1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/buffer_head.h>
11 #include <linux/workqueue.h>
12 #include <linux/kthread.h>
13 #include <linux/slab.h>
14 #include <linux/migrate.h>
15 #include <linux/ratelimit.h>
16 #include <linux/uuid.h>
17 #include <linux/semaphore.h>
18 #include <linux/error-injection.h>
19 #include <linux/crc32c.h>
20 #include <linux/sched/mm.h>
21 #include <asm/unaligned.h>
22 #include <crypto/hash.h>
23 #include "ctree.h"
24 #include "disk-io.h"
25 #include "transaction.h"
26 #include "btrfs_inode.h"
27 #include "volumes.h"
28 #include "print-tree.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "free-space-cache.h"
32 #include "free-space-tree.h"
33 #include "inode-map.h"
34 #include "check-integrity.h"
35 #include "rcu-string.h"
36 #include "dev-replace.h"
37 #include "raid56.h"
38 #include "sysfs.h"
39 #include "qgroup.h"
40 #include "compression.h"
41 #include "tree-checker.h"
42 #include "ref-verify.h"
43 #include "block-group.h"
44
45 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
46 BTRFS_HEADER_FLAG_RELOC |\
47 BTRFS_SUPER_FLAG_ERROR |\
48 BTRFS_SUPER_FLAG_SEEDING |\
49 BTRFS_SUPER_FLAG_METADUMP |\
50 BTRFS_SUPER_FLAG_METADUMP_V2)
51
52 static const struct extent_io_ops btree_extent_io_ops;
53 static void end_workqueue_fn(struct btrfs_work *work);
54 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
55 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
56 struct btrfs_fs_info *fs_info);
57 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
58 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
59 struct extent_io_tree *dirty_pages,
60 int mark);
61 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
62 struct extent_io_tree *pinned_extents);
63 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
64 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
65
66 /*
67 * btrfs_end_io_wq structs are used to do processing in task context when an IO
68 * is complete. This is used during reads to verify checksums, and it is used
69 * by writes to insert metadata for new file extents after IO is complete.
70 */
71 struct btrfs_end_io_wq {
72 struct bio *bio;
73 bio_end_io_t *end_io;
74 void *private;
75 struct btrfs_fs_info *info;
76 blk_status_t status;
77 enum btrfs_wq_endio_type metadata;
78 struct btrfs_work work;
79 };
80
81 static struct kmem_cache *btrfs_end_io_wq_cache;
82
btrfs_end_io_wq_init(void)83 int __init btrfs_end_io_wq_init(void)
84 {
85 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
86 sizeof(struct btrfs_end_io_wq),
87 0,
88 SLAB_MEM_SPREAD,
89 NULL);
90 if (!btrfs_end_io_wq_cache)
91 return -ENOMEM;
92 return 0;
93 }
94
btrfs_end_io_wq_exit(void)95 void __cold btrfs_end_io_wq_exit(void)
96 {
97 kmem_cache_destroy(btrfs_end_io_wq_cache);
98 }
99
100 /*
101 * async submit bios are used to offload expensive checksumming
102 * onto the worker threads. They checksum file and metadata bios
103 * just before they are sent down the IO stack.
104 */
105 struct async_submit_bio {
106 void *private_data;
107 struct bio *bio;
108 extent_submit_bio_start_t *submit_bio_start;
109 int mirror_num;
110 /*
111 * bio_offset is optional, can be used if the pages in the bio
112 * can't tell us where in the file the bio should go
113 */
114 u64 bio_offset;
115 struct btrfs_work work;
116 blk_status_t status;
117 };
118
119 /*
120 * Lockdep class keys for extent_buffer->lock's in this root. For a given
121 * eb, the lockdep key is determined by the btrfs_root it belongs to and
122 * the level the eb occupies in the tree.
123 *
124 * Different roots are used for different purposes and may nest inside each
125 * other and they require separate keysets. As lockdep keys should be
126 * static, assign keysets according to the purpose of the root as indicated
127 * by btrfs_root->root_key.objectid. This ensures that all special purpose
128 * roots have separate keysets.
129 *
130 * Lock-nesting across peer nodes is always done with the immediate parent
131 * node locked thus preventing deadlock. As lockdep doesn't know this, use
132 * subclass to avoid triggering lockdep warning in such cases.
133 *
134 * The key is set by the readpage_end_io_hook after the buffer has passed
135 * csum validation but before the pages are unlocked. It is also set by
136 * btrfs_init_new_buffer on freshly allocated blocks.
137 *
138 * We also add a check to make sure the highest level of the tree is the
139 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
140 * needs update as well.
141 */
142 #ifdef CONFIG_DEBUG_LOCK_ALLOC
143 # if BTRFS_MAX_LEVEL != 8
144 # error
145 # endif
146
147 static struct btrfs_lockdep_keyset {
148 u64 id; /* root objectid */
149 const char *name_stem; /* lock name stem */
150 char names[BTRFS_MAX_LEVEL + 1][20];
151 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
152 } btrfs_lockdep_keysets[] = {
153 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
154 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
155 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
156 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
157 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
158 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
159 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
160 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
161 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
162 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
163 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
164 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
165 { .id = 0, .name_stem = "tree" },
166 };
167
btrfs_init_lockdep(void)168 void __init btrfs_init_lockdep(void)
169 {
170 int i, j;
171
172 /* initialize lockdep class names */
173 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
174 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
175
176 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
177 snprintf(ks->names[j], sizeof(ks->names[j]),
178 "btrfs-%s-%02d", ks->name_stem, j);
179 }
180 }
181
btrfs_set_buffer_lockdep_class(u64 objectid,struct extent_buffer * eb,int level)182 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
183 int level)
184 {
185 struct btrfs_lockdep_keyset *ks;
186
187 BUG_ON(level >= ARRAY_SIZE(ks->keys));
188
189 /* find the matching keyset, id 0 is the default entry */
190 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
191 if (ks->id == objectid)
192 break;
193
194 lockdep_set_class_and_name(&eb->lock,
195 &ks->keys[level], ks->names[level]);
196 }
197
198 #endif
199
200 /*
201 * extents on the btree inode are pretty simple, there's one extent
202 * that covers the entire device
203 */
btree_get_extent(struct btrfs_inode * inode,struct page * page,size_t pg_offset,u64 start,u64 len,int create)204 struct extent_map *btree_get_extent(struct btrfs_inode *inode,
205 struct page *page, size_t pg_offset, u64 start, u64 len,
206 int create)
207 {
208 struct btrfs_fs_info *fs_info = inode->root->fs_info;
209 struct extent_map_tree *em_tree = &inode->extent_tree;
210 struct extent_map *em;
211 int ret;
212
213 read_lock(&em_tree->lock);
214 em = lookup_extent_mapping(em_tree, start, len);
215 if (em) {
216 em->bdev = fs_info->fs_devices->latest_bdev;
217 read_unlock(&em_tree->lock);
218 goto out;
219 }
220 read_unlock(&em_tree->lock);
221
222 em = alloc_extent_map();
223 if (!em) {
224 em = ERR_PTR(-ENOMEM);
225 goto out;
226 }
227 em->start = 0;
228 em->len = (u64)-1;
229 em->block_len = (u64)-1;
230 em->block_start = 0;
231 em->bdev = fs_info->fs_devices->latest_bdev;
232
233 write_lock(&em_tree->lock);
234 ret = add_extent_mapping(em_tree, em, 0);
235 if (ret == -EEXIST) {
236 free_extent_map(em);
237 em = lookup_extent_mapping(em_tree, start, len);
238 if (!em)
239 em = ERR_PTR(-EIO);
240 } else if (ret) {
241 free_extent_map(em);
242 em = ERR_PTR(ret);
243 }
244 write_unlock(&em_tree->lock);
245
246 out:
247 return em;
248 }
249
250 /*
251 * Compute the csum of a btree block and store the result to provided buffer.
252 *
253 * Returns error if the extent buffer cannot be mapped.
254 */
csum_tree_block(struct extent_buffer * buf,u8 * result)255 static int csum_tree_block(struct extent_buffer *buf, u8 *result)
256 {
257 struct btrfs_fs_info *fs_info = buf->fs_info;
258 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
259 unsigned long len;
260 unsigned long cur_len;
261 unsigned long offset = BTRFS_CSUM_SIZE;
262 char *kaddr;
263 unsigned long map_start;
264 unsigned long map_len;
265 int err;
266
267 shash->tfm = fs_info->csum_shash;
268 crypto_shash_init(shash);
269
270 len = buf->len - offset;
271
272 while (len > 0) {
273 /*
274 * Note: we don't need to check for the err == 1 case here, as
275 * with the given combination of 'start = BTRFS_CSUM_SIZE (32)'
276 * and 'min_len = 32' and the currently implemented mapping
277 * algorithm we cannot cross a page boundary.
278 */
279 err = map_private_extent_buffer(buf, offset, 32,
280 &kaddr, &map_start, &map_len);
281 if (WARN_ON(err))
282 return err;
283 cur_len = min(len, map_len - (offset - map_start));
284 crypto_shash_update(shash, kaddr + offset - map_start, cur_len);
285 len -= cur_len;
286 offset += cur_len;
287 }
288 memset(result, 0, BTRFS_CSUM_SIZE);
289
290 crypto_shash_final(shash, result);
291
292 return 0;
293 }
294
295 /*
296 * we can't consider a given block up to date unless the transid of the
297 * block matches the transid in the parent node's pointer. This is how we
298 * detect blocks that either didn't get written at all or got written
299 * in the wrong place.
300 */
verify_parent_transid(struct extent_io_tree * io_tree,struct extent_buffer * eb,u64 parent_transid,int atomic)301 static int verify_parent_transid(struct extent_io_tree *io_tree,
302 struct extent_buffer *eb, u64 parent_transid,
303 int atomic)
304 {
305 struct extent_state *cached_state = NULL;
306 int ret;
307 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
308
309 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
310 return 0;
311
312 if (atomic)
313 return -EAGAIN;
314
315 if (need_lock) {
316 btrfs_tree_read_lock(eb);
317 btrfs_set_lock_blocking_read(eb);
318 }
319
320 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
321 &cached_state);
322 if (extent_buffer_uptodate(eb) &&
323 btrfs_header_generation(eb) == parent_transid) {
324 ret = 0;
325 goto out;
326 }
327 btrfs_err_rl(eb->fs_info,
328 "parent transid verify failed on %llu wanted %llu found %llu",
329 eb->start,
330 parent_transid, btrfs_header_generation(eb));
331 ret = 1;
332
333 /*
334 * Things reading via commit roots that don't have normal protection,
335 * like send, can have a really old block in cache that may point at a
336 * block that has been freed and re-allocated. So don't clear uptodate
337 * if we find an eb that is under IO (dirty/writeback) because we could
338 * end up reading in the stale data and then writing it back out and
339 * making everybody very sad.
340 */
341 if (!extent_buffer_under_io(eb))
342 clear_extent_buffer_uptodate(eb);
343 out:
344 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
345 &cached_state);
346 if (need_lock)
347 btrfs_tree_read_unlock_blocking(eb);
348 return ret;
349 }
350
btrfs_supported_super_csum(u16 csum_type)351 static bool btrfs_supported_super_csum(u16 csum_type)
352 {
353 switch (csum_type) {
354 case BTRFS_CSUM_TYPE_CRC32:
355 return true;
356 default:
357 return false;
358 }
359 }
360
361 /*
362 * Return 0 if the superblock checksum type matches the checksum value of that
363 * algorithm. Pass the raw disk superblock data.
364 */
btrfs_check_super_csum(struct btrfs_fs_info * fs_info,char * raw_disk_sb)365 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
366 char *raw_disk_sb)
367 {
368 struct btrfs_super_block *disk_sb =
369 (struct btrfs_super_block *)raw_disk_sb;
370 char result[BTRFS_CSUM_SIZE];
371 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
372
373 shash->tfm = fs_info->csum_shash;
374 crypto_shash_init(shash);
375
376 /*
377 * The super_block structure does not span the whole
378 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
379 * filled with zeros and is included in the checksum.
380 */
381 crypto_shash_update(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
382 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
383 crypto_shash_final(shash, result);
384
385 if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb)))
386 return 1;
387
388 return 0;
389 }
390
btrfs_verify_level_key(struct extent_buffer * eb,int level,struct btrfs_key * first_key,u64 parent_transid)391 int btrfs_verify_level_key(struct extent_buffer *eb, int level,
392 struct btrfs_key *first_key, u64 parent_transid)
393 {
394 struct btrfs_fs_info *fs_info = eb->fs_info;
395 int found_level;
396 struct btrfs_key found_key;
397 int ret;
398
399 found_level = btrfs_header_level(eb);
400 if (found_level != level) {
401 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
402 KERN_ERR "BTRFS: tree level check failed\n");
403 btrfs_err(fs_info,
404 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
405 eb->start, level, found_level);
406 return -EIO;
407 }
408
409 if (!first_key)
410 return 0;
411
412 /*
413 * For live tree block (new tree blocks in current transaction),
414 * we need proper lock context to avoid race, which is impossible here.
415 * So we only checks tree blocks which is read from disk, whose
416 * generation <= fs_info->last_trans_committed.
417 */
418 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
419 return 0;
420
421 /* We have @first_key, so this @eb must have at least one item */
422 if (btrfs_header_nritems(eb) == 0) {
423 btrfs_err(fs_info,
424 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
425 eb->start);
426 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
427 return -EUCLEAN;
428 }
429
430 if (found_level)
431 btrfs_node_key_to_cpu(eb, &found_key, 0);
432 else
433 btrfs_item_key_to_cpu(eb, &found_key, 0);
434 ret = btrfs_comp_cpu_keys(first_key, &found_key);
435
436 if (ret) {
437 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
438 KERN_ERR "BTRFS: tree first key check failed\n");
439 btrfs_err(fs_info,
440 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
441 eb->start, parent_transid, first_key->objectid,
442 first_key->type, first_key->offset,
443 found_key.objectid, found_key.type,
444 found_key.offset);
445 }
446 return ret;
447 }
448
449 /*
450 * helper to read a given tree block, doing retries as required when
451 * the checksums don't match and we have alternate mirrors to try.
452 *
453 * @parent_transid: expected transid, skip check if 0
454 * @level: expected level, mandatory check
455 * @first_key: expected key of first slot, skip check if NULL
456 */
btree_read_extent_buffer_pages(struct extent_buffer * eb,u64 parent_transid,int level,struct btrfs_key * first_key)457 static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
458 u64 parent_transid, int level,
459 struct btrfs_key *first_key)
460 {
461 struct btrfs_fs_info *fs_info = eb->fs_info;
462 struct extent_io_tree *io_tree;
463 int failed = 0;
464 int ret;
465 int num_copies = 0;
466 int mirror_num = 0;
467 int failed_mirror = 0;
468
469 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
470 while (1) {
471 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
472 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
473 if (!ret) {
474 if (verify_parent_transid(io_tree, eb,
475 parent_transid, 0))
476 ret = -EIO;
477 else if (btrfs_verify_level_key(eb, level,
478 first_key, parent_transid))
479 ret = -EUCLEAN;
480 else
481 break;
482 }
483
484 num_copies = btrfs_num_copies(fs_info,
485 eb->start, eb->len);
486 if (num_copies == 1)
487 break;
488
489 if (!failed_mirror) {
490 failed = 1;
491 failed_mirror = eb->read_mirror;
492 }
493
494 mirror_num++;
495 if (mirror_num == failed_mirror)
496 mirror_num++;
497
498 if (mirror_num > num_copies)
499 break;
500 }
501
502 if (failed && !ret && failed_mirror)
503 btrfs_repair_eb_io_failure(eb, failed_mirror);
504
505 return ret;
506 }
507
508 /*
509 * checksum a dirty tree block before IO. This has extra checks to make sure
510 * we only fill in the checksum field in the first page of a multi-page block
511 */
512
csum_dirty_buffer(struct btrfs_fs_info * fs_info,struct page * page)513 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
514 {
515 u64 start = page_offset(page);
516 u64 found_start;
517 u8 result[BTRFS_CSUM_SIZE];
518 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
519 struct extent_buffer *eb;
520 int ret;
521
522 eb = (struct extent_buffer *)page->private;
523 if (page != eb->pages[0])
524 return 0;
525
526 found_start = btrfs_header_bytenr(eb);
527 /*
528 * Please do not consolidate these warnings into a single if.
529 * It is useful to know what went wrong.
530 */
531 if (WARN_ON(found_start != start))
532 return -EUCLEAN;
533 if (WARN_ON(!PageUptodate(page)))
534 return -EUCLEAN;
535
536 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
537 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
538
539 if (csum_tree_block(eb, result))
540 return -EINVAL;
541
542 if (btrfs_header_level(eb))
543 ret = btrfs_check_node(eb);
544 else
545 ret = btrfs_check_leaf_full(eb);
546
547 if (ret < 0) {
548 btrfs_err(fs_info,
549 "block=%llu write time tree block corruption detected",
550 eb->start);
551 return ret;
552 }
553 write_extent_buffer(eb, result, 0, csum_size);
554
555 return 0;
556 }
557
check_tree_block_fsid(struct extent_buffer * eb)558 static int check_tree_block_fsid(struct extent_buffer *eb)
559 {
560 struct btrfs_fs_info *fs_info = eb->fs_info;
561 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
562 u8 fsid[BTRFS_FSID_SIZE];
563 int ret = 1;
564
565 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
566 while (fs_devices) {
567 u8 *metadata_uuid;
568
569 /*
570 * Checking the incompat flag is only valid for the current
571 * fs. For seed devices it's forbidden to have their uuid
572 * changed so reading ->fsid in this case is fine
573 */
574 if (fs_devices == fs_info->fs_devices &&
575 btrfs_fs_incompat(fs_info, METADATA_UUID))
576 metadata_uuid = fs_devices->metadata_uuid;
577 else
578 metadata_uuid = fs_devices->fsid;
579
580 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
581 ret = 0;
582 break;
583 }
584 fs_devices = fs_devices->seed;
585 }
586 return ret;
587 }
588
btree_readpage_end_io_hook(struct btrfs_io_bio * io_bio,u64 phy_offset,struct page * page,u64 start,u64 end,int mirror)589 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
590 u64 phy_offset, struct page *page,
591 u64 start, u64 end, int mirror)
592 {
593 u64 found_start;
594 int found_level;
595 struct extent_buffer *eb;
596 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
597 struct btrfs_fs_info *fs_info = root->fs_info;
598 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
599 int ret = 0;
600 u8 result[BTRFS_CSUM_SIZE];
601 int reads_done;
602
603 if (!page->private)
604 goto out;
605
606 eb = (struct extent_buffer *)page->private;
607
608 /* the pending IO might have been the only thing that kept this buffer
609 * in memory. Make sure we have a ref for all this other checks
610 */
611 extent_buffer_get(eb);
612
613 reads_done = atomic_dec_and_test(&eb->io_pages);
614 if (!reads_done)
615 goto err;
616
617 eb->read_mirror = mirror;
618 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
619 ret = -EIO;
620 goto err;
621 }
622
623 found_start = btrfs_header_bytenr(eb);
624 if (found_start != eb->start) {
625 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
626 eb->start, found_start);
627 ret = -EIO;
628 goto err;
629 }
630 if (check_tree_block_fsid(eb)) {
631 btrfs_err_rl(fs_info, "bad fsid on block %llu",
632 eb->start);
633 ret = -EIO;
634 goto err;
635 }
636 found_level = btrfs_header_level(eb);
637 if (found_level >= BTRFS_MAX_LEVEL) {
638 btrfs_err(fs_info, "bad tree block level %d on %llu",
639 (int)btrfs_header_level(eb), eb->start);
640 ret = -EIO;
641 goto err;
642 }
643
644 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
645 eb, found_level);
646
647 ret = csum_tree_block(eb, result);
648 if (ret)
649 goto err;
650
651 if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
652 u32 val;
653 u32 found = 0;
654
655 memcpy(&found, result, csum_size);
656
657 read_extent_buffer(eb, &val, 0, csum_size);
658 btrfs_warn_rl(fs_info,
659 "%s checksum verify failed on %llu wanted %x found %x level %d",
660 fs_info->sb->s_id, eb->start,
661 val, found, btrfs_header_level(eb));
662 ret = -EUCLEAN;
663 goto err;
664 }
665
666 /*
667 * If this is a leaf block and it is corrupt, set the corrupt bit so
668 * that we don't try and read the other copies of this block, just
669 * return -EIO.
