• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/buffer_head.h>
11 #include <linux/workqueue.h>
12 #include <linux/kthread.h>
13 #include <linux/slab.h>
14 #include <linux/migrate.h>
15 #include <linux/ratelimit.h>
16 #include <linux/uuid.h>
17 #include <linux/semaphore.h>
18 #include <linux/error-injection.h>
19 #include <linux/crc32c.h>
20 #include <linux/sched/mm.h>
21 #include <asm/unaligned.h>
22 #include <crypto/hash.h>
23 #include "ctree.h"
24 #include "disk-io.h"
25 #include "transaction.h"
26 #include "btrfs_inode.h"
27 #include "volumes.h"
28 #include "print-tree.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "free-space-cache.h"
32 #include "free-space-tree.h"
33 #include "inode-map.h"
34 #include "check-integrity.h"
35 #include "rcu-string.h"
36 #include "dev-replace.h"
37 #include "raid56.h"
38 #include "sysfs.h"
39 #include "qgroup.h"
40 #include "compression.h"
41 #include "tree-checker.h"
42 #include "ref-verify.h"
43 #include "block-group.h"
44 
45 #define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
46 				 BTRFS_HEADER_FLAG_RELOC |\
47 				 BTRFS_SUPER_FLAG_ERROR |\
48 				 BTRFS_SUPER_FLAG_SEEDING |\
49 				 BTRFS_SUPER_FLAG_METADUMP |\
50 				 BTRFS_SUPER_FLAG_METADUMP_V2)
51 
52 static const struct extent_io_ops btree_extent_io_ops;
53 static void end_workqueue_fn(struct btrfs_work *work);
54 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
55 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
56 				      struct btrfs_fs_info *fs_info);
57 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
58 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
59 					struct extent_io_tree *dirty_pages,
60 					int mark);
61 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
62 				       struct extent_io_tree *pinned_extents);
63 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
64 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
65 
66 /*
67  * btrfs_end_io_wq structs are used to do processing in task context when an IO
68  * is complete.  This is used during reads to verify checksums, and it is used
69  * by writes to insert metadata for new file extents after IO is complete.
70  */
71 struct btrfs_end_io_wq {
72 	struct bio *bio;
73 	bio_end_io_t *end_io;
74 	void *private;
75 	struct btrfs_fs_info *info;
76 	blk_status_t status;
77 	enum btrfs_wq_endio_type metadata;
78 	struct btrfs_work work;
79 };
80 
81 static struct kmem_cache *btrfs_end_io_wq_cache;
82 
btrfs_end_io_wq_init(void)83 int __init btrfs_end_io_wq_init(void)
84 {
85 	btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
86 					sizeof(struct btrfs_end_io_wq),
87 					0,
88 					SLAB_MEM_SPREAD,
89 					NULL);
90 	if (!btrfs_end_io_wq_cache)
91 		return -ENOMEM;
92 	return 0;
93 }
94 
btrfs_end_io_wq_exit(void)95 void __cold btrfs_end_io_wq_exit(void)
96 {
97 	kmem_cache_destroy(btrfs_end_io_wq_cache);
98 }
99 
100 /*
101  * async submit bios are used to offload expensive checksumming
102  * onto the worker threads.  They checksum file and metadata bios
103  * just before they are sent down the IO stack.
104  */
105 struct async_submit_bio {
106 	void *private_data;
107 	struct bio *bio;
108 	extent_submit_bio_start_t *submit_bio_start;
109 	int mirror_num;
110 	/*
111 	 * bio_offset is optional, can be used if the pages in the bio
112 	 * can't tell us where in the file the bio should go
113 	 */
114 	u64 bio_offset;
115 	struct btrfs_work work;
116 	blk_status_t status;
117 };
118 
119 /*
120  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
121  * eb, the lockdep key is determined by the btrfs_root it belongs to and
122  * the level the eb occupies in the tree.
123  *
124  * Different roots are used for different purposes and may nest inside each
125  * other and they require separate keysets.  As lockdep keys should be
126  * static, assign keysets according to the purpose of the root as indicated
127  * by btrfs_root->root_key.objectid.  This ensures that all special purpose
128  * roots have separate keysets.
129  *
130  * Lock-nesting across peer nodes is always done with the immediate parent
131  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
132  * subclass to avoid triggering lockdep warning in such cases.
133  *
134  * The key is set by the readpage_end_io_hook after the buffer has passed
135  * csum validation but before the pages are unlocked.  It is also set by
136  * btrfs_init_new_buffer on freshly allocated blocks.
137  *
138  * We also add a check to make sure the highest level of the tree is the
139  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
140  * needs update as well.
141  */
142 #ifdef CONFIG_DEBUG_LOCK_ALLOC
143 # if BTRFS_MAX_LEVEL != 8
144 #  error
145 # endif
146 
147 static struct btrfs_lockdep_keyset {
148 	u64			id;		/* root objectid */
149 	const char		*name_stem;	/* lock name stem */
150 	char			names[BTRFS_MAX_LEVEL + 1][20];
151 	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
152 } btrfs_lockdep_keysets[] = {
153 	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
154 	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
155 	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
156 	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
157 	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
158 	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
159 	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	.name_stem = "quota"	},
160 	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
161 	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
162 	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
163 	{ .id = BTRFS_UUID_TREE_OBJECTID,	.name_stem = "uuid"	},
164 	{ .id = BTRFS_FREE_SPACE_TREE_OBJECTID,	.name_stem = "free-space" },
165 	{ .id = 0,				.name_stem = "tree"	},
166 };
167 
btrfs_init_lockdep(void)168 void __init btrfs_init_lockdep(void)
169 {
170 	int i, j;
171 
172 	/* initialize lockdep class names */
173 	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
174 		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
175 
176 		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
177 			snprintf(ks->names[j], sizeof(ks->names[j]),
178 				 "btrfs-%s-%02d", ks->name_stem, j);
179 	}
180 }
181 
btrfs_set_buffer_lockdep_class(u64 objectid,struct extent_buffer * eb,int level)182 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
183 				    int level)
184 {
185 	struct btrfs_lockdep_keyset *ks;
186 
187 	BUG_ON(level >= ARRAY_SIZE(ks->keys));
188 
189 	/* find the matching keyset, id 0 is the default entry */
190 	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
191 		if (ks->id == objectid)
192 			break;
193 
194 	lockdep_set_class_and_name(&eb->lock,
195 				   &ks->keys[level], ks->names[level]);
196 }
197 
198 #endif
199 
200 /*
201  * extents on the btree inode are pretty simple, there's one extent
202  * that covers the entire device
203  */
btree_get_extent(struct btrfs_inode * inode,struct page * page,size_t pg_offset,u64 start,u64 len,int create)204 struct extent_map *btree_get_extent(struct btrfs_inode *inode,
205 		struct page *page, size_t pg_offset, u64 start, u64 len,
206 		int create)
207 {
208 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
209 	struct extent_map_tree *em_tree = &inode->extent_tree;
210 	struct extent_map *em;
211 	int ret;
212 
213 	read_lock(&em_tree->lock);
214 	em = lookup_extent_mapping(em_tree, start, len);
215 	if (em) {
216 		em->bdev = fs_info->fs_devices->latest_bdev;
217 		read_unlock(&em_tree->lock);
218 		goto out;
219 	}
220 	read_unlock(&em_tree->lock);
221 
222 	em = alloc_extent_map();
223 	if (!em) {
224 		em = ERR_PTR(-ENOMEM);
225 		goto out;
226 	}
227 	em->start = 0;
228 	em->len = (u64)-1;
229 	em->block_len = (u64)-1;
230 	em->block_start = 0;
231 	em->bdev = fs_info->fs_devices->latest_bdev;
232 
233 	write_lock(&em_tree->lock);
234 	ret = add_extent_mapping(em_tree, em, 0);
235 	if (ret == -EEXIST) {
236 		free_extent_map(em);
237 		em = lookup_extent_mapping(em_tree, start, len);
238 		if (!em)
239 			em = ERR_PTR(-EIO);
240 	} else if (ret) {
241 		free_extent_map(em);
242 		em = ERR_PTR(ret);
243 	}
244 	write_unlock(&em_tree->lock);
245 
246 out:
247 	return em;
248 }
249 
250 /*
251  * Compute the csum of a btree block and store the result to provided buffer.
252  *
253  * Returns error if the extent buffer cannot be mapped.
254  */
csum_tree_block(struct extent_buffer * buf,u8 * result)255 static int csum_tree_block(struct extent_buffer *buf, u8 *result)
256 {
257 	struct btrfs_fs_info *fs_info = buf->fs_info;
258 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
259 	unsigned long len;
260 	unsigned long cur_len;
261 	unsigned long offset = BTRFS_CSUM_SIZE;
262 	char *kaddr;
263 	unsigned long map_start;
264 	unsigned long map_len;
265 	int err;
266 
267 	shash->tfm = fs_info->csum_shash;
268 	crypto_shash_init(shash);
269 
270 	len = buf->len - offset;
271 
272 	while (len > 0) {
273 		/*
274 		 * Note: we don't need to check for the err == 1 case here, as
275 		 * with the given combination of 'start = BTRFS_CSUM_SIZE (32)'
276 		 * and 'min_len = 32' and the currently implemented mapping
277 		 * algorithm we cannot cross a page boundary.
278 		 */
279 		err = map_private_extent_buffer(buf, offset, 32,
280 					&kaddr, &map_start, &map_len);
281 		if (WARN_ON(err))
282 			return err;
283 		cur_len = min(len, map_len - (offset - map_start));
284 		crypto_shash_update(shash, kaddr + offset - map_start, cur_len);
285 		len -= cur_len;
286 		offset += cur_len;
287 	}
288 	memset(result, 0, BTRFS_CSUM_SIZE);
289 
290 	crypto_shash_final(shash, result);
291 
292 	return 0;
293 }
294 
295 /*
296  * we can't consider a given block up to date unless the transid of the
297  * block matches the transid in the parent node's pointer.  This is how we
298  * detect blocks that either didn't get written at all or got written
299  * in the wrong place.
300  */
verify_parent_transid(struct extent_io_tree * io_tree,struct extent_buffer * eb,u64 parent_transid,int atomic)301 static int verify_parent_transid(struct extent_io_tree *io_tree,
302 				 struct extent_buffer *eb, u64 parent_transid,
303 				 int atomic)
304 {
305 	struct extent_state *cached_state = NULL;
306 	int ret;
307 	bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
308 
309 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
310 		return 0;
311 
312 	if (atomic)
313 		return -EAGAIN;
314 
315 	if (need_lock) {
316 		btrfs_tree_read_lock(eb);
317 		btrfs_set_lock_blocking_read(eb);
318 	}
319 
320 	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
321 			 &cached_state);
322 	if (extent_buffer_uptodate(eb) &&
323 	    btrfs_header_generation(eb) == parent_transid) {
324 		ret = 0;
325 		goto out;
326 	}
327 	btrfs_err_rl(eb->fs_info,
328 		"parent transid verify failed on %llu wanted %llu found %llu",
329 			eb->start,
330 			parent_transid, btrfs_header_generation(eb));
331 	ret = 1;
332 
333 	/*
334 	 * Things reading via commit roots that don't have normal protection,
335 	 * like send, can have a really old block in cache that may point at a
336 	 * block that has been freed and re-allocated.  So don't clear uptodate
337 	 * if we find an eb that is under IO (dirty/writeback) because we could
338 	 * end up reading in the stale data and then writing it back out and
339 	 * making everybody very sad.
340 	 */
341 	if (!extent_buffer_under_io(eb))
342 		clear_extent_buffer_uptodate(eb);
343 out:
344 	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
345 			     &cached_state);
346 	if (need_lock)
347 		btrfs_tree_read_unlock_blocking(eb);
348 	return ret;
349 }
350 
btrfs_supported_super_csum(u16 csum_type)351 static bool btrfs_supported_super_csum(u16 csum_type)
352 {
353 	switch (csum_type) {
354 	case BTRFS_CSUM_TYPE_CRC32:
355 		return true;
356 	default:
357 		return false;
358 	}
359 }
360 
361 /*
362  * Return 0 if the superblock checksum type matches the checksum value of that
363  * algorithm. Pass the raw disk superblock data.
364  */
btrfs_check_super_csum(struct btrfs_fs_info * fs_info,char * raw_disk_sb)365 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
366 				  char *raw_disk_sb)
367 {
368 	struct btrfs_super_block *disk_sb =
369 		(struct btrfs_super_block *)raw_disk_sb;
370 	char result[BTRFS_CSUM_SIZE];
371 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
372 
373 	shash->tfm = fs_info->csum_shash;
374 	crypto_shash_init(shash);
375 
376 	/*
377 	 * The super_block structure does not span the whole
378 	 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
379 	 * filled with zeros and is included in the checksum.
380 	 */
381 	crypto_shash_update(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
382 			    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
383 	crypto_shash_final(shash, result);
384 
385 	if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb)))
386 		return 1;
387 
388 	return 0;
389 }
390 
btrfs_verify_level_key(struct extent_buffer * eb,int level,struct btrfs_key * first_key,u64 parent_transid)391 int btrfs_verify_level_key(struct extent_buffer *eb, int level,
392 			   struct btrfs_key *first_key, u64 parent_transid)
393 {
394 	struct btrfs_fs_info *fs_info = eb->fs_info;
395 	int found_level;
396 	struct btrfs_key found_key;
397 	int ret;
398 
399 	found_level = btrfs_header_level(eb);
400 	if (found_level != level) {
401 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
402 		     KERN_ERR "BTRFS: tree level check failed\n");
403 		btrfs_err(fs_info,
404 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
405 			  eb->start, level, found_level);
406 		return -EIO;
407 	}
408 
409 	if (!first_key)
410 		return 0;
411 
412 	/*
413 	 * For live tree block (new tree blocks in current transaction),
414 	 * we need proper lock context to avoid race, which is impossible here.
415 	 * So we only checks tree blocks which is read from disk, whose
416 	 * generation <= fs_info->last_trans_committed.
417 	 */
418 	if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
419 		return 0;
420 
421 	/* We have @first_key, so this @eb must have at least one item */
422 	if (btrfs_header_nritems(eb) == 0) {
423 		btrfs_err(fs_info,
424 		"invalid tree nritems, bytenr=%llu nritems=0 expect >0",
425 			  eb->start);
426 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
427 		return -EUCLEAN;
428 	}
429 
430 	if (found_level)
431 		btrfs_node_key_to_cpu(eb, &found_key, 0);
432 	else
433 		btrfs_item_key_to_cpu(eb, &found_key, 0);
434 	ret = btrfs_comp_cpu_keys(first_key, &found_key);
435 
436 	if (ret) {
437 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
438 		     KERN_ERR "BTRFS: tree first key check failed\n");
439 		btrfs_err(fs_info,
440 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
441 			  eb->start, parent_transid, first_key->objectid,
442 			  first_key->type, first_key->offset,
443 			  found_key.objectid, found_key.type,
444 			  found_key.offset);
445 	}
446 	return ret;
447 }
448 
449 /*
450  * helper to read a given tree block, doing retries as required when
451  * the checksums don't match and we have alternate mirrors to try.
452  *
453  * @parent_transid:	expected transid, skip check if 0
454  * @level:		expected level, mandatory check
455  * @first_key:		expected key of first slot, skip check if NULL
456  */
btree_read_extent_buffer_pages(struct extent_buffer * eb,u64 parent_transid,int level,struct btrfs_key * first_key)457 static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
458 					  u64 parent_transid, int level,
459 					  struct btrfs_key *first_key)
460 {
461 	struct btrfs_fs_info *fs_info = eb->fs_info;
462 	struct extent_io_tree *io_tree;
463 	int failed = 0;
464 	int ret;
465 	int num_copies = 0;
466 	int mirror_num = 0;
467 	int failed_mirror = 0;
468 
469 	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
470 	while (1) {
471 		clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
472 		ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
473 		if (!ret) {
474 			if (verify_parent_transid(io_tree, eb,
475 						   parent_transid, 0))
476 				ret = -EIO;
477 			else if (btrfs_verify_level_key(eb, level,
478 						first_key, parent_transid))
479 				ret = -EUCLEAN;
480 			else
481 				break;
482 		}
483 
484 		num_copies = btrfs_num_copies(fs_info,
485 					      eb->start, eb->len);
486 		if (num_copies == 1)
487 			break;
488 
489 		if (!failed_mirror) {
490 			failed = 1;
491 			failed_mirror = eb->read_mirror;
492 		}
493 
494 		mirror_num++;
495 		if (mirror_num == failed_mirror)
496 			mirror_num++;
497 
498 		if (mirror_num > num_copies)
499 			break;
500 	}
501 
502 	if (failed && !ret && failed_mirror)
503 		btrfs_repair_eb_io_failure(eb, failed_mirror);
504 
505 	return ret;
506 }
507 
508 /*
509  * checksum a dirty tree block before IO.  This has extra checks to make sure
510  * we only fill in the checksum field in the first page of a multi-page block
511  */
512 
csum_dirty_buffer(struct btrfs_fs_info * fs_info,struct page * page)513 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
514 {
515 	u64 start = page_offset(page);
516 	u64 found_start;
517 	u8 result[BTRFS_CSUM_SIZE];
518 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
519 	struct extent_buffer *eb;
520 	int ret;
521 
522 	eb = (struct extent_buffer *)page->private;
523 	if (page != eb->pages[0])
524 		return 0;
525 
526 	found_start = btrfs_header_bytenr(eb);
527 	/*
528 	 * Please do not consolidate these warnings into a single if.
529 	 * It is useful to know what went wrong.
530 	 */
531 	if (WARN_ON(found_start != start))
532 		return -EUCLEAN;
533 	if (WARN_ON(!PageUptodate(page)))
534 		return -EUCLEAN;
535 
536 	ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
537 			btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
538 
539 	if (csum_tree_block(eb, result))
540 		return -EINVAL;
541 
542 	if (btrfs_header_level(eb))
543 		ret = btrfs_check_node(eb);
544 	else
545 		ret = btrfs_check_leaf_full(eb);
546 
547 	if (ret < 0) {
548 		btrfs_err(fs_info,
549 		"block=%llu write time tree block corruption detected",
550 			  eb->start);
551 		return ret;
552 	}
553 	write_extent_buffer(eb, result, 0, csum_size);
554 
555 	return 0;
556 }
557 
check_tree_block_fsid(struct extent_buffer * eb)558 static int check_tree_block_fsid(struct extent_buffer *eb)
559 {
560 	struct btrfs_fs_info *fs_info = eb->fs_info;
561 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
562 	u8 fsid[BTRFS_FSID_SIZE];
563 	int ret = 1;
564 
565 	read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
566 	while (fs_devices) {
567 		u8 *metadata_uuid;
568 
569 		/*
570 		 * Checking the incompat flag is only valid for the current
571 		 * fs. For seed devices it's forbidden to have their uuid
572 		 * changed so reading ->fsid in this case is fine
573 		 */
574 		if (fs_devices == fs_info->fs_devices &&
575 		    btrfs_fs_incompat(fs_info, METADATA_UUID))
576 			metadata_uuid = fs_devices->metadata_uuid;
577 		else
578 			metadata_uuid = fs_devices->fsid;
579 
580 		if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
581 			ret = 0;
582 			break;
583 		}
584 		fs_devices = fs_devices->seed;
585 	}
586 	return ret;
587 }
588 
btree_readpage_end_io_hook(struct btrfs_io_bio * io_bio,u64 phy_offset,struct page * page,u64 start,u64 end,int mirror)589 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
590 				      u64 phy_offset, struct page *page,
591 				      u64 start, u64 end, int mirror)
592 {
593 	u64 found_start;
594 	int found_level;
595 	struct extent_buffer *eb;
596 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
597 	struct btrfs_fs_info *fs_info = root->fs_info;
598 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
599 	int ret = 0;
600 	u8 result[BTRFS_CSUM_SIZE];
601 	int reads_done;
602 
603 	if (!page->private)
604 		goto out;
605 
606 	eb = (struct extent_buffer *)page->private;
607 
608 	/* the pending IO might have been the only thing that kept this buffer
609 	 * in memory.  Make sure we have a ref for all this other checks
610 	 */
611 	extent_buffer_get(eb);
612 
613 	reads_done = atomic_dec_and_test(&eb->io_pages);
614 	if (!reads_done)
615 		goto err;
616 
617 	eb->read_mirror = mirror;
618 	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
619 		ret = -EIO;
620 		goto err;
621 	}
622 
623 	found_start = btrfs_header_bytenr(eb);
624 	if (found_start != eb->start) {
625 		btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
626 			     eb->start, found_start);
627 		ret = -EIO;
628 		goto err;
629 	}
630 	if (check_tree_block_fsid(eb)) {
631 		btrfs_err_rl(fs_info, "bad fsid on block %llu",
632 			     eb->start);
633 		ret = -EIO;
634 		goto err;
635 	}
636 	found_level = btrfs_header_level(eb);
637 	if (found_level >= BTRFS_MAX_LEVEL) {
638 		btrfs_err(fs_info, "bad tree block level %d on %llu",
639 			  (int)btrfs_header_level(eb), eb->start);
640 		ret = -EIO;
641 		goto err;
642 	}
643 
644 	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
645 				       eb, found_level);
646 
647 	ret = csum_tree_block(eb, result);
648 	if (ret)
649 		goto err;
650 
651 	if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
652 		u32 val;
653 		u32 found = 0;
654 
655 		memcpy(&found, result, csum_size);
656 
657 		read_extent_buffer(eb, &val, 0, csum_size);
658 		btrfs_warn_rl(fs_info,
659 		"%s checksum verify failed on %llu wanted %x found %x level %d",
660 			      fs_info->sb->s_id, eb->start,
661 			      val, found, btrfs_header_level(eb));
662 		ret = -EUCLEAN;
663 		goto err;
664 	}
665 
666 	/*
667 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
668 	 * that we don't try and read the other copies of this block, just
669 	 * return -EIO.
