 * @writable: whether it allows to map a writable host page for !@write_fault
1521 *
1522 * The function will map a writable host page for these two cases:
1523 * 1): @write_fault = true
1524 * 2): @write_fault = false && @writable, @writable will tell the caller
1525 * whether the mapping is writable.
1526 */
hva_to_pfn(unsigned long addr,bool atomic,bool * async,bool write_fault,bool * writable)1527 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1528 bool write_fault, bool *writable)
1529 {
1530 struct vm_area_struct *vma;
1531 kvm_pfn_t pfn = 0;
1532 int npages, r;
1533
1534 /* we can do it either atomically or asynchronously, not both */
1535 BUG_ON(atomic && async);
1536
1537 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1538 return pfn;
1539
1540 if (atomic)
1541 return KVM_PFN_ERR_FAULT;
1542
1543 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1544 if (npages == 1)
1545 return pfn;
1546
1547 down_read(¤t->mm->mmap_sem);
1548 if (npages == -EHWPOISON ||
1549 (!async && check_user_page_hwpoison(addr))) {
1550 pfn = KVM_PFN_ERR_HWPOISON;
1551 goto exit;
1552 }
1553
1554 retry:
1555 vma = find_vma_intersection(current->mm, addr, addr + 1);
1556
1557 if (vma == NULL)
1558 pfn = KVM_PFN_ERR_FAULT;
1559 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1560 r = hva_to_pfn_remapped(vma, addr, async, write_fault, &pfn);
1561 if (r == -EAGAIN)
1562 goto retry;
1563 if (r < 0)
1564 pfn = KVM_PFN_ERR_FAULT;
1565 } else {
1566 if (async && vma_is_valid(vma, write_fault))
1567 *async = true;
1568 pfn = KVM_PFN_ERR_FAULT;
1569 }
1570 exit:
1571 up_read(¤t->mm->mmap_sem);
1572 return pfn;
1573 }
1574
__gfn_to_pfn_memslot(struct kvm_memory_slot * slot,gfn_t gfn,bool atomic,bool * async,bool write_fault,bool * writable)1575 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1576 bool atomic, bool *async, bool write_fault,
1577 bool *writable)
1578 {
1579 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1580
1581 if (addr == KVM_HVA_ERR_RO_BAD) {
1582 if (writable)
1583 *writable = false;
1584 return KVM_PFN_ERR_RO_FAULT;
1585 }
1586
1587 if (kvm_is_error_hva(addr)) {
1588 if (writable)
1589 *writable = false;
1590 return KVM_PFN_NOSLOT;
1591 }
1592
1593 /* Do not map writable pfn in the readonly memslot. */
1594 if (writable && memslot_is_readonly(slot)) {
1595 *writable = false;
1596 writable = NULL;
1597 }
1598
1599 return hva_to_pfn(addr, atomic, async, write_fault,
1600 writable);
1601 }
1602 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1603
gfn_to_pfn_prot(struct kvm * kvm,gfn_t gfn,bool write_fault,bool * writable)1604 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1605 bool *writable)
1606 {
1607 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1608 write_fault, writable);
1609 }
1610 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1611
gfn_to_pfn_memslot(struct kvm_memory_slot * slot,gfn_t gfn)1612 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1613 {
1614 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1615 }
1616 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1617
gfn_to_pfn_memslot_atomic(struct kvm_memory_slot * slot,gfn_t gfn)1618 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1619 {
1620 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1621 }
1622 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1623
gfn_to_pfn_atomic(struct kvm * kvm,gfn_t gfn)1624 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1625 {
1626 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1627 }
1628 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1629
kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu * vcpu,gfn_t gfn)1630 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1631 {
1632 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1633 }
1634 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1635
gfn_to_pfn(struct kvm * kvm,gfn_t gfn)1636 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1637 {
1638 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1639 }
1640 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1641
kvm_vcpu_gfn_to_pfn(struct kvm_vcpu * vcpu,gfn_t gfn)1642 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1643 {
1644 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1645 }
1646 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1647
gfn_to_page_many_atomic(struct kvm_memory_slot * slot,gfn_t gfn,struct page ** pages,int nr_pages)1648 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1649 struct page **pages, int nr_pages)
1650 {
1651 unsigned long addr;
1652 gfn_t entry;
1653
1654 addr = gfn_to_hva_many(slot, gfn, &entry);
1655 if (kvm_is_error_hva(addr))
1656 return -1;
1657
1658 if (entry < nr_pages)
1659 return 0;
1660
1661 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1662 }
1663 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1664
kvm_pfn_to_page(kvm_pfn_t pfn)1665 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1666 {
1667 if (is_error_noslot_pfn(pfn))
1668 return KVM_ERR_PTR_BAD_PAGE;
1669
1670 if (kvm_is_reserved_pfn(pfn)) {
1671 WARN_ON(1);
1672 return KVM_ERR_PTR_BAD_PAGE;
1673 }
1674
1675 return pfn_to_page(pfn);
1676 }
1677
gfn_to_page(struct kvm * kvm,gfn_t gfn)1678 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1679 {
1680 kvm_pfn_t pfn;
1681
1682 pfn = gfn_to_pfn(kvm, gfn);
1683
1684 return kvm_pfn_to_page(pfn);
1685 }
1686 EXPORT_SYMBOL_GPL(gfn_to_page);
1687
kvm_vcpu_gfn_to_page(struct kvm_vcpu * vcpu,gfn_t gfn)1688 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1689 {
1690 kvm_pfn_t pfn;
1691
1692 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1693
1694 return kvm_pfn_to_page(pfn);
1695 }
1696 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1697
kvm_release_page_clean(struct page * page)1698 void kvm_release_page_clean(struct page *page)
1699 {
1700 WARN_ON(is_error_page(page));
1701
1702 kvm_release_pfn_clean(page_to_pfn(page));
1703 }
1704 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1705
kvm_release_pfn_clean(kvm_pfn_t pfn)1706 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1707 {
1708 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1709 put_page(pfn_to_page(pfn));
1710 }
1711 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1712
kvm_release_page_dirty(struct page * page)1713 void kvm_release_page_dirty(struct page *page)
1714 {
1715 WARN_ON(is_error_page(page));
1716
1717 kvm_release_pfn_dirty(page_to_pfn(page));
1718 }
1719 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1720
kvm_release_pfn_dirty(kvm_pfn_t pfn)1721 static void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1722 {
1723 kvm_set_pfn_dirty(pfn);
1724 kvm_release_pfn_clean(pfn);
1725 }
1726
kvm_set_pfn_dirty(kvm_pfn_t pfn)1727 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1728 {
1729 if (!kvm_is_reserved_pfn(pfn)) {
1730 struct page *page = pfn_to_page(pfn);
1731
1732 if (!PageReserved(page))
1733 SetPageDirty(page);
1734 }
1735 }
1736 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1737
kvm_set_pfn_accessed(kvm_pfn_t pfn)1738 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1739 {
1740 if (!kvm_is_reserved_pfn(pfn))
1741 mark_page_accessed(pfn_to_page(pfn));
1742 }
1743 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1744
kvm_get_pfn(kvm_pfn_t pfn)1745 void kvm_get_pfn(kvm_pfn_t pfn)
1746 {
1747 if (!kvm_is_reserved_pfn(pfn))
1748 get_page(pfn_to_page(pfn));
1749 }
1750 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1751
next_segment(unsigned long len,int offset)1752 static int next_segment(unsigned long len, int offset)
1753 {
1754 if (len > PAGE_SIZE - offset)
1755 return PAGE_SIZE - offset;
1756 else
1757 return len;
1758 }
1759
__kvm_read_guest_page(struct kvm_memory_slot * slot,gfn_t gfn,void * data,int offset,int len)1760 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1761 void *data, int offset, int len)
1762 {
1763 int r;
1764 unsigned long addr;
1765
1766 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1767 if (kvm_is_error_hva(addr))
1768 return -EFAULT;
1769 r = __copy_from_user(data, (void __user *)addr + offset, len);
1770 if (r)
1771 return -EFAULT;
1772 return 0;
1773 }
1774
kvm_read_guest_page(struct kvm * kvm,gfn_t gfn,void * data,int offset,int len)1775 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1776 int len)
1777 {
1778 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1779
1780 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1781 }
1782 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1783
kvm_vcpu_read_guest_page(struct kvm_vcpu * vcpu,gfn_t gfn,void * data,int offset,int len)1784 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1785 int offset, int len)
1786 {
1787 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1788
1789 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1790 }
1791 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1792
kvm_read_guest(struct kvm * kvm,gpa_t gpa,void * data,unsigned long len)1793 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1794 {
1795 gfn_t gfn = gpa >> PAGE_SHIFT;
1796 int seg;
1797 int offset = offset_in_page(gpa);
1798 int ret;
1799
1800 while ((seg = next_segment(len, offset)) != 0) {
1801 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1802 if (ret < 0)
1803 return ret;
1804 offset = 0;
1805 len -= seg;
1806 data += seg;
1807 ++gfn;
1808 }
1809 return 0;
1810 }
1811 EXPORT_SYMBOL_GPL(kvm_read_guest);
1812
kvm_vcpu_read_guest(struct kvm_vcpu * vcpu,gpa_t gpa,void * data,unsigned long len)1813 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1814 {
1815 gfn_t gfn = gpa >> PAGE_SHIFT;
1816 int seg;
1817 int offset = offset_in_page(gpa);
1818 int ret;
1819
1820 while ((seg = next_segment(len, offset)) != 0) {
1821 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1822 if (ret < 0)
1823 return ret;
1824 offset = 0;
1825 len -= seg;
1826 data += seg;
1827 ++gfn;
1828 }
1829 return 0;
1830 }
1831 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1832
__kvm_read_guest_atomic(struct kvm_memory_slot * slot,gfn_t gfn,void * data,int offset,unsigned long len)1833 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1834 void *data, int offset, unsigned long len)
1835 {