670 */
671 if (found_level == 0 && btrfs_check_leaf_full(eb)) {
672 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
673 ret = -EIO;
674 }
675
676 if (found_level > 0 && btrfs_check_node(eb))
677 ret = -EIO;
678
679 if (!ret)
680 set_extent_buffer_uptodate(eb);
681 else
682 btrfs_err(fs_info,
683 "block=%llu read time tree block corruption detected",
684 eb->start);
685 err:
686 if (reads_done &&
687 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
688 btree_readahead_hook(eb, ret);
689
690 if (ret) {
691 /*
692 * our io error hook is going to dec the io pages
693 * again, we have to make sure it has something
694 * to decrement
695 */
696 atomic_inc(&eb->io_pages);
697 clear_extent_buffer_uptodate(eb);
698 }
699 free_extent_buffer(eb);
700 out:
701 return ret;
702 }
703
end_workqueue_bio(struct bio * bio)704 static void end_workqueue_bio(struct bio *bio)
705 {
706 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
707 struct btrfs_fs_info *fs_info;
708 struct btrfs_workqueue *wq;
709
710 fs_info = end_io_wq->info;
711 end_io_wq->status = bio->bi_status;
712
713 if (bio_op(bio) == REQ_OP_WRITE) {
714 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
715 wq = fs_info->endio_meta_write_workers;
716 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
717 wq = fs_info->endio_freespace_worker;
718 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
719 wq = fs_info->endio_raid56_workers;
720 else
721 wq = fs_info->endio_write_workers;
722 } else {
723 if (unlikely(end_io_wq->metadata == BTRFS_WQ_ENDIO_DIO_REPAIR))
724 wq = fs_info->endio_repair_workers;
725 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
726 wq = fs_info->endio_raid56_workers;
727 else if (end_io_wq->metadata)
728 wq = fs_info->endio_meta_workers;
729 else
730 wq = fs_info->endio_workers;
731 }
732
733 btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
734 btrfs_queue_work(wq, &end_io_wq->work);
735 }
736
btrfs_bio_wq_end_io(struct btrfs_fs_info * info,struct bio * bio,enum btrfs_wq_endio_type metadata)737 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
738 enum btrfs_wq_endio_type metadata)
739 {
740 struct btrfs_end_io_wq *end_io_wq;
741
742 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
743 if (!end_io_wq)
744 return BLK_STS_RESOURCE;
745
746 end_io_wq->private = bio->bi_private;
747 end_io_wq->end_io = bio->bi_end_io;
748 end_io_wq->info = info;
749 end_io_wq->status = 0;
750 end_io_wq->bio = bio;
751 end_io_wq->metadata = metadata;
752
753 bio->bi_private = end_io_wq;
754 bio->bi_end_io = end_workqueue_bio;
755 return 0;
756 }
757
run_one_async_start(struct btrfs_work * work)758 static void run_one_async_start(struct btrfs_work *work)
759 {
760 struct async_submit_bio *async;
761 blk_status_t ret;
762
763 async = container_of(work, struct async_submit_bio, work);
764 ret = async->submit_bio_start(async->private_data, async->bio,
765 async->bio_offset);
766 if (ret)
767 async->status = ret;
768 }
769
770 /*
771 * In order to insert checksums into the metadata in large chunks, we wait
772 * until bio submission time. All the pages in the bio are checksummed and
773 * sums are attached onto the ordered extent record.
774 *
775 * At IO completion time the csums attached on the ordered extent record are
776 * inserted into the tree.
777 */
run_one_async_done(struct btrfs_work * work)778 static void run_one_async_done(struct btrfs_work *work)
779 {
780 struct async_submit_bio *async;
781 struct inode *inode;
782 blk_status_t ret;
783
784 async = container_of(work, struct async_submit_bio, work);
785 inode = async->private_data;
786
787 /* If an error occurred we just want to clean up the bio and move on */
788 if (async->status) {
789 async->bio->bi_status = async->status;
790 bio_endio(async->bio);
791 return;
792 }
793
794 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio,
795 async->mirror_num, 1);
796 if (ret) {
797 async->bio->bi_status = ret;
798 bio_endio(async->bio);
799 }
800 }
801
run_one_async_free(struct btrfs_work * work)802 static void run_one_async_free(struct btrfs_work *work)
803 {
804 struct async_submit_bio *async;
805
806 async = container_of(work, struct async_submit_bio, work);
807 kfree(async);
808 }
809
btrfs_wq_submit_bio(struct btrfs_fs_info * fs_info,struct bio * bio,int mirror_num,unsigned long bio_flags,u64 bio_offset,void * private_data,extent_submit_bio_start_t * submit_bio_start)810 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
811 int mirror_num, unsigned long bio_flags,
812 u64 bio_offset, void *private_data,
813 extent_submit_bio_start_t *submit_bio_start)
814 {
815 struct async_submit_bio *async;
816
817 async = kmalloc(sizeof(*async), GFP_NOFS);
818 if (!async)
819 return BLK_STS_RESOURCE;
820
821 async->private_data = private_data;
822 async->bio = bio;
823 async->mirror_num = mirror_num;
824 async->submit_bio_start = submit_bio_start;
825
826 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
827 run_one_async_free);
828
829 async->bio_offset = bio_offset;
830
831 async->status = 0;
832
833 if (op_is_sync(bio->bi_opf))
834 btrfs_set_work_high_priority(&async->work);
835
836 btrfs_queue_work(fs_info->workers, &async->work);
837 return 0;
838 }
839
btree_csum_one_bio(struct bio * bio)840 static blk_status_t btree_csum_one_bio(struct bio *bio)
841 {
842 struct bio_vec *bvec;
843 struct btrfs_root *root;
844 int ret = 0;
845 struct bvec_iter_all iter_all;
846
847 ASSERT(!bio_flagged(bio, BIO_CLONED));
848 bio_for_each_segment_all(bvec, bio, iter_all) {
849 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
850 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
851 if (ret)
852 break;
853 }
854
855 return errno_to_blk_status(ret);
856 }
857
btree_submit_bio_start(void * private_data,struct bio * bio,u64 bio_offset)858 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
859 u64 bio_offset)
860 {
861 /*
862 * when we're called for a write, we're already in the async
863 * submission context. Just jump into btrfs_map_bio
864 */
865 return btree_csum_one_bio(bio);
866 }
867
check_async_write(struct btrfs_fs_info * fs_info,struct btrfs_inode * bi)868 static int check_async_write(struct btrfs_fs_info *fs_info,
869 struct btrfs_inode *bi)
870 {
871 if (atomic_read(&bi->sync_writers))
872 return 0;
873 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
874 return 0;
875 return 1;
876 }
877
btree_submit_bio_hook(struct inode * inode,struct bio * bio,int mirror_num,unsigned long bio_flags)878 static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio,
879 int mirror_num,
880 unsigned long bio_flags)
881 {
882 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
883 int async = check_async_write(fs_info, BTRFS_I(inode));
884 blk_status_t ret;
885
886 if (bio_op(bio) != REQ_OP_WRITE) {
887 /*
888 * called for a read, do the setup so that checksum validation
889 * can happen in the async kernel threads
890 */
891 ret = btrfs_bio_wq_end_io(fs_info, bio,
892 BTRFS_WQ_ENDIO_METADATA);
893 if (ret)
894 goto out_w_error;
895 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
896 } else if (!async) {
897 ret = btree_csum_one_bio(bio);
898 if (ret)
899 goto out_w_error;
900 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
901 } else {
902 /*
903 * kthread helpers are used to submit writes so that
904 * checksumming can happen in parallel across all CPUs
905 */
906 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
907 0, inode, btree_submit_bio_start);
908 }
909
910 if (ret)
911 goto out_w_error;
912 return 0;
913
914 out_w_error:
915 bio->bi_status = ret;
916 bio_endio(bio);
917 return ret;
918 }
919
920 #ifdef CONFIG_MIGRATION
btree_migratepage(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)921 static int btree_migratepage(struct address_space *mapping,
922 struct page *newpage, struct page *page,
923 enum migrate_mode mode)
924 {
925 /*
926 * we can't safely write a btree page from here,
927 * we haven't done the locking hook
928 */
929 if (PageDirty(page))
930 return -EAGAIN;
931 /*
932 * Buffers may be managed in a filesystem specific way.
933 * We must have no buffers or drop them.
934 */
935 if (page_has_private(page) &&
936 !try_to_release_page(page, GFP_KERNEL))
937 return -EAGAIN;
938 return migrate_page(mapping, newpage, page, mode);
939 }
940 #endif
941
942
btree_writepages(struct address_space * mapping,struct writeback_control * wbc)943 static int btree_writepages(struct address_space *mapping,
944 struct writeback_control *wbc)
945 {
946 struct btrfs_fs_info *fs_info;
947 int ret;
948
949 if (wbc->sync_mode == WB_SYNC_NONE) {
950
951 if (wbc->for_kupdate)
952 return 0;
953
954 fs_info = BTRFS_I(mapping->host)->root->fs_info;
955 /* this is a bit racy, but that's ok */
956 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
957 BTRFS_DIRTY_METADATA_THRESH,
958 fs_info->dirty_metadata_batch);
959 if (ret < 0)
960 return 0;
961 }
962 return btree_write_cache_pages(mapping, wbc);
963 }
964
btree_readpage(struct file * file,struct page * page)965 static int btree_readpage(struct file *file, struct page *page)
966 {
967 struct extent_io_tree *tree;
968 tree = &BTRFS_I(page->mapping->host)->io_tree;
969 return extent_read_full_page(tree, page, btree_get_extent, 0);
970 }
971
btree_releasepage(struct page * page,gfp_t gfp_flags)972 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
973 {
974 if (PageWriteback(page) || PageDirty(page))
975 return 0;
976
977 return try_release_extent_buffer(page);
978 }
979
btree_invalidatepage(struct page * page,unsigned int offset,unsigned int length)980 static void btree_invalidatepage(struct page *page, unsigned int offset,
981 unsigned int length)
982 {
983 struct extent_io_tree *tree;
984 tree = &BTRFS_I(page->mapping->host)->io_tree;
985 extent_invalidatepage(tree, page, offset);
986 btree_releasepage(page, GFP_NOFS);
987 if (PagePrivate(page)) {
988 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
989 "page private not zero on page %llu",
990 (unsigned long long)page_offset(page));
991 ClearPagePrivate(page);
992 set_page_private(page, 0);
993 put_page(page);
994 }
995 }
996
btree_set_page_dirty(struct page * page)997 static int btree_set_page_dirty(struct page *page)
998 {
999 #ifdef DEBUG
1000 struct extent_buffer *eb;
1001
1002 BUG_ON(!PagePrivate(page));
1003 eb = (struct extent_buffer *)page->private;
1004 BUG_ON(!eb);
1005 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1006 BUG_ON(!atomic_read(&eb->refs));
1007 btrfs_assert_tree_locked(eb);
1008 #endif
1009 return __set_page_dirty_nobuffers(page);
1010 }
1011
1012 static const struct address_space_operations btree_aops = {
1013 .readpage = btree_readpage,
1014 .writepages = btree_writepages,
1015 .releasepage = btree_releasepage,
1016 .invalidatepage = btree_invalidatepage,
1017 #ifdef CONFIG_MIGRATION
1018 .migratepage = btree_migratepage,
1019 #endif
1020 .set_page_dirty = btree_set_page_dirty,
1021 };
1022
readahead_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr)1023 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1024 {
1025 struct extent_buffer *buf = NULL;
1026 int ret;
1027
1028 buf = btrfs_find_create_tree_block(fs_info, bytenr);
1029 if (IS_ERR(buf))
1030 return;
1031
1032 ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
1033 if (ret < 0)
1034 free_extent_buffer_stale(buf);
1035 else
1036 free_extent_buffer(buf);
1037 }
1038
btrfs_find_create_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr)1039 struct extent_buffer *btrfs_find_create_tree_block(
1040 struct btrfs_fs_info *fs_info,
1041 u64 bytenr)
1042 {
1043 if (btrfs_is_testing(fs_info))
1044 return alloc_test_extent_buffer(fs_info, bytenr);
1045 return alloc_extent_buffer(fs_info, bytenr);
1046 }
1047
1048 /*
1049 * Read tree block at logical address @bytenr and do variant basic but critical
1050 * verification.
1051 *
1052 * @parent_transid: expected transid of this tree block, skip check if 0
1053 * @level: expected level, mandatory check
1054 * @first_key: expected key in slot 0, skip check if NULL
1055 */
read_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr,u64 parent_transid,int level,struct btrfs_key * first_key)1056 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1057 u64 parent_transid, int level,
1058 struct btrfs_key *first_key)
1059 {
1060 struct extent_buffer *buf = NULL;
1061 int ret;
1062
1063 buf = btrfs_find_create_tree_block(fs_info, bytenr);
1064 if (IS_ERR(buf))
1065 return buf;
1066
1067 ret = btree_read_extent_buffer_pages(buf, parent_transid,
1068 level, first_key);
1069 if (ret) {
1070 free_extent_buffer_stale(buf);
1071 return ERR_PTR(ret);
1072 }
1073 return buf;
1074
1075 }
1076
btrfs_clean_tree_block(struct extent_buffer * buf)1077 void btrfs_clean_tree_block(struct extent_buffer *buf)
1078 {
1079 struct btrfs_fs_info *fs_info = buf->fs_info;
1080 if (btrfs_header_generation(buf) ==
1081 fs_info->running_transaction->transid) {
1082 btrfs_assert_tree_locked(buf);
1083
1084 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1085 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1086 -buf->len,
1087 fs_info->dirty_metadata_batch);
1088 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1089 btrfs_set_lock_blocking_write(buf);
1090 clear_extent_buffer_dirty(buf);
1091 }
1092 }
1093 }
1094
btrfs_alloc_subvolume_writers(void)1095 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1096 {
1097 struct btrfs_subvolume_writers *writers;
1098 int ret;
1099
1100 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1101 if (!writers)
1102 return ERR_PTR(-ENOMEM);
1103
1104 ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
1105 if (ret < 0) {
1106 kfree(writers);
1107 return ERR_PTR(ret);
1108 }
1109
1110 init_waitqueue_head(&writers->wait);
1111 return writers;
1112 }
1113
1114 static void
btrfs_free_subvolume_writers(struct btrfs_subvolume_writers * writers)1115 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1116 {
1117 percpu_counter_destroy(&writers->counter);
1118 kfree(writers);
1119 }
1120
__setup_root(struct btrfs_root * root,struct btrfs_fs_info * fs_info,u64 objectid)1121 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1122 u64 objectid)
1123 {
1124 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1125 root->node = NULL;
1126 root->commit_root = NULL;
1127 root->state = 0;
1128 root->orphan_cleanup_state = 0;
1129
1130 root->last_trans = 0;
1131 root->highest_objectid = 0;
1132 root->nr_delalloc_inodes = 0;
1133 root->nr_ordered_extents = 0;
1134 root->inode_tree = RB_ROOT;
1135 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1136 root->block_rsv = NULL;
1137
1138 INIT_LIST_HEAD(&root->dirty_list);
1139 INIT_LIST_HEAD(&root->root_list);
1140 INIT_LIST_HEAD(&root->delalloc_inodes);
1141 INIT_LIST_HEAD(&root->delalloc_root);
1142 INIT_LIST_HEAD(&root->ordered_extents);
1143 INIT_LIST_HEAD(&root->ordered_root);
1144 INIT_LIST_HEAD(&root->reloc_dirty_list);
1145 INIT_LIST_HEAD(&root->logged_list[0]);
1146 INIT_LIST_HEAD(&root->logged_list[1]);
1147 spin_lock_init(&root->inode_lock);
1148 spin_lock_init(&root->delalloc_lock);
1149 spin_lock_init(&root->ordered_extent_lock);
1150 spin_lock_init(&root->accounting_lock);
1151 spin_lock_init(&root->log_extents_lock[0]);
1152 spin_lock_init(&root->log_extents_lock[1]);
1153 spin_lock_init(&root->qgroup_meta_rsv_lock);
1154 mutex_init(&root->objectid_mutex);
1155 mutex_init(&root->log_mutex);
1156 mutex_init(&root->ordered_extent_mutex);
1157 mutex_init(&root->delalloc_mutex);
1158 init_waitqueue_head(&root->log_writer_wait);
1159 init_waitqueue_head(&root->log_commit_wait[0]);
1160 init_waitqueue_head(&root->log_commit_wait[1]);
1161 INIT_LIST_HEAD(&root->log_ctxs[0]);
1162 INIT_LIST_HEAD(&root->log_ctxs[1]);
1163 atomic_set(&root->log_commit[0], 0);
1164 atomic_set(&root->log_commit[1], 0);
1165 atomic_set(&root->log_writers, 0);
1166 atomic_set(&root->log_batch, 0);
1167 refcount_set(&root->refs, 1);
1168 atomic_set(&root->will_be_snapshotted, 0);
1169 atomic_set(&root->snapshot_force_cow, 0);
1170 atomic_set(&root->nr_swapfiles, 0);
1171 root->log_transid = 0;
1172 root->log_transid_committed = -1;
1173 root->last_log_commit = 0;
1174 if (!dummy)
1175 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1176 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1177
1178 memset(&root->root_key, 0, sizeof(root->root_key));
1179 memset(&root->root_item, 0, sizeof(root->root_item));
1180 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1181 if (!dummy)
1182 root->defrag_trans_start = fs_info->generation;
1183 else
1184 root->defrag_trans_start = 0;
1185 root->root_key.objectid = objectid;
1186 root->anon_dev = 0;
1187
1188 spin_lock_init(&root->root_item_lock);
1189 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1190 }
1191
btrfs_alloc_root(struct btrfs_fs_info * fs_info,gfp_t flags)1192 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1193 gfp_t flags)
1194 {
1195 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1196 if (root)
1197 root->fs_info = fs_info;
1198 return root;
1199 }
1200
1201 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1202 /* Should only be used by the testing infrastructure */
btrfs_alloc_dummy_root(struct btrfs_fs_info * fs_info)1203 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1204 {
1205 struct btrfs_root *root;
1206
1207 if (!fs_info)
1208 return ERR_PTR(-EINVAL);
1209
1210 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1211 if (!root)
1212 return ERR_PTR(-ENOMEM);
1213
1214 /* We don't use the stripesize in selftest, set it as sectorsize */
1215 __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
1216 root->alloc_bytenr = 0;
1217
1218 return root;
1219 }
1220 #endif
1221
btrfs_create_tree(struct btrfs_trans_handle * trans,u64 objectid)1222 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1223 u64 objectid)
1224 {
1225 struct btrfs_fs_info *fs_info = trans->fs_info;
1226 struct extent_buffer *leaf;
1227 struct btrfs_root *tree_root = fs_info->tree_root;
1228 struct btrfs_root *root;
1229 struct btrfs_key key;
1230 unsigned int nofs_flag;
1231 int ret = 0;
1232 uuid_le uuid = NULL_UUID_LE;
1233
1234 /*
1235 * We're holding a transaction handle, so use a NOFS memory allocation
1236 * context to avoid deadlock if reclaim happens.