670 	 */
671 	if (found_level == 0 && btrfs_check_leaf_full(eb)) {
672 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
673 		ret = -EIO;
674 	}
675 
676 	if (found_level > 0 && btrfs_check_node(eb))
677 		ret = -EIO;
678 
679 	if (!ret)
680 		set_extent_buffer_uptodate(eb);
681 	else
682 		btrfs_err(fs_info,
683 			  "block=%llu read time tree block corruption detected",
684 			  eb->start);
685 err:
686 	if (reads_done &&
687 	    test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
688 		btree_readahead_hook(eb, ret);
689 
690 	if (ret) {
691 		/*
692 		 * our io error hook is going to dec the io pages
693 		 * again, we have to make sure it has something
694 		 * to decrement
695 		 */
696 		atomic_inc(&eb->io_pages);
697 		clear_extent_buffer_uptodate(eb);
698 	}
699 	free_extent_buffer(eb);
700 out:
701 	return ret;
702 }
703 
end_workqueue_bio(struct bio * bio)704 static void end_workqueue_bio(struct bio *bio)
705 {
706 	struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
707 	struct btrfs_fs_info *fs_info;
708 	struct btrfs_workqueue *wq;
709 
710 	fs_info = end_io_wq->info;
711 	end_io_wq->status = bio->bi_status;
712 
713 	if (bio_op(bio) == REQ_OP_WRITE) {
714 		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
715 			wq = fs_info->endio_meta_write_workers;
716 		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
717 			wq = fs_info->endio_freespace_worker;
718 		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
719 			wq = fs_info->endio_raid56_workers;
720 		else
721 			wq = fs_info->endio_write_workers;
722 	} else {
723 		if (unlikely(end_io_wq->metadata == BTRFS_WQ_ENDIO_DIO_REPAIR))
724 			wq = fs_info->endio_repair_workers;
725 		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
726 			wq = fs_info->endio_raid56_workers;
727 		else if (end_io_wq->metadata)
728 			wq = fs_info->endio_meta_workers;
729 		else
730 			wq = fs_info->endio_workers;
731 	}
732 
733 	btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
734 	btrfs_queue_work(wq, &end_io_wq->work);
735 }
736 
btrfs_bio_wq_end_io(struct btrfs_fs_info * info,struct bio * bio,enum btrfs_wq_endio_type metadata)737 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
738 			enum btrfs_wq_endio_type metadata)
739 {
740 	struct btrfs_end_io_wq *end_io_wq;
741 
742 	end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
743 	if (!end_io_wq)
744 		return BLK_STS_RESOURCE;
745 
746 	end_io_wq->private = bio->bi_private;
747 	end_io_wq->end_io = bio->bi_end_io;
748 	end_io_wq->info = info;
749 	end_io_wq->status = 0;
750 	end_io_wq->bio = bio;
751 	end_io_wq->metadata = metadata;
752 
753 	bio->bi_private = end_io_wq;
754 	bio->bi_end_io = end_workqueue_bio;
755 	return 0;
756 }
757 
run_one_async_start(struct btrfs_work * work)758 static void run_one_async_start(struct btrfs_work *work)
759 {
760 	struct async_submit_bio *async;
761 	blk_status_t ret;
762 
763 	async = container_of(work, struct  async_submit_bio, work);
764 	ret = async->submit_bio_start(async->private_data, async->bio,
765 				      async->bio_offset);
766 	if (ret)
767 		async->status = ret;
768 }
769 
770 /*
771  * In order to insert checksums into the metadata in large chunks, we wait
772  * until bio submission time.   All the pages in the bio are checksummed and
773  * sums are attached onto the ordered extent record.
774  *
775  * At IO completion time the csums attached on the ordered extent record are
776  * inserted into the tree.
777  */
run_one_async_done(struct btrfs_work * work)778 static void run_one_async_done(struct btrfs_work *work)
779 {
780 	struct async_submit_bio *async;
781 	struct inode *inode;
782 	blk_status_t ret;
783 
784 	async = container_of(work, struct  async_submit_bio, work);
785 	inode = async->private_data;
786 
787 	/* If an error occurred we just want to clean up the bio and move on */
788 	if (async->status) {
789 		async->bio->bi_status = async->status;
790 		bio_endio(async->bio);
791 		return;
792 	}
793 
794 	ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio,
795 			async->mirror_num, 1);
796 	if (ret) {
797 		async->bio->bi_status = ret;
798 		bio_endio(async->bio);
799 	}
800 }
801 
run_one_async_free(struct btrfs_work * work)802 static void run_one_async_free(struct btrfs_work *work)
803 {
804 	struct async_submit_bio *async;
805 
806 	async = container_of(work, struct  async_submit_bio, work);
807 	kfree(async);
808 }
809 
btrfs_wq_submit_bio(struct btrfs_fs_info * fs_info,struct bio * bio,int mirror_num,unsigned long bio_flags,u64 bio_offset,void * private_data,extent_submit_bio_start_t * submit_bio_start)810 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
811 				 int mirror_num, unsigned long bio_flags,
812 				 u64 bio_offset, void *private_data,
813 				 extent_submit_bio_start_t *submit_bio_start)
814 {
815 	struct async_submit_bio *async;
816 
817 	async = kmalloc(sizeof(*async), GFP_NOFS);
818 	if (!async)
819 		return BLK_STS_RESOURCE;
820 
821 	async->private_data = private_data;
822 	async->bio = bio;
823 	async->mirror_num = mirror_num;
824 	async->submit_bio_start = submit_bio_start;
825 
826 	btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
827 			run_one_async_free);
828 
829 	async->bio_offset = bio_offset;
830 
831 	async->status = 0;
832 
833 	if (op_is_sync(bio->bi_opf))
834 		btrfs_set_work_high_priority(&async->work);
835 
836 	btrfs_queue_work(fs_info->workers, &async->work);
837 	return 0;
838 }
839 
btree_csum_one_bio(struct bio * bio)840 static blk_status_t btree_csum_one_bio(struct bio *bio)
841 {
842 	struct bio_vec *bvec;
843 	struct btrfs_root *root;
844 	int ret = 0;
845 	struct bvec_iter_all iter_all;
846 
847 	ASSERT(!bio_flagged(bio, BIO_CLONED));
848 	bio_for_each_segment_all(bvec, bio, iter_all) {
849 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
850 		ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
851 		if (ret)
852 			break;
853 	}
854 
855 	return errno_to_blk_status(ret);
856 }
857 
btree_submit_bio_start(void * private_data,struct bio * bio,u64 bio_offset)858 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
859 					     u64 bio_offset)
860 {
861 	/*
862 	 * when we're called for a write, we're already in the async
863 	 * submission context.  Just jump into btrfs_map_bio
864 	 */
865 	return btree_csum_one_bio(bio);
866 }
867 
check_async_write(struct btrfs_fs_info * fs_info,struct btrfs_inode * bi)868 static int check_async_write(struct btrfs_fs_info *fs_info,
869 			     struct btrfs_inode *bi)
870 {
871 	if (atomic_read(&bi->sync_writers))
872 		return 0;
873 	if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
874 		return 0;
875 	return 1;
876 }
877 
btree_submit_bio_hook(struct inode * inode,struct bio * bio,int mirror_num,unsigned long bio_flags)878 static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio,
879 					  int mirror_num,
880 					  unsigned long bio_flags)
881 {
882 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
883 	int async = check_async_write(fs_info, BTRFS_I(inode));
884 	blk_status_t ret;
885 
886 	if (bio_op(bio) != REQ_OP_WRITE) {
887 		/*
888 		 * called for a read, do the setup so that checksum validation
889 		 * can happen in the async kernel threads
890 		 */
891 		ret = btrfs_bio_wq_end_io(fs_info, bio,
892 					  BTRFS_WQ_ENDIO_METADATA);
893 		if (ret)
894 			goto out_w_error;
895 		ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
896 	} else if (!async) {
897 		ret = btree_csum_one_bio(bio);
898 		if (ret)
899 			goto out_w_error;
900 		ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
901 	} else {
902 		/*
903 		 * kthread helpers are used to submit writes so that
904 		 * checksumming can happen in parallel across all CPUs
905 		 */
906 		ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
907 					  0, inode, btree_submit_bio_start);
908 	}
909 
910 	if (ret)
911 		goto out_w_error;
912 	return 0;
913 
914 out_w_error:
915 	bio->bi_status = ret;
916 	bio_endio(bio);
917 	return ret;
918 }
919 
920 #ifdef CONFIG_MIGRATION
btree_migratepage(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)921 static int btree_migratepage(struct address_space *mapping,
922 			struct page *newpage, struct page *page,
923 			enum migrate_mode mode)
924 {
925 	/*
926 	 * we can't safely write a btree page from here,
927 	 * we haven't done the locking hook
928 	 */
929 	if (PageDirty(page))
930 		return -EAGAIN;
931 	/*
932 	 * Buffers may be managed in a filesystem specific way.
933 	 * We must have no buffers or drop them.
934 	 */
935 	if (page_has_private(page) &&
936 	    !try_to_release_page(page, GFP_KERNEL))
937 		return -EAGAIN;
938 	return migrate_page(mapping, newpage, page, mode);
939 }
940 #endif
941 
942 
btree_writepages(struct address_space * mapping,struct writeback_control * wbc)943 static int btree_writepages(struct address_space *mapping,
944 			    struct writeback_control *wbc)
945 {
946 	struct btrfs_fs_info *fs_info;
947 	int ret;
948 
949 	if (wbc->sync_mode == WB_SYNC_NONE) {
950 
951 		if (wbc->for_kupdate)
952 			return 0;
953 
954 		fs_info = BTRFS_I(mapping->host)->root->fs_info;
955 		/* this is a bit racy, but that's ok */
956 		ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
957 					     BTRFS_DIRTY_METADATA_THRESH,
958 					     fs_info->dirty_metadata_batch);
959 		if (ret < 0)
960 			return 0;
961 	}
962 	return btree_write_cache_pages(mapping, wbc);
963 }
964 
btree_readpage(struct file * file,struct page * page)965 static int btree_readpage(struct file *file, struct page *page)
966 {
967 	struct extent_io_tree *tree;
968 	tree = &BTRFS_I(page->mapping->host)->io_tree;
969 	return extent_read_full_page(tree, page, btree_get_extent, 0);
970 }
971 
btree_releasepage(struct page * page,gfp_t gfp_flags)972 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
973 {
974 	if (PageWriteback(page) || PageDirty(page))
975 		return 0;
976 
977 	return try_release_extent_buffer(page);
978 }
979 
btree_invalidatepage(struct page * page,unsigned int offset,unsigned int length)980 static void btree_invalidatepage(struct page *page, unsigned int offset,
981 				 unsigned int length)
982 {
983 	struct extent_io_tree *tree;
984 	tree = &BTRFS_I(page->mapping->host)->io_tree;
985 	extent_invalidatepage(tree, page, offset);
986 	btree_releasepage(page, GFP_NOFS);
987 	if (PagePrivate(page)) {
988 		btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
989 			   "page private not zero on page %llu",
990 			   (unsigned long long)page_offset(page));
991 		ClearPagePrivate(page);
992 		set_page_private(page, 0);
993 		put_page(page);
994 	}
995 }
996 
btree_set_page_dirty(struct page * page)997 static int btree_set_page_dirty(struct page *page)
998 {
999 #ifdef DEBUG
1000 	struct extent_buffer *eb;
1001 
1002 	BUG_ON(!PagePrivate(page));
1003 	eb = (struct extent_buffer *)page->private;
1004 	BUG_ON(!eb);
1005 	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1006 	BUG_ON(!atomic_read(&eb->refs));
1007 	btrfs_assert_tree_locked(eb);
1008 #endif
1009 	return __set_page_dirty_nobuffers(page);
1010 }
1011 
1012 static const struct address_space_operations btree_aops = {
1013 	.readpage	= btree_readpage,
1014 	.writepages	= btree_writepages,
1015 	.releasepage	= btree_releasepage,
1016 	.invalidatepage = btree_invalidatepage,
1017 #ifdef CONFIG_MIGRATION
1018 	.migratepage	= btree_migratepage,
1019 #endif
1020 	.set_page_dirty = btree_set_page_dirty,
1021 };
1022 
readahead_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr)1023 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1024 {
1025 	struct extent_buffer *buf = NULL;
1026 	int ret;
1027 
1028 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1029 	if (IS_ERR(buf))
1030 		return;
1031 
1032 	ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
1033 	if (ret < 0)
1034 		free_extent_buffer_stale(buf);
1035 	else
1036 		free_extent_buffer(buf);
1037 }
1038 
btrfs_find_create_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr)1039 struct extent_buffer *btrfs_find_create_tree_block(
1040 						struct btrfs_fs_info *fs_info,
1041 						u64 bytenr)
1042 {
1043 	if (btrfs_is_testing(fs_info))
1044 		return alloc_test_extent_buffer(fs_info, bytenr);
1045 	return alloc_extent_buffer(fs_info, bytenr);
1046 }
1047 
1048 /*
1049  * Read tree block at logical address @bytenr and do variant basic but critical
1050  * verification.
1051  *
1052  * @parent_transid:	expected transid of this tree block, skip check if 0
1053  * @level:		expected level, mandatory check
1054  * @first_key:		expected key in slot 0, skip check if NULL
1055  */
read_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr,u64 parent_transid,int level,struct btrfs_key * first_key)1056 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1057 				      u64 parent_transid, int level,
1058 				      struct btrfs_key *first_key)
1059 {
1060 	struct extent_buffer *buf = NULL;
1061 	int ret;
1062 
1063 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1064 	if (IS_ERR(buf))
1065 		return buf;
1066 
1067 	ret = btree_read_extent_buffer_pages(buf, parent_transid,
1068 					     level, first_key);
1069 	if (ret) {
1070 		free_extent_buffer_stale(buf);
1071 		return ERR_PTR(ret);
1072 	}
1073 	return buf;
1074 
1075 }
1076 
btrfs_clean_tree_block(struct extent_buffer * buf)1077 void btrfs_clean_tree_block(struct extent_buffer *buf)
1078 {
1079 	struct btrfs_fs_info *fs_info = buf->fs_info;
1080 	if (btrfs_header_generation(buf) ==
1081 	    fs_info->running_transaction->transid) {
1082 		btrfs_assert_tree_locked(buf);
1083 
1084 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1085 			percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1086 						 -buf->len,
1087 						 fs_info->dirty_metadata_batch);
1088 			/* ugh, clear_extent_buffer_dirty needs to lock the page */
1089 			btrfs_set_lock_blocking_write(buf);
1090 			clear_extent_buffer_dirty(buf);
1091 		}
1092 	}
1093 }
1094 
btrfs_alloc_subvolume_writers(void)1095 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1096 {
1097 	struct btrfs_subvolume_writers *writers;
1098 	int ret;
1099 
1100 	writers = kmalloc(sizeof(*writers), GFP_NOFS);
1101 	if (!writers)
1102 		return ERR_PTR(-ENOMEM);
1103 
1104 	ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
1105 	if (ret < 0) {
1106 		kfree(writers);
1107 		return ERR_PTR(ret);
1108 	}
1109 
1110 	init_waitqueue_head(&writers->wait);
1111 	return writers;
1112 }
1113 
1114 static void
btrfs_free_subvolume_writers(struct btrfs_subvolume_writers * writers)1115 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1116 {
1117 	percpu_counter_destroy(&writers->counter);
1118 	kfree(writers);
1119 }
1120 
__setup_root(struct btrfs_root * root,struct btrfs_fs_info * fs_info,u64 objectid)1121 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1122 			 u64 objectid)
1123 {
1124 	bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1125 	root->node = NULL;
1126 	root->commit_root = NULL;
1127 	root->state = 0;
1128 	root->orphan_cleanup_state = 0;
1129 
1130 	root->last_trans = 0;
1131 	root->highest_objectid = 0;
1132 	root->nr_delalloc_inodes = 0;
1133 	root->nr_ordered_extents = 0;
1134 	root->inode_tree = RB_ROOT;
1135 	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1136 	root->block_rsv = NULL;
1137 
1138 	INIT_LIST_HEAD(&root->dirty_list);
1139 	INIT_LIST_HEAD(&root->root_list);
1140 	INIT_LIST_HEAD(&root->delalloc_inodes);
1141 	INIT_LIST_HEAD(&root->delalloc_root);
1142 	INIT_LIST_HEAD(&root->ordered_extents);
1143 	INIT_LIST_HEAD(&root->ordered_root);
1144 	INIT_LIST_HEAD(&root->reloc_dirty_list);
1145 	INIT_LIST_HEAD(&root->logged_list[0]);
1146 	INIT_LIST_HEAD(&root->logged_list[1]);
1147 	spin_lock_init(&root->inode_lock);
1148 	spin_lock_init(&root->delalloc_lock);
1149 	spin_lock_init(&root->ordered_extent_lock);
1150 	spin_lock_init(&root->accounting_lock);
1151 	spin_lock_init(&root->log_extents_lock[0]);
1152 	spin_lock_init(&root->log_extents_lock[1]);
1153 	spin_lock_init(&root->qgroup_meta_rsv_lock);
1154 	mutex_init(&root->objectid_mutex);
1155 	mutex_init(&root->log_mutex);
1156 	mutex_init(&root->ordered_extent_mutex);
1157 	mutex_init(&root->delalloc_mutex);
1158 	init_waitqueue_head(&root->log_writer_wait);
1159 	init_waitqueue_head(&root->log_commit_wait[0]);
1160 	init_waitqueue_head(&root->log_commit_wait[1]);
1161 	INIT_LIST_HEAD(&root->log_ctxs[0]);
1162 	INIT_LIST_HEAD(&root->log_ctxs[1]);
1163 	atomic_set(&root->log_commit[0], 0);
1164 	atomic_set(&root->log_commit[1], 0);
1165 	atomic_set(&root->log_writers, 0);
1166 	atomic_set(&root->log_batch, 0);
1167 	refcount_set(&root->refs, 1);
1168 	atomic_set(&root->will_be_snapshotted, 0);
1169 	atomic_set(&root->snapshot_force_cow, 0);
1170 	atomic_set(&root->nr_swapfiles, 0);
1171 	root->log_transid = 0;
1172 	root->log_transid_committed = -1;
1173 	root->last_log_commit = 0;
1174 	if (!dummy)
1175 		extent_io_tree_init(fs_info, &root->dirty_log_pages,
1176 				    IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1177 
1178 	memset(&root->root_key, 0, sizeof(root->root_key));
1179 	memset(&root->root_item, 0, sizeof(root->root_item));
1180 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1181 	if (!dummy)
1182 		root->defrag_trans_start = fs_info->generation;
1183 	else
1184 		root->defrag_trans_start = 0;
1185 	root->root_key.objectid = objectid;
1186 	root->anon_dev = 0;
1187 
1188 	spin_lock_init(&root->root_item_lock);
1189 	btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1190 }
1191 
btrfs_alloc_root(struct btrfs_fs_info * fs_info,gfp_t flags)1192 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1193 		gfp_t flags)
1194 {
1195 	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1196 	if (root)
1197 		root->fs_info = fs_info;
1198 	return root;
1199 }
1200 
1201 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1202 /* Should only be used by the testing infrastructure */
btrfs_alloc_dummy_root(struct btrfs_fs_info * fs_info)1203 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1204 {
1205 	struct btrfs_root *root;
1206 
1207 	if (!fs_info)
1208 		return ERR_PTR(-EINVAL);
1209 
1210 	root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1211 	if (!root)
1212 		return ERR_PTR(-ENOMEM);
1213 
1214 	/* We don't use the stripesize in selftest, set it as sectorsize */
1215 	__setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
1216 	root->alloc_bytenr = 0;
1217 
1218 	return root;
1219 }
1220 #endif
1221 
btrfs_create_tree(struct btrfs_trans_handle * trans,u64 objectid)1222 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1223 				     u64 objectid)
1224 {
1225 	struct btrfs_fs_info *fs_info = trans->fs_info;
1226 	struct extent_buffer *leaf;
1227 	struct btrfs_root *tree_root = fs_info->tree_root;
1228 	struct btrfs_root *root;
1229 	struct btrfs_key key;
1230 	unsigned int nofs_flag;
1231 	int ret = 0;
1232 	uuid_le uuid = NULL_UUID_LE;
1233 
1234 	/*
1235 	 * We're holding a transaction handle, so use a NOFS memory allocation
1236 	 * context to avoid deadlock if reclaim happens.