1836 int r;
1837 unsigned long addr;
1838
1839 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1840 if (kvm_is_error_hva(addr))
1841 return -EFAULT;
1842 pagefault_disable();
1843 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1844 pagefault_enable();
1845 if (r)
1846 return -EFAULT;
1847 return 0;
1848 }
1849
kvm_read_guest_atomic(struct kvm * kvm,gpa_t gpa,void * data,unsigned long len)1850 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1851 unsigned long len)
1852 {
1853 gfn_t gfn = gpa >> PAGE_SHIFT;
1854 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1855 int offset = offset_in_page(gpa);
1856
1857 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1858 }
1859 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1860
kvm_vcpu_read_guest_atomic(struct kvm_vcpu * vcpu,gpa_t gpa,void * data,unsigned long len)1861 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1862 void *data, unsigned long len)
1863 {
1864 gfn_t gfn = gpa >> PAGE_SHIFT;
1865 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1866 int offset = offset_in_page(gpa);
1867
1868 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1869 }
1870 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1871
__kvm_write_guest_page(struct kvm_memory_slot * memslot,gfn_t gfn,const void * data,int offset,int len)1872 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1873 const void *data, int offset, int len)
1874 {
1875 int r;
1876 unsigned long addr;
1877
1878 addr = gfn_to_hva_memslot(memslot, gfn);
1879 if (kvm_is_error_hva(addr))
1880 return -EFAULT;
1881 r = __copy_to_user((void __user *)addr + offset, data, len);
1882 if (r)
1883 return -EFAULT;
1884 mark_page_dirty_in_slot(memslot, gfn);
1885 return 0;
1886 }
1887
kvm_write_guest_page(struct kvm * kvm,gfn_t gfn,const void * data,int offset,int len)1888 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1889 const void *data, int offset, int len)
1890 {
1891 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1892
1893 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1894 }
1895 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1896
kvm_vcpu_write_guest_page(struct kvm_vcpu * vcpu,gfn_t gfn,const void * data,int offset,int len)1897 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1898 const void *data, int offset, int len)
1899 {
1900 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1901
1902 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1903 }
1904 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1905
kvm_write_guest(struct kvm * kvm,gpa_t gpa,const void * data,unsigned long len)1906 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1907 unsigned long len)
1908 {
1909 gfn_t gfn = gpa >> PAGE_SHIFT;
1910 int seg;
1911 int offset = offset_in_page(gpa);
1912 int ret;
1913
1914 while ((seg = next_segment(len, offset)) != 0) {
1915 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1916 if (ret < 0)
1917 return ret;
1918 offset = 0;
1919 len -= seg;
1920 data += seg;
1921 ++gfn;
1922 }
1923 return 0;
1924 }
1925 EXPORT_SYMBOL_GPL(kvm_write_guest);
1926
kvm_vcpu_write_guest(struct kvm_vcpu * vcpu,gpa_t gpa,const void * data,unsigned long len)1927 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1928 unsigned long len)
1929 {
1930 gfn_t gfn = gpa >> PAGE_SHIFT;
1931 int seg;
1932 int offset = offset_in_page(gpa);
1933 int ret;
1934
1935 while ((seg = next_segment(len, offset)) != 0) {
1936 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1937 if (ret < 0)
1938 return ret;
1939 offset = 0;
1940 len -= seg;
1941 data += seg;
1942 ++gfn;
1943 }
1944 return 0;
1945 }
1946 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1947
kvm_gfn_to_hva_cache_init(struct kvm * kvm,struct gfn_to_hva_cache * ghc,gpa_t gpa,unsigned long len)1948 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1949 gpa_t gpa, unsigned long len)
1950 {
1951 struct kvm_memslots *slots = kvm_memslots(kvm);
1952 int offset = offset_in_page(gpa);
1953 gfn_t start_gfn = gpa >> PAGE_SHIFT;
1954 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1955 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1956 gfn_t nr_pages_avail;
1957
1958 ghc->gpa = gpa;
1959 ghc->generation = slots->generation;
1960 ghc->len = len;
1961 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1962 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1963 if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1964 ghc->hva += offset;
1965 } else {
1966 /*
1967 * If the requested region crosses two memslots, we still
1968 * verify that the entire region is valid here.
1969 */
1970 while (start_gfn <= end_gfn) {
1971 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1972 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1973 &nr_pages_avail);
1974 if (kvm_is_error_hva(ghc->hva))
1975 return -EFAULT;
1976 start_gfn += nr_pages_avail;
1977 }
1978 /* Use the slow path for cross page reads and writes. */
1979 ghc->memslot = NULL;
1980 }
1981 return 0;
1982 }
1983 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1984
kvm_write_guest_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned long len)1985 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1986 void *data, unsigned long len)
1987 {
1988 struct kvm_memslots *slots = kvm_memslots(kvm);
1989 int r;
1990
1991 BUG_ON(len > ghc->len);
1992
1993 if (slots->generation != ghc->generation)
1994 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1995
1996 if (unlikely(!ghc->memslot))
1997 return kvm_write_guest(kvm, ghc->gpa, data, len);
1998
1999 if (kvm_is_error_hva(ghc->hva))
2000 return -EFAULT;
2001
2002 r = __copy_to_user((void __user *)ghc->hva, data, len);
2003 if (r)
2004 return -EFAULT;
2005 mark_page_dirty_in_slot(ghc->memslot, ghc->gpa >> PAGE_SHIFT);
2006
2007 return 0;
2008 }
2009 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2010
kvm_read_guest_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned long len)2011 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2012 void *data, unsigned long len)
2013 {
2014 struct kvm_memslots *slots = kvm_memslots(kvm);
2015 int r;
2016
2017 BUG_ON(len > ghc->len);
2018
2019 if (slots->generation != ghc->generation)
2020 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
2021
2022 if (unlikely(!ghc->memslot))
2023 return kvm_read_guest(kvm, ghc->gpa, data, len);
2024
2025 if (kvm_is_error_hva(ghc->hva))
2026 return -EFAULT;
2027
2028 r = __copy_from_user(data, (void __user *)ghc->hva, len);
2029 if (r)
2030 return -EFAULT;
2031
2032 return 0;
2033 }
2034 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2035
kvm_clear_guest_page(struct kvm * kvm,gfn_t gfn,int offset,int len)2036 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2037 {
2038 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2039
2040 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2041 }
2042 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2043
kvm_clear_guest(struct kvm * kvm,gpa_t gpa,unsigned long len)2044 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2045 {
2046 gfn_t gfn = gpa >> PAGE_SHIFT;
2047 int seg;
2048 int offset = offset_in_page(gpa);
2049 int ret;
2050
2051 while ((seg = next_segment(len, offset)) != 0) {
2052 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2053 if (ret < 0)
2054 return ret;
2055 offset = 0;
2056 len -= seg;
2057 ++gfn;
2058 }
2059 return 0;
2060 }
2061 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2062
mark_page_dirty_in_slot(struct kvm_memory_slot * memslot,gfn_t gfn)2063 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2064 gfn_t gfn)
2065 {
2066 if (memslot && memslot->dirty_bitmap) {
2067 unsigned long rel_gfn = gfn - memslot->base_gfn;
2068
2069 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2070 }
2071 }
2072
mark_page_dirty(struct kvm * kvm,gfn_t gfn)2073 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2074 {
2075 struct kvm_memory_slot *memslot;
2076
2077 memslot = gfn_to_memslot(kvm, gfn);
2078 mark_page_dirty_in_slot(memslot, gfn);
2079 }
2080 EXPORT_SYMBOL_GPL(mark_page_dirty);
2081
kvm_vcpu_mark_page_dirty(struct kvm_vcpu * vcpu,gfn_t gfn)2082 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2083 {
2084 struct kvm_memory_slot *memslot;
2085
2086 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2087 mark_page_dirty_in_slot(memslot, gfn);
2088 }
2089 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2090
grow_halt_poll_ns(struct kvm_vcpu * vcpu)2091 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2092 {
2093 unsigned int old, val, grow;
2094
2095 old = val = vcpu->halt_poll_ns;
2096 grow = READ_ONCE(halt_poll_ns_grow);
2097 /* 10us base */
2098 if (val == 0 && grow)
2099 val = 10000;
2100 else
2101 val *= grow;
2102
2103 if (val > halt_poll_ns)
2104 val = halt_poll_ns;
2105
2106 vcpu->halt_poll_ns = val;
2107 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2108 }
2109
shrink_halt_poll_ns(struct kvm_vcpu * vcpu)2110 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2111 {
2112 unsigned int old, val, shrink;
2113
2114 old = val = vcpu->halt_poll_ns;
2115 shrink = READ_ONCE(halt_poll_ns_shrink);
2116 if (shrink == 0)
2117 val = 0;
2118 else
2119 val /= shrink;
2120
2121 vcpu->halt_poll_ns = val;
2122 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2123 }
2124
kvm_vcpu_check_block(struct kvm_vcpu * vcpu)2125 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2126 {
2127 if (kvm_arch_vcpu_runnable(vcpu)) {
2128 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2129 return -EINTR;
2130 }
2131 if (kvm_cpu_has_pending_timer(vcpu))
2132 return -EINTR;
2133 if (signal_pending(current))
2134 return -EINTR;
2135
2136 return 0;
2137 }
2138
2139 /*
2140 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2141 */
kvm_vcpu_block(struct kvm_vcpu * vcpu)2142 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2143 {
2144 ktime_t start, cur;
2145 DECLARE_SWAITQUEUE(wait);
2146 bool waited = false;
2147 u64 block_ns;
2148
2149 start = cur = ktime_get();
2150 if (vcpu->halt_poll_ns) {
2151 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2152
2153 ++vcpu->stat.halt_attempted_poll;
2154 do {
2155 /*
2156 * This sets KVM_REQ_UNHALT if an interrupt
2157 * arrives.