1237 */
1238 nofs_flag = memalloc_nofs_save();
1239 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1240 memalloc_nofs_restore(nofs_flag);
1241 if (!root)
1242 return ERR_PTR(-ENOMEM);
1243
1244 __setup_root(root, fs_info, objectid);
1245 root->root_key.objectid = objectid;
1246 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1247 root->root_key.offset = 0;
1248
1249 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1250 if (IS_ERR(leaf)) {
1251 ret = PTR_ERR(leaf);
1252 leaf = NULL;
1253 goto fail;
1254 }
1255
1256 root->node = leaf;
1257 btrfs_mark_buffer_dirty(leaf);
1258
1259 root->commit_root = btrfs_root_node(root);
1260 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1261
1262 root->root_item.flags = 0;
1263 root->root_item.byte_limit = 0;
1264 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1265 btrfs_set_root_generation(&root->root_item, trans->transid);
1266 btrfs_set_root_level(&root->root_item, 0);
1267 btrfs_set_root_refs(&root->root_item, 1);
1268 btrfs_set_root_used(&root->root_item, leaf->len);
1269 btrfs_set_root_last_snapshot(&root->root_item, 0);
1270 btrfs_set_root_dirid(&root->root_item, 0);
1271 if (is_fstree(objectid))
1272 uuid_le_gen(&uuid);
1273 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1274 root->root_item.drop_level = 0;
1275
1276 key.objectid = objectid;
1277 key.type = BTRFS_ROOT_ITEM_KEY;
1278 key.offset = 0;
1279 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1280 if (ret)
1281 goto fail;
1282
1283 btrfs_tree_unlock(leaf);
1284
1285 return root;
1286
1287 fail:
1288 if (leaf) {
1289 btrfs_tree_unlock(leaf);
1290 free_extent_buffer(root->commit_root);
1291 free_extent_buffer(leaf);
1292 }
1293 kfree(root);
1294
1295 return ERR_PTR(ret);
1296 }
1297
alloc_log_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)1298 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1299 struct btrfs_fs_info *fs_info)
1300 {
1301 struct btrfs_root *root;
1302 struct extent_buffer *leaf;
1303
1304 root = btrfs_alloc_root(fs_info, GFP_NOFS);
1305 if (!root)
1306 return ERR_PTR(-ENOMEM);
1307
1308 __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1309
1310 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1311 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1312 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1313
1314 /*
1315 * DON'T set REF_COWS for log trees
1316 *
1317 * log trees do not get reference counted because they go away
1318 * before a real commit is actually done. They do store pointers
1319 * to file data extents, and those reference counts still get
1320 * updated (along with back refs to the log tree).
1321 */
1322
1323 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1324 NULL, 0, 0, 0);
1325 if (IS_ERR(leaf)) {
1326 kfree(root);
1327 return ERR_CAST(leaf);
1328 }
1329
1330 root->node = leaf;
1331
1332 btrfs_mark_buffer_dirty(root->node);
1333 btrfs_tree_unlock(root->node);
1334 return root;
1335 }
1336
btrfs_init_log_root_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)1337 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1338 struct btrfs_fs_info *fs_info)
1339 {
1340 struct btrfs_root *log_root;
1341
1342 log_root = alloc_log_tree(trans, fs_info);
1343 if (IS_ERR(log_root))
1344 return PTR_ERR(log_root);
1345 WARN_ON(fs_info->log_root_tree);
1346 fs_info->log_root_tree = log_root;
1347 return 0;
1348 }
1349
btrfs_add_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root)1350 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1351 struct btrfs_root *root)
1352 {
1353 struct btrfs_fs_info *fs_info = root->fs_info;
1354 struct btrfs_root *log_root;
1355 struct btrfs_inode_item *inode_item;
1356
1357 log_root = alloc_log_tree(trans, fs_info);
1358 if (IS_ERR(log_root))
1359 return PTR_ERR(log_root);
1360
1361 log_root->last_trans = trans->transid;
1362 log_root->root_key.offset = root->root_key.objectid;
1363
1364 inode_item = &log_root->root_item.inode;
1365 btrfs_set_stack_inode_generation(inode_item, 1);
1366 btrfs_set_stack_inode_size(inode_item, 3);
1367 btrfs_set_stack_inode_nlink(inode_item, 1);
1368 btrfs_set_stack_inode_nbytes(inode_item,
1369 fs_info->nodesize);
1370 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1371
1372 btrfs_set_root_node(&log_root->root_item, log_root->node);
1373
1374 WARN_ON(root->log_root);
1375 root->log_root = log_root;
1376 root->log_transid = 0;
1377 root->log_transid_committed = -1;
1378 root->last_log_commit = 0;
1379 return 0;
1380 }
1381
btrfs_read_tree_root(struct btrfs_root * tree_root,struct btrfs_key * key)1382 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1383 struct btrfs_key *key)
1384 {
1385 struct btrfs_root *root;
1386 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1387 struct btrfs_path *path;
1388 u64 generation;
1389 int ret;
1390 int level;
1391
1392 path = btrfs_alloc_path();
1393 if (!path)
1394 return ERR_PTR(-ENOMEM);
1395
1396 root = btrfs_alloc_root(fs_info, GFP_NOFS);
1397 if (!root) {
1398 ret = -ENOMEM;
1399 goto alloc_fail;
1400 }
1401
1402 __setup_root(root, fs_info, key->objectid);
1403
1404 ret = btrfs_find_root(tree_root, key, path,
1405 &root->root_item, &root->root_key);
1406 if (ret) {
1407 if (ret > 0)
1408 ret = -ENOENT;
1409 goto find_fail;
1410 }
1411
1412 generation = btrfs_root_generation(&root->root_item);
1413 level = btrfs_root_level(&root->root_item);
1414 root->node = read_tree_block(fs_info,
1415 btrfs_root_bytenr(&root->root_item),
1416 generation, level, NULL);
1417 if (IS_ERR(root->node)) {
1418 ret = PTR_ERR(root->node);
1419 goto find_fail;
1420 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1421 ret = -EIO;
1422 free_extent_buffer(root->node);
1423 goto find_fail;
1424 }
1425 root->commit_root = btrfs_root_node(root);
1426 out:
1427 btrfs_free_path(path);
1428 return root;
1429
1430 find_fail:
1431 kfree(root);
1432 alloc_fail:
1433 root = ERR_PTR(ret);
1434 goto out;
1435 }
1436
btrfs_read_fs_root(struct btrfs_root * tree_root,struct btrfs_key * location)1437 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1438 struct btrfs_key *location)
1439 {
1440 struct btrfs_root *root;
1441
1442 root = btrfs_read_tree_root(tree_root, location);
1443 if (IS_ERR(root))
1444 return root;
1445
1446 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1447 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1448 btrfs_check_and_init_root_item(&root->root_item);
1449 }
1450
1451 return root;
1452 }
1453
btrfs_init_fs_root(struct btrfs_root * root)1454 int btrfs_init_fs_root(struct btrfs_root *root)
1455 {
1456 int ret;
1457 struct btrfs_subvolume_writers *writers;
1458
1459 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1460 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1461 GFP_NOFS);
1462 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1463 ret = -ENOMEM;
1464 goto fail;
1465 }
1466
1467 writers = btrfs_alloc_subvolume_writers();
1468 if (IS_ERR(writers)) {
1469 ret = PTR_ERR(writers);
1470 goto fail;
1471 }
1472 root->subv_writers = writers;
1473
1474 btrfs_init_free_ino_ctl(root);
1475 spin_lock_init(&root->ino_cache_lock);
1476 init_waitqueue_head(&root->ino_cache_wait);
1477
1478 ret = get_anon_bdev(&root->anon_dev);
1479 if (ret)
1480 goto fail;
1481
1482 mutex_lock(&root->objectid_mutex);
1483 ret = btrfs_find_highest_objectid(root,
1484 &root->highest_objectid);
1485 if (ret) {
1486 mutex_unlock(&root->objectid_mutex);
1487 goto fail;
1488 }
1489
1490 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1491
1492 mutex_unlock(&root->objectid_mutex);
1493
1494 return 0;
1495 fail:
1496 /* The caller is responsible to call btrfs_free_fs_root */
1497 return ret;
1498 }
1499
btrfs_lookup_fs_root(struct btrfs_fs_info * fs_info,u64 root_id)1500 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1501 u64 root_id)
1502 {
1503 struct btrfs_root *root;
1504
1505 spin_lock(&fs_info->fs_roots_radix_lock);
1506 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1507 (unsigned long)root_id);
1508 spin_unlock(&fs_info->fs_roots_radix_lock);
1509 return root;
1510 }
1511
btrfs_insert_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_root * root)1512 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1513 struct btrfs_root *root)
1514 {
1515 int ret;
1516
1517 ret = radix_tree_preload(GFP_NOFS);
1518 if (ret)
1519 return ret;
1520
1521 spin_lock(&fs_info->fs_roots_radix_lock);
1522 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1523 (unsigned long)root->root_key.objectid,
1524 root);
1525 if (ret == 0)
1526 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1527 spin_unlock(&fs_info->fs_roots_radix_lock);
1528 radix_tree_preload_end();
1529
1530 return ret;
1531 }
1532
btrfs_get_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_key * location,bool check_ref)1533 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1534 struct btrfs_key *location,
1535 bool check_ref)
1536 {
1537 struct btrfs_root *root;
1538 struct btrfs_path *path;
1539 struct btrfs_key key;
1540 int ret;
1541
1542 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1543 return fs_info->tree_root;
1544 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1545 return fs_info->extent_root;
1546 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1547 return fs_info->chunk_root;
1548 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1549 return fs_info->dev_root;
1550 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1551 return fs_info->csum_root;
1552 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1553 return fs_info->quota_root ? fs_info->quota_root :
1554 ERR_PTR(-ENOENT);
1555 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1556 return fs_info->uuid_root ? fs_info->uuid_root :
1557 ERR_PTR(-ENOENT);
1558 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1559 return fs_info->free_space_root ? fs_info->free_space_root :
1560 ERR_PTR(-ENOENT);
1561 again:
1562 root = btrfs_lookup_fs_root(fs_info, location->objectid);
1563 if (root) {
1564 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1565 return ERR_PTR(-ENOENT);
1566 return root;
1567 }
1568
1569 root = btrfs_read_fs_root(fs_info->tree_root, location);
1570 if (IS_ERR(root))
1571 return root;
1572
1573 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1574 ret = -ENOENT;
1575 goto fail;
1576 }
1577
1578 ret = btrfs_init_fs_root(root);
1579 if (ret)
1580 goto fail;
1581
1582 path = btrfs_alloc_path();
1583 if (!path) {
1584 ret = -ENOMEM;
1585 goto fail;
1586 }
1587 key.objectid = BTRFS_ORPHAN_OBJECTID;
1588 key.type = BTRFS_ORPHAN_ITEM_KEY;
1589 key.offset = location->objectid;
1590
1591 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1592 btrfs_free_path(path);
1593 if (ret < 0)
1594 goto fail;
1595 if (ret == 0)
1596 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1597
1598 ret = btrfs_insert_fs_root(fs_info, root);
1599 if (ret) {
1600 if (ret == -EEXIST) {
1601 btrfs_free_fs_root(root);
1602 goto again;
1603 }
1604 goto fail;
1605 }
1606 return root;
1607 fail:
1608 btrfs_free_fs_root(root);
1609 return ERR_PTR(ret);
1610 }
1611
btrfs_congested_fn(void * congested_data,int bdi_bits)1612 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1613 {
1614 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1615 int ret = 0;
1616 struct btrfs_device *device;
1617 struct backing_dev_info *bdi;
1618
1619 rcu_read_lock();
1620 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1621 if (!device->bdev)
1622 continue;
1623 bdi = device->bdev->bd_bdi;
1624 if (bdi_congested(bdi, bdi_bits)) {
1625 ret = 1;
1626 break;
1627 }
1628 }
1629 rcu_read_unlock();
1630 return ret;
1631 }
1632
1633 /*
1634 * called by the kthread helper functions to finally call the bio end_io
1635 * functions. This is where read checksum verification actually happens
1636 */
end_workqueue_fn(struct btrfs_work * work)1637 static void end_workqueue_fn(struct btrfs_work *work)
1638 {
1639 struct bio *bio;
1640 struct btrfs_end_io_wq *end_io_wq;
1641
1642 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1643 bio = end_io_wq->bio;
1644
1645 bio->bi_status = end_io_wq->status;
1646 bio->bi_private = end_io_wq->private;
1647 bio->bi_end_io = end_io_wq->end_io;
1648 bio_endio(bio);
1649 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1650 }
1651
cleaner_kthread(void * arg)1652 static int cleaner_kthread(void *arg)
1653 {
1654 struct btrfs_root *root = arg;
1655 struct btrfs_fs_info *fs_info = root->fs_info;
1656 int again;
1657
1658 while (1) {
1659 again = 0;
1660
1661 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1662
1663 /* Make the cleaner go to sleep early. */
1664 if (btrfs_need_cleaner_sleep(fs_info))
1665 goto sleep;
1666
1667 /*
1668 * Do not do anything if we might cause open_ctree() to block
1669 * before we have finished mounting the filesystem.
1670 */
1671 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1672 goto sleep;
1673
1674 if (!mutex_trylock(&fs_info->cleaner_mutex))
1675 goto sleep;
1676
1677 /*
1678 * Avoid the problem that we change the status of the fs
1679 * during the above check and trylock.
1680 */
1681 if (btrfs_need_cleaner_sleep(fs_info)) {
1682 mutex_unlock(&fs_info->cleaner_mutex);
1683 goto sleep;
1684 }
1685
1686 btrfs_run_delayed_iputs(fs_info);
1687
1688 again = btrfs_clean_one_deleted_snapshot(root);
1689 mutex_unlock(&fs_info->cleaner_mutex);
1690
1691 /*
1692 * The defragger has dealt with the R/O remount and umount,
1693 * needn't do anything special here.
1694 */
1695 btrfs_run_defrag_inodes(fs_info);
1696
1697 /*
1698 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1699 * with relocation (btrfs_relocate_chunk) and relocation
1700 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1701 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1702 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1703 * unused block groups.
1704 */
1705 btrfs_delete_unused_bgs(fs_info);
1706 sleep:
1707 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1708 if (kthread_should_park())
1709 kthread_parkme();
1710 if (kthread_should_stop())
1711 return 0;
1712 if (!again) {
1713 set_current_state(TASK_INTERRUPTIBLE);
1714 schedule();
1715 __set_current_state(TASK_RUNNING);
1716 }
1717 }
1718 }
1719
transaction_kthread(void * arg)1720 static int transaction_kthread(void *arg)
1721 {
1722 struct btrfs_root *root = arg;
1723 struct btrfs_fs_info *fs_info = root->fs_info;
1724 struct btrfs_trans_handle *trans;
1725 struct btrfs_transaction *cur;
1726 u64 transid;
1727 time64_t now;
1728 unsigned long delay;
1729 bool cannot_commit;
1730
1731 do {
1732 cannot_commit = false;
1733 delay = HZ * fs_info->commit_interval;
1734 mutex_lock(&fs_info->transaction_kthread_mutex);
1735
1736 spin_lock(&fs_info->trans_lock);
1737 cur = fs_info->running_transaction;
1738 if (!cur) {
1739 spin_unlock(&fs_info->trans_lock);
1740 goto sleep;
1741 }
1742
1743 now = ktime_get_seconds();
1744 if (cur->state < TRANS_STATE_BLOCKED &&
1745 !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
1746 (now < cur->start_time ||
1747 now - cur->start_time < fs_info->commit_interval)) {
1748 spin_unlock(&fs_info->trans_lock);
1749 delay = HZ * 5;
1750 goto sleep;
1751 }
1752 transid = cur->transid;
1753 spin_unlock(&fs_info->trans_lock);
1754
1755 /* If the file system is aborted, this will always fail. */
1756 trans = btrfs_attach_transaction(root);
1757 if (IS_ERR(trans)) {
1758 if (PTR_ERR(trans) != -ENOENT)
1759 cannot_commit = true;
1760 goto sleep;
1761 }
1762 if (transid == trans->transid) {
1763 btrfs_commit_transaction(trans);
1764 } else {
1765 btrfs_end_transaction(trans);
1766 }
1767 sleep:
1768 wake_up_process(fs_info->cleaner_kthread);
1769 mutex_unlock(&fs_info->transaction_kthread_mutex);
1770
1771 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1772 &fs_info->fs_state)))
1773 btrfs_cleanup_transaction(fs_info);
1774 if (!kthread_should_stop() &&
1775 (!btrfs_transaction_blocked(fs_info) ||
1776 cannot_commit))
1777 schedule_timeout_interruptible(delay);
1778 } while (!kthread_should_stop());
1779 return 0;
1780 }
1781
1782 /*
1783 * this will find the highest generation in the array of
1784 * root backups. The index of the highest array is returned,
1785 * or -1 if we can't find anything.