1237 	 */
1238 	nofs_flag = memalloc_nofs_save();
1239 	root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1240 	memalloc_nofs_restore(nofs_flag);
1241 	if (!root)
1242 		return ERR_PTR(-ENOMEM);
1243 
1244 	__setup_root(root, fs_info, objectid);
1245 	root->root_key.objectid = objectid;
1246 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1247 	root->root_key.offset = 0;
1248 
1249 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1250 	if (IS_ERR(leaf)) {
1251 		ret = PTR_ERR(leaf);
1252 		leaf = NULL;
1253 		goto fail;
1254 	}
1255 
1256 	root->node = leaf;
1257 	btrfs_mark_buffer_dirty(leaf);
1258 
1259 	root->commit_root = btrfs_root_node(root);
1260 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1261 
1262 	root->root_item.flags = 0;
1263 	root->root_item.byte_limit = 0;
1264 	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1265 	btrfs_set_root_generation(&root->root_item, trans->transid);
1266 	btrfs_set_root_level(&root->root_item, 0);
1267 	btrfs_set_root_refs(&root->root_item, 1);
1268 	btrfs_set_root_used(&root->root_item, leaf->len);
1269 	btrfs_set_root_last_snapshot(&root->root_item, 0);
1270 	btrfs_set_root_dirid(&root->root_item, 0);
1271 	if (is_fstree(objectid))
1272 		uuid_le_gen(&uuid);
1273 	memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1274 	root->root_item.drop_level = 0;
1275 
1276 	key.objectid = objectid;
1277 	key.type = BTRFS_ROOT_ITEM_KEY;
1278 	key.offset = 0;
1279 	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1280 	if (ret)
1281 		goto fail;
1282 
1283 	btrfs_tree_unlock(leaf);
1284 
1285 	return root;
1286 
1287 fail:
1288 	if (leaf) {
1289 		btrfs_tree_unlock(leaf);
1290 		free_extent_buffer(root->commit_root);
1291 		free_extent_buffer(leaf);
1292 	}
1293 	kfree(root);
1294 
1295 	return ERR_PTR(ret);
1296 }
1297 
alloc_log_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)1298 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1299 					 struct btrfs_fs_info *fs_info)
1300 {
1301 	struct btrfs_root *root;
1302 	struct extent_buffer *leaf;
1303 
1304 	root = btrfs_alloc_root(fs_info, GFP_NOFS);
1305 	if (!root)
1306 		return ERR_PTR(-ENOMEM);
1307 
1308 	__setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1309 
1310 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1311 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1312 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1313 
1314 	/*
1315 	 * DON'T set REF_COWS for log trees
1316 	 *
1317 	 * log trees do not get reference counted because they go away
1318 	 * before a real commit is actually done.  They do store pointers
1319 	 * to file data extents, and those reference counts still get
1320 	 * updated (along with back refs to the log tree).
1321 	 */
1322 
1323 	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1324 			NULL, 0, 0, 0);
1325 	if (IS_ERR(leaf)) {
1326 		kfree(root);
1327 		return ERR_CAST(leaf);
1328 	}
1329 
1330 	root->node = leaf;
1331 
1332 	btrfs_mark_buffer_dirty(root->node);
1333 	btrfs_tree_unlock(root->node);
1334 	return root;
1335 }
1336 
btrfs_init_log_root_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)1337 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1338 			     struct btrfs_fs_info *fs_info)
1339 {
1340 	struct btrfs_root *log_root;
1341 
1342 	log_root = alloc_log_tree(trans, fs_info);
1343 	if (IS_ERR(log_root))
1344 		return PTR_ERR(log_root);
1345 	WARN_ON(fs_info->log_root_tree);
1346 	fs_info->log_root_tree = log_root;
1347 	return 0;
1348 }
1349 
btrfs_add_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root)1350 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1351 		       struct btrfs_root *root)
1352 {
1353 	struct btrfs_fs_info *fs_info = root->fs_info;
1354 	struct btrfs_root *log_root;
1355 	struct btrfs_inode_item *inode_item;
1356 
1357 	log_root = alloc_log_tree(trans, fs_info);
1358 	if (IS_ERR(log_root))
1359 		return PTR_ERR(log_root);
1360 
1361 	log_root->last_trans = trans->transid;
1362 	log_root->root_key.offset = root->root_key.objectid;
1363 
1364 	inode_item = &log_root->root_item.inode;
1365 	btrfs_set_stack_inode_generation(inode_item, 1);
1366 	btrfs_set_stack_inode_size(inode_item, 3);
1367 	btrfs_set_stack_inode_nlink(inode_item, 1);
1368 	btrfs_set_stack_inode_nbytes(inode_item,
1369 				     fs_info->nodesize);
1370 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1371 
1372 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1373 
1374 	WARN_ON(root->log_root);
1375 	root->log_root = log_root;
1376 	root->log_transid = 0;
1377 	root->log_transid_committed = -1;
1378 	root->last_log_commit = 0;
1379 	return 0;
1380 }
1381 
btrfs_read_tree_root(struct btrfs_root * tree_root,struct btrfs_key * key)1382 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1383 					       struct btrfs_key *key)
1384 {
1385 	struct btrfs_root *root;
1386 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1387 	struct btrfs_path *path;
1388 	u64 generation;
1389 	int ret;
1390 	int level;
1391 
1392 	path = btrfs_alloc_path();
1393 	if (!path)
1394 		return ERR_PTR(-ENOMEM);
1395 
1396 	root = btrfs_alloc_root(fs_info, GFP_NOFS);
1397 	if (!root) {
1398 		ret = -ENOMEM;
1399 		goto alloc_fail;
1400 	}
1401 
1402 	__setup_root(root, fs_info, key->objectid);
1403 
1404 	ret = btrfs_find_root(tree_root, key, path,
1405 			      &root->root_item, &root->root_key);
1406 	if (ret) {
1407 		if (ret > 0)
1408 			ret = -ENOENT;
1409 		goto find_fail;
1410 	}
1411 
1412 	generation = btrfs_root_generation(&root->root_item);
1413 	level = btrfs_root_level(&root->root_item);
1414 	root->node = read_tree_block(fs_info,
1415 				     btrfs_root_bytenr(&root->root_item),
1416 				     generation, level, NULL);
1417 	if (IS_ERR(root->node)) {
1418 		ret = PTR_ERR(root->node);
1419 		goto find_fail;
1420 	} else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1421 		ret = -EIO;
1422 		free_extent_buffer(root->node);
1423 		goto find_fail;
1424 	}
1425 	root->commit_root = btrfs_root_node(root);
1426 out:
1427 	btrfs_free_path(path);
1428 	return root;
1429 
1430 find_fail:
1431 	kfree(root);
1432 alloc_fail:
1433 	root = ERR_PTR(ret);
1434 	goto out;
1435 }
1436 
btrfs_read_fs_root(struct btrfs_root * tree_root,struct btrfs_key * location)1437 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1438 				      struct btrfs_key *location)
1439 {
1440 	struct btrfs_root *root;
1441 
1442 	root = btrfs_read_tree_root(tree_root, location);
1443 	if (IS_ERR(root))
1444 		return root;
1445 
1446 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1447 		set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1448 		btrfs_check_and_init_root_item(&root->root_item);
1449 	}
1450 
1451 	return root;
1452 }
1453 
btrfs_init_fs_root(struct btrfs_root * root)1454 int btrfs_init_fs_root(struct btrfs_root *root)
1455 {
1456 	int ret;
1457 	struct btrfs_subvolume_writers *writers;
1458 
1459 	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1460 	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1461 					GFP_NOFS);
1462 	if (!root->free_ino_pinned || !root->free_ino_ctl) {
1463 		ret = -ENOMEM;
1464 		goto fail;
1465 	}
1466 
1467 	writers = btrfs_alloc_subvolume_writers();
1468 	if (IS_ERR(writers)) {
1469 		ret = PTR_ERR(writers);
1470 		goto fail;
1471 	}
1472 	root->subv_writers = writers;
1473 
1474 	btrfs_init_free_ino_ctl(root);
1475 	spin_lock_init(&root->ino_cache_lock);
1476 	init_waitqueue_head(&root->ino_cache_wait);
1477 
1478 	ret = get_anon_bdev(&root->anon_dev);
1479 	if (ret)
1480 		goto fail;
1481 
1482 	mutex_lock(&root->objectid_mutex);
1483 	ret = btrfs_find_highest_objectid(root,
1484 					&root->highest_objectid);
1485 	if (ret) {
1486 		mutex_unlock(&root->objectid_mutex);
1487 		goto fail;
1488 	}
1489 
1490 	ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1491 
1492 	mutex_unlock(&root->objectid_mutex);
1493 
1494 	return 0;
1495 fail:
1496 	/* The caller is responsible to call btrfs_free_fs_root */
1497 	return ret;
1498 }
1499 
btrfs_lookup_fs_root(struct btrfs_fs_info * fs_info,u64 root_id)1500 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1501 					u64 root_id)
1502 {
1503 	struct btrfs_root *root;
1504 
1505 	spin_lock(&fs_info->fs_roots_radix_lock);
1506 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1507 				 (unsigned long)root_id);
1508 	spin_unlock(&fs_info->fs_roots_radix_lock);
1509 	return root;
1510 }
1511 
btrfs_insert_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_root * root)1512 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1513 			 struct btrfs_root *root)
1514 {
1515 	int ret;
1516 
1517 	ret = radix_tree_preload(GFP_NOFS);
1518 	if (ret)
1519 		return ret;
1520 
1521 	spin_lock(&fs_info->fs_roots_radix_lock);
1522 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1523 				(unsigned long)root->root_key.objectid,
1524 				root);
1525 	if (ret == 0)
1526 		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1527 	spin_unlock(&fs_info->fs_roots_radix_lock);
1528 	radix_tree_preload_end();
1529 
1530 	return ret;
1531 }
1532 
btrfs_get_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_key * location,bool check_ref)1533 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1534 				     struct btrfs_key *location,
1535 				     bool check_ref)
1536 {
1537 	struct btrfs_root *root;
1538 	struct btrfs_path *path;
1539 	struct btrfs_key key;
1540 	int ret;
1541 
1542 	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1543 		return fs_info->tree_root;
1544 	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1545 		return fs_info->extent_root;
1546 	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1547 		return fs_info->chunk_root;
1548 	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1549 		return fs_info->dev_root;
1550 	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1551 		return fs_info->csum_root;
1552 	if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1553 		return fs_info->quota_root ? fs_info->quota_root :
1554 					     ERR_PTR(-ENOENT);
1555 	if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1556 		return fs_info->uuid_root ? fs_info->uuid_root :
1557 					    ERR_PTR(-ENOENT);
1558 	if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1559 		return fs_info->free_space_root ? fs_info->free_space_root :
1560 						  ERR_PTR(-ENOENT);
1561 again:
1562 	root = btrfs_lookup_fs_root(fs_info, location->objectid);
1563 	if (root) {
1564 		if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1565 			return ERR_PTR(-ENOENT);
1566 		return root;
1567 	}
1568 
1569 	root = btrfs_read_fs_root(fs_info->tree_root, location);
1570 	if (IS_ERR(root))
1571 		return root;
1572 
1573 	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1574 		ret = -ENOENT;
1575 		goto fail;
1576 	}
1577 
1578 	ret = btrfs_init_fs_root(root);
1579 	if (ret)
1580 		goto fail;
1581 
1582 	path = btrfs_alloc_path();
1583 	if (!path) {
1584 		ret = -ENOMEM;
1585 		goto fail;
1586 	}
1587 	key.objectid = BTRFS_ORPHAN_OBJECTID;
1588 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1589 	key.offset = location->objectid;
1590 
1591 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1592 	btrfs_free_path(path);
1593 	if (ret < 0)
1594 		goto fail;
1595 	if (ret == 0)
1596 		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1597 
1598 	ret = btrfs_insert_fs_root(fs_info, root);
1599 	if (ret) {
1600 		if (ret == -EEXIST) {
1601 			btrfs_free_fs_root(root);
1602 			goto again;
1603 		}
1604 		goto fail;
1605 	}
1606 	return root;
1607 fail:
1608 	btrfs_free_fs_root(root);
1609 	return ERR_PTR(ret);
1610 }
1611 
btrfs_congested_fn(void * congested_data,int bdi_bits)1612 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1613 {
1614 	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1615 	int ret = 0;
1616 	struct btrfs_device *device;
1617 	struct backing_dev_info *bdi;
1618 
1619 	rcu_read_lock();
1620 	list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1621 		if (!device->bdev)
1622 			continue;
1623 		bdi = device->bdev->bd_bdi;
1624 		if (bdi_congested(bdi, bdi_bits)) {
1625 			ret = 1;
1626 			break;
1627 		}
1628 	}
1629 	rcu_read_unlock();
1630 	return ret;
1631 }
1632 
1633 /*
1634  * called by the kthread helper functions to finally call the bio end_io
1635  * functions.  This is where read checksum verification actually happens
1636  */
end_workqueue_fn(struct btrfs_work * work)1637 static void end_workqueue_fn(struct btrfs_work *work)
1638 {
1639 	struct bio *bio;
1640 	struct btrfs_end_io_wq *end_io_wq;
1641 
1642 	end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1643 	bio = end_io_wq->bio;
1644 
1645 	bio->bi_status = end_io_wq->status;
1646 	bio->bi_private = end_io_wq->private;
1647 	bio->bi_end_io = end_io_wq->end_io;
1648 	bio_endio(bio);
1649 	kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1650 }
1651 
cleaner_kthread(void * arg)1652 static int cleaner_kthread(void *arg)
1653 {
1654 	struct btrfs_root *root = arg;
1655 	struct btrfs_fs_info *fs_info = root->fs_info;
1656 	int again;
1657 
1658 	while (1) {
1659 		again = 0;
1660 
1661 		set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1662 
1663 		/* Make the cleaner go to sleep early. */
1664 		if (btrfs_need_cleaner_sleep(fs_info))
1665 			goto sleep;
1666 
1667 		/*
1668 		 * Do not do anything if we might cause open_ctree() to block
1669 		 * before we have finished mounting the filesystem.
1670 		 */
1671 		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1672 			goto sleep;
1673 
1674 		if (!mutex_trylock(&fs_info->cleaner_mutex))
1675 			goto sleep;
1676 
1677 		/*
1678 		 * Avoid the problem that we change the status of the fs
1679 		 * during the above check and trylock.
1680 		 */
1681 		if (btrfs_need_cleaner_sleep(fs_info)) {
1682 			mutex_unlock(&fs_info->cleaner_mutex);
1683 			goto sleep;
1684 		}
1685 
1686 		btrfs_run_delayed_iputs(fs_info);
1687 
1688 		again = btrfs_clean_one_deleted_snapshot(root);
1689 		mutex_unlock(&fs_info->cleaner_mutex);
1690 
1691 		/*
1692 		 * The defragger has dealt with the R/O remount and umount,
1693 		 * needn't do anything special here.
1694 		 */
1695 		btrfs_run_defrag_inodes(fs_info);
1696 
1697 		/*
1698 		 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1699 		 * with relocation (btrfs_relocate_chunk) and relocation
1700 		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1701 		 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1702 		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1703 		 * unused block groups.
1704 		 */
1705 		btrfs_delete_unused_bgs(fs_info);
1706 sleep:
1707 		clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1708 		if (kthread_should_park())
1709 			kthread_parkme();
1710 		if (kthread_should_stop())
1711 			return 0;
1712 		if (!again) {
1713 			set_current_state(TASK_INTERRUPTIBLE);
1714 			schedule();
1715 			__set_current_state(TASK_RUNNING);
1716 		}
1717 	}
1718 }
1719 
transaction_kthread(void * arg)1720 static int transaction_kthread(void *arg)
1721 {
1722 	struct btrfs_root *root = arg;
1723 	struct btrfs_fs_info *fs_info = root->fs_info;
1724 	struct btrfs_trans_handle *trans;
1725 	struct btrfs_transaction *cur;
1726 	u64 transid;
1727 	time64_t now;
1728 	unsigned long delay;
1729 	bool cannot_commit;
1730 
1731 	do {
1732 		cannot_commit = false;
1733 		delay = HZ * fs_info->commit_interval;
1734 		mutex_lock(&fs_info->transaction_kthread_mutex);
1735 
1736 		spin_lock(&fs_info->trans_lock);
1737 		cur = fs_info->running_transaction;
1738 		if (!cur) {
1739 			spin_unlock(&fs_info->trans_lock);
1740 			goto sleep;
1741 		}
1742 
1743 		now = ktime_get_seconds();
1744 		if (cur->state < TRANS_STATE_BLOCKED &&
1745 		    !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
1746 		    (now < cur->start_time ||
1747 		     now - cur->start_time < fs_info->commit_interval)) {
1748 			spin_unlock(&fs_info->trans_lock);
1749 			delay = HZ * 5;
1750 			goto sleep;
1751 		}
1752 		transid = cur->transid;
1753 		spin_unlock(&fs_info->trans_lock);
1754 
1755 		/* If the file system is aborted, this will always fail. */
1756 		trans = btrfs_attach_transaction(root);
1757 		if (IS_ERR(trans)) {
1758 			if (PTR_ERR(trans) != -ENOENT)
1759 				cannot_commit = true;
1760 			goto sleep;
1761 		}
1762 		if (transid == trans->transid) {
1763 			btrfs_commit_transaction(trans);
1764 		} else {
1765 			btrfs_end_transaction(trans);
1766 		}
1767 sleep:
1768 		wake_up_process(fs_info->cleaner_kthread);
1769 		mutex_unlock(&fs_info->transaction_kthread_mutex);
1770 
1771 		if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1772 				      &fs_info->fs_state)))
1773 			btrfs_cleanup_transaction(fs_info);
1774 		if (!kthread_should_stop() &&
1775 				(!btrfs_transaction_blocked(fs_info) ||
1776 				 cannot_commit))
1777 			schedule_timeout_interruptible(delay);
1778 	} while (!kthread_should_stop());
1779 	return 0;
1780 }
1781 
1782 /*
1783  * this will find the highest generation in the array of
1784  * root backups.  The index of the highest array is returned,
1785  * or -1 if we can't find anything.