2158 */
2159 if (kvm_vcpu_check_block(vcpu) < 0) {
2160 ++vcpu->stat.halt_successful_poll;
2161 if (!vcpu_valid_wakeup(vcpu))
2162 ++vcpu->stat.halt_poll_invalid;
2163 goto out;
2164 }
2165 cur = ktime_get();
2166 } while (single_task_running() && ktime_before(cur, stop));
2167 }
2168
2169 kvm_arch_vcpu_blocking(vcpu);
2170
2171 for (;;) {
2172 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2173
2174 if (kvm_vcpu_check_block(vcpu) < 0)
2175 break;
2176
2177 waited = true;
2178 schedule();
2179 }
2180
2181 finish_swait(&vcpu->wq, &wait);
2182 cur = ktime_get();
2183
2184 kvm_arch_vcpu_unblocking(vcpu);
2185 out:
2186 block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2187
2188 if (!vcpu_valid_wakeup(vcpu))
2189 shrink_halt_poll_ns(vcpu);
2190 else if (halt_poll_ns) {
2191 if (block_ns <= vcpu->halt_poll_ns)
2192 ;
2193 /* we had a long block, shrink polling */
2194 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2195 shrink_halt_poll_ns(vcpu);
2196 /* we had a short halt and our poll time is too small */
2197 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2198 block_ns < halt_poll_ns)
2199 grow_halt_poll_ns(vcpu);
2200 } else
2201 vcpu->halt_poll_ns = 0;
2202
2203 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2204 kvm_arch_vcpu_block_finish(vcpu);
2205 }
2206 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2207
2208 #ifndef CONFIG_S390
kvm_vcpu_wake_up(struct kvm_vcpu * vcpu)2209 void kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2210 {
2211 struct swait_queue_head *wqp;
2212
2213 wqp = kvm_arch_vcpu_wq(vcpu);
2214 if (swait_active(wqp)) {
2215 swake_up(wqp);
2216 ++vcpu->stat.halt_wakeup;
2217 }
2218
2219 }
2220 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2221
2222 /*
2223 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2224 */
kvm_vcpu_kick(struct kvm_vcpu * vcpu)2225 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2226 {
2227 int me;
2228 int cpu = vcpu->cpu;
2229
2230 kvm_vcpu_wake_up(vcpu);
2231 me = get_cpu();
2232 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2233 if (kvm_arch_vcpu_should_kick(vcpu))
2234 smp_send_reschedule(cpu);
2235 put_cpu();
2236 }
2237 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2238 #endif /* !CONFIG_S390 */
2239
kvm_vcpu_yield_to(struct kvm_vcpu * target)2240 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2241 {
2242 struct pid *pid;
2243 struct task_struct *task = NULL;
2244 int ret = 0;
2245
2246 rcu_read_lock();
2247 pid = rcu_dereference(target->pid);
2248 if (pid)
2249 task = get_pid_task(pid, PIDTYPE_PID);
2250 rcu_read_unlock();
2251 if (!task)
2252 return ret;
2253 ret = yield_to(task, 1);
2254 put_task_struct(task);
2255
2256 return ret;
2257 }
2258 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2259
2260 /*
2261 * Helper that checks whether a VCPU is eligible for directed yield.
2262 * Most eligible candidate to yield is decided by following heuristics:
2263 *
2264 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2265 * (preempted lock holder), indicated by @in_spin_loop.
2266 * Set at the beiginning and cleared at the end of interception/PLE handler.
2267 *
2268 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2269 * chance last time (mostly it has become eligible now since we have probably
2270 * yielded to lockholder in last iteration. This is done by toggling
2271 * @dy_eligible each time a VCPU checked for eligibility.)
2272 *
2273 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2274 * to preempted lock-holder could result in wrong VCPU selection and CPU
2275 * burning. Giving priority for a potential lock-holder increases lock
2276 * progress.
2277 *
2278 * Since algorithm is based on heuristics, accessing another VCPU data without
2279 * locking does not harm. It may result in trying to yield to same VCPU, fail
2280 * and continue with next VCPU and so on.
2281 */
kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu * vcpu)2282 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2283 {
2284 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2285 bool eligible;
2286
2287 eligible = !vcpu->spin_loop.in_spin_loop ||
2288 vcpu->spin_loop.dy_eligible;
2289
2290 if (vcpu->spin_loop.in_spin_loop)
2291 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2292
2293 return eligible;
2294 #else
2295 return true;
2296 #endif
2297 }
2298
kvm_vcpu_on_spin(struct kvm_vcpu * me)2299 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2300 {
2301 struct kvm *kvm = me->kvm;
2302 struct kvm_vcpu *vcpu;
2303 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2304 int yielded = 0;
2305 int try = 3;
2306 int pass;
2307 int i;
2308
2309 kvm_vcpu_set_in_spin_loop(me, true);
2310 /*
2311 * We boost the priority of a VCPU that is runnable but not
2312 * currently running, because it got preempted by something
2313 * else and called schedule in __vcpu_run. Hopefully that
2314 * VCPU is holding the lock that we need and will release it.
2315 * We approximate round-robin by starting at the last boosted VCPU.
2316 */
2317 for (pass = 0; pass < 2 && !yielded && try; pass++) {
2318 kvm_for_each_vcpu(i, vcpu, kvm) {
2319 if (!pass && i <= last_boosted_vcpu) {
2320 i = last_boosted_vcpu;
2321 continue;
2322 } else if (pass && i > last_boosted_vcpu)
2323 break;
2324 if (!ACCESS_ONCE(vcpu->preempted))
2325 continue;
2326 if (vcpu == me)
2327 continue;
2328 if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2329 continue;
2330 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2331 continue;
2332
2333 yielded = kvm_vcpu_yield_to(vcpu);
2334 if (yielded > 0) {
2335 kvm->last_boosted_vcpu = i;
2336 break;
2337 } else if (yielded < 0) {
2338 try--;
2339 if (!try)
2340 break;
2341 }
2342 }
2343 }
2344 kvm_vcpu_set_in_spin_loop(me, false);
2345
2346 /* Ensure vcpu is not eligible during next spinloop */
2347 kvm_vcpu_set_dy_eligible(me, false);
2348 }
2349 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2350
kvm_vcpu_fault(struct vm_area_struct * vma,struct vm_fault * vmf)2351 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2352 {
2353 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2354 struct page *page;
2355
2356 if (vmf->pgoff == 0)
2357 page = virt_to_page(vcpu->run);
2358 #ifdef CONFIG_X86
2359 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2360 page = virt_to_page(vcpu->arch.pio_data);
2361 #endif
2362 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2363 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2364 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2365 #endif
2366 else
2367 return kvm_arch_vcpu_fault(vcpu, vmf);
2368 get_page(page);
2369 vmf->page = page;
2370 return 0;
2371 }
2372
2373 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2374 .fault = kvm_vcpu_fault,
2375 };
2376
kvm_vcpu_mmap(struct file * file,struct vm_area_struct * vma)2377 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2378 {
2379 vma->vm_ops = &kvm_vcpu_vm_ops;
2380 return 0;
2381 }
2382
kvm_vcpu_release(struct inode * inode,struct file * filp)2383 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2384 {
2385 struct kvm_vcpu *vcpu = filp->private_data;
2386
2387 debugfs_remove_recursive(vcpu->debugfs_dentry);
2388 kvm_put_kvm(vcpu->kvm);
2389 return 0;
2390 }
2391
2392 static struct file_operations kvm_vcpu_fops = {
2393 .release = kvm_vcpu_release,
2394 .unlocked_ioctl = kvm_vcpu_ioctl,
2395 #ifdef CONFIG_KVM_COMPAT
2396 .compat_ioctl = kvm_vcpu_compat_ioctl,
2397 #endif
2398 .mmap = kvm_vcpu_mmap,
2399 .llseek = noop_llseek,
2400 };
2401
2402 /*
2403 * Allocates an inode for the vcpu.
2404 */
create_vcpu_fd(struct kvm_vcpu * vcpu)2405 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2406 {
2407 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2408 }
2409
kvm_create_vcpu_debugfs(struct kvm_vcpu * vcpu)2410 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2411 {
2412 char dir_name[ITOA_MAX_LEN * 2];
2413 int ret;
2414
2415 if (!kvm_arch_has_vcpu_debugfs())
2416 return 0;
2417
2418 if (!debugfs_initialized())
2419 return 0;
2420
2421 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2422 vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2423 vcpu->kvm->debugfs_dentry);
2424 if (!vcpu->debugfs_dentry)
2425 return -ENOMEM;
2426
2427 ret = kvm_arch_create_vcpu_debugfs(vcpu);
2428 if (ret < 0) {
2429 debugfs_remove_recursive(vcpu->debugfs_dentry);
2430 return ret;
2431 }
2432
2433 return 0;
2434 }
2435
2436 /*
2437 * Creates some virtual cpus. Good luck creating more than one.