1786 *
1787 * We check to make sure the array is valid by comparing the
1788 * generation of the latest root in the array with the generation
1789 * in the super block. If they don't match we pitch it.
1790 */
find_newest_super_backup(struct btrfs_fs_info * info,u64 newest_gen)1791 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1792 {
1793 u64 cur;
1794 int newest_index = -1;
1795 struct btrfs_root_backup *root_backup;
1796 int i;
1797
1798 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1799 root_backup = info->super_copy->super_roots + i;
1800 cur = btrfs_backup_tree_root_gen(root_backup);
1801 if (cur == newest_gen)
1802 newest_index = i;
1803 }
1804
1805 /* check to see if we actually wrapped around */
1806 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1807 root_backup = info->super_copy->super_roots;
1808 cur = btrfs_backup_tree_root_gen(root_backup);
1809 if (cur == newest_gen)
1810 newest_index = 0;
1811 }
1812 return newest_index;
1813 }
1814
1815
1816 /*
1817 * find the oldest backup so we know where to store new entries
1818 * in the backup array. This will set the backup_root_index
1819 * field in the fs_info struct
1820 */
find_oldest_super_backup(struct btrfs_fs_info * info,u64 newest_gen)1821 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1822 u64 newest_gen)
1823 {
1824 int newest_index = -1;
1825
1826 newest_index = find_newest_super_backup(info, newest_gen);
1827 /* if there was garbage in there, just move along */
1828 if (newest_index == -1) {
1829 info->backup_root_index = 0;
1830 } else {
1831 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1832 }
1833 }
1834
1835 /*
1836 * copy all the root pointers into the super backup array.
1837 * this will bump the backup pointer by one when it is
1838 * done
1839 */
backup_super_roots(struct btrfs_fs_info * info)1840 static void backup_super_roots(struct btrfs_fs_info *info)
1841 {
1842 int next_backup;
1843 struct btrfs_root_backup *root_backup;
1844 int last_backup;
1845
1846 next_backup = info->backup_root_index;
1847 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1848 BTRFS_NUM_BACKUP_ROOTS;
1849
1850 /*
1851 * just overwrite the last backup if we're at the same generation
1852 * this happens only at umount
1853 */
1854 root_backup = info->super_for_commit->super_roots + last_backup;
1855 if (btrfs_backup_tree_root_gen(root_backup) ==
1856 btrfs_header_generation(info->tree_root->node))
1857 next_backup = last_backup;
1858
1859 root_backup = info->super_for_commit->super_roots + next_backup;
1860
1861 /*
1862 * make sure all of our padding and empty slots get zero filled
1863 * regardless of which ones we use today
1864 */
1865 memset(root_backup, 0, sizeof(*root_backup));
1866
1867 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1868
1869 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1870 btrfs_set_backup_tree_root_gen(root_backup,
1871 btrfs_header_generation(info->tree_root->node));
1872
1873 btrfs_set_backup_tree_root_level(root_backup,
1874 btrfs_header_level(info->tree_root->node));
1875
1876 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1877 btrfs_set_backup_chunk_root_gen(root_backup,
1878 btrfs_header_generation(info->chunk_root->node));
1879 btrfs_set_backup_chunk_root_level(root_backup,
1880 btrfs_header_level(info->chunk_root->node));
1881
1882 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1883 btrfs_set_backup_extent_root_gen(root_backup,
1884 btrfs_header_generation(info->extent_root->node));
1885 btrfs_set_backup_extent_root_level(root_backup,
1886 btrfs_header_level(info->extent_root->node));
1887
1888 /*
1889 * we might commit during log recovery, which happens before we set
1890 * the fs_root. Make sure it is valid before we fill it in.
1891 */
1892 if (info->fs_root && info->fs_root->node) {
1893 btrfs_set_backup_fs_root(root_backup,
1894 info->fs_root->node->start);
1895 btrfs_set_backup_fs_root_gen(root_backup,
1896 btrfs_header_generation(info->fs_root->node));
1897 btrfs_set_backup_fs_root_level(root_backup,
1898 btrfs_header_level(info->fs_root->node));
1899 }
1900
1901 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1902 btrfs_set_backup_dev_root_gen(root_backup,
1903 btrfs_header_generation(info->dev_root->node));
1904 btrfs_set_backup_dev_root_level(root_backup,
1905 btrfs_header_level(info->dev_root->node));
1906
1907 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1908 btrfs_set_backup_csum_root_gen(root_backup,
1909 btrfs_header_generation(info->csum_root->node));
1910 btrfs_set_backup_csum_root_level(root_backup,
1911 btrfs_header_level(info->csum_root->node));
1912
1913 btrfs_set_backup_total_bytes(root_backup,
1914 btrfs_super_total_bytes(info->super_copy));
1915 btrfs_set_backup_bytes_used(root_backup,
1916 btrfs_super_bytes_used(info->super_copy));
1917 btrfs_set_backup_num_devices(root_backup,
1918 btrfs_super_num_devices(info->super_copy));
1919
1920 /*
1921 * if we don't copy this out to the super_copy, it won't get remembered
1922 * for the next commit
1923 */
1924 memcpy(&info->super_copy->super_roots,
1925 &info->super_for_commit->super_roots,
1926 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1927 }
1928
1929 /*
1930 * this copies info out of the root backup array and back into
1931 * the in-memory super block. It is meant to help iterate through
1932 * the array, so you send it the number of backups you've already
1933 * tried and the last backup index you used.
1934 *
1935 * this returns -1 when it has tried all the backups
1936 */
next_root_backup(struct btrfs_fs_info * info,struct btrfs_super_block * super,int * num_backups_tried,int * backup_index)1937 static noinline int next_root_backup(struct btrfs_fs_info *info,
1938 struct btrfs_super_block *super,
1939 int *num_backups_tried, int *backup_index)
1940 {
1941 struct btrfs_root_backup *root_backup;
1942 int newest = *backup_index;
1943
1944 if (*num_backups_tried == 0) {
1945 u64 gen = btrfs_super_generation(super);
1946
1947 newest = find_newest_super_backup(info, gen);
1948 if (newest == -1)
1949 return -1;
1950
1951 *backup_index = newest;
1952 *num_backups_tried = 1;
1953 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1954 /* we've tried all the backups, all done */
1955 return -1;
1956 } else {
1957 /* jump to the next oldest backup */
1958 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1959 BTRFS_NUM_BACKUP_ROOTS;
1960 *backup_index = newest;
1961 *num_backups_tried += 1;
1962 }
1963 root_backup = super->super_roots + newest;
1964
1965 btrfs_set_super_generation(super,
1966 btrfs_backup_tree_root_gen(root_backup));
1967 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1968 btrfs_set_super_root_level(super,
1969 btrfs_backup_tree_root_level(root_backup));
1970 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1971
1972 /*
1973 * fixme: the total bytes and num_devices need to match or we should
1974 * need a fsck
1975 */
1976 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1977 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1978 return 0;
1979 }
1980
1981 /* helper to cleanup workers */
btrfs_stop_all_workers(struct btrfs_fs_info * fs_info)1982 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1983 {
1984 btrfs_destroy_workqueue(fs_info->fixup_workers);
1985 btrfs_destroy_workqueue(fs_info->delalloc_workers);
1986 btrfs_destroy_workqueue(fs_info->workers);
1987 btrfs_destroy_workqueue(fs_info->endio_workers);
1988 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
1989 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
1990 btrfs_destroy_workqueue(fs_info->rmw_workers);
1991 btrfs_destroy_workqueue(fs_info->endio_write_workers);
1992 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
1993 btrfs_destroy_workqueue(fs_info->submit_workers);
1994 btrfs_destroy_workqueue(fs_info->delayed_workers);
1995 btrfs_destroy_workqueue(fs_info->caching_workers);
1996 btrfs_destroy_workqueue(fs_info->readahead_workers);
1997 btrfs_destroy_workqueue(fs_info->flush_workers);
1998 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
1999 /*
2000 * Now that all other work queues are destroyed, we can safely destroy
2001 * the queues used for metadata I/O, since tasks from those other work
2002 * queues can do metadata I/O operations.
2003 */
2004 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2005 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2006 }
2007
free_root_extent_buffers(struct btrfs_root * root)2008 static void free_root_extent_buffers(struct btrfs_root *root)
2009 {
2010 if (root) {
2011 free_extent_buffer(root->node);
2012 free_extent_buffer(root->commit_root);
2013 root->node = NULL;
2014 root->commit_root = NULL;
2015 }
2016 }
2017
2018 /* helper to cleanup tree roots */
free_root_pointers(struct btrfs_fs_info * info,int chunk_root)2019 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2020 {
2021 free_root_extent_buffers(info->tree_root);
2022
2023 free_root_extent_buffers(info->dev_root);
2024 free_root_extent_buffers(info->extent_root);
2025 free_root_extent_buffers(info->csum_root);
2026 free_root_extent_buffers(info->quota_root);
2027 free_root_extent_buffers(info->uuid_root);
2028 if (chunk_root)
2029 free_root_extent_buffers(info->chunk_root);
2030 free_root_extent_buffers(info->free_space_root);
2031 }
2032
btrfs_free_fs_roots(struct btrfs_fs_info * fs_info)2033 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2034 {
2035 int ret;
2036 struct btrfs_root *gang[8];
2037 int i;
2038
2039 while (!list_empty(&fs_info->dead_roots)) {
2040 gang[0] = list_entry(fs_info->dead_roots.next,
2041 struct btrfs_root, root_list);
2042 list_del(&gang[0]->root_list);
2043
2044 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2045 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2046 } else {
2047 free_extent_buffer(gang[0]->node);
2048 free_extent_buffer(gang[0]->commit_root);
2049 btrfs_put_fs_root(gang[0]);
2050 }
2051 }
2052
2053 while (1) {
2054 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2055 (void **)gang, 0,
2056 ARRAY_SIZE(gang));
2057 if (!ret)
2058 break;
2059 for (i = 0; i < ret; i++)
2060 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2061 }
2062
2063 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2064 btrfs_free_log_root_tree(NULL, fs_info);
2065 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
2066 }
2067 }
2068
btrfs_init_scrub(struct btrfs_fs_info * fs_info)2069 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2070 {
2071 mutex_init(&fs_info->scrub_lock);
2072 atomic_set(&fs_info->scrubs_running, 0);
2073 atomic_set(&fs_info->scrub_pause_req, 0);
2074 atomic_set(&fs_info->scrubs_paused, 0);
2075 atomic_set(&fs_info->scrub_cancel_req, 0);
2076 init_waitqueue_head(&fs_info->scrub_pause_wait);
2077 refcount_set(&fs_info->scrub_workers_refcnt, 0);
2078 }
2079
btrfs_init_balance(struct btrfs_fs_info * fs_info)2080 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2081 {
2082 spin_lock_init(&fs_info->balance_lock);
2083 mutex_init(&fs_info->balance_mutex);
2084 atomic_set(&fs_info->balance_pause_req, 0);
2085 atomic_set(&fs_info->balance_cancel_req, 0);
2086 fs_info->balance_ctl = NULL;
2087 init_waitqueue_head(&fs_info->balance_wait_q);
2088 }
2089
btrfs_init_btree_inode(struct btrfs_fs_info * fs_info)2090 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2091 {
2092 struct inode *inode = fs_info->btree_inode;
2093
2094 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2095 set_nlink(inode, 1);
2096 /*
2097 * we set the i_size on the btree inode to the max possible int.
2098 * the real end of the address space is determined by all of
2099 * the devices in the system
2100 */
2101 inode->i_size = OFFSET_MAX;
2102 inode->i_mapping->a_ops = &btree_aops;
2103
2104 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2105 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2106 IO_TREE_INODE_IO, inode);
2107 BTRFS_I(inode)->io_tree.track_uptodate = false;
2108 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2109
2110 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2111
2112 BTRFS_I(inode)->root = fs_info->tree_root;
2113 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2114 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2115 btrfs_insert_inode_hash(inode);
2116 }
2117
btrfs_init_dev_replace_locks(struct btrfs_fs_info * fs_info)2118 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2119 {
2120 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2121 init_rwsem(&fs_info->dev_replace.rwsem);
2122 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2123 }
2124
btrfs_init_qgroup(struct btrfs_fs_info * fs_info)2125 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2126 {
2127 spin_lock_init(&fs_info->qgroup_lock);
2128 mutex_init(&fs_info->qgroup_ioctl_lock);
2129 fs_info->qgroup_tree = RB_ROOT;
2130 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2131 fs_info->qgroup_seq = 1;
2132 fs_info->qgroup_ulist = NULL;
2133 fs_info->qgroup_rescan_running = false;
2134 mutex_init(&fs_info->qgroup_rescan_lock);
2135 }
2136
btrfs_init_workqueues(struct btrfs_fs_info * fs_info,struct btrfs_fs_devices * fs_devices)2137 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2138 struct btrfs_fs_devices *fs_devices)
2139 {
2140 u32 max_active = fs_info->thread_pool_size;
2141 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2142
2143 fs_info->workers =
2144 btrfs_alloc_workqueue(fs_info, "worker",
2145 flags | WQ_HIGHPRI, max_active, 16);
2146
2147 fs_info->delalloc_workers =
2148 btrfs_alloc_workqueue(fs_info, "delalloc",
2149 flags, max_active, 2);
2150
2151 fs_info->flush_workers =
2152 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2153 flags, max_active, 0);
2154
2155 fs_info->caching_workers =
2156 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2157
2158 /*
2159 * a higher idle thresh on the submit workers makes it much more
2160 * likely that bios will be send down in a sane order to the
2161 * devices
2162 */
2163 fs_info->submit_workers =
2164 btrfs_alloc_workqueue(fs_info, "submit", flags,
2165 min_t(u64, fs_devices->num_devices,
2166 max_active), 64);
2167
2168 fs_info->fixup_workers =
2169 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2170
2171 /*
2172 * endios are largely parallel and should have a very
2173 * low idle thresh
2174 */
2175 fs_info->endio_workers =
2176 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2177 fs_info->endio_meta_workers =
2178 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2179 max_active, 4);
2180 fs_info->endio_meta_write_workers =
2181 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2182 max_active, 2);
2183 fs_info->endio_raid56_workers =
2184 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2185 max_active, 4);
2186 fs_info->endio_repair_workers =
2187 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2188 fs_info->rmw_workers =
2189 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2190 fs_info->endio_write_workers =
2191 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2192 max_active, 2);
2193 fs_info->endio_freespace_worker =
2194 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2195 max_active, 0);
2196 fs_info->delayed_workers =
2197 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2198 max_active, 0);
2199 fs_info->readahead_workers =
2200 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2201 max_active, 2);
2202 fs_info->qgroup_rescan_workers =
2203 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2204
2205 if (!(fs_info->workers && fs_info->delalloc_workers &&
2206 fs_info->submit_workers && fs_info->flush_workers &&
2207 fs_info->endio_workers && fs_info->endio_meta_workers &&
2208 fs_info->endio_meta_write_workers &&
2209 fs_info->endio_repair_workers &&
2210 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2211 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2212 fs_info->caching_workers && fs_info->readahead_workers &&
2213 fs_info->fixup_workers && fs_info->delayed_workers &&
2214 fs_info->qgroup_rescan_workers)) {
2215 return -ENOMEM;
2216 }
2217
2218 return 0;
2219 }
2220
btrfs_init_csum_hash(struct btrfs_fs_info * fs_info,u16 csum_type)2221 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2222 {
2223 struct crypto_shash *csum_shash;
2224 const char *csum_name = btrfs_super_csum_name(csum_type);
2225
2226 csum_shash = crypto_alloc_shash(csum_name, 0, 0);
2227
2228 if (IS_ERR(csum_shash)) {
2229 btrfs_err(fs_info, "error allocating %s hash for checksum",
2230 csum_name);
2231 return PTR_ERR(csum_shash);
2232 }
2233
2234 fs_info->csum_shash = csum_shash;
2235
2236 return 0;
2237 }
2238
btrfs_free_csum_hash(struct btrfs_fs_info * fs_info)2239 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
2240 {
2241 crypto_free_shash(fs_info->csum_shash);
2242 }
2243
btrfs_replay_log(struct btrfs_fs_info * fs_info,struct btrfs_fs_devices * fs_devices)2244 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2245 struct btrfs_fs_devices *fs_devices)
2246 {
2247 int ret;
2248 struct btrfs_root *log_tree_root;
2249 struct btrfs_super_block *disk_super = fs_info->super_copy;
2250 u64 bytenr = btrfs_super_log_root(disk_super);
2251 int level = btrfs_super_log_root_level(disk_super);
2252
2253 if (fs_devices->rw_devices == 0) {
2254 btrfs_warn(fs_info, "log replay required on RO media");
2255 return -EIO;
2256 }
2257
2258 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2259 if (!log_tree_root)
2260 return -ENOMEM;
2261
2262 __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2263
2264 log_tree_root->node = read_tree_block(fs_info, bytenr,
2265 fs_info->generation + 1,
2266 level, NULL);
2267 if (IS_ERR(log_tree_root->node)) {
2268 btrfs_warn(fs_info, "failed to read log tree");
2269 ret = PTR_ERR(log_tree_root->node);
2270 kfree(log_tree_root);
2271 return ret;
2272 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2273 btrfs_err(fs_info, "failed to read log tree");
2274 free_extent_buffer(log_tree_root->node);
2275 kfree(log_tree_root);
2276 return -EIO;
2277 }
2278 /* returns with log_tree_root freed on success */
2279 ret = btrfs_recover_log_trees(log_tree_root);
2280 if (ret) {
2281 btrfs_handle_fs_error(fs_info, ret,
2282 "Failed to recover log tree");
2283 free_extent_buffer(log_tree_root->node);
2284 kfree(log_tree_root);
2285 return ret;
2286 }
2287
2288 if (sb_rdonly(fs_info->sb)) {
2289 ret = btrfs_commit_super(fs_info);
2290 if (ret)
2291 return ret;
2292 }
2293
2294 return 0;
2295 }
2296
btrfs_read_roots(struct btrfs_fs_info * fs_info)2297 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2298 {
2299 struct btrfs_root *tree_root = fs_info->tree_root;
2300 struct btrfs_root *root;
2301 struct btrfs_key location;
2302 int ret;
2303
2304 BUG_ON(!fs_info->tree_root);
2305
2306 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2307 location.type = BTRFS_ROOT_ITEM_KEY;
2308 location.offset = 0;
2309
2310 root = btrfs_read_tree_root(tree_root, &location);
2311 if (IS_ERR(root)) {
2312 ret = PTR_ERR(root);
2313 goto out;
2314 }
2315 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2316 fs_info->extent_root = root;
2317
2318 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2319 root = btrfs_read_tree_root(tree_root, &location);
2320 if (IS_ERR(root)) {
2321 ret = PTR_ERR(root);
2322 goto out;
2323 }
2324 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2325 fs_info->dev_root = root;
2326 btrfs_init_devices_late(fs_info);
2327
2328 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2329 root = btrfs_read_tree_root(tree_root, &location);
2330 if (IS_ERR(root)) {
2331 ret = PTR_ERR(root);
2332 goto out;
2333 }
2334 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2335 fs_info->csum_root = root;
2336
2337 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2338 root = btrfs_read_tree_root(tree_root, &location);
2339 if (!IS_ERR(root)) {
2340 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2341 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2342 fs_info->quota_root = root;
2343 }
2344
2345 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2346 root = btrfs_read_tree_root(tree_root, &location);
2347 if (IS_ERR(root)) {
2348 ret = PTR_ERR(root);
2349 if (ret != -ENOENT)
2350 goto out;
2351 } else {
2352 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2353 fs_info->uuid_root = root;
2354 }
2355
2356 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2357 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2358 root = btrfs_read_tree_root(tree_root, &location);
2359 if (IS_ERR(root)) {
2360 ret = PTR_ERR(root);
2361 goto out;
2362 }
2363 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2364 fs_info->free_space_root = root;
2365 }
2366
2367 return 0;
2368 out:
2369 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2370 location.objectid, ret);
2371 return ret;
2372 }
2373
2374 /*
2375 * Real super block validation
2376 * NOTE: super csum type and incompat features will not be checked here.