1786  *
1787  * We check to make sure the array is valid by comparing the
1788  * generation of the latest  root in the array with the generation
1789  * in the super block.  If they don't match we pitch it.
1790  */
find_newest_super_backup(struct btrfs_fs_info * info,u64 newest_gen)1791 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1792 {
1793 	u64 cur;
1794 	int newest_index = -1;
1795 	struct btrfs_root_backup *root_backup;
1796 	int i;
1797 
1798 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1799 		root_backup = info->super_copy->super_roots + i;
1800 		cur = btrfs_backup_tree_root_gen(root_backup);
1801 		if (cur == newest_gen)
1802 			newest_index = i;
1803 	}
1804 
1805 	/* check to see if we actually wrapped around */
1806 	if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1807 		root_backup = info->super_copy->super_roots;
1808 		cur = btrfs_backup_tree_root_gen(root_backup);
1809 		if (cur == newest_gen)
1810 			newest_index = 0;
1811 	}
1812 	return newest_index;
1813 }
1814 
1815 
1816 /*
1817  * find the oldest backup so we know where to store new entries
1818  * in the backup array.  This will set the backup_root_index
1819  * field in the fs_info struct
1820  */
find_oldest_super_backup(struct btrfs_fs_info * info,u64 newest_gen)1821 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1822 				     u64 newest_gen)
1823 {
1824 	int newest_index = -1;
1825 
1826 	newest_index = find_newest_super_backup(info, newest_gen);
1827 	/* if there was garbage in there, just move along */
1828 	if (newest_index == -1) {
1829 		info->backup_root_index = 0;
1830 	} else {
1831 		info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1832 	}
1833 }
1834 
1835 /*
1836  * copy all the root pointers into the super backup array.
1837  * this will bump the backup pointer by one when it is
1838  * done
1839  */
backup_super_roots(struct btrfs_fs_info * info)1840 static void backup_super_roots(struct btrfs_fs_info *info)
1841 {
1842 	int next_backup;
1843 	struct btrfs_root_backup *root_backup;
1844 	int last_backup;
1845 
1846 	next_backup = info->backup_root_index;
1847 	last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1848 		BTRFS_NUM_BACKUP_ROOTS;
1849 
1850 	/*
1851 	 * just overwrite the last backup if we're at the same generation
1852 	 * this happens only at umount
1853 	 */
1854 	root_backup = info->super_for_commit->super_roots + last_backup;
1855 	if (btrfs_backup_tree_root_gen(root_backup) ==
1856 	    btrfs_header_generation(info->tree_root->node))
1857 		next_backup = last_backup;
1858 
1859 	root_backup = info->super_for_commit->super_roots + next_backup;
1860 
1861 	/*
1862 	 * make sure all of our padding and empty slots get zero filled
1863 	 * regardless of which ones we use today
1864 	 */
1865 	memset(root_backup, 0, sizeof(*root_backup));
1866 
1867 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1868 
1869 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1870 	btrfs_set_backup_tree_root_gen(root_backup,
1871 			       btrfs_header_generation(info->tree_root->node));
1872 
1873 	btrfs_set_backup_tree_root_level(root_backup,
1874 			       btrfs_header_level(info->tree_root->node));
1875 
1876 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1877 	btrfs_set_backup_chunk_root_gen(root_backup,
1878 			       btrfs_header_generation(info->chunk_root->node));
1879 	btrfs_set_backup_chunk_root_level(root_backup,
1880 			       btrfs_header_level(info->chunk_root->node));
1881 
1882 	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1883 	btrfs_set_backup_extent_root_gen(root_backup,
1884 			       btrfs_header_generation(info->extent_root->node));
1885 	btrfs_set_backup_extent_root_level(root_backup,
1886 			       btrfs_header_level(info->extent_root->node));
1887 
1888 	/*
1889 	 * we might commit during log recovery, which happens before we set
1890 	 * the fs_root.  Make sure it is valid before we fill it in.
1891 	 */
1892 	if (info->fs_root && info->fs_root->node) {
1893 		btrfs_set_backup_fs_root(root_backup,
1894 					 info->fs_root->node->start);
1895 		btrfs_set_backup_fs_root_gen(root_backup,
1896 			       btrfs_header_generation(info->fs_root->node));
1897 		btrfs_set_backup_fs_root_level(root_backup,
1898 			       btrfs_header_level(info->fs_root->node));
1899 	}
1900 
1901 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1902 	btrfs_set_backup_dev_root_gen(root_backup,
1903 			       btrfs_header_generation(info->dev_root->node));
1904 	btrfs_set_backup_dev_root_level(root_backup,
1905 				       btrfs_header_level(info->dev_root->node));
1906 
1907 	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1908 	btrfs_set_backup_csum_root_gen(root_backup,
1909 			       btrfs_header_generation(info->csum_root->node));
1910 	btrfs_set_backup_csum_root_level(root_backup,
1911 			       btrfs_header_level(info->csum_root->node));
1912 
1913 	btrfs_set_backup_total_bytes(root_backup,
1914 			     btrfs_super_total_bytes(info->super_copy));
1915 	btrfs_set_backup_bytes_used(root_backup,
1916 			     btrfs_super_bytes_used(info->super_copy));
1917 	btrfs_set_backup_num_devices(root_backup,
1918 			     btrfs_super_num_devices(info->super_copy));
1919 
1920 	/*
1921 	 * if we don't copy this out to the super_copy, it won't get remembered
1922 	 * for the next commit
1923 	 */
1924 	memcpy(&info->super_copy->super_roots,
1925 	       &info->super_for_commit->super_roots,
1926 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1927 }
1928 
1929 /*
1930  * this copies info out of the root backup array and back into
1931  * the in-memory super block.  It is meant to help iterate through
1932  * the array, so you send it the number of backups you've already
1933  * tried and the last backup index you used.
1934  *
1935  * this returns -1 when it has tried all the backups
1936  */
next_root_backup(struct btrfs_fs_info * info,struct btrfs_super_block * super,int * num_backups_tried,int * backup_index)1937 static noinline int next_root_backup(struct btrfs_fs_info *info,
1938 				     struct btrfs_super_block *super,
1939 				     int *num_backups_tried, int *backup_index)
1940 {
1941 	struct btrfs_root_backup *root_backup;
1942 	int newest = *backup_index;
1943 
1944 	if (*num_backups_tried == 0) {
1945 		u64 gen = btrfs_super_generation(super);
1946 
1947 		newest = find_newest_super_backup(info, gen);
1948 		if (newest == -1)
1949 			return -1;
1950 
1951 		*backup_index = newest;
1952 		*num_backups_tried = 1;
1953 	} else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1954 		/* we've tried all the backups, all done */
1955 		return -1;
1956 	} else {
1957 		/* jump to the next oldest backup */
1958 		newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1959 			BTRFS_NUM_BACKUP_ROOTS;
1960 		*backup_index = newest;
1961 		*num_backups_tried += 1;
1962 	}
1963 	root_backup = super->super_roots + newest;
1964 
1965 	btrfs_set_super_generation(super,
1966 				   btrfs_backup_tree_root_gen(root_backup));
1967 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1968 	btrfs_set_super_root_level(super,
1969 				   btrfs_backup_tree_root_level(root_backup));
1970 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1971 
1972 	/*
1973 	 * fixme: the total bytes and num_devices need to match or we should
1974 	 * need a fsck
1975 	 */
1976 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1977 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1978 	return 0;
1979 }
1980 
1981 /* helper to cleanup workers */
btrfs_stop_all_workers(struct btrfs_fs_info * fs_info)1982 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1983 {
1984 	btrfs_destroy_workqueue(fs_info->fixup_workers);
1985 	btrfs_destroy_workqueue(fs_info->delalloc_workers);
1986 	btrfs_destroy_workqueue(fs_info->workers);
1987 	btrfs_destroy_workqueue(fs_info->endio_workers);
1988 	btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
1989 	btrfs_destroy_workqueue(fs_info->endio_repair_workers);
1990 	btrfs_destroy_workqueue(fs_info->rmw_workers);
1991 	btrfs_destroy_workqueue(fs_info->endio_write_workers);
1992 	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
1993 	btrfs_destroy_workqueue(fs_info->submit_workers);
1994 	btrfs_destroy_workqueue(fs_info->delayed_workers);
1995 	btrfs_destroy_workqueue(fs_info->caching_workers);
1996 	btrfs_destroy_workqueue(fs_info->readahead_workers);
1997 	btrfs_destroy_workqueue(fs_info->flush_workers);
1998 	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
1999 	/*
2000 	 * Now that all other work queues are destroyed, we can safely destroy
2001 	 * the queues used for metadata I/O, since tasks from those other work
2002 	 * queues can do metadata I/O operations.
2003 	 */
2004 	btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2005 	btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2006 }
2007 
free_root_extent_buffers(struct btrfs_root * root)2008 static void free_root_extent_buffers(struct btrfs_root *root)
2009 {
2010 	if (root) {
2011 		free_extent_buffer(root->node);
2012 		free_extent_buffer(root->commit_root);
2013 		root->node = NULL;
2014 		root->commit_root = NULL;
2015 	}
2016 }
2017 
2018 /* helper to cleanup tree roots */
free_root_pointers(struct btrfs_fs_info * info,int chunk_root)2019 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2020 {
2021 	free_root_extent_buffers(info->tree_root);
2022 
2023 	free_root_extent_buffers(info->dev_root);
2024 	free_root_extent_buffers(info->extent_root);
2025 	free_root_extent_buffers(info->csum_root);
2026 	free_root_extent_buffers(info->quota_root);
2027 	free_root_extent_buffers(info->uuid_root);
2028 	if (chunk_root)
2029 		free_root_extent_buffers(info->chunk_root);
2030 	free_root_extent_buffers(info->free_space_root);
2031 }
2032 
btrfs_free_fs_roots(struct btrfs_fs_info * fs_info)2033 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2034 {
2035 	int ret;
2036 	struct btrfs_root *gang[8];
2037 	int i;
2038 
2039 	while (!list_empty(&fs_info->dead_roots)) {
2040 		gang[0] = list_entry(fs_info->dead_roots.next,
2041 				     struct btrfs_root, root_list);
2042 		list_del(&gang[0]->root_list);
2043 
2044 		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2045 			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2046 		} else {
2047 			free_extent_buffer(gang[0]->node);
2048 			free_extent_buffer(gang[0]->commit_root);
2049 			btrfs_put_fs_root(gang[0]);
2050 		}
2051 	}
2052 
2053 	while (1) {
2054 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2055 					     (void **)gang, 0,
2056 					     ARRAY_SIZE(gang));
2057 		if (!ret)
2058 			break;
2059 		for (i = 0; i < ret; i++)
2060 			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2061 	}
2062 
2063 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2064 		btrfs_free_log_root_tree(NULL, fs_info);
2065 		btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
2066 	}
2067 }
2068 
btrfs_init_scrub(struct btrfs_fs_info * fs_info)2069 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2070 {
2071 	mutex_init(&fs_info->scrub_lock);
2072 	atomic_set(&fs_info->scrubs_running, 0);
2073 	atomic_set(&fs_info->scrub_pause_req, 0);
2074 	atomic_set(&fs_info->scrubs_paused, 0);
2075 	atomic_set(&fs_info->scrub_cancel_req, 0);
2076 	init_waitqueue_head(&fs_info->scrub_pause_wait);
2077 	refcount_set(&fs_info->scrub_workers_refcnt, 0);
2078 }
2079 
btrfs_init_balance(struct btrfs_fs_info * fs_info)2080 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2081 {
2082 	spin_lock_init(&fs_info->balance_lock);
2083 	mutex_init(&fs_info->balance_mutex);
2084 	atomic_set(&fs_info->balance_pause_req, 0);
2085 	atomic_set(&fs_info->balance_cancel_req, 0);
2086 	fs_info->balance_ctl = NULL;
2087 	init_waitqueue_head(&fs_info->balance_wait_q);
2088 }
2089 
btrfs_init_btree_inode(struct btrfs_fs_info * fs_info)2090 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2091 {
2092 	struct inode *inode = fs_info->btree_inode;
2093 
2094 	inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2095 	set_nlink(inode, 1);
2096 	/*
2097 	 * we set the i_size on the btree inode to the max possible int.
2098 	 * the real end of the address space is determined by all of
2099 	 * the devices in the system
2100 	 */
2101 	inode->i_size = OFFSET_MAX;
2102 	inode->i_mapping->a_ops = &btree_aops;
2103 
2104 	RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2105 	extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2106 			    IO_TREE_INODE_IO, inode);
2107 	BTRFS_I(inode)->io_tree.track_uptodate = false;
2108 	extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2109 
2110 	BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2111 
2112 	BTRFS_I(inode)->root = fs_info->tree_root;
2113 	memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2114 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2115 	btrfs_insert_inode_hash(inode);
2116 }
2117 
btrfs_init_dev_replace_locks(struct btrfs_fs_info * fs_info)2118 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2119 {
2120 	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2121 	init_rwsem(&fs_info->dev_replace.rwsem);
2122 	init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2123 }
2124 
btrfs_init_qgroup(struct btrfs_fs_info * fs_info)2125 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2126 {
2127 	spin_lock_init(&fs_info->qgroup_lock);
2128 	mutex_init(&fs_info->qgroup_ioctl_lock);
2129 	fs_info->qgroup_tree = RB_ROOT;
2130 	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2131 	fs_info->qgroup_seq = 1;
2132 	fs_info->qgroup_ulist = NULL;
2133 	fs_info->qgroup_rescan_running = false;
2134 	mutex_init(&fs_info->qgroup_rescan_lock);
2135 }
2136 
btrfs_init_workqueues(struct btrfs_fs_info * fs_info,struct btrfs_fs_devices * fs_devices)2137 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2138 		struct btrfs_fs_devices *fs_devices)
2139 {
2140 	u32 max_active = fs_info->thread_pool_size;
2141 	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2142 
2143 	fs_info->workers =
2144 		btrfs_alloc_workqueue(fs_info, "worker",
2145 				      flags | WQ_HIGHPRI, max_active, 16);
2146 
2147 	fs_info->delalloc_workers =
2148 		btrfs_alloc_workqueue(fs_info, "delalloc",
2149 				      flags, max_active, 2);
2150 
2151 	fs_info->flush_workers =
2152 		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2153 				      flags, max_active, 0);
2154 
2155 	fs_info->caching_workers =
2156 		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2157 
2158 	/*
2159 	 * a higher idle thresh on the submit workers makes it much more
2160 	 * likely that bios will be send down in a sane order to the
2161 	 * devices
2162 	 */
2163 	fs_info->submit_workers =
2164 		btrfs_alloc_workqueue(fs_info, "submit", flags,
2165 				      min_t(u64, fs_devices->num_devices,
2166 					    max_active), 64);
2167 
2168 	fs_info->fixup_workers =
2169 		btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2170 
2171 	/*
2172 	 * endios are largely parallel and should have a very
2173 	 * low idle thresh
2174 	 */
2175 	fs_info->endio_workers =
2176 		btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2177 	fs_info->endio_meta_workers =
2178 		btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2179 				      max_active, 4);
2180 	fs_info->endio_meta_write_workers =
2181 		btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2182 				      max_active, 2);
2183 	fs_info->endio_raid56_workers =
2184 		btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2185 				      max_active, 4);
2186 	fs_info->endio_repair_workers =
2187 		btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2188 	fs_info->rmw_workers =
2189 		btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2190 	fs_info->endio_write_workers =
2191 		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2192 				      max_active, 2);
2193 	fs_info->endio_freespace_worker =
2194 		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2195 				      max_active, 0);
2196 	fs_info->delayed_workers =
2197 		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2198 				      max_active, 0);
2199 	fs_info->readahead_workers =
2200 		btrfs_alloc_workqueue(fs_info, "readahead", flags,
2201 				      max_active, 2);
2202 	fs_info->qgroup_rescan_workers =
2203 		btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2204 
2205 	if (!(fs_info->workers && fs_info->delalloc_workers &&
2206 	      fs_info->submit_workers && fs_info->flush_workers &&
2207 	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2208 	      fs_info->endio_meta_write_workers &&
2209 	      fs_info->endio_repair_workers &&
2210 	      fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2211 	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2212 	      fs_info->caching_workers && fs_info->readahead_workers &&
2213 	      fs_info->fixup_workers && fs_info->delayed_workers &&
2214 	      fs_info->qgroup_rescan_workers)) {
2215 		return -ENOMEM;
2216 	}
2217 
2218 	return 0;
2219 }
2220 
btrfs_init_csum_hash(struct btrfs_fs_info * fs_info,u16 csum_type)2221 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2222 {
2223 	struct crypto_shash *csum_shash;
2224 	const char *csum_name = btrfs_super_csum_name(csum_type);
2225 
2226 	csum_shash = crypto_alloc_shash(csum_name, 0, 0);
2227 
2228 	if (IS_ERR(csum_shash)) {
2229 		btrfs_err(fs_info, "error allocating %s hash for checksum",
2230 			  csum_name);
2231 		return PTR_ERR(csum_shash);
2232 	}
2233 
2234 	fs_info->csum_shash = csum_shash;
2235 
2236 	return 0;
2237 }
2238 
btrfs_free_csum_hash(struct btrfs_fs_info * fs_info)2239 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
2240 {
2241 	crypto_free_shash(fs_info->csum_shash);
2242 }
2243 
btrfs_replay_log(struct btrfs_fs_info * fs_info,struct btrfs_fs_devices * fs_devices)2244 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2245 			    struct btrfs_fs_devices *fs_devices)
2246 {
2247 	int ret;
2248 	struct btrfs_root *log_tree_root;
2249 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2250 	u64 bytenr = btrfs_super_log_root(disk_super);
2251 	int level = btrfs_super_log_root_level(disk_super);
2252 
2253 	if (fs_devices->rw_devices == 0) {
2254 		btrfs_warn(fs_info, "log replay required on RO media");
2255 		return -EIO;
2256 	}
2257 
2258 	log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2259 	if (!log_tree_root)
2260 		return -ENOMEM;
2261 
2262 	__setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2263 
2264 	log_tree_root->node = read_tree_block(fs_info, bytenr,
2265 					      fs_info->generation + 1,
2266 					      level, NULL);
2267 	if (IS_ERR(log_tree_root->node)) {
2268 		btrfs_warn(fs_info, "failed to read log tree");
2269 		ret = PTR_ERR(log_tree_root->node);
2270 		kfree(log_tree_root);
2271 		return ret;
2272 	} else if (!extent_buffer_uptodate(log_tree_root->node)) {
2273 		btrfs_err(fs_info, "failed to read log tree");
2274 		free_extent_buffer(log_tree_root->node);
2275 		kfree(log_tree_root);
2276 		return -EIO;
2277 	}
2278 	/* returns with log_tree_root freed on success */
2279 	ret = btrfs_recover_log_trees(log_tree_root);
2280 	if (ret) {
2281 		btrfs_handle_fs_error(fs_info, ret,
2282 				      "Failed to recover log tree");
2283 		free_extent_buffer(log_tree_root->node);
2284 		kfree(log_tree_root);
2285 		return ret;
2286 	}
2287 
2288 	if (sb_rdonly(fs_info->sb)) {
2289 		ret = btrfs_commit_super(fs_info);
2290 		if (ret)
2291 			return ret;
2292 	}
2293 
2294 	return 0;
2295 }
2296 
btrfs_read_roots(struct btrfs_fs_info * fs_info)2297 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2298 {
2299 	struct btrfs_root *tree_root = fs_info->tree_root;
2300 	struct btrfs_root *root;
2301 	struct btrfs_key location;
2302 	int ret;
2303 
2304 	BUG_ON(!fs_info->tree_root);
2305 
2306 	location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2307 	location.type = BTRFS_ROOT_ITEM_KEY;
2308 	location.offset = 0;
2309 
2310 	root = btrfs_read_tree_root(tree_root, &location);
2311 	if (IS_ERR(root)) {
2312 		ret = PTR_ERR(root);
2313 		goto out;
2314 	}
2315 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2316 	fs_info->extent_root = root;
2317 
2318 	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2319 	root = btrfs_read_tree_root(tree_root, &location);
2320 	if (IS_ERR(root)) {
2321 		ret = PTR_ERR(root);
2322 		goto out;
2323 	}
2324 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2325 	fs_info->dev_root = root;
2326 	btrfs_init_devices_late(fs_info);
2327 
2328 	location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2329 	root = btrfs_read_tree_root(tree_root, &location);
2330 	if (IS_ERR(root)) {
2331 		ret = PTR_ERR(root);
2332 		goto out;
2333 	}
2334 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2335 	fs_info->csum_root = root;
2336 
2337 	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2338 	root = btrfs_read_tree_root(tree_root, &location);
2339 	if (!IS_ERR(root)) {
2340 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2341 		set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2342 		fs_info->quota_root = root;
2343 	}
2344 
2345 	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2346 	root = btrfs_read_tree_root(tree_root, &location);
2347 	if (IS_ERR(root)) {
2348 		ret = PTR_ERR(root);
2349 		if (ret != -ENOENT)
2350 			goto out;
2351 	} else {
2352 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2353 		fs_info->uuid_root = root;
2354 	}
2355 
2356 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2357 		location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2358 		root = btrfs_read_tree_root(tree_root, &location);
2359 		if (IS_ERR(root)) {
2360 			ret = PTR_ERR(root);
2361 			goto out;
2362 		}
2363 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2364 		fs_info->free_space_root = root;
2365 	}
2366 
2367 	return 0;
2368 out:
2369 	btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2370 		   location.objectid, ret);
2371 	return ret;
2372 }
2373 
2374 /*
2375  * Real super block validation
2376  * NOTE: super csum type and incompat features will not be checked here.
