1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Performance events core code:
4 *
5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 */
10
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/rculist.h>
32 #include <linux/uaccess.h>
33 #include <linux/syscalls.h>
34 #include <linux/anon_inodes.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/cgroup.h>
37 #include <linux/perf_event.h>
38 #include <linux/trace_events.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/mm_types.h>
41 #include <linux/module.h>
42 #include <linux/mman.h>
43 #include <linux/compat.h>
44 #include <linux/bpf.h>
45 #include <linux/filter.h>
46 #include <linux/namei.h>
47 #include <linux/parser.h>
48 #include <linux/sched/clock.h>
49 #include <linux/sched/mm.h>
50 #include <linux/proc_ns.h>
51 #include <linux/mount.h>
52
53 #include "internal.h"
54
55 #include <asm/irq_regs.h>
56
57 typedef int (*remote_function_f)(void *);
58
59 struct remote_function_call {
60 struct task_struct *p;
61 remote_function_f func;
62 void *info;
63 int ret;
64 };
65
remote_function(void * data)66 static void remote_function(void *data)
67 {
68 struct remote_function_call *tfc = data;
69 struct task_struct *p = tfc->p;
70
71 if (p) {
72 /* -EAGAIN */
73 if (task_cpu(p) != smp_processor_id())
74 return;
75
76 /*
77 * Now that we're on right CPU with IRQs disabled, we can test
78 * if we hit the right task without races.
79 */
80
81 tfc->ret = -ESRCH; /* No such (running) process */
82 if (p != current)
83 return;
84 }
85
86 tfc->ret = tfc->func(tfc->info);
87 }
88
89 /**
90 * task_function_call - call a function on the cpu on which a task runs
91 * @p: the task to evaluate
92 * @func: the function to be called
93 * @info: the function call argument
94 *
95 * Calls the function @func when the task is currently running. This might
96 * be on the current CPU, which just calls the function directly
97 *
98 * returns: @func return value, or
99 * -ESRCH - when the process isn't running
100 * -EAGAIN - when the process moved away
101 */
102 static int
task_function_call(struct task_struct * p,remote_function_f func,void * info)103 task_function_call(struct task_struct *p, remote_function_f func, void *info)
104 {
105 struct remote_function_call data = {
106 .p = p,
107 .func = func,
108 .info = info,
109 .ret = -EAGAIN,
110 };
111 int ret;
112
113 do {
114 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
115 if (!ret)
116 ret = data.ret;
117 } while (ret == -EAGAIN);
118
119 return ret;
120 }
121
122 /**
123 * cpu_function_call - call a function on the cpu
124 * @func: the function to be called
125 * @info: the function call argument
126 *
127 * Calls the function @func on the remote cpu.
128 *
129 * returns: @func return value or -ENXIO when the cpu is offline
130 */
cpu_function_call(int cpu,remote_function_f func,void * info)131 static int cpu_function_call(int cpu, remote_function_f func, void *info)
132 {
133 struct remote_function_call data = {
134 .p = NULL,
135 .func = func,
136 .info = info,
137 .ret = -ENXIO, /* No such CPU */
138 };
139
140 smp_call_function_single(cpu, remote_function, &data, 1);
141
142 return data.ret;
143 }
144
145 static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context * ctx)146 __get_cpu_context(struct perf_event_context *ctx)
147 {
148 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
149 }
150
perf_ctx_lock(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)151 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
152 struct perf_event_context *ctx)
153 {
154 raw_spin_lock(&cpuctx->ctx.lock);
155 if (ctx)
156 raw_spin_lock(&ctx->lock);
157 }
158
perf_ctx_unlock(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)159 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
160 struct perf_event_context *ctx)
161 {
162 if (ctx)
163 raw_spin_unlock(&ctx->lock);
164 raw_spin_unlock(&cpuctx->ctx.lock);
165 }
166
167 #define TASK_TOMBSTONE ((void *)-1L)
168
is_kernel_event(struct perf_event * event)169 static bool is_kernel_event(struct perf_event *event)
170 {
171 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
172 }
173
174 /*
175 * On task ctx scheduling...
176 *
177 * When !ctx->nr_events a task context will not be scheduled. This means
178 * we can disable the scheduler hooks (for performance) without leaving
179 * pending task ctx state.
180 *
181 * This however results in two special cases:
182 *
183 * - removing the last event from a task ctx; this is relatively straight
184 * forward and is done in __perf_remove_from_context.
185 *
186 * - adding the first event to a task ctx; this is tricky because we cannot
187 * rely on ctx->is_active and therefore cannot use event_function_call().
188 * See perf_install_in_context().
189 *
190 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
191 */
192
193 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
194 struct perf_event_context *, void *);
195
196 struct event_function_struct {
197 struct perf_event *event;
198 event_f func;
199 void *data;
200 };
201
event_function(void * info)202 static int event_function(void *info)
203 {
204 struct event_function_struct *efs = info;
205 struct perf_event *event = efs->event;
206 struct perf_event_context *ctx = event->ctx;
207 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
208 struct perf_event_context *task_ctx = cpuctx->task_ctx;
209 int ret = 0;
210
211 lockdep_assert_irqs_disabled();
212
213 perf_ctx_lock(cpuctx, task_ctx);
214 /*
215 * Since we do the IPI call without holding ctx->lock things can have
216 * changed, double check we hit the task we set out to hit.
217 */
218 if (ctx->task) {
219 if (ctx->task != current) {
220 ret = -ESRCH;
221 goto unlock;
222 }
223
224 /*
225 * We only use event_function_call() on established contexts,
226 * and event_function() is only ever called when active (or
227 * rather, we'll have bailed in task_function_call() or the
228 * above ctx->task != current test), therefore we must have
229 * ctx->is_active here.
230 */
231 WARN_ON_ONCE(!ctx->is_active);
232 /*
233 * And since we have ctx->is_active, cpuctx->task_ctx must
234 * match.
235 */
236 WARN_ON_ONCE(task_ctx != ctx);
237 } else {
238 WARN_ON_ONCE(&cpuctx->ctx != ctx);
239 }
240
241 efs->func(event, cpuctx, ctx, efs->data);
242 unlock:
243 perf_ctx_unlock(cpuctx, task_ctx);
244
245 return ret;
246 }
247
event_function_call(struct perf_event * event,event_f func,void * data)248 static void event_function_call(struct perf_event *event, event_f func, void *data)
249 {
250 struct perf_event_context *ctx = event->ctx;
251 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
252 struct event_function_struct efs = {
253 .event = event,
254 .func = func,
255 .data = data,
256 };
257
258 if (!event->parent) {
259 /*
260 * If this is a !child event, we must hold ctx::mutex to
261 * stabilize the the event->ctx relation. See
262 * perf_event_ctx_lock().
263 */
264 lockdep_assert_held(&ctx->mutex);
265 }
266
267 if (!task) {
268 cpu_function_call(event->cpu, event_function, &efs);
269 return;
270 }
271
272 if (task == TASK_TOMBSTONE)
273 return;
274
275 again:
276 if (!task_function_call(task, event_function, &efs))
277 return;
278
279 raw_spin_lock_irq(&ctx->lock);
280 /*
281 * Reload the task pointer, it might have been changed by
282 * a concurrent perf_event_context_sched_out().
283 */
284 task = ctx->task;
285 if (task == TASK_TOMBSTONE) {
286 raw_spin_unlock_irq(&ctx->lock);
287 return;
288 }
289 if (ctx->is_active) {
290 raw_spin_unlock_irq(&ctx->lock);
291 goto again;
292 }
293 func(event, NULL, ctx, data);
294 raw_spin_unlock_irq(&ctx->lock);
295 }
296
297 /*
298 * Similar to event_function_call() + event_function(), but hard assumes IRQs
299 * are already disabled and we're on the right CPU.
300 */
event_function_local(struct perf_event * event,event_f func,void * data)301 static void event_function_local(struct perf_event *event, event_f func, void *data)
302 {
303 struct perf_event_context *ctx = event->ctx;
304 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
305 struct task_struct *task = READ_ONCE(ctx->task);
306 struct perf_event_context *task_ctx = NULL;
307
308 lockdep_assert_irqs_disabled();
309
310 if (task) {
311 if (task == TASK_TOMBSTONE)
312 return;
313
314 task_ctx = ctx;
315 }
316
317 perf_ctx_lock(cpuctx, task_ctx);
318
319 task = ctx->task;
320 if (task == TASK_TOMBSTONE)
321 goto unlock;
322
323 if (task) {
324 /*
325 * We must be either inactive or active and the right task,
326 * otherwise we're screwed, since we cannot IPI to somewhere
327 * else.
328 */
329 if (ctx->is_active) {
330 if (WARN_ON_ONCE(task != current))
331 goto unlock;
332
333 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
334 goto unlock;
335 }
336 } else {
337 WARN_ON_ONCE(&cpuctx->ctx != ctx);
338 }
339
340 func(event, cpuctx, ctx, data);
341 unlock:
342 perf_ctx_unlock(cpuctx, task_ctx);
343 }
344
345 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
346 PERF_FLAG_FD_OUTPUT |\
347 PERF_FLAG_PID_CGROUP |\
348 PERF_FLAG_FD_CLOEXEC)
349
350 /*
351 * branch priv levels that need permission checks
352 */
353 #define PERF_SAMPLE_BRANCH_PERM_PLM \
354 (PERF_SAMPLE_BRANCH_KERNEL |\
355 PERF_SAMPLE_BRANCH_HV)
356
357 enum event_type_t {
358 EVENT_FLEXIBLE = 0x1,
359 EVENT_PINNED = 0x2,
360 EVENT_TIME = 0x4,
361 /* see ctx_resched() for details */
362 EVENT_CPU = 0x8,
363 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
364 };
365
366 /*
367 * perf_sched_events : >0 events exist
368 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
369 */
370
371 static void perf_sched_delayed(struct work_struct *work);
372 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
373 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
374 static DEFINE_MUTEX(perf_sched_mutex);
375 static atomic_t perf_sched_count;
376
377 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
378 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
379 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
380
381 static atomic_t nr_mmap_events __read_mostly;
382 static atomic_t nr_comm_events __read_mostly;
383 static atomic_t nr_namespaces_events __read_mostly;
384 static atomic_t nr_task_events __read_mostly;
385 static atomic_t nr_freq_events __read_mostly;
386 static atomic_t nr_switch_events __read_mostly;
387 static atomic_t nr_ksymbol_events __read_mostly;
388 static atomic_t nr_bpf_events __read_mostly;
389
390 static LIST_HEAD(pmus);
391 static DEFINE_MUTEX(pmus_lock);
392 static struct srcu_struct pmus_srcu;
393 static cpumask_var_t perf_online_mask;
394
395 /*
396 * perf event paranoia level:
397 * -1 - not paranoid at all
398 * 0 - disallow raw tracepoint access for unpriv
399 * 1 - disallow cpu events for unpriv
400 * 2 - disallow kernel profiling for unpriv
401 */
402 int sysctl_perf_event_paranoid __read_mostly = 2;
403
404 /* Minimum for 512 kiB + 1 user control page */
405 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
406
407 /*
408 * max perf event sample rate
409 */
410 #define DEFAULT_MAX_SAMPLE_RATE 100000
411 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
412 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
413
414 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
415
416 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
417 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
418
419 static int perf_sample_allowed_ns __read_mostly =
420 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
421
update_perf_cpu_limits(void)422 static void update_perf_cpu_limits(void)
423 {
424 u64 tmp = perf_sample_period_ns;
425
426 tmp *= sysctl_perf_cpu_time_max_percent;
427 tmp = div_u64(tmp, 100);
428 if (!tmp)
429 tmp = 1;
430
431 WRITE_ONCE(perf_sample_allowed_ns, tmp);
432 }
433
434 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
435
perf_proc_update_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)436 int perf_proc_update_handler(struct ctl_table *table, int write,
437 void __user *buffer, size_t *lenp,
438 loff_t *ppos)
439 {
440 int ret;
441 int perf_cpu = sysctl_perf_cpu_time_max_percent;
442 /*
443 * If throttling is disabled don't allow the write:
444 */
445 if (write && (perf_cpu == 100 || perf_cpu == 0))
446 return -EINVAL;
447
448 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
449 if (ret || !write)
450 return ret;
451
452 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
453 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
454 update_perf_cpu_limits();
455
456 return 0;
457 }
458
459 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
460
perf_cpu_time_max_percent_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)461 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
462 void __user *buffer, size_t *lenp,
463 loff_t *ppos)
464 {
465 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
466
467 if (ret || !write)
468 return ret;
469
470 if (sysctl_perf_cpu_time_max_percent == 100 ||
471 sysctl_perf_cpu_time_max_percent == 0) {
472 printk(KERN_WARNING
473 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
474 WRITE_ONCE(perf_sample_allowed_ns, 0);
475 } else {
476 update_perf_cpu_limits();
477 }
478
479 return 0;
480 }
481
482 /*
483 * perf samples are done in some very critical code paths (NMIs).
484 * If they take too much CPU time, the system can lock up and not
485 * get any real work done. This will drop the sample rate when
486 * we detect that events are taking too long.
487 */
488 #define NR_ACCUMULATED_SAMPLES 128
489 static DEFINE_PER_CPU(u64, running_sample_length);
490
491 static u64 __report_avg;
492 static u64 __report_allowed;
493
perf_duration_warn(struct irq_work * w)494 static void perf_duration_warn(struct irq_work *w)
495 {
496 printk_ratelimited(KERN_INFO
497 "perf: interrupt took too long (%lld > %lld), lowering "
498 "kernel.perf_event_max_sample_rate to %d\n",
499 __report_avg, __report_allowed,
500 sysctl_perf_event_sample_rate);
501 }
502
503 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
504
perf_sample_event_took(u64 sample_len_ns)505 void perf_sample_event_took(u64 sample_len_ns)
506 {
507 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
508 u64 running_len;
509 u64 avg_len;
510 u32 max;
511
512 if (max_len == 0)
513 return;
514
515 /* Decay the counter by 1 average sample. */
516 running_len = __this_cpu_read(running_sample_length);
517 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
518 running_len += sample_len_ns;
519 __this_cpu_write(running_sample_length, running_len);
520
521 /*
522 * Note: this will be biased artifically low until we have
523 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
524 * from having to maintain a count.
525 */
526 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
527 if (avg_len <= max_len)
528 return;
529
530 __report_avg = avg_len;
531 __report_allowed = max_len;
532
533 /*
534 * Compute a throttle threshold 25% below the current duration.
535 */
536 avg_len += avg_len / 4;
537 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
538 if (avg_len < max)
539 max /= (u32)avg_len;
540 else
541 max = 1;
542
543 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
544 WRITE_ONCE(max_samples_per_tick, max);
545
546 sysctl_perf_event_sample_rate = max * HZ;
547 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
548
549 if (!irq_work_queue(&perf_duration_work)) {
550 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
551 "kernel.perf_event_max_sample_rate to %d\n",
552 __report_avg, __report_allowed,
553 sysctl_perf_event_sample_rate);
554 }
555 }
556
557 static atomic64_t perf_event_id;
558
559 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
560 enum event_type_t event_type);
561
562 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
563 enum event_type_t event_type,
564 struct task_struct *task);
565
566 static void update_context_time(struct perf_event_context *ctx);
567 static u64 perf_event_time(struct perf_event *event);
568
perf_event_print_debug(void)569 void __weak perf_event_print_debug(void) { }
570
perf_pmu_name(void)571 extern __weak const char *perf_pmu_name(void)
572 {
573 return "pmu";
574 }
575
perf_clock(void)576 static inline u64 perf_clock(void)
577 {
578 return local_clock();
579 }
580
perf_event_clock(struct perf_event * event)581 static inline u64 perf_event_clock(struct perf_event *event)
582 {
583 return event->clock();
584 }
585
586 /*
587 * State based event timekeeping...
588 *
589 * The basic idea is to use event->state to determine which (if any) time
590 * fields to increment with the current delta. This means we only need to
591 * update timestamps when we change state or when they are explicitly requested
592 * (read).
593 *
594 * Event groups make things a little more complicated, but not terribly so. The
595 * rules for a group are that if the group leader is OFF the entire group is
596 * OFF, irrespecive of what the group member states are. This results in
597 * __perf_effective_state().
598 *
599 * A futher ramification is that when a group leader flips between OFF and
600 * !OFF, we need to update all group member times.
601 *
602 *
603 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
604 * need to make sure the relevant context time is updated before we try and
605 * update our timestamps.
606 */
607
608 static __always_inline enum perf_event_state
__perf_effective_state(struct perf_event * event)609 __perf_effective_state(struct perf_event *event)
610 {
611 struct perf_event *leader = event->group_leader;
612
613 if (leader->state <= PERF_EVENT_STATE_OFF)
614 return leader->state;
615
616 return event->state;
617 }
618
619 static __always_inline void
__perf_update_times(struct perf_event * event,u64 now,u64 * enabled,u64 * running)620 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
621 {
622 enum perf_event_state state = __perf_effective_state(event);
623 u64 delta = now - event->tstamp;
624
625 *enabled = event->total_time_enabled;
626 if (state >= PERF_EVENT_STATE_INACTIVE)
627 *enabled += delta;
628
629 *running = event->total_time_running;
630 if (state >= PERF_EVENT_STATE_ACTIVE)
631 *running += delta;
632 }
633
perf_event_update_time(struct perf_event * event)634 static void perf_event_update_time(struct perf_event *event)
635 {
636 u64 now = perf_event_time(event);
637
638 __perf_update_times(event, now, &event->total_time_enabled,
639 &event->total_time_running);
640 event->tstamp = now;
641 }
642
perf_event_update_sibling_time(struct perf_event * leader)643 static void perf_event_update_sibling_time(struct perf_event *leader)
644 {
645 struct perf_event *sibling;
646
647 for_each_sibling_event(sibling, leader)
648 perf_event_update_time(sibling);
649 }
650
651 static void
perf_event_set_state(struct perf_event * event,enum perf_event_state state)652 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
653 {
654 if (event->state == state)
655 return;
656
657 perf_event_update_time(event);
658 /*
659 * If a group leader gets enabled/disabled all its siblings
660 * are affected too.
661 */
662 if ((event->state < 0) ^ (state < 0))
663 perf_event_update_sibling_time(event);
664
665 WRITE_ONCE(event->state, state);
666 }
667
668 #ifdef CONFIG_CGROUP_PERF
669
670 static inline bool
perf_cgroup_match(struct perf_event * event)671 perf_cgroup_match(struct perf_event *event)
672 {
673 struct perf_event_context *ctx = event->ctx;
674 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
675
676 /* @event doesn't care about cgroup */
677 if (!event->cgrp)
678 return true;
679
680 /* wants specific cgroup scope but @cpuctx isn't associated with any */
681 if (!cpuctx->cgrp)
682 return false;
683
684 /*
685 * Cgroup scoping is recursive. An event enabled for a cgroup is
686 * also enabled for all its descendant cgroups. If @cpuctx's
687 * cgroup is a descendant of @event's (the test covers identity
688 * case), it's a match.
689 */
690 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
691 event->cgrp->css.cgroup);
692 }
693
perf_detach_cgroup(struct perf_event * event)694 static inline void perf_detach_cgroup(struct perf_event *event)
695 {
696 css_put(&event->cgrp->css);
697 event->cgrp = NULL;
698 }
699
is_cgroup_event(struct perf_event * event)700 static inline int is_cgroup_event(struct perf_event *event)
701 {
702 return event->cgrp != NULL;
703 }
704
perf_cgroup_event_time(struct perf_event * event)705 static inline u64 perf_cgroup_event_time(struct perf_event *event)
706 {
707 struct perf_cgroup_info *t;
708
709 t = per_cpu_ptr(event->cgrp->info, event->cpu);
710 return t->time;
711 }
712
__update_cgrp_time(struct perf_cgroup * cgrp)713 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
714 {
715 struct perf_cgroup_info *info;
716 u64 now;
717
718 now = perf_clock();
719
720 info = this_cpu_ptr(cgrp->info);
721
722 info->time += now - info->timestamp;
723 info->timestamp = now;
724 }
725
update_cgrp_time_from_cpuctx(struct perf_cpu_context * cpuctx)726 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
727 {
728 struct perf_cgroup *cgrp = cpuctx->cgrp;
729 struct cgroup_subsys_state *css;
730
731 if (cgrp) {
732 for (css = &cgrp->css; css; css = css->parent) {
733 cgrp = container_of(css, struct perf_cgroup, css);
734 __update_cgrp_time(cgrp);
735 }
736 }
737 }
738
update_cgrp_time_from_event(struct perf_event * event)739 static inline void update_cgrp_time_from_event(struct perf_event *event)
740 {
741 struct perf_cgroup *cgrp;
742
743 /*
744 * ensure we access cgroup data only when needed and
745 * when we know the cgroup is pinned (css_get)
746 */
747 if (!is_cgroup_event(event))
748 return;
749
750 cgrp = perf_cgroup_from_task(current, event->ctx);
751 /*
752 * Do not update time when cgroup is not active
753 */
754 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
755 __update_cgrp_time(event->cgrp);
756 }
757
758 static inline void
perf_cgroup_set_timestamp(struct task_struct * task,struct perf_event_context * ctx)759 perf_cgroup_set_timestamp(struct task_struct *task,
760 struct perf_event_context *ctx)
761 {
762 struct perf_cgroup *cgrp;
763 struct perf_cgroup_info *info;
764 struct cgroup_subsys_state *css;
765
766 /*
767 * ctx->lock held by caller
768 * ensure we do not access cgroup data
769 * unless we have the cgroup pinned (css_get)
770 */
771 if (!task || !ctx->nr_cgroups)
772 return;
773
774 cgrp = perf_cgroup_from_task(task, ctx);
775
776 for (css = &cgrp->css; css; css = css->parent) {
777 cgrp = container_of(css, struct perf_cgroup, css);
778 info = this_cpu_ptr(cgrp->info);
779 info->timestamp = ctx->timestamp;
780 }
781 }
782
783 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
784
785 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
786 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
787
788 /*
789 * reschedule events based on the cgroup constraint of task.
790 *
791 * mode SWOUT : schedule out everything
792 * mode SWIN : schedule in based on cgroup for next
793 */
perf_cgroup_switch(struct task_struct * task,int mode)794 static void perf_cgroup_switch(struct task_struct *task, int mode)
795 {
796 struct perf_cpu_context *cpuctx;
797 struct list_head *list;
798 unsigned long flags;
799
800 /*
801 * Disable interrupts and preemption to avoid this CPU's
802 * cgrp_cpuctx_entry to change under us.
803 */
804 local_irq_save(flags);
805
806 list = this_cpu_ptr(&cgrp_cpuctx_list);
807 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
808 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
809
810 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
811 perf_pmu_disable(cpuctx->ctx.pmu);
812
813 if (mode & PERF_CGROUP_SWOUT) {
814 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
815 /*
816 * must not be done before ctxswout due
817 * to event_filter_match() in event_sched_out()
818 */
819 cpuctx->cgrp = NULL;
820 }
821
822 if (mode & PERF_CGROUP_SWIN) {
823 WARN_ON_ONCE(cpuctx->cgrp);
824 /*
825 * set cgrp before ctxsw in to allow
826 * event_filter_match() to not have to pass
827 * task around
828 * we pass the cpuctx->ctx to perf_cgroup_from_task()
829 * because cgorup events are only per-cpu
830 */
831 cpuctx->cgrp = perf_cgroup_from_task(task,
832 &cpuctx->ctx);
833 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
834 }
835 perf_pmu_enable(cpuctx->ctx.pmu);
836 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
837 }
838
839 local_irq_restore(flags);
840 }
841
perf_cgroup_sched_out(struct task_struct * task,struct task_struct * next)842 static inline void perf_cgroup_sched_out(struct task_struct *task,
843 struct task_struct *next)
844 {
845 struct perf_cgroup *cgrp1;
846 struct perf_cgroup *cgrp2 = NULL;
847
848 rcu_read_lock();
849 /*
850 * we come here when we know perf_cgroup_events > 0
851 * we do not need to pass the ctx here because we know
852 * we are holding the rcu lock
853 */
854 cgrp1 = perf_cgroup_from_task(task, NULL);
855 cgrp2 = perf_cgroup_from_task(next, NULL);
856
857 /*
858 * only schedule out current cgroup events if we know
859 * that we are switching to a different cgroup. Otherwise,
860 * do no touch the cgroup events.
861 */
862 if (cgrp1 != cgrp2)
863 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
864
865 rcu_read_unlock();
866 }
867
perf_cgroup_sched_in(struct task_struct * prev,struct task_struct * task)868 static inline void perf_cgroup_sched_in(struct task_struct *prev,
869 struct task_struct *task)
870 {
871 struct perf_cgroup *cgrp1;
872 struct perf_cgroup *cgrp2 = NULL;
873
874 rcu_read_lock();
875 /*
876 * we come here when we know perf_cgroup_events > 0
877 * we do not need to pass the ctx here because we know
878 * we are holding the rcu lock
879 */
880 cgrp1 = perf_cgroup_from_task(task, NULL);
881 cgrp2 = perf_cgroup_from_task(prev, NULL);
882
883 /*
884 * only need to schedule in cgroup events if we are changing
885 * cgroup during ctxsw. Cgroup events were not scheduled
886 * out of ctxsw out if that was not the case.
887 */
888 if (cgrp1 != cgrp2)
889 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
890
891 rcu_read_unlock();
892 }
893
perf_cgroup_connect(int fd,struct perf_event * event,struct perf_event_attr * attr,struct perf_event * group_leader)894 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
895 struct perf_event_attr *attr,
896 struct perf_event *group_leader)
897 {
898 struct perf_cgroup *cgrp;
899 struct cgroup_subsys_state *css;
900 struct fd f = fdget(fd);
901 int ret = 0;
902
903 if (!f.file)
904 return -EBADF;
905
906 css = css_tryget_online_from_dir(f.file->f_path.dentry,
907 &perf_event_cgrp_subsys);
908 if (IS_ERR(css)) {
909 ret = PTR_ERR(css);
910 goto out;
911 }
912
913 cgrp = container_of(css, struct perf_cgroup, css);
914 event->cgrp = cgrp;
915
916 /*
917 * all events in a group must monitor
918 * the same cgroup because a task belongs
919 * to only one perf cgroup at a time
920 */
921 if (group_leader && group_leader->cgrp != cgrp) {
922 perf_detach_cgroup(event);
923 ret = -EINVAL;
924 }
925 out:
926 fdput(f);
927 return ret;
928 }
929
930 static inline void
perf_cgroup_set_shadow_time(struct perf_event * event,u64 now)931 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
932 {
933 struct perf_cgroup_info *t;
934 t = per_cpu_ptr(event->cgrp->info, event->cpu);
935 event->shadow_ctx_time = now - t->timestamp;
936 }
937
938 /*
939 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
940 * cleared when last cgroup event is removed.
941 */
942 static inline void
list_update_cgroup_event(struct perf_event * event,struct perf_event_context * ctx,bool add)943 list_update_cgroup_event(struct perf_event *event,
944 struct perf_event_context *ctx, bool add)
945 {
946 struct perf_cpu_context *cpuctx;
947 struct list_head *cpuctx_entry;
948
949 if (!is_cgroup_event(event))
950 return;
951
952 /*
953 * Because cgroup events are always per-cpu events,
954 * this will always be called from the right CPU.
955 */
956 cpuctx = __get_cpu_context(ctx);
957
958 /*
959 * Since setting cpuctx->cgrp is conditional on the current @cgrp
960 * matching the event's cgroup, we must do this for every new event,
961 * because if the first would mismatch, the second would not try again
962 * and we would leave cpuctx->cgrp unset.
963 */
964 if (add && !cpuctx->cgrp) {
965 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
966
967 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
968 cpuctx->cgrp = cgrp;
969 }
970
971 if (add && ctx->nr_cgroups++)
972 return;
973 else if (!add && --ctx->nr_cgroups)
974 return;
975
976 /* no cgroup running */
977 if (!add)
978 cpuctx->cgrp = NULL;
979
980 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
981 if (add)
982 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
983 else
984 list_del(cpuctx_entry);
985 }
986
987 #else /* !CONFIG_CGROUP_PERF */
988
989 static inline bool
perf_cgroup_match(struct perf_event * event)990 perf_cgroup_match(struct perf_event *event)
991 {
992 return true;
993 }
994
perf_detach_cgroup(struct perf_event * event)995 static inline void perf_detach_cgroup(struct perf_event *event)
996 {}
997
is_cgroup_event(struct perf_event * event)998 static inline int is_cgroup_event(struct perf_event *event)
999 {
1000 return 0;
1001 }
1002
update_cgrp_time_from_event(struct perf_event * event)1003 static inline void update_cgrp_time_from_event(struct perf_event *event)
1004 {
1005 }
1006
update_cgrp_time_from_cpuctx(struct perf_cpu_context * cpuctx)1007 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1008 {
1009 }
1010
perf_cgroup_sched_out(struct task_struct * task,struct task_struct * next)1011 static inline void perf_cgroup_sched_out(struct task_struct *task,
1012 struct task_struct *next)
1013 {
1014 }
1015
perf_cgroup_sched_in(struct task_struct * prev,struct task_struct * task)1016 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1017 struct task_struct *task)
1018 {
1019 }
1020
perf_cgroup_connect(pid_t pid,struct perf_event * event,struct perf_event_attr * attr,struct perf_event * group_leader)1021 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1022 struct perf_event_attr *attr,
1023 struct perf_event *group_leader)
1024 {
1025 return -EINVAL;
1026 }
1027
1028 static inline void
perf_cgroup_set_timestamp(struct task_struct * task,struct perf_event_context * ctx)1029 perf_cgroup_set_timestamp(struct task_struct *task,
1030 struct perf_event_context *ctx)
1031 {
1032 }
1033
1034 static inline void
perf_cgroup_switch(struct task_struct * task,struct task_struct * next)1035 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1036 {
1037 }
1038
1039 static inline void
perf_cgroup_set_shadow_time(struct perf_event * event,u64 now)1040 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1041 {
1042 }
1043
perf_cgroup_event_time(struct perf_event * event)1044 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1045 {
1046 return 0;
1047 }
1048
1049 static inline void
list_update_cgroup_event(struct perf_event * event,struct perf_event_context * ctx,bool add)1050 list_update_cgroup_event(struct perf_event *event,
1051 struct perf_event_context *ctx, bool add)
1052 {
1053 }
1054
1055 #endif
1056
1057 /*
1058 * set default to be dependent on timer tick just
1059 * like original code
1060 */
1061 #define PERF_CPU_HRTIMER (1000 / HZ)
1062 /*
1063 * function must be called with interrupts disabled
1064 */
perf_mux_hrtimer_handler(struct hrtimer * hr)1065 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1066 {
1067 struct perf_cpu_context *cpuctx;
1068 bool rotations;
1069
1070 lockdep_assert_irqs_disabled();
1071
1072 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1073 rotations = perf_rotate_context(cpuctx);
1074
1075 raw_spin_lock(&cpuctx->hrtimer_lock);
1076 if (rotations)
1077 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1078 else
1079 cpuctx->hrtimer_active = 0;
1080 raw_spin_unlock(&cpuctx->hrtimer_lock);
1081
1082 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1083 }
1084
__perf_mux_hrtimer_init(struct perf_cpu_context * cpuctx,int cpu)1085 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1086 {
1087 struct hrtimer *timer = &cpuctx->hrtimer;
1088 struct pmu *pmu = cpuctx->ctx.pmu;
1089 u64 interval;
1090
1091 /* no multiplexing needed for SW PMU */
1092 if (pmu->task_ctx_nr == perf_sw_context)
1093 return;
1094
1095 /*
1096 * check default is sane, if not set then force to
1097 * default interval (1/tick)
1098 */
1099 interval = pmu->hrtimer_interval_ms;
1100 if (interval < 1)
1101 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1102
1103 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1104
1105 raw_spin_lock_init(&cpuctx->hrtimer_lock);
1106 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1107 timer->function = perf_mux_hrtimer_handler;
1108 }
1109
perf_mux_hrtimer_restart(struct perf_cpu_context * cpuctx)1110 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1111 {
1112 struct hrtimer *timer = &cpuctx->hrtimer;
1113 struct pmu *pmu = cpuctx->ctx.pmu;
1114 unsigned long flags;
1115
1116 /* not for SW PMU */
1117 if (pmu->task_ctx_nr == perf_sw_context)
1118 return 0;
1119
1120 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1121 if (!cpuctx->hrtimer_active) {
1122 cpuctx->hrtimer_active = 1;
1123 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1124 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1125 }
1126 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1127
1128 return 0;
1129 }
1130
perf_pmu_disable(struct pmu * pmu)1131 void perf_pmu_disable(struct pmu *pmu)
1132 {
1133 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1134 if (!(*count)++)
1135 pmu->pmu_disable(pmu);
1136 }
1137
perf_pmu_enable(struct pmu * pmu)1138 void perf_pmu_enable(struct pmu *pmu)
1139 {
1140 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1141 if (!--(*count))
1142 pmu->pmu_enable(pmu);
1143 }
1144
1145 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1146
1147 /*
1148 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1149 * perf_event_task_tick() are fully serialized because they're strictly cpu
1150 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1151 * disabled, while perf_event_task_tick is called from IRQ context.
1152 */
perf_event_ctx_activate(struct perf_event_context * ctx)1153 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1154 {
1155 struct list_head *head = this_cpu_ptr(&active_ctx_list);
1156
1157 lockdep_assert_irqs_disabled();
1158
1159 WARN_ON(!list_empty(&ctx->active_ctx_list));
1160
1161 list_add(&ctx->active_ctx_list, head);
1162 }
1163
perf_event_ctx_deactivate(struct perf_event_context * ctx)1164 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1165 {
1166 lockdep_assert_irqs_disabled();
1167
1168 WARN_ON(list_empty(&ctx->active_ctx_list));
1169
1170 list_del_init(&ctx->active_ctx_list);
1171 }
1172
get_ctx(struct perf_event_context * ctx)1173 static void get_ctx(struct perf_event_context *ctx)
1174 {
1175 refcount_inc(&ctx->refcount);
1176 }
1177
free_ctx(struct rcu_head * head)1178 static void free_ctx(struct rcu_head *head)
1179 {
1180 struct perf_event_context *ctx;
1181
1182 ctx = container_of(head, struct perf_event_context, rcu_head);
1183 kfree(ctx->task_ctx_data);
1184 kfree(ctx);
1185 }
1186
put_ctx(struct perf_event_context * ctx)1187 static void put_ctx(struct perf_event_context *ctx)
1188 {
1189 if (refcount_dec_and_test(&ctx->refcount)) {
1190 if (ctx->parent_ctx)
1191 put_ctx(ctx->parent_ctx);
1192 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1193 put_task_struct(ctx->task);
1194 call_rcu(&ctx->rcu_head, free_ctx);
1195 }
1196 }
1197
1198 /*
1199 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1200 * perf_pmu_migrate_context() we need some magic.
1201 *
1202 * Those places that change perf_event::ctx will hold both
1203 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1204 *
1205 * Lock ordering is by mutex address. There are two other sites where
1206 * perf_event_context::mutex nests and those are:
1207 *
1208 * - perf_event_exit_task_context() [ child , 0 ]
1209 * perf_event_exit_event()
1210 * put_event() [ parent, 1 ]
1211 *
1212 * - perf_event_init_context() [ parent, 0 ]
1213 * inherit_task_group()
1214 * inherit_group()
1215 * inherit_event()
1216 * perf_event_alloc()
1217 * perf_init_event()
1218 * perf_try_init_event() [ child , 1 ]
1219 *
1220 * While it appears there is an obvious deadlock here -- the parent and child
1221 * nesting levels are inverted between the two. This is in fact safe because
1222 * life-time rules separate them. That is an exiting task cannot fork, and a
1223 * spawning task cannot (yet) exit.
1224 *
1225 * But remember that that these are parent<->child context relations, and
1226 * migration does not affect children, therefore these two orderings should not
1227 * interact.
1228 *
1229 * The change in perf_event::ctx does not affect children (as claimed above)
1230 * because the sys_perf_event_open() case will install a new event and break
1231 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1232 * concerned with cpuctx and that doesn't have children.
1233 *
1234 * The places that change perf_event::ctx will issue:
1235 *
1236 * perf_remove_from_context();
1237 * synchronize_rcu();
1238 * perf_install_in_context();
1239 *
1240 * to affect the change. The remove_from_context() + synchronize_rcu() should
1241 * quiesce the event, after which we can install it in the new location. This
1242 * means that only external vectors (perf_fops, prctl) can perturb the event
1243 * while in transit. Therefore all such accessors should also acquire
1244 * perf_event_context::mutex to serialize against this.
1245 *
1246 * However; because event->ctx can change while we're waiting to acquire
1247 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1248 * function.
1249 *
1250 * Lock order:
1251 * cred_guard_mutex
1252 * task_struct::perf_event_mutex
1253 * perf_event_context::mutex
1254 * perf_event::child_mutex;
1255 * perf_event_context::lock
1256 * perf_event::mmap_mutex
1257 * mmap_sem
1258 * perf_addr_filters_head::lock
1259 *
1260 * cpu_hotplug_lock
1261 * pmus_lock
1262 * cpuctx->mutex / perf_event_context::mutex
1263 */
1264 static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event * event,int nesting)1265 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1266 {
1267 struct perf_event_context *ctx;
1268
1269 again:
1270 rcu_read_lock();
1271 ctx = READ_ONCE(event->ctx);
1272 if (!refcount_inc_not_zero(&ctx->refcount)) {
1273 rcu_read_unlock();
1274 goto again;
1275 }
1276 rcu_read_unlock();
1277
1278 mutex_lock_nested(&ctx->mutex, nesting);
1279 if (event->ctx != ctx) {
1280 mutex_unlock(&ctx->mutex);
1281 put_ctx(ctx);
1282 goto again;
1283 }
1284
1285 return ctx;
1286 }
1287
1288 static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event * event)1289 perf_event_ctx_lock(struct perf_event *event)
1290 {
1291 return perf_event_ctx_lock_nested(event, 0);
1292 }
1293
perf_event_ctx_unlock(struct perf_event * event,struct perf_event_context * ctx)1294 static void perf_event_ctx_unlock(struct perf_event *event,
1295 struct perf_event_context *ctx)
1296 {
1297 mutex_unlock(&ctx->mutex);
1298 put_ctx(ctx);
1299 }
1300
1301 /*
1302 * This must be done under the ctx->lock, such as to serialize against
1303 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1304 * calling scheduler related locks and ctx->lock nests inside those.
1305 */
1306 static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context * ctx)1307 unclone_ctx(struct perf_event_context *ctx)
1308 {
1309 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1310
1311 lockdep_assert_held(&ctx->lock);
1312
1313 if (parent_ctx)
1314 ctx->parent_ctx = NULL;
1315 ctx->generation++;
1316
1317 return parent_ctx;
1318 }
1319
perf_event_pid_type(struct perf_event * event,struct task_struct * p,enum pid_type type)1320 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1321 enum pid_type type)
1322 {
1323 u32 nr;
1324 /*
1325 * only top level events have the pid namespace they were created in
1326 */
1327 if (event->parent)
1328 event = event->parent;
1329
1330 nr = __task_pid_nr_ns(p, type, event->ns);
1331 /* avoid -1 if it is idle thread or runs in another ns */
1332 if (!nr && !pid_alive(p))
1333 nr = -1;
1334 return nr;
1335 }
1336
perf_event_pid(struct perf_event * event,struct task_struct * p)1337 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1338 {
1339 return perf_event_pid_type(event, p, PIDTYPE_TGID);
1340 }
1341
perf_event_tid(struct perf_event * event,struct task_struct * p)1342 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1343 {
1344 return perf_event_pid_type(event, p, PIDTYPE_PID);
1345 }
1346
1347 /*
1348 * If we inherit events we want to return the parent event id
1349 * to userspace.
1350 */
primary_event_id(struct perf_event * event)1351 static u64 primary_event_id(struct perf_event *event)
1352 {
1353 u64 id = event->id;
1354
1355 if (event->parent)
1356 id = event->parent->id;
1357
1358 return id;
1359 }
1360
1361 /*
1362 * Get the perf_event_context for a task and lock it.
1363 *
1364 * This has to cope with with the fact that until it is locked,
1365 * the context could get moved to another task.
1366 */
1367 static struct perf_event_context *
perf_lock_task_context(struct task_struct * task,int ctxn,unsigned long * flags)1368 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1369 {
1370 struct perf_event_context *ctx;
1371
1372 retry:
1373 /*
1374 * One of the few rules of preemptible RCU is that one cannot do
1375 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1376 * part of the read side critical section was irqs-enabled -- see
1377 * rcu_read_unlock_special().
1378 *
1379 * Since ctx->lock nests under rq->lock we must ensure the entire read
1380 * side critical section has interrupts disabled.
1381 */
1382 local_irq_save(*flags);
1383 rcu_read_lock();
1384 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1385 if (ctx) {
1386 /*
1387 * If this context is a clone of another, it might
1388 * get swapped for another underneath us by
1389 * perf_event_task_sched_out, though the
1390 * rcu_read_lock() protects us from any context
1391 * getting freed. Lock the context and check if it
1392 * got swapped before we could get the lock, and retry
1393 * if so. If we locked the right context, then it
1394 * can't get swapped on us any more.
1395 */
1396 raw_spin_lock(&ctx->lock);
1397 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1398 raw_spin_unlock(&ctx->lock);
1399 rcu_read_unlock();
1400 local_irq_restore(*flags);
1401 goto retry;
1402 }
1403
1404 if (ctx->task == TASK_TOMBSTONE ||
1405 !refcount_inc_not_zero(&ctx->refcount)) {
1406 raw_spin_unlock(&ctx->lock);
1407 ctx = NULL;
1408 } else {
1409 WARN_ON_ONCE(ctx->task != task);
1410 }
1411 }
1412 rcu_read_unlock();
1413 if (!ctx)
1414 local_irq_restore(*flags);
1415 return ctx;
1416 }
1417
1418 /*
1419 * Get the context for a task and increment its pin_count so it
1420 * can't get swapped to another task. This also increments its
1421 * reference count so that the context can't get freed.