2438 */
kvm_vm_ioctl_create_vcpu(struct kvm * kvm,u32 id)2439 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2440 {
2441 int r;
2442 struct kvm_vcpu *vcpu;
2443
2444 if (id >= KVM_MAX_VCPU_ID)
2445 return -EINVAL;
2446
2447 mutex_lock(&kvm->lock);
2448 if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2449 mutex_unlock(&kvm->lock);
2450 return -EINVAL;
2451 }
2452
2453 kvm->created_vcpus++;
2454 mutex_unlock(&kvm->lock);
2455
2456 vcpu = kvm_arch_vcpu_create(kvm, id);
2457 if (IS_ERR(vcpu)) {
2458 r = PTR_ERR(vcpu);
2459 goto vcpu_decrement;
2460 }
2461
2462 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2463
2464 r = kvm_arch_vcpu_setup(vcpu);
2465 if (r)
2466 goto vcpu_destroy;
2467
2468 r = kvm_create_vcpu_debugfs(vcpu);
2469 if (r)
2470 goto vcpu_destroy;
2471
2472 mutex_lock(&kvm->lock);
2473 if (kvm_get_vcpu_by_id(kvm, id)) {
2474 r = -EEXIST;
2475 goto unlock_vcpu_destroy;
2476 }
2477
2478 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2479
2480 /* Now it's all set up, let userspace reach it */
2481 kvm_get_kvm(kvm);
2482 r = create_vcpu_fd(vcpu);
2483 if (r < 0) {
2484 kvm_put_kvm(kvm);
2485 goto unlock_vcpu_destroy;
2486 }
2487
2488 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2489
2490 /*
2491 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
2492 * before kvm->online_vcpu's incremented value.
2493 */
2494 smp_wmb();
2495 atomic_inc(&kvm->online_vcpus);
2496
2497 mutex_unlock(&kvm->lock);
2498 kvm_arch_vcpu_postcreate(vcpu);
2499 return r;
2500
2501 unlock_vcpu_destroy:
2502 mutex_unlock(&kvm->lock);
2503 debugfs_remove_recursive(vcpu->debugfs_dentry);
2504 vcpu_destroy:
2505 kvm_arch_vcpu_destroy(vcpu);
2506 vcpu_decrement:
2507 mutex_lock(&kvm->lock);
2508 kvm->created_vcpus--;
2509 mutex_unlock(&kvm->lock);
2510 return r;
2511 }
2512
kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu * vcpu,sigset_t * sigset)2513 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2514 {
2515 if (sigset) {
2516 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2517 vcpu->sigset_active = 1;
2518 vcpu->sigset = *sigset;
2519 } else
2520 vcpu->sigset_active = 0;
2521 return 0;
2522 }
2523
kvm_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2524 static long kvm_vcpu_ioctl(struct file *filp,
2525 unsigned int ioctl, unsigned long arg)
2526 {
2527 struct kvm_vcpu *vcpu = filp->private_data;
2528 void __user *argp = (void __user *)arg;
2529 int r;
2530 struct kvm_fpu *fpu = NULL;
2531 struct kvm_sregs *kvm_sregs = NULL;
2532
2533 if (vcpu->kvm->mm != current->mm)
2534 return -EIO;
2535
2536 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2537 return -EINVAL;
2538
2539 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2540 /*
2541 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2542 * so vcpu_load() would break it.
2543 */
2544 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2545 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2546 #endif
2547
2548
2549 r = vcpu_load(vcpu);
2550 if (r)
2551 return r;
2552 switch (ioctl) {
2553 case KVM_RUN:
2554 r = -EINVAL;
2555 if (arg)
2556 goto out;
2557 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2558 /* The thread running this VCPU changed. */
2559 struct pid *oldpid = vcpu->pid;
2560 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2561
2562 rcu_assign_pointer(vcpu->pid, newpid);
2563 if (oldpid)
2564 synchronize_rcu();
2565 put_pid(oldpid);
2566 }
2567 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2568 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2569 break;
2570 case KVM_GET_REGS: {
2571 struct kvm_regs *kvm_regs;
2572
2573 r = -ENOMEM;
2574 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2575 if (!kvm_regs)
2576 goto out;
2577 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2578 if (r)
2579 goto out_free1;
2580 r = -EFAULT;
2581 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2582 goto out_free1;
2583 r = 0;
2584 out_free1:
2585 kfree(kvm_regs);
2586 break;
2587 }
2588 case KVM_SET_REGS: {
2589 struct kvm_regs *kvm_regs;
2590
2591 r = -ENOMEM;
2592 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2593 if (IS_ERR(kvm_regs)) {
2594 r = PTR_ERR(kvm_regs);
2595 goto out;
2596 }
2597 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2598 kfree(kvm_regs);
2599 break;
2600 }
2601 case KVM_GET_SREGS: {
2602 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2603 r = -ENOMEM;
2604 if (!kvm_sregs)
2605 goto out;
2606 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2607 if (r)
2608 goto out;
2609 r = -EFAULT;
2610 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2611 goto out;
2612 r = 0;
2613 break;
2614 }
2615 case KVM_SET_SREGS: {
2616 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2617 if (IS_ERR(kvm_sregs)) {
2618 r = PTR_ERR(kvm_sregs);
2619 kvm_sregs = NULL;
2620 goto out;
2621 }
2622 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2623 break;
2624 }
2625 case KVM_GET_MP_STATE: {
2626 struct kvm_mp_state mp_state;
2627
2628 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2629 if (r)
2630 goto out;
2631 r = -EFAULT;
2632 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2633 goto out;
2634 r = 0;
2635 break;
2636 }
2637 case KVM_SET_MP_STATE: {
2638 struct kvm_mp_state mp_state;
2639
2640 r = -EFAULT;
2641 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2642 goto out;
2643 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2644 break;
2645 }
2646 case KVM_TRANSLATE: {
2647 struct kvm_translation tr;
2648
2649 r = -EFAULT;
2650 if (copy_from_user(&tr, argp, sizeof(tr)))
2651 goto out;
2652 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2653 if (r)
2654 goto out;
2655 r = -EFAULT;
2656 if (copy_to_user(argp, &tr, sizeof(tr)))
2657 goto out;
2658 r = 0;
2659 break;
2660 }
2661 case KVM_SET_GUEST_DEBUG: {
2662 struct kvm_guest_debug dbg;
2663
2664 r = -EFAULT;
2665 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2666 goto out;
2667 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2668 break;
2669 }
2670 case KVM_SET_SIGNAL_MASK: {
2671 struct kvm_signal_mask __user *sigmask_arg = argp;
2672 struct kvm_signal_mask kvm_sigmask;
2673 sigset_t sigset, *p;
2674
2675 p = NULL;
2676 if (argp) {
2677 r = -EFAULT;
2678 if (copy_from_user(&kvm_sigmask, argp,
2679 sizeof(kvm_sigmask)))
2680 goto out;
2681 r = -EINVAL;
2682 if (kvm_sigmask.len != sizeof(sigset))
2683 goto out;
2684 r = -EFAULT;
2685 if (copy_from_user(&sigset, sigmask_arg->sigset,
2686 sizeof(sigset)))
2687 goto out;
2688 p = &sigset;
2689 }
2690 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2691 break;
2692 }
2693 case KVM_GET_FPU: {
2694 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2695 r = -ENOMEM;
2696 if (!fpu)
2697 goto out;
2698 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2699 if (r)
2700 goto out;
2701 r = -EFAULT;
2702 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2703 goto out;
2704 r = 0;
2705 break;
2706 }
2707 case KVM_SET_FPU: {
2708 fpu = memdup_user(argp, sizeof(*fpu));
2709 if (IS_ERR(fpu)) {
2710 r = PTR_ERR(fpu);
2711 fpu = NULL;
2712 goto out;
2713 }
2714 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2715 break;
2716 }
2717 default:
2718 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2719 }
2720 out:
2721 vcpu_put(vcpu);
2722 kfree(fpu);
2723 kfree(kvm_sregs);
2724 return r;
2725 }
2726
2727 #ifdef CONFIG_KVM_COMPAT
kvm_vcpu_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2728 static long kvm_vcpu_compat_ioctl(struct file *filp,
2729 unsigned int ioctl, unsigned long arg)
2730 {
2731 struct kvm_vcpu *vcpu = filp->private_data;
2732 void __user *argp = compat_ptr(arg);
2733 int r;
2734
2735 if (vcpu->kvm->mm != current->mm)
2736 return -EIO;
2737
2738 switch (ioctl) {
2739 case KVM_SET_SIGNAL_MASK: {
2740 struct kvm_signal_mask __user *sigmask_arg = argp;
2741 struct kvm_signal_mask kvm_sigmask;
2742 compat_sigset_t csigset;
2743 sigset_t sigset;
2744
2745 if (argp) {
2746 r = -EFAULT;
2747 if (copy_from_user(&kvm_sigmask, argp,
2748 sizeof(kvm_sigmask)))
2749 goto out;
2750 r = -EINVAL;
2751 if (kvm_sigmask.len != sizeof(csigset))
2752 goto out;
2753 r = -EFAULT;
2754 if (copy_from_user(&csigset, sigmask_arg->sigset,
2755 sizeof(csigset)))
2756 goto out;
2757 sigset_from_compat(&sigset, &csigset);
2758 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2759 } else