2377  *
2378  * @sb:		super block to check
2379  * @mirror_num:	the super block number to check its bytenr:
2380  * 		0	the primary (1st) sb
2381  * 		1, 2	2nd and 3rd backup copy
2382  * 	       -1	skip bytenr check
2383  */
validate_super(struct btrfs_fs_info * fs_info,struct btrfs_super_block * sb,int mirror_num)2384 static int validate_super(struct btrfs_fs_info *fs_info,
2385 			    struct btrfs_super_block *sb, int mirror_num)
2386 {
2387 	u64 nodesize = btrfs_super_nodesize(sb);
2388 	u64 sectorsize = btrfs_super_sectorsize(sb);
2389 	int ret = 0;
2390 
2391 	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2392 		btrfs_err(fs_info, "no valid FS found");
2393 		ret = -EINVAL;
2394 	}
2395 	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2396 		btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2397 				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2398 		ret = -EINVAL;
2399 	}
2400 	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2401 		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2402 				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2403 		ret = -EINVAL;
2404 	}
2405 	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2406 		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2407 				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2408 		ret = -EINVAL;
2409 	}
2410 	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2411 		btrfs_err(fs_info, "log_root level too big: %d >= %d",
2412 				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2413 		ret = -EINVAL;
2414 	}
2415 
2416 	/*
2417 	 * Check sectorsize and nodesize first, other check will need it.
2418 	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2419 	 */
2420 	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2421 	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2422 		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2423 		ret = -EINVAL;
2424 	}
2425 	/* Only PAGE SIZE is supported yet */
2426 	if (sectorsize != PAGE_SIZE) {
2427 		btrfs_err(fs_info,
2428 			"sectorsize %llu not supported yet, only support %lu",
2429 			sectorsize, PAGE_SIZE);
2430 		ret = -EINVAL;
2431 	}
2432 	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2433 	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2434 		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2435 		ret = -EINVAL;
2436 	}
2437 	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2438 		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2439 			  le32_to_cpu(sb->__unused_leafsize), nodesize);
2440 		ret = -EINVAL;
2441 	}
2442 
2443 	/* Root alignment check */
2444 	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2445 		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2446 			   btrfs_super_root(sb));
2447 		ret = -EINVAL;
2448 	}
2449 	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2450 		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2451 			   btrfs_super_chunk_root(sb));
2452 		ret = -EINVAL;
2453 	}
2454 	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2455 		btrfs_warn(fs_info, "log_root block unaligned: %llu",
2456 			   btrfs_super_log_root(sb));
2457 		ret = -EINVAL;
2458 	}
2459 
2460 	if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2461 		   BTRFS_FSID_SIZE) != 0) {
2462 		btrfs_err(fs_info,
2463 			"dev_item UUID does not match metadata fsid: %pU != %pU",
2464 			fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2465 		ret = -EINVAL;
2466 	}
2467 
2468 	/*
2469 	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2470 	 * done later
2471 	 */
2472 	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2473 		btrfs_err(fs_info, "bytes_used is too small %llu",
2474 			  btrfs_super_bytes_used(sb));
2475 		ret = -EINVAL;
2476 	}
2477 	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2478 		btrfs_err(fs_info, "invalid stripesize %u",
2479 			  btrfs_super_stripesize(sb));
2480 		ret = -EINVAL;
2481 	}
2482 	if (btrfs_super_num_devices(sb) > (1UL << 31))
2483 		btrfs_warn(fs_info, "suspicious number of devices: %llu",
2484 			   btrfs_super_num_devices(sb));
2485 	if (btrfs_super_num_devices(sb) == 0) {
2486 		btrfs_err(fs_info, "number of devices is 0");
2487 		ret = -EINVAL;
2488 	}
2489 
2490 	if (mirror_num >= 0 &&
2491 	    btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2492 		btrfs_err(fs_info, "super offset mismatch %llu != %u",
2493 			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2494 		ret = -EINVAL;
2495 	}
2496 
2497 	/*
2498 	 * Obvious sys_chunk_array corruptions, it must hold at least one key
2499 	 * and one chunk
2500 	 */
2501 	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2502 		btrfs_err(fs_info, "system chunk array too big %u > %u",
2503 			  btrfs_super_sys_array_size(sb),
2504 			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2505 		ret = -EINVAL;
2506 	}
2507 	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2508 			+ sizeof(struct btrfs_chunk)) {
2509 		btrfs_err(fs_info, "system chunk array too small %u < %zu",
2510 			  btrfs_super_sys_array_size(sb),
2511 			  sizeof(struct btrfs_disk_key)
2512 			  + sizeof(struct btrfs_chunk));
2513 		ret = -EINVAL;
2514 	}
2515 
2516 	/*
2517 	 * The generation is a global counter, we'll trust it more than the others
2518 	 * but it's still possible that it's the one that's wrong.
2519 	 */
2520 	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2521 		btrfs_warn(fs_info,
2522 			"suspicious: generation < chunk_root_generation: %llu < %llu",
2523 			btrfs_super_generation(sb),
2524 			btrfs_super_chunk_root_generation(sb));
2525 	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2526 	    && btrfs_super_cache_generation(sb) != (u64)-1)
2527 		btrfs_warn(fs_info,
2528 			"suspicious: generation < cache_generation: %llu < %llu",
2529 			btrfs_super_generation(sb),
2530 			btrfs_super_cache_generation(sb));
2531 
2532 	return ret;
2533 }
2534 
2535 /*
2536  * Validation of super block at mount time.
2537  * Some checks already done early at mount time, like csum type and incompat
2538  * flags will be skipped.
2539  */
btrfs_validate_mount_super(struct btrfs_fs_info * fs_info)2540 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2541 {
2542 	return validate_super(fs_info, fs_info->super_copy, 0);
2543 }
2544 
2545 /*
2546  * Validation of super block at write time.
2547  * Some checks like bytenr check will be skipped as their values will be
2548  * overwritten soon.
2549  * Extra checks like csum type and incompat flags will be done here.
2550  */
btrfs_validate_write_super(struct btrfs_fs_info * fs_info,struct btrfs_super_block * sb)2551 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2552 				      struct btrfs_super_block *sb)
2553 {
2554 	int ret;
2555 
2556 	ret = validate_super(fs_info, sb, -1);
2557 	if (ret < 0)
2558 		goto out;
2559 	if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2560 		ret = -EUCLEAN;
2561 		btrfs_err(fs_info, "invalid csum type, has %u want %u",
2562 			  btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2563 		goto out;
2564 	}
2565 	if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2566 		ret = -EUCLEAN;
2567 		btrfs_err(fs_info,
2568 		"invalid incompat flags, has 0x%llx valid mask 0x%llx",
2569 			  btrfs_super_incompat_flags(sb),
2570 			  (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2571 		goto out;
2572 	}
2573 out:
2574 	if (ret < 0)
2575 		btrfs_err(fs_info,
2576 		"super block corruption detected before writing it to disk");
2577 	return ret;
2578 }
2579 
open_ctree(struct super_block * sb,struct btrfs_fs_devices * fs_devices,char * options)2580 int open_ctree(struct super_block *sb,
2581 	       struct btrfs_fs_devices *fs_devices,
2582 	       char *options)
2583 {
2584 	u32 sectorsize;
2585 	u32 nodesize;
2586 	u32 stripesize;
2587 	u64 generation;
2588 	u64 features;
2589 	u16 csum_type;
2590 	struct btrfs_key location;
2591 	struct buffer_head *bh;
2592 	struct btrfs_super_block *disk_super;
2593 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2594 	struct btrfs_root *tree_root;
2595 	struct btrfs_root *chunk_root;
2596 	int ret;
2597 	int err = -EINVAL;
2598 	int num_backups_tried = 0;
2599 	int backup_index = 0;
2600 	int clear_free_space_tree = 0;
2601 	int level;
2602 
2603 	tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2604 	chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2605 	if (!tree_root || !chunk_root) {
2606 		err = -ENOMEM;
2607 		goto fail;
2608 	}
2609 
2610 	ret = init_srcu_struct(&fs_info->subvol_srcu);
2611 	if (ret) {
2612 		err = ret;
2613 		goto fail;
2614 	}
2615 
2616 	ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
2617 	if (ret) {
2618 		err = ret;
2619 		goto fail_srcu;
2620 	}
2621 
2622 	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2623 	if (ret) {
2624 		err = ret;
2625 		goto fail_dio_bytes;
2626 	}
2627 	fs_info->dirty_metadata_batch = PAGE_SIZE *
2628 					(1 + ilog2(nr_cpu_ids));
2629 
2630 	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2631 	if (ret) {
2632 		err = ret;
2633 		goto fail_dirty_metadata_bytes;
2634 	}
2635 
2636 	ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2637 			GFP_KERNEL);
2638 	if (ret) {
2639 		err = ret;
2640 		goto fail_delalloc_bytes;
2641 	}
2642 
2643 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2644 	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2645 	INIT_LIST_HEAD(&fs_info->trans_list);
2646 	INIT_LIST_HEAD(&fs_info->dead_roots);
2647 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2648 	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2649 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2650 	spin_lock_init(&fs_info->delalloc_root_lock);
2651 	spin_lock_init(&fs_info->trans_lock);
2652 	spin_lock_init(&fs_info->fs_roots_radix_lock);
2653 	spin_lock_init(&fs_info->delayed_iput_lock);
2654 	spin_lock_init(&fs_info->defrag_inodes_lock);
2655 	spin_lock_init(&fs_info->tree_mod_seq_lock);
2656 	spin_lock_init(&fs_info->super_lock);
2657 	spin_lock_init(&fs_info->buffer_lock);
2658 	spin_lock_init(&fs_info->unused_bgs_lock);
2659 	rwlock_init(&fs_info->tree_mod_log_lock);
2660 	mutex_init(&fs_info->unused_bg_unpin_mutex);
2661 	mutex_init(&fs_info->delete_unused_bgs_mutex);
2662 	mutex_init(&fs_info->reloc_mutex);
2663 	mutex_init(&fs_info->delalloc_root_mutex);
2664 	seqlock_init(&fs_info->profiles_lock);
2665 
2666 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2667 	INIT_LIST_HEAD(&fs_info->space_info);
2668 	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2669 	INIT_LIST_HEAD(&fs_info->unused_bgs);
2670 	extent_map_tree_init(&fs_info->mapping_tree);
2671 	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2672 			     BTRFS_BLOCK_RSV_GLOBAL);
2673 	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2674 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2675 	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2676 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2677 			     BTRFS_BLOCK_RSV_DELOPS);
2678 	btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2679 			     BTRFS_BLOCK_RSV_DELREFS);
2680 
2681 	atomic_set(&fs_info->async_delalloc_pages, 0);
2682 	atomic_set(&fs_info->defrag_running, 0);
2683 	atomic_set(&fs_info->reada_works_cnt, 0);
2684 	atomic_set(&fs_info->nr_delayed_iputs, 0);
2685 	atomic64_set(&fs_info->tree_mod_seq, 0);
2686 	fs_info->sb = sb;
2687 	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2688 	fs_info->metadata_ratio = 0;
2689 	fs_info->defrag_inodes = RB_ROOT;
2690 	atomic64_set(&fs_info->free_chunk_space, 0);
2691 	fs_info->tree_mod_log = RB_ROOT;
2692 	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2693 	fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2694 	/* readahead state */
2695 	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2696 	spin_lock_init(&fs_info->reada_lock);
2697 	btrfs_init_ref_verify(fs_info);
2698 
2699 	fs_info->thread_pool_size = min_t(unsigned long,
2700 					  num_online_cpus() + 2, 8);
2701 
2702 	INIT_LIST_HEAD(&fs_info->ordered_roots);
2703 	spin_lock_init(&fs_info->ordered_root_lock);
2704 
2705 	fs_info->btree_inode = new_inode(sb);
2706 	if (!fs_info->btree_inode) {
2707 		err = -ENOMEM;
2708 		goto fail_bio_counter;
2709 	}
2710 	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2711 
2712 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2713 					GFP_KERNEL);
2714 	if (!fs_info->delayed_root) {
2715 		err = -ENOMEM;
2716 		goto fail_iput;
2717 	}
2718 	btrfs_init_delayed_root(fs_info->delayed_root);
2719 
2720 	btrfs_init_scrub(fs_info);
2721 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2722 	fs_info->check_integrity_print_mask = 0;
2723 #endif
2724 	btrfs_init_balance(fs_info);
2725 	btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2726 
2727 	sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2728 	sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2729 
2730 	btrfs_init_btree_inode(fs_info);
2731 
2732 	spin_lock_init(&fs_info->block_group_cache_lock);
2733 	fs_info->block_group_cache_tree = RB_ROOT;
2734 	fs_info->first_logical_byte = (u64)-1;
2735 
2736 	extent_io_tree_init(fs_info, &fs_info->freed_extents[0],
2737 			    IO_TREE_FS_INFO_FREED_EXTENTS0, NULL);
2738 	extent_io_tree_init(fs_info, &fs_info->freed_extents[1],
2739 			    IO_TREE_FS_INFO_FREED_EXTENTS1, NULL);
2740 	fs_info->pinned_extents = &fs_info->freed_extents[0];
2741 	set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2742 
2743 	mutex_init(&fs_info->ordered_operations_mutex);
2744 	mutex_init(&fs_info->tree_log_mutex);
2745 	mutex_init(&fs_info->chunk_mutex);
2746 	mutex_init(&fs_info->transaction_kthread_mutex);
2747 	mutex_init(&fs_info->cleaner_mutex);
2748 	mutex_init(&fs_info->ro_block_group_mutex);
2749 	init_rwsem(&fs_info->commit_root_sem);
2750 	init_rwsem(&fs_info->cleanup_work_sem);
2751 	init_rwsem(&fs_info->subvol_sem);
2752 	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2753 
2754 	btrfs_init_dev_replace_locks(fs_info);
2755 	btrfs_init_qgroup(fs_info);
2756 
2757 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2758 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2759 
2760 	init_waitqueue_head(&fs_info->transaction_throttle);
2761 	init_waitqueue_head(&fs_info->transaction_wait);
2762 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2763 	init_waitqueue_head(&fs_info->async_submit_wait);
2764 	init_waitqueue_head(&fs_info->delayed_iputs_wait);
2765 
2766 	/* Usable values until the real ones are cached from the superblock */
2767 	fs_info->nodesize = 4096;
2768 	fs_info->sectorsize = 4096;
2769 	fs_info->stripesize = 4096;
2770 
2771 	spin_lock_init(&fs_info->swapfile_pins_lock);
2772 	fs_info->swapfile_pins = RB_ROOT;
2773 
2774 	fs_info->send_in_progress = 0;
2775 
2776 	ret = btrfs_alloc_stripe_hash_table(fs_info);
2777 	if (ret) {
2778 		err = ret;
2779 		goto fail_alloc;
2780 	}
2781 
2782 	__setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
2783 
2784 	invalidate_bdev(fs_devices->latest_bdev);
2785 
2786 	/*
2787 	 * Read super block and check the signature bytes only
2788 	 */
2789 	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2790 	if (IS_ERR(bh)) {
2791 		err = PTR_ERR(bh);
2792 		goto fail_alloc;
2793 	}
2794 
2795 	/*
2796 	 * Verify the type first, if that or the the checksum value are
2797 	 * corrupted, we'll find out
2798 	 */
2799 	csum_type = btrfs_super_csum_type((struct btrfs_super_block *)bh->b_data);
2800 	if (!btrfs_supported_super_csum(csum_type)) {
2801 		btrfs_err(fs_info, "unsupported checksum algorithm: %u",
2802 			  csum_type);
2803 		err = -EINVAL;
2804 		brelse(bh);
2805 		goto fail_alloc;
2806 	}
2807 
2808 	ret = btrfs_init_csum_hash(fs_info, csum_type);
2809 	if (ret) {
2810 		err = ret;
2811 		goto fail_alloc;
2812 	}
2813 
2814 	/*
2815 	 * We want to check superblock checksum, the type is stored inside.
2816 	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2817 	 */
2818 	if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2819 		btrfs_err(fs_info, "superblock checksum mismatch");
2820 		err = -EINVAL;
2821 		brelse(bh);
2822 		goto fail_csum;
2823 	}
2824 
2825 	/*
2826 	 * super_copy is zeroed at allocation time and we never touch the
2827 	 * following bytes up to INFO_SIZE, the checksum is calculated from
2828 	 * the whole block of INFO_SIZE
2829 	 */
2830 	memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2831 	brelse(bh);
2832 
2833 	disk_super = fs_info->super_copy;
2834 
2835 	ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2836 		       BTRFS_FSID_SIZE));
2837 
2838 	if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
2839 		ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2840 				fs_info->super_copy->metadata_uuid,
2841 				BTRFS_FSID_SIZE));
2842 	}
2843 
2844 	features = btrfs_super_flags(disk_super);
2845 	if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2846 		features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2847 		btrfs_set_super_flags(disk_super, features);
2848 		btrfs_info(fs_info,
2849 			"found metadata UUID change in progress flag, clearing");
2850 	}
2851 
2852 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2853 	       sizeof(*fs_info->super_for_commit));
2854 
2855 	ret = btrfs_validate_mount_super(fs_info);
2856 	if (ret) {
2857 		btrfs_err(fs_info, "superblock contains fatal errors");
2858 		err = -EINVAL;
2859 		goto fail_csum;
2860 	}
2861 
2862 	if (!btrfs_super_root(disk_super))
2863 		goto fail_csum;
2864 
2865 	/* check FS state, whether FS is broken. */
2866 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2867 		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2868 
2869 	/*
2870 	 * run through our array of backup supers and setup
2871 	 * our ring pointer to the oldest one
2872 	 */
2873 	generation = btrfs_super_generation(disk_super);
2874 	find_oldest_super_backup(fs_info, generation);
2875 
2876 	/*
2877 	 * In the long term, we'll store the compression type in the super
2878 	 * block, and it'll be used for per file compression control.