1422 */
1423 static struct perf_event_context *
perf_pin_task_context(struct task_struct * task,int ctxn)1424 perf_pin_task_context(struct task_struct *task, int ctxn)
1425 {
1426 struct perf_event_context *ctx;
1427 unsigned long flags;
1428
1429 ctx = perf_lock_task_context(task, ctxn, &flags);
1430 if (ctx) {
1431 ++ctx->pin_count;
1432 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1433 }
1434 return ctx;
1435 }
1436
perf_unpin_context(struct perf_event_context * ctx)1437 static void perf_unpin_context(struct perf_event_context *ctx)
1438 {
1439 unsigned long flags;
1440
1441 raw_spin_lock_irqsave(&ctx->lock, flags);
1442 --ctx->pin_count;
1443 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1444 }
1445
1446 /*
1447 * Update the record of the current time in a context.
1448 */
update_context_time(struct perf_event_context * ctx)1449 static void update_context_time(struct perf_event_context *ctx)
1450 {
1451 u64 now = perf_clock();
1452
1453 ctx->time += now - ctx->timestamp;
1454 ctx->timestamp = now;
1455 }
1456
perf_event_time(struct perf_event * event)1457 static u64 perf_event_time(struct perf_event *event)
1458 {
1459 struct perf_event_context *ctx = event->ctx;
1460
1461 if (is_cgroup_event(event))
1462 return perf_cgroup_event_time(event);
1463
1464 return ctx ? ctx->time : 0;
1465 }
1466
get_event_type(struct perf_event * event)1467 static enum event_type_t get_event_type(struct perf_event *event)
1468 {
1469 struct perf_event_context *ctx = event->ctx;
1470 enum event_type_t event_type;
1471
1472 lockdep_assert_held(&ctx->lock);
1473
1474 /*
1475 * It's 'group type', really, because if our group leader is
1476 * pinned, so are we.
1477 */
1478 if (event->group_leader != event)
1479 event = event->group_leader;
1480
1481 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1482 if (!ctx->task)
1483 event_type |= EVENT_CPU;
1484
1485 return event_type;
1486 }
1487
1488 /*
1489 * Helper function to initialize event group nodes.
1490 */
init_event_group(struct perf_event * event)1491 static void init_event_group(struct perf_event *event)
1492 {
1493 RB_CLEAR_NODE(&event->group_node);
1494 event->group_index = 0;
1495 }
1496
1497 /*
1498 * Extract pinned or flexible groups from the context
1499 * based on event attrs bits.
1500 */
1501 static struct perf_event_groups *
get_event_groups(struct perf_event * event,struct perf_event_context * ctx)1502 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1503 {
1504 if (event->attr.pinned)
1505 return &ctx->pinned_groups;
1506 else
1507 return &ctx->flexible_groups;
1508 }
1509
1510 /*
1511 * Helper function to initializes perf_event_group trees.
1512 */
perf_event_groups_init(struct perf_event_groups * groups)1513 static void perf_event_groups_init(struct perf_event_groups *groups)
1514 {
1515 groups->tree = RB_ROOT;
1516 groups->index = 0;
1517 }
1518
1519 /*
1520 * Compare function for event groups;
1521 *
1522 * Implements complex key that first sorts by CPU and then by virtual index
1523 * which provides ordering when rotating groups for the same CPU.
1524 */
1525 static bool
perf_event_groups_less(struct perf_event * left,struct perf_event * right)1526 perf_event_groups_less(struct perf_event *left, struct perf_event *right)
1527 {
1528 if (left->cpu < right->cpu)
1529 return true;
1530 if (left->cpu > right->cpu)
1531 return false;
1532
1533 if (left->group_index < right->group_index)
1534 return true;
1535 if (left->group_index > right->group_index)
1536 return false;
1537
1538 return false;
1539 }
1540
1541 /*
1542 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1543 * key (see perf_event_groups_less). This places it last inside the CPU
1544 * subtree.
1545 */
1546 static void
perf_event_groups_insert(struct perf_event_groups * groups,struct perf_event * event)1547 perf_event_groups_insert(struct perf_event_groups *groups,
1548 struct perf_event *event)
1549 {
1550 struct perf_event *node_event;
1551 struct rb_node *parent;
1552 struct rb_node **node;
1553
1554 event->group_index = ++groups->index;
1555
1556 node = &groups->tree.rb_node;
1557 parent = *node;
1558
1559 while (*node) {
1560 parent = *node;
1561 node_event = container_of(*node, struct perf_event, group_node);
1562
1563 if (perf_event_groups_less(event, node_event))
1564 node = &parent->rb_left;
1565 else
1566 node = &parent->rb_right;
1567 }
1568
1569 rb_link_node(&event->group_node, parent, node);
1570 rb_insert_color(&event->group_node, &groups->tree);
1571 }
1572
1573 /*
1574 * Helper function to insert event into the pinned or flexible groups.
1575 */
1576 static void
add_event_to_groups(struct perf_event * event,struct perf_event_context * ctx)1577 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1578 {
1579 struct perf_event_groups *groups;
1580
1581 groups = get_event_groups(event, ctx);
1582 perf_event_groups_insert(groups, event);
1583 }
1584
1585 /*
1586 * Delete a group from a tree.
1587 */
1588 static void
perf_event_groups_delete(struct perf_event_groups * groups,struct perf_event * event)1589 perf_event_groups_delete(struct perf_event_groups *groups,
1590 struct perf_event *event)
1591 {
1592 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1593 RB_EMPTY_ROOT(&groups->tree));
1594
1595 rb_erase(&event->group_node, &groups->tree);
1596 init_event_group(event);
1597 }
1598
1599 /*
1600 * Helper function to delete event from its groups.
1601 */
1602 static void
del_event_from_groups(struct perf_event * event,struct perf_event_context * ctx)1603 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1604 {
1605 struct perf_event_groups *groups;
1606
1607 groups = get_event_groups(event, ctx);
1608 perf_event_groups_delete(groups, event);
1609 }
1610
1611 /*
1612 * Get the leftmost event in the @cpu subtree.
1613 */
1614 static struct perf_event *
perf_event_groups_first(struct perf_event_groups * groups,int cpu)1615 perf_event_groups_first(struct perf_event_groups *groups, int cpu)
1616 {
1617 struct perf_event *node_event = NULL, *match = NULL;
1618 struct rb_node *node = groups->tree.rb_node;
1619
1620 while (node) {
1621 node_event = container_of(node, struct perf_event, group_node);
1622
1623 if (cpu < node_event->cpu) {
1624 node = node->rb_left;
1625 } else if (cpu > node_event->cpu) {
1626 node = node->rb_right;
1627 } else {
1628 match = node_event;
1629 node = node->rb_left;
1630 }
1631 }
1632
1633 return match;
1634 }
1635
1636 /*
1637 * Like rb_entry_next_safe() for the @cpu subtree.
1638 */
1639 static struct perf_event *
perf_event_groups_next(struct perf_event * event)1640 perf_event_groups_next(struct perf_event *event)
1641 {
1642 struct perf_event *next;
1643
1644 next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1645 if (next && next->cpu == event->cpu)
1646 return next;
1647
1648 return NULL;
1649 }
1650
1651 /*
1652 * Iterate through the whole groups tree.
1653 */
1654 #define perf_event_groups_for_each(event, groups) \
1655 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \
1656 typeof(*event), group_node); event; \
1657 event = rb_entry_safe(rb_next(&event->group_node), \
1658 typeof(*event), group_node))
1659
1660 /*
1661 * Add an event from the lists for its context.
1662 * Must be called with ctx->mutex and ctx->lock held.
1663 */
1664 static void
list_add_event(struct perf_event * event,struct perf_event_context * ctx)1665 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1666 {
1667 lockdep_assert_held(&ctx->lock);
1668
1669 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1670 event->attach_state |= PERF_ATTACH_CONTEXT;
1671
1672 event->tstamp = perf_event_time(event);
1673
1674 /*
1675 * If we're a stand alone event or group leader, we go to the context
1676 * list, group events are kept attached to the group so that
1677 * perf_group_detach can, at all times, locate all siblings.
1678 */
1679 if (event->group_leader == event) {
1680 event->group_caps = event->event_caps;
1681 add_event_to_groups(event, ctx);
1682 }
1683
1684 list_update_cgroup_event(event, ctx, true);
1685
1686 list_add_rcu(&event->event_entry, &ctx->event_list);
1687 ctx->nr_events++;
1688 if (event->attr.inherit_stat)
1689 ctx->nr_stat++;
1690
1691 ctx->generation++;
1692 }
1693
1694 /*
1695 * Initialize event state based on the perf_event_attr::disabled.
1696 */
perf_event__state_init(struct perf_event * event)1697 static inline void perf_event__state_init(struct perf_event *event)
1698 {
1699 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1700 PERF_EVENT_STATE_INACTIVE;
1701 }
1702
__perf_event_read_size(struct perf_event * event,int nr_siblings)1703 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1704 {
1705 int entry = sizeof(u64); /* value */
1706 int size = 0;
1707 int nr = 1;
1708
1709 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1710 size += sizeof(u64);
1711
1712 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1713 size += sizeof(u64);
1714
1715 if (event->attr.read_format & PERF_FORMAT_ID)
1716 entry += sizeof(u64);
1717
1718 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1719 nr += nr_siblings;
1720 size += sizeof(u64);
1721 }
1722
1723 size += entry * nr;
1724 event->read_size = size;
1725 }
1726
__perf_event_header_size(struct perf_event * event,u64 sample_type)1727 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1728 {
1729 struct perf_sample_data *data;
1730 u16 size = 0;
1731
1732 if (sample_type & PERF_SAMPLE_IP)
1733 size += sizeof(data->ip);
1734
1735 if (sample_type & PERF_SAMPLE_ADDR)
1736 size += sizeof(data->addr);
1737
1738 if (sample_type & PERF_SAMPLE_PERIOD)
1739 size += sizeof(data->period);
1740
1741 if (sample_type & PERF_SAMPLE_WEIGHT)
1742 size += sizeof(data->weight);
1743
1744 if (sample_type & PERF_SAMPLE_READ)
1745 size += event->read_size;
1746
1747 if (sample_type & PERF_SAMPLE_DATA_SRC)
1748 size += sizeof(data->data_src.val);
1749
1750 if (sample_type & PERF_SAMPLE_TRANSACTION)
1751 size += sizeof(data->txn);
1752
1753 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1754 size += sizeof(data->phys_addr);
1755
1756 event->header_size = size;
1757 }
1758
1759 /*
1760 * Called at perf_event creation and when events are attached/detached from a
1761 * group.
1762 */
perf_event__header_size(struct perf_event * event)1763 static void perf_event__header_size(struct perf_event *event)
1764 {
1765 __perf_event_read_size(event,
1766 event->group_leader->nr_siblings);
1767 __perf_event_header_size(event, event->attr.sample_type);
1768 }
1769
perf_event__id_header_size(struct perf_event * event)1770 static void perf_event__id_header_size(struct perf_event *event)
1771 {
1772 struct perf_sample_data *data;
1773 u64 sample_type = event->attr.sample_type;
1774 u16 size = 0;
1775
1776 if (sample_type & PERF_SAMPLE_TID)
1777 size += sizeof(data->tid_entry);
1778
1779 if (sample_type & PERF_SAMPLE_TIME)
1780 size += sizeof(data->time);
1781
1782 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1783 size += sizeof(data->id);
1784
1785 if (sample_type & PERF_SAMPLE_ID)
1786 size += sizeof(data->id);
1787
1788 if (sample_type & PERF_SAMPLE_STREAM_ID)
1789 size += sizeof(data->stream_id);
1790
1791 if (sample_type & PERF_SAMPLE_CPU)
1792 size += sizeof(data->cpu_entry);
1793
1794 event->id_header_size = size;
1795 }
1796
perf_event_validate_size(struct perf_event * event)1797 static bool perf_event_validate_size(struct perf_event *event)
1798 {
1799 /*
1800 * The values computed here will be over-written when we actually
1801 * attach the event.
1802 */
1803 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1804 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1805 perf_event__id_header_size(event);
1806
1807 /*
1808 * Sum the lot; should not exceed the 64k limit we have on records.
1809 * Conservative limit to allow for callchains and other variable fields.
1810 */
1811 if (event->read_size + event->header_size +
1812 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1813 return false;
1814
1815 return true;
1816 }
1817
perf_group_attach(struct perf_event * event)1818 static void perf_group_attach(struct perf_event *event)
1819 {
1820 struct perf_event *group_leader = event->group_leader, *pos;
1821
1822 lockdep_assert_held(&event->ctx->lock);
1823
1824 /*
1825 * We can have double attach due to group movement in perf_event_open.
1826 */
1827 if (event->attach_state & PERF_ATTACH_GROUP)
1828 return;
1829
1830 event->attach_state |= PERF_ATTACH_GROUP;
1831
1832 if (group_leader == event)
1833 return;
1834
1835 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1836
1837 group_leader->group_caps &= event->event_caps;
1838
1839 list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1840 group_leader->nr_siblings++;
1841
1842 perf_event__header_size(group_leader);
1843
1844 for_each_sibling_event(pos, group_leader)
1845 perf_event__header_size(pos);
1846 }
1847
1848 /*
1849 * Remove an event from the lists for its context.
1850 * Must be called with ctx->mutex and ctx->lock held.
1851 */
1852 static void
list_del_event(struct perf_event * event,struct perf_event_context * ctx)1853 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1854 {
1855 WARN_ON_ONCE(event->ctx != ctx);
1856 lockdep_assert_held(&ctx->lock);
1857
1858 /*
1859 * We can have double detach due to exit/hot-unplug + close.
1860 */
1861 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1862 return;
1863
1864 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1865
1866 list_update_cgroup_event(event, ctx, false);
1867
1868 ctx->nr_events--;
1869 if (event->attr.inherit_stat)
1870 ctx->nr_stat--;
1871
1872 list_del_rcu(&event->event_entry);
1873
1874 if (event->group_leader == event)
1875 del_event_from_groups(event, ctx);
1876
1877 /*
1878 * If event was in error state, then keep it
1879 * that way, otherwise bogus counts will be
1880 * returned on read(). The only way to get out
1881 * of error state is by explicit re-enabling
1882 * of the event
1883 */
1884 if (event->state > PERF_EVENT_STATE_OFF)
1885 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1886
1887 ctx->generation++;
1888 }
1889
1890 static int
perf_aux_output_match(struct perf_event * event,struct perf_event * aux_event)1891 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
1892 {
1893 if (!has_aux(aux_event))
1894 return 0;
1895
1896 if (!event->pmu->aux_output_match)
1897 return 0;
1898
1899 return event->pmu->aux_output_match(aux_event);
1900 }
1901
1902 static void put_event(struct perf_event *event);
1903 static void event_sched_out(struct perf_event *event,
1904 struct perf_cpu_context *cpuctx,
1905 struct perf_event_context *ctx);
1906
perf_put_aux_event(struct perf_event * event)1907 static void perf_put_aux_event(struct perf_event *event)
1908 {
1909 struct perf_event_context *ctx = event->ctx;
1910 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1911 struct perf_event *iter;
1912
1913 /*
1914 * If event uses aux_event tear down the link
1915 */
1916 if (event->aux_event) {
1917 iter = event->aux_event;
1918 event->aux_event = NULL;
1919 put_event(iter);
1920 return;
1921 }
1922
1923 /*
1924 * If the event is an aux_event, tear down all links to
1925 * it from other events.
1926 */
1927 for_each_sibling_event(iter, event->group_leader) {
1928 if (iter->aux_event != event)
1929 continue;
1930
1931 iter->aux_event = NULL;
1932 put_event(event);
1933
1934 /*
1935 * If it's ACTIVE, schedule it out and put it into ERROR
1936 * state so that we don't try to schedule it again. Note
1937 * that perf_event_enable() will clear the ERROR status.
1938 */
1939 event_sched_out(iter, cpuctx, ctx);
1940 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
1941 }
1942 }
1943
perf_get_aux_event(struct perf_event * event,struct perf_event * group_leader)1944 static int perf_get_aux_event(struct perf_event *event,
1945 struct perf_event *group_leader)
1946 {
1947 /*
1948 * Our group leader must be an aux event if we want to be
1949 * an aux_output. This way, the aux event will precede its
1950 * aux_output events in the group, and therefore will always
1951 * schedule first.
1952 */
1953 if (!group_leader)
1954 return 0;
1955
1956 if (!perf_aux_output_match(event, group_leader))
1957 return 0;
1958
1959 if (!atomic_long_inc_not_zero(&group_leader->refcount))
1960 return 0;
1961
1962 /*
1963 * Link aux_outputs to their aux event; this is undone in
1964 * perf_group_detach() by perf_put_aux_event(). When the
1965 * group in torn down, the aux_output events loose their
1966 * link to the aux_event and can't schedule any more.
1967 */
1968 event->aux_event = group_leader;
1969
1970 return 1;
1971 }
1972
perf_group_detach(struct perf_event * event)1973 static void perf_group_detach(struct perf_event *event)
1974 {
1975 struct perf_event *sibling, *tmp;
1976 struct perf_event_context *ctx = event->ctx;
1977
1978 lockdep_assert_held(&ctx->lock);
1979
1980 /*
1981 * We can have double detach due to exit/hot-unplug + close.
1982 */
1983 if (!(event->attach_state & PERF_ATTACH_GROUP))
1984 return;
1985
1986 event->attach_state &= ~PERF_ATTACH_GROUP;
1987
1988 perf_put_aux_event(event);
1989
1990 /*
1991 * If this is a sibling, remove it from its group.
1992 */
1993 if (event->group_leader != event) {
1994 list_del_init(&event->sibling_list);
1995 event->group_leader->nr_siblings--;
1996 goto out;
1997 }
1998
1999 /*
2000 * If this was a group event with sibling events then
2001 * upgrade the siblings to singleton events by adding them
2002 * to whatever list we are on.
2003 */
2004 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2005
2006 sibling->group_leader = sibling;
2007 list_del_init(&sibling->sibling_list);
2008
2009 /* Inherit group flags from the previous leader */
2010 sibling->group_caps = event->group_caps;
2011
2012 if (!RB_EMPTY_NODE(&event->group_node)) {
2013 add_event_to_groups(sibling, event->ctx);
2014
2015 if (sibling->state == PERF_EVENT_STATE_ACTIVE) {
2016 struct list_head *list = sibling->attr.pinned ?
2017 &ctx->pinned_active : &ctx->flexible_active;
2018
2019 list_add_tail(&sibling->active_list, list);
2020 }
2021 }
2022
2023 WARN_ON_ONCE(sibling->ctx != event->ctx);
2024 }
2025
2026 out:
2027 perf_event__header_size(event->group_leader);
2028
2029 for_each_sibling_event(tmp, event->group_leader)
2030 perf_event__header_size(tmp);
2031 }
2032
is_orphaned_event(struct perf_event * event)2033 static bool is_orphaned_event(struct perf_event *event)
2034 {
2035 return event->state == PERF_EVENT_STATE_DEAD;
2036 }
2037
__pmu_filter_match(struct perf_event * event)2038 static inline int __pmu_filter_match(struct perf_event *event)
2039 {
2040 struct pmu *pmu = event->pmu;
2041 return pmu->filter_match ? pmu->filter_match(event) : 1;
2042 }
2043
2044 /*
2045 * Check whether we should attempt to schedule an event group based on
2046 * PMU-specific filtering. An event group can consist of HW and SW events,
2047 * potentially with a SW leader, so we must check all the filters, to
2048 * determine whether a group is schedulable:
2049 */
pmu_filter_match(struct perf_event * event)2050 static inline int pmu_filter_match(struct perf_event *event)
2051 {
2052 struct perf_event *sibling;
2053
2054 if (!__pmu_filter_match(event))
2055 return 0;
2056
2057 for_each_sibling_event(sibling, event) {
2058 if (!__pmu_filter_match(sibling))
2059 return 0;
2060 }
2061
2062 return 1;
2063 }
2064
2065 static inline int
event_filter_match(struct perf_event * event)2066 event_filter_match(struct perf_event *event)
2067 {
2068 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2069 perf_cgroup_match(event) && pmu_filter_match(event);
2070 }
2071
2072 static void
event_sched_out(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)2073 event_sched_out(struct perf_event *event,
2074 struct perf_cpu_context *cpuctx,
2075 struct perf_event_context *ctx)
2076 {
2077 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2078
2079 WARN_ON_ONCE(event->ctx != ctx);
2080 lockdep_assert_held(&ctx->lock);
2081
2082 if (event->state != PERF_EVENT_STATE_ACTIVE)
2083 return;
2084
2085 /*
2086 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2087 * we can schedule events _OUT_ individually through things like
2088 * __perf_remove_from_context().
2089 */
2090 list_del_init(&event->active_list);
2091
2092 perf_pmu_disable(event->pmu);
2093
2094 event->pmu->del(event, 0);
2095 event->oncpu = -1;
2096
2097 if (READ_ONCE(event->pending_disable) >= 0) {
2098 WRITE_ONCE(event->pending_disable, -1);
2099 state = PERF_EVENT_STATE_OFF;
2100 }
2101 perf_event_set_state(event, state);
2102
2103 if (!is_software_event(event))
2104 cpuctx->active_oncpu--;
2105 if (!--ctx->nr_active)
2106 perf_event_ctx_deactivate(ctx);
2107 if (event->attr.freq && event->attr.sample_freq)
2108 ctx->nr_freq--;
2109 if (event->attr.exclusive || !cpuctx->active_oncpu)
2110 cpuctx->exclusive = 0;
2111
2112 perf_pmu_enable(event->pmu);
2113 }
2114
2115 static void
group_sched_out(struct perf_event * group_event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)2116 group_sched_out(struct perf_event *group_event,
2117 struct perf_cpu_context *cpuctx,
2118 struct perf_event_context *ctx)
2119 {
2120 struct perf_event *event;
2121
2122 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2123 return;
2124
2125 perf_pmu_disable(ctx->pmu);
2126
2127 event_sched_out(group_event, cpuctx, ctx);
2128
2129 /*
2130 * Schedule out siblings (if any):
2131 */
2132 for_each_sibling_event(event, group_event)
2133 event_sched_out(event, cpuctx, ctx);
2134
2135 perf_pmu_enable(ctx->pmu);
2136
2137 if (group_event->attr.exclusive)
2138 cpuctx->exclusive = 0;
2139 }
2140
2141 #define DETACH_GROUP 0x01UL
2142
2143 /*
2144 * Cross CPU call to remove a performance event
2145 *
2146 * We disable the event on the hardware level first. After that we
2147 * remove it from the context list.
2148 */
2149 static void
__perf_remove_from_context(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)2150 __perf_remove_from_context(struct perf_event *event,
2151 struct perf_cpu_context *cpuctx,
2152 struct perf_event_context *ctx,
2153 void *info)
2154 {
2155 unsigned long flags = (unsigned long)info;
2156
2157 if (ctx->is_active & EVENT_TIME) {
2158 update_context_time(ctx);
2159 update_cgrp_time_from_cpuctx(cpuctx);
2160 }
2161
2162 event_sched_out(event, cpuctx, ctx);
2163 if (flags & DETACH_GROUP)
2164 perf_group_detach(event);
2165 list_del_event(event, ctx);
2166
2167 if (!ctx->nr_events && ctx->is_active) {
2168 ctx->is_active = 0;
2169 if (ctx->task) {
2170 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2171 cpuctx->task_ctx = NULL;
2172 }
2173 }
2174 }
2175
2176 /*
2177 * Remove the event from a task's (or a CPU's) list of events.
2178 *
2179 * If event->ctx is a cloned context, callers must make sure that
2180 * every task struct that event->ctx->task could possibly point to
2181 * remains valid. This is OK when called from perf_release since
2182 * that only calls us on the top-level context, which can't be a clone.
2183 * When called from perf_event_exit_task, it's OK because the
2184 * context has been detached from its task.
2185 */
perf_remove_from_context(struct perf_event * event,unsigned long flags)2186 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2187 {
2188 struct perf_event_context *ctx = event->ctx;
2189
2190 lockdep_assert_held(&ctx->mutex);
2191
2192 event_function_call(event, __perf_remove_from_context, (void *)flags);
2193
2194 /*
2195 * The above event_function_call() can NO-OP when it hits
2196 * TASK_TOMBSTONE. In that case we must already have been detached
2197 * from the context (by perf_event_exit_event()) but the grouping
2198 * might still be in-tact.
2199 */
2200 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2201 if ((flags & DETACH_GROUP) &&
2202 (event->attach_state & PERF_ATTACH_GROUP)) {
2203 /*
2204 * Since in that case we cannot possibly be scheduled, simply
2205 * detach now.
2206 */
2207 raw_spin_lock_irq(&ctx->lock);
2208 perf_group_detach(event);
2209 raw_spin_unlock_irq(&ctx->lock);
2210 }
2211 }
2212
2213 /*
2214 * Cross CPU call to disable a performance event
2215 */
__perf_event_disable(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)2216 static void __perf_event_disable(struct perf_event *event,
2217 struct perf_cpu_context *cpuctx,
2218 struct perf_event_context *ctx,
2219 void *info)
2220 {
2221 if (event->state < PERF_EVENT_STATE_INACTIVE)
2222 return;
2223
2224 if (ctx->is_active & EVENT_TIME) {
2225 update_context_time(ctx);
2226 update_cgrp_time_from_event(event);
2227 }
2228
2229 if (event == event->group_leader)
2230 group_sched_out(event, cpuctx, ctx);
2231 else
2232 event_sched_out(event, cpuctx, ctx);
2233
2234 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2235 }
2236
2237 /*
2238 * Disable an event.
2239 *
2240 * If event->ctx is a cloned context, callers must make sure that
2241 * every task struct that event->ctx->task could possibly point to
2242 * remains valid. This condition is satisfied when called through
2243 * perf_event_for_each_child or perf_event_for_each because they
2244 * hold the top-level event's child_mutex, so any descendant that
2245 * goes to exit will block in perf_event_exit_event().
2246 *
2247 * When called from perf_pending_event it's OK because event->ctx
2248 * is the current context on this CPU and preemption is disabled,
2249 * hence we can't get into perf_event_task_sched_out for this context.
2250 */
_perf_event_disable(struct perf_event * event)2251 static void _perf_event_disable(struct perf_event *event)
2252 {
2253 struct perf_event_context *ctx = event->ctx;
2254
2255 raw_spin_lock_irq(&ctx->lock);
2256 if (event->state <= PERF_EVENT_STATE_OFF) {
2257 raw_spin_unlock_irq(&ctx->lock);
2258 return;
2259 }
2260 raw_spin_unlock_irq(&ctx->lock);
2261
2262 event_function_call(event, __perf_event_disable, NULL);
2263 }
2264
perf_event_disable_local(struct perf_event * event)2265 void perf_event_disable_local(struct perf_event *event)
2266 {
2267 event_function_local(event, __perf_event_disable, NULL);
2268 }
2269
2270 /*
2271 * Strictly speaking kernel users cannot create groups and therefore this
2272 * interface does not need the perf_event_ctx_lock() magic.
2273 */
perf_event_disable(struct perf_event * event)2274 void perf_event_disable(struct perf_event *event)
2275 {
2276 struct perf_event_context *ctx;
2277
2278 ctx = perf_event_ctx_lock(event);
2279 _perf_event_disable(event);
2280 perf_event_ctx_unlock(event, ctx);
2281 }
2282 EXPORT_SYMBOL_GPL(perf_event_disable);
2283
perf_event_disable_inatomic(struct perf_event * event)2284 void perf_event_disable_inatomic(struct perf_event *event)
2285 {
2286 WRITE_ONCE(event->pending_disable, smp_processor_id());
2287 /* can fail, see perf_pending_event_disable() */
2288 irq_work_queue(&event->pending);
2289 }
2290
perf_set_shadow_time(struct perf_event * event,struct perf_event_context * ctx)2291 static void perf_set_shadow_time(struct perf_event *event,
2292 struct perf_event_context *ctx)
2293 {
2294 /*
2295 * use the correct time source for the time snapshot
2296 *
2297 * We could get by without this by leveraging the
2298 * fact that to get to this function, the caller
2299 * has most likely already called update_context_time()
2300 * and update_cgrp_time_xx() and thus both timestamp
2301 * are identical (or very close). Given that tstamp is,
2302 * already adjusted for cgroup, we could say that:
2303 * tstamp - ctx->timestamp
2304 * is equivalent to
2305 * tstamp - cgrp->timestamp.
2306 *
2307 * Then, in perf_output_read(), the calculation would
2308 * work with no changes because:
2309 * - event is guaranteed scheduled in
2310 * - no scheduled out in between
2311 * - thus the timestamp would be the same
2312 *
2313 * But this is a bit hairy.
2314 *
2315 * So instead, we have an explicit cgroup call to remain
2316 * within the time time source all along. We believe it
2317 * is cleaner and simpler to understand.
2318 */
2319 if (is_cgroup_event(event))
2320 perf_cgroup_set_shadow_time(event, event->tstamp);
2321 else
2322 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2323 }
2324
2325 #define MAX_INTERRUPTS (~0ULL)
2326
2327 static void perf_log_throttle(struct perf_event *event, int enable);
2328 static void perf_log_itrace_start(struct perf_event *event);
2329
2330 static int
event_sched_in(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)2331 event_sched_in(struct perf_event *event,
2332 struct perf_cpu_context *cpuctx,
2333 struct perf_event_context *ctx)
2334 {
2335 int ret = 0;
2336
2337 lockdep_assert_held(&ctx->lock);
2338
2339 if (event->state <= PERF_EVENT_STATE_OFF)
2340 return 0;
2341
2342 WRITE_ONCE(event->oncpu, smp_processor_id());
2343 /*
2344 * Order event::oncpu write to happen before the ACTIVE state is
2345 * visible. This allows perf_event_{stop,read}() to observe the correct
2346 * ->oncpu if it sees ACTIVE.
2347 */
2348 smp_wmb();
2349 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2350
2351 /*
2352 * Unthrottle events, since we scheduled we might have missed several
2353 * ticks already, also for a heavily scheduling task there is little
2354 * guarantee it'll get a tick in a timely manner.
2355 */
2356 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2357 perf_log_throttle(event, 1);
2358 event->hw.interrupts = 0;
2359 }
2360
2361 perf_pmu_disable(event->pmu);
2362
2363 perf_set_shadow_time(event, ctx);
2364
2365 perf_log_itrace_start(event);
2366
2367 if (event->pmu->add(event, PERF_EF_START)) {
2368 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2369 event->oncpu = -1;
2370 ret = -EAGAIN;
2371 goto out;
2372 }
2373
2374 if (!is_software_event(event))
2375 cpuctx->active_oncpu++;
2376 if (!ctx->nr_active++)
2377 perf_event_ctx_activate(ctx);
2378 if (event->attr.freq && event->attr.sample_freq)
2379 ctx->nr_freq++;
2380
2381 if (event->attr.exclusive)
2382 cpuctx->exclusive = 1;
2383
2384 out:
2385 perf_pmu_enable(event->pmu);
2386
2387 return ret;
2388 }
2389
2390 static int
group_sched_in(struct perf_event * group_event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)2391 group_sched_in(struct perf_event *group_event,
2392 struct perf_cpu_context *cpuctx,
2393 struct perf_event_context *ctx)
2394 {
2395 struct perf_event *event, *partial_group = NULL;
2396 struct pmu *pmu = ctx->pmu;
2397
2398 if (group_event->state == PERF_EVENT_STATE_OFF)
2399 return 0;
2400
2401 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2402
2403 if (event_sched_in(group_event, cpuctx, ctx)) {
2404 pmu->cancel_txn(pmu);
2405 perf_mux_hrtimer_restart(cpuctx);
2406 return -EAGAIN;
2407 }
2408
2409 /*
2410 * Schedule in siblings as one group (if any):
2411 */
2412 for_each_sibling_event(event, group_event) {
2413 if (event_sched_in(event, cpuctx, ctx)) {
2414 partial_group = event;
2415 goto group_error;
2416 }
2417 }
2418
2419 if (!pmu->commit_txn(pmu))
2420 return 0;
2421
2422 group_error:
2423 /*
2424 * Groups can be scheduled in as one unit only, so undo any
2425 * partial group before returning:
2426 * The events up to the failed event are scheduled out normally.
2427 */
2428 for_each_sibling_event(event, group_event) {
2429 if (event == partial_group)
2430 break;
2431
2432 event_sched_out(event, cpuctx, ctx);
2433 }
2434 event_sched_out(group_event, cpuctx, ctx);
2435
2436 pmu->cancel_txn(pmu);
2437
2438 perf_mux_hrtimer_restart(cpuctx);
2439
2440 return -EAGAIN;
2441 }
2442
2443 /*
2444 * Work out whether we can put this event group on the CPU now.
2445 */
group_can_go_on(struct perf_event * event,struct perf_cpu_context * cpuctx,int can_add_hw)2446 static int group_can_go_on(struct perf_event *event,
2447 struct perf_cpu_context *cpuctx,
2448 int can_add_hw)
2449 {
2450 /*
2451 * Groups consisting entirely of software events can always go on.
2452 */
2453 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2454 return 1;
2455 /*
2456 * If an exclusive group is already on, no other hardware
2457 * events can go on.
2458 */
2459 if (cpuctx->exclusive)
2460 return 0;
2461 /*
2462 * If this group is exclusive and there are already
2463 * events on the CPU, it can't go on.
2464 */
2465 if (event->attr.exclusive && cpuctx->active_oncpu)
2466 return 0;
2467 /*
2468 * Otherwise, try to add it if all previous groups were able
2469 * to go on.
2470 */
2471 return can_add_hw;
2472 }
2473
add_event_to_ctx(struct perf_event * event,struct perf_event_context * ctx)2474 static void add_event_to_ctx(struct perf_event *event,
2475 struct perf_event_context *ctx)
2476 {
2477 list_add_event(event, ctx);
2478 perf_group_attach(event);
2479 }
2480
2481 static void ctx_sched_out(struct perf_event_context *ctx,
2482 struct perf_cpu_context *cpuctx,
2483 enum event_type_t event_type);
2484 static void
2485 ctx_sched_in(struct perf_event_context *ctx,
2486 struct perf_cpu_context *cpuctx,
2487 enum event_type_t event_type,
2488 struct task_struct *task);
2489
task_ctx_sched_out(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,enum event_type_t event_type)2490 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2491 struct perf_event_context *ctx,
2492 enum event_type_t event_type)
2493 {
2494 if (!cpuctx->task_ctx)
2495 return;
2496
2497 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2498 return;
2499
2500 ctx_sched_out(ctx, cpuctx, event_type);
2501 }
2502
perf_event_sched_in(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,struct task_struct * task)2503 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2504 struct perf_event_context *ctx,
2505 struct task_struct *task)
2506 {
2507 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2508 if (ctx)
2509 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2510 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2511 if (ctx)
2512 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2513 }
2514
2515 /*
2516 * We want to maintain the following priority of scheduling:
2517 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2518 * - task pinned (EVENT_PINNED)
2519 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2520 * - task flexible (EVENT_FLEXIBLE).
2521 *
2522 * In order to avoid unscheduling and scheduling back in everything every
2523 * time an event is added, only do it for the groups of equal priority and
2524 * below.
2525 *
2526 * This can be called after a batch operation on task events, in which case
2527 * event_type is a bit mask of the types of events involved. For CPU events,
2528 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2529 */
ctx_resched(struct perf_cpu_context * cpuctx,struct perf_event_context * task_ctx,enum event_type_t event_type)2530 static void ctx_resched(struct perf_cpu_context *cpuctx,
2531 struct perf_event_context *task_ctx,
2532 enum event_type_t event_type)
2533 {
2534 enum event_type_t ctx_event_type;
2535 bool cpu_event = !!(event_type & EVENT_CPU);
2536
2537 /*
2538 * If pinned groups are involved, flexible groups also need to be
2539 * scheduled out.
2540 */
2541 if (event_type & EVENT_PINNED)
2542 event_type |= EVENT_FLEXIBLE;
2543
2544 ctx_event_type = event_type & EVENT_ALL;
2545
2546 perf_pmu_disable(cpuctx->ctx.pmu);
2547 if (task_ctx)
2548 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2549
2550 /*
2551 * Decide which cpu ctx groups to schedule out based on the types
2552 * of events that caused rescheduling:
2553 * - EVENT_CPU: schedule out corresponding groups;
2554 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2555 * - otherwise, do nothing more.
2556 */
2557 if (cpu_event)
2558 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2559 else if (ctx_event_type & EVENT_PINNED)
2560 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2561
2562 perf_event_sched_in(cpuctx, task_ctx, current);
2563 perf_pmu_enable(cpuctx->ctx.pmu);
2564 }
2565
perf_pmu_resched(struct pmu * pmu)2566 void perf_pmu_resched(struct pmu *pmu)
2567 {
2568 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2569 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2570
2571 perf_ctx_lock(cpuctx, task_ctx);
2572 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2573 perf_ctx_unlock(cpuctx, task_ctx);
2574 }
2575
2576 /*
2577 * Cross CPU call to install and enable a performance event
2578 *
2579 * Very similar to remote_function() + event_function() but cannot assume that
2580 * things like ctx->is_active and cpuctx->task_ctx are set.
2581 */
__perf_install_in_context(void * info)2582 static int __perf_install_in_context(void *info)
2583 {
2584 struct perf_event *event = info;
2585 struct perf_event_context *ctx = event->ctx;
2586 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2587 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2588 bool reprogram = true;
2589 int ret = 0;
2590
2591 raw_spin_lock(&cpuctx->ctx.lock);
2592 if (ctx->task) {
2593 raw_spin_lock(&ctx->lock);
2594 task_ctx = ctx;
2595
2596 reprogram = (ctx->task == current);
2597
2598 /*
2599 * If the task is running, it must be running on this CPU,
2600 * otherwise we cannot reprogram things.
2601 *
2602 * If its not running, we don't care, ctx->lock will
2603 * serialize against it becoming runnable.
2604 */
2605 if (task_curr(ctx->task) && !reprogram) {
2606 ret = -ESRCH;
2607 goto unlock;
2608 }
2609
2610 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2611 } else if (task_ctx) {
2612 raw_spin_lock(&task_ctx->lock);
2613 }
2614
2615 #ifdef CONFIG_CGROUP_PERF
2616 if (is_cgroup_event(event)) {
2617 /*
2618 * If the current cgroup doesn't match the event's
2619 * cgroup, we should not try to schedule it.
2620 */
2621 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2622 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2623 event->cgrp->css.cgroup);
2624 }
2625 #endif
2626
2627 if (reprogram) {
2628 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2629 add_event_to_ctx(event, ctx);
2630 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2631 } else {
2632 add_event_to_ctx(event, ctx);
2633 }
2634
2635 unlock:
2636 perf_ctx_unlock(cpuctx, task_ctx);
2637
2638 return ret;
2639 }
2640
2641 static bool exclusive_event_installable(struct perf_event *event,
2642 struct perf_event_context *ctx);
2643
2644 /*
2645 * Attach a performance event to a context.
2646 *
2647 * Very similar to event_function_call, see comment there.
2648 */
2649 static void
perf_install_in_context(struct perf_event_context * ctx,struct perf_event * event,int cpu)2650 perf_install_in_context(struct perf_event_context *ctx,
2651 struct perf_event *event,
2652 int cpu)
2653 {
2654 struct task_struct *task = READ_ONCE(ctx->task);
2655
2656 lockdep_assert_held(&ctx->mutex);
2657
2658 WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2659
2660 if (event->cpu != -1)
2661 event->cpu = cpu;
2662
2663 /*
2664 * Ensures that if we can observe event->ctx, both the event and ctx
2665 * will be 'complete'. See perf_iterate_sb_cpu().
2666 */
2667 smp_store_release(&event->ctx, ctx);
2668
2669 if (!task) {
2670 cpu_function_call(cpu, __perf_install_in_context, event);
2671 return;
2672 }
2673
2674 /*
2675 * Should not happen, we validate the ctx is still alive before calling.
2676 */
2677 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2678 return;
2679
2680 /*
2681 * Installing events is tricky because we cannot rely on ctx->is_active
2682 * to be set in case this is the nr_events 0 -> 1 transition.
2683 *
2684 * Instead we use task_curr(), which tells us if the task is running.
2685 * However, since we use task_curr() outside of rq::lock, we can race
2686 * against the actual state. This means the result can be wrong.
2687 *
2688 * If we get a false positive, we retry, this is harmless.
2689 *
2690 * If we get a false negative, things are complicated. If we are after
2691 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2692 * value must be correct. If we're before, it doesn't matter since
2693 * perf_event_context_sched_in() will program the counter.
2694 *
2695 * However, this hinges on the remote context switch having observed
2696 * our task->perf_event_ctxp[] store, such that it will in fact take
2697 * ctx::lock in perf_event_context_sched_in().
2698 *
2699 * We do this by task_function_call(), if the IPI fails to hit the task
2700 * we know any future context switch of task must see the
2701 * perf_event_ctpx[] store.
2702 */
2703
2704 /*
2705 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2706 * task_cpu() load, such that if the IPI then does not find the task
2707 * running, a future context switch of that task must observe the
2708 * store.
2709 */
2710 smp_mb();
2711 again:
2712 if (!task_function_call(task, __perf_install_in_context, event))
2713 return;
2714
2715 raw_spin_lock_irq(&ctx->lock);
2716 task = ctx->task;
2717 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2718 /*
2719 * Cannot happen because we already checked above (which also
2720 * cannot happen), and we hold ctx->mutex, which serializes us
2721 * against perf_event_exit_task_context().