2377 *
2378 * @sb: super block to check
2379 * @mirror_num: the super block number to check its bytenr:
2380 * 0 the primary (1st) sb
2381 * 1, 2 2nd and 3rd backup copy
2382 * -1 skip bytenr check
2383 */
validate_super(struct btrfs_fs_info * fs_info,struct btrfs_super_block * sb,int mirror_num)2384 static int validate_super(struct btrfs_fs_info *fs_info,
2385 struct btrfs_super_block *sb, int mirror_num)
2386 {
2387 u64 nodesize = btrfs_super_nodesize(sb);
2388 u64 sectorsize = btrfs_super_sectorsize(sb);
2389 int ret = 0;
2390
2391 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2392 btrfs_err(fs_info, "no valid FS found");
2393 ret = -EINVAL;
2394 }
2395 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2396 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2397 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2398 ret = -EINVAL;
2399 }
2400 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2401 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2402 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2403 ret = -EINVAL;
2404 }
2405 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2406 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2407 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2408 ret = -EINVAL;
2409 }
2410 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2411 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2412 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2413 ret = -EINVAL;
2414 }
2415
2416 /*
2417 * Check sectorsize and nodesize first, other check will need it.
2418 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2419 */
2420 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2421 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2422 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2423 ret = -EINVAL;
2424 }
2425 /* Only PAGE SIZE is supported yet */
2426 if (sectorsize != PAGE_SIZE) {
2427 btrfs_err(fs_info,
2428 "sectorsize %llu not supported yet, only support %lu",
2429 sectorsize, PAGE_SIZE);
2430 ret = -EINVAL;
2431 }
2432 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2433 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2434 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2435 ret = -EINVAL;
2436 }
2437 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2438 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2439 le32_to_cpu(sb->__unused_leafsize), nodesize);
2440 ret = -EINVAL;
2441 }
2442
2443 /* Root alignment check */
2444 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2445 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2446 btrfs_super_root(sb));
2447 ret = -EINVAL;
2448 }
2449 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2450 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2451 btrfs_super_chunk_root(sb));
2452 ret = -EINVAL;
2453 }
2454 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2455 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2456 btrfs_super_log_root(sb));
2457 ret = -EINVAL;
2458 }
2459
2460 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2461 BTRFS_FSID_SIZE) != 0) {
2462 btrfs_err(fs_info,
2463 "dev_item UUID does not match metadata fsid: %pU != %pU",
2464 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2465 ret = -EINVAL;
2466 }
2467
2468 /*
2469 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2470 * done later
2471 */
2472 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2473 btrfs_err(fs_info, "bytes_used is too small %llu",
2474 btrfs_super_bytes_used(sb));
2475 ret = -EINVAL;
2476 }
2477 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2478 btrfs_err(fs_info, "invalid stripesize %u",
2479 btrfs_super_stripesize(sb));
2480 ret = -EINVAL;
2481 }
2482 if (btrfs_super_num_devices(sb) > (1UL << 31))
2483 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2484 btrfs_super_num_devices(sb));
2485 if (btrfs_super_num_devices(sb) == 0) {
2486 btrfs_err(fs_info, "number of devices is 0");
2487 ret = -EINVAL;
2488 }
2489
2490 if (mirror_num >= 0 &&
2491 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2492 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2493 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2494 ret = -EINVAL;
2495 }
2496
2497 /*
2498 * Obvious sys_chunk_array corruptions, it must hold at least one key
2499 * and one chunk
2500 */
2501 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2502 btrfs_err(fs_info, "system chunk array too big %u > %u",
2503 btrfs_super_sys_array_size(sb),
2504 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2505 ret = -EINVAL;
2506 }
2507 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2508 + sizeof(struct btrfs_chunk)) {
2509 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2510 btrfs_super_sys_array_size(sb),
2511 sizeof(struct btrfs_disk_key)
2512 + sizeof(struct btrfs_chunk));
2513 ret = -EINVAL;
2514 }
2515
2516 /*
2517 * The generation is a global counter, we'll trust it more than the others
2518 * but it's still possible that it's the one that's wrong.
2519 */
2520 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2521 btrfs_warn(fs_info,
2522 "suspicious: generation < chunk_root_generation: %llu < %llu",
2523 btrfs_super_generation(sb),
2524 btrfs_super_chunk_root_generation(sb));
2525 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2526 && btrfs_super_cache_generation(sb) != (u64)-1)
2527 btrfs_warn(fs_info,
2528 "suspicious: generation < cache_generation: %llu < %llu",
2529 btrfs_super_generation(sb),
2530 btrfs_super_cache_generation(sb));
2531
2532 return ret;
2533 }
2534
2535 /*
2536 * Validation of super block at mount time.
2537 * Some checks already done early at mount time, like csum type and incompat
2538 * flags will be skipped.
2539 */
btrfs_validate_mount_super(struct btrfs_fs_info * fs_info)2540 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2541 {
2542 return validate_super(fs_info, fs_info->super_copy, 0);
2543 }
2544
2545 /*
2546 * Validation of super block at write time.
2547 * Some checks like bytenr check will be skipped as their values will be
2548 * overwritten soon.
2549 * Extra checks like csum type and incompat flags will be done here.
2550 */
btrfs_validate_write_super(struct btrfs_fs_info * fs_info,struct btrfs_super_block * sb)2551 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2552 struct btrfs_super_block *sb)
2553 {
2554 int ret;
2555
2556 ret = validate_super(fs_info, sb, -1);
2557 if (ret < 0)
2558 goto out;
2559 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2560 ret = -EUCLEAN;
2561 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2562 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2563 goto out;
2564 }
2565 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2566 ret = -EUCLEAN;
2567 btrfs_err(fs_info,
2568 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2569 btrfs_super_incompat_flags(sb),
2570 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2571 goto out;
2572 }
2573 out:
2574 if (ret < 0)
2575 btrfs_err(fs_info,
2576 "super block corruption detected before writing it to disk");
2577 return ret;
2578 }
2579
open_ctree(struct super_block * sb,struct btrfs_fs_devices * fs_devices,char * options)2580 int open_ctree(struct super_block *sb,
2581 struct btrfs_fs_devices *fs_devices,
2582 char *options)
2583 {
2584 u32 sectorsize;
2585 u32 nodesize;
2586 u32 stripesize;
2587 u64 generation;
2588 u64 features;
2589 u16 csum_type;
2590 struct btrfs_key location;
2591 struct buffer_head *bh;
2592 struct btrfs_super_block *disk_super;
2593 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2594 struct btrfs_root *tree_root;
2595 struct btrfs_root *chunk_root;
2596 int ret;
2597 int err = -EINVAL;
2598 int num_backups_tried = 0;
2599 int backup_index = 0;
2600 int clear_free_space_tree = 0;
2601 int level;
2602
2603 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2604 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2605 if (!tree_root || !chunk_root) {
2606 err = -ENOMEM;
2607 goto fail;
2608 }
2609
2610 ret = init_srcu_struct(&fs_info->subvol_srcu);
2611 if (ret) {
2612 err = ret;
2613 goto fail;
2614 }
2615
2616 ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
2617 if (ret) {
2618 err = ret;
2619 goto fail_srcu;
2620 }
2621
2622 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2623 if (ret) {
2624 err = ret;
2625 goto fail_dio_bytes;
2626 }
2627 fs_info->dirty_metadata_batch = PAGE_SIZE *
2628 (1 + ilog2(nr_cpu_ids));
2629
2630 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2631 if (ret) {
2632 err = ret;
2633 goto fail_dirty_metadata_bytes;
2634 }
2635
2636 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2637 GFP_KERNEL);
2638 if (ret) {
2639 err = ret;
2640 goto fail_delalloc_bytes;
2641 }
2642
2643 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2644 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2645 INIT_LIST_HEAD(&fs_info->trans_list);
2646 INIT_LIST_HEAD(&fs_info->dead_roots);
2647 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2648 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2649 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2650 spin_lock_init(&fs_info->delalloc_root_lock);
2651 spin_lock_init(&fs_info->trans_lock);
2652 spin_lock_init(&fs_info->fs_roots_radix_lock);
2653 spin_lock_init(&fs_info->delayed_iput_lock);
2654 spin_lock_init(&fs_info->defrag_inodes_lock);
2655 spin_lock_init(&fs_info->tree_mod_seq_lock);
2656 spin_lock_init(&fs_info->super_lock);
2657 spin_lock_init(&fs_info->buffer_lock);
2658 spin_lock_init(&fs_info->unused_bgs_lock);
2659 rwlock_init(&fs_info->tree_mod_log_lock);
2660 mutex_init(&fs_info->unused_bg_unpin_mutex);
2661 mutex_init(&fs_info->delete_unused_bgs_mutex);
2662 mutex_init(&fs_info->reloc_mutex);
2663 mutex_init(&fs_info->delalloc_root_mutex);
2664 seqlock_init(&fs_info->profiles_lock);
2665
2666 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2667 INIT_LIST_HEAD(&fs_info->space_info);
2668 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2669 INIT_LIST_HEAD(&fs_info->unused_bgs);
2670 extent_map_tree_init(&fs_info->mapping_tree);
2671 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2672 BTRFS_BLOCK_RSV_GLOBAL);
2673 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2674 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2675 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2676 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2677 BTRFS_BLOCK_RSV_DELOPS);
2678 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2679 BTRFS_BLOCK_RSV_DELREFS);
2680
2681 atomic_set(&fs_info->async_delalloc_pages, 0);
2682 atomic_set(&fs_info->defrag_running, 0);
2683 atomic_set(&fs_info->reada_works_cnt, 0);
2684 atomic_set(&fs_info->nr_delayed_iputs, 0);
2685 atomic64_set(&fs_info->tree_mod_seq, 0);
2686 fs_info->sb = sb;
2687 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2688 fs_info->metadata_ratio = 0;
2689 fs_info->defrag_inodes = RB_ROOT;
2690 atomic64_set(&fs_info->free_chunk_space, 0);
2691 fs_info->tree_mod_log = RB_ROOT;
2692 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2693 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2694 /* readahead state */
2695 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2696 spin_lock_init(&fs_info->reada_lock);
2697 btrfs_init_ref_verify(fs_info);
2698
2699 fs_info->thread_pool_size = min_t(unsigned long,
2700 num_online_cpus() + 2, 8);
2701
2702 INIT_LIST_HEAD(&fs_info->ordered_roots);
2703 spin_lock_init(&fs_info->ordered_root_lock);
2704
2705 fs_info->btree_inode = new_inode(sb);
2706 if (!fs_info->btree_inode) {
2707 err = -ENOMEM;
2708 goto fail_bio_counter;
2709 }
2710 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2711
2712 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2713 GFP_KERNEL);
2714 if (!fs_info->delayed_root) {
2715 err = -ENOMEM;
2716 goto fail_iput;
2717 }
2718 btrfs_init_delayed_root(fs_info->delayed_root);
2719
2720 btrfs_init_scrub(fs_info);
2721 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2722 fs_info->check_integrity_print_mask = 0;
2723 #endif
2724 btrfs_init_balance(fs_info);
2725 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2726
2727 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2728 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2729
2730 btrfs_init_btree_inode(fs_info);
2731
2732 spin_lock_init(&fs_info->block_group_cache_lock);
2733 fs_info->block_group_cache_tree = RB_ROOT;
2734 fs_info->first_logical_byte = (u64)-1;
2735
2736 extent_io_tree_init(fs_info, &fs_info->freed_extents[0],
2737 IO_TREE_FS_INFO_FREED_EXTENTS0, NULL);
2738 extent_io_tree_init(fs_info, &fs_info->freed_extents[1],
2739 IO_TREE_FS_INFO_FREED_EXTENTS1, NULL);
2740 fs_info->pinned_extents = &fs_info->freed_extents[0];
2741 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2742
2743 mutex_init(&fs_info->ordered_operations_mutex);
2744 mutex_init(&fs_info->tree_log_mutex);
2745 mutex_init(&fs_info->chunk_mutex);
2746 mutex_init(&fs_info->transaction_kthread_mutex);
2747 mutex_init(&fs_info->cleaner_mutex);
2748 mutex_init(&fs_info->ro_block_group_mutex);
2749 init_rwsem(&fs_info->commit_root_sem);
2750 init_rwsem(&fs_info->cleanup_work_sem);
2751 init_rwsem(&fs_info->subvol_sem);
2752 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2753
2754 btrfs_init_dev_replace_locks(fs_info);
2755 btrfs_init_qgroup(fs_info);
2756
2757 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2758 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2759
2760 init_waitqueue_head(&fs_info->transaction_throttle);
2761 init_waitqueue_head(&fs_info->transaction_wait);
2762 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2763 init_waitqueue_head(&fs_info->async_submit_wait);
2764 init_waitqueue_head(&fs_info->delayed_iputs_wait);
2765
2766 /* Usable values until the real ones are cached from the superblock */
2767 fs_info->nodesize = 4096;
2768 fs_info->sectorsize = 4096;
2769 fs_info->stripesize = 4096;
2770
2771 spin_lock_init(&fs_info->swapfile_pins_lock);
2772 fs_info->swapfile_pins = RB_ROOT;
2773
2774 fs_info->send_in_progress = 0;
2775
2776 ret = btrfs_alloc_stripe_hash_table(fs_info);
2777 if (ret) {
2778 err = ret;
2779 goto fail_alloc;
2780 }
2781
2782 __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
2783
2784 invalidate_bdev(fs_devices->latest_bdev);
2785
2786 /*
2787 * Read super block and check the signature bytes only
2788 */
2789 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2790 if (IS_ERR(bh)) {
2791 err = PTR_ERR(bh);
2792 goto fail_alloc;
2793 }
2794
2795 /*
2796 * Verify the type first, if that or the the checksum value are
2797 * corrupted, we'll find out
2798 */
2799 csum_type = btrfs_super_csum_type((struct btrfs_super_block *)bh->b_data);
2800 if (!btrfs_supported_super_csum(csum_type)) {
2801 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
2802 csum_type);
2803 err = -EINVAL;
2804 brelse(bh);
2805 goto fail_alloc;
2806 }
2807
2808 ret = btrfs_init_csum_hash(fs_info, csum_type);
2809 if (ret) {
2810 err = ret;
2811 goto fail_alloc;
2812 }
2813
2814 /*
2815 * We want to check superblock checksum, the type is stored inside.
2816 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2817 */
2818 if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2819 btrfs_err(fs_info, "superblock checksum mismatch");
2820 err = -EINVAL;
2821 brelse(bh);
2822 goto fail_csum;
2823 }
2824
2825 /*
2826 * super_copy is zeroed at allocation time and we never touch the
2827 * following bytes up to INFO_SIZE, the checksum is calculated from
2828 * the whole block of INFO_SIZE
2829 */
2830 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2831 brelse(bh);
2832
2833 disk_super = fs_info->super_copy;
2834
2835 ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2836 BTRFS_FSID_SIZE));
2837
2838 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
2839 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2840 fs_info->super_copy->metadata_uuid,
2841 BTRFS_FSID_SIZE));
2842 }
2843
2844 features = btrfs_super_flags(disk_super);
2845 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2846 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2847 btrfs_set_super_flags(disk_super, features);
2848 btrfs_info(fs_info,
2849 "found metadata UUID change in progress flag, clearing");
2850 }
2851
2852 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2853 sizeof(*fs_info->super_for_commit));
2854
2855 ret = btrfs_validate_mount_super(fs_info);
2856 if (ret) {
2857 btrfs_err(fs_info, "superblock contains fatal errors");
2858 err = -EINVAL;
2859 goto fail_csum;
2860 }
2861
2862 if (!btrfs_super_root(disk_super))
2863 goto fail_csum;
2864
2865 /* check FS state, whether FS is broken. */
2866 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2867 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2868
2869 /*
2870 * run through our array of backup supers and setup
2871 * our ring pointer to the oldest one
2872 */
2873 generation = btrfs_super_generation(disk_super);
2874 find_oldest_super_backup(fs_info, generation);
2875
2876 /*
2877 * In the long term, we'll store the compression type in the super
2878 * block, and it'll be used for per file compression control.