2879 	 */
2880 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2881 
2882 	ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2883 	if (ret) {
2884 		err = ret;
2885 		goto fail_csum;
2886 	}
2887 
2888 	features = btrfs_super_incompat_flags(disk_super) &
2889 		~BTRFS_FEATURE_INCOMPAT_SUPP;
2890 	if (features) {
2891 		btrfs_err(fs_info,
2892 		    "cannot mount because of unsupported optional features (%llx)",
2893 		    features);
2894 		err = -EINVAL;
2895 		goto fail_csum;
2896 	}
2897 
2898 	features = btrfs_super_incompat_flags(disk_super);
2899 	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2900 	if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2901 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2902 	else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2903 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
2904 
2905 	if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2906 		btrfs_info(fs_info, "has skinny extents");
2907 
2908 	/*
2909 	 * flag our filesystem as having big metadata blocks if
2910 	 * they are bigger than the page size
2911 	 */
2912 	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2913 		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2914 			btrfs_info(fs_info,
2915 				"flagging fs with big metadata feature");
2916 		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2917 	}
2918 
2919 	nodesize = btrfs_super_nodesize(disk_super);
2920 	sectorsize = btrfs_super_sectorsize(disk_super);
2921 	stripesize = sectorsize;
2922 	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2923 	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2924 
2925 	/* Cache block sizes */
2926 	fs_info->nodesize = nodesize;
2927 	fs_info->sectorsize = sectorsize;
2928 	fs_info->stripesize = stripesize;
2929 
2930 	/*
2931 	 * mixed block groups end up with duplicate but slightly offset
2932 	 * extent buffers for the same range.  It leads to corruptions
2933 	 */
2934 	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2935 	    (sectorsize != nodesize)) {
2936 		btrfs_err(fs_info,
2937 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2938 			nodesize, sectorsize);
2939 		goto fail_csum;
2940 	}
2941 
2942 	/*
2943 	 * Needn't use the lock because there is no other task which will
2944 	 * update the flag.
2945 	 */
2946 	btrfs_set_super_incompat_flags(disk_super, features);
2947 
2948 	features = btrfs_super_compat_ro_flags(disk_super) &
2949 		~BTRFS_FEATURE_COMPAT_RO_SUPP;
2950 	if (!sb_rdonly(sb) && features) {
2951 		btrfs_err(fs_info,
2952 	"cannot mount read-write because of unsupported optional features (%llx)",
2953 		       features);
2954 		err = -EINVAL;
2955 		goto fail_csum;
2956 	}
2957 
2958 	ret = btrfs_init_workqueues(fs_info, fs_devices);
2959 	if (ret) {
2960 		err = ret;
2961 		goto fail_sb_buffer;
2962 	}
2963 
2964 	sb->s_bdi->congested_fn = btrfs_congested_fn;
2965 	sb->s_bdi->congested_data = fs_info;
2966 	sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
2967 	sb->s_bdi->ra_pages = VM_READAHEAD_PAGES;
2968 	sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
2969 	sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
2970 
2971 	sb->s_blocksize = sectorsize;
2972 	sb->s_blocksize_bits = blksize_bits(sectorsize);
2973 	memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
2974 
2975 	mutex_lock(&fs_info->chunk_mutex);
2976 	ret = btrfs_read_sys_array(fs_info);
2977 	mutex_unlock(&fs_info->chunk_mutex);
2978 	if (ret) {
2979 		btrfs_err(fs_info, "failed to read the system array: %d", ret);
2980 		goto fail_sb_buffer;
2981 	}
2982 
2983 	generation = btrfs_super_chunk_root_generation(disk_super);
2984 	level = btrfs_super_chunk_root_level(disk_super);
2985 
2986 	__setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2987 
2988 	chunk_root->node = read_tree_block(fs_info,
2989 					   btrfs_super_chunk_root(disk_super),
2990 					   generation, level, NULL);
2991 	if (IS_ERR(chunk_root->node) ||
2992 	    !extent_buffer_uptodate(chunk_root->node)) {
2993 		btrfs_err(fs_info, "failed to read chunk root");
2994 		if (!IS_ERR(chunk_root->node))
2995 			free_extent_buffer(chunk_root->node);
2996 		chunk_root->node = NULL;
2997 		goto fail_tree_roots;
2998 	}
2999 	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3000 	chunk_root->commit_root = btrfs_root_node(chunk_root);
3001 
3002 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3003 	   btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
3004 
3005 	ret = btrfs_read_chunk_tree(fs_info);
3006 	if (ret) {
3007 		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3008 		goto fail_tree_roots;
3009 	}
3010 
3011 	/*
3012 	 * Keep the devid that is marked to be the target device for the
3013 	 * device replace procedure
3014 	 */
3015 	btrfs_free_extra_devids(fs_devices, 0);
3016 
3017 	if (!fs_devices->latest_bdev) {
3018 		btrfs_err(fs_info, "failed to read devices");
3019 		goto fail_tree_roots;
3020 	}
3021 
3022 retry_root_backup:
3023 	generation = btrfs_super_generation(disk_super);
3024 	level = btrfs_super_root_level(disk_super);
3025 
3026 	tree_root->node = read_tree_block(fs_info,
3027 					  btrfs_super_root(disk_super),
3028 					  generation, level, NULL);
3029 	if (IS_ERR(tree_root->node) ||
3030 	    !extent_buffer_uptodate(tree_root->node)) {
3031 		btrfs_warn(fs_info, "failed to read tree root");
3032 		if (!IS_ERR(tree_root->node))
3033 			free_extent_buffer(tree_root->node);
3034 		tree_root->node = NULL;
3035 		goto recovery_tree_root;
3036 	}
3037 
3038 	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
3039 	tree_root->commit_root = btrfs_root_node(tree_root);
3040 	btrfs_set_root_refs(&tree_root->root_item, 1);
3041 
3042 	mutex_lock(&tree_root->objectid_mutex);
3043 	ret = btrfs_find_highest_objectid(tree_root,
3044 					&tree_root->highest_objectid);
3045 	if (ret) {
3046 		mutex_unlock(&tree_root->objectid_mutex);
3047 		goto recovery_tree_root;
3048 	}
3049 
3050 	ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
3051 
3052 	mutex_unlock(&tree_root->objectid_mutex);
3053 
3054 	ret = btrfs_read_roots(fs_info);
3055 	if (ret)
3056 		goto recovery_tree_root;
3057 
3058 	fs_info->generation = generation;
3059 	fs_info->last_trans_committed = generation;
3060 
3061 	ret = btrfs_verify_dev_extents(fs_info);
3062 	if (ret) {
3063 		btrfs_err(fs_info,
3064 			  "failed to verify dev extents against chunks: %d",
3065 			  ret);
3066 		goto fail_block_groups;
3067 	}
3068 	ret = btrfs_recover_balance(fs_info);
3069 	if (ret) {
3070 		btrfs_err(fs_info, "failed to recover balance: %d", ret);
3071 		goto fail_block_groups;
3072 	}
3073 
3074 	ret = btrfs_init_dev_stats(fs_info);
3075 	if (ret) {
3076 		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3077 		goto fail_block_groups;
3078 	}
3079 
3080 	ret = btrfs_init_dev_replace(fs_info);
3081 	if (ret) {
3082 		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3083 		goto fail_block_groups;
3084 	}
3085 
3086 	btrfs_free_extra_devids(fs_devices, 1);
3087 
3088 	ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3089 	if (ret) {
3090 		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3091 				ret);
3092 		goto fail_block_groups;
3093 	}
3094 
3095 	ret = btrfs_sysfs_add_device(fs_devices);
3096 	if (ret) {
3097 		btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3098 				ret);
3099 		goto fail_fsdev_sysfs;
3100 	}
3101 
3102 	ret = btrfs_sysfs_add_mounted(fs_info);
3103 	if (ret) {
3104 		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3105 		goto fail_fsdev_sysfs;
3106 	}
3107 
3108 	ret = btrfs_init_space_info(fs_info);
3109 	if (ret) {
3110 		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3111 		goto fail_sysfs;
3112 	}
3113 
3114 	ret = btrfs_read_block_groups(fs_info);
3115 	if (ret) {
3116 		btrfs_err(fs_info, "failed to read block groups: %d", ret);
3117 		goto fail_sysfs;
3118 	}
3119 
3120 	if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
3121 		btrfs_warn(fs_info,
3122 		"writable mount is not allowed due to too many missing devices");
3123 		goto fail_sysfs;
3124 	}
3125 
3126 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3127 					       "btrfs-cleaner");
3128 	if (IS_ERR(fs_info->cleaner_kthread))
3129 		goto fail_sysfs;
3130 
3131 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
3132 						   tree_root,
3133 						   "btrfs-transaction");
3134 	if (IS_ERR(fs_info->transaction_kthread))
3135 		goto fail_cleaner;
3136 
3137 	if (!btrfs_test_opt(fs_info, NOSSD) &&
3138 	    !fs_info->fs_devices->rotating) {
3139 		btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3140 	}
3141 
3142 	/*
3143 	 * Mount does not set all options immediately, we can do it now and do
3144 	 * not have to wait for transaction commit
3145 	 */
3146 	btrfs_apply_pending_changes(fs_info);
3147 
3148 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3149 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3150 		ret = btrfsic_mount(fs_info, fs_devices,
3151 				    btrfs_test_opt(fs_info,
3152 					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3153 				    1 : 0,
3154 				    fs_info->check_integrity_print_mask);
3155 		if (ret)
3156 			btrfs_warn(fs_info,
3157 				"failed to initialize integrity check module: %d",
3158 				ret);
3159 	}
3160 #endif
3161 	ret = btrfs_read_qgroup_config(fs_info);
3162 	if (ret)
3163 		goto fail_trans_kthread;
3164 
3165 	if (btrfs_build_ref_tree(fs_info))
3166 		btrfs_err(fs_info, "couldn't build ref tree");
3167 
3168 	/* do not make disk changes in broken FS or nologreplay is given */
3169 	if (btrfs_super_log_root(disk_super) != 0 &&
3170 	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3171 		ret = btrfs_replay_log(fs_info, fs_devices);
3172 		if (ret) {
3173 			err = ret;
3174 			goto fail_qgroup;
3175 		}
3176 	}
3177 
3178 	ret = btrfs_find_orphan_roots(fs_info);
3179 	if (ret)
3180 		goto fail_qgroup;
3181 
3182 	if (!sb_rdonly(sb)) {
3183 		ret = btrfs_cleanup_fs_roots(fs_info);
3184 		if (ret)
3185 			goto fail_qgroup;
3186 
3187 		mutex_lock(&fs_info->cleaner_mutex);
3188 		ret = btrfs_recover_relocation(tree_root);
3189 		mutex_unlock(&fs_info->cleaner_mutex);
3190 		if (ret < 0) {
3191 			btrfs_warn(fs_info, "failed to recover relocation: %d",
3192 					ret);
3193 			err = -EINVAL;
3194 			goto fail_qgroup;
3195 		}
3196 	}
3197 
3198 	location.objectid = BTRFS_FS_TREE_OBJECTID;
3199 	location.type = BTRFS_ROOT_ITEM_KEY;
3200 	location.offset = 0;
3201 
3202 	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3203 	if (IS_ERR(fs_info->fs_root)) {
3204 		err = PTR_ERR(fs_info->fs_root);
3205 		btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3206 		goto fail_qgroup;
3207 	}
3208 
3209 	if (sb_rdonly(sb))
3210 		return 0;
3211 
3212 	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3213 	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3214 		clear_free_space_tree = 1;
3215 	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3216 		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3217 		btrfs_warn(fs_info, "free space tree is invalid");
3218 		clear_free_space_tree = 1;
3219 	}
3220 
3221 	if (clear_free_space_tree) {
3222 		btrfs_info(fs_info, "clearing free space tree");
3223 		ret = btrfs_clear_free_space_tree(fs_info);
3224 		if (ret) {
3225 			btrfs_warn(fs_info,
3226 				   "failed to clear free space tree: %d", ret);
3227 			close_ctree(fs_info);
3228 			return ret;
3229 		}
3230 	}
3231 
3232 	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3233 	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3234 		btrfs_info(fs_info, "creating free space tree");
3235 		ret = btrfs_create_free_space_tree(fs_info);
3236 		if (ret) {
3237 			btrfs_warn(fs_info,
3238 				"failed to create free space tree: %d", ret);
3239 			close_ctree(fs_info);
3240 			return ret;
3241 		}
3242 	}
3243 
3244 	down_read(&fs_info->cleanup_work_sem);
3245 	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3246 	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3247 		up_read(&fs_info->cleanup_work_sem);
3248 		close_ctree(fs_info);
3249 		return ret;
3250 	}
3251 	up_read(&fs_info->cleanup_work_sem);
3252 
3253 	ret = btrfs_resume_balance_async(fs_info);
3254 	if (ret) {
3255 		btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3256 		close_ctree(fs_info);
3257 		return ret;
3258 	}
3259 
3260 	ret = btrfs_resume_dev_replace_async(fs_info);
3261 	if (ret) {
3262 		btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3263 		close_ctree(fs_info);
3264 		return ret;
3265 	}
3266 
3267 	btrfs_qgroup_rescan_resume(fs_info);
3268 
3269 	if (!fs_info->uuid_root) {
3270 		btrfs_info(fs_info, "creating UUID tree");
3271 		ret = btrfs_create_uuid_tree(fs_info);
3272 		if (ret) {
3273 			btrfs_warn(fs_info,
3274 				"failed to create the UUID tree: %d", ret);
3275 			close_ctree(fs_info);
3276 			return ret;
3277 		}
3278 	} else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3279 		   fs_info->generation !=
3280 				btrfs_super_uuid_tree_generation(disk_super)) {
3281 		btrfs_info(fs_info, "checking UUID tree");
3282 		ret = btrfs_check_uuid_tree(fs_info);
3283 		if (ret) {
3284 			btrfs_warn(fs_info,
3285 				"failed to check the UUID tree: %d", ret);
3286 			close_ctree(fs_info);
3287 			return ret;
3288 		}
3289 	} else {
3290 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3291 	}
3292 	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3293 
3294 	/*
3295 	 * backuproot only affect mount behavior, and if open_ctree succeeded,
3296 	 * no need to keep the flag
3297 	 */
3298 	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3299 
3300 	return 0;
3301 
3302 fail_qgroup:
3303 	btrfs_free_qgroup_config(fs_info);
3304 fail_trans_kthread:
3305 	kthread_stop(fs_info->transaction_kthread);
3306 	btrfs_cleanup_transaction(fs_info);
3307 	btrfs_free_fs_roots(fs_info);
3308 fail_cleaner:
3309 	kthread_stop(fs_info->cleaner_kthread);
3310 
3311 	/*
3312 	 * make sure we're done with the btree inode before we stop our
3313 	 * kthreads
3314 	 */
3315 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3316 
3317 fail_sysfs:
3318 	btrfs_sysfs_remove_mounted(fs_info);
3319 
3320 fail_fsdev_sysfs:
3321 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3322 
3323 fail_block_groups:
3324 	btrfs_put_block_group_cache(fs_info);
3325 
3326 fail_tree_roots:
3327 	free_root_pointers(fs_info, 1);
3328 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3329 
3330 fail_sb_buffer:
3331 	btrfs_stop_all_workers(fs_info);
3332 	btrfs_free_block_groups(fs_info);
3333 fail_csum:
3334 	btrfs_free_csum_hash(fs_info);
3335 fail_alloc:
3336 fail_iput:
3337 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3338 
3339 	iput(fs_info->btree_inode);
3340 fail_bio_counter:
3341 	percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
3342 fail_delalloc_bytes:
3343 	percpu_counter_destroy(&fs_info->delalloc_bytes);
3344 fail_dirty_metadata_bytes:
3345 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3346 fail_dio_bytes:
3347 	percpu_counter_destroy(&fs_info->dio_bytes);
3348 fail_srcu:
3349 	cleanup_srcu_struct(&fs_info->subvol_srcu);
3350 fail:
3351 	btrfs_free_stripe_hash_table(fs_info);
3352 	btrfs_close_devices(fs_info->fs_devices);
3353 	return err;
3354 
3355 recovery_tree_root:
3356 	if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
3357 		goto fail_tree_roots;
3358 
3359 	free_root_pointers(fs_info, 0);
3360 
3361 	/* don't use the log in recovery mode, it won't be valid */
3362 	btrfs_set_super_log_root(disk_super, 0);
3363 
3364 	/* we can't trust the free space cache either */
3365 	btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3366 
3367 	ret = next_root_backup(fs_info, fs_info->super_copy,
3368 			       &num_backups_tried, &backup_index);
3369 	if (ret == -1)
3370 		goto fail_block_groups;
3371 	goto retry_root_backup;
3372 }
3373 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3374 
btrfs_end_buffer_write_sync(struct buffer_head * bh,int uptodate)3375 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3376 {
3377 	if (uptodate) {
3378 		set_buffer_uptodate(bh);
3379 	} else {
3380 		struct btrfs_device *device = (struct btrfs_device *)
3381 			bh->b_private;
3382 
3383 		btrfs_warn_rl_in_rcu(device->fs_info,
3384 				"lost page write due to IO error on %s",
3385 					  rcu_str_deref(device->name));
3386 		/* note, we don't set_buffer_write_io_error because we have
3387 		 * our own ways of dealing with the IO errors
3388 		 */
3389 		clear_buffer_uptodate(bh);
3390 		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3391 	}
3392 	unlock_buffer(bh);
3393 	put_bh(bh);
3394 }
3395 
btrfs_read_dev_one_super(struct block_device * bdev,int copy_num,struct buffer_head ** bh_ret)3396 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3397 			struct buffer_head **bh_ret)
3398 {
3399 	struct buffer_head *bh;
3400 	struct btrfs_super_block *super;
3401 	u64 bytenr;
3402 
3403 	bytenr = btrfs_sb_offset(copy_num);
3404 	if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3405 		return -EINVAL;
3406 
3407 	bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
3408 	/*
3409 	 * If we fail to read from the underlying devices, as of now
3410 	 * the best option we have is to mark it EIO.
3411 	 */
3412 	if (!bh)
3413 		return -EIO;
3414 
3415 	super = (struct btrfs_super_block *)bh->b_data;
3416 	if (btrfs_super_bytenr(super) != bytenr ||
3417 		    btrfs_super_magic(super) != BTRFS_MAGIC) {
3418 		brelse(bh);
3419 		return -EINVAL;
3420 	}
3421 
3422 	*bh_ret = bh;
3423 	return 0;
3424 }
3425 
3426 
btrfs_read_dev_super(struct block_device * bdev)3427 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3428 {
3429 	struct buffer_head *bh;
3430 	struct buffer_head *latest = NULL;
3431 	struct btrfs_super_block *super;
3432 	int i;
3433 	u64 transid = 0;
3434 	int ret = -EINVAL;
3435 
3436 	/* we would like to check all the supers, but that would make
3437 	 * a btrfs mount succeed after a mkfs from a different FS.
3438 	 * So, we need to add a special mount option to scan for
3439 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3440 	 */
3441 	for (i = 0; i < 1; i++) {
3442 		ret = btrfs_read_dev_one_super(bdev, i, &bh);
3443 		if (ret)
3444 			continue;
3445 
3446 		super = (struct btrfs_super_block *)bh->b_data;
3447 
3448 		if (!latest || btrfs_super_generation(super) > transid) {
3449 			brelse(latest);
3450 			latest = bh;
3451 			transid = btrfs_super_generation(super);
3452 		} else {
3453 			brelse(bh);
3454 		}
3455 	}
3456 
3457 	if (!latest)
3458 		return ERR_PTR(ret);
3459 
3460 	return latest;
3461 }
3462 
3463 /*
3464  * Write superblock @sb to the @device. Do not wait for completion, all the
3465  * buffer heads we write are pinned.
3466  *
3467  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3468  * the expected device size at commit time. Note that max_mirrors must be
3469  * same for write and wait phases.