2722 */
2723 raw_spin_unlock_irq(&ctx->lock);
2724 return;
2725 }
2726 /*
2727 * If the task is not running, ctx->lock will avoid it becoming so,
2728 * thus we can safely install the event.
2729 */
2730 if (task_curr(task)) {
2731 raw_spin_unlock_irq(&ctx->lock);
2732 goto again;
2733 }
2734 add_event_to_ctx(event, ctx);
2735 raw_spin_unlock_irq(&ctx->lock);
2736 }
2737
2738 /*
2739 * Cross CPU call to enable a performance event
2740 */
__perf_event_enable(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)2741 static void __perf_event_enable(struct perf_event *event,
2742 struct perf_cpu_context *cpuctx,
2743 struct perf_event_context *ctx,
2744 void *info)
2745 {
2746 struct perf_event *leader = event->group_leader;
2747 struct perf_event_context *task_ctx;
2748
2749 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2750 event->state <= PERF_EVENT_STATE_ERROR)
2751 return;
2752
2753 if (ctx->is_active)
2754 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2755
2756 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2757
2758 if (!ctx->is_active)
2759 return;
2760
2761 if (!event_filter_match(event)) {
2762 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2763 return;
2764 }
2765
2766 /*
2767 * If the event is in a group and isn't the group leader,
2768 * then don't put it on unless the group is on.
2769 */
2770 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2771 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2772 return;
2773 }
2774
2775 task_ctx = cpuctx->task_ctx;
2776 if (ctx->task)
2777 WARN_ON_ONCE(task_ctx != ctx);
2778
2779 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2780 }
2781
2782 /*
2783 * Enable an event.
2784 *
2785 * If event->ctx is a cloned context, callers must make sure that
2786 * every task struct that event->ctx->task could possibly point to
2787 * remains valid. This condition is satisfied when called through
2788 * perf_event_for_each_child or perf_event_for_each as described
2789 * for perf_event_disable.
2790 */
_perf_event_enable(struct perf_event * event)2791 static void _perf_event_enable(struct perf_event *event)
2792 {
2793 struct perf_event_context *ctx = event->ctx;
2794
2795 raw_spin_lock_irq(&ctx->lock);
2796 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2797 event->state < PERF_EVENT_STATE_ERROR) {
2798 raw_spin_unlock_irq(&ctx->lock);
2799 return;
2800 }
2801
2802 /*
2803 * If the event is in error state, clear that first.
2804 *
2805 * That way, if we see the event in error state below, we know that it
2806 * has gone back into error state, as distinct from the task having
2807 * been scheduled away before the cross-call arrived.
2808 */
2809 if (event->state == PERF_EVENT_STATE_ERROR)
2810 event->state = PERF_EVENT_STATE_OFF;
2811 raw_spin_unlock_irq(&ctx->lock);
2812
2813 event_function_call(event, __perf_event_enable, NULL);
2814 }
2815
2816 /*
2817 * See perf_event_disable();
2818 */
perf_event_enable(struct perf_event * event)2819 void perf_event_enable(struct perf_event *event)
2820 {
2821 struct perf_event_context *ctx;
2822
2823 ctx = perf_event_ctx_lock(event);
2824 _perf_event_enable(event);
2825 perf_event_ctx_unlock(event, ctx);
2826 }
2827 EXPORT_SYMBOL_GPL(perf_event_enable);
2828
2829 struct stop_event_data {
2830 struct perf_event *event;
2831 unsigned int restart;
2832 };
2833
__perf_event_stop(void * info)2834 static int __perf_event_stop(void *info)
2835 {
2836 struct stop_event_data *sd = info;
2837 struct perf_event *event = sd->event;
2838
2839 /* if it's already INACTIVE, do nothing */
2840 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2841 return 0;
2842
2843 /* matches smp_wmb() in event_sched_in() */
2844 smp_rmb();
2845
2846 /*
2847 * There is a window with interrupts enabled before we get here,
2848 * so we need to check again lest we try to stop another CPU's event.
2849 */
2850 if (READ_ONCE(event->oncpu) != smp_processor_id())
2851 return -EAGAIN;
2852
2853 event->pmu->stop(event, PERF_EF_UPDATE);
2854
2855 /*
2856 * May race with the actual stop (through perf_pmu_output_stop()),
2857 * but it is only used for events with AUX ring buffer, and such
2858 * events will refuse to restart because of rb::aux_mmap_count==0,
2859 * see comments in perf_aux_output_begin().
2860 *
2861 * Since this is happening on an event-local CPU, no trace is lost
2862 * while restarting.
2863 */
2864 if (sd->restart)
2865 event->pmu->start(event, 0);
2866
2867 return 0;
2868 }
2869
perf_event_stop(struct perf_event * event,int restart)2870 static int perf_event_stop(struct perf_event *event, int restart)
2871 {
2872 struct stop_event_data sd = {
2873 .event = event,
2874 .restart = restart,
2875 };
2876 int ret = 0;
2877
2878 do {
2879 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2880 return 0;
2881
2882 /* matches smp_wmb() in event_sched_in() */
2883 smp_rmb();
2884
2885 /*
2886 * We only want to restart ACTIVE events, so if the event goes
2887 * inactive here (event->oncpu==-1), there's nothing more to do;
2888 * fall through with ret==-ENXIO.
2889 */
2890 ret = cpu_function_call(READ_ONCE(event->oncpu),
2891 __perf_event_stop, &sd);
2892 } while (ret == -EAGAIN);
2893
2894 return ret;
2895 }
2896
2897 /*
2898 * In order to contain the amount of racy and tricky in the address filter
2899 * configuration management, it is a two part process:
2900 *
2901 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2902 * we update the addresses of corresponding vmas in
2903 * event::addr_filter_ranges array and bump the event::addr_filters_gen;
2904 * (p2) when an event is scheduled in (pmu::add), it calls
2905 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2906 * if the generation has changed since the previous call.
2907 *
2908 * If (p1) happens while the event is active, we restart it to force (p2).
2909 *
2910 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2911 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2912 * ioctl;
2913 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2914 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2915 * for reading;
2916 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2917 * of exec.
2918 */
perf_event_addr_filters_sync(struct perf_event * event)2919 void perf_event_addr_filters_sync(struct perf_event *event)
2920 {
2921 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2922
2923 if (!has_addr_filter(event))
2924 return;
2925
2926 raw_spin_lock(&ifh->lock);
2927 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2928 event->pmu->addr_filters_sync(event);
2929 event->hw.addr_filters_gen = event->addr_filters_gen;
2930 }
2931 raw_spin_unlock(&ifh->lock);
2932 }
2933 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2934
_perf_event_refresh(struct perf_event * event,int refresh)2935 static int _perf_event_refresh(struct perf_event *event, int refresh)
2936 {
2937 /*
2938 * not supported on inherited events
2939 */
2940 if (event->attr.inherit || !is_sampling_event(event))
2941 return -EINVAL;
2942
2943 atomic_add(refresh, &event->event_limit);
2944 _perf_event_enable(event);
2945
2946 return 0;
2947 }
2948
2949 /*
2950 * See perf_event_disable()
2951 */
perf_event_refresh(struct perf_event * event,int refresh)2952 int perf_event_refresh(struct perf_event *event, int refresh)
2953 {
2954 struct perf_event_context *ctx;
2955 int ret;
2956
2957 ctx = perf_event_ctx_lock(event);
2958 ret = _perf_event_refresh(event, refresh);
2959 perf_event_ctx_unlock(event, ctx);
2960
2961 return ret;
2962 }
2963 EXPORT_SYMBOL_GPL(perf_event_refresh);
2964
perf_event_modify_breakpoint(struct perf_event * bp,struct perf_event_attr * attr)2965 static int perf_event_modify_breakpoint(struct perf_event *bp,
2966 struct perf_event_attr *attr)
2967 {
2968 int err;
2969
2970 _perf_event_disable(bp);
2971
2972 err = modify_user_hw_breakpoint_check(bp, attr, true);
2973
2974 if (!bp->attr.disabled)
2975 _perf_event_enable(bp);
2976
2977 return err;
2978 }
2979
perf_event_modify_attr(struct perf_event * event,struct perf_event_attr * attr)2980 static int perf_event_modify_attr(struct perf_event *event,
2981 struct perf_event_attr *attr)
2982 {
2983 if (event->attr.type != attr->type)
2984 return -EINVAL;
2985
2986 switch (event->attr.type) {
2987 case PERF_TYPE_BREAKPOINT:
2988 return perf_event_modify_breakpoint(event, attr);
2989 default:
2990 /* Place holder for future additions. */
2991 return -EOPNOTSUPP;
2992 }
2993 }
2994
ctx_sched_out(struct perf_event_context * ctx,struct perf_cpu_context * cpuctx,enum event_type_t event_type)2995 static void ctx_sched_out(struct perf_event_context *ctx,
2996 struct perf_cpu_context *cpuctx,
2997 enum event_type_t event_type)
2998 {
2999 struct perf_event *event, *tmp;
3000 int is_active = ctx->is_active;
3001
3002 lockdep_assert_held(&ctx->lock);
3003
3004 if (likely(!ctx->nr_events)) {
3005 /*
3006 * See __perf_remove_from_context().
3007 */
3008 WARN_ON_ONCE(ctx->is_active);
3009 if (ctx->task)
3010 WARN_ON_ONCE(cpuctx->task_ctx);
3011 return;
3012 }
3013
3014 ctx->is_active &= ~event_type;
3015 if (!(ctx->is_active & EVENT_ALL))
3016 ctx->is_active = 0;
3017
3018 if (ctx->task) {
3019 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3020 if (!ctx->is_active)
3021 cpuctx->task_ctx = NULL;
3022 }
3023
3024 /*
3025 * Always update time if it was set; not only when it changes.
3026 * Otherwise we can 'forget' to update time for any but the last
3027 * context we sched out. For example:
3028 *
3029 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3030 * ctx_sched_out(.event_type = EVENT_PINNED)
3031 *
3032 * would only update time for the pinned events.
3033 */
3034 if (is_active & EVENT_TIME) {
3035 /* update (and stop) ctx time */
3036 update_context_time(ctx);
3037 update_cgrp_time_from_cpuctx(cpuctx);
3038 }
3039
3040 is_active ^= ctx->is_active; /* changed bits */
3041
3042 if (!ctx->nr_active || !(is_active & EVENT_ALL))
3043 return;
3044
3045 /*
3046 * If we had been multiplexing, no rotations are necessary, now no events
3047 * are active.
3048 */
3049 ctx->rotate_necessary = 0;
3050
3051 perf_pmu_disable(ctx->pmu);
3052 if (is_active & EVENT_PINNED) {
3053 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
3054 group_sched_out(event, cpuctx, ctx);
3055 }
3056
3057 if (is_active & EVENT_FLEXIBLE) {
3058 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
3059 group_sched_out(event, cpuctx, ctx);
3060 }
3061 perf_pmu_enable(ctx->pmu);
3062 }
3063
3064 /*
3065 * Test whether two contexts are equivalent, i.e. whether they have both been
3066 * cloned from the same version of the same context.
3067 *
3068 * Equivalence is measured using a generation number in the context that is
3069 * incremented on each modification to it; see unclone_ctx(), list_add_event()
3070 * and list_del_event().
3071 */
context_equiv(struct perf_event_context * ctx1,struct perf_event_context * ctx2)3072 static int context_equiv(struct perf_event_context *ctx1,
3073 struct perf_event_context *ctx2)
3074 {
3075 lockdep_assert_held(&ctx1->lock);
3076 lockdep_assert_held(&ctx2->lock);
3077
3078 /* Pinning disables the swap optimization */
3079 if (ctx1->pin_count || ctx2->pin_count)
3080 return 0;
3081
3082 /* If ctx1 is the parent of ctx2 */
3083 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3084 return 1;
3085
3086 /* If ctx2 is the parent of ctx1 */
3087 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3088 return 1;
3089
3090 /*
3091 * If ctx1 and ctx2 have the same parent; we flatten the parent
3092 * hierarchy, see perf_event_init_context().
3093 */
3094 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3095 ctx1->parent_gen == ctx2->parent_gen)
3096 return 1;
3097
3098 /* Unmatched */
3099 return 0;
3100 }
3101
__perf_event_sync_stat(struct perf_event * event,struct perf_event * next_event)3102 static void __perf_event_sync_stat(struct perf_event *event,
3103 struct perf_event *next_event)
3104 {
3105 u64 value;
3106
3107 if (!event->attr.inherit_stat)
3108 return;
3109
3110 /*
3111 * Update the event value, we cannot use perf_event_read()
3112 * because we're in the middle of a context switch and have IRQs
3113 * disabled, which upsets smp_call_function_single(), however
3114 * we know the event must be on the current CPU, therefore we
3115 * don't need to use it.
3116 */
3117 if (event->state == PERF_EVENT_STATE_ACTIVE)
3118 event->pmu->read(event);
3119
3120 perf_event_update_time(event);
3121
3122 /*
3123 * In order to keep per-task stats reliable we need to flip the event
3124 * values when we flip the contexts.
3125 */
3126 value = local64_read(&next_event->count);
3127 value = local64_xchg(&event->count, value);
3128 local64_set(&next_event->count, value);
3129
3130 swap(event->total_time_enabled, next_event->total_time_enabled);
3131 swap(event->total_time_running, next_event->total_time_running);
3132
3133 /*
3134 * Since we swizzled the values, update the user visible data too.
3135 */
3136 perf_event_update_userpage(event);
3137 perf_event_update_userpage(next_event);
3138 }
3139
perf_event_sync_stat(struct perf_event_context * ctx,struct perf_event_context * next_ctx)3140 static void perf_event_sync_stat(struct perf_event_context *ctx,
3141 struct perf_event_context *next_ctx)
3142 {
3143 struct perf_event *event, *next_event;
3144
3145 if (!ctx->nr_stat)
3146 return;
3147
3148 update_context_time(ctx);
3149
3150 event = list_first_entry(&ctx->event_list,
3151 struct perf_event, event_entry);
3152
3153 next_event = list_first_entry(&next_ctx->event_list,
3154 struct perf_event, event_entry);
3155
3156 while (&event->event_entry != &ctx->event_list &&
3157 &next_event->event_entry != &next_ctx->event_list) {
3158
3159 __perf_event_sync_stat(event, next_event);
3160
3161 event = list_next_entry(event, event_entry);
3162 next_event = list_next_entry(next_event, event_entry);
3163 }
3164 }
3165
perf_event_context_sched_out(struct task_struct * task,int ctxn,struct task_struct * next)3166 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3167 struct task_struct *next)
3168 {
3169 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3170 struct perf_event_context *next_ctx;
3171 struct perf_event_context *parent, *next_parent;
3172 struct perf_cpu_context *cpuctx;
3173 int do_switch = 1;
3174
3175 if (likely(!ctx))
3176 return;
3177
3178 cpuctx = __get_cpu_context(ctx);
3179 if (!cpuctx->task_ctx)
3180 return;
3181
3182 rcu_read_lock();
3183 next_ctx = next->perf_event_ctxp[ctxn];
3184 if (!next_ctx)
3185 goto unlock;
3186
3187 parent = rcu_dereference(ctx->parent_ctx);
3188 next_parent = rcu_dereference(next_ctx->parent_ctx);
3189
3190 /* If neither context have a parent context; they cannot be clones. */
3191 if (!parent && !next_parent)
3192 goto unlock;
3193
3194 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3195 /*
3196 * Looks like the two contexts are clones, so we might be
3197 * able to optimize the context switch. We lock both
3198 * contexts and check that they are clones under the
3199 * lock (including re-checking that neither has been
3200 * uncloned in the meantime). It doesn't matter which
3201 * order we take the locks because no other cpu could
3202 * be trying to lock both of these tasks.
3203 */
3204 raw_spin_lock(&ctx->lock);
3205 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3206 if (context_equiv(ctx, next_ctx)) {
3207 WRITE_ONCE(ctx->task, next);
3208 WRITE_ONCE(next_ctx->task, task);
3209
3210 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3211
3212 /*
3213 * RCU_INIT_POINTER here is safe because we've not
3214 * modified the ctx and the above modification of
3215 * ctx->task and ctx->task_ctx_data are immaterial
3216 * since those values are always verified under
3217 * ctx->lock which we're now holding.
3218 */
3219 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3220 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3221
3222 do_switch = 0;
3223
3224 perf_event_sync_stat(ctx, next_ctx);
3225 }
3226 raw_spin_unlock(&next_ctx->lock);
3227 raw_spin_unlock(&ctx->lock);
3228 }
3229 unlock:
3230 rcu_read_unlock();
3231
3232 if (do_switch) {
3233 raw_spin_lock(&ctx->lock);
3234 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3235 raw_spin_unlock(&ctx->lock);
3236 }
3237 }
3238
3239 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3240
perf_sched_cb_dec(struct pmu * pmu)3241 void perf_sched_cb_dec(struct pmu *pmu)
3242 {
3243 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3244
3245 this_cpu_dec(perf_sched_cb_usages);
3246
3247 if (!--cpuctx->sched_cb_usage)
3248 list_del(&cpuctx->sched_cb_entry);
3249 }
3250
3251
perf_sched_cb_inc(struct pmu * pmu)3252 void perf_sched_cb_inc(struct pmu *pmu)
3253 {
3254 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3255
3256 if (!cpuctx->sched_cb_usage++)
3257 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3258
3259 this_cpu_inc(perf_sched_cb_usages);
3260 }
3261
3262 /*
3263 * This function provides the context switch callback to the lower code
3264 * layer. It is invoked ONLY when the context switch callback is enabled.
3265 *
3266 * This callback is relevant even to per-cpu events; for example multi event
3267 * PEBS requires this to provide PID/TID information. This requires we flush
3268 * all queued PEBS records before we context switch to a new task.
3269 */
perf_pmu_sched_task(struct task_struct * prev,struct task_struct * next,bool sched_in)3270 static void perf_pmu_sched_task(struct task_struct *prev,
3271 struct task_struct *next,
3272 bool sched_in)
3273 {
3274 struct perf_cpu_context *cpuctx;
3275 struct pmu *pmu;
3276
3277 if (prev == next)
3278 return;
3279
3280 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3281 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3282
3283 if (WARN_ON_ONCE(!pmu->sched_task))
3284 continue;
3285
3286 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3287 perf_pmu_disable(pmu);
3288
3289 pmu->sched_task(cpuctx->task_ctx, sched_in);
3290
3291 perf_pmu_enable(pmu);
3292 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3293 }
3294 }
3295
3296 static void perf_event_switch(struct task_struct *task,
3297 struct task_struct *next_prev, bool sched_in);
3298
3299 #define for_each_task_context_nr(ctxn) \
3300 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3301
3302 /*
3303 * Called from scheduler to remove the events of the current task,
3304 * with interrupts disabled.
3305 *
3306 * We stop each event and update the event value in event->count.
3307 *
3308 * This does not protect us against NMI, but disable()
3309 * sets the disabled bit in the control field of event _before_
3310 * accessing the event control register. If a NMI hits, then it will
3311 * not restart the event.
3312 */
__perf_event_task_sched_out(struct task_struct * task,struct task_struct * next)3313 void __perf_event_task_sched_out(struct task_struct *task,
3314 struct task_struct *next)
3315 {
3316 int ctxn;
3317
3318 if (__this_cpu_read(perf_sched_cb_usages))
3319 perf_pmu_sched_task(task, next, false);
3320
3321 if (atomic_read(&nr_switch_events))
3322 perf_event_switch(task, next, false);
3323
3324 for_each_task_context_nr(ctxn)
3325 perf_event_context_sched_out(task, ctxn, next);
3326
3327 /*
3328 * if cgroup events exist on this CPU, then we need
3329 * to check if we have to switch out PMU state.
3330 * cgroup event are system-wide mode only
3331 */
3332 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3333 perf_cgroup_sched_out(task, next);
3334 }
3335
3336 /*
3337 * Called with IRQs disabled
3338 */
cpu_ctx_sched_out(struct perf_cpu_context * cpuctx,enum event_type_t event_type)3339 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3340 enum event_type_t event_type)
3341 {
3342 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3343 }
3344
visit_groups_merge(struct perf_event_groups * groups,int cpu,int (* func)(struct perf_event *,void *),void * data)3345 static int visit_groups_merge(struct perf_event_groups *groups, int cpu,
3346 int (*func)(struct perf_event *, void *), void *data)
3347 {
3348 struct perf_event **evt, *evt1, *evt2;
3349 int ret;
3350
3351 evt1 = perf_event_groups_first(groups, -1);
3352 evt2 = perf_event_groups_first(groups, cpu);
3353
3354 while (evt1 || evt2) {
3355 if (evt1 && evt2) {
3356 if (evt1->group_index < evt2->group_index)
3357 evt = &evt1;
3358 else
3359 evt = &evt2;
3360 } else if (evt1) {
3361 evt = &evt1;
3362 } else {
3363 evt = &evt2;
3364 }
3365
3366 ret = func(*evt, data);
3367 if (ret)
3368 return ret;
3369
3370 *evt = perf_event_groups_next(*evt);
3371 }
3372
3373 return 0;
3374 }
3375
3376 struct sched_in_data {
3377 struct perf_event_context *ctx;
3378 struct perf_cpu_context *cpuctx;
3379 int can_add_hw;
3380 };
3381
pinned_sched_in(struct perf_event * event,void * data)3382 static int pinned_sched_in(struct perf_event *event, void *data)
3383 {
3384 struct sched_in_data *sid = data;
3385
3386 if (event->state <= PERF_EVENT_STATE_OFF)
3387 return 0;
3388
3389 if (!event_filter_match(event))
3390 return 0;
3391
3392 if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3393 if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3394 list_add_tail(&event->active_list, &sid->ctx->pinned_active);
3395 }
3396
3397 /*
3398 * If this pinned group hasn't been scheduled,
3399 * put it in error state.
3400 */
3401 if (event->state == PERF_EVENT_STATE_INACTIVE)
3402 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3403
3404 return 0;
3405 }
3406
flexible_sched_in(struct perf_event * event,void * data)3407 static int flexible_sched_in(struct perf_event *event, void *data)
3408 {
3409 struct sched_in_data *sid = data;
3410
3411 if (event->state <= PERF_EVENT_STATE_OFF)
3412 return 0;
3413
3414 if (!event_filter_match(event))
3415 return 0;
3416
3417 if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3418 int ret = group_sched_in(event, sid->cpuctx, sid->ctx);
3419 if (ret) {
3420 sid->can_add_hw = 0;
3421 sid->ctx->rotate_necessary = 1;
3422 return 0;
3423 }
3424 list_add_tail(&event->active_list, &sid->ctx->flexible_active);
3425 }
3426
3427 return 0;
3428 }
3429
3430 static void
ctx_pinned_sched_in(struct perf_event_context * ctx,struct perf_cpu_context * cpuctx)3431 ctx_pinned_sched_in(struct perf_event_context *ctx,
3432 struct perf_cpu_context *cpuctx)
3433 {
3434 struct sched_in_data sid = {
3435 .ctx = ctx,
3436 .cpuctx = cpuctx,
3437 .can_add_hw = 1,
3438 };
3439
3440 visit_groups_merge(&ctx->pinned_groups,
3441 smp_processor_id(),
3442 pinned_sched_in, &sid);
3443 }
3444
3445 static void
ctx_flexible_sched_in(struct perf_event_context * ctx,struct perf_cpu_context * cpuctx)3446 ctx_flexible_sched_in(struct perf_event_context *ctx,
3447 struct perf_cpu_context *cpuctx)
3448 {
3449 struct sched_in_data sid = {
3450 .ctx = ctx,
3451 .cpuctx = cpuctx,
3452 .can_add_hw = 1,
3453 };
3454
3455 visit_groups_merge(&ctx->flexible_groups,
3456 smp_processor_id(),
3457 flexible_sched_in, &sid);
3458 }
3459
3460 static void
ctx_sched_in(struct perf_event_context * ctx,struct perf_cpu_context * cpuctx,enum event_type_t event_type,struct task_struct * task)3461 ctx_sched_in(struct perf_event_context *ctx,
3462 struct perf_cpu_context *cpuctx,
3463 enum event_type_t event_type,
3464 struct task_struct *task)
3465 {
3466 int is_active = ctx->is_active;
3467 u64 now;
3468
3469 lockdep_assert_held(&ctx->lock);
3470
3471 if (likely(!ctx->nr_events))
3472 return;
3473
3474 ctx->is_active |= (event_type | EVENT_TIME);
3475 if (ctx->task) {
3476 if (!is_active)
3477 cpuctx->task_ctx = ctx;
3478 else
3479 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3480 }
3481
3482 is_active ^= ctx->is_active; /* changed bits */
3483
3484 if (is_active & EVENT_TIME) {
3485 /* start ctx time */
3486 now = perf_clock();
3487 ctx->timestamp = now;
3488 perf_cgroup_set_timestamp(task, ctx);
3489 }
3490
3491 /*
3492 * First go through the list and put on any pinned groups
3493 * in order to give them the best chance of going on.
3494 */
3495 if (is_active & EVENT_PINNED)
3496 ctx_pinned_sched_in(ctx, cpuctx);
3497
3498 /* Then walk through the lower prio flexible groups */
3499 if (is_active & EVENT_FLEXIBLE)
3500 ctx_flexible_sched_in(ctx, cpuctx);
3501 }
3502
cpu_ctx_sched_in(struct perf_cpu_context * cpuctx,enum event_type_t event_type,struct task_struct * task)3503 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3504 enum event_type_t event_type,
3505 struct task_struct *task)
3506 {
3507 struct perf_event_context *ctx = &cpuctx->ctx;
3508
3509 ctx_sched_in(ctx, cpuctx, event_type, task);
3510 }
3511
perf_event_context_sched_in(struct perf_event_context * ctx,struct task_struct * task)3512 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3513 struct task_struct *task)
3514 {
3515 struct perf_cpu_context *cpuctx;
3516
3517 cpuctx = __get_cpu_context(ctx);
3518 if (cpuctx->task_ctx == ctx)
3519 return;
3520
3521 perf_ctx_lock(cpuctx, ctx);
3522 /*
3523 * We must check ctx->nr_events while holding ctx->lock, such
3524 * that we serialize against perf_install_in_context().
3525 */
3526 if (!ctx->nr_events)
3527 goto unlock;
3528
3529 perf_pmu_disable(ctx->pmu);
3530 /*
3531 * We want to keep the following priority order:
3532 * cpu pinned (that don't need to move), task pinned,
3533 * cpu flexible, task flexible.
3534 *
3535 * However, if task's ctx is not carrying any pinned
3536 * events, no need to flip the cpuctx's events around.
3537 */
3538 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3539 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3540 perf_event_sched_in(cpuctx, ctx, task);
3541 perf_pmu_enable(ctx->pmu);
3542
3543 unlock:
3544 perf_ctx_unlock(cpuctx, ctx);
3545 }
3546
3547 /*
3548 * Called from scheduler to add the events of the current task
3549 * with interrupts disabled.
3550 *
3551 * We restore the event value and then enable it.
3552 *
3553 * This does not protect us against NMI, but enable()
3554 * sets the enabled bit in the control field of event _before_
3555 * accessing the event control register. If a NMI hits, then it will
3556 * keep the event running.
3557 */
__perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)3558 void __perf_event_task_sched_in(struct task_struct *prev,
3559 struct task_struct *task)
3560 {
3561 struct perf_event_context *ctx;
3562 int ctxn;
3563
3564 /*
3565 * If cgroup events exist on this CPU, then we need to check if we have
3566 * to switch in PMU state; cgroup event are system-wide mode only.
3567 *
3568 * Since cgroup events are CPU events, we must schedule these in before
3569 * we schedule in the task events.
3570 */
3571 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3572 perf_cgroup_sched_in(prev, task);
3573
3574 for_each_task_context_nr(ctxn) {
3575 ctx = task->perf_event_ctxp[ctxn];
3576 if (likely(!ctx))
3577 continue;
3578
3579 perf_event_context_sched_in(ctx, task);
3580 }
3581
3582 if (atomic_read(&nr_switch_events))
3583 perf_event_switch(task, prev, true);
3584
3585 if (__this_cpu_read(perf_sched_cb_usages))
3586 perf_pmu_sched_task(prev, task, true);
3587 }
3588
perf_calculate_period(struct perf_event * event,u64 nsec,u64 count)3589 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3590 {
3591 u64 frequency = event->attr.sample_freq;
3592 u64 sec = NSEC_PER_SEC;
3593 u64 divisor, dividend;
3594
3595 int count_fls, nsec_fls, frequency_fls, sec_fls;
3596
3597 count_fls = fls64(count);
3598 nsec_fls = fls64(nsec);
3599 frequency_fls = fls64(frequency);
3600 sec_fls = 30;
3601
3602 /*
3603 * We got @count in @nsec, with a target of sample_freq HZ
3604 * the target period becomes:
3605 *
3606 * @count * 10^9
3607 * period = -------------------
3608 * @nsec * sample_freq
3609 *
3610 */
3611
3612 /*
3613 * Reduce accuracy by one bit such that @a and @b converge
3614 * to a similar magnitude.
3615 */
3616 #define REDUCE_FLS(a, b) \
3617 do { \
3618 if (a##_fls > b##_fls) { \
3619 a >>= 1; \
3620 a##_fls--; \
3621 } else { \
3622 b >>= 1; \
3623 b##_fls--; \
3624 } \
3625 } while (0)
3626
3627 /*
3628 * Reduce accuracy until either term fits in a u64, then proceed with
3629 * the other, so that finally we can do a u64/u64 division.
3630 */
3631 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3632 REDUCE_FLS(nsec, frequency);
3633 REDUCE_FLS(sec, count);
3634 }
3635
3636 if (count_fls + sec_fls > 64) {
3637 divisor = nsec * frequency;
3638
3639 while (count_fls + sec_fls > 64) {
3640 REDUCE_FLS(count, sec);
3641 divisor >>= 1;
3642 }
3643
3644 dividend = count * sec;
3645 } else {
3646 dividend = count * sec;
3647
3648 while (nsec_fls + frequency_fls > 64) {
3649 REDUCE_FLS(nsec, frequency);
3650 dividend >>= 1;
3651 }
3652
3653 divisor = nsec * frequency;
3654 }
3655
3656 if (!divisor)
3657 return dividend;
3658
3659 return div64_u64(dividend, divisor);
3660 }
3661
3662 static DEFINE_PER_CPU(int, perf_throttled_count);
3663 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3664
perf_adjust_period(struct perf_event * event,u64 nsec,u64 count,bool disable)3665 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3666 {
3667 struct hw_perf_event *hwc = &event->hw;
3668 s64 period, sample_period;
3669 s64 delta;
3670
3671 period = perf_calculate_period(event, nsec, count);
3672
3673 delta = (s64)(period - hwc->sample_period);
3674 delta = (delta + 7) / 8; /* low pass filter */
3675
3676 sample_period = hwc->sample_period + delta;
3677
3678 if (!sample_period)
3679 sample_period = 1;
3680
3681 hwc->sample_period = sample_period;
3682
3683 if (local64_read(&hwc->period_left) > 8*sample_period) {
3684 if (disable)
3685 event->pmu->stop(event, PERF_EF_UPDATE);
3686
3687 local64_set(&hwc->period_left, 0);
3688
3689 if (disable)
3690 event->pmu->start(event, PERF_EF_RELOAD);
3691 }
3692 }
3693
3694 /*
3695 * combine freq adjustment with unthrottling to avoid two passes over the
3696 * events. At the same time, make sure, having freq events does not change
3697 * the rate of unthrottling as that would introduce bias.
3698 */
perf_adjust_freq_unthr_context(struct perf_event_context * ctx,int needs_unthr)3699 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3700 int needs_unthr)
3701 {
3702 struct perf_event *event;
3703 struct hw_perf_event *hwc;
3704 u64 now, period = TICK_NSEC;
3705 s64 delta;
3706
3707 /*
3708 * only need to iterate over all events iff:
3709 * - context have events in frequency mode (needs freq adjust)
3710 * - there are events to unthrottle on this cpu
3711 */
3712 if (!(ctx->nr_freq || needs_unthr))
3713 return;
3714
3715 raw_spin_lock(&ctx->lock);
3716 perf_pmu_disable(ctx->pmu);
3717
3718 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3719 if (event->state != PERF_EVENT_STATE_ACTIVE)
3720 continue;
3721
3722 if (!event_filter_match(event))
3723 continue;
3724
3725 perf_pmu_disable(event->pmu);
3726
3727 hwc = &event->hw;
3728
3729 if (hwc->interrupts == MAX_INTERRUPTS) {
3730 hwc->interrupts = 0;
3731 perf_log_throttle(event, 1);
3732 event->pmu->start(event, 0);
3733 }
3734
3735 if (!event->attr.freq || !event->attr.sample_freq)
3736 goto next;
3737
3738 /*
3739 * stop the event and update event->count
3740 */
3741 event->pmu->stop(event, PERF_EF_UPDATE);
3742
3743 now = local64_read(&event->count);
3744 delta = now - hwc->freq_count_stamp;
3745 hwc->freq_count_stamp = now;
3746
3747 /*
3748 * restart the event
3749 * reload only if value has changed
3750 * we have stopped the event so tell that
3751 * to perf_adjust_period() to avoid stopping it
3752 * twice.
3753 */
3754 if (delta > 0)
3755 perf_adjust_period(event, period, delta, false);
3756
3757 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3758 next:
3759 perf_pmu_enable(event->pmu);
3760 }
3761
3762 perf_pmu_enable(ctx->pmu);
3763 raw_spin_unlock(&ctx->lock);
3764 }
3765
3766 /*
3767 * Move @event to the tail of the @ctx's elegible events.
3768 */
rotate_ctx(struct perf_event_context * ctx,struct perf_event * event)3769 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
3770 {
3771 /*
3772 * Rotate the first entry last of non-pinned groups. Rotation might be
3773 * disabled by the inheritance code.
3774 */
3775 if (ctx->rotate_disable)
3776 return;
3777
3778 perf_event_groups_delete(&ctx->flexible_groups, event);
3779 perf_event_groups_insert(&ctx->flexible_groups, event);
3780 }
3781
3782 /* pick an event from the flexible_groups to rotate */
3783 static inline struct perf_event *
ctx_event_to_rotate(struct perf_event_context * ctx)3784 ctx_event_to_rotate(struct perf_event_context *ctx)
3785 {
3786 struct perf_event *event;
3787
3788 /* pick the first active flexible event */
3789 event = list_first_entry_or_null(&ctx->flexible_active,
3790 struct perf_event, active_list);
3791
3792 /* if no active flexible event, pick the first event */
3793 if (!event) {
3794 event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
3795 typeof(*event), group_node);
3796 }
3797
3798 return event;
3799 }
3800
perf_rotate_context(struct perf_cpu_context * cpuctx)3801 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
3802 {
3803 struct perf_event *cpu_event = NULL, *task_event = NULL;
3804 struct perf_event_context *task_ctx = NULL;
3805 int cpu_rotate, task_rotate;
3806
3807 /*
3808 * Since we run this from IRQ context, nobody can install new
3809 * events, thus the event count values are stable.
3810 */
3811
3812 cpu_rotate = cpuctx->ctx.rotate_necessary;
3813 task_ctx = cpuctx->task_ctx;
3814 task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
3815
3816 if (!(cpu_rotate || task_rotate))
3817 return false;
3818
3819 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3820 perf_pmu_disable(cpuctx->ctx.pmu);
3821
3822 if (task_rotate)
3823 task_event = ctx_event_to_rotate(task_ctx);
3824 if (cpu_rotate)
3825 cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
3826
3827 /*
3828 * As per the order given at ctx_resched() first 'pop' task flexible
3829 * and then, if needed CPU flexible.
3830 */
3831 if (task_event || (task_ctx && cpu_event))
3832 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
3833 if (cpu_event)
3834 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3835
3836 if (task_event)
3837 rotate_ctx(task_ctx, task_event);
3838 if (cpu_event)
3839 rotate_ctx(&cpuctx->ctx, cpu_event);
3840
3841 perf_event_sched_in(cpuctx, task_ctx, current);
3842
3843 perf_pmu_enable(cpuctx->ctx.pmu);
3844 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3845
3846 return true;
3847 }
3848
perf_event_task_tick(void)3849 void perf_event_task_tick(void)
3850 {
3851 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3852 struct perf_event_context *ctx, *tmp;
3853 int throttled;
3854
3855 lockdep_assert_irqs_disabled();
3856
3857 __this_cpu_inc(perf_throttled_seq);
3858 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3859 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3860
3861 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3862 perf_adjust_freq_unthr_context(ctx, throttled);
3863 }
3864
event_enable_on_exec(struct perf_event * event,struct perf_event_context * ctx)3865 static int event_enable_on_exec(struct perf_event *event,
3866 struct perf_event_context *ctx)
3867 {
3868 if (!event->attr.enable_on_exec)
3869 return 0;
3870
3871 event->attr.enable_on_exec = 0;
3872 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3873 return 0;
3874
3875 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3876
3877 return 1;
3878 }
3879
3880 /*
3881 * Enable all of a task's events that have been marked enable-on-exec.
3882 * This expects task == current.
3883 */
perf_event_enable_on_exec(int ctxn)3884 static void perf_event_enable_on_exec(int ctxn)
3885 {
3886 struct perf_event_context *ctx, *clone_ctx = NULL;
3887 enum event_type_t event_type = 0;
3888 struct perf_cpu_context *cpuctx;
3889 struct perf_event *event;
3890 unsigned long flags;
3891 int enabled = 0;
3892
3893 local_irq_save(flags);
3894 ctx = current->perf_event_ctxp[ctxn];
3895 if (!ctx || !ctx->nr_events)
3896 goto out;
3897
3898 cpuctx = __get_cpu_context(ctx);
3899 perf_ctx_lock(cpuctx, ctx);
3900 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3901 list_for_each_entry(event, &ctx->event_list, event_entry) {
3902 enabled |= event_enable_on_exec(event, ctx);
3903 event_type |= get_event_type(event);
3904 }
3905
3906 /*
3907 * Unclone and reschedule this context if we enabled any event.
3908 */
3909 if (enabled) {
3910 clone_ctx = unclone_ctx(ctx);
3911 ctx_resched(cpuctx, ctx, event_type);
3912 } else {
3913 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3914 }
3915 perf_ctx_unlock(cpuctx, ctx);
3916
3917 out:
3918 local_irq_restore(flags);
3919
3920 if (clone_ctx)
3921 put_ctx(clone_ctx);
3922 }
3923
3924 struct perf_read_data {
3925 struct perf_event *event;
3926 bool group;
3927 int ret;
3928 };
3929
__perf_event_read_cpu(struct perf_event * event,int event_cpu)3930 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3931 {
3932 u16 local_pkg, event_pkg;
3933
3934 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3935 int local_cpu = smp_processor_id();
3936
3937 event_pkg = topology_physical_package_id(event_cpu);
3938 local_pkg = topology_physical_package_id(local_cpu);
3939
3940 if (event_pkg == local_pkg)
3941 return local_cpu;
3942 }
3943
3944 return event_cpu;
3945 }
3946
3947 /*
3948 * Cross CPU call to read the hardware event
3949 */
__perf_event_read(void * info)3950 static void __perf_event_read(void *info)
3951 {
3952 struct perf_read_data *data = info;
3953 struct perf_event *sub, *event = data->event;
3954 struct perf_event_context *ctx = event->ctx;
3955 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3956 struct pmu *pmu = event->pmu;
3957
3958 /*
3959 * If this is a task context, we need to check whether it is
3960 * the current task context of this cpu. If not it has been
3961 * scheduled out before the smp call arrived. In that case
3962 * event->count would have been updated to a recent sample
3963 * when the event was scheduled out.
3964 */
3965 if (ctx->task && cpuctx->task_ctx != ctx)
3966 return;
3967
3968 raw_spin_lock(&ctx->lock);
3969 if (ctx->is_active & EVENT_TIME) {
3970 update_context_time(ctx);
3971 update_cgrp_time_from_event(event);
3972 }
3973
3974 perf_event_update_time(event);
3975 if (data->group)
3976 perf_event_update_sibling_time(event);
3977
3978 if (event->state != PERF_EVENT_STATE_ACTIVE)
3979 goto unlock;
3980
3981 if (!data->group) {
3982 pmu->read(event);
3983 data->ret = 0;
3984 goto unlock;
3985 }
3986
3987 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3988
3989 pmu->read(event);
3990
3991 for_each_sibling_event(sub, event) {
3992 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3993 /*
3994 * Use sibling's PMU rather than @event's since
3995 * sibling could be on different (eg: software) PMU.
3996 */
3997 sub->pmu->read(sub);
3998 }
3999 }
4000
4001 data->ret = pmu->commit_txn(pmu);
4002
4003 unlock:
4004 raw_spin_unlock(&ctx->lock);
4005 }
4006
perf_event_count(struct perf_event * event)4007 static inline u64 perf_event_count(struct perf_event *event)
4008 {
4009 return local64_read(&event->count) + atomic64_read(&event->child_count);
4010 }
4011
4012 /*
4013 * NMI-safe method to read a local event, that is an event that
4014 * is:
4015 * - either for the current task, or for this CPU
4016 * - does not have inherit set, for inherited task events
4017 * will not be local and we cannot read them atomically
4018 * - must not have a pmu::count method
4019 */
perf_event_read_local(struct perf_event * event,u64 * value,u64 * enabled,u64 * running)4020 int perf_event_read_local(struct perf_event *event, u64 *value,
4021 u64 *enabled, u64 *running)
4022 {
4023 unsigned long flags;
4024 int ret = 0;
4025
4026 /*
4027 * Disabling interrupts avoids all counter scheduling (context
4028 * switches, timer based rotation and IPIs).
4029 */
4030 local_irq_save(flags);
4031
4032 /*
4033 * It must not be an event with inherit set, we cannot read
4034 * all child counters from atomic context.