2760 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2761 break;
2762 }
2763 default:
2764 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2765 }
2766
2767 out:
2768 return r;
2769 }
2770 #endif
2771
kvm_device_ioctl_attr(struct kvm_device * dev,int (* accessor)(struct kvm_device * dev,struct kvm_device_attr * attr),unsigned long arg)2772 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2773 int (*accessor)(struct kvm_device *dev,
2774 struct kvm_device_attr *attr),
2775 unsigned long arg)
2776 {
2777 struct kvm_device_attr attr;
2778
2779 if (!accessor)
2780 return -EPERM;
2781
2782 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2783 return -EFAULT;
2784
2785 return accessor(dev, &attr);
2786 }
2787
kvm_device_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2788 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2789 unsigned long arg)
2790 {
2791 struct kvm_device *dev = filp->private_data;
2792
2793 switch (ioctl) {
2794 case KVM_SET_DEVICE_ATTR:
2795 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2796 case KVM_GET_DEVICE_ATTR:
2797 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2798 case KVM_HAS_DEVICE_ATTR:
2799 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2800 default:
2801 if (dev->ops->ioctl)
2802 return dev->ops->ioctl(dev, ioctl, arg);
2803
2804 return -ENOTTY;
2805 }
2806 }
2807
kvm_device_release(struct inode * inode,struct file * filp)2808 static int kvm_device_release(struct inode *inode, struct file *filp)
2809 {
2810 struct kvm_device *dev = filp->private_data;
2811 struct kvm *kvm = dev->kvm;
2812
2813 kvm_put_kvm(kvm);
2814 return 0;
2815 }
2816
2817 static const struct file_operations kvm_device_fops = {
2818 .unlocked_ioctl = kvm_device_ioctl,
2819 #ifdef CONFIG_KVM_COMPAT
2820 .compat_ioctl = kvm_device_ioctl,
2821 #endif
2822 .release = kvm_device_release,
2823 };
2824
kvm_device_from_filp(struct file * filp)2825 struct kvm_device *kvm_device_from_filp(struct file *filp)
2826 {
2827 if (filp->f_op != &kvm_device_fops)
2828 return NULL;
2829
2830 return filp->private_data;
2831 }
2832
2833 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2834 #ifdef CONFIG_KVM_MPIC
2835 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
2836 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
2837 #endif
2838
2839 #ifdef CONFIG_KVM_XICS
2840 [KVM_DEV_TYPE_XICS] = &kvm_xics_ops,
2841 #endif
2842 };
2843
kvm_register_device_ops(struct kvm_device_ops * ops,u32 type)2844 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2845 {
2846 if (type >= ARRAY_SIZE(kvm_device_ops_table))
2847 return -ENOSPC;
2848
2849 if (kvm_device_ops_table[type] != NULL)
2850 return -EEXIST;
2851
2852 kvm_device_ops_table[type] = ops;
2853 return 0;
2854 }
2855
kvm_unregister_device_ops(u32 type)2856 void kvm_unregister_device_ops(u32 type)
2857 {
2858 if (kvm_device_ops_table[type] != NULL)
2859 kvm_device_ops_table[type] = NULL;
2860 }
2861
kvm_ioctl_create_device(struct kvm * kvm,struct kvm_create_device * cd)2862 static int kvm_ioctl_create_device(struct kvm *kvm,
2863 struct kvm_create_device *cd)
2864 {
2865 struct kvm_device_ops *ops = NULL;
2866 struct kvm_device *dev;
2867 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2868 int ret;
2869
2870 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2871 return -ENODEV;
2872
2873 ops = kvm_device_ops_table[cd->type];
2874 if (ops == NULL)
2875 return -ENODEV;
2876
2877 if (test)
2878 return 0;
2879
2880 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2881 if (!dev)
2882 return -ENOMEM;
2883
2884 dev->ops = ops;
2885 dev->kvm = kvm;
2886
2887 mutex_lock(&kvm->lock);
2888 ret = ops->create(dev, cd->type);
2889 if (ret < 0) {
2890 mutex_unlock(&kvm->lock);
2891 kfree(dev);
2892 return ret;
2893 }
2894 list_add(&dev->vm_node, &kvm->devices);
2895 mutex_unlock(&kvm->lock);
2896
2897 if (ops->init)
2898 ops->init(dev);
2899
2900 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2901 if (ret < 0) {
2902 mutex_lock(&kvm->lock);
2903 list_del(&dev->vm_node);
2904 mutex_unlock(&kvm->lock);
2905 ops->destroy(dev);
2906 return ret;
2907 }
2908
2909 kvm_get_kvm(kvm);
2910 cd->fd = ret;
2911 return 0;
2912 }
2913
kvm_vm_ioctl_check_extension_generic(struct kvm * kvm,long arg)2914 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2915 {
2916 switch (arg) {
2917 case KVM_CAP_USER_MEMORY:
2918 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2919 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2920 case KVM_CAP_INTERNAL_ERROR_DATA:
2921 #ifdef CONFIG_HAVE_KVM_MSI
2922 case KVM_CAP_SIGNAL_MSI:
2923 #endif
2924 #ifdef CONFIG_HAVE_KVM_IRQFD
2925 case KVM_CAP_IRQFD:
2926 case KVM_CAP_IRQFD_RESAMPLE:
2927 #endif
2928 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2929 case KVM_CAP_CHECK_EXTENSION_VM:
2930 return 1;
2931 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2932 case KVM_CAP_IRQ_ROUTING:
2933 return KVM_MAX_IRQ_ROUTES;
2934 #endif
2935 #if KVM_ADDRESS_SPACE_NUM > 1
2936 case KVM_CAP_MULTI_ADDRESS_SPACE:
2937 return KVM_ADDRESS_SPACE_NUM;
2938 #endif
2939 case KVM_CAP_MAX_VCPU_ID:
2940 return KVM_MAX_VCPU_ID;
2941 default:
2942 break;
2943 }
2944 return kvm_vm_ioctl_check_extension(kvm, arg);
2945 }
2946
kvm_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2947 static long kvm_vm_ioctl(struct file *filp,
2948 unsigned int ioctl, unsigned long arg)
2949 {
2950 struct kvm *kvm = filp->private_data;
2951 void __user *argp = (void __user *)arg;
2952 int r;
2953
2954 if (kvm->mm != current->mm)
2955 return -EIO;
2956 switch (ioctl) {
2957 case KVM_CREATE_VCPU:
2958 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2959 break;
2960 case KVM_SET_USER_MEMORY_REGION: {
2961 struct kvm_userspace_memory_region kvm_userspace_mem;
2962
2963 r = -EFAULT;
2964 if (copy_from_user(&kvm_userspace_mem, argp,
2965 sizeof(kvm_userspace_mem)))
2966 goto out;
2967
2968 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2969 break;
2970 }
2971 case KVM_GET_DIRTY_LOG: {
2972 struct kvm_dirty_log log;
2973
2974 r = -EFAULT;
2975 if (copy_from_user(&log, argp, sizeof(log)))
2976 goto out;
2977 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2978 break;
2979 }
2980 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2981 case KVM_REGISTER_COALESCED_MMIO: {
2982 struct kvm_coalesced_mmio_zone zone;
2983
2984 r = -EFAULT;
2985 if (copy_from_user(&zone, argp, sizeof(zone)))
2986 goto out;
2987 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2988 break;
2989 }
2990 case KVM_UNREGISTER_COALESCED_MMIO: {
2991 struct kvm_coalesced_mmio_zone zone;
2992
2993 r = -EFAULT;
2994 if (copy_from_user(&zone, argp, sizeof(zone)))
2995 goto out;
2996 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2997 break;
2998 }
2999 #endif
3000 case KVM_IRQFD: {
3001 struct kvm_irqfd data;
3002
3003 r = -EFAULT;
3004 if (copy_from_user(&data, argp, sizeof(data)))
3005 goto out;
3006 r = kvm_irqfd(kvm, &data);
3007 break;
3008 }
3009 case KVM_IOEVENTFD: {
3010 struct kvm_ioeventfd data;
3011
3012 r = -EFAULT;
3013 if (copy_from_user(&data, argp, sizeof(data)))
3014 goto out;
3015 r = kvm_ioeventfd(kvm, &data);
3016 break;
3017 }
3018 #ifdef CONFIG_HAVE_KVM_MSI
3019 case KVM_SIGNAL_MSI: {
3020 struct kvm_msi msi;
3021
3022 r = -EFAULT;
3023 if (copy_from_user(&msi, argp, sizeof(msi)))
3024 goto out;
3025 r = kvm_send_userspace_msi(kvm, &msi);
3026 break;
3027 }
3028 #endif
3029 #ifdef __KVM_HAVE_IRQ_LINE
3030 case KVM_IRQ_LINE_STATUS:
3031 case KVM_IRQ_LINE: {
3032 struct kvm_irq_level irq_event;
3033
3034 r = -EFAULT;
3035 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3036 goto out;
3037
3038 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3039 ioctl == KVM_IRQ_LINE_STATUS);
3040 if (r)
3041 goto out;
3042
3043 r = -EFAULT;
3044 if (ioctl == KVM_IRQ_LINE_STATUS) {
3045 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3046 goto out;
3047 }
3048
3049 r = 0;
3050 break;
3051 }
3052 #endif
3053 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3054 case KVM_SET_GSI_ROUTING: {
3055 struct kvm_irq_routing routing;
3056 struct kvm_irq_routing __user *urouting;
3057 struct kvm_irq_routing_entry *entries = NULL;
3058
3059 r = -EFAULT;
3060 if (copy_from_user(&routing, argp, sizeof(routing)))
3061 goto out;
3062 r = -EINVAL;
3063 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3064 goto out;