2879 */
2880 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2881
2882 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2883 if (ret) {
2884 err = ret;
2885 goto fail_csum;
2886 }
2887
2888 features = btrfs_super_incompat_flags(disk_super) &
2889 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2890 if (features) {
2891 btrfs_err(fs_info,
2892 "cannot mount because of unsupported optional features (%llx)",
2893 features);
2894 err = -EINVAL;
2895 goto fail_csum;
2896 }
2897
2898 features = btrfs_super_incompat_flags(disk_super);
2899 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2900 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2901 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2902 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2903 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
2904
2905 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2906 btrfs_info(fs_info, "has skinny extents");
2907
2908 /*
2909 * flag our filesystem as having big metadata blocks if
2910 * they are bigger than the page size
2911 */
2912 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2913 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2914 btrfs_info(fs_info,
2915 "flagging fs with big metadata feature");
2916 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2917 }
2918
2919 nodesize = btrfs_super_nodesize(disk_super);
2920 sectorsize = btrfs_super_sectorsize(disk_super);
2921 stripesize = sectorsize;
2922 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2923 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2924
2925 /* Cache block sizes */
2926 fs_info->nodesize = nodesize;
2927 fs_info->sectorsize = sectorsize;
2928 fs_info->stripesize = stripesize;
2929
2930 /*
2931 * mixed block groups end up with duplicate but slightly offset
2932 * extent buffers for the same range. It leads to corruptions
2933 */
2934 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2935 (sectorsize != nodesize)) {
2936 btrfs_err(fs_info,
2937 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2938 nodesize, sectorsize);
2939 goto fail_csum;
2940 }
2941
2942 /*
2943 * Needn't use the lock because there is no other task which will
2944 * update the flag.
2945 */
2946 btrfs_set_super_incompat_flags(disk_super, features);
2947
2948 features = btrfs_super_compat_ro_flags(disk_super) &
2949 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2950 if (!sb_rdonly(sb) && features) {
2951 btrfs_err(fs_info,
2952 "cannot mount read-write because of unsupported optional features (%llx)",
2953 features);
2954 err = -EINVAL;
2955 goto fail_csum;
2956 }
2957
2958 ret = btrfs_init_workqueues(fs_info, fs_devices);
2959 if (ret) {
2960 err = ret;
2961 goto fail_sb_buffer;
2962 }
2963
2964 sb->s_bdi->congested_fn = btrfs_congested_fn;
2965 sb->s_bdi->congested_data = fs_info;
2966 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
2967 sb->s_bdi->ra_pages = VM_READAHEAD_PAGES;
2968 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
2969 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
2970
2971 sb->s_blocksize = sectorsize;
2972 sb->s_blocksize_bits = blksize_bits(sectorsize);
2973 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
2974
2975 mutex_lock(&fs_info->chunk_mutex);
2976 ret = btrfs_read_sys_array(fs_info);
2977 mutex_unlock(&fs_info->chunk_mutex);
2978 if (ret) {
2979 btrfs_err(fs_info, "failed to read the system array: %d", ret);
2980 goto fail_sb_buffer;
2981 }
2982
2983 generation = btrfs_super_chunk_root_generation(disk_super);
2984 level = btrfs_super_chunk_root_level(disk_super);
2985
2986 __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2987
2988 chunk_root->node = read_tree_block(fs_info,
2989 btrfs_super_chunk_root(disk_super),
2990 generation, level, NULL);
2991 if (IS_ERR(chunk_root->node) ||
2992 !extent_buffer_uptodate(chunk_root->node)) {
2993 btrfs_err(fs_info, "failed to read chunk root");
2994 if (!IS_ERR(chunk_root->node))
2995 free_extent_buffer(chunk_root->node);
2996 chunk_root->node = NULL;
2997 goto fail_tree_roots;
2998 }
2999 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3000 chunk_root->commit_root = btrfs_root_node(chunk_root);
3001
3002 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3003 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
3004
3005 ret = btrfs_read_chunk_tree(fs_info);
3006 if (ret) {
3007 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3008 goto fail_tree_roots;
3009 }
3010
3011 /*
3012 * Keep the devid that is marked to be the target device for the
3013 * device replace procedure
3014 */
3015 btrfs_free_extra_devids(fs_devices, 0);
3016
3017 if (!fs_devices->latest_bdev) {
3018 btrfs_err(fs_info, "failed to read devices");
3019 goto fail_tree_roots;
3020 }
3021
3022 retry_root_backup:
3023 generation = btrfs_super_generation(disk_super);
3024 level = btrfs_super_root_level(disk_super);
3025
3026 tree_root->node = read_tree_block(fs_info,
3027 btrfs_super_root(disk_super),
3028 generation, level, NULL);
3029 if (IS_ERR(tree_root->node) ||
3030 !extent_buffer_uptodate(tree_root->node)) {
3031 btrfs_warn(fs_info, "failed to read tree root");
3032 if (!IS_ERR(tree_root->node))
3033 free_extent_buffer(tree_root->node);
3034 tree_root->node = NULL;
3035 goto recovery_tree_root;
3036 }
3037
3038 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
3039 tree_root->commit_root = btrfs_root_node(tree_root);
3040 btrfs_set_root_refs(&tree_root->root_item, 1);
3041
3042 mutex_lock(&tree_root->objectid_mutex);
3043 ret = btrfs_find_highest_objectid(tree_root,
3044 &tree_root->highest_objectid);
3045 if (ret) {
3046 mutex_unlock(&tree_root->objectid_mutex);
3047 goto recovery_tree_root;
3048 }
3049
3050 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
3051
3052 mutex_unlock(&tree_root->objectid_mutex);
3053
3054 ret = btrfs_read_roots(fs_info);
3055 if (ret)
3056 goto recovery_tree_root;
3057
3058 fs_info->generation = generation;
3059 fs_info->last_trans_committed = generation;
3060
3061 ret = btrfs_verify_dev_extents(fs_info);
3062 if (ret) {
3063 btrfs_err(fs_info,
3064 "failed to verify dev extents against chunks: %d",
3065 ret);
3066 goto fail_block_groups;
3067 }
3068 ret = btrfs_recover_balance(fs_info);
3069 if (ret) {
3070 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3071 goto fail_block_groups;
3072 }
3073
3074 ret = btrfs_init_dev_stats(fs_info);
3075 if (ret) {
3076 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3077 goto fail_block_groups;
3078 }
3079
3080 ret = btrfs_init_dev_replace(fs_info);
3081 if (ret) {
3082 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3083 goto fail_block_groups;
3084 }
3085
3086 btrfs_free_extra_devids(fs_devices, 1);
3087
3088 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3089 if (ret) {
3090 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3091 ret);
3092 goto fail_block_groups;
3093 }
3094
3095 ret = btrfs_sysfs_add_device(fs_devices);
3096 if (ret) {
3097 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3098 ret);
3099 goto fail_fsdev_sysfs;
3100 }
3101
3102 ret = btrfs_sysfs_add_mounted(fs_info);
3103 if (ret) {
3104 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3105 goto fail_fsdev_sysfs;
3106 }
3107
3108 ret = btrfs_init_space_info(fs_info);
3109 if (ret) {
3110 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3111 goto fail_sysfs;
3112 }
3113
3114 ret = btrfs_read_block_groups(fs_info);
3115 if (ret) {
3116 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3117 goto fail_sysfs;
3118 }
3119
3120 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
3121 btrfs_warn(fs_info,
3122 "writable mount is not allowed due to too many missing devices");
3123 goto fail_sysfs;
3124 }
3125
3126 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3127 "btrfs-cleaner");
3128 if (IS_ERR(fs_info->cleaner_kthread))
3129 goto fail_sysfs;
3130
3131 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3132 tree_root,
3133 "btrfs-transaction");
3134 if (IS_ERR(fs_info->transaction_kthread))
3135 goto fail_cleaner;
3136
3137 if (!btrfs_test_opt(fs_info, NOSSD) &&
3138 !fs_info->fs_devices->rotating) {
3139 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3140 }
3141
3142 /*
3143 * Mount does not set all options immediately, we can do it now and do
3144 * not have to wait for transaction commit
3145 */
3146 btrfs_apply_pending_changes(fs_info);
3147
3148 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3149 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3150 ret = btrfsic_mount(fs_info, fs_devices,
3151 btrfs_test_opt(fs_info,
3152 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3153 1 : 0,
3154 fs_info->check_integrity_print_mask);
3155 if (ret)
3156 btrfs_warn(fs_info,
3157 "failed to initialize integrity check module: %d",
3158 ret);
3159 }
3160 #endif
3161 ret = btrfs_read_qgroup_config(fs_info);
3162 if (ret)
3163 goto fail_trans_kthread;
3164
3165 if (btrfs_build_ref_tree(fs_info))
3166 btrfs_err(fs_info, "couldn't build ref tree");
3167
3168 /* do not make disk changes in broken FS or nologreplay is given */
3169 if (btrfs_super_log_root(disk_super) != 0 &&
3170 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3171 ret = btrfs_replay_log(fs_info, fs_devices);
3172 if (ret) {
3173 err = ret;
3174 goto fail_qgroup;
3175 }
3176 }
3177
3178 ret = btrfs_find_orphan_roots(fs_info);
3179 if (ret)
3180 goto fail_qgroup;
3181
3182 if (!sb_rdonly(sb)) {
3183 ret = btrfs_cleanup_fs_roots(fs_info);
3184 if (ret)
3185 goto fail_qgroup;
3186
3187 mutex_lock(&fs_info->cleaner_mutex);
3188 ret = btrfs_recover_relocation(tree_root);
3189 mutex_unlock(&fs_info->cleaner_mutex);
3190 if (ret < 0) {
3191 btrfs_warn(fs_info, "failed to recover relocation: %d",
3192 ret);
3193 err = -EINVAL;
3194 goto fail_qgroup;
3195 }
3196 }
3197
3198 location.objectid = BTRFS_FS_TREE_OBJECTID;
3199 location.type = BTRFS_ROOT_ITEM_KEY;
3200 location.offset = 0;
3201
3202 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3203 if (IS_ERR(fs_info->fs_root)) {
3204 err = PTR_ERR(fs_info->fs_root);
3205 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3206 goto fail_qgroup;
3207 }
3208
3209 if (sb_rdonly(sb))
3210 return 0;
3211
3212 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3213 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3214 clear_free_space_tree = 1;
3215 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3216 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3217 btrfs_warn(fs_info, "free space tree is invalid");
3218 clear_free_space_tree = 1;
3219 }
3220
3221 if (clear_free_space_tree) {
3222 btrfs_info(fs_info, "clearing free space tree");
3223 ret = btrfs_clear_free_space_tree(fs_info);
3224 if (ret) {
3225 btrfs_warn(fs_info,
3226 "failed to clear free space tree: %d", ret);
3227 close_ctree(fs_info);
3228 return ret;
3229 }
3230 }
3231
3232 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3233 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3234 btrfs_info(fs_info, "creating free space tree");
3235 ret = btrfs_create_free_space_tree(fs_info);
3236 if (ret) {
3237 btrfs_warn(fs_info,
3238 "failed to create free space tree: %d", ret);
3239 close_ctree(fs_info);
3240 return ret;
3241 }
3242 }
3243
3244 down_read(&fs_info->cleanup_work_sem);
3245 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3246 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3247 up_read(&fs_info->cleanup_work_sem);
3248 close_ctree(fs_info);
3249 return ret;
3250 }
3251 up_read(&fs_info->cleanup_work_sem);
3252
3253 ret = btrfs_resume_balance_async(fs_info);
3254 if (ret) {
3255 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3256 close_ctree(fs_info);
3257 return ret;
3258 }
3259
3260 ret = btrfs_resume_dev_replace_async(fs_info);
3261 if (ret) {
3262 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3263 close_ctree(fs_info);
3264 return ret;
3265 }
3266
3267 btrfs_qgroup_rescan_resume(fs_info);
3268
3269 if (!fs_info->uuid_root) {
3270 btrfs_info(fs_info, "creating UUID tree");
3271 ret = btrfs_create_uuid_tree(fs_info);
3272 if (ret) {
3273 btrfs_warn(fs_info,
3274 "failed to create the UUID tree: %d", ret);
3275 close_ctree(fs_info);
3276 return ret;
3277 }
3278 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3279 fs_info->generation !=
3280 btrfs_super_uuid_tree_generation(disk_super)) {
3281 btrfs_info(fs_info, "checking UUID tree");
3282 ret = btrfs_check_uuid_tree(fs_info);
3283 if (ret) {
3284 btrfs_warn(fs_info,
3285 "failed to check the UUID tree: %d", ret);
3286 close_ctree(fs_info);
3287 return ret;
3288 }
3289 } else {
3290 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3291 }
3292 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3293
3294 /*
3295 * backuproot only affect mount behavior, and if open_ctree succeeded,
3296 * no need to keep the flag
3297 */
3298 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3299
3300 return 0;
3301
3302 fail_qgroup:
3303 btrfs_free_qgroup_config(fs_info);
3304 fail_trans_kthread:
3305 kthread_stop(fs_info->transaction_kthread);
3306 btrfs_cleanup_transaction(fs_info);
3307 btrfs_free_fs_roots(fs_info);
3308 fail_cleaner:
3309 kthread_stop(fs_info->cleaner_kthread);
3310
3311 /*
3312 * make sure we're done with the btree inode before we stop our
3313 * kthreads
3314 */
3315 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3316
3317 fail_sysfs:
3318 btrfs_sysfs_remove_mounted(fs_info);
3319
3320 fail_fsdev_sysfs:
3321 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3322
3323 fail_block_groups:
3324 btrfs_put_block_group_cache(fs_info);
3325
3326 fail_tree_roots:
3327 free_root_pointers(fs_info, 1);
3328 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3329
3330 fail_sb_buffer:
3331 btrfs_stop_all_workers(fs_info);
3332 btrfs_free_block_groups(fs_info);
3333 fail_csum:
3334 btrfs_free_csum_hash(fs_info);
3335 fail_alloc:
3336 fail_iput:
3337 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3338
3339 iput(fs_info->btree_inode);
3340 fail_bio_counter:
3341 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
3342 fail_delalloc_bytes:
3343 percpu_counter_destroy(&fs_info->delalloc_bytes);
3344 fail_dirty_metadata_bytes:
3345 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3346 fail_dio_bytes:
3347 percpu_counter_destroy(&fs_info->dio_bytes);
3348 fail_srcu:
3349 cleanup_srcu_struct(&fs_info->subvol_srcu);
3350 fail:
3351 btrfs_free_stripe_hash_table(fs_info);
3352 btrfs_close_devices(fs_info->fs_devices);
3353 return err;
3354
3355 recovery_tree_root:
3356 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
3357 goto fail_tree_roots;
3358
3359 free_root_pointers(fs_info, 0);
3360
3361 /* don't use the log in recovery mode, it won't be valid */
3362 btrfs_set_super_log_root(disk_super, 0);
3363
3364 /* we can't trust the free space cache either */
3365 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3366
3367 ret = next_root_backup(fs_info, fs_info->super_copy,
3368 &num_backups_tried, &backup_index);
3369 if (ret == -1)
3370 goto fail_block_groups;
3371 goto retry_root_backup;
3372 }
3373 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3374
btrfs_end_buffer_write_sync(struct buffer_head * bh,int uptodate)3375 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3376 {
3377 if (uptodate) {
3378 set_buffer_uptodate(bh);
3379 } else {
3380 struct btrfs_device *device = (struct btrfs_device *)
3381 bh->b_private;
3382
3383 btrfs_warn_rl_in_rcu(device->fs_info,
3384 "lost page write due to IO error on %s",
3385 rcu_str_deref(device->name));
3386 /* note, we don't set_buffer_write_io_error because we have
3387 * our own ways of dealing with the IO errors
3388 */
3389 clear_buffer_uptodate(bh);
3390 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3391 }
3392 unlock_buffer(bh);
3393 put_bh(bh);
3394 }
3395
btrfs_read_dev_one_super(struct block_device * bdev,int copy_num,struct buffer_head ** bh_ret)3396 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3397 struct buffer_head **bh_ret)
3398 {
3399 struct buffer_head *bh;
3400 struct btrfs_super_block *super;
3401 u64 bytenr;
3402
3403 bytenr = btrfs_sb_offset(copy_num);
3404 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3405 return -EINVAL;
3406
3407 bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
3408 /*
3409 * If we fail to read from the underlying devices, as of now
3410 * the best option we have is to mark it EIO.
3411 */
3412 if (!bh)
3413 return -EIO;
3414
3415 super = (struct btrfs_super_block *)bh->b_data;
3416 if (btrfs_super_bytenr(super) != bytenr ||
3417 btrfs_super_magic(super) != BTRFS_MAGIC) {
3418 brelse(bh);
3419 return -EINVAL;
3420 }
3421
3422 *bh_ret = bh;
3423 return 0;
3424 }
3425
3426
btrfs_read_dev_super(struct block_device * bdev)3427 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3428 {
3429 struct buffer_head *bh;
3430 struct buffer_head *latest = NULL;
3431 struct btrfs_super_block *super;
3432 int i;
3433 u64 transid = 0;
3434 int ret = -EINVAL;
3435
3436 /* we would like to check all the supers, but that would make
3437 * a btrfs mount succeed after a mkfs from a different FS.
3438 * So, we need to add a special mount option to scan for
3439 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3440 */
3441 for (i = 0; i < 1; i++) {
3442 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3443 if (ret)
3444 continue;
3445
3446 super = (struct btrfs_super_block *)bh->b_data;
3447
3448 if (!latest || btrfs_super_generation(super) > transid) {
3449 brelse(latest);
3450 latest = bh;
3451 transid = btrfs_super_generation(super);
3452 } else {
3453 brelse(bh);
3454 }
3455 }
3456
3457 if (!latest)
3458 return ERR_PTR(ret);
3459
3460 return latest;
3461 }
3462
3463 /*
3464 * Write superblock @sb to the @device. Do not wait for completion, all the
3465 * buffer heads we write are pinned.
3466 *
3467 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3468 * the expected device size at commit time. Note that max_mirrors must be
3469 * same for write and wait phases.
3470 *
3471 * Return number of errors when buffer head is not found or submission fails.