4035 */
4036 if (event->attr.inherit) {
4037 ret = -EOPNOTSUPP;
4038 goto out;
4039 }
4040
4041 /* If this is a per-task event, it must be for current */
4042 if ((event->attach_state & PERF_ATTACH_TASK) &&
4043 event->hw.target != current) {
4044 ret = -EINVAL;
4045 goto out;
4046 }
4047
4048 /* If this is a per-CPU event, it must be for this CPU */
4049 if (!(event->attach_state & PERF_ATTACH_TASK) &&
4050 event->cpu != smp_processor_id()) {
4051 ret = -EINVAL;
4052 goto out;
4053 }
4054
4055 /* If this is a pinned event it must be running on this CPU */
4056 if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4057 ret = -EBUSY;
4058 goto out;
4059 }
4060
4061 /*
4062 * If the event is currently on this CPU, its either a per-task event,
4063 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4064 * oncpu == -1).
4065 */
4066 if (event->oncpu == smp_processor_id())
4067 event->pmu->read(event);
4068
4069 *value = local64_read(&event->count);
4070 if (enabled || running) {
4071 u64 now = event->shadow_ctx_time + perf_clock();
4072 u64 __enabled, __running;
4073
4074 __perf_update_times(event, now, &__enabled, &__running);
4075 if (enabled)
4076 *enabled = __enabled;
4077 if (running)
4078 *running = __running;
4079 }
4080 out:
4081 local_irq_restore(flags);
4082
4083 return ret;
4084 }
4085
perf_event_read(struct perf_event * event,bool group)4086 static int perf_event_read(struct perf_event *event, bool group)
4087 {
4088 enum perf_event_state state = READ_ONCE(event->state);
4089 int event_cpu, ret = 0;
4090
4091 /*
4092 * If event is enabled and currently active on a CPU, update the
4093 * value in the event structure:
4094 */
4095 again:
4096 if (state == PERF_EVENT_STATE_ACTIVE) {
4097 struct perf_read_data data;
4098
4099 /*
4100 * Orders the ->state and ->oncpu loads such that if we see
4101 * ACTIVE we must also see the right ->oncpu.
4102 *
4103 * Matches the smp_wmb() from event_sched_in().
4104 */
4105 smp_rmb();
4106
4107 event_cpu = READ_ONCE(event->oncpu);
4108 if ((unsigned)event_cpu >= nr_cpu_ids)
4109 return 0;
4110
4111 data = (struct perf_read_data){
4112 .event = event,
4113 .group = group,
4114 .ret = 0,
4115 };
4116
4117 preempt_disable();
4118 event_cpu = __perf_event_read_cpu(event, event_cpu);
4119
4120 /*
4121 * Purposely ignore the smp_call_function_single() return
4122 * value.
4123 *
4124 * If event_cpu isn't a valid CPU it means the event got
4125 * scheduled out and that will have updated the event count.
4126 *
4127 * Therefore, either way, we'll have an up-to-date event count
4128 * after this.
4129 */
4130 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4131 preempt_enable();
4132 ret = data.ret;
4133
4134 } else if (state == PERF_EVENT_STATE_INACTIVE) {
4135 struct perf_event_context *ctx = event->ctx;
4136 unsigned long flags;
4137
4138 raw_spin_lock_irqsave(&ctx->lock, flags);
4139 state = event->state;
4140 if (state != PERF_EVENT_STATE_INACTIVE) {
4141 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4142 goto again;
4143 }
4144
4145 /*
4146 * May read while context is not active (e.g., thread is
4147 * blocked), in that case we cannot update context time
4148 */
4149 if (ctx->is_active & EVENT_TIME) {
4150 update_context_time(ctx);
4151 update_cgrp_time_from_event(event);
4152 }
4153
4154 perf_event_update_time(event);
4155 if (group)
4156 perf_event_update_sibling_time(event);
4157 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4158 }
4159
4160 return ret;
4161 }
4162
4163 /*
4164 * Initialize the perf_event context in a task_struct:
4165 */
__perf_event_init_context(struct perf_event_context * ctx)4166 static void __perf_event_init_context(struct perf_event_context *ctx)
4167 {
4168 raw_spin_lock_init(&ctx->lock);
4169 mutex_init(&ctx->mutex);
4170 INIT_LIST_HEAD(&ctx->active_ctx_list);
4171 perf_event_groups_init(&ctx->pinned_groups);
4172 perf_event_groups_init(&ctx->flexible_groups);
4173 INIT_LIST_HEAD(&ctx->event_list);
4174 INIT_LIST_HEAD(&ctx->pinned_active);
4175 INIT_LIST_HEAD(&ctx->flexible_active);
4176 refcount_set(&ctx->refcount, 1);
4177 }
4178
4179 static struct perf_event_context *
alloc_perf_context(struct pmu * pmu,struct task_struct * task)4180 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4181 {
4182 struct perf_event_context *ctx;
4183
4184 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4185 if (!ctx)
4186 return NULL;
4187
4188 __perf_event_init_context(ctx);
4189 if (task)
4190 ctx->task = get_task_struct(task);
4191 ctx->pmu = pmu;
4192
4193 return ctx;
4194 }
4195
4196 static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)4197 find_lively_task_by_vpid(pid_t vpid)
4198 {
4199 struct task_struct *task;
4200
4201 rcu_read_lock();
4202 if (!vpid)
4203 task = current;
4204 else
4205 task = find_task_by_vpid(vpid);
4206 if (task)
4207 get_task_struct(task);
4208 rcu_read_unlock();
4209
4210 if (!task)
4211 return ERR_PTR(-ESRCH);
4212
4213 return task;
4214 }
4215
4216 /*
4217 * Returns a matching context with refcount and pincount.
4218 */
4219 static struct perf_event_context *
find_get_context(struct pmu * pmu,struct task_struct * task,struct perf_event * event)4220 find_get_context(struct pmu *pmu, struct task_struct *task,
4221 struct perf_event *event)
4222 {
4223 struct perf_event_context *ctx, *clone_ctx = NULL;
4224 struct perf_cpu_context *cpuctx;
4225 void *task_ctx_data = NULL;
4226 unsigned long flags;
4227 int ctxn, err;
4228 int cpu = event->cpu;
4229
4230 if (!task) {
4231 /* Must be root to operate on a CPU event: */
4232 err = perf_allow_cpu(&event->attr);
4233 if (err)
4234 return ERR_PTR(err);
4235
4236 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4237 ctx = &cpuctx->ctx;
4238 get_ctx(ctx);
4239 ++ctx->pin_count;
4240
4241 return ctx;
4242 }
4243
4244 err = -EINVAL;
4245 ctxn = pmu->task_ctx_nr;
4246 if (ctxn < 0)
4247 goto errout;
4248
4249 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4250 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
4251 if (!task_ctx_data) {
4252 err = -ENOMEM;
4253 goto errout;
4254 }
4255 }
4256
4257 retry:
4258 ctx = perf_lock_task_context(task, ctxn, &flags);
4259 if (ctx) {
4260 clone_ctx = unclone_ctx(ctx);
4261 ++ctx->pin_count;
4262
4263 if (task_ctx_data && !ctx->task_ctx_data) {
4264 ctx->task_ctx_data = task_ctx_data;
4265 task_ctx_data = NULL;
4266 }
4267 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4268
4269 if (clone_ctx)
4270 put_ctx(clone_ctx);
4271 } else {
4272 ctx = alloc_perf_context(pmu, task);
4273 err = -ENOMEM;
4274 if (!ctx)
4275 goto errout;
4276
4277 if (task_ctx_data) {
4278 ctx->task_ctx_data = task_ctx_data;
4279 task_ctx_data = NULL;
4280 }
4281
4282 err = 0;
4283 mutex_lock(&task->perf_event_mutex);
4284 /*
4285 * If it has already passed perf_event_exit_task().
4286 * we must see PF_EXITING, it takes this mutex too.
4287 */
4288 if (task->flags & PF_EXITING)
4289 err = -ESRCH;
4290 else if (task->perf_event_ctxp[ctxn])
4291 err = -EAGAIN;
4292 else {
4293 get_ctx(ctx);
4294 ++ctx->pin_count;
4295 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4296 }
4297 mutex_unlock(&task->perf_event_mutex);
4298
4299 if (unlikely(err)) {
4300 put_ctx(ctx);
4301
4302 if (err == -EAGAIN)
4303 goto retry;
4304 goto errout;
4305 }
4306 }
4307
4308 kfree(task_ctx_data);
4309 return ctx;
4310
4311 errout:
4312 kfree(task_ctx_data);
4313 return ERR_PTR(err);
4314 }
4315
4316 static void perf_event_free_filter(struct perf_event *event);
4317 static void perf_event_free_bpf_prog(struct perf_event *event);
4318
free_event_rcu(struct rcu_head * head)4319 static void free_event_rcu(struct rcu_head *head)
4320 {
4321 struct perf_event *event;
4322
4323 event = container_of(head, struct perf_event, rcu_head);
4324 if (event->ns)
4325 put_pid_ns(event->ns);
4326 perf_event_free_filter(event);
4327 kfree(event);
4328 }
4329
4330 static void ring_buffer_attach(struct perf_event *event,
4331 struct ring_buffer *rb);
4332
detach_sb_event(struct perf_event * event)4333 static void detach_sb_event(struct perf_event *event)
4334 {
4335 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4336
4337 raw_spin_lock(&pel->lock);
4338 list_del_rcu(&event->sb_list);
4339 raw_spin_unlock(&pel->lock);
4340 }
4341
is_sb_event(struct perf_event * event)4342 static bool is_sb_event(struct perf_event *event)
4343 {
4344 struct perf_event_attr *attr = &event->attr;
4345
4346 if (event->parent)
4347 return false;
4348
4349 if (event->attach_state & PERF_ATTACH_TASK)
4350 return false;
4351
4352 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4353 attr->comm || attr->comm_exec ||
4354 attr->task || attr->ksymbol ||
4355 attr->context_switch ||
4356 attr->bpf_event)
4357 return true;
4358 return false;
4359 }
4360
unaccount_pmu_sb_event(struct perf_event * event)4361 static void unaccount_pmu_sb_event(struct perf_event *event)
4362 {
4363 if (is_sb_event(event))
4364 detach_sb_event(event);
4365 }
4366
unaccount_event_cpu(struct perf_event * event,int cpu)4367 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4368 {
4369 if (event->parent)
4370 return;
4371
4372 if (is_cgroup_event(event))
4373 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4374 }
4375
4376 #ifdef CONFIG_NO_HZ_FULL
4377 static DEFINE_SPINLOCK(nr_freq_lock);
4378 #endif
4379
unaccount_freq_event_nohz(void)4380 static void unaccount_freq_event_nohz(void)
4381 {
4382 #ifdef CONFIG_NO_HZ_FULL
4383 spin_lock(&nr_freq_lock);
4384 if (atomic_dec_and_test(&nr_freq_events))
4385 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4386 spin_unlock(&nr_freq_lock);
4387 #endif
4388 }
4389
unaccount_freq_event(void)4390 static void unaccount_freq_event(void)
4391 {
4392 if (tick_nohz_full_enabled())
4393 unaccount_freq_event_nohz();
4394 else
4395 atomic_dec(&nr_freq_events);
4396 }
4397
unaccount_event(struct perf_event * event)4398 static void unaccount_event(struct perf_event *event)
4399 {
4400 bool dec = false;
4401
4402 if (event->parent)
4403 return;
4404
4405 if (event->attach_state & PERF_ATTACH_TASK)
4406 dec = true;
4407 if (event->attr.mmap || event->attr.mmap_data)
4408 atomic_dec(&nr_mmap_events);
4409 if (event->attr.comm)
4410 atomic_dec(&nr_comm_events);
4411 if (event->attr.namespaces)
4412 atomic_dec(&nr_namespaces_events);
4413 if (event->attr.task)
4414 atomic_dec(&nr_task_events);
4415 if (event->attr.freq)
4416 unaccount_freq_event();
4417 if (event->attr.context_switch) {
4418 dec = true;
4419 atomic_dec(&nr_switch_events);
4420 }
4421 if (is_cgroup_event(event))
4422 dec = true;
4423 if (has_branch_stack(event))
4424 dec = true;
4425 if (event->attr.ksymbol)
4426 atomic_dec(&nr_ksymbol_events);
4427 if (event->attr.bpf_event)
4428 atomic_dec(&nr_bpf_events);
4429
4430 if (dec) {
4431 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4432 schedule_delayed_work(&perf_sched_work, HZ);
4433 }
4434
4435 unaccount_event_cpu(event, event->cpu);
4436
4437 unaccount_pmu_sb_event(event);
4438 }
4439
perf_sched_delayed(struct work_struct * work)4440 static void perf_sched_delayed(struct work_struct *work)
4441 {
4442 mutex_lock(&perf_sched_mutex);
4443 if (atomic_dec_and_test(&perf_sched_count))
4444 static_branch_disable(&perf_sched_events);
4445 mutex_unlock(&perf_sched_mutex);
4446 }
4447
4448 /*
4449 * The following implement mutual exclusion of events on "exclusive" pmus
4450 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4451 * at a time, so we disallow creating events that might conflict, namely:
4452 *
4453 * 1) cpu-wide events in the presence of per-task events,
4454 * 2) per-task events in the presence of cpu-wide events,
4455 * 3) two matching events on the same context.
4456 *
4457 * The former two cases are handled in the allocation path (perf_event_alloc(),
4458 * _free_event()), the latter -- before the first perf_install_in_context().
4459 */
exclusive_event_init(struct perf_event * event)4460 static int exclusive_event_init(struct perf_event *event)
4461 {
4462 struct pmu *pmu = event->pmu;
4463
4464 if (!is_exclusive_pmu(pmu))
4465 return 0;
4466
4467 /*
4468 * Prevent co-existence of per-task and cpu-wide events on the
4469 * same exclusive pmu.
4470 *
4471 * Negative pmu::exclusive_cnt means there are cpu-wide
4472 * events on this "exclusive" pmu, positive means there are
4473 * per-task events.
4474 *
4475 * Since this is called in perf_event_alloc() path, event::ctx
4476 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4477 * to mean "per-task event", because unlike other attach states it
4478 * never gets cleared.
4479 */
4480 if (event->attach_state & PERF_ATTACH_TASK) {
4481 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4482 return -EBUSY;
4483 } else {
4484 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4485 return -EBUSY;
4486 }
4487
4488 return 0;
4489 }
4490
exclusive_event_destroy(struct perf_event * event)4491 static void exclusive_event_destroy(struct perf_event *event)
4492 {
4493 struct pmu *pmu = event->pmu;
4494
4495 if (!is_exclusive_pmu(pmu))
4496 return;
4497
4498 /* see comment in exclusive_event_init() */
4499 if (event->attach_state & PERF_ATTACH_TASK)
4500 atomic_dec(&pmu->exclusive_cnt);
4501 else
4502 atomic_inc(&pmu->exclusive_cnt);
4503 }
4504
exclusive_event_match(struct perf_event * e1,struct perf_event * e2)4505 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4506 {
4507 if ((e1->pmu == e2->pmu) &&
4508 (e1->cpu == e2->cpu ||
4509 e1->cpu == -1 ||
4510 e2->cpu == -1))
4511 return true;
4512 return false;
4513 }
4514
exclusive_event_installable(struct perf_event * event,struct perf_event_context * ctx)4515 static bool exclusive_event_installable(struct perf_event *event,
4516 struct perf_event_context *ctx)
4517 {
4518 struct perf_event *iter_event;
4519 struct pmu *pmu = event->pmu;
4520
4521 lockdep_assert_held(&ctx->mutex);
4522
4523 if (!is_exclusive_pmu(pmu))
4524 return true;
4525
4526 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4527 if (exclusive_event_match(iter_event, event))
4528 return false;
4529 }
4530
4531 return true;
4532 }
4533
4534 static void perf_addr_filters_splice(struct perf_event *event,
4535 struct list_head *head);
4536
_free_event(struct perf_event * event)4537 static void _free_event(struct perf_event *event)
4538 {
4539 irq_work_sync(&event->pending);
4540
4541 unaccount_event(event);
4542
4543 security_perf_event_free(event);
4544
4545 if (event->rb) {
4546 /*
4547 * Can happen when we close an event with re-directed output.
4548 *
4549 * Since we have a 0 refcount, perf_mmap_close() will skip
4550 * over us; possibly making our ring_buffer_put() the last.
4551 */
4552 mutex_lock(&event->mmap_mutex);
4553 ring_buffer_attach(event, NULL);
4554 mutex_unlock(&event->mmap_mutex);
4555 }
4556
4557 if (is_cgroup_event(event))
4558 perf_detach_cgroup(event);
4559
4560 if (!event->parent) {
4561 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4562 put_callchain_buffers();
4563 }
4564
4565 perf_event_free_bpf_prog(event);
4566 perf_addr_filters_splice(event, NULL);
4567 kfree(event->addr_filter_ranges);
4568
4569 if (event->destroy)
4570 event->destroy(event);
4571
4572 /*
4573 * Must be after ->destroy(), due to uprobe_perf_close() using
4574 * hw.target.
4575 */
4576 if (event->hw.target)
4577 put_task_struct(event->hw.target);
4578
4579 /*
4580 * perf_event_free_task() relies on put_ctx() being 'last', in particular
4581 * all task references must be cleaned up.
4582 */
4583 if (event->ctx)
4584 put_ctx(event->ctx);
4585
4586 exclusive_event_destroy(event);
4587 module_put(event->pmu->module);
4588
4589 call_rcu(&event->rcu_head, free_event_rcu);
4590 }
4591
4592 /*
4593 * Used to free events which have a known refcount of 1, such as in error paths
4594 * where the event isn't exposed yet and inherited events.
4595 */
free_event(struct perf_event * event)4596 static void free_event(struct perf_event *event)
4597 {
4598 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4599 "unexpected event refcount: %ld; ptr=%p\n",
4600 atomic_long_read(&event->refcount), event)) {
4601 /* leak to avoid use-after-free */
4602 return;
4603 }
4604
4605 _free_event(event);
4606 }
4607
4608 /*
4609 * Remove user event from the owner task.
4610 */
perf_remove_from_owner(struct perf_event * event)4611 static void perf_remove_from_owner(struct perf_event *event)
4612 {
4613 struct task_struct *owner;
4614
4615 rcu_read_lock();
4616 /*
4617 * Matches the smp_store_release() in perf_event_exit_task(). If we
4618 * observe !owner it means the list deletion is complete and we can
4619 * indeed free this event, otherwise we need to serialize on
4620 * owner->perf_event_mutex.
4621 */
4622 owner = READ_ONCE(event->owner);
4623 if (owner) {
4624 /*
4625 * Since delayed_put_task_struct() also drops the last
4626 * task reference we can safely take a new reference
4627 * while holding the rcu_read_lock().
4628 */
4629 get_task_struct(owner);
4630 }
4631 rcu_read_unlock();
4632
4633 if (owner) {
4634 /*
4635 * If we're here through perf_event_exit_task() we're already
4636 * holding ctx->mutex which would be an inversion wrt. the
4637 * normal lock order.
4638 *
4639 * However we can safely take this lock because its the child
4640 * ctx->mutex.
4641 */
4642 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4643
4644 /*
4645 * We have to re-check the event->owner field, if it is cleared
4646 * we raced with perf_event_exit_task(), acquiring the mutex
4647 * ensured they're done, and we can proceed with freeing the
4648 * event.
4649 */
4650 if (event->owner) {
4651 list_del_init(&event->owner_entry);
4652 smp_store_release(&event->owner, NULL);
4653 }
4654 mutex_unlock(&owner->perf_event_mutex);
4655 put_task_struct(owner);
4656 }
4657 }
4658
put_event(struct perf_event * event)4659 static void put_event(struct perf_event *event)
4660 {
4661 if (!atomic_long_dec_and_test(&event->refcount))
4662 return;
4663
4664 _free_event(event);
4665 }
4666
4667 /*
4668 * Kill an event dead; while event:refcount will preserve the event
4669 * object, it will not preserve its functionality. Once the last 'user'
4670 * gives up the object, we'll destroy the thing.
4671 */
perf_event_release_kernel(struct perf_event * event)4672 int perf_event_release_kernel(struct perf_event *event)
4673 {
4674 struct perf_event_context *ctx = event->ctx;
4675 struct perf_event *child, *tmp;
4676 LIST_HEAD(free_list);
4677
4678 /*
4679 * If we got here through err_file: fput(event_file); we will not have
4680 * attached to a context yet.
4681 */
4682 if (!ctx) {
4683 WARN_ON_ONCE(event->attach_state &
4684 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4685 goto no_ctx;
4686 }
4687
4688 if (!is_kernel_event(event))
4689 perf_remove_from_owner(event);
4690
4691 ctx = perf_event_ctx_lock(event);
4692 WARN_ON_ONCE(ctx->parent_ctx);
4693 perf_remove_from_context(event, DETACH_GROUP);
4694
4695 raw_spin_lock_irq(&ctx->lock);
4696 /*
4697 * Mark this event as STATE_DEAD, there is no external reference to it
4698 * anymore.
4699 *
4700 * Anybody acquiring event->child_mutex after the below loop _must_
4701 * also see this, most importantly inherit_event() which will avoid
4702 * placing more children on the list.
4703 *
4704 * Thus this guarantees that we will in fact observe and kill _ALL_
4705 * child events.
4706 */
4707 event->state = PERF_EVENT_STATE_DEAD;
4708 raw_spin_unlock_irq(&ctx->lock);
4709
4710 perf_event_ctx_unlock(event, ctx);
4711
4712 again:
4713 mutex_lock(&event->child_mutex);
4714 list_for_each_entry(child, &event->child_list, child_list) {
4715
4716 /*
4717 * Cannot change, child events are not migrated, see the
4718 * comment with perf_event_ctx_lock_nested().
4719 */
4720 ctx = READ_ONCE(child->ctx);
4721 /*
4722 * Since child_mutex nests inside ctx::mutex, we must jump
4723 * through hoops. We start by grabbing a reference on the ctx.
4724 *
4725 * Since the event cannot get freed while we hold the
4726 * child_mutex, the context must also exist and have a !0
4727 * reference count.
4728 */
4729 get_ctx(ctx);
4730
4731 /*
4732 * Now that we have a ctx ref, we can drop child_mutex, and
4733 * acquire ctx::mutex without fear of it going away. Then we
4734 * can re-acquire child_mutex.
4735 */
4736 mutex_unlock(&event->child_mutex);
4737 mutex_lock(&ctx->mutex);
4738 mutex_lock(&event->child_mutex);
4739
4740 /*
4741 * Now that we hold ctx::mutex and child_mutex, revalidate our
4742 * state, if child is still the first entry, it didn't get freed
4743 * and we can continue doing so.
4744 */
4745 tmp = list_first_entry_or_null(&event->child_list,
4746 struct perf_event, child_list);
4747 if (tmp == child) {
4748 perf_remove_from_context(child, DETACH_GROUP);
4749 list_move(&child->child_list, &free_list);
4750 /*
4751 * This matches the refcount bump in inherit_event();
4752 * this can't be the last reference.
4753 */
4754 put_event(event);
4755 }
4756
4757 mutex_unlock(&event->child_mutex);
4758 mutex_unlock(&ctx->mutex);
4759 put_ctx(ctx);
4760 goto again;
4761 }
4762 mutex_unlock(&event->child_mutex);
4763
4764 list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4765 void *var = &child->ctx->refcount;
4766
4767 list_del(&child->child_list);
4768 free_event(child);
4769
4770 /*
4771 * Wake any perf_event_free_task() waiting for this event to be
4772 * freed.
4773 */
4774 smp_mb(); /* pairs with wait_var_event() */
4775 wake_up_var(var);
4776 }
4777
4778 no_ctx:
4779 put_event(event); /* Must be the 'last' reference */
4780 return 0;
4781 }
4782 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4783
4784 /*
4785 * Called when the last reference to the file is gone.
4786 */
perf_release(struct inode * inode,struct file * file)4787 static int perf_release(struct inode *inode, struct file *file)
4788 {
4789 perf_event_release_kernel(file->private_data);
4790 return 0;
4791 }
4792
__perf_event_read_value(struct perf_event * event,u64 * enabled,u64 * running)4793 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4794 {
4795 struct perf_event *child;
4796 u64 total = 0;
4797
4798 *enabled = 0;
4799 *running = 0;
4800
4801 mutex_lock(&event->child_mutex);
4802
4803 (void)perf_event_read(event, false);
4804 total += perf_event_count(event);
4805
4806 *enabled += event->total_time_enabled +
4807 atomic64_read(&event->child_total_time_enabled);
4808 *running += event->total_time_running +
4809 atomic64_read(&event->child_total_time_running);
4810
4811 list_for_each_entry(child, &event->child_list, child_list) {
4812 (void)perf_event_read(child, false);
4813 total += perf_event_count(child);
4814 *enabled += child->total_time_enabled;
4815 *running += child->total_time_running;
4816 }
4817 mutex_unlock(&event->child_mutex);
4818
4819 return total;
4820 }
4821
perf_event_read_value(struct perf_event * event,u64 * enabled,u64 * running)4822 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4823 {
4824 struct perf_event_context *ctx;
4825 u64 count;
4826
4827 ctx = perf_event_ctx_lock(event);
4828 count = __perf_event_read_value(event, enabled, running);
4829 perf_event_ctx_unlock(event, ctx);
4830
4831 return count;
4832 }
4833 EXPORT_SYMBOL_GPL(perf_event_read_value);
4834
__perf_read_group_add(struct perf_event * leader,u64 read_format,u64 * values)4835 static int __perf_read_group_add(struct perf_event *leader,
4836 u64 read_format, u64 *values)
4837 {
4838 struct perf_event_context *ctx = leader->ctx;
4839 struct perf_event *sub;
4840 unsigned long flags;
4841 int n = 1; /* skip @nr */
4842 int ret;
4843
4844 ret = perf_event_read(leader, true);
4845 if (ret)
4846 return ret;
4847
4848 raw_spin_lock_irqsave(&ctx->lock, flags);
4849
4850 /*
4851 * Since we co-schedule groups, {enabled,running} times of siblings
4852 * will be identical to those of the leader, so we only publish one
4853 * set.
4854 */
4855 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4856 values[n++] += leader->total_time_enabled +
4857 atomic64_read(&leader->child_total_time_enabled);
4858 }
4859
4860 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4861 values[n++] += leader->total_time_running +
4862 atomic64_read(&leader->child_total_time_running);
4863 }
4864
4865 /*
4866 * Write {count,id} tuples for every sibling.
4867 */
4868 values[n++] += perf_event_count(leader);
4869 if (read_format & PERF_FORMAT_ID)
4870 values[n++] = primary_event_id(leader);
4871
4872 for_each_sibling_event(sub, leader) {
4873 values[n++] += perf_event_count(sub);
4874 if (read_format & PERF_FORMAT_ID)
4875 values[n++] = primary_event_id(sub);
4876 }
4877
4878 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4879 return 0;
4880 }
4881
perf_read_group(struct perf_event * event,u64 read_format,char __user * buf)4882 static int perf_read_group(struct perf_event *event,
4883 u64 read_format, char __user *buf)
4884 {
4885 struct perf_event *leader = event->group_leader, *child;
4886 struct perf_event_context *ctx = leader->ctx;
4887 int ret;
4888 u64 *values;
4889
4890 lockdep_assert_held(&ctx->mutex);
4891
4892 values = kzalloc(event->read_size, GFP_KERNEL);
4893 if (!values)
4894 return -ENOMEM;
4895
4896 values[0] = 1 + leader->nr_siblings;
4897
4898 /*
4899 * By locking the child_mutex of the leader we effectively
4900 * lock the child list of all siblings.. XXX explain how.
4901 */
4902 mutex_lock(&leader->child_mutex);
4903
4904 ret = __perf_read_group_add(leader, read_format, values);
4905 if (ret)
4906 goto unlock;
4907
4908 list_for_each_entry(child, &leader->child_list, child_list) {
4909 ret = __perf_read_group_add(child, read_format, values);
4910 if (ret)
4911 goto unlock;
4912 }
4913
4914 mutex_unlock(&leader->child_mutex);
4915
4916 ret = event->read_size;
4917 if (copy_to_user(buf, values, event->read_size))
4918 ret = -EFAULT;
4919 goto out;
4920
4921 unlock:
4922 mutex_unlock(&leader->child_mutex);
4923 out:
4924 kfree(values);
4925 return ret;
4926 }
4927
perf_read_one(struct perf_event * event,u64 read_format,char __user * buf)4928 static int perf_read_one(struct perf_event *event,
4929 u64 read_format, char __user *buf)
4930 {
4931 u64 enabled, running;
4932 u64 values[4];
4933 int n = 0;
4934
4935 values[n++] = __perf_event_read_value(event, &enabled, &running);
4936 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4937 values[n++] = enabled;
4938 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4939 values[n++] = running;
4940 if (read_format & PERF_FORMAT_ID)
4941 values[n++] = primary_event_id(event);
4942
4943 if (copy_to_user(buf, values, n * sizeof(u64)))
4944 return -EFAULT;
4945
4946 return n * sizeof(u64);
4947 }
4948
is_event_hup(struct perf_event * event)4949 static bool is_event_hup(struct perf_event *event)
4950 {
4951 bool no_children;
4952
4953 if (event->state > PERF_EVENT_STATE_EXIT)
4954 return false;
4955
4956 mutex_lock(&event->child_mutex);
4957 no_children = list_empty(&event->child_list);
4958 mutex_unlock(&event->child_mutex);
4959 return no_children;
4960 }
4961
4962 /*
4963 * Read the performance event - simple non blocking version for now
4964 */
4965 static ssize_t
__perf_read(struct perf_event * event,char __user * buf,size_t count)4966 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4967 {
4968 u64 read_format = event->attr.read_format;
4969 int ret;
4970
4971 /*
4972 * Return end-of-file for a read on an event that is in
4973 * error state (i.e. because it was pinned but it couldn't be
4974 * scheduled on to the CPU at some point).
4975 */
4976 if (event->state == PERF_EVENT_STATE_ERROR)
4977 return 0;
4978
4979 if (count < event->read_size)
4980 return -ENOSPC;
4981
4982 WARN_ON_ONCE(event->ctx->parent_ctx);
4983 if (read_format & PERF_FORMAT_GROUP)
4984 ret = perf_read_group(event, read_format, buf);
4985 else
4986 ret = perf_read_one(event, read_format, buf);
4987
4988 return ret;
4989 }
4990
4991 static ssize_t
perf_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)4992 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4993 {
4994 struct perf_event *event = file->private_data;
4995 struct perf_event_context *ctx;
4996 int ret;
4997
4998 ret = security_perf_event_read(event);
4999 if (ret)
5000 return ret;
5001
5002 ctx = perf_event_ctx_lock(event);
5003 ret = __perf_read(event, buf, count);
5004 perf_event_ctx_unlock(event, ctx);
5005
5006 return ret;
5007 }
5008
perf_poll(struct file * file,poll_table * wait)5009 static __poll_t perf_poll(struct file *file, poll_table *wait)
5010 {
5011 struct perf_event *event = file->private_data;
5012 struct ring_buffer *rb;
5013 __poll_t events = EPOLLHUP;
5014
5015 poll_wait(file, &event->waitq, wait);
5016
5017 if (is_event_hup(event))
5018 return events;
5019
5020 /*
5021 * Pin the event->rb by taking event->mmap_mutex; otherwise
5022 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5023 */
5024 mutex_lock(&event->mmap_mutex);
5025 rb = event->rb;
5026 if (rb)
5027 events = atomic_xchg(&rb->poll, 0);
5028 mutex_unlock(&event->mmap_mutex);
5029 return events;
5030 }
5031
_perf_event_reset(struct perf_event * event)5032 static void _perf_event_reset(struct perf_event *event)
5033 {
5034 (void)perf_event_read(event, false);
5035 local64_set(&event->count, 0);
5036 perf_event_update_userpage(event);
5037 }
5038
5039 /*
5040 * Holding the top-level event's child_mutex means that any
5041 * descendant process that has inherited this event will block
5042 * in perf_event_exit_event() if it goes to exit, thus satisfying the
5043 * task existence requirements of perf_event_enable/disable.
5044 */
perf_event_for_each_child(struct perf_event * event,void (* func)(struct perf_event *))5045 static void perf_event_for_each_child(struct perf_event *event,
5046 void (*func)(struct perf_event *))
5047 {
5048 struct perf_event *child;
5049
5050 WARN_ON_ONCE(event->ctx->parent_ctx);
5051
5052 mutex_lock(&event->child_mutex);
5053 func(event);
5054 list_for_each_entry(child, &event->child_list, child_list)
5055 func(child);
5056 mutex_unlock(&event->child_mutex);
5057 }
5058
perf_event_for_each(struct perf_event * event,void (* func)(struct perf_event *))5059 static void perf_event_for_each(struct perf_event *event,
5060 void (*func)(struct perf_event *))
5061 {
5062 struct perf_event_context *ctx = event->ctx;
5063 struct perf_event *sibling;
5064
5065 lockdep_assert_held(&ctx->mutex);
5066
5067 event = event->group_leader;
5068
5069 perf_event_for_each_child(event, func);
5070 for_each_sibling_event(sibling, event)
5071 perf_event_for_each_child(sibling, func);
5072 }
5073
__perf_event_period(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)5074 static void __perf_event_period(struct perf_event *event,
5075 struct perf_cpu_context *cpuctx,
5076 struct perf_event_context *ctx,
5077 void *info)
5078 {
5079 u64 value = *((u64 *)info);
5080 bool active;
5081
5082 if (event->attr.freq) {
5083 event->attr.sample_freq = value;
5084 } else {
5085 event->attr.sample_period = value;
5086 event->hw.sample_period = value;
5087 }
5088
5089 active = (event->state == PERF_EVENT_STATE_ACTIVE);
5090 if (active) {
5091 perf_pmu_disable(ctx->pmu);
5092 /*
5093 * We could be throttled; unthrottle now to avoid the tick
5094 * trying to unthrottle while we already re-started the event.
5095 */
5096 if (event->hw.interrupts == MAX_INTERRUPTS) {
5097 event->hw.interrupts = 0;
5098 perf_log_throttle(event, 1);
5099 }
5100 event->pmu->stop(event, PERF_EF_UPDATE);
5101 }
5102
5103 local64_set(&event->hw.period_left, 0);
5104
5105 if (active) {
5106 event->pmu->start(event, PERF_EF_RELOAD);
5107 perf_pmu_enable(ctx->pmu);
5108 }
5109 }
5110
perf_event_check_period(struct perf_event * event,u64 value)5111 static int perf_event_check_period(struct perf_event *event, u64 value)
5112 {
5113 return event->pmu->check_period(event, value);
5114 }
5115
perf_event_period(struct perf_event * event,u64 __user * arg)5116 static int perf_event_period(struct perf_event *event, u64 __user *arg)
5117 {
5118 u64 value;
5119
5120 if (!is_sampling_event(event))
5121 return -EINVAL;
5122
5123 if (copy_from_user(&value, arg, sizeof(value)))
5124 return -EFAULT;
5125
5126 if (!value)
5127 return -EINVAL;
5128
5129 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5130 return -EINVAL;
5131
5132 if (perf_event_check_period(event, value))
5133 return -EINVAL;
5134
5135 if (!event->attr.freq && (value & (1ULL << 63)))
5136 return -EINVAL;
5137
5138 event_function_call(event, __perf_event_period, &value);
5139
5140 return 0;
5141 }
5142
5143 static const struct file_operations perf_fops;
5144
perf_fget_light(int fd,struct fd * p)5145 static inline int perf_fget_light(int fd, struct fd *p)
5146 {
5147 struct fd f = fdget(fd);
5148 if (!f.file)
5149 return -EBADF;
5150
5151 if (f.file->f_op != &perf_fops) {
5152 fdput(f);
5153 return -EBADF;
5154 }
5155 *p = f;
5156 return 0;
5157 }
5158
5159 static int perf_event_set_output(struct perf_event *event,
5160 struct perf_event *output_event);
5161 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5162 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5163 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5164 struct perf_event_attr *attr);
5165
_perf_ioctl(struct perf_event * event,unsigned int cmd,unsigned long arg)5166 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5167 {
5168 void (*func)(struct perf_event *);
5169 u32 flags = arg;
5170
5171 switch (cmd) {
5172 case PERF_EVENT_IOC_ENABLE:
5173 func = _perf_event_enable;
5174 break;
5175 case PERF_EVENT_IOC_DISABLE:
5176 func = _perf_event_disable;
5177 break;
5178 case PERF_EVENT_IOC_RESET:
5179 func = _perf_event_reset;
5180 break;
5181
5182 case PERF_EVENT_IOC_REFRESH:
5183 return _perf_event_refresh(event, arg);
5184
5185 case PERF_EVENT_IOC_PERIOD:
5186 return perf_event_period(event, (u64 __user *)arg);
5187
5188 case PERF_EVENT_IOC_ID:
5189 {
5190 u64 id = primary_event_id(event);
5191
5192 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5193 return -EFAULT;
5194 return 0;
5195 }
5196
5197 case PERF_EVENT_IOC_SET_OUTPUT:
5198 {
5199 int ret;
5200 if (arg != -1) {
5201 struct perf_event *output_event;
5202 struct fd output;
5203 ret = perf_fget_light(arg, &output);
5204 if (ret)
5205 return ret;
5206 output_event = output.file->private_data;
5207 ret = perf_event_set_output(event, output_event);
5208 fdput(output);
5209 } else {
5210 ret = perf_event_set_output(event, NULL);
5211 }
5212 return ret;
5213 }
5214
5215 case PERF_EVENT_IOC_SET_FILTER:
5216 return perf_event_set_filter(event, (void __user *)arg);
5217
5218 case PERF_EVENT_IOC_SET_BPF:
5219 return perf_event_set_bpf_prog(event, arg);
5220
5221 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5222 struct ring_buffer *rb;
5223
5224 rcu_read_lock();
5225 rb = rcu_dereference(event->rb);
5226 if (!rb || !rb->nr_pages) {
5227 rcu_read_unlock();
5228 return -EINVAL;
5229 }
5230 rb_toggle_paused(rb, !!arg);
5231 rcu_read_unlock();
5232 return 0;
5233 }
5234
5235 case PERF_EVENT_IOC_QUERY_BPF:
5236 return perf_event_query_prog_array(event, (void __user *)arg);
5237
5238 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5239 struct perf_event_attr new_attr;
5240 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5241 &new_attr);
5242
5243 if (err)
5244 return err;
5245
5246 return perf_event_modify_attr(event, &new_attr);
5247 }
5248 default:
5249 return -ENOTTY;
5250 }
5251
5252 if (flags & PERF_IOC_FLAG_GROUP)
5253 perf_event_for_each(event, func);
5254 else
5255 perf_event_for_each_child(event, func);
5256
5257 return 0;
5258 }
5259
perf_ioctl(struct file * file,unsigned int cmd,unsigned long arg)5260 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5261 {
5262 struct perf_event *event = file->private_data;
5263 struct perf_event_context *ctx;
5264 long ret;
5265
5266 /* Treat ioctl like writes as it is likely a mutating operation. */
5267 ret = security_perf_event_write(event);
5268 if (ret)
5269 return ret;
5270
5271 ctx = perf_event_ctx_lock(event);
5272 ret = _perf_ioctl(event, cmd, arg);
5273 perf_event_ctx_unlock(event, ctx);
5274
5275 return ret;
5276 }
5277
5278 #ifdef CONFIG_COMPAT
perf_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)5279 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5280 unsigned long arg)
5281 {
5282 switch (_IOC_NR(cmd)) {
5283 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5284 case _IOC_NR(PERF_EVENT_IOC_ID):
5285 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5286 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5287 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5288 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5289 cmd &= ~IOCSIZE_MASK;
5290 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5291 }
5292 break;
5293 }
5294 return perf_ioctl(file, cmd, arg);
5295 }
5296 #else
5297 # define perf_compat_ioctl NULL
5298 #endif
5299
perf_event_task_enable(void)5300 int perf_event_task_enable(void)
5301 {
5302 struct perf_event_context *ctx;
5303 struct perf_event *event;
5304
5305 mutex_lock(¤t->perf_event_mutex);
5306 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) {
5307 ctx = perf_event_ctx_lock(event);
5308 perf_event_for_each_child(event, _perf_event_enable);
5309 perf_event_ctx_unlock(event, ctx);
5310 }
5311 mutex_unlock(¤t->perf_event_mutex);
5312
5313 return 0;
5314 }
5315
perf_event_task_disable(void)5316 int perf_event_task_disable(void)
5317 {
5318 struct perf_event_context *ctx;
5319 struct perf_event *event;
5320
5321 mutex_lock(¤t->perf_event_mutex);
5322 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) {
5323 ctx = perf_event_ctx_lock(event);
5324 perf_event_for_each_child(event, _perf_event_disable);
5325 perf_event_ctx_unlock(event, ctx);
5326 }
5327 mutex_unlock(¤t->perf_event_mutex);
5328
5329 return 0;
5330 }
5331
perf_event_index(struct perf_event * event)5332 static int perf_event_index(struct perf_event *event)
5333 {
5334 if (event->hw.state & PERF_HES_STOPPED)
5335 return 0;
5336
5337 if (event->state != PERF_EVENT_STATE_ACTIVE)
5338 return 0;
5339
5340 return event->pmu->event_idx(event);
5341 }
5342
calc_timer_values(struct perf_event * event,u64 * now,u64 * enabled,u64 * running)5343 static void calc_timer_values(struct perf_event *event,
5344 u64 *now,
5345 u64 *enabled,
5346 u64 *running)
5347 {
5348 u64 ctx_time;
5349
5350 *now = perf_clock();
5351 ctx_time = event->shadow_ctx_time + *now;
5352 __perf_update_times(event, ctx_time, enabled, running);
5353 }
5354
perf_event_init_userpage(struct perf_event * event)5355 static void perf_event_init_userpage(struct perf_event *event)
5356 {
5357 struct perf_event_mmap_page *userpg;
5358 struct ring_buffer *rb;
5359
5360 rcu_read_lock();
5361 rb = rcu_dereference(event->rb);
5362 if (!rb)
5363 goto unlock;
5364
5365 userpg = rb->user_page;
5366
5367 /* Allow new userspace to detect that bit 0 is deprecated */
5368 userpg->cap_bit0_is_deprecated = 1;
5369 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5370 userpg->data_offset = PAGE_SIZE;
5371 userpg->data_size = perf_data_size(rb);
5372
5373 unlock:
5374 rcu_read_unlock();
5375 }
5376
arch_perf_update_userpage(struct perf_event * event,struct perf_event_mmap_page * userpg,u64 now)5377 void __weak arch_perf_update_userpage(
5378 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5379 {
5380 }
5381
5382 /*
5383 * Callers need to ensure there can be no nesting of this function, otherwise
5384 * the seqlock logic goes bad. We can not serialize this because the arch
5385 * code calls this from NMI context.