3470  *
3471  * Return number of errors when buffer head is not found or submission fails.
3472  */
write_dev_supers(struct btrfs_device * device,struct btrfs_super_block * sb,int max_mirrors)3473 static int write_dev_supers(struct btrfs_device *device,
3474 			    struct btrfs_super_block *sb, int max_mirrors)
3475 {
3476 	struct btrfs_fs_info *fs_info = device->fs_info;
3477 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3478 	struct buffer_head *bh;
3479 	int i;
3480 	int ret;
3481 	int errors = 0;
3482 	u64 bytenr;
3483 	int op_flags;
3484 
3485 	if (max_mirrors == 0)
3486 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3487 
3488 	shash->tfm = fs_info->csum_shash;
3489 
3490 	for (i = 0; i < max_mirrors; i++) {
3491 		bytenr = btrfs_sb_offset(i);
3492 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3493 		    device->commit_total_bytes)
3494 			break;
3495 
3496 		btrfs_set_super_bytenr(sb, bytenr);
3497 
3498 		crypto_shash_init(shash);
3499 		crypto_shash_update(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3500 				    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3501 		crypto_shash_final(shash, sb->csum);
3502 
3503 		/* One reference for us, and we leave it for the caller */
3504 		bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
3505 			      BTRFS_SUPER_INFO_SIZE);
3506 		if (!bh) {
3507 			btrfs_err(device->fs_info,
3508 			    "couldn't get super buffer head for bytenr %llu",
3509 			    bytenr);
3510 			errors++;
3511 			continue;
3512 		}
3513 
3514 		memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3515 
3516 		/* one reference for submit_bh */
3517 		get_bh(bh);
3518 
3519 		set_buffer_uptodate(bh);
3520 		lock_buffer(bh);
3521 		bh->b_end_io = btrfs_end_buffer_write_sync;
3522 		bh->b_private = device;
3523 
3524 		/*
3525 		 * we fua the first super.  The others we allow
3526 		 * to go down lazy.
3527 		 */
3528 		op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3529 		if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3530 			op_flags |= REQ_FUA;
3531 		ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
3532 		if (ret)
3533 			errors++;
3534 	}
3535 	return errors < i ? 0 : -1;
3536 }
3537 
3538 /*
3539  * Wait for write completion of superblocks done by write_dev_supers,
3540  * @max_mirrors same for write and wait phases.
3541  *
3542  * Return number of errors when buffer head is not found or not marked up to
3543  * date.
3544  */
wait_dev_supers(struct btrfs_device * device,int max_mirrors)3545 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3546 {
3547 	struct buffer_head *bh;
3548 	int i;
3549 	int errors = 0;
3550 	bool primary_failed = false;
3551 	u64 bytenr;
3552 
3553 	if (max_mirrors == 0)
3554 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3555 
3556 	for (i = 0; i < max_mirrors; i++) {
3557 		bytenr = btrfs_sb_offset(i);
3558 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3559 		    device->commit_total_bytes)
3560 			break;
3561 
3562 		bh = __find_get_block(device->bdev,
3563 				      bytenr / BTRFS_BDEV_BLOCKSIZE,
3564 				      BTRFS_SUPER_INFO_SIZE);
3565 		if (!bh) {
3566 			errors++;
3567 			if (i == 0)
3568 				primary_failed = true;
3569 			continue;
3570 		}
3571 		wait_on_buffer(bh);
3572 		if (!buffer_uptodate(bh)) {
3573 			errors++;
3574 			if (i == 0)
3575 				primary_failed = true;
3576 		}
3577 
3578 		/* drop our reference */
3579 		brelse(bh);
3580 
3581 		/* drop the reference from the writing run */
3582 		brelse(bh);
3583 	}
3584 
3585 	/* log error, force error return */
3586 	if (primary_failed) {
3587 		btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3588 			  device->devid);
3589 		return -1;
3590 	}
3591 
3592 	return errors < i ? 0 : -1;
3593 }
3594 
3595 /*
3596  * endio for the write_dev_flush, this will wake anyone waiting
3597  * for the barrier when it is done
3598  */
btrfs_end_empty_barrier(struct bio * bio)3599 static void btrfs_end_empty_barrier(struct bio *bio)
3600 {
3601 	complete(bio->bi_private);
3602 }
3603 
3604 /*
3605  * Submit a flush request to the device if it supports it. Error handling is
3606  * done in the waiting counterpart.
3607  */
write_dev_flush(struct btrfs_device * device)3608 static void write_dev_flush(struct btrfs_device *device)
3609 {
3610 	struct request_queue *q = bdev_get_queue(device->bdev);
3611 	struct bio *bio = device->flush_bio;
3612 
3613 	if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3614 		return;
3615 
3616 	bio_reset(bio);
3617 	bio->bi_end_io = btrfs_end_empty_barrier;
3618 	bio_set_dev(bio, device->bdev);
3619 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3620 	init_completion(&device->flush_wait);
3621 	bio->bi_private = &device->flush_wait;
3622 
3623 	btrfsic_submit_bio(bio);
3624 	set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3625 }
3626 
3627 /*
3628  * If the flush bio has been submitted by write_dev_flush, wait for it.
3629  */
wait_dev_flush(struct btrfs_device * device)3630 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3631 {
3632 	struct bio *bio = device->flush_bio;
3633 
3634 	if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3635 		return BLK_STS_OK;
3636 
3637 	clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3638 	wait_for_completion_io(&device->flush_wait);
3639 
3640 	return bio->bi_status;
3641 }
3642 
check_barrier_error(struct btrfs_fs_info * fs_info)3643 static int check_barrier_error(struct btrfs_fs_info *fs_info)
3644 {
3645 	if (!btrfs_check_rw_degradable(fs_info, NULL))
3646 		return -EIO;
3647 	return 0;
3648 }
3649 
3650 /*
3651  * send an empty flush down to each device in parallel,
3652  * then wait for them
3653  */
barrier_all_devices(struct btrfs_fs_info * info)3654 static int barrier_all_devices(struct btrfs_fs_info *info)
3655 {
3656 	struct list_head *head;
3657 	struct btrfs_device *dev;
3658 	int errors_wait = 0;
3659 	blk_status_t ret;
3660 
3661 	lockdep_assert_held(&info->fs_devices->device_list_mutex);
3662 	/* send down all the barriers */
3663 	head = &info->fs_devices->devices;
3664 	list_for_each_entry(dev, head, dev_list) {
3665 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3666 			continue;
3667 		if (!dev->bdev)
3668 			continue;
3669 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3670 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3671 			continue;
3672 
3673 		write_dev_flush(dev);
3674 		dev->last_flush_error = BLK_STS_OK;
3675 	}
3676 
3677 	/* wait for all the barriers */
3678 	list_for_each_entry(dev, head, dev_list) {
3679 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3680 			continue;
3681 		if (!dev->bdev) {
3682 			errors_wait++;
3683 			continue;
3684 		}
3685 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3686 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3687 			continue;
3688 
3689 		ret = wait_dev_flush(dev);
3690 		if (ret) {
3691 			dev->last_flush_error = ret;
3692 			btrfs_dev_stat_inc_and_print(dev,
3693 					BTRFS_DEV_STAT_FLUSH_ERRS);
3694 			errors_wait++;
3695 		}
3696 	}
3697 
3698 	if (errors_wait) {
3699 		/*
3700 		 * At some point we need the status of all disks
3701 		 * to arrive at the volume status. So error checking
3702 		 * is being pushed to a separate loop.
3703 		 */
3704 		return check_barrier_error(info);
3705 	}
3706 	return 0;
3707 }
3708 
btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)3709 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3710 {
3711 	int raid_type;
3712 	int min_tolerated = INT_MAX;
3713 
3714 	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3715 	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3716 		min_tolerated = min_t(int, min_tolerated,
3717 				    btrfs_raid_array[BTRFS_RAID_SINGLE].
3718 				    tolerated_failures);
3719 
3720 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3721 		if (raid_type == BTRFS_RAID_SINGLE)
3722 			continue;
3723 		if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3724 			continue;
3725 		min_tolerated = min_t(int, min_tolerated,
3726 				    btrfs_raid_array[raid_type].
3727 				    tolerated_failures);
3728 	}
3729 
3730 	if (min_tolerated == INT_MAX) {
3731 		pr_warn("BTRFS: unknown raid flag: %llu", flags);
3732 		min_tolerated = 0;
3733 	}
3734 
3735 	return min_tolerated;
3736 }
3737 
write_all_supers(struct btrfs_fs_info * fs_info,int max_mirrors)3738 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3739 {
3740 	struct list_head *head;
3741 	struct btrfs_device *dev;
3742 	struct btrfs_super_block *sb;
3743 	struct btrfs_dev_item *dev_item;
3744 	int ret;
3745 	int do_barriers;
3746 	int max_errors;
3747 	int total_errors = 0;
3748 	u64 flags;
3749 
3750 	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3751 
3752 	/*
3753 	 * max_mirrors == 0 indicates we're from commit_transaction,
3754 	 * not from fsync where the tree roots in fs_info have not
3755 	 * been consistent on disk.
3756 	 */
3757 	if (max_mirrors == 0)
3758 		backup_super_roots(fs_info);
3759 
3760 	sb = fs_info->super_for_commit;
3761 	dev_item = &sb->dev_item;
3762 
3763 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3764 	head = &fs_info->fs_devices->devices;
3765 	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3766 
3767 	if (do_barriers) {
3768 		ret = barrier_all_devices(fs_info);
3769 		if (ret) {
3770 			mutex_unlock(
3771 				&fs_info->fs_devices->device_list_mutex);
3772 			btrfs_handle_fs_error(fs_info, ret,
3773 					      "errors while submitting device barriers.");
3774 			return ret;
3775 		}
3776 	}
3777 
3778 	list_for_each_entry(dev, head, dev_list) {
3779 		if (!dev->bdev) {
3780 			total_errors++;
3781 			continue;
3782 		}
3783 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3784 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3785 			continue;
3786 
3787 		btrfs_set_stack_device_generation(dev_item, 0);
3788 		btrfs_set_stack_device_type(dev_item, dev->type);
3789 		btrfs_set_stack_device_id(dev_item, dev->devid);
3790 		btrfs_set_stack_device_total_bytes(dev_item,
3791 						   dev->commit_total_bytes);
3792 		btrfs_set_stack_device_bytes_used(dev_item,
3793 						  dev->commit_bytes_used);
3794 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3795 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3796 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3797 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3798 		memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3799 		       BTRFS_FSID_SIZE);
3800 
3801 		flags = btrfs_super_flags(sb);
3802 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3803 
3804 		ret = btrfs_validate_write_super(fs_info, sb);
3805 		if (ret < 0) {
3806 			mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3807 			btrfs_handle_fs_error(fs_info, -EUCLEAN,
3808 				"unexpected superblock corruption detected");
3809 			return -EUCLEAN;
3810 		}
3811 
3812 		ret = write_dev_supers(dev, sb, max_mirrors);
3813 		if (ret)
3814 			total_errors++;
3815 	}
3816 	if (total_errors > max_errors) {
3817 		btrfs_err(fs_info, "%d errors while writing supers",
3818 			  total_errors);
3819 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3820 
3821 		/* FUA is masked off if unsupported and can't be the reason */
3822 		btrfs_handle_fs_error(fs_info, -EIO,
3823 				      "%d errors while writing supers",
3824 				      total_errors);
3825 		return -EIO;
3826 	}
3827 
3828 	total_errors = 0;
3829 	list_for_each_entry(dev, head, dev_list) {
3830 		if (!dev->bdev)
3831 			continue;
3832 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3833 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3834 			continue;
3835 
3836 		ret = wait_dev_supers(dev, max_mirrors);
3837 		if (ret)
3838 			total_errors++;
3839 	}
3840 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3841 	if (total_errors > max_errors) {
3842 		btrfs_handle_fs_error(fs_info, -EIO,
3843 				      "%d errors while writing supers",
3844 				      total_errors);
3845 		return -EIO;
3846 	}
3847 	return 0;
3848 }
3849 
3850 /* Drop a fs root from the radix tree and free it. */
btrfs_drop_and_free_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_root * root)3851 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3852 				  struct btrfs_root *root)
3853 {
3854 	spin_lock(&fs_info->fs_roots_radix_lock);
3855 	radix_tree_delete(&fs_info->fs_roots_radix,
3856 			  (unsigned long)root->root_key.objectid);
3857 	spin_unlock(&fs_info->fs_roots_radix_lock);
3858 
3859 	if (btrfs_root_refs(&root->root_item) == 0)
3860 		synchronize_srcu(&fs_info->subvol_srcu);
3861 
3862 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3863 		btrfs_free_log(NULL, root);
3864 		if (root->reloc_root) {
3865 			free_extent_buffer(root->reloc_root->node);
3866 			free_extent_buffer(root->reloc_root->commit_root);
3867 			btrfs_put_fs_root(root->reloc_root);
3868 			root->reloc_root = NULL;
3869 		}
3870 	}
3871 
3872 	if (root->free_ino_pinned)
3873 		__btrfs_remove_free_space_cache(root->free_ino_pinned);
3874 	if (root->free_ino_ctl)
3875 		__btrfs_remove_free_space_cache(root->free_ino_ctl);
3876 	btrfs_free_fs_root(root);
3877 }
3878 
btrfs_free_fs_root(struct btrfs_root * root)3879 void btrfs_free_fs_root(struct btrfs_root *root)
3880 {
3881 	iput(root->ino_cache_inode);
3882 	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3883 	if (root->anon_dev)
3884 		free_anon_bdev(root->anon_dev);
3885 	if (root->subv_writers)
3886 		btrfs_free_subvolume_writers(root->subv_writers);
3887 	free_extent_buffer(root->node);
3888 	free_extent_buffer(root->commit_root);
3889 	kfree(root->free_ino_ctl);
3890 	kfree(root->free_ino_pinned);
3891 	btrfs_put_fs_root(root);
3892 }
3893 
btrfs_cleanup_fs_roots(struct btrfs_fs_info * fs_info)3894 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3895 {
3896 	u64 root_objectid = 0;
3897 	struct btrfs_root *gang[8];
3898 	int i = 0;
3899 	int err = 0;
3900 	unsigned int ret = 0;
3901 	int index;
3902 
3903 	while (1) {
3904 		index = srcu_read_lock(&fs_info->subvol_srcu);
3905 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3906 					     (void **)gang, root_objectid,
3907 					     ARRAY_SIZE(gang));
3908 		if (!ret) {
3909 			srcu_read_unlock(&fs_info->subvol_srcu, index);
3910 			break;
3911 		}
3912 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
3913 
3914 		for (i = 0; i < ret; i++) {
3915 			/* Avoid to grab roots in dead_roots */
3916 			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3917 				gang[i] = NULL;
3918 				continue;
3919 			}
3920 			/* grab all the search result for later use */
3921 			gang[i] = btrfs_grab_fs_root(gang[i]);
3922 		}
3923 		srcu_read_unlock(&fs_info->subvol_srcu, index);
3924 
3925 		for (i = 0; i < ret; i++) {
3926 			if (!gang[i])
3927 				continue;
3928 			root_objectid = gang[i]->root_key.objectid;
3929 			err = btrfs_orphan_cleanup(gang[i]);
3930 			if (err)
3931 				break;
3932 			btrfs_put_fs_root(gang[i]);
3933 		}
3934 		root_objectid++;
3935 	}
3936 
3937 	/* release the uncleaned roots due to error */
3938 	for (; i < ret; i++) {
3939 		if (gang[i])
3940 			btrfs_put_fs_root(gang[i]);
3941 	}
3942 	return err;
3943 }
3944 
btrfs_commit_super(struct btrfs_fs_info * fs_info)3945 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3946 {
3947 	struct btrfs_root *root = fs_info->tree_root;
3948 	struct btrfs_trans_handle *trans;
3949 
3950 	mutex_lock(&fs_info->cleaner_mutex);
3951 	btrfs_run_delayed_iputs(fs_info);
3952 	mutex_unlock(&fs_info->cleaner_mutex);
3953 	wake_up_process(fs_info->cleaner_kthread);
3954 
3955 	/* wait until ongoing cleanup work done */
3956 	down_write(&fs_info->cleanup_work_sem);
3957 	up_write(&fs_info->cleanup_work_sem);
3958 
3959 	trans = btrfs_join_transaction(root);
3960 	if (IS_ERR(trans))
3961 		return PTR_ERR(trans);
3962 	return btrfs_commit_transaction(trans);
3963 }
3964 
close_ctree(struct btrfs_fs_info * fs_info)3965 void close_ctree(struct btrfs_fs_info *fs_info)
3966 {
3967 	int ret;
3968 
3969 	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3970 	/*
3971 	 * We don't want the cleaner to start new transactions, add more delayed
3972 	 * iputs, etc. while we're closing. We can't use kthread_stop() yet
3973 	 * because that frees the task_struct, and the transaction kthread might
3974 	 * still try to wake up the cleaner.
3975 	 */
3976 	kthread_park(fs_info->cleaner_kthread);
3977 
3978 	/* wait for the qgroup rescan worker to stop */
3979 	btrfs_qgroup_wait_for_completion(fs_info, false);
3980 
3981 	/* wait for the uuid_scan task to finish */
3982 	down(&fs_info->uuid_tree_rescan_sem);
3983 	/* avoid complains from lockdep et al., set sem back to initial state */
3984 	up(&fs_info->uuid_tree_rescan_sem);
3985 
3986 	/* pause restriper - we want to resume on mount */
3987 	btrfs_pause_balance(fs_info);
3988 
3989 	btrfs_dev_replace_suspend_for_unmount(fs_info);
3990 
3991 	btrfs_scrub_cancel(fs_info);
3992 
3993 	/* wait for any defraggers to finish */
3994 	wait_event(fs_info->transaction_wait,
3995 		   (atomic_read(&fs_info->defrag_running) == 0));
3996 
3997 	/* clear out the rbtree of defraggable inodes */
3998 	btrfs_cleanup_defrag_inodes(fs_info);
3999 
4000 	cancel_work_sync(&fs_info->async_reclaim_work);
4001 
4002 	if (!sb_rdonly(fs_info->sb)) {
4003 		/*
4004 		 * The cleaner kthread is stopped, so do one final pass over
4005 		 * unused block groups.
4006 		 */
4007 		btrfs_delete_unused_bgs(fs_info);
4008 
4009 		ret = btrfs_commit_super(fs_info);
4010 		if (ret)
4011 			btrfs_err(fs_info, "commit super ret %d", ret);
4012 	}
4013 
4014 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4015 	    test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
4016 		btrfs_error_commit_super(fs_info);
4017 
4018 	kthread_stop(fs_info->transaction_kthread);
4019 	kthread_stop(fs_info->cleaner_kthread);
4020 
4021 	ASSERT(list_empty(&fs_info->delayed_iputs));
4022 	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4023 
4024 	btrfs_free_qgroup_config(fs_info);
4025 	ASSERT(list_empty(&fs_info->delalloc_roots));
4026 
4027 	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4028 		btrfs_info(fs_info, "at unmount delalloc count %lld",
4029 		       percpu_counter_sum(&fs_info->delalloc_bytes));
4030 	}
4031 
4032 	if (percpu_counter_sum(&fs_info->dio_bytes))
4033 		btrfs_info(fs_info, "at unmount dio bytes count %lld",
4034 			   percpu_counter_sum(&fs_info->dio_bytes));
4035 
4036 	btrfs_sysfs_remove_mounted(fs_info);
4037 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4038 
4039 	btrfs_free_fs_roots(fs_info);
4040 
4041 	btrfs_put_block_group_cache(fs_info);
4042 
4043 	/*
4044 	 * we must make sure there is not any read request to
4045 	 * submit after we stopping all workers.