3065 if (routing.flags)
3066 goto out;
3067 if (routing.nr) {
3068 r = -ENOMEM;
3069 entries = vmalloc(routing.nr * sizeof(*entries));
3070 if (!entries)
3071 goto out;
3072 r = -EFAULT;
3073 urouting = argp;
3074 if (copy_from_user(entries, urouting->entries,
3075 routing.nr * sizeof(*entries)))
3076 goto out_free_irq_routing;
3077 }
3078 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3079 routing.flags);
3080 out_free_irq_routing:
3081 vfree(entries);
3082 break;
3083 }
3084 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3085 case KVM_CREATE_DEVICE: {
3086 struct kvm_create_device cd;
3087
3088 r = -EFAULT;
3089 if (copy_from_user(&cd, argp, sizeof(cd)))
3090 goto out;
3091
3092 r = kvm_ioctl_create_device(kvm, &cd);
3093 if (r)
3094 goto out;
3095
3096 r = -EFAULT;
3097 if (copy_to_user(argp, &cd, sizeof(cd)))
3098 goto out;
3099
3100 r = 0;
3101 break;
3102 }
3103 case KVM_CHECK_EXTENSION:
3104 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3105 break;
3106 default:
3107 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3108 }
3109 out:
3110 return r;
3111 }
3112
3113 #ifdef CONFIG_KVM_COMPAT
3114 struct compat_kvm_dirty_log {
3115 __u32 slot;
3116 __u32 padding1;
3117 union {
3118 compat_uptr_t dirty_bitmap; /* one bit per page */
3119 __u64 padding2;
3120 };
3121 };
3122
kvm_vm_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)3123 static long kvm_vm_compat_ioctl(struct file *filp,
3124 unsigned int ioctl, unsigned long arg)
3125 {
3126 struct kvm *kvm = filp->private_data;
3127 int r;
3128
3129 if (kvm->mm != current->mm)
3130 return -EIO;
3131 switch (ioctl) {
3132 case KVM_GET_DIRTY_LOG: {
3133 struct compat_kvm_dirty_log compat_log;
3134 struct kvm_dirty_log log;
3135
3136 r = -EFAULT;
3137 if (copy_from_user(&compat_log, (void __user *)arg,
3138 sizeof(compat_log)))
3139 goto out;
3140 log.slot = compat_log.slot;
3141 log.padding1 = compat_log.padding1;
3142 log.padding2 = compat_log.padding2;
3143 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3144
3145 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3146 break;
3147 }
3148 default:
3149 r = kvm_vm_ioctl(filp, ioctl, arg);
3150 }
3151
3152 out:
3153 return r;
3154 }
3155 #endif
3156
3157 static struct file_operations kvm_vm_fops = {
3158 .release = kvm_vm_release,
3159 .unlocked_ioctl = kvm_vm_ioctl,
3160 #ifdef CONFIG_KVM_COMPAT
3161 .compat_ioctl = kvm_vm_compat_ioctl,
3162 #endif
3163 .llseek = noop_llseek,
3164 };
3165
kvm_dev_ioctl_create_vm(unsigned long type)3166 static int kvm_dev_ioctl_create_vm(unsigned long type)
3167 {
3168 int r;
3169 struct kvm *kvm;
3170 struct file *file;
3171
3172 kvm = kvm_create_vm(type);
3173 if (IS_ERR(kvm))
3174 return PTR_ERR(kvm);
3175 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3176 r = kvm_coalesced_mmio_init(kvm);
3177 if (r < 0) {
3178 kvm_put_kvm(kvm);
3179 return r;
3180 }
3181 #endif
3182 r = get_unused_fd_flags(O_CLOEXEC);
3183 if (r < 0) {
3184 kvm_put_kvm(kvm);
3185 return r;
3186 }
3187 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3188 if (IS_ERR(file)) {
3189 put_unused_fd(r);
3190 kvm_put_kvm(kvm);
3191 return PTR_ERR(file);
3192 }
3193
3194 if (kvm_create_vm_debugfs(kvm, r) < 0) {
3195 put_unused_fd(r);
3196 fput(file);
3197 return -ENOMEM;
3198 }
3199
3200 fd_install(r, file);
3201 return r;
3202 }
3203
kvm_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)3204 static long kvm_dev_ioctl(struct file *filp,
3205 unsigned int ioctl, unsigned long arg)
3206 {
3207 long r = -EINVAL;
3208
3209 switch (ioctl) {
3210 case KVM_GET_API_VERSION:
3211 if (arg)
3212 goto out;
3213 r = KVM_API_VERSION;
3214 break;
3215 case KVM_CREATE_VM:
3216 r = kvm_dev_ioctl_create_vm(arg);
3217 break;
3218 case KVM_CHECK_EXTENSION:
3219 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3220 break;
3221 case KVM_GET_VCPU_MMAP_SIZE:
3222 if (arg)
3223 goto out;
3224 r = PAGE_SIZE; /* struct kvm_run */
3225 #ifdef CONFIG_X86
3226 r += PAGE_SIZE; /* pio data page */
3227 #endif
3228 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3229 r += PAGE_SIZE; /* coalesced mmio ring page */
3230 #endif
3231 break;
3232 case KVM_TRACE_ENABLE:
3233 case KVM_TRACE_PAUSE:
3234 case KVM_TRACE_DISABLE:
3235 r = -EOPNOTSUPP;
3236 break;
3237 default:
3238 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3239 }
3240 out:
3241 return r;
3242 }
3243
3244 static struct file_operations kvm_chardev_ops = {
3245 .unlocked_ioctl = kvm_dev_ioctl,
3246 .compat_ioctl = kvm_dev_ioctl,
3247 .llseek = noop_llseek,
3248 };
3249
3250 static struct miscdevice kvm_dev = {
3251 KVM_MINOR,
3252 "kvm",
3253 &kvm_chardev_ops,
3254 };
3255
hardware_enable_nolock(void * junk)3256 static void hardware_enable_nolock(void *junk)
3257 {
3258 int cpu = raw_smp_processor_id();
3259 int r;
3260
3261 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3262 return;
3263
3264 cpumask_set_cpu(cpu, cpus_hardware_enabled);
3265
3266 r = kvm_arch_hardware_enable();
3267
3268 if (r) {
3269 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3270 atomic_inc(&hardware_enable_failed);
3271 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3272 }
3273 }
3274
kvm_starting_cpu(unsigned int cpu)3275 static int kvm_starting_cpu(unsigned int cpu)
3276 {
3277 raw_spin_lock(&kvm_count_lock);
3278 if (kvm_usage_count)
3279 hardware_enable_nolock(NULL);
3280 raw_spin_unlock(&kvm_count_lock);
3281 return 0;
3282 }
3283
hardware_disable_nolock(void * junk)3284 static void hardware_disable_nolock(void *junk)
3285 {
3286 int cpu = raw_smp_processor_id();
3287
3288 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3289 return;
3290 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3291 kvm_arch_hardware_disable();
3292 }
3293
kvm_dying_cpu(unsigned int cpu)3294 static int kvm_dying_cpu(unsigned int cpu)
3295 {
3296 raw_spin_lock(&kvm_count_lock);
3297 if (kvm_usage_count)
3298 hardware_disable_nolock(NULL);
3299 raw_spin_unlock(&kvm_count_lock);
3300 return 0;
3301 }
3302
hardware_disable_all_nolock(void)3303 static void hardware_disable_all_nolock(void)
3304 {
3305 BUG_ON(!kvm_usage_count);
3306
3307 kvm_usage_count--;
3308 if (!kvm_usage_count)
3309 on_each_cpu(hardware_disable_nolock, NULL, 1);
3310 }
3311
hardware_disable_all(void)3312 static void hardware_disable_all(void)
3313 {
3314 raw_spin_lock(&kvm_count_lock);
3315 hardware_disable_all_nolock();
3316 raw_spin_unlock(&kvm_count_lock);
3317 }
3318
hardware_enable_all(void)3319 static int hardware_enable_all(void)
3320 {
3321 int r = 0;
3322
3323 raw_spin_lock(&kvm_count_lock);
3324
3325 kvm_usage_count++;
3326 if (kvm_usage_count == 1) {
3327 atomic_set(&hardware_enable_failed, 0);
3328 on_each_cpu(hardware_enable_nolock, NULL, 1);
3329
3330 if (atomic_read(&hardware_enable_failed)) {
3331 hardware_disable_all_nolock();
3332 r = -EBUSY;
3333 }
3334 }
3335
3336 raw_spin_unlock(&kvm_count_lock);
3337
3338 return r;
3339 }
3340
kvm_reboot(struct notifier_block * notifier,unsigned long val,void * v)3341 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3342 void *v)
3343 {
3344 /*
3345 * Some (well, at least mine) BIOSes hang on reboot if
3346 * in vmx root mode.
3347 *
3348 * And Intel TXT required VMX off for all cpu when system shutdown.
3349 */
3350 pr_info("kvm: exiting hardware virtualization\n");
3351 kvm_rebooting = true;
3352 on_each_cpu(hardware_disable_nolock, NULL, 1);
3353 return NOTIFY_OK;
3354 }
3355
3356 static struct notifier_block kvm_reboot_notifier = {
3357 .notifier_call = kvm_reboot,
3358 .priority = 0,
3359 };
3360
kvm_io_bus_destroy(struct kvm_io_bus * bus)3361 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3362 {
3363 int i;
3364
3365 for (i = 0; i < bus->dev_count; i++) {
3366 struct kvm_io_device *pos = bus->range[i].dev;
3367
3368 kvm_iodevice_destructor(pos);
3369 }
3370 kfree(bus);
3371 }
3372
kvm_io_bus_cmp(const struct kvm_io_range * r1,const struct kvm_io_range * r2)3373 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3374 const struct kvm_io_range *r2)
3375 {
3376 gpa_t addr1 = r1->addr;
3377 gpa_t addr2 = r2->addr;
3378
3379 if (addr1 < addr2)
3380 return -1;
3381
3382 /* If r2->len == 0, match the exact address. If r2->len != 0,
3383 * accept any overlapping write. Any order is acceptable for
3384 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3385 * we process all of them.