5386 */
perf_event_update_userpage(struct perf_event * event)5387 void perf_event_update_userpage(struct perf_event *event)
5388 {
5389 struct perf_event_mmap_page *userpg;
5390 struct ring_buffer *rb;
5391 u64 enabled, running, now;
5392
5393 rcu_read_lock();
5394 rb = rcu_dereference(event->rb);
5395 if (!rb)
5396 goto unlock;
5397
5398 /*
5399 * compute total_time_enabled, total_time_running
5400 * based on snapshot values taken when the event
5401 * was last scheduled in.
5402 *
5403 * we cannot simply called update_context_time()
5404 * because of locking issue as we can be called in
5405 * NMI context
5406 */
5407 calc_timer_values(event, &now, &enabled, &running);
5408
5409 userpg = rb->user_page;
5410 /*
5411 * Disable preemption to guarantee consistent time stamps are stored to
5412 * the user page.
5413 */
5414 preempt_disable();
5415 ++userpg->lock;
5416 barrier();
5417 userpg->index = perf_event_index(event);
5418 userpg->offset = perf_event_count(event);
5419 if (userpg->index)
5420 userpg->offset -= local64_read(&event->hw.prev_count);
5421
5422 userpg->time_enabled = enabled +
5423 atomic64_read(&event->child_total_time_enabled);
5424
5425 userpg->time_running = running +
5426 atomic64_read(&event->child_total_time_running);
5427
5428 arch_perf_update_userpage(event, userpg, now);
5429
5430 barrier();
5431 ++userpg->lock;
5432 preempt_enable();
5433 unlock:
5434 rcu_read_unlock();
5435 }
5436 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5437
perf_mmap_fault(struct vm_fault * vmf)5438 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5439 {
5440 struct perf_event *event = vmf->vma->vm_file->private_data;
5441 struct ring_buffer *rb;
5442 vm_fault_t ret = VM_FAULT_SIGBUS;
5443
5444 if (vmf->flags & FAULT_FLAG_MKWRITE) {
5445 if (vmf->pgoff == 0)
5446 ret = 0;
5447 return ret;
5448 }
5449
5450 rcu_read_lock();
5451 rb = rcu_dereference(event->rb);
5452 if (!rb)
5453 goto unlock;
5454
5455 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5456 goto unlock;
5457
5458 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5459 if (!vmf->page)
5460 goto unlock;
5461
5462 get_page(vmf->page);
5463 vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5464 vmf->page->index = vmf->pgoff;
5465
5466 ret = 0;
5467 unlock:
5468 rcu_read_unlock();
5469
5470 return ret;
5471 }
5472
ring_buffer_attach(struct perf_event * event,struct ring_buffer * rb)5473 static void ring_buffer_attach(struct perf_event *event,
5474 struct ring_buffer *rb)
5475 {
5476 struct ring_buffer *old_rb = NULL;
5477 unsigned long flags;
5478
5479 if (event->rb) {
5480 /*
5481 * Should be impossible, we set this when removing
5482 * event->rb_entry and wait/clear when adding event->rb_entry.
5483 */
5484 WARN_ON_ONCE(event->rcu_pending);
5485
5486 old_rb = event->rb;
5487 spin_lock_irqsave(&old_rb->event_lock, flags);
5488 list_del_rcu(&event->rb_entry);
5489 spin_unlock_irqrestore(&old_rb->event_lock, flags);
5490
5491 event->rcu_batches = get_state_synchronize_rcu();
5492 event->rcu_pending = 1;
5493 }
5494
5495 if (rb) {
5496 if (event->rcu_pending) {
5497 cond_synchronize_rcu(event->rcu_batches);
5498 event->rcu_pending = 0;
5499 }
5500
5501 spin_lock_irqsave(&rb->event_lock, flags);
5502 list_add_rcu(&event->rb_entry, &rb->event_list);
5503 spin_unlock_irqrestore(&rb->event_lock, flags);
5504 }
5505
5506 /*
5507 * Avoid racing with perf_mmap_close(AUX): stop the event
5508 * before swizzling the event::rb pointer; if it's getting
5509 * unmapped, its aux_mmap_count will be 0 and it won't
5510 * restart. See the comment in __perf_pmu_output_stop().
5511 *
5512 * Data will inevitably be lost when set_output is done in
5513 * mid-air, but then again, whoever does it like this is
5514 * not in for the data anyway.
5515 */
5516 if (has_aux(event))
5517 perf_event_stop(event, 0);
5518
5519 rcu_assign_pointer(event->rb, rb);
5520
5521 if (old_rb) {
5522 ring_buffer_put(old_rb);
5523 /*
5524 * Since we detached before setting the new rb, so that we
5525 * could attach the new rb, we could have missed a wakeup.
5526 * Provide it now.
5527 */
5528 wake_up_all(&event->waitq);
5529 }
5530 }
5531
ring_buffer_wakeup(struct perf_event * event)5532 static void ring_buffer_wakeup(struct perf_event *event)
5533 {
5534 struct ring_buffer *rb;
5535
5536 rcu_read_lock();
5537 rb = rcu_dereference(event->rb);
5538 if (rb) {
5539 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5540 wake_up_all(&event->waitq);
5541 }
5542 rcu_read_unlock();
5543 }
5544
ring_buffer_get(struct perf_event * event)5545 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5546 {
5547 struct ring_buffer *rb;
5548
5549 rcu_read_lock();
5550 rb = rcu_dereference(event->rb);
5551 if (rb) {
5552 if (!refcount_inc_not_zero(&rb->refcount))
5553 rb = NULL;
5554 }
5555 rcu_read_unlock();
5556
5557 return rb;
5558 }
5559
ring_buffer_put(struct ring_buffer * rb)5560 void ring_buffer_put(struct ring_buffer *rb)
5561 {
5562 if (!refcount_dec_and_test(&rb->refcount))
5563 return;
5564
5565 WARN_ON_ONCE(!list_empty(&rb->event_list));
5566
5567 call_rcu(&rb->rcu_head, rb_free_rcu);
5568 }
5569
perf_mmap_open(struct vm_area_struct * vma)5570 static void perf_mmap_open(struct vm_area_struct *vma)
5571 {
5572 struct perf_event *event = vma->vm_file->private_data;
5573
5574 atomic_inc(&event->mmap_count);
5575 atomic_inc(&event->rb->mmap_count);
5576
5577 if (vma->vm_pgoff)
5578 atomic_inc(&event->rb->aux_mmap_count);
5579
5580 if (event->pmu->event_mapped)
5581 event->pmu->event_mapped(event, vma->vm_mm);
5582 }
5583
5584 static void perf_pmu_output_stop(struct perf_event *event);
5585
5586 /*
5587 * A buffer can be mmap()ed multiple times; either directly through the same
5588 * event, or through other events by use of perf_event_set_output().
5589 *
5590 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5591 * the buffer here, where we still have a VM context. This means we need
5592 * to detach all events redirecting to us.
5593 */
perf_mmap_close(struct vm_area_struct * vma)5594 static void perf_mmap_close(struct vm_area_struct *vma)
5595 {
5596 struct perf_event *event = vma->vm_file->private_data;
5597
5598 struct ring_buffer *rb = ring_buffer_get(event);
5599 struct user_struct *mmap_user = rb->mmap_user;
5600 int mmap_locked = rb->mmap_locked;
5601 unsigned long size = perf_data_size(rb);
5602
5603 if (event->pmu->event_unmapped)
5604 event->pmu->event_unmapped(event, vma->vm_mm);
5605
5606 /*
5607 * rb->aux_mmap_count will always drop before rb->mmap_count and
5608 * event->mmap_count, so it is ok to use event->mmap_mutex to
5609 * serialize with perf_mmap here.
5610 */
5611 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5612 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5613 /*
5614 * Stop all AUX events that are writing to this buffer,
5615 * so that we can free its AUX pages and corresponding PMU
5616 * data. Note that after rb::aux_mmap_count dropped to zero,
5617 * they won't start any more (see perf_aux_output_begin()).
5618 */
5619 perf_pmu_output_stop(event);
5620
5621 /* now it's safe to free the pages */
5622 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
5623 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
5624
5625 /* this has to be the last one */
5626 rb_free_aux(rb);
5627 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
5628
5629 mutex_unlock(&event->mmap_mutex);
5630 }
5631
5632 atomic_dec(&rb->mmap_count);
5633
5634 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5635 goto out_put;
5636
5637 ring_buffer_attach(event, NULL);
5638 mutex_unlock(&event->mmap_mutex);
5639
5640 /* If there's still other mmap()s of this buffer, we're done. */
5641 if (atomic_read(&rb->mmap_count))
5642 goto out_put;
5643
5644 /*
5645 * No other mmap()s, detach from all other events that might redirect
5646 * into the now unreachable buffer. Somewhat complicated by the
5647 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5648 */
5649 again:
5650 rcu_read_lock();
5651 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5652 if (!atomic_long_inc_not_zero(&event->refcount)) {
5653 /*
5654 * This event is en-route to free_event() which will
5655 * detach it and remove it from the list.
5656 */
5657 continue;
5658 }
5659 rcu_read_unlock();
5660
5661 mutex_lock(&event->mmap_mutex);
5662 /*
5663 * Check we didn't race with perf_event_set_output() which can
5664 * swizzle the rb from under us while we were waiting to
5665 * acquire mmap_mutex.
5666 *
5667 * If we find a different rb; ignore this event, a next
5668 * iteration will no longer find it on the list. We have to
5669 * still restart the iteration to make sure we're not now
5670 * iterating the wrong list.
5671 */
5672 if (event->rb == rb)
5673 ring_buffer_attach(event, NULL);
5674
5675 mutex_unlock(&event->mmap_mutex);
5676 put_event(event);
5677
5678 /*
5679 * Restart the iteration; either we're on the wrong list or
5680 * destroyed its integrity by doing a deletion.
5681 */
5682 goto again;
5683 }
5684 rcu_read_unlock();
5685
5686 /*
5687 * It could be there's still a few 0-ref events on the list; they'll
5688 * get cleaned up by free_event() -- they'll also still have their
5689 * ref on the rb and will free it whenever they are done with it.
5690 *
5691 * Aside from that, this buffer is 'fully' detached and unmapped,
5692 * undo the VM accounting.
5693 */
5694
5695 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
5696 &mmap_user->locked_vm);
5697 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
5698 free_uid(mmap_user);
5699
5700 out_put:
5701 ring_buffer_put(rb); /* could be last */
5702 }
5703
5704 static const struct vm_operations_struct perf_mmap_vmops = {
5705 .open = perf_mmap_open,
5706 .close = perf_mmap_close, /* non mergeable */
5707 .fault = perf_mmap_fault,
5708 .page_mkwrite = perf_mmap_fault,
5709 };
5710
perf_mmap(struct file * file,struct vm_area_struct * vma)5711 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5712 {
5713 struct perf_event *event = file->private_data;
5714 unsigned long user_locked, user_lock_limit;
5715 struct user_struct *user = current_user();
5716 unsigned long locked, lock_limit;
5717 struct ring_buffer *rb = NULL;
5718 unsigned long vma_size;
5719 unsigned long nr_pages;
5720 long user_extra = 0, extra = 0;
5721 int ret = 0, flags = 0;
5722
5723 /*
5724 * Don't allow mmap() of inherited per-task counters. This would
5725 * create a performance issue due to all children writing to the
5726 * same rb.
5727 */
5728 if (event->cpu == -1 && event->attr.inherit)
5729 return -EINVAL;
5730
5731 if (!(vma->vm_flags & VM_SHARED))
5732 return -EINVAL;
5733
5734 ret = security_perf_event_read(event);
5735 if (ret)
5736 return ret;
5737
5738 vma_size = vma->vm_end - vma->vm_start;
5739
5740 if (vma->vm_pgoff == 0) {
5741 nr_pages = (vma_size / PAGE_SIZE) - 1;
5742 } else {
5743 /*
5744 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5745 * mapped, all subsequent mappings should have the same size
5746 * and offset. Must be above the normal perf buffer.
5747 */
5748 u64 aux_offset, aux_size;
5749
5750 if (!event->rb)
5751 return -EINVAL;
5752
5753 nr_pages = vma_size / PAGE_SIZE;
5754
5755 mutex_lock(&event->mmap_mutex);
5756 ret = -EINVAL;
5757
5758 rb = event->rb;
5759 if (!rb)
5760 goto aux_unlock;
5761
5762 aux_offset = READ_ONCE(rb->user_page->aux_offset);
5763 aux_size = READ_ONCE(rb->user_page->aux_size);
5764
5765 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5766 goto aux_unlock;
5767
5768 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5769 goto aux_unlock;
5770
5771 /* already mapped with a different offset */
5772 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5773 goto aux_unlock;
5774
5775 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5776 goto aux_unlock;
5777
5778 /* already mapped with a different size */
5779 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5780 goto aux_unlock;
5781
5782 if (!is_power_of_2(nr_pages))
5783 goto aux_unlock;
5784
5785 if (!atomic_inc_not_zero(&rb->mmap_count))
5786 goto aux_unlock;
5787
5788 if (rb_has_aux(rb)) {
5789 atomic_inc(&rb->aux_mmap_count);
5790 ret = 0;
5791 goto unlock;
5792 }
5793
5794 atomic_set(&rb->aux_mmap_count, 1);
5795 user_extra = nr_pages;
5796
5797 goto accounting;
5798 }
5799
5800 /*
5801 * If we have rb pages ensure they're a power-of-two number, so we
5802 * can do bitmasks instead of modulo.
5803 */
5804 if (nr_pages != 0 && !is_power_of_2(nr_pages))
5805 return -EINVAL;
5806
5807 if (vma_size != PAGE_SIZE * (1 + nr_pages))
5808 return -EINVAL;
5809
5810 WARN_ON_ONCE(event->ctx->parent_ctx);
5811 again:
5812 mutex_lock(&event->mmap_mutex);
5813 if (event->rb) {
5814 if (event->rb->nr_pages != nr_pages) {
5815 ret = -EINVAL;
5816 goto unlock;
5817 }
5818
5819 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5820 /*
5821 * Raced against perf_mmap_close() through
5822 * perf_event_set_output(). Try again, hope for better
5823 * luck.
5824 */
5825 mutex_unlock(&event->mmap_mutex);
5826 goto again;
5827 }
5828
5829 goto unlock;
5830 }
5831
5832 user_extra = nr_pages + 1;
5833
5834 accounting:
5835 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5836
5837 /*
5838 * Increase the limit linearly with more CPUs:
5839 */
5840 user_lock_limit *= num_online_cpus();
5841
5842 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5843
5844 if (user_locked <= user_lock_limit) {
5845 /* charge all to locked_vm */
5846 } else if (atomic_long_read(&user->locked_vm) >= user_lock_limit) {
5847 /* charge all to pinned_vm */
5848 extra = user_extra;
5849 user_extra = 0;
5850 } else {
5851 /*
5852 * charge locked_vm until it hits user_lock_limit;
5853 * charge the rest from pinned_vm
5854 */
5855 extra = user_locked - user_lock_limit;
5856 user_extra -= extra;
5857 }
5858
5859 lock_limit = rlimit(RLIMIT_MEMLOCK);
5860 lock_limit >>= PAGE_SHIFT;
5861 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
5862
5863 if ((locked > lock_limit) && perf_is_paranoid() &&
5864 !capable(CAP_IPC_LOCK)) {
5865 ret = -EPERM;
5866 goto unlock;
5867 }
5868
5869 WARN_ON(!rb && event->rb);
5870
5871 if (vma->vm_flags & VM_WRITE)
5872 flags |= RING_BUFFER_WRITABLE;
5873
5874 if (!rb) {
5875 rb = rb_alloc(nr_pages,
5876 event->attr.watermark ? event->attr.wakeup_watermark : 0,
5877 event->cpu, flags);
5878
5879 if (!rb) {
5880 ret = -ENOMEM;
5881 goto unlock;
5882 }
5883
5884 atomic_set(&rb->mmap_count, 1);
5885 rb->mmap_user = get_current_user();
5886 rb->mmap_locked = extra;
5887
5888 ring_buffer_attach(event, rb);
5889
5890 perf_event_init_userpage(event);
5891 perf_event_update_userpage(event);
5892 } else {
5893 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5894 event->attr.aux_watermark, flags);
5895 if (!ret)
5896 rb->aux_mmap_locked = extra;
5897 }
5898
5899 unlock:
5900 if (!ret) {
5901 atomic_long_add(user_extra, &user->locked_vm);
5902 atomic64_add(extra, &vma->vm_mm->pinned_vm);
5903
5904 atomic_inc(&event->mmap_count);
5905 } else if (rb) {
5906 atomic_dec(&rb->mmap_count);
5907 }
5908 aux_unlock:
5909 mutex_unlock(&event->mmap_mutex);
5910
5911 /*
5912 * Since pinned accounting is per vm we cannot allow fork() to copy our
5913 * vma.
5914 */
5915 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5916 vma->vm_ops = &perf_mmap_vmops;
5917
5918 if (event->pmu->event_mapped)
5919 event->pmu->event_mapped(event, vma->vm_mm);
5920
5921 return ret;
5922 }
5923
perf_fasync(int fd,struct file * filp,int on)5924 static int perf_fasync(int fd, struct file *filp, int on)
5925 {
5926 struct inode *inode = file_inode(filp);
5927 struct perf_event *event = filp->private_data;
5928 int retval;
5929
5930 inode_lock(inode);
5931 retval = fasync_helper(fd, filp, on, &event->fasync);
5932 inode_unlock(inode);
5933
5934 if (retval < 0)
5935 return retval;
5936
5937 return 0;
5938 }
5939
5940 static const struct file_operations perf_fops = {
5941 .llseek = no_llseek,
5942 .release = perf_release,
5943 .read = perf_read,
5944 .poll = perf_poll,
5945 .unlocked_ioctl = perf_ioctl,
5946 .compat_ioctl = perf_compat_ioctl,
5947 .mmap = perf_mmap,
5948 .fasync = perf_fasync,
5949 };
5950
5951 /*
5952 * Perf event wakeup
5953 *
5954 * If there's data, ensure we set the poll() state and publish everything
5955 * to user-space before waking everybody up.
5956 */
5957
perf_event_fasync(struct perf_event * event)5958 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5959 {
5960 /* only the parent has fasync state */
5961 if (event->parent)
5962 event = event->parent;
5963 return &event->fasync;
5964 }
5965
perf_event_wakeup(struct perf_event * event)5966 void perf_event_wakeup(struct perf_event *event)
5967 {
5968 ring_buffer_wakeup(event);
5969
5970 if (event->pending_kill) {
5971 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5972 event->pending_kill = 0;
5973 }
5974 }
5975
perf_pending_event_disable(struct perf_event * event)5976 static void perf_pending_event_disable(struct perf_event *event)
5977 {
5978 int cpu = READ_ONCE(event->pending_disable);
5979
5980 if (cpu < 0)
5981 return;
5982
5983 if (cpu == smp_processor_id()) {
5984 WRITE_ONCE(event->pending_disable, -1);
5985 perf_event_disable_local(event);
5986 return;
5987 }
5988
5989 /*
5990 * CPU-A CPU-B
5991 *
5992 * perf_event_disable_inatomic()
5993 * @pending_disable = CPU-A;
5994 * irq_work_queue();
5995 *
5996 * sched-out
5997 * @pending_disable = -1;
5998 *
5999 * sched-in
6000 * perf_event_disable_inatomic()
6001 * @pending_disable = CPU-B;
6002 * irq_work_queue(); // FAILS
6003 *
6004 * irq_work_run()
6005 * perf_pending_event()
6006 *
6007 * But the event runs on CPU-B and wants disabling there.
6008 */
6009 irq_work_queue_on(&event->pending, cpu);
6010 }
6011
perf_pending_event(struct irq_work * entry)6012 static void perf_pending_event(struct irq_work *entry)
6013 {
6014 struct perf_event *event = container_of(entry, struct perf_event, pending);
6015 int rctx;
6016
6017 rctx = perf_swevent_get_recursion_context();
6018 /*
6019 * If we 'fail' here, that's OK, it means recursion is already disabled
6020 * and we won't recurse 'further'.
6021 */
6022
6023 perf_pending_event_disable(event);
6024
6025 if (event->pending_wakeup) {
6026 event->pending_wakeup = 0;
6027 perf_event_wakeup(event);
6028 }
6029
6030 if (rctx >= 0)
6031 perf_swevent_put_recursion_context(rctx);
6032 }
6033
6034 /*
6035 * We assume there is only KVM supporting the callbacks.
6036 * Later on, we might change it to a list if there is
6037 * another virtualization implementation supporting the callbacks.
6038 */
6039 struct perf_guest_info_callbacks *perf_guest_cbs;
6040
perf_register_guest_info_callbacks(struct perf_guest_info_callbacks * cbs)6041 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6042 {
6043 perf_guest_cbs = cbs;
6044 return 0;
6045 }
6046 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6047
perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks * cbs)6048 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6049 {
6050 perf_guest_cbs = NULL;
6051 return 0;
6052 }
6053 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6054
6055 static void
perf_output_sample_regs(struct perf_output_handle * handle,struct pt_regs * regs,u64 mask)6056 perf_output_sample_regs(struct perf_output_handle *handle,
6057 struct pt_regs *regs, u64 mask)
6058 {
6059 int bit;
6060 DECLARE_BITMAP(_mask, 64);
6061
6062 bitmap_from_u64(_mask, mask);
6063 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6064 u64 val;
6065
6066 val = perf_reg_value(regs, bit);
6067 perf_output_put(handle, val);
6068 }
6069 }
6070
perf_sample_regs_user(struct perf_regs * regs_user,struct pt_regs * regs,struct pt_regs * regs_user_copy)6071 static void perf_sample_regs_user(struct perf_regs *regs_user,
6072 struct pt_regs *regs,
6073 struct pt_regs *regs_user_copy)
6074 {
6075 if (user_mode(regs)) {
6076 regs_user->abi = perf_reg_abi(current);
6077 regs_user->regs = regs;
6078 } else if (!(current->flags & PF_KTHREAD)) {
6079 perf_get_regs_user(regs_user, regs, regs_user_copy);
6080 } else {
6081 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6082 regs_user->regs = NULL;
6083 }
6084 }
6085
perf_sample_regs_intr(struct perf_regs * regs_intr,struct pt_regs * regs)6086 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6087 struct pt_regs *regs)
6088 {
6089 regs_intr->regs = regs;
6090 regs_intr->abi = perf_reg_abi(current);
6091 }
6092
6093
6094 /*
6095 * Get remaining task size from user stack pointer.
6096 *
6097 * It'd be better to take stack vma map and limit this more
6098 * precisely, but there's no way to get it safely under interrupt,
6099 * so using TASK_SIZE as limit.
6100 */
perf_ustack_task_size(struct pt_regs * regs)6101 static u64 perf_ustack_task_size(struct pt_regs *regs)
6102 {
6103 unsigned long addr = perf_user_stack_pointer(regs);
6104
6105 if (!addr || addr >= TASK_SIZE)
6106 return 0;
6107
6108 return TASK_SIZE - addr;
6109 }
6110
6111 static u16
perf_sample_ustack_size(u16 stack_size,u16 header_size,struct pt_regs * regs)6112 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6113 struct pt_regs *regs)
6114 {
6115 u64 task_size;
6116
6117 /* No regs, no stack pointer, no dump. */
6118 if (!regs)
6119 return 0;
6120
6121 /*
6122 * Check if we fit in with the requested stack size into the:
6123 * - TASK_SIZE
6124 * If we don't, we limit the size to the TASK_SIZE.
6125 *
6126 * - remaining sample size
6127 * If we don't, we customize the stack size to
6128 * fit in to the remaining sample size.
6129 */
6130
6131 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6132 stack_size = min(stack_size, (u16) task_size);
6133
6134 /* Current header size plus static size and dynamic size. */
6135 header_size += 2 * sizeof(u64);
6136
6137 /* Do we fit in with the current stack dump size? */
6138 if ((u16) (header_size + stack_size) < header_size) {
6139 /*
6140 * If we overflow the maximum size for the sample,
6141 * we customize the stack dump size to fit in.
6142 */
6143 stack_size = USHRT_MAX - header_size - sizeof(u64);
6144 stack_size = round_up(stack_size, sizeof(u64));
6145 }
6146
6147 return stack_size;
6148 }
6149
6150 static void
perf_output_sample_ustack(struct perf_output_handle * handle,u64 dump_size,struct pt_regs * regs)6151 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6152 struct pt_regs *regs)
6153 {
6154 /* Case of a kernel thread, nothing to dump */
6155 if (!regs) {
6156 u64 size = 0;
6157 perf_output_put(handle, size);
6158 } else {
6159 unsigned long sp;
6160 unsigned int rem;
6161 u64 dyn_size;
6162 mm_segment_t fs;
6163
6164 /*
6165 * We dump:
6166 * static size
6167 * - the size requested by user or the best one we can fit
6168 * in to the sample max size
6169 * data
6170 * - user stack dump data
6171 * dynamic size
6172 * - the actual dumped size
6173 */
6174
6175 /* Static size. */
6176 perf_output_put(handle, dump_size);
6177
6178 /* Data. */
6179 sp = perf_user_stack_pointer(regs);
6180 fs = get_fs();
6181 set_fs(USER_DS);
6182 rem = __output_copy_user(handle, (void *) sp, dump_size);
6183 set_fs(fs);
6184 dyn_size = dump_size - rem;
6185
6186 perf_output_skip(handle, rem);
6187
6188 /* Dynamic size. */
6189 perf_output_put(handle, dyn_size);
6190 }
6191 }
6192
__perf_event_header__init_id(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)6193 static void __perf_event_header__init_id(struct perf_event_header *header,
6194 struct perf_sample_data *data,
6195 struct perf_event *event)
6196 {
6197 u64 sample_type = event->attr.sample_type;
6198
6199 data->type = sample_type;
6200 header->size += event->id_header_size;
6201
6202 if (sample_type & PERF_SAMPLE_TID) {
6203 /* namespace issues */
6204 data->tid_entry.pid = perf_event_pid(event, current);
6205 data->tid_entry.tid = perf_event_tid(event, current);
6206 }
6207
6208 if (sample_type & PERF_SAMPLE_TIME)
6209 data->time = perf_event_clock(event);
6210
6211 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6212 data->id = primary_event_id(event);
6213
6214 if (sample_type & PERF_SAMPLE_STREAM_ID)
6215 data->stream_id = event->id;
6216
6217 if (sample_type & PERF_SAMPLE_CPU) {
6218 data->cpu_entry.cpu = raw_smp_processor_id();
6219 data->cpu_entry.reserved = 0;
6220 }
6221 }
6222
perf_event_header__init_id(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)6223 void perf_event_header__init_id(struct perf_event_header *header,
6224 struct perf_sample_data *data,
6225 struct perf_event *event)
6226 {
6227 if (event->attr.sample_id_all)
6228 __perf_event_header__init_id(header, data, event);
6229 }
6230
__perf_event__output_id_sample(struct perf_output_handle * handle,struct perf_sample_data * data)6231 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6232 struct perf_sample_data *data)
6233 {
6234 u64 sample_type = data->type;
6235
6236 if (sample_type & PERF_SAMPLE_TID)
6237 perf_output_put(handle, data->tid_entry);
6238
6239 if (sample_type & PERF_SAMPLE_TIME)
6240 perf_output_put(handle, data->time);
6241
6242 if (sample_type & PERF_SAMPLE_ID)
6243 perf_output_put(handle, data->id);
6244
6245 if (sample_type & PERF_SAMPLE_STREAM_ID)
6246 perf_output_put(handle, data->stream_id);
6247
6248 if (sample_type & PERF_SAMPLE_CPU)
6249 perf_output_put(handle, data->cpu_entry);
6250
6251 if (sample_type & PERF_SAMPLE_IDENTIFIER)
6252 perf_output_put(handle, data->id);
6253 }
6254
perf_event__output_id_sample(struct perf_event * event,struct perf_output_handle * handle,struct perf_sample_data * sample)6255 void perf_event__output_id_sample(struct perf_event *event,
6256 struct perf_output_handle *handle,
6257 struct perf_sample_data *sample)
6258 {
6259 if (event->attr.sample_id_all)
6260 __perf_event__output_id_sample(handle, sample);
6261 }
6262
perf_output_read_one(struct perf_output_handle * handle,struct perf_event * event,u64 enabled,u64 running)6263 static void perf_output_read_one(struct perf_output_handle *handle,
6264 struct perf_event *event,
6265 u64 enabled, u64 running)
6266 {
6267 u64 read_format = event->attr.read_format;
6268 u64 values[4];
6269 int n = 0;
6270
6271 values[n++] = perf_event_count(event);
6272 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6273 values[n++] = enabled +
6274 atomic64_read(&event->child_total_time_enabled);
6275 }
6276 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6277 values[n++] = running +
6278 atomic64_read(&event->child_total_time_running);
6279 }
6280 if (read_format & PERF_FORMAT_ID)
6281 values[n++] = primary_event_id(event);
6282
6283 __output_copy(handle, values, n * sizeof(u64));
6284 }
6285
perf_output_read_group(struct perf_output_handle * handle,struct perf_event * event,u64 enabled,u64 running)6286 static void perf_output_read_group(struct perf_output_handle *handle,
6287 struct perf_event *event,
6288 u64 enabled, u64 running)
6289 {
6290 struct perf_event *leader = event->group_leader, *sub;
6291 u64 read_format = event->attr.read_format;
6292 u64 values[5];
6293 int n = 0;
6294
6295 values[n++] = 1 + leader->nr_siblings;
6296
6297 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6298 values[n++] = enabled;
6299
6300 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6301 values[n++] = running;
6302
6303 if ((leader != event) &&
6304 (leader->state == PERF_EVENT_STATE_ACTIVE))
6305 leader->pmu->read(leader);
6306
6307 values[n++] = perf_event_count(leader);
6308 if (read_format & PERF_FORMAT_ID)
6309 values[n++] = primary_event_id(leader);
6310
6311 __output_copy(handle, values, n * sizeof(u64));
6312
6313 for_each_sibling_event(sub, leader) {
6314 n = 0;
6315
6316 if ((sub != event) &&
6317 (sub->state == PERF_EVENT_STATE_ACTIVE))
6318 sub->pmu->read(sub);
6319
6320 values[n++] = perf_event_count(sub);
6321 if (read_format & PERF_FORMAT_ID)
6322 values[n++] = primary_event_id(sub);
6323
6324 __output_copy(handle, values, n * sizeof(u64));
6325 }
6326 }
6327
6328 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6329 PERF_FORMAT_TOTAL_TIME_RUNNING)
6330
6331 /*
6332 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6333 *
6334 * The problem is that its both hard and excessively expensive to iterate the
6335 * child list, not to mention that its impossible to IPI the children running
6336 * on another CPU, from interrupt/NMI context.
6337 */
perf_output_read(struct perf_output_handle * handle,struct perf_event * event)6338 static void perf_output_read(struct perf_output_handle *handle,
6339 struct perf_event *event)
6340 {
6341 u64 enabled = 0, running = 0, now;
6342 u64 read_format = event->attr.read_format;
6343
6344 /*
6345 * compute total_time_enabled, total_time_running
6346 * based on snapshot values taken when the event
6347 * was last scheduled in.
6348 *
6349 * we cannot simply called update_context_time()
6350 * because of locking issue as we are called in
6351 * NMI context
6352 */
6353 if (read_format & PERF_FORMAT_TOTAL_TIMES)
6354 calc_timer_values(event, &now, &enabled, &running);
6355
6356 if (event->attr.read_format & PERF_FORMAT_GROUP)
6357 perf_output_read_group(handle, event, enabled, running);
6358 else
6359 perf_output_read_one(handle, event, enabled, running);
6360 }
6361
perf_output_sample(struct perf_output_handle * handle,struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)6362 void perf_output_sample(struct perf_output_handle *handle,
6363 struct perf_event_header *header,
6364 struct perf_sample_data *data,
6365 struct perf_event *event)
6366 {
6367 u64 sample_type = data->type;
6368
6369 perf_output_put(handle, *header);
6370
6371 if (sample_type & PERF_SAMPLE_IDENTIFIER)
6372 perf_output_put(handle, data->id);
6373
6374 if (sample_type & PERF_SAMPLE_IP)
6375 perf_output_put(handle, data->ip);
6376
6377 if (sample_type & PERF_SAMPLE_TID)
6378 perf_output_put(handle, data->tid_entry);
6379
6380 if (sample_type & PERF_SAMPLE_TIME)
6381 perf_output_put(handle, data->time);
6382
6383 if (sample_type & PERF_SAMPLE_ADDR)
6384 perf_output_put(handle, data->addr);
6385
6386 if (sample_type & PERF_SAMPLE_ID)
6387 perf_output_put(handle, data->id);
6388
6389 if (sample_type & PERF_SAMPLE_STREAM_ID)
6390 perf_output_put(handle, data->stream_id);
6391
6392 if (sample_type & PERF_SAMPLE_CPU)
6393 perf_output_put(handle, data->cpu_entry);
6394
6395 if (sample_type & PERF_SAMPLE_PERIOD)
6396 perf_output_put(handle, data->period);
6397
6398 if (sample_type & PERF_SAMPLE_READ)
6399 perf_output_read(handle, event);
6400
6401 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6402 int size = 1;
6403
6404 size += data->callchain->nr;
6405 size *= sizeof(u64);
6406 __output_copy(handle, data->callchain, size);
6407 }
6408
6409 if (sample_type & PERF_SAMPLE_RAW) {
6410 struct perf_raw_record *raw = data->raw;
6411
6412 if (raw) {
6413 struct perf_raw_frag *frag = &raw->frag;
6414
6415 perf_output_put(handle, raw->size);
6416 do {
6417 if (frag->copy) {
6418 __output_custom(handle, frag->copy,
6419 frag->data, frag->size);
6420 } else {
6421 __output_copy(handle, frag->data,
6422 frag->size);
6423 }
6424 if (perf_raw_frag_last(frag))
6425 break;
6426 frag = frag->next;
6427 } while (1);
6428 if (frag->pad)
6429 __output_skip(handle, NULL, frag->pad);
6430 } else {
6431 struct {
6432 u32 size;
6433 u32 data;
6434 } raw = {
6435 .size = sizeof(u32),
6436 .data = 0,
6437 };
6438 perf_output_put(handle, raw);
6439 }
6440 }
6441
6442 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6443 if (data->br_stack) {
6444 size_t size;
6445
6446 size = data->br_stack->nr
6447 * sizeof(struct perf_branch_entry);
6448
6449 perf_output_put(handle, data->br_stack->nr);
6450 perf_output_copy(handle, data->br_stack->entries, size);
6451 } else {
6452 /*
6453 * we always store at least the value of nr
6454 */
6455 u64 nr = 0;
6456 perf_output_put(handle, nr);
6457 }
6458 }
6459
6460 if (sample_type & PERF_SAMPLE_REGS_USER) {
6461 u64 abi = data->regs_user.abi;
6462
6463 /*
6464 * If there are no regs to dump, notice it through
6465 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6466 */
6467 perf_output_put(handle, abi);
6468
6469 if (abi) {
6470 u64 mask = event->attr.sample_regs_user;
6471 perf_output_sample_regs(handle,
6472 data->regs_user.regs,
6473 mask);
6474 }
6475 }
6476
6477 if (sample_type & PERF_SAMPLE_STACK_USER) {
6478 perf_output_sample_ustack(handle,
6479 data->stack_user_size,
6480 data->regs_user.regs);
6481 }
6482
6483 if (sample_type & PERF_SAMPLE_WEIGHT)
6484 perf_output_put(handle, data->weight);
6485
6486 if (sample_type & PERF_SAMPLE_DATA_SRC)
6487 perf_output_put(handle, data->data_src.val);
6488
6489 if (sample_type & PERF_SAMPLE_TRANSACTION)
6490 perf_output_put(handle, data->txn);
6491
6492 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6493 u64 abi = data->regs_intr.abi;
6494 /*
6495 * If there are no regs to dump, notice it through
6496 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6497 */
6498 perf_output_put(handle, abi);
6499
6500 if (abi) {
6501 u64 mask = event->attr.sample_regs_intr;
6502
6503 perf_output_sample_regs(handle,
6504 data->regs_intr.regs,
6505 mask);
6506 }
6507 }
6508
6509 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6510 perf_output_put(handle, data->phys_addr);
6511
6512 if (!event->attr.watermark) {
6513 int wakeup_events = event->attr.wakeup_events;
6514
6515 if (wakeup_events) {
6516 struct ring_buffer *rb = handle->rb;
6517 int events = local_inc_return(&rb->events);
6518
6519 if (events >= wakeup_events) {
6520 local_sub(wakeup_events, &rb->events);
6521 local_inc(&rb->wakeup);
6522 }
6523 }
6524 }
6525 }
6526
perf_virt_to_phys(u64 virt)6527 static u64 perf_virt_to_phys(u64 virt)
6528 {
6529 u64 phys_addr = 0;
6530 struct page *p = NULL;
6531
6532 if (!virt)
6533 return 0;
6534
6535 if (virt >= TASK_SIZE) {
6536 /* If it's vmalloc()d memory, leave phys_addr as 0 */
6537 if (virt_addr_valid((void *)(uintptr_t)virt) &&
6538 !(virt >= VMALLOC_START && virt < VMALLOC_END))
6539 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6540 } else {
6541 /*
6542 * Walking the pages tables for user address.
6543 * Interrupts are disabled, so it prevents any tear down
6544 * of the page tables.
6545 * Try IRQ-safe __get_user_pages_fast first.
6546 * If failed, leave phys_addr as 0.
6547 */
6548 if ((current->mm != NULL) &&
6549 (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6550 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6551
6552 if (p)
6553 put_page(p);
6554 }
6555
6556 return phys_addr;
6557 }
6558
6559 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6560
6561 struct perf_callchain_entry *
perf_callchain(struct perf_event * event,struct pt_regs * regs)6562 perf_callchain(struct perf_event *event, struct pt_regs *regs)
6563 {
6564 bool kernel = !event->attr.exclude_callchain_kernel;
6565 bool user = !event->attr.exclude_callchain_user;
6566 /* Disallow cross-task user callchains. */
6567 bool crosstask = event->ctx->task && event->ctx->task != current;
6568 const u32 max_stack = event->attr.sample_max_stack;
6569 struct perf_callchain_entry *callchain;
6570
6571 if (!kernel && !user)
6572 return &__empty_callchain;
6573
6574 callchain = get_perf_callchain(regs, 0, kernel, user,
6575 max_stack, crosstask, true);
6576 return callchain ?: &__empty_callchain;
6577 }
6578
perf_prepare_sample(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event,struct pt_regs * regs)6579 void perf_prepare_sample(struct perf_event_header *header,
6580 struct perf_sample_data *data,
6581 struct perf_event *event,
6582 struct pt_regs *regs)
6583 {
6584 u64 sample_type = event->attr.sample_type;
6585
6586 header->type = PERF_RECORD_SAMPLE;
6587 header->size = sizeof(*header) + event->header_size;
6588
6589 header->misc = 0;
6590 header->misc |= perf_misc_flags(regs);
6591
6592 __perf_event_header__init_id(header, data, event);
6593
6594 if (sample_type & PERF_SAMPLE_IP)
6595 data->ip = perf_instruction_pointer(regs);
6596
6597 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6598 int size = 1;
6599
6600 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
6601 data->callchain = perf_callchain(event, regs);
6602
6603 size += data->callchain->nr;
6604
6605 header->size += size * sizeof(u64);
6606 }
6607
6608 if (sample_type & PERF_SAMPLE_RAW) {
6609 struct perf_raw_record *raw = data->raw;
6610 int size;
6611
6612 if (raw) {
6613 struct perf_raw_frag *frag = &raw->frag;
6614 u32 sum = 0;
6615
6616 do {
6617 sum += frag->size;
6618 if (perf_raw_frag_last(frag))
6619 break;
6620 frag = frag->next;
6621 } while (1);
6622
6623 size = round_up(sum + sizeof(u32), sizeof(u64));
6624 raw->size = size - sizeof(u32);
6625 frag->pad = raw->size - sum;
6626 } else {
6627 size = sizeof(u64);
6628 }
6629
6630 header->size += size;
6631 }
6632
6633 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6634 int size = sizeof(u64); /* nr */
6635 if (data->br_stack) {
6636 size += data->br_stack->nr
6637 * sizeof(struct perf_branch_entry);
6638 }
6639 header->size += size;
6640 }
6641
6642 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6643 perf_sample_regs_user(&data->regs_user, regs,
6644 &data->regs_user_copy);
6645
6646 if (sample_type & PERF_SAMPLE_REGS_USER) {
6647 /* regs dump ABI info */
6648 int size = sizeof(u64);
6649
6650 if (data->regs_user.regs) {
6651 u64 mask = event->attr.sample_regs_user;
6652 size += hweight64(mask) * sizeof(u64);
6653 }
6654
6655 header->size += size;
6656 }
6657
6658 if (sample_type & PERF_SAMPLE_STACK_USER) {
6659 /*
6660 * Either we need PERF_SAMPLE_STACK_USER bit to be always
6661 * processed as the last one or have additional check added
6662 * in case new sample type is added, because we could eat
6663 * up the rest of the sample size.