3472 */
write_dev_supers(struct btrfs_device * device,struct btrfs_super_block * sb,int max_mirrors)3473 static int write_dev_supers(struct btrfs_device *device,
3474 struct btrfs_super_block *sb, int max_mirrors)
3475 {
3476 struct btrfs_fs_info *fs_info = device->fs_info;
3477 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3478 struct buffer_head *bh;
3479 int i;
3480 int ret;
3481 int errors = 0;
3482 u64 bytenr;
3483 int op_flags;
3484
3485 if (max_mirrors == 0)
3486 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3487
3488 shash->tfm = fs_info->csum_shash;
3489
3490 for (i = 0; i < max_mirrors; i++) {
3491 bytenr = btrfs_sb_offset(i);
3492 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3493 device->commit_total_bytes)
3494 break;
3495
3496 btrfs_set_super_bytenr(sb, bytenr);
3497
3498 crypto_shash_init(shash);
3499 crypto_shash_update(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3500 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3501 crypto_shash_final(shash, sb->csum);
3502
3503 /* One reference for us, and we leave it for the caller */
3504 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
3505 BTRFS_SUPER_INFO_SIZE);
3506 if (!bh) {
3507 btrfs_err(device->fs_info,
3508 "couldn't get super buffer head for bytenr %llu",
3509 bytenr);
3510 errors++;
3511 continue;
3512 }
3513
3514 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3515
3516 /* one reference for submit_bh */
3517 get_bh(bh);
3518
3519 set_buffer_uptodate(bh);
3520 lock_buffer(bh);
3521 bh->b_end_io = btrfs_end_buffer_write_sync;
3522 bh->b_private = device;
3523
3524 /*
3525 * we fua the first super. The others we allow
3526 * to go down lazy.
3527 */
3528 op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3529 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3530 op_flags |= REQ_FUA;
3531 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
3532 if (ret)
3533 errors++;
3534 }
3535 return errors < i ? 0 : -1;
3536 }
3537
3538 /*
3539 * Wait for write completion of superblocks done by write_dev_supers,
3540 * @max_mirrors same for write and wait phases.
3541 *
3542 * Return number of errors when buffer head is not found or not marked up to
3543 * date.
3544 */
wait_dev_supers(struct btrfs_device * device,int max_mirrors)3545 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3546 {
3547 struct buffer_head *bh;
3548 int i;
3549 int errors = 0;
3550 bool primary_failed = false;
3551 u64 bytenr;
3552
3553 if (max_mirrors == 0)
3554 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3555
3556 for (i = 0; i < max_mirrors; i++) {
3557 bytenr = btrfs_sb_offset(i);
3558 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3559 device->commit_total_bytes)
3560 break;
3561
3562 bh = __find_get_block(device->bdev,
3563 bytenr / BTRFS_BDEV_BLOCKSIZE,
3564 BTRFS_SUPER_INFO_SIZE);
3565 if (!bh) {
3566 errors++;
3567 if (i == 0)
3568 primary_failed = true;
3569 continue;
3570 }
3571 wait_on_buffer(bh);
3572 if (!buffer_uptodate(bh)) {
3573 errors++;
3574 if (i == 0)
3575 primary_failed = true;
3576 }
3577
3578 /* drop our reference */
3579 brelse(bh);
3580
3581 /* drop the reference from the writing run */
3582 brelse(bh);
3583 }
3584
3585 /* log error, force error return */
3586 if (primary_failed) {
3587 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3588 device->devid);
3589 return -1;
3590 }
3591
3592 return errors < i ? 0 : -1;
3593 }
3594
3595 /*
3596 * endio for the write_dev_flush, this will wake anyone waiting
3597 * for the barrier when it is done
3598 */
btrfs_end_empty_barrier(struct bio * bio)3599 static void btrfs_end_empty_barrier(struct bio *bio)
3600 {
3601 complete(bio->bi_private);
3602 }
3603
3604 /*
3605 * Submit a flush request to the device if it supports it. Error handling is
3606 * done in the waiting counterpart.
3607 */
write_dev_flush(struct btrfs_device * device)3608 static void write_dev_flush(struct btrfs_device *device)
3609 {
3610 struct request_queue *q = bdev_get_queue(device->bdev);
3611 struct bio *bio = device->flush_bio;
3612
3613 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3614 return;
3615
3616 bio_reset(bio);
3617 bio->bi_end_io = btrfs_end_empty_barrier;
3618 bio_set_dev(bio, device->bdev);
3619 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3620 init_completion(&device->flush_wait);
3621 bio->bi_private = &device->flush_wait;
3622
3623 btrfsic_submit_bio(bio);
3624 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3625 }
3626
3627 /*
3628 * If the flush bio has been submitted by write_dev_flush, wait for it.
3629 */
wait_dev_flush(struct btrfs_device * device)3630 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3631 {
3632 struct bio *bio = device->flush_bio;
3633
3634 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3635 return BLK_STS_OK;
3636
3637 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3638 wait_for_completion_io(&device->flush_wait);
3639
3640 return bio->bi_status;
3641 }
3642
check_barrier_error(struct btrfs_fs_info * fs_info)3643 static int check_barrier_error(struct btrfs_fs_info *fs_info)
3644 {
3645 if (!btrfs_check_rw_degradable(fs_info, NULL))
3646 return -EIO;
3647 return 0;
3648 }
3649
3650 /*
3651 * send an empty flush down to each device in parallel,
3652 * then wait for them
3653 */
barrier_all_devices(struct btrfs_fs_info * info)3654 static int barrier_all_devices(struct btrfs_fs_info *info)
3655 {
3656 struct list_head *head;
3657 struct btrfs_device *dev;
3658 int errors_wait = 0;
3659 blk_status_t ret;
3660
3661 lockdep_assert_held(&info->fs_devices->device_list_mutex);
3662 /* send down all the barriers */
3663 head = &info->fs_devices->devices;
3664 list_for_each_entry(dev, head, dev_list) {
3665 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3666 continue;
3667 if (!dev->bdev)
3668 continue;
3669 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3670 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3671 continue;
3672
3673 write_dev_flush(dev);
3674 dev->last_flush_error = BLK_STS_OK;
3675 }
3676
3677 /* wait for all the barriers */
3678 list_for_each_entry(dev, head, dev_list) {
3679 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3680 continue;
3681 if (!dev->bdev) {
3682 errors_wait++;
3683 continue;
3684 }
3685 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3686 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3687 continue;
3688
3689 ret = wait_dev_flush(dev);
3690 if (ret) {
3691 dev->last_flush_error = ret;
3692 btrfs_dev_stat_inc_and_print(dev,
3693 BTRFS_DEV_STAT_FLUSH_ERRS);
3694 errors_wait++;
3695 }
3696 }
3697
3698 if (errors_wait) {
3699 /*
3700 * At some point we need the status of all disks
3701 * to arrive at the volume status. So error checking
3702 * is being pushed to a separate loop.
3703 */
3704 return check_barrier_error(info);
3705 }
3706 return 0;
3707 }
3708
btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)3709 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3710 {
3711 int raid_type;
3712 int min_tolerated = INT_MAX;
3713
3714 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3715 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3716 min_tolerated = min_t(int, min_tolerated,
3717 btrfs_raid_array[BTRFS_RAID_SINGLE].
3718 tolerated_failures);
3719
3720 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3721 if (raid_type == BTRFS_RAID_SINGLE)
3722 continue;
3723 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3724 continue;
3725 min_tolerated = min_t(int, min_tolerated,
3726 btrfs_raid_array[raid_type].
3727 tolerated_failures);
3728 }
3729
3730 if (min_tolerated == INT_MAX) {
3731 pr_warn("BTRFS: unknown raid flag: %llu", flags);
3732 min_tolerated = 0;
3733 }
3734
3735 return min_tolerated;
3736 }
3737
write_all_supers(struct btrfs_fs_info * fs_info,int max_mirrors)3738 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3739 {
3740 struct list_head *head;
3741 struct btrfs_device *dev;
3742 struct btrfs_super_block *sb;
3743 struct btrfs_dev_item *dev_item;
3744 int ret;
3745 int do_barriers;
3746 int max_errors;
3747 int total_errors = 0;
3748 u64 flags;
3749
3750 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3751
3752 /*
3753 * max_mirrors == 0 indicates we're from commit_transaction,
3754 * not from fsync where the tree roots in fs_info have not
3755 * been consistent on disk.
3756 */
3757 if (max_mirrors == 0)
3758 backup_super_roots(fs_info);
3759
3760 sb = fs_info->super_for_commit;
3761 dev_item = &sb->dev_item;
3762
3763 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3764 head = &fs_info->fs_devices->devices;
3765 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3766
3767 if (do_barriers) {
3768 ret = barrier_all_devices(fs_info);
3769 if (ret) {
3770 mutex_unlock(
3771 &fs_info->fs_devices->device_list_mutex);
3772 btrfs_handle_fs_error(fs_info, ret,
3773 "errors while submitting device barriers.");
3774 return ret;
3775 }
3776 }
3777
3778 list_for_each_entry(dev, head, dev_list) {
3779 if (!dev->bdev) {
3780 total_errors++;
3781 continue;
3782 }
3783 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3784 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3785 continue;
3786
3787 btrfs_set_stack_device_generation(dev_item, 0);
3788 btrfs_set_stack_device_type(dev_item, dev->type);
3789 btrfs_set_stack_device_id(dev_item, dev->devid);
3790 btrfs_set_stack_device_total_bytes(dev_item,
3791 dev->commit_total_bytes);
3792 btrfs_set_stack_device_bytes_used(dev_item,
3793 dev->commit_bytes_used);
3794 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3795 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3796 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3797 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3798 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3799 BTRFS_FSID_SIZE);
3800
3801 flags = btrfs_super_flags(sb);
3802 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3803
3804 ret = btrfs_validate_write_super(fs_info, sb);
3805 if (ret < 0) {
3806 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3807 btrfs_handle_fs_error(fs_info, -EUCLEAN,
3808 "unexpected superblock corruption detected");
3809 return -EUCLEAN;
3810 }
3811
3812 ret = write_dev_supers(dev, sb, max_mirrors);
3813 if (ret)
3814 total_errors++;
3815 }
3816 if (total_errors > max_errors) {
3817 btrfs_err(fs_info, "%d errors while writing supers",
3818 total_errors);
3819 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3820
3821 /* FUA is masked off if unsupported and can't be the reason */
3822 btrfs_handle_fs_error(fs_info, -EIO,
3823 "%d errors while writing supers",
3824 total_errors);
3825 return -EIO;
3826 }
3827
3828 total_errors = 0;
3829 list_for_each_entry(dev, head, dev_list) {
3830 if (!dev->bdev)
3831 continue;
3832 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3833 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3834 continue;
3835
3836 ret = wait_dev_supers(dev, max_mirrors);
3837 if (ret)
3838 total_errors++;
3839 }
3840 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3841 if (total_errors > max_errors) {
3842 btrfs_handle_fs_error(fs_info, -EIO,
3843 "%d errors while writing supers",
3844 total_errors);
3845 return -EIO;
3846 }
3847 return 0;
3848 }
3849
3850 /* Drop a fs root from the radix tree and free it. */
btrfs_drop_and_free_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_root * root)3851 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3852 struct btrfs_root *root)
3853 {
3854 spin_lock(&fs_info->fs_roots_radix_lock);
3855 radix_tree_delete(&fs_info->fs_roots_radix,
3856 (unsigned long)root->root_key.objectid);
3857 spin_unlock(&fs_info->fs_roots_radix_lock);
3858
3859 if (btrfs_root_refs(&root->root_item) == 0)
3860 synchronize_srcu(&fs_info->subvol_srcu);
3861
3862 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3863 btrfs_free_log(NULL, root);
3864 if (root->reloc_root) {
3865 free_extent_buffer(root->reloc_root->node);
3866 free_extent_buffer(root->reloc_root->commit_root);
3867 btrfs_put_fs_root(root->reloc_root);
3868 root->reloc_root = NULL;
3869 }
3870 }
3871
3872 if (root->free_ino_pinned)
3873 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3874 if (root->free_ino_ctl)
3875 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3876 btrfs_free_fs_root(root);
3877 }
3878
btrfs_free_fs_root(struct btrfs_root * root)3879 void btrfs_free_fs_root(struct btrfs_root *root)
3880 {
3881 iput(root->ino_cache_inode);
3882 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3883 if (root->anon_dev)
3884 free_anon_bdev(root->anon_dev);
3885 if (root->subv_writers)
3886 btrfs_free_subvolume_writers(root->subv_writers);
3887 free_extent_buffer(root->node);
3888 free_extent_buffer(root->commit_root);
3889 kfree(root->free_ino_ctl);
3890 kfree(root->free_ino_pinned);
3891 btrfs_put_fs_root(root);
3892 }
3893
btrfs_cleanup_fs_roots(struct btrfs_fs_info * fs_info)3894 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3895 {
3896 u64 root_objectid = 0;
3897 struct btrfs_root *gang[8];
3898 int i = 0;
3899 int err = 0;
3900 unsigned int ret = 0;
3901 int index;
3902
3903 while (1) {
3904 index = srcu_read_lock(&fs_info->subvol_srcu);
3905 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3906 (void **)gang, root_objectid,
3907 ARRAY_SIZE(gang));
3908 if (!ret) {
3909 srcu_read_unlock(&fs_info->subvol_srcu, index);
3910 break;
3911 }
3912 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3913
3914 for (i = 0; i < ret; i++) {
3915 /* Avoid to grab roots in dead_roots */
3916 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3917 gang[i] = NULL;
3918 continue;
3919 }
3920 /* grab all the search result for later use */
3921 gang[i] = btrfs_grab_fs_root(gang[i]);
3922 }
3923 srcu_read_unlock(&fs_info->subvol_srcu, index);
3924
3925 for (i = 0; i < ret; i++) {
3926 if (!gang[i])
3927 continue;
3928 root_objectid = gang[i]->root_key.objectid;
3929 err = btrfs_orphan_cleanup(gang[i]);
3930 if (err)
3931 break;
3932 btrfs_put_fs_root(gang[i]);
3933 }
3934 root_objectid++;
3935 }
3936
3937 /* release the uncleaned roots due to error */
3938 for (; i < ret; i++) {
3939 if (gang[i])
3940 btrfs_put_fs_root(gang[i]);
3941 }
3942 return err;
3943 }
3944
btrfs_commit_super(struct btrfs_fs_info * fs_info)3945 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3946 {
3947 struct btrfs_root *root = fs_info->tree_root;
3948 struct btrfs_trans_handle *trans;
3949
3950 mutex_lock(&fs_info->cleaner_mutex);
3951 btrfs_run_delayed_iputs(fs_info);
3952 mutex_unlock(&fs_info->cleaner_mutex);
3953 wake_up_process(fs_info->cleaner_kthread);
3954
3955 /* wait until ongoing cleanup work done */
3956 down_write(&fs_info->cleanup_work_sem);
3957 up_write(&fs_info->cleanup_work_sem);
3958
3959 trans = btrfs_join_transaction(root);
3960 if (IS_ERR(trans))
3961 return PTR_ERR(trans);
3962 return btrfs_commit_transaction(trans);
3963 }
3964
close_ctree(struct btrfs_fs_info * fs_info)3965 void close_ctree(struct btrfs_fs_info *fs_info)
3966 {
3967 int ret;
3968
3969 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3970 /*
3971 * We don't want the cleaner to start new transactions, add more delayed
3972 * iputs, etc. while we're closing. We can't use kthread_stop() yet
3973 * because that frees the task_struct, and the transaction kthread might
3974 * still try to wake up the cleaner.
3975 */
3976 kthread_park(fs_info->cleaner_kthread);
3977
3978 /* wait for the qgroup rescan worker to stop */
3979 btrfs_qgroup_wait_for_completion(fs_info, false);
3980
3981 /* wait for the uuid_scan task to finish */
3982 down(&fs_info->uuid_tree_rescan_sem);
3983 /* avoid complains from lockdep et al., set sem back to initial state */
3984 up(&fs_info->uuid_tree_rescan_sem);
3985
3986 /* pause restriper - we want to resume on mount */
3987 btrfs_pause_balance(fs_info);
3988
3989 btrfs_dev_replace_suspend_for_unmount(fs_info);
3990
3991 btrfs_scrub_cancel(fs_info);
3992
3993 /* wait for any defraggers to finish */
3994 wait_event(fs_info->transaction_wait,
3995 (atomic_read(&fs_info->defrag_running) == 0));
3996
3997 /* clear out the rbtree of defraggable inodes */
3998 btrfs_cleanup_defrag_inodes(fs_info);
3999
4000 cancel_work_sync(&fs_info->async_reclaim_work);
4001
4002 if (!sb_rdonly(fs_info->sb)) {
4003 /*
4004 * The cleaner kthread is stopped, so do one final pass over
4005 * unused block groups.
4006 */
4007 btrfs_delete_unused_bgs(fs_info);
4008
4009 ret = btrfs_commit_super(fs_info);
4010 if (ret)
4011 btrfs_err(fs_info, "commit super ret %d", ret);
4012 }
4013
4014 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4015 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
4016 btrfs_error_commit_super(fs_info);
4017
4018 kthread_stop(fs_info->transaction_kthread);
4019 kthread_stop(fs_info->cleaner_kthread);
4020
4021 ASSERT(list_empty(&fs_info->delayed_iputs));
4022 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4023
4024 btrfs_free_qgroup_config(fs_info);
4025 ASSERT(list_empty(&fs_info->delalloc_roots));
4026
4027 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4028 btrfs_info(fs_info, "at unmount delalloc count %lld",
4029 percpu_counter_sum(&fs_info->delalloc_bytes));
4030 }
4031
4032 if (percpu_counter_sum(&fs_info->dio_bytes))
4033 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4034 percpu_counter_sum(&fs_info->dio_bytes));
4035
4036 btrfs_sysfs_remove_mounted(fs_info);
4037 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4038
4039 btrfs_free_fs_roots(fs_info);
4040
4041 btrfs_put_block_group_cache(fs_info);
4042
4043 /*
4044 * we must make sure there is not any read request to
4045 * submit after we stopping all workers.