3386 */
3387 if (r2->len) {
3388 addr1 += r1->len;
3389 addr2 += r2->len;
3390 }
3391
3392 if (addr1 > addr2)
3393 return 1;
3394
3395 return 0;
3396 }
3397
kvm_io_bus_sort_cmp(const void * p1,const void * p2)3398 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3399 {
3400 return kvm_io_bus_cmp(p1, p2);
3401 }
3402
kvm_io_bus_insert_dev(struct kvm_io_bus * bus,struct kvm_io_device * dev,gpa_t addr,int len)3403 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3404 gpa_t addr, int len)
3405 {
3406 bus->range[bus->dev_count++] = (struct kvm_io_range) {
3407 .addr = addr,
3408 .len = len,
3409 .dev = dev,
3410 };
3411
3412 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3413 kvm_io_bus_sort_cmp, NULL);
3414
3415 return 0;
3416 }
3417
kvm_io_bus_get_first_dev(struct kvm_io_bus * bus,gpa_t addr,int len)3418 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3419 gpa_t addr, int len)
3420 {
3421 struct kvm_io_range *range, key;
3422 int off;
3423
3424 key = (struct kvm_io_range) {
3425 .addr = addr,
3426 .len = len,
3427 };
3428
3429 range = bsearch(&key, bus->range, bus->dev_count,
3430 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3431 if (range == NULL)
3432 return -ENOENT;
3433
3434 off = range - bus->range;
3435
3436 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3437 off--;
3438
3439 return off;
3440 }
3441
__kvm_io_bus_write(struct kvm_vcpu * vcpu,struct kvm_io_bus * bus,struct kvm_io_range * range,const void * val)3442 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3443 struct kvm_io_range *range, const void *val)
3444 {
3445 int idx;
3446
3447 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3448 if (idx < 0)
3449 return -EOPNOTSUPP;
3450
3451 while (idx < bus->dev_count &&
3452 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3453 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3454 range->len, val))
3455 return idx;
3456 idx++;
3457 }
3458
3459 return -EOPNOTSUPP;
3460 }
3461
3462 /* kvm_io_bus_write - called under kvm->slots_lock */
kvm_io_bus_write(struct kvm_vcpu * vcpu,enum kvm_bus bus_idx,gpa_t addr,int len,const void * val)3463 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3464 int len, const void *val)
3465 {
3466 struct kvm_io_bus *bus;
3467 struct kvm_io_range range;
3468 int r;
3469
3470 range = (struct kvm_io_range) {
3471 .addr = addr,
3472 .len = len,
3473 };
3474
3475 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3476 if (!bus)
3477 return -ENOMEM;
3478 r = __kvm_io_bus_write(vcpu, bus, &range, val);
3479 return r < 0 ? r : 0;
3480 }
3481
3482 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
kvm_io_bus_write_cookie(struct kvm_vcpu * vcpu,enum kvm_bus bus_idx,gpa_t addr,int len,const void * val,long cookie)3483 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3484 gpa_t addr, int len, const void *val, long cookie)
3485 {
3486 struct kvm_io_bus *bus;
3487 struct kvm_io_range range;
3488
3489 range = (struct kvm_io_range) {
3490 .addr = addr,
3491 .len = len,
3492 };
3493
3494 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3495 if (!bus)
3496 return -ENOMEM;
3497
3498 /* First try the device referenced by cookie. */
3499 if ((cookie >= 0) && (cookie < bus->dev_count) &&
3500 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3501 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3502 val))
3503 return cookie;
3504
3505 /*
3506 * cookie contained garbage; fall back to search and return the
3507 * correct cookie value.
3508 */
3509 return __kvm_io_bus_write(vcpu, bus, &range, val);
3510 }
3511
__kvm_io_bus_read(struct kvm_vcpu * vcpu,struct kvm_io_bus * bus,struct kvm_io_range * range,void * val)3512 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3513 struct kvm_io_range *range, void *val)
3514 {
3515 int idx;
3516
3517 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3518 if (idx < 0)
3519 return -EOPNOTSUPP;
3520
3521 while (idx < bus->dev_count &&
3522 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3523 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3524 range->len, val))
3525 return idx;
3526 idx++;
3527 }
3528
3529 return -EOPNOTSUPP;
3530 }
3531 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3532
3533 /* kvm_io_bus_read - called under kvm->slots_lock */
kvm_io_bus_read(struct kvm_vcpu * vcpu,enum kvm_bus bus_idx,gpa_t addr,int len,void * val)3534 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3535 int len, void *val)
3536 {
3537 struct kvm_io_bus *bus;
3538 struct kvm_io_range range;
3539 int r;
3540
3541 range = (struct kvm_io_range) {
3542 .addr = addr,
3543 .len = len,
3544 };
3545
3546 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3547 if (!bus)
3548 return -ENOMEM;
3549 r = __kvm_io_bus_read(vcpu, bus, &range, val);
3550 return r < 0 ? r : 0;
3551 }
3552
3553
3554 /* Caller must hold slots_lock. */
kvm_io_bus_register_dev(struct kvm * kvm,enum kvm_bus bus_idx,gpa_t addr,int len,struct kvm_io_device * dev)3555 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3556 int len, struct kvm_io_device *dev)
3557 {
3558 struct kvm_io_bus *new_bus, *bus;
3559
3560 bus = kvm->buses[bus_idx];
3561 if (!bus)
3562 return -ENOMEM;
3563
3564 /* exclude ioeventfd which is limited by maximum fd */
3565 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3566 return -ENOSPC;
3567
3568 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3569 sizeof(struct kvm_io_range)), GFP_KERNEL);
3570 if (!new_bus)
3571 return -ENOMEM;
3572 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3573 sizeof(struct kvm_io_range)));
3574 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3575 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3576 synchronize_srcu_expedited(&kvm->srcu);
3577 kfree(bus);
3578
3579 return 0;
3580 }
3581
3582 /* Caller must hold slots_lock. */
kvm_io_bus_unregister_dev(struct kvm * kvm,enum kvm_bus bus_idx,struct kvm_io_device * dev)3583 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3584 struct kvm_io_device *dev)
3585 {
3586 int i;
3587 struct kvm_io_bus *new_bus, *bus;
3588
3589 bus = kvm->buses[bus_idx];
3590 if (!bus)
3591 return;
3592
3593 for (i = 0; i < bus->dev_count; i++)
3594 if (bus->range[i].dev == dev) {
3595 break;
3596 }
3597
3598 if (i == bus->dev_count)
3599 return;
3600
3601 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3602 sizeof(struct kvm_io_range)), GFP_KERNEL);
3603 if (!new_bus) {
3604 pr_err("kvm: failed to shrink bus, removing it completely\n");
3605 goto broken;
3606 }
3607
3608 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3609 new_bus->dev_count--;
3610 memcpy(new_bus->range + i, bus->range + i + 1,
3611 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3612
3613 broken:
3614 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3615 synchronize_srcu_expedited(&kvm->srcu);
3616 kfree(bus);
3617 return;
3618 }
3619
kvm_io_bus_get_dev(struct kvm * kvm,enum kvm_bus bus_idx,gpa_t addr)3620 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3621 gpa_t addr)
3622 {
3623 struct kvm_io_bus *bus;
3624 int dev_idx, srcu_idx;
3625 struct kvm_io_device *iodev = NULL;
3626
3627 srcu_idx = srcu_read_lock(&kvm->srcu);
3628
3629 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3630 if (!bus)
3631 goto out_unlock;
3632
3633 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3634 if (dev_idx < 0)
3635 goto out_unlock;
3636
3637 iodev = bus->range[dev_idx].dev;
3638
3639 out_unlock:
3640 srcu_read_unlock(&kvm->srcu, srcu_idx);
3641
3642 return iodev;
3643 }
3644 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3645
kvm_debugfs_open(struct inode * inode,struct file * file,int (* get)(void *,u64 *),int (* set)(void *,u64),const char * fmt)3646 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3647 int (*get)(void *, u64 *), int (*set)(void *, u64),
3648 const char *fmt)
3649 {
3650 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3651 inode->i_private;
3652
3653 /* The debugfs files are a reference to the kvm struct which
3654 * is still valid when kvm_destroy_vm is called.
3655 * To avoid the race between open and the removal of the debugfs
3656 * directory we test against the users count.