6664 */
6665 u16 stack_size = event->attr.sample_stack_user;
6666 u16 size = sizeof(u64);
6667
6668 stack_size = perf_sample_ustack_size(stack_size, header->size,
6669 data->regs_user.regs);
6670
6671 /*
6672 * If there is something to dump, add space for the dump
6673 * itself and for the field that tells the dynamic size,
6674 * which is how many have been actually dumped.
6675 */
6676 if (stack_size)
6677 size += sizeof(u64) + stack_size;
6678
6679 data->stack_user_size = stack_size;
6680 header->size += size;
6681 }
6682
6683 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6684 /* regs dump ABI info */
6685 int size = sizeof(u64);
6686
6687 perf_sample_regs_intr(&data->regs_intr, regs);
6688
6689 if (data->regs_intr.regs) {
6690 u64 mask = event->attr.sample_regs_intr;
6691
6692 size += hweight64(mask) * sizeof(u64);
6693 }
6694
6695 header->size += size;
6696 }
6697
6698 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6699 data->phys_addr = perf_virt_to_phys(data->addr);
6700 }
6701
6702 static __always_inline int
__perf_event_output(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs,int (* output_begin)(struct perf_output_handle *,struct perf_event *,unsigned int))6703 __perf_event_output(struct perf_event *event,
6704 struct perf_sample_data *data,
6705 struct pt_regs *regs,
6706 int (*output_begin)(struct perf_output_handle *,
6707 struct perf_event *,
6708 unsigned int))
6709 {
6710 struct perf_output_handle handle;
6711 struct perf_event_header header;
6712 int err;
6713
6714 /* protect the callchain buffers */
6715 rcu_read_lock();
6716
6717 perf_prepare_sample(&header, data, event, regs);
6718
6719 err = output_begin(&handle, event, header.size);
6720 if (err)
6721 goto exit;
6722
6723 perf_output_sample(&handle, &header, data, event);
6724
6725 perf_output_end(&handle);
6726
6727 exit:
6728 rcu_read_unlock();
6729 return err;
6730 }
6731
6732 void
perf_event_output_forward(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)6733 perf_event_output_forward(struct perf_event *event,
6734 struct perf_sample_data *data,
6735 struct pt_regs *regs)
6736 {
6737 __perf_event_output(event, data, regs, perf_output_begin_forward);
6738 }
6739
6740 void
perf_event_output_backward(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)6741 perf_event_output_backward(struct perf_event *event,
6742 struct perf_sample_data *data,
6743 struct pt_regs *regs)
6744 {
6745 __perf_event_output(event, data, regs, perf_output_begin_backward);
6746 }
6747
6748 int
perf_event_output(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)6749 perf_event_output(struct perf_event *event,
6750 struct perf_sample_data *data,
6751 struct pt_regs *regs)
6752 {
6753 return __perf_event_output(event, data, regs, perf_output_begin);
6754 }
6755
6756 /*
6757 * read event_id
6758 */
6759
6760 struct perf_read_event {
6761 struct perf_event_header header;
6762
6763 u32 pid;
6764 u32 tid;
6765 };
6766
6767 static void
perf_event_read_event(struct perf_event * event,struct task_struct * task)6768 perf_event_read_event(struct perf_event *event,
6769 struct task_struct *task)
6770 {
6771 struct perf_output_handle handle;
6772 struct perf_sample_data sample;
6773 struct perf_read_event read_event = {
6774 .header = {
6775 .type = PERF_RECORD_READ,
6776 .misc = 0,
6777 .size = sizeof(read_event) + event->read_size,
6778 },
6779 .pid = perf_event_pid(event, task),
6780 .tid = perf_event_tid(event, task),
6781 };
6782 int ret;
6783
6784 perf_event_header__init_id(&read_event.header, &sample, event);
6785 ret = perf_output_begin(&handle, event, read_event.header.size);
6786 if (ret)
6787 return;
6788
6789 perf_output_put(&handle, read_event);
6790 perf_output_read(&handle, event);
6791 perf_event__output_id_sample(event, &handle, &sample);
6792
6793 perf_output_end(&handle);
6794 }
6795
6796 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6797
6798 static void
perf_iterate_ctx(struct perf_event_context * ctx,perf_iterate_f output,void * data,bool all)6799 perf_iterate_ctx(struct perf_event_context *ctx,
6800 perf_iterate_f output,
6801 void *data, bool all)
6802 {
6803 struct perf_event *event;
6804
6805 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6806 if (!all) {
6807 if (event->state < PERF_EVENT_STATE_INACTIVE)
6808 continue;
6809 if (!event_filter_match(event))
6810 continue;
6811 }
6812
6813 output(event, data);
6814 }
6815 }
6816
perf_iterate_sb_cpu(perf_iterate_f output,void * data)6817 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6818 {
6819 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6820 struct perf_event *event;
6821
6822 list_for_each_entry_rcu(event, &pel->list, sb_list) {
6823 /*
6824 * Skip events that are not fully formed yet; ensure that
6825 * if we observe event->ctx, both event and ctx will be
6826 * complete enough. See perf_install_in_context().
6827 */
6828 if (!smp_load_acquire(&event->ctx))
6829 continue;
6830
6831 if (event->state < PERF_EVENT_STATE_INACTIVE)
6832 continue;
6833 if (!event_filter_match(event))
6834 continue;
6835 output(event, data);
6836 }
6837 }
6838
6839 /*
6840 * Iterate all events that need to receive side-band events.
6841 *
6842 * For new callers; ensure that account_pmu_sb_event() includes
6843 * your event, otherwise it might not get delivered.
6844 */
6845 static void
perf_iterate_sb(perf_iterate_f output,void * data,struct perf_event_context * task_ctx)6846 perf_iterate_sb(perf_iterate_f output, void *data,
6847 struct perf_event_context *task_ctx)
6848 {
6849 struct perf_event_context *ctx;
6850 int ctxn;
6851
6852 rcu_read_lock();
6853 preempt_disable();
6854
6855 /*
6856 * If we have task_ctx != NULL we only notify the task context itself.
6857 * The task_ctx is set only for EXIT events before releasing task
6858 * context.
6859 */
6860 if (task_ctx) {
6861 perf_iterate_ctx(task_ctx, output, data, false);
6862 goto done;
6863 }
6864
6865 perf_iterate_sb_cpu(output, data);
6866
6867 for_each_task_context_nr(ctxn) {
6868 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6869 if (ctx)
6870 perf_iterate_ctx(ctx, output, data, false);
6871 }
6872 done:
6873 preempt_enable();
6874 rcu_read_unlock();
6875 }
6876
6877 /*
6878 * Clear all file-based filters at exec, they'll have to be
6879 * re-instated when/if these objects are mmapped again.
6880 */
perf_event_addr_filters_exec(struct perf_event * event,void * data)6881 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6882 {
6883 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6884 struct perf_addr_filter *filter;
6885 unsigned int restart = 0, count = 0;
6886 unsigned long flags;
6887
6888 if (!has_addr_filter(event))
6889 return;
6890
6891 raw_spin_lock_irqsave(&ifh->lock, flags);
6892 list_for_each_entry(filter, &ifh->list, entry) {
6893 if (filter->path.dentry) {
6894 event->addr_filter_ranges[count].start = 0;
6895 event->addr_filter_ranges[count].size = 0;
6896 restart++;
6897 }
6898
6899 count++;
6900 }
6901
6902 if (restart)
6903 event->addr_filters_gen++;
6904 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6905
6906 if (restart)
6907 perf_event_stop(event, 1);
6908 }
6909
perf_event_exec(void)6910 void perf_event_exec(void)
6911 {
6912 struct perf_event_context *ctx;
6913 int ctxn;
6914
6915 rcu_read_lock();
6916 for_each_task_context_nr(ctxn) {
6917 ctx = current->perf_event_ctxp[ctxn];
6918 if (!ctx)
6919 continue;
6920
6921 perf_event_enable_on_exec(ctxn);
6922
6923 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6924 true);
6925 }
6926 rcu_read_unlock();
6927 }
6928
6929 struct remote_output {
6930 struct ring_buffer *rb;
6931 int err;
6932 };
6933
__perf_event_output_stop(struct perf_event * event,void * data)6934 static void __perf_event_output_stop(struct perf_event *event, void *data)
6935 {
6936 struct perf_event *parent = event->parent;
6937 struct remote_output *ro = data;
6938 struct ring_buffer *rb = ro->rb;
6939 struct stop_event_data sd = {
6940 .event = event,
6941 };
6942
6943 if (!has_aux(event))
6944 return;
6945
6946 if (!parent)
6947 parent = event;
6948
6949 /*
6950 * In case of inheritance, it will be the parent that links to the
6951 * ring-buffer, but it will be the child that's actually using it.
6952 *
6953 * We are using event::rb to determine if the event should be stopped,
6954 * however this may race with ring_buffer_attach() (through set_output),
6955 * which will make us skip the event that actually needs to be stopped.
6956 * So ring_buffer_attach() has to stop an aux event before re-assigning
6957 * its rb pointer.
6958 */
6959 if (rcu_dereference(parent->rb) == rb)
6960 ro->err = __perf_event_stop(&sd);
6961 }
6962
__perf_pmu_output_stop(void * info)6963 static int __perf_pmu_output_stop(void *info)
6964 {
6965 struct perf_event *event = info;
6966 struct pmu *pmu = event->ctx->pmu;
6967 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6968 struct remote_output ro = {
6969 .rb = event->rb,
6970 };
6971
6972 rcu_read_lock();
6973 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6974 if (cpuctx->task_ctx)
6975 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6976 &ro, false);
6977 rcu_read_unlock();
6978
6979 return ro.err;
6980 }
6981
perf_pmu_output_stop(struct perf_event * event)6982 static void perf_pmu_output_stop(struct perf_event *event)
6983 {
6984 struct perf_event *iter;
6985 int err, cpu;
6986
6987 restart:
6988 rcu_read_lock();
6989 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6990 /*
6991 * For per-CPU events, we need to make sure that neither they
6992 * nor their children are running; for cpu==-1 events it's
6993 * sufficient to stop the event itself if it's active, since
6994 * it can't have children.
6995 */
6996 cpu = iter->cpu;
6997 if (cpu == -1)
6998 cpu = READ_ONCE(iter->oncpu);
6999
7000 if (cpu == -1)
7001 continue;
7002
7003 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
7004 if (err == -EAGAIN) {
7005 rcu_read_unlock();
7006 goto restart;
7007 }
7008 }
7009 rcu_read_unlock();
7010 }
7011
7012 /*
7013 * task tracking -- fork/exit
7014 *
7015 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
7016 */
7017
7018 struct perf_task_event {
7019 struct task_struct *task;
7020 struct perf_event_context *task_ctx;
7021
7022 struct {
7023 struct perf_event_header header;
7024
7025 u32 pid;
7026 u32 ppid;
7027 u32 tid;
7028 u32 ptid;
7029 u64 time;
7030 } event_id;
7031 };
7032
perf_event_task_match(struct perf_event * event)7033 static int perf_event_task_match(struct perf_event *event)
7034 {
7035 return event->attr.comm || event->attr.mmap ||
7036 event->attr.mmap2 || event->attr.mmap_data ||
7037 event->attr.task;
7038 }
7039
perf_event_task_output(struct perf_event * event,void * data)7040 static void perf_event_task_output(struct perf_event *event,
7041 void *data)
7042 {
7043 struct perf_task_event *task_event = data;
7044 struct perf_output_handle handle;
7045 struct perf_sample_data sample;
7046 struct task_struct *task = task_event->task;
7047 int ret, size = task_event->event_id.header.size;
7048
7049 if (!perf_event_task_match(event))
7050 return;
7051
7052 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
7053
7054 ret = perf_output_begin(&handle, event,
7055 task_event->event_id.header.size);
7056 if (ret)
7057 goto out;
7058
7059 task_event->event_id.pid = perf_event_pid(event, task);
7060 task_event->event_id.ppid = perf_event_pid(event, current);
7061
7062 task_event->event_id.tid = perf_event_tid(event, task);
7063 task_event->event_id.ptid = perf_event_tid(event, current);
7064
7065 task_event->event_id.time = perf_event_clock(event);
7066
7067 perf_output_put(&handle, task_event->event_id);
7068
7069 perf_event__output_id_sample(event, &handle, &sample);
7070
7071 perf_output_end(&handle);
7072 out:
7073 task_event->event_id.header.size = size;
7074 }
7075
perf_event_task(struct task_struct * task,struct perf_event_context * task_ctx,int new)7076 static void perf_event_task(struct task_struct *task,
7077 struct perf_event_context *task_ctx,
7078 int new)
7079 {
7080 struct perf_task_event task_event;
7081
7082 if (!atomic_read(&nr_comm_events) &&
7083 !atomic_read(&nr_mmap_events) &&
7084 !atomic_read(&nr_task_events))
7085 return;
7086
7087 task_event = (struct perf_task_event){
7088 .task = task,
7089 .task_ctx = task_ctx,
7090 .event_id = {
7091 .header = {
7092 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
7093 .misc = 0,
7094 .size = sizeof(task_event.event_id),
7095 },
7096 /* .pid */
7097 /* .ppid */
7098 /* .tid */
7099 /* .ptid */
7100 /* .time */
7101 },
7102 };
7103
7104 perf_iterate_sb(perf_event_task_output,
7105 &task_event,
7106 task_ctx);
7107 }
7108
perf_event_fork(struct task_struct * task)7109 void perf_event_fork(struct task_struct *task)
7110 {
7111 perf_event_task(task, NULL, 1);
7112 perf_event_namespaces(task);
7113 }
7114
7115 /*
7116 * comm tracking
7117 */
7118
7119 struct perf_comm_event {
7120 struct task_struct *task;
7121 char *comm;
7122 int comm_size;
7123
7124 struct {
7125 struct perf_event_header header;
7126
7127 u32 pid;
7128 u32 tid;
7129 } event_id;
7130 };
7131
perf_event_comm_match(struct perf_event * event)7132 static int perf_event_comm_match(struct perf_event *event)
7133 {
7134 return event->attr.comm;
7135 }
7136
perf_event_comm_output(struct perf_event * event,void * data)7137 static void perf_event_comm_output(struct perf_event *event,
7138 void *data)
7139 {
7140 struct perf_comm_event *comm_event = data;
7141 struct perf_output_handle handle;
7142 struct perf_sample_data sample;
7143 int size = comm_event->event_id.header.size;
7144 int ret;
7145
7146 if (!perf_event_comm_match(event))
7147 return;
7148
7149 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7150 ret = perf_output_begin(&handle, event,
7151 comm_event->event_id.header.size);
7152
7153 if (ret)
7154 goto out;
7155
7156 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7157 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
7158
7159 perf_output_put(&handle, comm_event->event_id);
7160 __output_copy(&handle, comm_event->comm,
7161 comm_event->comm_size);
7162
7163 perf_event__output_id_sample(event, &handle, &sample);
7164
7165 perf_output_end(&handle);
7166 out:
7167 comm_event->event_id.header.size = size;
7168 }
7169
perf_event_comm_event(struct perf_comm_event * comm_event)7170 static void perf_event_comm_event(struct perf_comm_event *comm_event)
7171 {
7172 char comm[TASK_COMM_LEN];
7173 unsigned int size;
7174
7175 memset(comm, 0, sizeof(comm));
7176 strlcpy(comm, comm_event->task->comm, sizeof(comm));
7177 size = ALIGN(strlen(comm)+1, sizeof(u64));
7178
7179 comm_event->comm = comm;
7180 comm_event->comm_size = size;
7181
7182 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7183
7184 perf_iterate_sb(perf_event_comm_output,
7185 comm_event,
7186 NULL);
7187 }
7188
perf_event_comm(struct task_struct * task,bool exec)7189 void perf_event_comm(struct task_struct *task, bool exec)
7190 {
7191 struct perf_comm_event comm_event;
7192
7193 if (!atomic_read(&nr_comm_events))
7194 return;
7195
7196 comm_event = (struct perf_comm_event){
7197 .task = task,
7198 /* .comm */
7199 /* .comm_size */
7200 .event_id = {
7201 .header = {
7202 .type = PERF_RECORD_COMM,
7203 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7204 /* .size */
7205 },
7206 /* .pid */
7207 /* .tid */
7208 },
7209 };
7210
7211 perf_event_comm_event(&comm_event);
7212 }
7213
7214 /*
7215 * namespaces tracking
7216 */
7217
7218 struct perf_namespaces_event {
7219 struct task_struct *task;
7220
7221 struct {
7222 struct perf_event_header header;
7223
7224 u32 pid;
7225 u32 tid;
7226 u64 nr_namespaces;
7227 struct perf_ns_link_info link_info[NR_NAMESPACES];
7228 } event_id;
7229 };
7230
perf_event_namespaces_match(struct perf_event * event)7231 static int perf_event_namespaces_match(struct perf_event *event)
7232 {
7233 return event->attr.namespaces;
7234 }
7235
perf_event_namespaces_output(struct perf_event * event,void * data)7236 static void perf_event_namespaces_output(struct perf_event *event,
7237 void *data)
7238 {
7239 struct perf_namespaces_event *namespaces_event = data;
7240 struct perf_output_handle handle;
7241 struct perf_sample_data sample;
7242 u16 header_size = namespaces_event->event_id.header.size;
7243 int ret;
7244
7245 if (!perf_event_namespaces_match(event))
7246 return;
7247
7248 perf_event_header__init_id(&namespaces_event->event_id.header,
7249 &sample, event);
7250 ret = perf_output_begin(&handle, event,
7251 namespaces_event->event_id.header.size);
7252 if (ret)
7253 goto out;
7254
7255 namespaces_event->event_id.pid = perf_event_pid(event,
7256 namespaces_event->task);
7257 namespaces_event->event_id.tid = perf_event_tid(event,
7258 namespaces_event->task);
7259
7260 perf_output_put(&handle, namespaces_event->event_id);
7261
7262 perf_event__output_id_sample(event, &handle, &sample);
7263
7264 perf_output_end(&handle);
7265 out:
7266 namespaces_event->event_id.header.size = header_size;
7267 }
7268
perf_fill_ns_link_info(struct perf_ns_link_info * ns_link_info,struct task_struct * task,const struct proc_ns_operations * ns_ops)7269 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7270 struct task_struct *task,
7271 const struct proc_ns_operations *ns_ops)
7272 {
7273 struct path ns_path;
7274 struct inode *ns_inode;
7275 void *error;
7276
7277 error = ns_get_path(&ns_path, task, ns_ops);
7278 if (!error) {
7279 ns_inode = ns_path.dentry->d_inode;
7280 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7281 ns_link_info->ino = ns_inode->i_ino;
7282 path_put(&ns_path);
7283 }
7284 }
7285
perf_event_namespaces(struct task_struct * task)7286 void perf_event_namespaces(struct task_struct *task)
7287 {
7288 struct perf_namespaces_event namespaces_event;
7289 struct perf_ns_link_info *ns_link_info;
7290
7291 if (!atomic_read(&nr_namespaces_events))
7292 return;
7293
7294 namespaces_event = (struct perf_namespaces_event){
7295 .task = task,
7296 .event_id = {
7297 .header = {
7298 .type = PERF_RECORD_NAMESPACES,
7299 .misc = 0,
7300 .size = sizeof(namespaces_event.event_id),
7301 },
7302 /* .pid */
7303 /* .tid */
7304 .nr_namespaces = NR_NAMESPACES,
7305 /* .link_info[NR_NAMESPACES] */
7306 },
7307 };
7308
7309 ns_link_info = namespaces_event.event_id.link_info;
7310
7311 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7312 task, &mntns_operations);
7313
7314 #ifdef CONFIG_USER_NS
7315 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7316 task, &userns_operations);
7317 #endif
7318 #ifdef CONFIG_NET_NS
7319 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7320 task, &netns_operations);
7321 #endif
7322 #ifdef CONFIG_UTS_NS
7323 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7324 task, &utsns_operations);
7325 #endif
7326 #ifdef CONFIG_IPC_NS
7327 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7328 task, &ipcns_operations);
7329 #endif
7330 #ifdef CONFIG_PID_NS
7331 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7332 task, &pidns_operations);
7333 #endif
7334 #ifdef CONFIG_CGROUPS
7335 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7336 task, &cgroupns_operations);
7337 #endif
7338
7339 perf_iterate_sb(perf_event_namespaces_output,
7340 &namespaces_event,
7341 NULL);
7342 }
7343
7344 /*
7345 * mmap tracking
7346 */
7347
7348 struct perf_mmap_event {
7349 struct vm_area_struct *vma;
7350
7351 const char *file_name;
7352 int file_size;
7353 int maj, min;
7354 u64 ino;
7355 u64 ino_generation;
7356 u32 prot, flags;
7357
7358 struct {
7359 struct perf_event_header header;
7360
7361 u32 pid;
7362 u32 tid;
7363 u64 start;
7364 u64 len;
7365 u64 pgoff;
7366 } event_id;
7367 };
7368
perf_event_mmap_match(struct perf_event * event,void * data)7369 static int perf_event_mmap_match(struct perf_event *event,
7370 void *data)
7371 {
7372 struct perf_mmap_event *mmap_event = data;
7373 struct vm_area_struct *vma = mmap_event->vma;
7374 int executable = vma->vm_flags & VM_EXEC;
7375
7376 return (!executable && event->attr.mmap_data) ||
7377 (executable && (event->attr.mmap || event->attr.mmap2));
7378 }
7379
perf_event_mmap_output(struct perf_event * event,void * data)7380 static void perf_event_mmap_output(struct perf_event *event,
7381 void *data)
7382 {
7383 struct perf_mmap_event *mmap_event = data;
7384 struct perf_output_handle handle;
7385 struct perf_sample_data sample;
7386 int size = mmap_event->event_id.header.size;
7387 u32 type = mmap_event->event_id.header.type;
7388 int ret;
7389
7390 if (!perf_event_mmap_match(event, data))
7391 return;
7392
7393 if (event->attr.mmap2) {
7394 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7395 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7396 mmap_event->event_id.header.size += sizeof(mmap_event->min);
7397 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
7398 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
7399 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7400 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
7401 }
7402
7403 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7404 ret = perf_output_begin(&handle, event,
7405 mmap_event->event_id.header.size);
7406 if (ret)
7407 goto out;
7408
7409 mmap_event->event_id.pid = perf_event_pid(event, current);
7410 mmap_event->event_id.tid = perf_event_tid(event, current);
7411
7412 perf_output_put(&handle, mmap_event->event_id);
7413
7414 if (event->attr.mmap2) {
7415 perf_output_put(&handle, mmap_event->maj);
7416 perf_output_put(&handle, mmap_event->min);
7417 perf_output_put(&handle, mmap_event->ino);
7418 perf_output_put(&handle, mmap_event->ino_generation);
7419 perf_output_put(&handle, mmap_event->prot);
7420 perf_output_put(&handle, mmap_event->flags);
7421 }
7422
7423 __output_copy(&handle, mmap_event->file_name,
7424 mmap_event->file_size);
7425
7426 perf_event__output_id_sample(event, &handle, &sample);
7427
7428 perf_output_end(&handle);
7429 out:
7430 mmap_event->event_id.header.size = size;
7431 mmap_event->event_id.header.type = type;
7432 }
7433
perf_event_mmap_event(struct perf_mmap_event * mmap_event)7434 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
7435 {
7436 struct vm_area_struct *vma = mmap_event->vma;
7437 struct file *file = vma->vm_file;
7438 int maj = 0, min = 0;
7439 u64 ino = 0, gen = 0;
7440 u32 prot = 0, flags = 0;
7441 unsigned int size;
7442 char tmp[16];
7443 char *buf = NULL;
7444 char *name;
7445
7446 if (vma->vm_flags & VM_READ)
7447 prot |= PROT_READ;
7448 if (vma->vm_flags & VM_WRITE)
7449 prot |= PROT_WRITE;
7450 if (vma->vm_flags & VM_EXEC)
7451 prot |= PROT_EXEC;
7452
7453 if (vma->vm_flags & VM_MAYSHARE)
7454 flags = MAP_SHARED;
7455 else
7456 flags = MAP_PRIVATE;
7457
7458 if (vma->vm_flags & VM_DENYWRITE)
7459 flags |= MAP_DENYWRITE;
7460 if (vma->vm_flags & VM_MAYEXEC)
7461 flags |= MAP_EXECUTABLE;
7462 if (vma->vm_flags & VM_LOCKED)
7463 flags |= MAP_LOCKED;
7464 if (vma->vm_flags & VM_HUGETLB)
7465 flags |= MAP_HUGETLB;
7466
7467 if (file) {
7468 struct inode *inode;
7469 dev_t dev;
7470
7471 buf = kmalloc(PATH_MAX, GFP_KERNEL);
7472 if (!buf) {
7473 name = "//enomem";
7474 goto cpy_name;
7475 }
7476 /*
7477 * d_path() works from the end of the rb backwards, so we
7478 * need to add enough zero bytes after the string to handle
7479 * the 64bit alignment we do later.
7480 */
7481 name = file_path(file, buf, PATH_MAX - sizeof(u64));
7482 if (IS_ERR(name)) {
7483 name = "//toolong";
7484 goto cpy_name;
7485 }
7486 inode = file_inode(vma->vm_file);
7487 dev = inode->i_sb->s_dev;
7488 ino = inode->i_ino;
7489 gen = inode->i_generation;
7490 maj = MAJOR(dev);
7491 min = MINOR(dev);
7492
7493 goto got_name;
7494 } else {
7495 if (vma->vm_ops && vma->vm_ops->name) {
7496 name = (char *) vma->vm_ops->name(vma);
7497 if (name)
7498 goto cpy_name;
7499 }
7500
7501 name = (char *)arch_vma_name(vma);
7502 if (name)
7503 goto cpy_name;
7504
7505 if (vma->vm_start <= vma->vm_mm->start_brk &&
7506 vma->vm_end >= vma->vm_mm->brk) {
7507 name = "[heap]";
7508 goto cpy_name;
7509 }
7510 if (vma->vm_start <= vma->vm_mm->start_stack &&
7511 vma->vm_end >= vma->vm_mm->start_stack) {
7512 name = "[stack]";
7513 goto cpy_name;
7514 }
7515
7516 name = "//anon";
7517 goto cpy_name;
7518 }
7519
7520 cpy_name:
7521 strlcpy(tmp, name, sizeof(tmp));
7522 name = tmp;
7523 got_name:
7524 /*
7525 * Since our buffer works in 8 byte units we need to align our string
7526 * size to a multiple of 8. However, we must guarantee the tail end is
7527 * zero'd out to avoid leaking random bits to userspace.
7528 */
7529 size = strlen(name)+1;
7530 while (!IS_ALIGNED(size, sizeof(u64)))
7531 name[size++] = '\0';
7532
7533 mmap_event->file_name = name;
7534 mmap_event->file_size = size;
7535 mmap_event->maj = maj;
7536 mmap_event->min = min;
7537 mmap_event->ino = ino;
7538 mmap_event->ino_generation = gen;
7539 mmap_event->prot = prot;
7540 mmap_event->flags = flags;
7541
7542 if (!(vma->vm_flags & VM_EXEC))
7543 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7544
7545 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
7546
7547 perf_iterate_sb(perf_event_mmap_output,
7548 mmap_event,
7549 NULL);
7550
7551 kfree(buf);
7552 }
7553
7554 /*
7555 * Check whether inode and address range match filter criteria.
7556 */
perf_addr_filter_match(struct perf_addr_filter * filter,struct file * file,unsigned long offset,unsigned long size)7557 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7558 struct file *file, unsigned long offset,
7559 unsigned long size)
7560 {
7561 /* d_inode(NULL) won't be equal to any mapped user-space file */
7562 if (!filter->path.dentry)
7563 return false;
7564
7565 if (d_inode(filter->path.dentry) != file_inode(file))
7566 return false;
7567
7568 if (filter->offset > offset + size)
7569 return false;
7570
7571 if (filter->offset + filter->size < offset)
7572 return false;
7573
7574 return true;
7575 }
7576
perf_addr_filter_vma_adjust(struct perf_addr_filter * filter,struct vm_area_struct * vma,struct perf_addr_filter_range * fr)7577 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
7578 struct vm_area_struct *vma,
7579 struct perf_addr_filter_range *fr)
7580 {
7581 unsigned long vma_size = vma->vm_end - vma->vm_start;
7582 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7583 struct file *file = vma->vm_file;
7584
7585 if (!perf_addr_filter_match(filter, file, off, vma_size))
7586 return false;
7587
7588 if (filter->offset < off) {
7589 fr->start = vma->vm_start;
7590 fr->size = min(vma_size, filter->size - (off - filter->offset));
7591 } else {
7592 fr->start = vma->vm_start + filter->offset - off;
7593 fr->size = min(vma->vm_end - fr->start, filter->size);
7594 }
7595
7596 return true;
7597 }
7598
__perf_addr_filters_adjust(struct perf_event * event,void * data)7599 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7600 {
7601 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7602 struct vm_area_struct *vma = data;
7603 struct perf_addr_filter *filter;
7604 unsigned int restart = 0, count = 0;
7605 unsigned long flags;
7606
7607 if (!has_addr_filter(event))
7608 return;
7609
7610 if (!vma->vm_file)
7611 return;
7612
7613 raw_spin_lock_irqsave(&ifh->lock, flags);
7614 list_for_each_entry(filter, &ifh->list, entry) {
7615 if (perf_addr_filter_vma_adjust(filter, vma,
7616 &event->addr_filter_ranges[count]))
7617 restart++;
7618
7619 count++;
7620 }
7621
7622 if (restart)
7623 event->addr_filters_gen++;
7624 raw_spin_unlock_irqrestore(&ifh->lock, flags);
7625
7626 if (restart)
7627 perf_event_stop(event, 1);
7628 }
7629
7630 /*
7631 * Adjust all task's events' filters to the new vma
7632 */
perf_addr_filters_adjust(struct vm_area_struct * vma)7633 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7634 {
7635 struct perf_event_context *ctx;
7636 int ctxn;
7637
7638 /*
7639 * Data tracing isn't supported yet and as such there is no need
7640 * to keep track of anything that isn't related to executable code:
7641 */
7642 if (!(vma->vm_flags & VM_EXEC))
7643 return;
7644
7645 rcu_read_lock();
7646 for_each_task_context_nr(ctxn) {
7647 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7648 if (!ctx)
7649 continue;
7650
7651 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7652 }
7653 rcu_read_unlock();
7654 }
7655
perf_event_mmap(struct vm_area_struct * vma)7656 void perf_event_mmap(struct vm_area_struct *vma)
7657 {
7658 struct perf_mmap_event mmap_event;
7659
7660 if (!atomic_read(&nr_mmap_events))
7661 return;
7662
7663 mmap_event = (struct perf_mmap_event){
7664 .vma = vma,
7665 /* .file_name */
7666 /* .file_size */
7667 .event_id = {
7668 .header = {
7669 .type = PERF_RECORD_MMAP,
7670 .misc = PERF_RECORD_MISC_USER,
7671 /* .size */
7672 },
7673 /* .pid */
7674 /* .tid */
7675 .start = vma->vm_start,
7676 .len = vma->vm_end - vma->vm_start,
7677 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
7678 },
7679 /* .maj (attr_mmap2 only) */
7680 /* .min (attr_mmap2 only) */
7681 /* .ino (attr_mmap2 only) */
7682 /* .ino_generation (attr_mmap2 only) */
7683 /* .prot (attr_mmap2 only) */
7684 /* .flags (attr_mmap2 only) */
7685 };
7686
7687 perf_addr_filters_adjust(vma);
7688 perf_event_mmap_event(&mmap_event);
7689 }
7690
perf_event_aux_event(struct perf_event * event,unsigned long head,unsigned long size,u64 flags)7691 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7692 unsigned long size, u64 flags)
7693 {
7694 struct perf_output_handle handle;
7695 struct perf_sample_data sample;
7696 struct perf_aux_event {
7697 struct perf_event_header header;
7698 u64 offset;
7699 u64 size;
7700 u64 flags;
7701 } rec = {
7702 .header = {
7703 .type = PERF_RECORD_AUX,
7704 .misc = 0,
7705 .size = sizeof(rec),
7706 },
7707 .offset = head,
7708 .size = size,
7709 .flags = flags,
7710 };
7711 int ret;
7712
7713 perf_event_header__init_id(&rec.header, &sample, event);
7714 ret = perf_output_begin(&handle, event, rec.header.size);
7715
7716 if (ret)
7717 return;
7718
7719 perf_output_put(&handle, rec);
7720 perf_event__output_id_sample(event, &handle, &sample);
7721
7722 perf_output_end(&handle);
7723 }
7724
7725 /*
7726 * Lost/dropped samples logging
7727 */
perf_log_lost_samples(struct perf_event * event,u64 lost)7728 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7729 {
7730 struct perf_output_handle handle;
7731 struct perf_sample_data sample;
7732 int ret;
7733
7734 struct {
7735 struct perf_event_header header;
7736 u64 lost;
7737 } lost_samples_event = {
7738 .header = {
7739 .type = PERF_RECORD_LOST_SAMPLES,
7740 .misc = 0,
7741 .size = sizeof(lost_samples_event),
7742 },
7743 .lost = lost,
7744 };
7745
7746 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7747
7748 ret = perf_output_begin(&handle, event,
7749 lost_samples_event.header.size);
7750 if (ret)
7751 return;
7752
7753 perf_output_put(&handle, lost_samples_event);
7754 perf_event__output_id_sample(event, &handle, &sample);
7755 perf_output_end(&handle);
7756 }
7757
7758 /*
7759 * context_switch tracking
7760 */
7761
7762 struct perf_switch_event {
7763 struct task_struct *task;
7764 struct task_struct *next_prev;
7765
7766 struct {
7767 struct perf_event_header header;
7768 u32 next_prev_pid;
7769 u32 next_prev_tid;
7770 } event_id;
7771 };
7772
perf_event_switch_match(struct perf_event * event)7773 static int perf_event_switch_match(struct perf_event *event)
7774 {
7775 return event->attr.context_switch;
7776 }
7777
perf_event_switch_output(struct perf_event * event,void * data)7778 static void perf_event_switch_output(struct perf_event *event, void *data)
7779 {
7780 struct perf_switch_event *se = data;
7781 struct perf_output_handle handle;
7782 struct perf_sample_data sample;
7783 int ret;
7784
7785 if (!perf_event_switch_match(event))
7786 return;
7787
7788 /* Only CPU-wide events are allowed to see next/prev pid/tid */
7789 if (event->ctx->task) {
7790 se->event_id.header.type = PERF_RECORD_SWITCH;
7791 se->event_id.header.size = sizeof(se->event_id.header);
7792 } else {
7793 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7794 se->event_id.header.size = sizeof(se->event_id);
7795 se->event_id.next_prev_pid =
7796 perf_event_pid(event, se->next_prev);
7797 se->event_id.next_prev_tid =
7798 perf_event_tid(event, se->next_prev);
7799 }
7800
7801 perf_event_header__init_id(&se->event_id.header, &sample, event);
7802
7803 ret = perf_output_begin(&handle, event, se->event_id.header.size);
7804 if (ret)
7805 return;
7806
7807 if (event->ctx->task)
7808 perf_output_put(&handle, se->event_id.header);
7809 else
7810 perf_output_put(&handle, se->event_id);
7811
7812 perf_event__output_id_sample(event, &handle, &sample);
7813
7814 perf_output_end(&handle);
7815 }
7816
perf_event_switch(struct task_struct * task,struct task_struct * next_prev,bool sched_in)7817 static void perf_event_switch(struct task_struct *task,
7818 struct task_struct *next_prev, bool sched_in)
7819 {
7820 struct perf_switch_event switch_event;
7821
7822 /* N.B. caller checks nr_switch_events != 0 */
7823
7824 switch_event = (struct perf_switch_event){
7825 .task = task,
7826 .next_prev = next_prev,
7827 .event_id = {
7828 .header = {
7829 /* .type */
7830 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7831 /* .size */
7832 },
7833 /* .next_prev_pid */
7834 /* .next_prev_tid */
7835 },
7836 };
7837
7838 if (!sched_in && task->state == TASK_RUNNING)
7839 switch_event.event_id.header.misc |=
7840 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
7841
7842 perf_iterate_sb(perf_event_switch_output,
7843 &switch_event,
7844 NULL);
7845 }
7846
7847 /*
7848 * IRQ throttle logging
7849 */
7850
perf_log_throttle(struct perf_event * event,int enable)7851 static void perf_log_throttle(struct perf_event *event, int enable)
7852 {
7853 struct perf_output_handle handle;
7854 struct perf_sample_data sample;
7855 int ret;
7856
7857 struct {
7858 struct perf_event_header header;
7859 u64 time;
7860 u64 id;
7861 u64 stream_id;
7862 } throttle_event = {
7863 .header = {
7864 .type = PERF_RECORD_THROTTLE,
7865 .misc = 0,
7866 .size = sizeof(throttle_event),
7867 },
7868 .time = perf_event_clock(event),
7869 .id = primary_event_id(event),
7870 .stream_id = event->id,
7871 };
7872
7873 if (enable)
7874 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7875
7876 perf_event_header__init_id(&throttle_event.header, &sample, event);
7877
7878 ret = perf_output_begin(&handle, event,
7879 throttle_event.header.size);
7880 if (ret)
7881 return;
7882
7883 perf_output_put(&handle, throttle_event);
7884 perf_event__output_id_sample(event, &handle, &sample);
7885 perf_output_end(&handle);
7886 }
7887
7888 /*
7889 * ksymbol register/unregister tracking
7890 */
7891
7892 struct perf_ksymbol_event {
7893 const char *name;
7894 int name_len;
7895 struct {
7896 struct perf_event_header header;
7897 u64 addr;
7898 u32 len;
7899 u16 ksym_type;
7900 u16 flags;
7901 } event_id;
7902 };
7903
perf_event_ksymbol_match(struct perf_event * event)7904 static int perf_event_ksymbol_match(struct perf_event *event)
7905 {
7906 return event->attr.ksymbol;
7907 }
7908
perf_event_ksymbol_output(struct perf_event * event,void * data)7909 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
7910 {
7911 struct perf_ksymbol_event *ksymbol_event = data;
7912 struct perf_output_handle handle;
7913 struct perf_sample_data sample;
7914 int ret;
7915
7916 if (!perf_event_ksymbol_match(event))
7917 return;
7918
7919 perf_event_header__init_id(&ksymbol_event->event_id.header,
7920 &sample, event);
7921 ret = perf_output_begin(&handle, event,
7922 ksymbol_event->event_id.header.size);
7923 if (ret)
7924 return;
7925
7926 perf_output_put(&handle, ksymbol_event->event_id);
7927 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
7928 perf_event__output_id_sample(event, &handle, &sample);
7929
7930 perf_output_end(&handle);
7931 }
7932
perf_event_ksymbol(u16 ksym_type,u64 addr,u32 len,bool unregister,const char * sym)7933 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
7934 const char *sym)
7935 {
7936 struct perf_ksymbol_event ksymbol_event;
7937 char name[KSYM_NAME_LEN];
7938 u16 flags = 0;
7939 int name_len;
7940
7941 if (!atomic_read(&nr_ksymbol_events))
7942 return;
7943
7944 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
7945 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
7946 goto err;
7947
7948 strlcpy(name, sym, KSYM_NAME_LEN);
7949 name_len = strlen(name) + 1;
7950 while (!IS_ALIGNED(name_len, sizeof(u64)))
7951 name[name_len++] = '\0';
7952 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
7953
7954 if (unregister)
7955 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
7956
7957 ksymbol_event = (struct perf_ksymbol_event){
7958 .name = name,
7959 .name_len = name_len,
7960 .event_id = {
7961 .header = {
7962 .type = PERF_RECORD_KSYMBOL,
7963 .size = sizeof(ksymbol_event.event_id) +
7964 name_len,
7965 },
7966 .addr = addr,
7967 .len = len,
7968 .ksym_type = ksym_type,
7969 .flags = flags,
7970 },
7971 };
7972
7973 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
7974 return;
7975 err:
7976 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
7977 }
7978
7979 /*
7980 * bpf program load/unload tracking
7981 */
7982
7983 struct perf_bpf_event {
7984 struct bpf_prog *prog;
7985 struct {
7986 struct perf_event_header header;
7987 u16 type;
7988 u16 flags;
7989 u32 id;
7990 u8 tag[BPF_TAG_SIZE];
7991 } event_id;
7992 };
7993
perf_event_bpf_match(struct perf_event * event)7994 static int perf_event_bpf_match(struct perf_event *event)
7995 {
7996 return event->attr.bpf_event;
7997 }
7998
perf_event_bpf_output(struct perf_event * event,void * data)7999 static void perf_event_bpf_output(struct perf_event *event, void *data)
8000 {
8001 struct perf_bpf_event *bpf_event = data;
8002 struct perf_output_handle handle;
8003 struct perf_sample_data sample;
8004 int ret;
8005
8006 if (!perf_event_bpf_match(event))
8007 return;
8008
8009 perf_event_header__init_id(&bpf_event->event_id.header,
8010 &sample, event);
8011 ret = perf_output_begin(&handle, event,
8012 bpf_event->event_id.header.size);
8013 if (ret)
8014 return;
8015
8016 perf_output_put(&handle, bpf_event->event_id);
8017 perf_event__output_id_sample(event, &handle, &sample);
8018
8019 perf_output_end(&handle);
8020 }
8021
perf_event_bpf_emit_ksymbols(struct bpf_prog * prog,enum perf_bpf_event_type type)8022 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
8023 enum perf_bpf_event_type type)
8024 {
8025 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
8026 char sym[KSYM_NAME_LEN];
8027 int i;
8028
8029 if (prog->aux->func_cnt == 0) {
8030 bpf_get_prog_name(prog, sym);
8031 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
8032 (u64)(unsigned long)prog->bpf_func,
8033 prog->jited_len, unregister, sym);
8034 } else {
8035 for (i = 0; i < prog->aux->func_cnt; i++) {
8036 struct bpf_prog *subprog = prog->aux->func[i];
8037
8038 bpf_get_prog_name(subprog, sym);
8039 perf_event_ksymbol(
8040 PERF_RECORD_KSYMBOL_TYPE_BPF,
8041 (u64)(unsigned long)subprog->bpf_func,
8042 subprog->jited_len, unregister, sym);
8043 }
8044 }
8045 }
8046
perf_event_bpf_event(struct bpf_prog * prog,enum perf_bpf_event_type type,u16 flags)8047 void perf_event_bpf_event(struct bpf_prog *prog,
8048 enum perf_bpf_event_type type,
8049 u16 flags)
8050 {
8051 struct perf_bpf_event bpf_event;
8052
8053 if (type <= PERF_BPF_EVENT_UNKNOWN ||
8054 type >= PERF_BPF_EVENT_MAX)
8055 return;
8056
8057 switch (type) {
8058 case PERF_BPF_EVENT_PROG_LOAD:
8059 case PERF_BPF_EVENT_PROG_UNLOAD:
8060 if (atomic_read(&nr_ksymbol_events))
8061 perf_event_bpf_emit_ksymbols(prog, type);
8062 break;
8063 default:
8064 break;
8065 }
8066
8067 if (!atomic_read(&nr_bpf_events))
8068 return;
8069
8070 bpf_event = (struct perf_bpf_event){
8071 .prog = prog,
8072 .event_id = {
8073 .header = {
8074 .type = PERF_RECORD_BPF_EVENT,
8075 .size = sizeof(bpf_event.event_id),
8076 },
8077 .type = type,
8078 .flags = flags,
8079 .id = prog->aux->id,
8080 },
8081 };
8082
8083 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
8084
8085 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
8086 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
8087 }
8088
perf_event_itrace_started(struct perf_event * event)8089 void perf_event_itrace_started(struct perf_event *event)
8090 {
8091 event->attach_state |= PERF_ATTACH_ITRACE;
8092 }
8093
perf_log_itrace_start(struct perf_event * event)8094 static void perf_log_itrace_start(struct perf_event *event)
8095 {
8096 struct perf_output_handle handle;
8097 struct perf_sample_data sample;
8098 struct perf_aux_event {
8099 struct perf_event_header header;
8100 u32 pid;
8101 u32 tid;
8102 } rec;
8103 int ret;
8104
8105 if (event->parent)
8106 event = event->parent;
8107
8108 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
8109 event->attach_state & PERF_ATTACH_ITRACE)
8110 return;
8111
8112 rec.header.type = PERF_RECORD_ITRACE_START;
8113 rec.header.misc = 0;
8114 rec.header.size = sizeof(rec);
8115 rec.pid = perf_event_pid(event, current);
8116 rec.tid = perf_event_tid(event, current);
8117
8118 perf_event_header__init_id(&rec.header, &sample, event);
8119 ret = perf_output_begin(&handle, event, rec.header.size);
8120
8121 if (ret)
8122 return;
8123
8124 perf_output_put(&handle, rec);
8125 perf_event__output_id_sample(event, &handle, &sample);
8126
8127 perf_output_end(&handle);
8128 }
8129
8130 static int
__perf_event_account_interrupt(struct perf_event * event,int throttle)8131 __perf_event_account_interrupt(struct perf_event *event, int throttle)
8132 {
8133 struct hw_perf_event *hwc = &event->hw;
8134 int ret = 0;
8135 u64 seq;
8136
8137 seq = __this_cpu_read(perf_throttled_seq);
8138 if (seq != hwc->interrupts_seq) {
8139 hwc->interrupts_seq = seq;
8140 hwc->interrupts = 1;
8141 } else {
8142 hwc->interrupts++;
8143 if (unlikely(throttle
8144 && hwc->interrupts >= max_samples_per_tick)) {
8145 __this_cpu_inc(perf_throttled_count);
8146 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
8147 hwc->interrupts = MAX_INTERRUPTS;
8148 perf_log_throttle(event, 0);
8149 ret = 1;
8150 }
8151 }
8152
8153 if (event->attr.freq) {
8154 u64 now = perf_clock();
8155 s64 delta = now - hwc->freq_time_stamp;
8156
8157 hwc->freq_time_stamp = now;
8158
8159 if (delta > 0 && delta < 2*TICK_NSEC)
8160 perf_adjust_period(event, delta, hwc->last_period, true);
8161 }
8162
8163 return ret;
8164 }
8165
perf_event_account_interrupt(struct perf_event * event)8166 int perf_event_account_interrupt(struct perf_event *event)
8167 {
8168 return __perf_event_account_interrupt(event, 1);
8169 }
8170
8171 /*
8172 * Generic event overflow handling, sampling.