4046 	 */
4047 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4048 	btrfs_stop_all_workers(fs_info);
4049 
4050 	btrfs_free_block_groups(fs_info);
4051 
4052 	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4053 	free_root_pointers(fs_info, 1);
4054 
4055 	iput(fs_info->btree_inode);
4056 
4057 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4058 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4059 		btrfsic_unmount(fs_info->fs_devices);
4060 #endif
4061 
4062 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
4063 	btrfs_close_devices(fs_info->fs_devices);
4064 
4065 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
4066 	percpu_counter_destroy(&fs_info->delalloc_bytes);
4067 	percpu_counter_destroy(&fs_info->dio_bytes);
4068 	percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
4069 	cleanup_srcu_struct(&fs_info->subvol_srcu);
4070 
4071 	btrfs_free_csum_hash(fs_info);
4072 	btrfs_free_stripe_hash_table(fs_info);
4073 	btrfs_free_ref_cache(fs_info);
4074 }
4075 
btrfs_buffer_uptodate(struct extent_buffer * buf,u64 parent_transid,int atomic)4076 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4077 			  int atomic)
4078 {
4079 	int ret;
4080 	struct inode *btree_inode = buf->pages[0]->mapping->host;
4081 
4082 	ret = extent_buffer_uptodate(buf);
4083 	if (!ret)
4084 		return ret;
4085 
4086 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4087 				    parent_transid, atomic);
4088 	if (ret == -EAGAIN)
4089 		return ret;
4090 	return !ret;
4091 }
4092 
btrfs_mark_buffer_dirty(struct extent_buffer * buf)4093 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4094 {
4095 	struct btrfs_fs_info *fs_info;
4096 	struct btrfs_root *root;
4097 	u64 transid = btrfs_header_generation(buf);
4098 	int was_dirty;
4099 
4100 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4101 	/*
4102 	 * This is a fast path so only do this check if we have sanity tests
4103 	 * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4104 	 * outside of the sanity tests.
4105 	 */
4106 	if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4107 		return;
4108 #endif
4109 	root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4110 	fs_info = root->fs_info;
4111 	btrfs_assert_tree_locked(buf);
4112 	if (transid != fs_info->generation)
4113 		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4114 			buf->start, transid, fs_info->generation);
4115 	was_dirty = set_extent_buffer_dirty(buf);
4116 	if (!was_dirty)
4117 		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4118 					 buf->len,
4119 					 fs_info->dirty_metadata_batch);
4120 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4121 	/*
4122 	 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4123 	 * but item data not updated.
4124 	 * So here we should only check item pointers, not item data.
4125 	 */
4126 	if (btrfs_header_level(buf) == 0 &&
4127 	    btrfs_check_leaf_relaxed(buf)) {
4128 		btrfs_print_leaf(buf);
4129 		ASSERT(0);
4130 	}
4131 #endif
4132 }
4133 
__btrfs_btree_balance_dirty(struct btrfs_fs_info * fs_info,int flush_delayed)4134 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4135 					int flush_delayed)
4136 {
4137 	/*
4138 	 * looks as though older kernels can get into trouble with
4139 	 * this code, they end up stuck in balance_dirty_pages forever
4140 	 */
4141 	int ret;
4142 
4143 	if (current->flags & PF_MEMALLOC)
4144 		return;
4145 
4146 	if (flush_delayed)
4147 		btrfs_balance_delayed_items(fs_info);
4148 
4149 	ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4150 				     BTRFS_DIRTY_METADATA_THRESH,
4151 				     fs_info->dirty_metadata_batch);
4152 	if (ret > 0) {
4153 		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4154 	}
4155 }
4156 
btrfs_btree_balance_dirty(struct btrfs_fs_info * fs_info)4157 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4158 {
4159 	__btrfs_btree_balance_dirty(fs_info, 1);
4160 }
4161 
btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info * fs_info)4162 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4163 {
4164 	__btrfs_btree_balance_dirty(fs_info, 0);
4165 }
4166 
btrfs_read_buffer(struct extent_buffer * buf,u64 parent_transid,int level,struct btrfs_key * first_key)4167 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4168 		      struct btrfs_key *first_key)
4169 {
4170 	return btree_read_extent_buffer_pages(buf, parent_transid,
4171 					      level, first_key);
4172 }
4173 
btrfs_error_commit_super(struct btrfs_fs_info * fs_info)4174 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4175 {
4176 	/* cleanup FS via transaction */
4177 	btrfs_cleanup_transaction(fs_info);
4178 
4179 	mutex_lock(&fs_info->cleaner_mutex);
4180 	btrfs_run_delayed_iputs(fs_info);
4181 	mutex_unlock(&fs_info->cleaner_mutex);
4182 
4183 	down_write(&fs_info->cleanup_work_sem);
4184 	up_write(&fs_info->cleanup_work_sem);
4185 }
4186 
btrfs_destroy_ordered_extents(struct btrfs_root * root)4187 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4188 {
4189 	struct btrfs_ordered_extent *ordered;
4190 
4191 	spin_lock(&root->ordered_extent_lock);
4192 	/*
4193 	 * This will just short circuit the ordered completion stuff which will
4194 	 * make sure the ordered extent gets properly cleaned up.
4195 	 */
4196 	list_for_each_entry(ordered, &root->ordered_extents,
4197 			    root_extent_list)
4198 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4199 	spin_unlock(&root->ordered_extent_lock);
4200 }
4201 
btrfs_destroy_all_ordered_extents(struct btrfs_fs_info * fs_info)4202 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4203 {
4204 	struct btrfs_root *root;
4205 	struct list_head splice;
4206 
4207 	INIT_LIST_HEAD(&splice);
4208 
4209 	spin_lock(&fs_info->ordered_root_lock);
4210 	list_splice_init(&fs_info->ordered_roots, &splice);
4211 	while (!list_empty(&splice)) {
4212 		root = list_first_entry(&splice, struct btrfs_root,
4213 					ordered_root);
4214 		list_move_tail(&root->ordered_root,
4215 			       &fs_info->ordered_roots);
4216 
4217 		spin_unlock(&fs_info->ordered_root_lock);
4218 		btrfs_destroy_ordered_extents(root);
4219 
4220 		cond_resched();
4221 		spin_lock(&fs_info->ordered_root_lock);
4222 	}
4223 	spin_unlock(&fs_info->ordered_root_lock);
4224 
4225 	/*
4226 	 * We need this here because if we've been flipped read-only we won't
4227 	 * get sync() from the umount, so we need to make sure any ordered
4228 	 * extents that haven't had their dirty pages IO start writeout yet
4229 	 * actually get run and error out properly.
4230 	 */
4231 	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4232 }
4233 
btrfs_destroy_delayed_refs(struct btrfs_transaction * trans,struct btrfs_fs_info * fs_info)4234 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4235 				      struct btrfs_fs_info *fs_info)
4236 {
4237 	struct rb_node *node;
4238 	struct btrfs_delayed_ref_root *delayed_refs;
4239 	struct btrfs_delayed_ref_node *ref;
4240 	int ret = 0;
4241 
4242 	delayed_refs = &trans->delayed_refs;
4243 
4244 	spin_lock(&delayed_refs->lock);
4245 	if (atomic_read(&delayed_refs->num_entries) == 0) {
4246 		spin_unlock(&delayed_refs->lock);
4247 		btrfs_info(fs_info, "delayed_refs has NO entry");
4248 		return ret;
4249 	}
4250 
4251 	while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4252 		struct btrfs_delayed_ref_head *head;
4253 		struct rb_node *n;
4254 		bool pin_bytes = false;
4255 
4256 		head = rb_entry(node, struct btrfs_delayed_ref_head,
4257 				href_node);
4258 		if (btrfs_delayed_ref_lock(delayed_refs, head))
4259 			continue;
4260 
4261 		spin_lock(&head->lock);
4262 		while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4263 			ref = rb_entry(n, struct btrfs_delayed_ref_node,
4264 				       ref_node);
4265 			ref->in_tree = 0;
4266 			rb_erase_cached(&ref->ref_node, &head->ref_tree);
4267 			RB_CLEAR_NODE(&ref->ref_node);
4268 			if (!list_empty(&ref->add_list))
4269 				list_del(&ref->add_list);
4270 			atomic_dec(&delayed_refs->num_entries);
4271 			btrfs_put_delayed_ref(ref);
4272 		}
4273 		if (head->must_insert_reserved)
4274 			pin_bytes = true;
4275 		btrfs_free_delayed_extent_op(head->extent_op);
4276 		btrfs_delete_ref_head(delayed_refs, head);
4277 		spin_unlock(&head->lock);
4278 		spin_unlock(&delayed_refs->lock);
4279 		mutex_unlock(&head->mutex);
4280 
4281 		if (pin_bytes)
4282 			btrfs_pin_extent(fs_info, head->bytenr,
4283 					 head->num_bytes, 1);
4284 		btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4285 		btrfs_put_delayed_ref_head(head);
4286 		cond_resched();
4287 		spin_lock(&delayed_refs->lock);
4288 	}
4289 
4290 	spin_unlock(&delayed_refs->lock);
4291 
4292 	return ret;
4293 }
4294 
btrfs_destroy_delalloc_inodes(struct btrfs_root * root)4295 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4296 {
4297 	struct btrfs_inode *btrfs_inode;
4298 	struct list_head splice;
4299 
4300 	INIT_LIST_HEAD(&splice);
4301 
4302 	spin_lock(&root->delalloc_lock);
4303 	list_splice_init(&root->delalloc_inodes, &splice);
4304 
4305 	while (!list_empty(&splice)) {
4306 		struct inode *inode = NULL;
4307 		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4308 					       delalloc_inodes);
4309 		__btrfs_del_delalloc_inode(root, btrfs_inode);
4310 		spin_unlock(&root->delalloc_lock);
4311 
4312 		/*
4313 		 * Make sure we get a live inode and that it'll not disappear
4314 		 * meanwhile.
4315 		 */
4316 		inode = igrab(&btrfs_inode->vfs_inode);
4317 		if (inode) {
4318 			invalidate_inode_pages2(inode->i_mapping);
4319 			iput(inode);
4320 		}
4321 		spin_lock(&root->delalloc_lock);
4322 	}
4323 	spin_unlock(&root->delalloc_lock);
4324 }
4325 
btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info * fs_info)4326 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4327 {
4328 	struct btrfs_root *root;
4329 	struct list_head splice;
4330 
4331 	INIT_LIST_HEAD(&splice);
4332 
4333 	spin_lock(&fs_info->delalloc_root_lock);
4334 	list_splice_init(&fs_info->delalloc_roots, &splice);
4335 	while (!list_empty(&splice)) {
4336 		root = list_first_entry(&splice, struct btrfs_root,
4337 					 delalloc_root);
4338 		root = btrfs_grab_fs_root(root);
4339 		BUG_ON(!root);
4340 		spin_unlock(&fs_info->delalloc_root_lock);
4341 
4342 		btrfs_destroy_delalloc_inodes(root);
4343 		btrfs_put_fs_root(root);
4344 
4345 		spin_lock(&fs_info->delalloc_root_lock);
4346 	}
4347 	spin_unlock(&fs_info->delalloc_root_lock);
4348 }
4349 
btrfs_destroy_marked_extents(struct btrfs_fs_info * fs_info,struct extent_io_tree * dirty_pages,int mark)4350 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4351 					struct extent_io_tree *dirty_pages,
4352 					int mark)
4353 {
4354 	int ret;
4355 	struct extent_buffer *eb;
4356 	u64 start = 0;
4357 	u64 end;
4358 
4359 	while (1) {
4360 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4361 					    mark, NULL);
4362 		if (ret)
4363 			break;
4364 
4365 		clear_extent_bits(dirty_pages, start, end, mark);
4366 		while (start <= end) {
4367 			eb = find_extent_buffer(fs_info, start);
4368 			start += fs_info->nodesize;
4369 			if (!eb)
4370 				continue;
4371 			wait_on_extent_buffer_writeback(eb);
4372 
4373 			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4374 					       &eb->bflags))
4375 				clear_extent_buffer_dirty(eb);
4376 			free_extent_buffer_stale(eb);
4377 		}
4378 	}
4379 
4380 	return ret;
4381 }
4382 
btrfs_destroy_pinned_extent(struct btrfs_fs_info * fs_info,struct extent_io_tree * pinned_extents)4383 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4384 				       struct extent_io_tree *pinned_extents)
4385 {
4386 	struct extent_io_tree *unpin;
4387 	u64 start;
4388 	u64 end;
4389 	int ret;
4390 	bool loop = true;
4391 
4392 	unpin = pinned_extents;
4393 again:
4394 	while (1) {
4395 		struct extent_state *cached_state = NULL;
4396 
4397 		/*
4398 		 * The btrfs_finish_extent_commit() may get the same range as
4399 		 * ours between find_first_extent_bit and clear_extent_dirty.
4400 		 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4401 		 * the same extent range.
4402 		 */
4403 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
4404 		ret = find_first_extent_bit(unpin, 0, &start, &end,
4405 					    EXTENT_DIRTY, &cached_state);
4406 		if (ret) {
4407 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4408 			break;
4409 		}
4410 
4411 		clear_extent_dirty(unpin, start, end, &cached_state);
4412 		free_extent_state(cached_state);
4413 		btrfs_error_unpin_extent_range(fs_info, start, end);
4414 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4415 		cond_resched();
4416 	}
4417 
4418 	if (loop) {
4419 		if (unpin == &fs_info->freed_extents[0])
4420 			unpin = &fs_info->freed_extents[1];
4421 		else
4422 			unpin = &fs_info->freed_extents[0];
4423 		loop = false;
4424 		goto again;
4425 	}
4426 
4427 	return 0;
4428 }
4429 
btrfs_cleanup_bg_io(struct btrfs_block_group_cache * cache)4430 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4431 {
4432 	struct inode *inode;
4433 
4434 	inode = cache->io_ctl.inode;
4435 	if (inode) {
4436 		invalidate_inode_pages2(inode->i_mapping);
4437 		BTRFS_I(inode)->generation = 0;
4438 		cache->io_ctl.inode = NULL;
4439 		iput(inode);
4440 	}
4441 	btrfs_put_block_group(cache);
4442 }
4443 
btrfs_cleanup_dirty_bgs(struct btrfs_transaction * cur_trans,struct btrfs_fs_info * fs_info)4444 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4445 			     struct btrfs_fs_info *fs_info)
4446 {
4447 	struct btrfs_block_group_cache *cache;
4448 
4449 	spin_lock(&cur_trans->dirty_bgs_lock);
4450 	while (!list_empty(&cur_trans->dirty_bgs)) {
4451 		cache = list_first_entry(&cur_trans->dirty_bgs,
4452 					 struct btrfs_block_group_cache,
4453 					 dirty_list);
4454 
4455 		if (!list_empty(&cache->io_list)) {
4456 			spin_unlock(&cur_trans->dirty_bgs_lock);
4457 			list_del_init(&cache->io_list);
4458 			btrfs_cleanup_bg_io(cache);
4459 			spin_lock(&cur_trans->dirty_bgs_lock);
4460 		}
4461 
4462 		list_del_init(&cache->dirty_list);
4463 		spin_lock(&cache->lock);
4464 		cache->disk_cache_state = BTRFS_DC_ERROR;
4465 		spin_unlock(&cache->lock);
4466 
4467 		spin_unlock(&cur_trans->dirty_bgs_lock);
4468 		btrfs_put_block_group(cache);
4469 		btrfs_delayed_refs_rsv_release(fs_info, 1);
4470 		spin_lock(&cur_trans->dirty_bgs_lock);
4471 	}
4472 	spin_unlock(&cur_trans->dirty_bgs_lock);
4473 
4474 	/*
4475 	 * Refer to the definition of io_bgs member for details why it's safe
4476 	 * to use it without any locking
4477 	 */
4478 	while (!list_empty(&cur_trans->io_bgs)) {
4479 		cache = list_first_entry(&cur_trans->io_bgs,
4480 					 struct btrfs_block_group_cache,
4481 					 io_list);
4482 
4483 		list_del_init(&cache->io_list);
4484 		spin_lock(&cache->lock);
4485 		cache->disk_cache_state = BTRFS_DC_ERROR;
4486 		spin_unlock(&cache->lock);
4487 		btrfs_cleanup_bg_io(cache);
4488 	}
4489 }
4490 
btrfs_cleanup_one_transaction(struct btrfs_transaction * cur_trans,struct btrfs_fs_info * fs_info)4491 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4492 				   struct btrfs_fs_info *fs_info)
4493 {
4494 	struct btrfs_device *dev, *tmp;
4495 
4496 	btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4497 	ASSERT(list_empty(&cur_trans->dirty_bgs));
4498 	ASSERT(list_empty(&cur_trans->io_bgs));
4499 
4500 	list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4501 				 post_commit_list) {
4502 		list_del_init(&dev->post_commit_list);
4503 	}
4504 
4505 	btrfs_destroy_delayed_refs(cur_trans, fs_info);
4506 
4507 	cur_trans->state = TRANS_STATE_COMMIT_START;
4508 	wake_up(&fs_info->transaction_blocked_wait);
4509 
4510 	cur_trans->state = TRANS_STATE_UNBLOCKED;
4511 	wake_up(&fs_info->transaction_wait);
4512 
4513 	btrfs_destroy_delayed_inodes(fs_info);
4514 	btrfs_assert_delayed_root_empty(fs_info);
4515 
4516 	btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4517 				     EXTENT_DIRTY);
4518 	btrfs_destroy_pinned_extent(fs_info,
4519 				    fs_info->pinned_extents);
4520 
4521 	cur_trans->state =TRANS_STATE_COMPLETED;
4522 	wake_up(&cur_trans->commit_wait);
4523 }
4524 
btrfs_cleanup_transaction(struct btrfs_fs_info * fs_info)4525 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4526 {
4527 	struct btrfs_transaction *t;
4528 
4529 	mutex_lock(&fs_info->transaction_kthread_mutex);
4530 
4531 	spin_lock(&fs_info->trans_lock);
4532 	while (!list_empty(&fs_info->trans_list)) {
4533 		t = list_first_entry(&fs_info->trans_list,
4534 				     struct btrfs_transaction, list);
4535 		if (t->state >= TRANS_STATE_COMMIT_START) {
4536 			refcount_inc(&t->use_count);
4537 			spin_unlock(&fs_info->trans_lock);
4538 			btrfs_wait_for_commit(fs_info, t->transid);
4539 			btrfs_put_transaction(t);
4540 			spin_lock(&fs_info->trans_lock);
4541 			continue;
4542 		}
4543 		if (t == fs_info->running_transaction) {
4544 			t->state = TRANS_STATE_COMMIT_DOING;
4545 			spin_unlock(&fs_info->trans_lock);
4546 			/*
4547 			 * We wait for 0 num_writers since we don't hold a trans
4548 			 * handle open currently for this transaction.
4549 			 */
4550 			wait_event(t->writer_wait,
4551 				   atomic_read(&t->num_writers) == 0);
4552 		} else {
4553 			spin_unlock(&fs_info->trans_lock);
4554 		}
4555 		btrfs_cleanup_one_transaction(t, fs_info);
4556 
4557 		spin_lock(&fs_info->trans_lock);
4558 		if (t == fs_info->running_transaction)
4559 			fs_info->running_transaction = NULL;
4560 		list_del_init(&t->list);
4561 		spin_unlock(&fs_info->trans_lock);
4562 
4563 		btrfs_put_transaction(t);
4564 		trace_btrfs_transaction_commit(fs_info->tree_root);
4565 		spin_lock(&fs_info->trans_lock);
4566 	}
4567 	spin_unlock(&fs_info->trans_lock);
4568 	btrfs_destroy_all_ordered_extents(fs_info);
4569 	btrfs_destroy_delayed_inodes(fs_info);
4570 	btrfs_assert_delayed_root_empty(fs_info);
4571 	btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
4572 	btrfs_destroy_all_delalloc_inodes(fs_info);
4573 	mutex_unlock(&fs_info->transaction_kthread_mutex);
4574 
4575 	return 0;
4576 }
4577 
4578 static const struct extent_io_ops btree_extent_io_ops = {
4579 	/* mandatory callbacks */
4580 	.submit_bio_hook = btree_submit_bio_hook,
4581 	.readpage_end_io_hook = btree_readpage_end_io_hook,
4582 };
4583