3657 */
3658 if (!atomic_add_unless(&stat_data->kvm->users_count, 1, 0))
3659 return -ENOENT;
3660
3661 if (simple_attr_open(inode, file, get, set, fmt)) {
3662 kvm_put_kvm(stat_data->kvm);
3663 return -ENOMEM;
3664 }
3665
3666 return 0;
3667 }
3668
kvm_debugfs_release(struct inode * inode,struct file * file)3669 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3670 {
3671 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3672 inode->i_private;
3673
3674 simple_attr_release(inode, file);
3675 kvm_put_kvm(stat_data->kvm);
3676
3677 return 0;
3678 }
3679
vm_stat_get_per_vm(void * data,u64 * val)3680 static int vm_stat_get_per_vm(void *data, u64 *val)
3681 {
3682 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3683
3684 *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3685
3686 return 0;
3687 }
3688
vm_stat_get_per_vm_open(struct inode * inode,struct file * file)3689 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3690 {
3691 __simple_attr_check_format("%llu\n", 0ull);
3692 return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3693 NULL, "%llu\n");
3694 }
3695
3696 static const struct file_operations vm_stat_get_per_vm_fops = {
3697 .owner = THIS_MODULE,
3698 .open = vm_stat_get_per_vm_open,
3699 .release = kvm_debugfs_release,
3700 .read = simple_attr_read,
3701 .write = simple_attr_write,
3702 .llseek = generic_file_llseek,
3703 };
3704
vcpu_stat_get_per_vm(void * data,u64 * val)3705 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3706 {
3707 int i;
3708 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3709 struct kvm_vcpu *vcpu;
3710
3711 *val = 0;
3712
3713 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3714 *val += *(u64 *)((void *)vcpu + stat_data->offset);
3715
3716 return 0;
3717 }
3718
vcpu_stat_get_per_vm_open(struct inode * inode,struct file * file)3719 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3720 {
3721 __simple_attr_check_format("%llu\n", 0ull);
3722 return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3723 NULL, "%llu\n");
3724 }
3725
3726 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3727 .owner = THIS_MODULE,
3728 .open = vcpu_stat_get_per_vm_open,
3729 .release = kvm_debugfs_release,
3730 .read = simple_attr_read,
3731 .write = simple_attr_write,
3732 .llseek = generic_file_llseek,
3733 };
3734
3735 static const struct file_operations *stat_fops_per_vm[] = {
3736 [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3737 [KVM_STAT_VM] = &vm_stat_get_per_vm_fops,
3738 };
3739
vm_stat_get(void * _offset,u64 * val)3740 static int vm_stat_get(void *_offset, u64 *val)
3741 {
3742 unsigned offset = (long)_offset;
3743 struct kvm *kvm;
3744 struct kvm_stat_data stat_tmp = {.offset = offset};
3745 u64 tmp_val;
3746
3747 *val = 0;
3748 spin_lock(&kvm_lock);
3749 list_for_each_entry(kvm, &vm_list, vm_list) {
3750 stat_tmp.kvm = kvm;
3751 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3752 *val += tmp_val;
3753 }
3754 spin_unlock(&kvm_lock);
3755 return 0;
3756 }
3757
3758 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3759
vcpu_stat_get(void * _offset,u64 * val)3760 static int vcpu_stat_get(void *_offset, u64 *val)
3761 {
3762 unsigned offset = (long)_offset;
3763 struct kvm *kvm;
3764 struct kvm_stat_data stat_tmp = {.offset = offset};
3765 u64 tmp_val;
3766
3767 *val = 0;
3768 spin_lock(&kvm_lock);
3769 list_for_each_entry(kvm, &vm_list, vm_list) {
3770 stat_tmp.kvm = kvm;
3771 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3772 *val += tmp_val;
3773 }
3774 spin_unlock(&kvm_lock);
3775 return 0;
3776 }
3777
3778 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3779
3780 static const struct file_operations *stat_fops[] = {
3781 [KVM_STAT_VCPU] = &vcpu_stat_fops,
3782 [KVM_STAT_VM] = &vm_stat_fops,
3783 };
3784
kvm_init_debug(void)3785 static int kvm_init_debug(void)
3786 {
3787 int r = -EEXIST;
3788 struct kvm_stats_debugfs_item *p;
3789
3790 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3791 if (kvm_debugfs_dir == NULL)
3792 goto out;
3793
3794 kvm_debugfs_num_entries = 0;
3795 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3796 if (!debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3797 (void *)(long)p->offset,
3798 stat_fops[p->kind]))
3799 goto out_dir;
3800 }
3801
3802 return 0;
3803
3804 out_dir:
3805 debugfs_remove_recursive(kvm_debugfs_dir);
3806 out:
3807 return r;
3808 }
3809
kvm_suspend(void)3810 static int kvm_suspend(void)
3811 {
3812 if (kvm_usage_count)
3813 hardware_disable_nolock(NULL);
3814 return 0;
3815 }
3816
kvm_resume(void)3817 static void kvm_resume(void)
3818 {
3819 if (kvm_usage_count) {
3820 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3821 hardware_enable_nolock(NULL);
3822 }
3823 }
3824
3825 static struct syscore_ops kvm_syscore_ops = {
3826 .suspend = kvm_suspend,
3827 .resume = kvm_resume,
3828 };
3829
3830 static inline
preempt_notifier_to_vcpu(struct preempt_notifier * pn)3831 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3832 {
3833 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3834 }
3835
kvm_sched_in(struct preempt_notifier * pn,int cpu)3836 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3837 {
3838 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3839
3840 if (vcpu->preempted)
3841 vcpu->preempted = false;
3842
3843 kvm_arch_sched_in(vcpu, cpu);
3844
3845 kvm_arch_vcpu_load(vcpu, cpu);
3846 }
3847
kvm_sched_out(struct preempt_notifier * pn,struct task_struct * next)3848 static void kvm_sched_out(struct preempt_notifier *pn,
3849 struct task_struct *next)
3850 {
3851 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3852
3853 if (current->state == TASK_RUNNING)
3854 vcpu->preempted = true;
3855 kvm_arch_vcpu_put(vcpu);
3856 }
3857
kvm_init(void * opaque,unsigned vcpu_size,unsigned vcpu_align,struct module * module)3858 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3859 struct module *module)
3860 {
3861 int r;
3862 int cpu;
3863
3864 r = kvm_arch_init(opaque);
3865 if (r)
3866 goto out_fail;
3867
3868 /*
3869 * kvm_arch_init makes sure there's at most one caller
3870 * for architectures that support multiple implementations,
3871 * like intel and amd on x86.
3872 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3873 * conflicts in case kvm is already setup for another implementation.
3874 */
3875 r = kvm_irqfd_init();
3876 if (r)
3877 goto out_irqfd;
3878
3879 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3880 r = -ENOMEM;
3881 goto out_free_0;
3882 }
3883
3884 r = kvm_arch_hardware_setup();
3885 if (r < 0)
3886 goto out_free_0a;
3887
3888 for_each_online_cpu(cpu) {
3889 smp_call_function_single(cpu,
3890 kvm_arch_check_processor_compat,
3891 &r, 1);
3892 if (r < 0)
3893 goto out_free_1;
3894 }
3895
3896 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "AP_KVM_STARTING",
3897 kvm_starting_cpu, kvm_dying_cpu);
3898 if (r)
3899 goto out_free_2;
3900 register_reboot_notifier(&kvm_reboot_notifier);
3901
3902 /* A kmem cache lets us meet the alignment requirements of fx_save. */
3903 if (!vcpu_align)
3904 vcpu_align = __alignof__(struct kvm_vcpu);
3905 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3906 SLAB_ACCOUNT, NULL);
3907 if (!kvm_vcpu_cache) {
3908 r = -ENOMEM;
3909 goto out_free_3;
3910 }
3911
3912 r = kvm_async_pf_init();
3913 if (r)
3914 goto out_free;
3915
3916 kvm_chardev_ops.owner = module;
3917 kvm_vm_fops.owner = module;
3918 kvm_vcpu_fops.owner = module;
3919
3920 r = misc_register(&kvm_dev);
3921 if (r) {
3922 pr_err("kvm: misc device register failed\n");
3923 goto out_unreg;
3924 }
3925
3926 register_syscore_ops(&kvm_syscore_ops);
3927
3928 kvm_preempt_ops.sched_in = kvm_sched_in;
3929 kvm_preempt_ops.sched_out = kvm_sched_out;
3930
3931 r = kvm_init_debug();
3932 if (r) {
3933 pr_err("kvm: create debugfs files failed\n");
3934 goto out_undebugfs;
3935 }
3936
3937 r = kvm_vfio_ops_init();
3938 WARN_ON(r);
3939
3940 return 0;
3941
3942 out_undebugfs:
3943 unregister_syscore_ops(&kvm_syscore_ops);
3944 misc_deregister(&kvm_dev);
3945 out_unreg:
3946 kvm_async_pf_deinit();
3947 out_free:
3948 kmem_cache_destroy(kvm_vcpu_cache);
3949 out_free_3:
3950 unregister_reboot_notifier(&kvm_reboot_notifier);
3951 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
3952 out_free_2:
3953 out_free_1:
3954 kvm_arch_hardware_unsetup();
3955 out_free_0a:
3956 free_cpumask_var(cpus_hardware_enabled);
3957 out_free_0:
3958 kvm_irqfd_exit();
3959 out_irqfd:
3960 kvm_arch_exit();
3961 out_fail:
3962 return r;
3963 }
3964 EXPORT_SYMBOL_GPL(kvm_init);
3965
kvm_exit(void)3966 void kvm_exit(void)
3967 {
3968 debugfs_remove_recursive(kvm_debugfs_dir);
3969 misc_deregister(&kvm_dev);
3970 kmem_cache_destroy(kvm_vcpu_cache);
3971 kvm_async_pf_deinit();
3972 unregister_syscore_ops(&kvm_syscore_ops);
3973 unregister_reboot_notifier(&kvm_reboot_notifier);
3974 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
3975 on_each_cpu(hardware_disable_nolock, NULL, 1);
3976 kvm_arch_hardware_unsetup();
3977 kvm_arch_exit();
3978 kvm_irqfd_exit();
3979 free_cpumask_var(cpus_hardware_enabled);
3980 kvm_vfio_ops_exit();
3981 }
3982 EXPORT_SYMBOL_GPL(kvm_exit);
3983