8173 */
8174
__perf_event_overflow(struct perf_event * event,int throttle,struct perf_sample_data * data,struct pt_regs * regs)8175 static int __perf_event_overflow(struct perf_event *event,
8176 int throttle, struct perf_sample_data *data,
8177 struct pt_regs *regs)
8178 {
8179 int events = atomic_read(&event->event_limit);
8180 int ret = 0;
8181
8182 /*
8183 * Non-sampling counters might still use the PMI to fold short
8184 * hardware counters, ignore those.
8185 */
8186 if (unlikely(!is_sampling_event(event)))
8187 return 0;
8188
8189 ret = __perf_event_account_interrupt(event, throttle);
8190
8191 /*
8192 * XXX event_limit might not quite work as expected on inherited
8193 * events
8194 */
8195
8196 event->pending_kill = POLL_IN;
8197 if (events && atomic_dec_and_test(&event->event_limit)) {
8198 ret = 1;
8199 event->pending_kill = POLL_HUP;
8200
8201 perf_event_disable_inatomic(event);
8202 }
8203
8204 READ_ONCE(event->overflow_handler)(event, data, regs);
8205
8206 if (*perf_event_fasync(event) && event->pending_kill) {
8207 event->pending_wakeup = 1;
8208 irq_work_queue(&event->pending);
8209 }
8210
8211 return ret;
8212 }
8213
perf_event_overflow(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)8214 int perf_event_overflow(struct perf_event *event,
8215 struct perf_sample_data *data,
8216 struct pt_regs *regs)
8217 {
8218 return __perf_event_overflow(event, 1, data, regs);
8219 }
8220
8221 /*
8222 * Generic software event infrastructure
8223 */
8224
8225 struct swevent_htable {
8226 struct swevent_hlist *swevent_hlist;
8227 struct mutex hlist_mutex;
8228 int hlist_refcount;
8229
8230 /* Recursion avoidance in each contexts */
8231 int recursion[PERF_NR_CONTEXTS];
8232 };
8233
8234 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
8235
8236 /*
8237 * We directly increment event->count and keep a second value in
8238 * event->hw.period_left to count intervals. This period event
8239 * is kept in the range [-sample_period, 0] so that we can use the
8240 * sign as trigger.
8241 */
8242
perf_swevent_set_period(struct perf_event * event)8243 u64 perf_swevent_set_period(struct perf_event *event)
8244 {
8245 struct hw_perf_event *hwc = &event->hw;
8246 u64 period = hwc->last_period;
8247 u64 nr, offset;
8248 s64 old, val;
8249
8250 hwc->last_period = hwc->sample_period;
8251
8252 again:
8253 old = val = local64_read(&hwc->period_left);
8254 if (val < 0)
8255 return 0;
8256
8257 nr = div64_u64(period + val, period);
8258 offset = nr * period;
8259 val -= offset;
8260 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
8261 goto again;
8262
8263 return nr;
8264 }
8265
perf_swevent_overflow(struct perf_event * event,u64 overflow,struct perf_sample_data * data,struct pt_regs * regs)8266 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
8267 struct perf_sample_data *data,
8268 struct pt_regs *regs)
8269 {
8270 struct hw_perf_event *hwc = &event->hw;
8271 int throttle = 0;
8272
8273 if (!overflow)
8274 overflow = perf_swevent_set_period(event);
8275
8276 if (hwc->interrupts == MAX_INTERRUPTS)
8277 return;
8278
8279 for (; overflow; overflow--) {
8280 if (__perf_event_overflow(event, throttle,
8281 data, regs)) {
8282 /*
8283 * We inhibit the overflow from happening when
8284 * hwc->interrupts == MAX_INTERRUPTS.
8285 */
8286 break;
8287 }
8288 throttle = 1;
8289 }
8290 }
8291
perf_swevent_event(struct perf_event * event,u64 nr,struct perf_sample_data * data,struct pt_regs * regs)8292 static void perf_swevent_event(struct perf_event *event, u64 nr,
8293 struct perf_sample_data *data,
8294 struct pt_regs *regs)
8295 {
8296 struct hw_perf_event *hwc = &event->hw;
8297
8298 local64_add(nr, &event->count);
8299
8300 if (!regs)
8301 return;
8302
8303 if (!is_sampling_event(event))
8304 return;
8305
8306 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
8307 data->period = nr;
8308 return perf_swevent_overflow(event, 1, data, regs);
8309 } else
8310 data->period = event->hw.last_period;
8311
8312 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
8313 return perf_swevent_overflow(event, 1, data, regs);
8314
8315 if (local64_add_negative(nr, &hwc->period_left))
8316 return;
8317
8318 perf_swevent_overflow(event, 0, data, regs);
8319 }
8320
perf_exclude_event(struct perf_event * event,struct pt_regs * regs)8321 static int perf_exclude_event(struct perf_event *event,
8322 struct pt_regs *regs)
8323 {
8324 if (event->hw.state & PERF_HES_STOPPED)
8325 return 1;
8326
8327 if (regs) {
8328 if (event->attr.exclude_user && user_mode(regs))
8329 return 1;
8330
8331 if (event->attr.exclude_kernel && !user_mode(regs))
8332 return 1;
8333 }
8334
8335 return 0;
8336 }
8337
perf_swevent_match(struct perf_event * event,enum perf_type_id type,u32 event_id,struct perf_sample_data * data,struct pt_regs * regs)8338 static int perf_swevent_match(struct perf_event *event,
8339 enum perf_type_id type,
8340 u32 event_id,
8341 struct perf_sample_data *data,
8342 struct pt_regs *regs)
8343 {
8344 if (event->attr.type != type)
8345 return 0;
8346
8347 if (event->attr.config != event_id)
8348 return 0;
8349
8350 if (perf_exclude_event(event, regs))
8351 return 0;
8352
8353 return 1;
8354 }
8355
swevent_hash(u64 type,u32 event_id)8356 static inline u64 swevent_hash(u64 type, u32 event_id)
8357 {
8358 u64 val = event_id | (type << 32);
8359
8360 return hash_64(val, SWEVENT_HLIST_BITS);
8361 }
8362
8363 static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist * hlist,u64 type,u32 event_id)8364 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
8365 {
8366 u64 hash = swevent_hash(type, event_id);
8367
8368 return &hlist->heads[hash];
8369 }
8370
8371 /* For the read side: events when they trigger */
8372 static inline struct hlist_head *
find_swevent_head_rcu(struct swevent_htable * swhash,u64 type,u32 event_id)8373 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
8374 {
8375 struct swevent_hlist *hlist;
8376
8377 hlist = rcu_dereference(swhash->swevent_hlist);
8378 if (!hlist)
8379 return NULL;
8380
8381 return __find_swevent_head(hlist, type, event_id);
8382 }
8383
8384 /* For the event head insertion and removal in the hlist */
8385 static inline struct hlist_head *
find_swevent_head(struct swevent_htable * swhash,struct perf_event * event)8386 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
8387 {
8388 struct swevent_hlist *hlist;
8389 u32 event_id = event->attr.config;
8390 u64 type = event->attr.type;
8391
8392 /*
8393 * Event scheduling is always serialized against hlist allocation
8394 * and release. Which makes the protected version suitable here.
8395 * The context lock guarantees that.
8396 */
8397 hlist = rcu_dereference_protected(swhash->swevent_hlist,
8398 lockdep_is_held(&event->ctx->lock));
8399 if (!hlist)
8400 return NULL;
8401
8402 return __find_swevent_head(hlist, type, event_id);
8403 }
8404
do_perf_sw_event(enum perf_type_id type,u32 event_id,u64 nr,struct perf_sample_data * data,struct pt_regs * regs)8405 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
8406 u64 nr,
8407 struct perf_sample_data *data,
8408 struct pt_regs *regs)
8409 {
8410 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8411 struct perf_event *event;
8412 struct hlist_head *head;
8413
8414 rcu_read_lock();
8415 head = find_swevent_head_rcu(swhash, type, event_id);
8416 if (!head)
8417 goto end;
8418
8419 hlist_for_each_entry_rcu(event, head, hlist_entry) {
8420 if (perf_swevent_match(event, type, event_id, data, regs))
8421 perf_swevent_event(event, nr, data, regs);
8422 }
8423 end:
8424 rcu_read_unlock();
8425 }
8426
8427 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
8428
perf_swevent_get_recursion_context(void)8429 int perf_swevent_get_recursion_context(void)
8430 {
8431 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8432
8433 return get_recursion_context(swhash->recursion);
8434 }
8435 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
8436
perf_swevent_put_recursion_context(int rctx)8437 void perf_swevent_put_recursion_context(int rctx)
8438 {
8439 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8440
8441 put_recursion_context(swhash->recursion, rctx);
8442 }
8443
___perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)8444 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8445 {
8446 struct perf_sample_data data;
8447
8448 if (WARN_ON_ONCE(!regs))
8449 return;
8450
8451 perf_sample_data_init(&data, addr, 0);
8452 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
8453 }
8454
__perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)8455 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8456 {
8457 int rctx;
8458
8459 preempt_disable_notrace();
8460 rctx = perf_swevent_get_recursion_context();
8461 if (unlikely(rctx < 0))
8462 goto fail;
8463
8464 ___perf_sw_event(event_id, nr, regs, addr);
8465
8466 perf_swevent_put_recursion_context(rctx);
8467 fail:
8468 preempt_enable_notrace();
8469 }
8470
perf_swevent_read(struct perf_event * event)8471 static void perf_swevent_read(struct perf_event *event)
8472 {
8473 }
8474
perf_swevent_add(struct perf_event * event,int flags)8475 static int perf_swevent_add(struct perf_event *event, int flags)
8476 {
8477 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8478 struct hw_perf_event *hwc = &event->hw;
8479 struct hlist_head *head;
8480
8481 if (is_sampling_event(event)) {
8482 hwc->last_period = hwc->sample_period;
8483 perf_swevent_set_period(event);
8484 }
8485
8486 hwc->state = !(flags & PERF_EF_START);
8487
8488 head = find_swevent_head(swhash, event);
8489 if (WARN_ON_ONCE(!head))
8490 return -EINVAL;
8491
8492 hlist_add_head_rcu(&event->hlist_entry, head);
8493 perf_event_update_userpage(event);
8494
8495 return 0;
8496 }
8497
perf_swevent_del(struct perf_event * event,int flags)8498 static void perf_swevent_del(struct perf_event *event, int flags)
8499 {
8500 hlist_del_rcu(&event->hlist_entry);
8501 }
8502
perf_swevent_start(struct perf_event * event,int flags)8503 static void perf_swevent_start(struct perf_event *event, int flags)
8504 {
8505 event->hw.state = 0;
8506 }
8507
perf_swevent_stop(struct perf_event * event,int flags)8508 static void perf_swevent_stop(struct perf_event *event, int flags)
8509 {
8510 event->hw.state = PERF_HES_STOPPED;
8511 }
8512
8513 /* Deref the hlist from the update side */
8514 static inline struct swevent_hlist *
swevent_hlist_deref(struct swevent_htable * swhash)8515 swevent_hlist_deref(struct swevent_htable *swhash)
8516 {
8517 return rcu_dereference_protected(swhash->swevent_hlist,
8518 lockdep_is_held(&swhash->hlist_mutex));
8519 }
8520
swevent_hlist_release(struct swevent_htable * swhash)8521 static void swevent_hlist_release(struct swevent_htable *swhash)
8522 {
8523 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
8524
8525 if (!hlist)
8526 return;
8527
8528 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
8529 kfree_rcu(hlist, rcu_head);
8530 }
8531
swevent_hlist_put_cpu(int cpu)8532 static void swevent_hlist_put_cpu(int cpu)
8533 {
8534 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8535
8536 mutex_lock(&swhash->hlist_mutex);
8537
8538 if (!--swhash->hlist_refcount)
8539 swevent_hlist_release(swhash);
8540
8541 mutex_unlock(&swhash->hlist_mutex);
8542 }
8543
swevent_hlist_put(void)8544 static void swevent_hlist_put(void)
8545 {
8546 int cpu;
8547
8548 for_each_possible_cpu(cpu)
8549 swevent_hlist_put_cpu(cpu);
8550 }
8551
swevent_hlist_get_cpu(int cpu)8552 static int swevent_hlist_get_cpu(int cpu)
8553 {
8554 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8555 int err = 0;
8556
8557 mutex_lock(&swhash->hlist_mutex);
8558 if (!swevent_hlist_deref(swhash) &&
8559 cpumask_test_cpu(cpu, perf_online_mask)) {
8560 struct swevent_hlist *hlist;
8561
8562 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
8563 if (!hlist) {
8564 err = -ENOMEM;
8565 goto exit;
8566 }
8567 rcu_assign_pointer(swhash->swevent_hlist, hlist);
8568 }
8569 swhash->hlist_refcount++;
8570 exit:
8571 mutex_unlock(&swhash->hlist_mutex);
8572
8573 return err;
8574 }
8575
swevent_hlist_get(void)8576 static int swevent_hlist_get(void)
8577 {
8578 int err, cpu, failed_cpu;
8579
8580 mutex_lock(&pmus_lock);
8581 for_each_possible_cpu(cpu) {
8582 err = swevent_hlist_get_cpu(cpu);
8583 if (err) {
8584 failed_cpu = cpu;
8585 goto fail;
8586 }
8587 }
8588 mutex_unlock(&pmus_lock);
8589 return 0;
8590 fail:
8591 for_each_possible_cpu(cpu) {
8592 if (cpu == failed_cpu)
8593 break;
8594 swevent_hlist_put_cpu(cpu);
8595 }
8596 mutex_unlock(&pmus_lock);
8597 return err;
8598 }
8599
8600 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
8601
sw_perf_event_destroy(struct perf_event * event)8602 static void sw_perf_event_destroy(struct perf_event *event)
8603 {
8604 u64 event_id = event->attr.config;
8605
8606 WARN_ON(event->parent);
8607
8608 static_key_slow_dec(&perf_swevent_enabled[event_id]);
8609 swevent_hlist_put();
8610 }
8611
perf_swevent_init(struct perf_event * event)8612 static int perf_swevent_init(struct perf_event *event)
8613 {
8614 u64 event_id = event->attr.config;
8615
8616 if (event->attr.type != PERF_TYPE_SOFTWARE)
8617 return -ENOENT;
8618
8619 /*
8620 * no branch sampling for software events
8621 */
8622 if (has_branch_stack(event))
8623 return -EOPNOTSUPP;
8624
8625 switch (event_id) {
8626 case PERF_COUNT_SW_CPU_CLOCK:
8627 case PERF_COUNT_SW_TASK_CLOCK:
8628 return -ENOENT;
8629
8630 default:
8631 break;
8632 }
8633
8634 if (event_id >= PERF_COUNT_SW_MAX)
8635 return -ENOENT;
8636
8637 if (!event->parent) {
8638 int err;
8639
8640 err = swevent_hlist_get();
8641 if (err)
8642 return err;
8643
8644 static_key_slow_inc(&perf_swevent_enabled[event_id]);
8645 event->destroy = sw_perf_event_destroy;
8646 }
8647
8648 return 0;
8649 }
8650
8651 static struct pmu perf_swevent = {
8652 .task_ctx_nr = perf_sw_context,
8653
8654 .capabilities = PERF_PMU_CAP_NO_NMI,
8655
8656 .event_init = perf_swevent_init,
8657 .add = perf_swevent_add,
8658 .del = perf_swevent_del,
8659 .start = perf_swevent_start,
8660 .stop = perf_swevent_stop,
8661 .read = perf_swevent_read,
8662 };
8663
8664 #ifdef CONFIG_EVENT_TRACING
8665
perf_tp_filter_match(struct perf_event * event,struct perf_sample_data * data)8666 static int perf_tp_filter_match(struct perf_event *event,
8667 struct perf_sample_data *data)
8668 {
8669 void *record = data->raw->frag.data;
8670
8671 /* only top level events have filters set */
8672 if (event->parent)
8673 event = event->parent;
8674
8675 if (likely(!event->filter) || filter_match_preds(event->filter, record))
8676 return 1;
8677 return 0;
8678 }
8679
perf_tp_event_match(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)8680 static int perf_tp_event_match(struct perf_event *event,
8681 struct perf_sample_data *data,
8682 struct pt_regs *regs)
8683 {
8684 if (event->hw.state & PERF_HES_STOPPED)
8685 return 0;
8686 /*
8687 * If exclude_kernel, only trace user-space tracepoints (uprobes)
8688 */
8689 if (event->attr.exclude_kernel && !user_mode(regs))
8690 return 0;
8691
8692 if (!perf_tp_filter_match(event, data))
8693 return 0;
8694
8695 return 1;
8696 }
8697
perf_trace_run_bpf_submit(void * raw_data,int size,int rctx,struct trace_event_call * call,u64 count,struct pt_regs * regs,struct hlist_head * head,struct task_struct * task)8698 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
8699 struct trace_event_call *call, u64 count,
8700 struct pt_regs *regs, struct hlist_head *head,
8701 struct task_struct *task)
8702 {
8703 if (bpf_prog_array_valid(call)) {
8704 *(struct pt_regs **)raw_data = regs;
8705 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
8706 perf_swevent_put_recursion_context(rctx);
8707 return;
8708 }
8709 }
8710 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8711 rctx, task);
8712 }
8713 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
8714
perf_tp_event(u16 event_type,u64 count,void * record,int entry_size,struct pt_regs * regs,struct hlist_head * head,int rctx,struct task_struct * task)8715 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
8716 struct pt_regs *regs, struct hlist_head *head, int rctx,
8717 struct task_struct *task)
8718 {
8719 struct perf_sample_data data;
8720 struct perf_event *event;
8721
8722 struct perf_raw_record raw = {
8723 .frag = {
8724 .size = entry_size,
8725 .data = record,
8726 },
8727 };
8728
8729 perf_sample_data_init(&data, 0, 0);
8730 data.raw = &raw;
8731
8732 perf_trace_buf_update(record, event_type);
8733
8734 hlist_for_each_entry_rcu(event, head, hlist_entry) {
8735 if (perf_tp_event_match(event, &data, regs))
8736 perf_swevent_event(event, count, &data, regs);
8737 }
8738
8739 /*
8740 * If we got specified a target task, also iterate its context and
8741 * deliver this event there too.
8742 */
8743 if (task && task != current) {
8744 struct perf_event_context *ctx;
8745 struct trace_entry *entry = record;
8746
8747 rcu_read_lock();
8748 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8749 if (!ctx)
8750 goto unlock;
8751
8752 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8753 if (event->cpu != smp_processor_id())
8754 continue;
8755 if (event->attr.type != PERF_TYPE_TRACEPOINT)
8756 continue;
8757 if (event->attr.config != entry->type)
8758 continue;
8759 if (perf_tp_event_match(event, &data, regs))
8760 perf_swevent_event(event, count, &data, regs);
8761 }
8762 unlock:
8763 rcu_read_unlock();
8764 }
8765
8766 perf_swevent_put_recursion_context(rctx);
8767 }
8768 EXPORT_SYMBOL_GPL(perf_tp_event);
8769
tp_perf_event_destroy(struct perf_event * event)8770 static void tp_perf_event_destroy(struct perf_event *event)
8771 {
8772 perf_trace_destroy(event);
8773 }
8774
perf_tp_event_init(struct perf_event * event)8775 static int perf_tp_event_init(struct perf_event *event)
8776 {
8777 int err;
8778
8779 if (event->attr.type != PERF_TYPE_TRACEPOINT)
8780 return -ENOENT;
8781
8782 /*
8783 * no branch sampling for tracepoint events
8784 */
8785 if (has_branch_stack(event))
8786 return -EOPNOTSUPP;
8787
8788 err = perf_trace_init(event);
8789 if (err)
8790 return err;
8791
8792 event->destroy = tp_perf_event_destroy;
8793
8794 return 0;
8795 }
8796
8797 static struct pmu perf_tracepoint = {
8798 .task_ctx_nr = perf_sw_context,
8799
8800 .event_init = perf_tp_event_init,
8801 .add = perf_trace_add,
8802 .del = perf_trace_del,
8803 .start = perf_swevent_start,
8804 .stop = perf_swevent_stop,
8805 .read = perf_swevent_read,
8806 };
8807
8808 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
8809 /*
8810 * Flags in config, used by dynamic PMU kprobe and uprobe
8811 * The flags should match following PMU_FORMAT_ATTR().
8812 *
8813 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
8814 * if not set, create kprobe/uprobe
8815 *
8816 * The following values specify a reference counter (or semaphore in the
8817 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
8818 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
8819 *
8820 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset
8821 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left
8822 */
8823 enum perf_probe_config {
8824 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */
8825 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
8826 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
8827 };
8828
8829 PMU_FORMAT_ATTR(retprobe, "config:0");
8830 #endif
8831
8832 #ifdef CONFIG_KPROBE_EVENTS
8833 static struct attribute *kprobe_attrs[] = {
8834 &format_attr_retprobe.attr,
8835 NULL,
8836 };
8837
8838 static struct attribute_group kprobe_format_group = {
8839 .name = "format",
8840 .attrs = kprobe_attrs,
8841 };
8842
8843 static const struct attribute_group *kprobe_attr_groups[] = {
8844 &kprobe_format_group,
8845 NULL,
8846 };
8847
8848 static int perf_kprobe_event_init(struct perf_event *event);
8849 static struct pmu perf_kprobe = {
8850 .task_ctx_nr = perf_sw_context,
8851 .event_init = perf_kprobe_event_init,
8852 .add = perf_trace_add,
8853 .del = perf_trace_del,
8854 .start = perf_swevent_start,
8855 .stop = perf_swevent_stop,
8856 .read = perf_swevent_read,
8857 .attr_groups = kprobe_attr_groups,
8858 };
8859
perf_kprobe_event_init(struct perf_event * event)8860 static int perf_kprobe_event_init(struct perf_event *event)
8861 {
8862 int err;
8863 bool is_retprobe;
8864
8865 if (event->attr.type != perf_kprobe.type)
8866 return -ENOENT;
8867
8868 if (!capable(CAP_SYS_ADMIN))
8869 return -EACCES;
8870
8871 /*
8872 * no branch sampling for probe events
8873 */
8874 if (has_branch_stack(event))
8875 return -EOPNOTSUPP;
8876
8877 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8878 err = perf_kprobe_init(event, is_retprobe);
8879 if (err)
8880 return err;
8881
8882 event->destroy = perf_kprobe_destroy;
8883
8884 return 0;
8885 }
8886 #endif /* CONFIG_KPROBE_EVENTS */
8887
8888 #ifdef CONFIG_UPROBE_EVENTS
8889 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
8890
8891 static struct attribute *uprobe_attrs[] = {
8892 &format_attr_retprobe.attr,
8893 &format_attr_ref_ctr_offset.attr,
8894 NULL,
8895 };
8896
8897 static struct attribute_group uprobe_format_group = {
8898 .name = "format",
8899 .attrs = uprobe_attrs,
8900 };
8901
8902 static const struct attribute_group *uprobe_attr_groups[] = {
8903 &uprobe_format_group,
8904 NULL,
8905 };
8906
8907 static int perf_uprobe_event_init(struct perf_event *event);
8908 static struct pmu perf_uprobe = {
8909 .task_ctx_nr = perf_sw_context,
8910 .event_init = perf_uprobe_event_init,
8911 .add = perf_trace_add,
8912 .del = perf_trace_del,
8913 .start = perf_swevent_start,
8914 .stop = perf_swevent_stop,
8915 .read = perf_swevent_read,
8916 .attr_groups = uprobe_attr_groups,
8917 };
8918
perf_uprobe_event_init(struct perf_event * event)8919 static int perf_uprobe_event_init(struct perf_event *event)
8920 {
8921 int err;
8922 unsigned long ref_ctr_offset;
8923 bool is_retprobe;
8924
8925 if (event->attr.type != perf_uprobe.type)
8926 return -ENOENT;
8927
8928 if (!capable(CAP_SYS_ADMIN))
8929 return -EACCES;
8930
8931 /*
8932 * no branch sampling for probe events
8933 */
8934 if (has_branch_stack(event))
8935 return -EOPNOTSUPP;
8936
8937 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8938 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
8939 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
8940 if (err)
8941 return err;
8942
8943 event->destroy = perf_uprobe_destroy;
8944
8945 return 0;
8946 }
8947 #endif /* CONFIG_UPROBE_EVENTS */
8948
perf_tp_register(void)8949 static inline void perf_tp_register(void)
8950 {
8951 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
8952 #ifdef CONFIG_KPROBE_EVENTS
8953 perf_pmu_register(&perf_kprobe, "kprobe", -1);
8954 #endif
8955 #ifdef CONFIG_UPROBE_EVENTS
8956 perf_pmu_register(&perf_uprobe, "uprobe", -1);
8957 #endif
8958 }
8959
perf_event_free_filter(struct perf_event * event)8960 static void perf_event_free_filter(struct perf_event *event)
8961 {
8962 ftrace_profile_free_filter(event);
8963 }
8964
8965 #ifdef CONFIG_BPF_SYSCALL
bpf_overflow_handler(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)8966 static void bpf_overflow_handler(struct perf_event *event,
8967 struct perf_sample_data *data,
8968 struct pt_regs *regs)
8969 {
8970 struct bpf_perf_event_data_kern ctx = {
8971 .data = data,
8972 .event = event,
8973 };
8974 int ret = 0;
8975
8976 ctx.regs = perf_arch_bpf_user_pt_regs(regs);
8977 preempt_disable();
8978 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8979 goto out;
8980 rcu_read_lock();
8981 ret = BPF_PROG_RUN(event->prog, &ctx);
8982 rcu_read_unlock();
8983 out:
8984 __this_cpu_dec(bpf_prog_active);
8985 preempt_enable();
8986 if (!ret)
8987 return;
8988
8989 event->orig_overflow_handler(event, data, regs);
8990 }
8991
perf_event_set_bpf_handler(struct perf_event * event,u32 prog_fd)8992 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8993 {
8994 struct bpf_prog *prog;
8995
8996 if (event->overflow_handler_context)
8997 /* hw breakpoint or kernel counter */
8998 return -EINVAL;
8999
9000 if (event->prog)
9001 return -EEXIST;
9002
9003 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
9004 if (IS_ERR(prog))
9005 return PTR_ERR(prog);
9006
9007 event->prog = prog;
9008 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
9009 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
9010 return 0;
9011 }
9012
perf_event_free_bpf_handler(struct perf_event * event)9013 static void perf_event_free_bpf_handler(struct perf_event *event)
9014 {
9015 struct bpf_prog *prog = event->prog;
9016
9017 if (!prog)
9018 return;
9019
9020 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
9021 event->prog = NULL;
9022 bpf_prog_put(prog);
9023 }
9024 #else
perf_event_set_bpf_handler(struct perf_event * event,u32 prog_fd)9025 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9026 {
9027 return -EOPNOTSUPP;
9028 }
perf_event_free_bpf_handler(struct perf_event * event)9029 static void perf_event_free_bpf_handler(struct perf_event *event)
9030 {
9031 }
9032 #endif
9033
9034 /*
9035 * returns true if the event is a tracepoint, or a kprobe/upprobe created
9036 * with perf_event_open()
9037 */
perf_event_is_tracing(struct perf_event * event)9038 static inline bool perf_event_is_tracing(struct perf_event *event)
9039 {
9040 if (event->pmu == &perf_tracepoint)
9041 return true;
9042 #ifdef CONFIG_KPROBE_EVENTS
9043 if (event->pmu == &perf_kprobe)
9044 return true;
9045 #endif
9046 #ifdef CONFIG_UPROBE_EVENTS
9047 if (event->pmu == &perf_uprobe)
9048 return true;
9049 #endif
9050 return false;
9051 }
9052
perf_event_set_bpf_prog(struct perf_event * event,u32 prog_fd)9053 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9054 {
9055 bool is_kprobe, is_tracepoint, is_syscall_tp;
9056 struct bpf_prog *prog;
9057 int ret;
9058
9059 if (!perf_event_is_tracing(event))
9060 return perf_event_set_bpf_handler(event, prog_fd);
9061
9062 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
9063 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
9064 is_syscall_tp = is_syscall_trace_event(event->tp_event);
9065 if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
9066 /* bpf programs can only be attached to u/kprobe or tracepoint */
9067 return -EINVAL;
9068
9069 prog = bpf_prog_get(prog_fd);
9070 if (IS_ERR(prog))
9071 return PTR_ERR(prog);
9072
9073 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
9074 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
9075 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
9076 /* valid fd, but invalid bpf program type */
9077 bpf_prog_put(prog);
9078 return -EINVAL;
9079 }
9080
9081 /* Kprobe override only works for kprobes, not uprobes. */
9082 if (prog->kprobe_override &&
9083 !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
9084 bpf_prog_put(prog);
9085 return -EINVAL;
9086 }
9087
9088 if (is_tracepoint || is_syscall_tp) {
9089 int off = trace_event_get_offsets(event->tp_event);
9090
9091 if (prog->aux->max_ctx_offset > off) {
9092 bpf_prog_put(prog);
9093 return -EACCES;
9094 }
9095 }
9096
9097 ret = perf_event_attach_bpf_prog(event, prog);
9098 if (ret)
9099 bpf_prog_put(prog);
9100 return ret;
9101 }
9102
perf_event_free_bpf_prog(struct perf_event * event)9103 static void perf_event_free_bpf_prog(struct perf_event *event)
9104 {
9105 if (!perf_event_is_tracing(event)) {
9106 perf_event_free_bpf_handler(event);
9107 return;
9108 }
9109 perf_event_detach_bpf_prog(event);
9110 }
9111
9112 #else
9113
perf_tp_register(void)9114 static inline void perf_tp_register(void)
9115 {
9116 }
9117
perf_event_free_filter(struct perf_event * event)9118 static void perf_event_free_filter(struct perf_event *event)
9119 {
9120 }
9121
perf_event_set_bpf_prog(struct perf_event * event,u32 prog_fd)9122 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9123 {
9124 return -ENOENT;
9125 }
9126
perf_event_free_bpf_prog(struct perf_event * event)9127 static void perf_event_free_bpf_prog(struct perf_event *event)
9128 {
9129 }
9130 #endif /* CONFIG_EVENT_TRACING */
9131
9132 #ifdef CONFIG_HAVE_HW_BREAKPOINT
perf_bp_event(struct perf_event * bp,void * data)9133 void perf_bp_event(struct perf_event *bp, void *data)
9134 {
9135 struct perf_sample_data sample;
9136 struct pt_regs *regs = data;
9137
9138 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
9139
9140 if (!bp->hw.state && !perf_exclude_event(bp, regs))
9141 perf_swevent_event(bp, 1, &sample, regs);
9142 }
9143 #endif
9144
9145 /*
9146 * Allocate a new address filter
9147 */
9148 static struct perf_addr_filter *
perf_addr_filter_new(struct perf_event * event,struct list_head * filters)9149 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
9150 {
9151 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
9152 struct perf_addr_filter *filter;
9153
9154 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
9155 if (!filter)
9156 return NULL;
9157
9158 INIT_LIST_HEAD(&filter->entry);
9159 list_add_tail(&filter->entry, filters);
9160
9161 return filter;
9162 }
9163
free_filters_list(struct list_head * filters)9164 static void free_filters_list(struct list_head *filters)
9165 {
9166 struct perf_addr_filter *filter, *iter;
9167
9168 list_for_each_entry_safe(filter, iter, filters, entry) {
9169 path_put(&filter->path);
9170 list_del(&filter->entry);
9171 kfree(filter);
9172 }
9173 }
9174
9175 /*
9176 * Free existing address filters and optionally install new ones
9177 */
perf_addr_filters_splice(struct perf_event * event,struct list_head * head)9178 static void perf_addr_filters_splice(struct perf_event *event,
9179 struct list_head *head)
9180 {
9181 unsigned long flags;
9182 LIST_HEAD(list);
9183
9184 if (!has_addr_filter(event))
9185 return;
9186
9187 /* don't bother with children, they don't have their own filters */
9188 if (event->parent)
9189 return;
9190
9191 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
9192
9193 list_splice_init(&event->addr_filters.list, &list);
9194 if (head)
9195 list_splice(head, &event->addr_filters.list);
9196
9197 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
9198
9199 free_filters_list(&list);
9200 }
9201
9202 /*
9203 * Scan through mm's vmas and see if one of them matches the
9204 * @filter; if so, adjust filter's address range.
9205 * Called with mm::mmap_sem down for reading.
9206 */
perf_addr_filter_apply(struct perf_addr_filter * filter,struct mm_struct * mm,struct perf_addr_filter_range * fr)9207 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
9208 struct mm_struct *mm,
9209 struct perf_addr_filter_range *fr)
9210 {
9211 struct vm_area_struct *vma;
9212
9213 for (vma = mm->mmap; vma; vma = vma->vm_next) {
9214 if (!vma->vm_file)
9215 continue;
9216
9217 if (perf_addr_filter_vma_adjust(filter, vma, fr))
9218 return;
9219 }
9220 }
9221
9222 /*
9223 * Update event's address range filters based on the
9224 * task's existing mappings, if any.
9225 */
perf_event_addr_filters_apply(struct perf_event * event)9226 static void perf_event_addr_filters_apply(struct perf_event *event)
9227 {
9228 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
9229 struct task_struct *task = READ_ONCE(event->ctx->task);
9230 struct perf_addr_filter *filter;
9231 struct mm_struct *mm = NULL;
9232 unsigned int count = 0;
9233 unsigned long flags;
9234
9235 /*
9236 * We may observe TASK_TOMBSTONE, which means that the event tear-down
9237 * will stop on the parent's child_mutex that our caller is also holding
9238 */
9239 if (task == TASK_TOMBSTONE)
9240 return;
9241
9242 if (ifh->nr_file_filters) {
9243 mm = get_task_mm(event->ctx->task);
9244 if (!mm)
9245 goto restart;
9246
9247 down_read(&mm->mmap_sem);
9248 }
9249
9250 raw_spin_lock_irqsave(&ifh->lock, flags);
9251 list_for_each_entry(filter, &ifh->list, entry) {
9252 if (filter->path.dentry) {
9253 /*
9254 * Adjust base offset if the filter is associated to a
9255 * binary that needs to be mapped:
9256 */
9257 event->addr_filter_ranges[count].start = 0;
9258 event->addr_filter_ranges[count].size = 0;
9259
9260 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
9261 } else {
9262 event->addr_filter_ranges[count].start = filter->offset;
9263 event->addr_filter_ranges[count].size = filter->size;
9264 }
9265
9266 count++;
9267 }
9268
9269 event->addr_filters_gen++;
9270 raw_spin_unlock_irqrestore(&ifh->lock, flags);
9271
9272 if (ifh->nr_file_filters) {
9273 up_read(&mm->mmap_sem);
9274
9275 mmput(mm);
9276 }
9277
9278 restart:
9279 perf_event_stop(event, 1);
9280 }
9281
9282 /*
9283 * Address range filtering: limiting the data to certain
9284 * instruction address ranges. Filters are ioctl()ed to us from
9285 * userspace as ascii strings.
9286 *
9287 * Filter string format:
9288 *
9289 * ACTION RANGE_SPEC
9290 * where ACTION is one of the
9291 * * "filter": limit the trace to this region
9292 * * "start": start tracing from this address
9293 * * "stop": stop tracing at this address/region;
9294 * RANGE_SPEC is
9295 * * for kernel addresses: <start address>[/<size>]
9296 * * for object files: <start address>[/<size>]@</path/to/object/file>
9297 *
9298 * if <size> is not specified or is zero, the range is treated as a single
9299 * address; not valid for ACTION=="filter".