4046 */
4047 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4048 btrfs_stop_all_workers(fs_info);
4049
4050 btrfs_free_block_groups(fs_info);
4051
4052 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4053 free_root_pointers(fs_info, 1);
4054
4055 iput(fs_info->btree_inode);
4056
4057 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4058 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4059 btrfsic_unmount(fs_info->fs_devices);
4060 #endif
4061
4062 btrfs_mapping_tree_free(&fs_info->mapping_tree);
4063 btrfs_close_devices(fs_info->fs_devices);
4064
4065 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
4066 percpu_counter_destroy(&fs_info->delalloc_bytes);
4067 percpu_counter_destroy(&fs_info->dio_bytes);
4068 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
4069 cleanup_srcu_struct(&fs_info->subvol_srcu);
4070
4071 btrfs_free_csum_hash(fs_info);
4072 btrfs_free_stripe_hash_table(fs_info);
4073 btrfs_free_ref_cache(fs_info);
4074 }
4075
btrfs_buffer_uptodate(struct extent_buffer * buf,u64 parent_transid,int atomic)4076 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4077 int atomic)
4078 {
4079 int ret;
4080 struct inode *btree_inode = buf->pages[0]->mapping->host;
4081
4082 ret = extent_buffer_uptodate(buf);
4083 if (!ret)
4084 return ret;
4085
4086 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4087 parent_transid, atomic);
4088 if (ret == -EAGAIN)
4089 return ret;
4090 return !ret;
4091 }
4092
btrfs_mark_buffer_dirty(struct extent_buffer * buf)4093 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4094 {
4095 struct btrfs_fs_info *fs_info;
4096 struct btrfs_root *root;
4097 u64 transid = btrfs_header_generation(buf);
4098 int was_dirty;
4099
4100 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4101 /*
4102 * This is a fast path so only do this check if we have sanity tests
4103 * enabled. Normal people shouldn't be using unmapped buffers as dirty
4104 * outside of the sanity tests.
4105 */
4106 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4107 return;
4108 #endif
4109 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4110 fs_info = root->fs_info;
4111 btrfs_assert_tree_locked(buf);
4112 if (transid != fs_info->generation)
4113 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4114 buf->start, transid, fs_info->generation);
4115 was_dirty = set_extent_buffer_dirty(buf);
4116 if (!was_dirty)
4117 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4118 buf->len,
4119 fs_info->dirty_metadata_batch);
4120 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4121 /*
4122 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4123 * but item data not updated.
4124 * So here we should only check item pointers, not item data.
4125 */
4126 if (btrfs_header_level(buf) == 0 &&
4127 btrfs_check_leaf_relaxed(buf)) {
4128 btrfs_print_leaf(buf);
4129 ASSERT(0);
4130 }
4131 #endif
4132 }
4133
__btrfs_btree_balance_dirty(struct btrfs_fs_info * fs_info,int flush_delayed)4134 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4135 int flush_delayed)
4136 {
4137 /*
4138 * looks as though older kernels can get into trouble with
4139 * this code, they end up stuck in balance_dirty_pages forever
4140 */
4141 int ret;
4142
4143 if (current->flags & PF_MEMALLOC)
4144 return;
4145
4146 if (flush_delayed)
4147 btrfs_balance_delayed_items(fs_info);
4148
4149 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4150 BTRFS_DIRTY_METADATA_THRESH,
4151 fs_info->dirty_metadata_batch);
4152 if (ret > 0) {
4153 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4154 }
4155 }
4156
btrfs_btree_balance_dirty(struct btrfs_fs_info * fs_info)4157 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4158 {
4159 __btrfs_btree_balance_dirty(fs_info, 1);
4160 }
4161
btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info * fs_info)4162 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4163 {
4164 __btrfs_btree_balance_dirty(fs_info, 0);
4165 }
4166
btrfs_read_buffer(struct extent_buffer * buf,u64 parent_transid,int level,struct btrfs_key * first_key)4167 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4168 struct btrfs_key *first_key)
4169 {
4170 return btree_read_extent_buffer_pages(buf, parent_transid,
4171 level, first_key);
4172 }
4173
btrfs_error_commit_super(struct btrfs_fs_info * fs_info)4174 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4175 {
4176 /* cleanup FS via transaction */
4177 btrfs_cleanup_transaction(fs_info);
4178
4179 mutex_lock(&fs_info->cleaner_mutex);
4180 btrfs_run_delayed_iputs(fs_info);
4181 mutex_unlock(&fs_info->cleaner_mutex);
4182
4183 down_write(&fs_info->cleanup_work_sem);
4184 up_write(&fs_info->cleanup_work_sem);
4185 }
4186
btrfs_destroy_ordered_extents(struct btrfs_root * root)4187 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4188 {
4189 struct btrfs_ordered_extent *ordered;
4190
4191 spin_lock(&root->ordered_extent_lock);
4192 /*
4193 * This will just short circuit the ordered completion stuff which will
4194 * make sure the ordered extent gets properly cleaned up.
4195 */
4196 list_for_each_entry(ordered, &root->ordered_extents,
4197 root_extent_list)
4198 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4199 spin_unlock(&root->ordered_extent_lock);
4200 }
4201
btrfs_destroy_all_ordered_extents(struct btrfs_fs_info * fs_info)4202 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4203 {
4204 struct btrfs_root *root;
4205 struct list_head splice;
4206
4207 INIT_LIST_HEAD(&splice);
4208
4209 spin_lock(&fs_info->ordered_root_lock);
4210 list_splice_init(&fs_info->ordered_roots, &splice);
4211 while (!list_empty(&splice)) {
4212 root = list_first_entry(&splice, struct btrfs_root,
4213 ordered_root);
4214 list_move_tail(&root->ordered_root,
4215 &fs_info->ordered_roots);
4216
4217 spin_unlock(&fs_info->ordered_root_lock);
4218 btrfs_destroy_ordered_extents(root);
4219
4220 cond_resched();
4221 spin_lock(&fs_info->ordered_root_lock);
4222 }
4223 spin_unlock(&fs_info->ordered_root_lock);
4224
4225 /*
4226 * We need this here because if we've been flipped read-only we won't
4227 * get sync() from the umount, so we need to make sure any ordered
4228 * extents that haven't had their dirty pages IO start writeout yet
4229 * actually get run and error out properly.
4230 */
4231 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4232 }
4233
btrfs_destroy_delayed_refs(struct btrfs_transaction * trans,struct btrfs_fs_info * fs_info)4234 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4235 struct btrfs_fs_info *fs_info)
4236 {
4237 struct rb_node *node;
4238 struct btrfs_delayed_ref_root *delayed_refs;
4239 struct btrfs_delayed_ref_node *ref;
4240 int ret = 0;
4241
4242 delayed_refs = &trans->delayed_refs;
4243
4244 spin_lock(&delayed_refs->lock);
4245 if (atomic_read(&delayed_refs->num_entries) == 0) {
4246 spin_unlock(&delayed_refs->lock);
4247 btrfs_info(fs_info, "delayed_refs has NO entry");
4248 return ret;
4249 }
4250
4251 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4252 struct btrfs_delayed_ref_head *head;
4253 struct rb_node *n;
4254 bool pin_bytes = false;
4255
4256 head = rb_entry(node, struct btrfs_delayed_ref_head,
4257 href_node);
4258 if (btrfs_delayed_ref_lock(delayed_refs, head))
4259 continue;
4260
4261 spin_lock(&head->lock);
4262 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4263 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4264 ref_node);
4265 ref->in_tree = 0;
4266 rb_erase_cached(&ref->ref_node, &head->ref_tree);
4267 RB_CLEAR_NODE(&ref->ref_node);
4268 if (!list_empty(&ref->add_list))
4269 list_del(&ref->add_list);
4270 atomic_dec(&delayed_refs->num_entries);
4271 btrfs_put_delayed_ref(ref);
4272 }
4273 if (head->must_insert_reserved)
4274 pin_bytes = true;
4275 btrfs_free_delayed_extent_op(head->extent_op);
4276 btrfs_delete_ref_head(delayed_refs, head);
4277 spin_unlock(&head->lock);
4278 spin_unlock(&delayed_refs->lock);
4279 mutex_unlock(&head->mutex);
4280
4281 if (pin_bytes)
4282 btrfs_pin_extent(fs_info, head->bytenr,
4283 head->num_bytes, 1);
4284 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4285 btrfs_put_delayed_ref_head(head);
4286 cond_resched();
4287 spin_lock(&delayed_refs->lock);
4288 }
4289
4290 spin_unlock(&delayed_refs->lock);
4291
4292 return ret;
4293 }
4294
btrfs_destroy_delalloc_inodes(struct btrfs_root * root)4295 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4296 {
4297 struct btrfs_inode *btrfs_inode;
4298 struct list_head splice;
4299
4300 INIT_LIST_HEAD(&splice);
4301
4302 spin_lock(&root->delalloc_lock);
4303 list_splice_init(&root->delalloc_inodes, &splice);
4304
4305 while (!list_empty(&splice)) {
4306 struct inode *inode = NULL;
4307 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4308 delalloc_inodes);
4309 __btrfs_del_delalloc_inode(root, btrfs_inode);
4310 spin_unlock(&root->delalloc_lock);
4311
4312 /*
4313 * Make sure we get a live inode and that it'll not disappear
4314 * meanwhile.
4315 */
4316 inode = igrab(&btrfs_inode->vfs_inode);
4317 if (inode) {
4318 invalidate_inode_pages2(inode->i_mapping);
4319 iput(inode);
4320 }
4321 spin_lock(&root->delalloc_lock);
4322 }
4323 spin_unlock(&root->delalloc_lock);
4324 }
4325
btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info * fs_info)4326 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4327 {
4328 struct btrfs_root *root;
4329 struct list_head splice;
4330
4331 INIT_LIST_HEAD(&splice);
4332
4333 spin_lock(&fs_info->delalloc_root_lock);
4334 list_splice_init(&fs_info->delalloc_roots, &splice);
4335 while (!list_empty(&splice)) {
4336 root = list_first_entry(&splice, struct btrfs_root,
4337 delalloc_root);
4338 root = btrfs_grab_fs_root(root);
4339 BUG_ON(!root);
4340 spin_unlock(&fs_info->delalloc_root_lock);
4341
4342 btrfs_destroy_delalloc_inodes(root);
4343 btrfs_put_fs_root(root);
4344
4345 spin_lock(&fs_info->delalloc_root_lock);
4346 }
4347 spin_unlock(&fs_info->delalloc_root_lock);
4348 }
4349
btrfs_destroy_marked_extents(struct btrfs_fs_info * fs_info,struct extent_io_tree * dirty_pages,int mark)4350 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4351 struct extent_io_tree *dirty_pages,
4352 int mark)
4353 {
4354 int ret;
4355 struct extent_buffer *eb;
4356 u64 start = 0;
4357 u64 end;
4358
4359 while (1) {
4360 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4361 mark, NULL);
4362 if (ret)
4363 break;
4364
4365 clear_extent_bits(dirty_pages, start, end, mark);
4366 while (start <= end) {
4367 eb = find_extent_buffer(fs_info, start);
4368 start += fs_info->nodesize;
4369 if (!eb)
4370 continue;
4371 wait_on_extent_buffer_writeback(eb);
4372
4373 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4374 &eb->bflags))
4375 clear_extent_buffer_dirty(eb);
4376 free_extent_buffer_stale(eb);
4377 }
4378 }
4379
4380 return ret;
4381 }
4382
btrfs_destroy_pinned_extent(struct btrfs_fs_info * fs_info,struct extent_io_tree * pinned_extents)4383 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4384 struct extent_io_tree *pinned_extents)
4385 {
4386 struct extent_io_tree *unpin;
4387 u64 start;
4388 u64 end;
4389 int ret;
4390 bool loop = true;
4391
4392 unpin = pinned_extents;
4393 again:
4394 while (1) {
4395 struct extent_state *cached_state = NULL;
4396
4397 /*
4398 * The btrfs_finish_extent_commit() may get the same range as
4399 * ours between find_first_extent_bit and clear_extent_dirty.
4400 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4401 * the same extent range.
4402 */
4403 mutex_lock(&fs_info->unused_bg_unpin_mutex);
4404 ret = find_first_extent_bit(unpin, 0, &start, &end,
4405 EXTENT_DIRTY, &cached_state);
4406 if (ret) {
4407 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4408 break;
4409 }
4410
4411 clear_extent_dirty(unpin, start, end, &cached_state);
4412 free_extent_state(cached_state);
4413 btrfs_error_unpin_extent_range(fs_info, start, end);
4414 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4415 cond_resched();
4416 }
4417
4418 if (loop) {
4419 if (unpin == &fs_info->freed_extents[0])
4420 unpin = &fs_info->freed_extents[1];
4421 else
4422 unpin = &fs_info->freed_extents[0];
4423 loop = false;
4424 goto again;
4425 }
4426
4427 return 0;
4428 }
4429
btrfs_cleanup_bg_io(struct btrfs_block_group_cache * cache)4430 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4431 {
4432 struct inode *inode;
4433
4434 inode = cache->io_ctl.inode;
4435 if (inode) {
4436 invalidate_inode_pages2(inode->i_mapping);
4437 BTRFS_I(inode)->generation = 0;
4438 cache->io_ctl.inode = NULL;
4439 iput(inode);
4440 }
4441 btrfs_put_block_group(cache);
4442 }
4443
btrfs_cleanup_dirty_bgs(struct btrfs_transaction * cur_trans,struct btrfs_fs_info * fs_info)4444 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4445 struct btrfs_fs_info *fs_info)
4446 {
4447 struct btrfs_block_group_cache *cache;
4448
4449 spin_lock(&cur_trans->dirty_bgs_lock);
4450 while (!list_empty(&cur_trans->dirty_bgs)) {
4451 cache = list_first_entry(&cur_trans->dirty_bgs,
4452 struct btrfs_block_group_cache,
4453 dirty_list);
4454
4455 if (!list_empty(&cache->io_list)) {
4456 spin_unlock(&cur_trans->dirty_bgs_lock);
4457 list_del_init(&cache->io_list);
4458 btrfs_cleanup_bg_io(cache);
4459 spin_lock(&cur_trans->dirty_bgs_lock);
4460 }
4461
4462 list_del_init(&cache->dirty_list);
4463 spin_lock(&cache->lock);
4464 cache->disk_cache_state = BTRFS_DC_ERROR;
4465 spin_unlock(&cache->lock);
4466
4467 spin_unlock(&cur_trans->dirty_bgs_lock);
4468 btrfs_put_block_group(cache);
4469 btrfs_delayed_refs_rsv_release(fs_info, 1);
4470 spin_lock(&cur_trans->dirty_bgs_lock);
4471 }
4472 spin_unlock(&cur_trans->dirty_bgs_lock);
4473
4474 /*
4475 * Refer to the definition of io_bgs member for details why it's safe
4476 * to use it without any locking
4477 */
4478 while (!list_empty(&cur_trans->io_bgs)) {
4479 cache = list_first_entry(&cur_trans->io_bgs,
4480 struct btrfs_block_group_cache,
4481 io_list);
4482
4483 list_del_init(&cache->io_list);
4484 spin_lock(&cache->lock);
4485 cache->disk_cache_state = BTRFS_DC_ERROR;
4486 spin_unlock(&cache->lock);
4487 btrfs_cleanup_bg_io(cache);
4488 }
4489 }
4490
btrfs_cleanup_one_transaction(struct btrfs_transaction * cur_trans,struct btrfs_fs_info * fs_info)4491 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4492 struct btrfs_fs_info *fs_info)
4493 {
4494 struct btrfs_device *dev, *tmp;
4495
4496 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4497 ASSERT(list_empty(&cur_trans->dirty_bgs));
4498 ASSERT(list_empty(&cur_trans->io_bgs));
4499
4500 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4501 post_commit_list) {
4502 list_del_init(&dev->post_commit_list);
4503 }
4504
4505 btrfs_destroy_delayed_refs(cur_trans, fs_info);
4506
4507 cur_trans->state = TRANS_STATE_COMMIT_START;
4508 wake_up(&fs_info->transaction_blocked_wait);
4509
4510 cur_trans->state = TRANS_STATE_UNBLOCKED;
4511 wake_up(&fs_info->transaction_wait);
4512
4513 btrfs_destroy_delayed_inodes(fs_info);
4514 btrfs_assert_delayed_root_empty(fs_info);
4515
4516 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4517 EXTENT_DIRTY);
4518 btrfs_destroy_pinned_extent(fs_info,
4519 fs_info->pinned_extents);
4520
4521 cur_trans->state =TRANS_STATE_COMPLETED;
4522 wake_up(&cur_trans->commit_wait);
4523 }
4524
btrfs_cleanup_transaction(struct btrfs_fs_info * fs_info)4525 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4526 {
4527 struct btrfs_transaction *t;
4528
4529 mutex_lock(&fs_info->transaction_kthread_mutex);
4530
4531 spin_lock(&fs_info->trans_lock);
4532 while (!list_empty(&fs_info->trans_list)) {
4533 t = list_first_entry(&fs_info->trans_list,
4534 struct btrfs_transaction, list);
4535 if (t->state >= TRANS_STATE_COMMIT_START) {
4536 refcount_inc(&t->use_count);
4537 spin_unlock(&fs_info->trans_lock);
4538 btrfs_wait_for_commit(fs_info, t->transid);
4539 btrfs_put_transaction(t);
4540 spin_lock(&fs_info->trans_lock);
4541 continue;
4542 }
4543 if (t == fs_info->running_transaction) {
4544 t->state = TRANS_STATE_COMMIT_DOING;
4545 spin_unlock(&fs_info->trans_lock);
4546 /*
4547 * We wait for 0 num_writers since we don't hold a trans
4548 * handle open currently for this transaction.
4549 */
4550 wait_event(t->writer_wait,
4551 atomic_read(&t->num_writers) == 0);
4552 } else {
4553 spin_unlock(&fs_info->trans_lock);
4554 }
4555 btrfs_cleanup_one_transaction(t, fs_info);
4556
4557 spin_lock(&fs_info->trans_lock);
4558 if (t == fs_info->running_transaction)
4559 fs_info->running_transaction = NULL;
4560 list_del_init(&t->list);
4561 spin_unlock(&fs_info->trans_lock);
4562
4563 btrfs_put_transaction(t);
4564 trace_btrfs_transaction_commit(fs_info->tree_root);
4565 spin_lock(&fs_info->trans_lock);
4566 }
4567 spin_unlock(&fs_info->trans_lock);
4568 btrfs_destroy_all_ordered_extents(fs_info);
4569 btrfs_destroy_delayed_inodes(fs_info);
4570 btrfs_assert_delayed_root_empty(fs_info);
4571 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
4572 btrfs_destroy_all_delalloc_inodes(fs_info);
4573 mutex_unlock(&fs_info->transaction_kthread_mutex);
4574
4575 return 0;
4576 }
4577
4578 static const struct extent_io_ops btree_extent_io_ops = {
4579 /* mandatory callbacks */
4580 .submit_bio_hook = btree_submit_bio_hook,
4581 .readpage_end_io_hook = btree_readpage_end_io_hook,
4582 };
4583