9300 */
9301 enum {
9302 IF_ACT_NONE = -1,
9303 IF_ACT_FILTER,
9304 IF_ACT_START,
9305 IF_ACT_STOP,
9306 IF_SRC_FILE,
9307 IF_SRC_KERNEL,
9308 IF_SRC_FILEADDR,
9309 IF_SRC_KERNELADDR,
9310 };
9311
9312 enum {
9313 IF_STATE_ACTION = 0,
9314 IF_STATE_SOURCE,
9315 IF_STATE_END,
9316 };
9317
9318 static const match_table_t if_tokens = {
9319 { IF_ACT_FILTER, "filter" },
9320 { IF_ACT_START, "start" },
9321 { IF_ACT_STOP, "stop" },
9322 { IF_SRC_FILE, "%u/%u@%s" },
9323 { IF_SRC_KERNEL, "%u/%u" },
9324 { IF_SRC_FILEADDR, "%u@%s" },
9325 { IF_SRC_KERNELADDR, "%u" },
9326 { IF_ACT_NONE, NULL },
9327 };
9328
9329 /*
9330 * Address filter string parser
9331 */
9332 static int
perf_event_parse_addr_filter(struct perf_event * event,char * fstr,struct list_head * filters)9333 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
9334 struct list_head *filters)
9335 {
9336 struct perf_addr_filter *filter = NULL;
9337 char *start, *orig, *filename = NULL;
9338 substring_t args[MAX_OPT_ARGS];
9339 int state = IF_STATE_ACTION, token;
9340 unsigned int kernel = 0;
9341 int ret = -EINVAL;
9342
9343 orig = fstr = kstrdup(fstr, GFP_KERNEL);
9344 if (!fstr)
9345 return -ENOMEM;
9346
9347 while ((start = strsep(&fstr, " ,\n")) != NULL) {
9348 static const enum perf_addr_filter_action_t actions[] = {
9349 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
9350 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START,
9351 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP,
9352 };
9353 ret = -EINVAL;
9354
9355 if (!*start)
9356 continue;
9357
9358 /* filter definition begins */
9359 if (state == IF_STATE_ACTION) {
9360 filter = perf_addr_filter_new(event, filters);
9361 if (!filter)
9362 goto fail;
9363 }
9364
9365 token = match_token(start, if_tokens, args);
9366 switch (token) {
9367 case IF_ACT_FILTER:
9368 case IF_ACT_START:
9369 case IF_ACT_STOP:
9370 if (state != IF_STATE_ACTION)
9371 goto fail;
9372
9373 filter->action = actions[token];
9374 state = IF_STATE_SOURCE;
9375 break;
9376
9377 case IF_SRC_KERNELADDR:
9378 case IF_SRC_KERNEL:
9379 kernel = 1;
9380 /* fall through */
9381
9382 case IF_SRC_FILEADDR:
9383 case IF_SRC_FILE:
9384 if (state != IF_STATE_SOURCE)
9385 goto fail;
9386
9387 *args[0].to = 0;
9388 ret = kstrtoul(args[0].from, 0, &filter->offset);
9389 if (ret)
9390 goto fail;
9391
9392 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
9393 *args[1].to = 0;
9394 ret = kstrtoul(args[1].from, 0, &filter->size);
9395 if (ret)
9396 goto fail;
9397 }
9398
9399 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
9400 int fpos = token == IF_SRC_FILE ? 2 : 1;
9401
9402 filename = match_strdup(&args[fpos]);
9403 if (!filename) {
9404 ret = -ENOMEM;
9405 goto fail;
9406 }
9407 }
9408
9409 state = IF_STATE_END;
9410 break;
9411
9412 default:
9413 goto fail;
9414 }
9415
9416 /*
9417 * Filter definition is fully parsed, validate and install it.
9418 * Make sure that it doesn't contradict itself or the event's
9419 * attribute.
9420 */
9421 if (state == IF_STATE_END) {
9422 ret = -EINVAL;
9423 if (kernel && event->attr.exclude_kernel)
9424 goto fail;
9425
9426 /*
9427 * ACTION "filter" must have a non-zero length region
9428 * specified.
9429 */
9430 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
9431 !filter->size)
9432 goto fail;
9433
9434 if (!kernel) {
9435 if (!filename)
9436 goto fail;
9437
9438 /*
9439 * For now, we only support file-based filters
9440 * in per-task events; doing so for CPU-wide
9441 * events requires additional context switching
9442 * trickery, since same object code will be
9443 * mapped at different virtual addresses in
9444 * different processes.
9445 */
9446 ret = -EOPNOTSUPP;
9447 if (!event->ctx->task)
9448 goto fail_free_name;
9449
9450 /* look up the path and grab its inode */
9451 ret = kern_path(filename, LOOKUP_FOLLOW,
9452 &filter->path);
9453 if (ret)
9454 goto fail_free_name;
9455
9456 kfree(filename);
9457 filename = NULL;
9458
9459 ret = -EINVAL;
9460 if (!filter->path.dentry ||
9461 !S_ISREG(d_inode(filter->path.dentry)
9462 ->i_mode))
9463 goto fail;
9464
9465 event->addr_filters.nr_file_filters++;
9466 }
9467
9468 /* ready to consume more filters */
9469 state = IF_STATE_ACTION;
9470 filter = NULL;
9471 }
9472 }
9473
9474 if (state != IF_STATE_ACTION)
9475 goto fail;
9476
9477 kfree(orig);
9478
9479 return 0;
9480
9481 fail_free_name:
9482 kfree(filename);
9483 fail:
9484 free_filters_list(filters);
9485 kfree(orig);
9486
9487 return ret;
9488 }
9489
9490 static int
perf_event_set_addr_filter(struct perf_event * event,char * filter_str)9491 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
9492 {
9493 LIST_HEAD(filters);
9494 int ret;
9495
9496 /*
9497 * Since this is called in perf_ioctl() path, we're already holding
9498 * ctx::mutex.
9499 */
9500 lockdep_assert_held(&event->ctx->mutex);
9501
9502 if (WARN_ON_ONCE(event->parent))
9503 return -EINVAL;
9504
9505 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
9506 if (ret)
9507 goto fail_clear_files;
9508
9509 ret = event->pmu->addr_filters_validate(&filters);
9510 if (ret)
9511 goto fail_free_filters;
9512
9513 /* remove existing filters, if any */
9514 perf_addr_filters_splice(event, &filters);
9515
9516 /* install new filters */
9517 perf_event_for_each_child(event, perf_event_addr_filters_apply);
9518
9519 return ret;
9520
9521 fail_free_filters:
9522 free_filters_list(&filters);
9523
9524 fail_clear_files:
9525 event->addr_filters.nr_file_filters = 0;
9526
9527 return ret;
9528 }
9529
perf_event_set_filter(struct perf_event * event,void __user * arg)9530 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
9531 {
9532 int ret = -EINVAL;
9533 char *filter_str;
9534
9535 filter_str = strndup_user(arg, PAGE_SIZE);
9536 if (IS_ERR(filter_str))
9537 return PTR_ERR(filter_str);
9538
9539 #ifdef CONFIG_EVENT_TRACING
9540 if (perf_event_is_tracing(event)) {
9541 struct perf_event_context *ctx = event->ctx;
9542
9543 /*
9544 * Beware, here be dragons!!
9545 *
9546 * the tracepoint muck will deadlock against ctx->mutex, but
9547 * the tracepoint stuff does not actually need it. So
9548 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
9549 * already have a reference on ctx.
9550 *
9551 * This can result in event getting moved to a different ctx,
9552 * but that does not affect the tracepoint state.
9553 */
9554 mutex_unlock(&ctx->mutex);
9555 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
9556 mutex_lock(&ctx->mutex);
9557 } else
9558 #endif
9559 if (has_addr_filter(event))
9560 ret = perf_event_set_addr_filter(event, filter_str);
9561
9562 kfree(filter_str);
9563 return ret;
9564 }
9565
9566 /*
9567 * hrtimer based swevent callback
9568 */
9569
perf_swevent_hrtimer(struct hrtimer * hrtimer)9570 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
9571 {
9572 enum hrtimer_restart ret = HRTIMER_RESTART;
9573 struct perf_sample_data data;
9574 struct pt_regs *regs;
9575 struct perf_event *event;
9576 u64 period;
9577
9578 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
9579
9580 if (event->state != PERF_EVENT_STATE_ACTIVE)
9581 return HRTIMER_NORESTART;
9582
9583 event->pmu->read(event);
9584
9585 perf_sample_data_init(&data, 0, event->hw.last_period);
9586 regs = get_irq_regs();
9587
9588 if (regs && !perf_exclude_event(event, regs)) {
9589 if (!(event->attr.exclude_idle && is_idle_task(current)))
9590 if (__perf_event_overflow(event, 1, &data, regs))
9591 ret = HRTIMER_NORESTART;
9592 }
9593
9594 period = max_t(u64, 10000, event->hw.sample_period);
9595 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
9596
9597 return ret;
9598 }
9599
perf_swevent_start_hrtimer(struct perf_event * event)9600 static void perf_swevent_start_hrtimer(struct perf_event *event)
9601 {
9602 struct hw_perf_event *hwc = &event->hw;
9603 s64 period;
9604
9605 if (!is_sampling_event(event))
9606 return;
9607
9608 period = local64_read(&hwc->period_left);
9609 if (period) {
9610 if (period < 0)
9611 period = 10000;
9612
9613 local64_set(&hwc->period_left, 0);
9614 } else {
9615 period = max_t(u64, 10000, hwc->sample_period);
9616 }
9617 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
9618 HRTIMER_MODE_REL_PINNED_HARD);
9619 }
9620
perf_swevent_cancel_hrtimer(struct perf_event * event)9621 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
9622 {
9623 struct hw_perf_event *hwc = &event->hw;
9624
9625 if (is_sampling_event(event)) {
9626 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
9627 local64_set(&hwc->period_left, ktime_to_ns(remaining));
9628
9629 hrtimer_cancel(&hwc->hrtimer);
9630 }
9631 }
9632
perf_swevent_init_hrtimer(struct perf_event * event)9633 static void perf_swevent_init_hrtimer(struct perf_event *event)
9634 {
9635 struct hw_perf_event *hwc = &event->hw;
9636
9637 if (!is_sampling_event(event))
9638 return;
9639
9640 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
9641 hwc->hrtimer.function = perf_swevent_hrtimer;
9642
9643 /*
9644 * Since hrtimers have a fixed rate, we can do a static freq->period
9645 * mapping and avoid the whole period adjust feedback stuff.
9646 */
9647 if (event->attr.freq) {
9648 long freq = event->attr.sample_freq;
9649
9650 event->attr.sample_period = NSEC_PER_SEC / freq;
9651 hwc->sample_period = event->attr.sample_period;
9652 local64_set(&hwc->period_left, hwc->sample_period);
9653 hwc->last_period = hwc->sample_period;
9654 event->attr.freq = 0;
9655 }
9656 }
9657
9658 /*
9659 * Software event: cpu wall time clock
9660 */
9661
cpu_clock_event_update(struct perf_event * event)9662 static void cpu_clock_event_update(struct perf_event *event)
9663 {
9664 s64 prev;
9665 u64 now;
9666
9667 now = local_clock();
9668 prev = local64_xchg(&event->hw.prev_count, now);
9669 local64_add(now - prev, &event->count);
9670 }
9671
cpu_clock_event_start(struct perf_event * event,int flags)9672 static void cpu_clock_event_start(struct perf_event *event, int flags)
9673 {
9674 local64_set(&event->hw.prev_count, local_clock());
9675 perf_swevent_start_hrtimer(event);
9676 }
9677
cpu_clock_event_stop(struct perf_event * event,int flags)9678 static void cpu_clock_event_stop(struct perf_event *event, int flags)
9679 {
9680 perf_swevent_cancel_hrtimer(event);
9681 cpu_clock_event_update(event);
9682 }
9683
cpu_clock_event_add(struct perf_event * event,int flags)9684 static int cpu_clock_event_add(struct perf_event *event, int flags)
9685 {
9686 if (flags & PERF_EF_START)
9687 cpu_clock_event_start(event, flags);
9688 perf_event_update_userpage(event);
9689
9690 return 0;
9691 }
9692
cpu_clock_event_del(struct perf_event * event,int flags)9693 static void cpu_clock_event_del(struct perf_event *event, int flags)
9694 {
9695 cpu_clock_event_stop(event, flags);
9696 }
9697
cpu_clock_event_read(struct perf_event * event)9698 static void cpu_clock_event_read(struct perf_event *event)
9699 {
9700 cpu_clock_event_update(event);
9701 }
9702
cpu_clock_event_init(struct perf_event * event)9703 static int cpu_clock_event_init(struct perf_event *event)
9704 {
9705 if (event->attr.type != PERF_TYPE_SOFTWARE)
9706 return -ENOENT;
9707
9708 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
9709 return -ENOENT;
9710
9711 /*
9712 * no branch sampling for software events
9713 */
9714 if (has_branch_stack(event))
9715 return -EOPNOTSUPP;
9716
9717 perf_swevent_init_hrtimer(event);
9718
9719 return 0;
9720 }
9721
9722 static struct pmu perf_cpu_clock = {
9723 .task_ctx_nr = perf_sw_context,
9724
9725 .capabilities = PERF_PMU_CAP_NO_NMI,
9726
9727 .event_init = cpu_clock_event_init,
9728 .add = cpu_clock_event_add,
9729 .del = cpu_clock_event_del,
9730 .start = cpu_clock_event_start,
9731 .stop = cpu_clock_event_stop,
9732 .read = cpu_clock_event_read,
9733 };
9734
9735 /*
9736 * Software event: task time clock
9737 */
9738
task_clock_event_update(struct perf_event * event,u64 now)9739 static void task_clock_event_update(struct perf_event *event, u64 now)
9740 {
9741 u64 prev;
9742 s64 delta;
9743
9744 prev = local64_xchg(&event->hw.prev_count, now);
9745 delta = now - prev;
9746 local64_add(delta, &event->count);
9747 }
9748
task_clock_event_start(struct perf_event * event,int flags)9749 static void task_clock_event_start(struct perf_event *event, int flags)
9750 {
9751 local64_set(&event->hw.prev_count, event->ctx->time);
9752 perf_swevent_start_hrtimer(event);
9753 }
9754
task_clock_event_stop(struct perf_event * event,int flags)9755 static void task_clock_event_stop(struct perf_event *event, int flags)
9756 {
9757 perf_swevent_cancel_hrtimer(event);
9758 task_clock_event_update(event, event->ctx->time);
9759 }
9760
task_clock_event_add(struct perf_event * event,int flags)9761 static int task_clock_event_add(struct perf_event *event, int flags)
9762 {
9763 if (flags & PERF_EF_START)
9764 task_clock_event_start(event, flags);
9765 perf_event_update_userpage(event);
9766
9767 return 0;
9768 }
9769
task_clock_event_del(struct perf_event * event,int flags)9770 static void task_clock_event_del(struct perf_event *event, int flags)
9771 {
9772 task_clock_event_stop(event, PERF_EF_UPDATE);
9773 }
9774
task_clock_event_read(struct perf_event * event)9775 static void task_clock_event_read(struct perf_event *event)
9776 {
9777 u64 now = perf_clock();
9778 u64 delta = now - event->ctx->timestamp;
9779 u64 time = event->ctx->time + delta;
9780
9781 task_clock_event_update(event, time);
9782 }
9783
task_clock_event_init(struct perf_event * event)9784 static int task_clock_event_init(struct perf_event *event)
9785 {
9786 if (event->attr.type != PERF_TYPE_SOFTWARE)
9787 return -ENOENT;
9788
9789 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
9790 return -ENOENT;
9791
9792 /*
9793 * no branch sampling for software events
9794 */
9795 if (has_branch_stack(event))
9796 return -EOPNOTSUPP;
9797
9798 perf_swevent_init_hrtimer(event);
9799
9800 return 0;
9801 }
9802
9803 static struct pmu perf_task_clock = {
9804 .task_ctx_nr = perf_sw_context,
9805
9806 .capabilities = PERF_PMU_CAP_NO_NMI,
9807
9808 .event_init = task_clock_event_init,
9809 .add = task_clock_event_add,
9810 .del = task_clock_event_del,
9811 .start = task_clock_event_start,
9812 .stop = task_clock_event_stop,
9813 .read = task_clock_event_read,
9814 };
9815
perf_pmu_nop_void(struct pmu * pmu)9816 static void perf_pmu_nop_void(struct pmu *pmu)
9817 {
9818 }
9819
perf_pmu_nop_txn(struct pmu * pmu,unsigned int flags)9820 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
9821 {
9822 }
9823
perf_pmu_nop_int(struct pmu * pmu)9824 static int perf_pmu_nop_int(struct pmu *pmu)
9825 {
9826 return 0;
9827 }
9828
perf_event_nop_int(struct perf_event * event,u64 value)9829 static int perf_event_nop_int(struct perf_event *event, u64 value)
9830 {
9831 return 0;
9832 }
9833
9834 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
9835
perf_pmu_start_txn(struct pmu * pmu,unsigned int flags)9836 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
9837 {
9838 __this_cpu_write(nop_txn_flags, flags);
9839
9840 if (flags & ~PERF_PMU_TXN_ADD)
9841 return;
9842
9843 perf_pmu_disable(pmu);
9844 }
9845
perf_pmu_commit_txn(struct pmu * pmu)9846 static int perf_pmu_commit_txn(struct pmu *pmu)
9847 {
9848 unsigned int flags = __this_cpu_read(nop_txn_flags);
9849
9850 __this_cpu_write(nop_txn_flags, 0);
9851
9852 if (flags & ~PERF_PMU_TXN_ADD)
9853 return 0;
9854
9855 perf_pmu_enable(pmu);
9856 return 0;
9857 }
9858
perf_pmu_cancel_txn(struct pmu * pmu)9859 static void perf_pmu_cancel_txn(struct pmu *pmu)
9860 {
9861 unsigned int flags = __this_cpu_read(nop_txn_flags);
9862
9863 __this_cpu_write(nop_txn_flags, 0);
9864
9865 if (flags & ~PERF_PMU_TXN_ADD)
9866 return;
9867
9868 perf_pmu_enable(pmu);
9869 }
9870
perf_event_idx_default(struct perf_event * event)9871 static int perf_event_idx_default(struct perf_event *event)
9872 {
9873 return 0;
9874 }
9875
9876 /*
9877 * Ensures all contexts with the same task_ctx_nr have the same
9878 * pmu_cpu_context too.
9879 */
find_pmu_context(int ctxn)9880 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
9881 {
9882 struct pmu *pmu;
9883
9884 if (ctxn < 0)
9885 return NULL;
9886
9887 list_for_each_entry(pmu, &pmus, entry) {
9888 if (pmu->task_ctx_nr == ctxn)
9889 return pmu->pmu_cpu_context;
9890 }
9891
9892 return NULL;
9893 }
9894
free_pmu_context(struct pmu * pmu)9895 static void free_pmu_context(struct pmu *pmu)
9896 {
9897 /*
9898 * Static contexts such as perf_sw_context have a global lifetime
9899 * and may be shared between different PMUs. Avoid freeing them
9900 * when a single PMU is going away.
9901 */
9902 if (pmu->task_ctx_nr > perf_invalid_context)
9903 return;
9904
9905 free_percpu(pmu->pmu_cpu_context);
9906 }
9907
9908 /*
9909 * Let userspace know that this PMU supports address range filtering:
9910 */
nr_addr_filters_show(struct device * dev,struct device_attribute * attr,char * page)9911 static ssize_t nr_addr_filters_show(struct device *dev,
9912 struct device_attribute *attr,
9913 char *page)
9914 {
9915 struct pmu *pmu = dev_get_drvdata(dev);
9916
9917 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
9918 }
9919 DEVICE_ATTR_RO(nr_addr_filters);
9920
9921 static struct idr pmu_idr;
9922
9923 static ssize_t
type_show(struct device * dev,struct device_attribute * attr,char * page)9924 type_show(struct device *dev, struct device_attribute *attr, char *page)
9925 {
9926 struct pmu *pmu = dev_get_drvdata(dev);
9927
9928 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
9929 }
9930 static DEVICE_ATTR_RO(type);
9931
9932 static ssize_t
perf_event_mux_interval_ms_show(struct device * dev,struct device_attribute * attr,char * page)9933 perf_event_mux_interval_ms_show(struct device *dev,
9934 struct device_attribute *attr,
9935 char *page)
9936 {
9937 struct pmu *pmu = dev_get_drvdata(dev);
9938
9939 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
9940 }
9941
9942 static DEFINE_MUTEX(mux_interval_mutex);
9943
9944 static ssize_t
perf_event_mux_interval_ms_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)9945 perf_event_mux_interval_ms_store(struct device *dev,
9946 struct device_attribute *attr,
9947 const char *buf, size_t count)
9948 {
9949 struct pmu *pmu = dev_get_drvdata(dev);
9950 int timer, cpu, ret;
9951
9952 ret = kstrtoint(buf, 0, &timer);
9953 if (ret)
9954 return ret;
9955
9956 if (timer < 1)
9957 return -EINVAL;
9958
9959 /* same value, noting to do */
9960 if (timer == pmu->hrtimer_interval_ms)
9961 return count;
9962
9963 mutex_lock(&mux_interval_mutex);
9964 pmu->hrtimer_interval_ms = timer;
9965
9966 /* update all cpuctx for this PMU */
9967 cpus_read_lock();
9968 for_each_online_cpu(cpu) {
9969 struct perf_cpu_context *cpuctx;
9970 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9971 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9972
9973 cpu_function_call(cpu,
9974 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
9975 }
9976 cpus_read_unlock();
9977 mutex_unlock(&mux_interval_mutex);
9978
9979 return count;
9980 }
9981 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
9982
9983 static struct attribute *pmu_dev_attrs[] = {
9984 &dev_attr_type.attr,
9985 &dev_attr_perf_event_mux_interval_ms.attr,
9986 NULL,
9987 };
9988 ATTRIBUTE_GROUPS(pmu_dev);
9989
9990 static int pmu_bus_running;
9991 static struct bus_type pmu_bus = {
9992 .name = "event_source",
9993 .dev_groups = pmu_dev_groups,
9994 };
9995
pmu_dev_release(struct device * dev)9996 static void pmu_dev_release(struct device *dev)
9997 {
9998 kfree(dev);
9999 }
10000
pmu_dev_alloc(struct pmu * pmu)10001 static int pmu_dev_alloc(struct pmu *pmu)
10002 {
10003 int ret = -ENOMEM;
10004
10005 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
10006 if (!pmu->dev)
10007 goto out;
10008
10009 pmu->dev->groups = pmu->attr_groups;
10010 device_initialize(pmu->dev);
10011 ret = dev_set_name(pmu->dev, "%s", pmu->name);
10012 if (ret)
10013 goto free_dev;
10014
10015 dev_set_drvdata(pmu->dev, pmu);
10016 pmu->dev->bus = &pmu_bus;
10017 pmu->dev->release = pmu_dev_release;
10018 ret = device_add(pmu->dev);
10019 if (ret)
10020 goto free_dev;
10021
10022 /* For PMUs with address filters, throw in an extra attribute: */
10023 if (pmu->nr_addr_filters)
10024 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
10025
10026 if (ret)
10027 goto del_dev;
10028
10029 if (pmu->attr_update)
10030 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
10031
10032 if (ret)
10033 goto del_dev;
10034
10035 out:
10036 return ret;
10037
10038 del_dev:
10039 device_del(pmu->dev);
10040
10041 free_dev:
10042 put_device(pmu->dev);
10043 goto out;
10044 }
10045
10046 static struct lock_class_key cpuctx_mutex;
10047 static struct lock_class_key cpuctx_lock;
10048
perf_pmu_register(struct pmu * pmu,const char * name,int type)10049 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
10050 {
10051 int cpu, ret;
10052
10053 mutex_lock(&pmus_lock);
10054 ret = -ENOMEM;
10055 pmu->pmu_disable_count = alloc_percpu(int);
10056 if (!pmu->pmu_disable_count)
10057 goto unlock;
10058
10059 pmu->type = -1;
10060 if (!name)
10061 goto skip_type;
10062 pmu->name = name;
10063
10064 if (type < 0) {
10065 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
10066 if (type < 0) {
10067 ret = type;
10068 goto free_pdc;
10069 }
10070 }
10071 pmu->type = type;
10072
10073 if (pmu_bus_running) {
10074 ret = pmu_dev_alloc(pmu);
10075 if (ret)
10076 goto free_idr;
10077 }
10078
10079 skip_type:
10080 if (pmu->task_ctx_nr == perf_hw_context) {
10081 static int hw_context_taken = 0;
10082
10083 /*
10084 * Other than systems with heterogeneous CPUs, it never makes
10085 * sense for two PMUs to share perf_hw_context. PMUs which are
10086 * uncore must use perf_invalid_context.
10087 */
10088 if (WARN_ON_ONCE(hw_context_taken &&
10089 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
10090 pmu->task_ctx_nr = perf_invalid_context;
10091
10092 hw_context_taken = 1;
10093 }
10094
10095 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
10096 if (pmu->pmu_cpu_context)
10097 goto got_cpu_context;
10098
10099 ret = -ENOMEM;
10100 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
10101 if (!pmu->pmu_cpu_context)
10102 goto free_dev;
10103
10104 for_each_possible_cpu(cpu) {
10105 struct perf_cpu_context *cpuctx;
10106
10107 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10108 __perf_event_init_context(&cpuctx->ctx);
10109 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
10110 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
10111 cpuctx->ctx.pmu = pmu;
10112 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
10113
10114 __perf_mux_hrtimer_init(cpuctx, cpu);
10115 }
10116
10117 got_cpu_context:
10118 if (!pmu->start_txn) {
10119 if (pmu->pmu_enable) {
10120 /*
10121 * If we have pmu_enable/pmu_disable calls, install
10122 * transaction stubs that use that to try and batch
10123 * hardware accesses.
10124 */
10125 pmu->start_txn = perf_pmu_start_txn;
10126 pmu->commit_txn = perf_pmu_commit_txn;
10127 pmu->cancel_txn = perf_pmu_cancel_txn;
10128 } else {
10129 pmu->start_txn = perf_pmu_nop_txn;
10130 pmu->commit_txn = perf_pmu_nop_int;
10131 pmu->cancel_txn = perf_pmu_nop_void;
10132 }
10133 }
10134
10135 if (!pmu->pmu_enable) {
10136 pmu->pmu_enable = perf_pmu_nop_void;
10137 pmu->pmu_disable = perf_pmu_nop_void;
10138 }
10139
10140 if (!pmu->check_period)
10141 pmu->check_period = perf_event_nop_int;
10142
10143 if (!pmu->event_idx)
10144 pmu->event_idx = perf_event_idx_default;
10145
10146 list_add_rcu(&pmu->entry, &pmus);
10147 atomic_set(&pmu->exclusive_cnt, 0);
10148 ret = 0;
10149 unlock:
10150 mutex_unlock(&pmus_lock);
10151
10152 return ret;
10153
10154 free_dev:
10155 device_del(pmu->dev);
10156 put_device(pmu->dev);
10157
10158 free_idr:
10159 if (pmu->type >= PERF_TYPE_MAX)
10160 idr_remove(&pmu_idr, pmu->type);
10161
10162 free_pdc:
10163 free_percpu(pmu->pmu_disable_count);
10164 goto unlock;
10165 }
10166 EXPORT_SYMBOL_GPL(perf_pmu_register);
10167
perf_pmu_unregister(struct pmu * pmu)10168 void perf_pmu_unregister(struct pmu *pmu)
10169 {
10170 mutex_lock(&pmus_lock);
10171 list_del_rcu(&pmu->entry);
10172
10173 /*
10174 * We dereference the pmu list under both SRCU and regular RCU, so
10175 * synchronize against both of those.
10176 */
10177 synchronize_srcu(&pmus_srcu);
10178 synchronize_rcu();
10179
10180 free_percpu(pmu->pmu_disable_count);
10181 if (pmu->type >= PERF_TYPE_MAX)
10182 idr_remove(&pmu_idr, pmu->type);
10183 if (pmu_bus_running) {
10184 if (pmu->nr_addr_filters)
10185 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
10186 device_del(pmu->dev);
10187 put_device(pmu->dev);
10188 }
10189 free_pmu_context(pmu);
10190 mutex_unlock(&pmus_lock);
10191 }
10192 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
10193
has_extended_regs(struct perf_event * event)10194 static inline bool has_extended_regs(struct perf_event *event)
10195 {
10196 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
10197 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
10198 }
10199
perf_try_init_event(struct pmu * pmu,struct perf_event * event)10200 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
10201 {
10202 struct perf_event_context *ctx = NULL;
10203 int ret;
10204
10205 if (!try_module_get(pmu->module))
10206 return -ENODEV;
10207
10208 /*
10209 * A number of pmu->event_init() methods iterate the sibling_list to,
10210 * for example, validate if the group fits on the PMU. Therefore,
10211 * if this is a sibling event, acquire the ctx->mutex to protect
10212 * the sibling_list.
10213 */
10214 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
10215 /*
10216 * This ctx->mutex can nest when we're called through
10217 * inheritance. See the perf_event_ctx_lock_nested() comment.
10218 */
10219 ctx = perf_event_ctx_lock_nested(event->group_leader,
10220 SINGLE_DEPTH_NESTING);
10221 BUG_ON(!ctx);
10222 }
10223
10224 event->pmu = pmu;
10225 ret = pmu->event_init(event);
10226
10227 if (ctx)
10228 perf_event_ctx_unlock(event->group_leader, ctx);
10229
10230 if (!ret) {
10231 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
10232 has_extended_regs(event))
10233 ret = -EOPNOTSUPP;
10234
10235 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
10236 event_has_any_exclude_flag(event))
10237 ret = -EINVAL;
10238
10239 if (ret && event->destroy)
10240 event->destroy(event);
10241 }
10242
10243 if (ret)
10244 module_put(pmu->module);
10245
10246 return ret;
10247 }
10248
perf_init_event(struct perf_event * event)10249 static struct pmu *perf_init_event(struct perf_event *event)
10250 {
10251 struct pmu *pmu;
10252 int idx;
10253 int ret;
10254
10255 idx = srcu_read_lock(&pmus_srcu);
10256
10257 /* Try parent's PMU first: */
10258 if (event->parent && event->parent->pmu) {
10259 pmu = event->parent->pmu;
10260 ret = perf_try_init_event(pmu, event);
10261 if (!ret)
10262 goto unlock;
10263 }
10264
10265 rcu_read_lock();
10266 pmu = idr_find(&pmu_idr, event->attr.type);
10267 rcu_read_unlock();
10268 if (pmu) {
10269 ret = perf_try_init_event(pmu, event);
10270 if (ret)
10271 pmu = ERR_PTR(ret);
10272 goto unlock;
10273 }
10274
10275 list_for_each_entry_rcu(pmu, &pmus, entry) {
10276 ret = perf_try_init_event(pmu, event);
10277 if (!ret)
10278 goto unlock;
10279
10280 if (ret != -ENOENT) {
10281 pmu = ERR_PTR(ret);
10282 goto unlock;
10283 }
10284 }
10285 pmu = ERR_PTR(-ENOENT);
10286 unlock:
10287 srcu_read_unlock(&pmus_srcu, idx);
10288
10289 return pmu;
10290 }
10291
attach_sb_event(struct perf_event * event)10292 static void attach_sb_event(struct perf_event *event)
10293 {
10294 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
10295
10296 raw_spin_lock(&pel->lock);
10297 list_add_rcu(&event->sb_list, &pel->list);
10298 raw_spin_unlock(&pel->lock);
10299 }
10300
10301 /*
10302 * We keep a list of all !task (and therefore per-cpu) events
10303 * that need to receive side-band records.
10304 *
10305 * This avoids having to scan all the various PMU per-cpu contexts
10306 * looking for them.
10307 */
account_pmu_sb_event(struct perf_event * event)10308 static void account_pmu_sb_event(struct perf_event *event)
10309 {
10310 if (is_sb_event(event))
10311 attach_sb_event(event);
10312 }
10313
account_event_cpu(struct perf_event * event,int cpu)10314 static void account_event_cpu(struct perf_event *event, int cpu)
10315 {
10316 if (event->parent)
10317 return;
10318
10319 if (is_cgroup_event(event))
10320 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
10321 }
10322
10323 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
account_freq_event_nohz(void)10324 static void account_freq_event_nohz(void)
10325 {
10326 #ifdef CONFIG_NO_HZ_FULL
10327 /* Lock so we don't race with concurrent unaccount */
10328 spin_lock(&nr_freq_lock);
10329 if (atomic_inc_return(&nr_freq_events) == 1)
10330 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
10331 spin_unlock(&nr_freq_lock);
10332 #endif
10333 }
10334
account_freq_event(void)10335 static void account_freq_event(void)
10336 {
10337 if (tick_nohz_full_enabled())
10338 account_freq_event_nohz();
10339 else
10340 atomic_inc(&nr_freq_events);
10341 }
10342
10343
account_event(struct perf_event * event)10344 static void account_event(struct perf_event *event)
10345 {
10346 bool inc = false;
10347
10348 if (event->parent)
10349 return;
10350
10351 if (event->attach_state & PERF_ATTACH_TASK)
10352 inc = true;
10353 if (event->attr.mmap || event->attr.mmap_data)
10354 atomic_inc(&nr_mmap_events);
10355 if (event->attr.comm)
10356 atomic_inc(&nr_comm_events);
10357 if (event->attr.namespaces)
10358 atomic_inc(&nr_namespaces_events);
10359 if (event->attr.task)
10360 atomic_inc(&nr_task_events);
10361 if (event->attr.freq)
10362 account_freq_event();
10363 if (event->attr.context_switch) {
10364 atomic_inc(&nr_switch_events);
10365 inc = true;
10366 }
10367 if (has_branch_stack(event))
10368 inc = true;
10369 if (is_cgroup_event(event))
10370 inc = true;
10371 if (event->attr.ksymbol)
10372 atomic_inc(&nr_ksymbol_events);
10373 if (event->attr.bpf_event)
10374 atomic_inc(&nr_bpf_events);
10375
10376 if (inc) {
10377 /*
10378 * We need the mutex here because static_branch_enable()
10379 * must complete *before* the perf_sched_count increment
10380 * becomes visible.
10381 */
10382 if (atomic_inc_not_zero(&perf_sched_count))
10383 goto enabled;
10384
10385 mutex_lock(&perf_sched_mutex);
10386 if (!atomic_read(&perf_sched_count)) {
10387 static_branch_enable(&perf_sched_events);
10388 /*
10389 * Guarantee that all CPUs observe they key change and
10390 * call the perf scheduling hooks before proceeding to
10391 * install events that need them.
10392 */
10393 synchronize_rcu();
10394 }
10395 /*
10396 * Now that we have waited for the sync_sched(), allow further
10397 * increments to by-pass the mutex.
10398 */
10399 atomic_inc(&perf_sched_count);
10400 mutex_unlock(&perf_sched_mutex);
10401 }
10402 enabled:
10403
10404 account_event_cpu(event, event->cpu);
10405
10406 account_pmu_sb_event(event);
10407 }
10408
10409 /*
10410 * Allocate and initialize an event structure
10411 */
10412 static struct perf_event *
perf_event_alloc(struct perf_event_attr * attr,int cpu,struct task_struct * task,struct perf_event * group_leader,struct perf_event * parent_event,perf_overflow_handler_t overflow_handler,void * context,int cgroup_fd)10413 perf_event_alloc(struct perf_event_attr *attr, int cpu,
10414 struct task_struct *task,
10415 struct perf_event *group_leader,
10416 struct perf_event *parent_event,
10417 perf_overflow_handler_t overflow_handler,
10418 void *context, int cgroup_fd)
10419 {
10420 struct pmu *pmu;
10421 struct perf_event *event;
10422 struct hw_perf_event *hwc;
10423 long err = -EINVAL;
10424
10425 if ((unsigned)cpu >= nr_cpu_ids) {
10426 if (!task || cpu != -1)
10427 return ERR_PTR(-EINVAL);
10428 }
10429
10430 event = kzalloc(sizeof(*event), GFP_KERNEL);
10431 if (!event)
10432 return ERR_PTR(-ENOMEM);
10433
10434 /*
10435 * Single events are their own group leaders, with an
10436 * empty sibling list:
10437 */
10438 if (!group_leader)
10439 group_leader = event;
10440
10441 mutex_init(&event->child_mutex);
10442 INIT_LIST_HEAD(&event->child_list);
10443
10444 INIT_LIST_HEAD(&event->event_entry);
10445 INIT_LIST_HEAD(&event->sibling_list);
10446 INIT_LIST_HEAD(&event->active_list);
10447 init_event_group(event);
10448 INIT_LIST_HEAD(&event->rb_entry);
10449 INIT_LIST_HEAD(&event->active_entry);
10450 INIT_LIST_HEAD(&event->addr_filters.list);
10451 INIT_HLIST_NODE(&event->hlist_entry);
10452
10453
10454 init_waitqueue_head(&event->waitq);
10455 event->pending_disable = -1;
10456 init_irq_work(&event->pending, perf_pending_event);
10457
10458 mutex_init(&event->mmap_mutex);
10459 raw_spin_lock_init(&event->addr_filters.lock);
10460
10461 atomic_long_set(&event->refcount, 1);
10462 event->cpu = cpu;
10463 event->attr = *attr;
10464 event->group_leader = group_leader;
10465 event->pmu = NULL;
10466 event->oncpu = -1;
10467
10468 event->parent = parent_event;
10469
10470 event->ns = get_pid_ns(task_active_pid_ns(current));
10471 event->id = atomic64_inc_return(&perf_event_id);
10472
10473 event->state = PERF_EVENT_STATE_INACTIVE;
10474
10475 if (task) {
10476 event->attach_state = PERF_ATTACH_TASK;
10477 /*
10478 * XXX pmu::event_init needs to know what task to account to
10479 * and we cannot use the ctx information because we need the
10480 * pmu before we get a ctx.
10481 */
10482 event->hw.target = get_task_struct(task);
10483 }
10484
10485 event->clock = &local_clock;
10486 if (parent_event)
10487 event->clock = parent_event->clock;
10488
10489 if (!overflow_handler && parent_event) {
10490 overflow_handler = parent_event->overflow_handler;
10491 context = parent_event->overflow_handler_context;
10492 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
10493 if (overflow_handler == bpf_overflow_handler) {
10494 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
10495
10496 if (IS_ERR(prog)) {
10497 err = PTR_ERR(prog);
10498 goto err_ns;
10499 }
10500 event->prog = prog;
10501 event->orig_overflow_handler =
10502 parent_event->orig_overflow_handler;
10503 }
10504 #endif
10505 }
10506
10507 if (overflow_handler) {
10508 event->overflow_handler = overflow_handler;
10509 event->overflow_handler_context = context;
10510 } else if (is_write_backward(event)){
10511 event->overflow_handler = perf_event_output_backward;
10512 event->overflow_handler_context = NULL;
10513 } else {
10514 event->overflow_handler = perf_event_output_forward;
10515 event->overflow_handler_context = NULL;
10516 }
10517
10518 perf_event__state_init(event);
10519
10520 pmu = NULL;
10521
10522 hwc = &event->hw;
10523 hwc->sample_period = attr->sample_period;
10524 if (attr->freq && attr->sample_freq)
10525 hwc->sample_period = 1;
10526 hwc->last_period = hwc->sample_period;
10527
10528 local64_set(&hwc->period_left, hwc->sample_period);
10529
10530 /*
10531 * We currently do not support PERF_SAMPLE_READ on inherited events.
10532 * See perf_output_read().
10533 */
10534 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
10535 goto err_ns;
10536
10537 if (!has_branch_stack(event))
10538 event->attr.branch_sample_type = 0;
10539
10540 if (cgroup_fd != -1) {
10541 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
10542 if (err)
10543 goto err_ns;
10544 }
10545
10546 pmu = perf_init_event(event);
10547 if (IS_ERR(pmu)) {
10548 err = PTR_ERR(pmu);
10549 goto err_ns;
10550 }
10551
10552 /*
10553 * Disallow uncore-cgroup events, they don't make sense as the cgroup will
10554 * be different on other CPUs in the uncore mask.
10555 */
10556 if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
10557 err = -EINVAL;
10558 goto err_pmu;
10559 }
10560
10561 if (event->attr.aux_output &&
10562 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
10563 err = -EOPNOTSUPP;
10564 goto err_pmu;
10565 }
10566
10567 err = exclusive_event_init(event);
10568 if (err)
10569 goto err_pmu;
10570
10571 if (has_addr_filter(event)) {
10572 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
10573 sizeof(struct perf_addr_filter_range),
10574 GFP_KERNEL);
10575 if (!event->addr_filter_ranges) {
10576 err = -ENOMEM;
10577 goto err_per_task;
10578 }
10579
10580 /*
10581 * Clone the parent's vma offsets: they are valid until exec()
10582 * even if the mm is not shared with the parent.
10583 */
10584 if (event->parent) {
10585 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10586
10587 raw_spin_lock_irq(&ifh->lock);
10588 memcpy(event->addr_filter_ranges,
10589 event->parent->addr_filter_ranges,
10590 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
10591 raw_spin_unlock_irq(&ifh->lock);
10592 }
10593
10594 /* force hw sync on the address filters */
10595 event->addr_filters_gen = 1;
10596 }
10597
10598 if (!event->parent) {
10599 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
10600 err = get_callchain_buffers(attr->sample_max_stack);
10601 if (err)
10602 goto err_addr_filters;
10603 }
10604 }
10605
10606 err = security_perf_event_alloc(event);
10607 if (err)
10608 goto err_callchain_buffer;
10609
10610 /* symmetric to unaccount_event() in _free_event() */
10611 account_event(event);
10612
10613 return event;
10614
10615 err_callchain_buffer:
10616 if (!event->parent) {
10617 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
10618 put_callchain_buffers();
10619 }
10620 err_addr_filters:
10621 kfree(event->addr_filter_ranges);
10622
10623 err_per_task:
10624 exclusive_event_destroy(event);
10625
10626 err_pmu:
10627 if (event->destroy)
10628 event->destroy(event);
10629 module_put(pmu->module);
10630 err_ns:
10631 if (is_cgroup_event(event))
10632 perf_detach_cgroup(event);
10633 if (event->ns)
10634 put_pid_ns(event->ns);
10635 if (event->hw.target)
10636 put_task_struct(event->hw.target);
10637 kfree(event);
10638
10639 return ERR_PTR(err);
10640 }
10641
perf_copy_attr(struct perf_event_attr __user * uattr,struct perf_event_attr * attr)10642 static int perf_copy_attr(struct perf_event_attr __user *uattr,
10643 struct perf_event_attr *attr)
10644 {
10645 u32 size;
10646 int ret;
10647
10648 /* Zero the full structure, so that a short copy will be nice. */
10649 memset(attr, 0, sizeof(*attr));
10650
10651 ret = get_user(size, &uattr->size);
10652 if (ret)
10653 return ret;
10654
10655 /* ABI compatibility quirk: */
10656 if (!size)
10657 size = PERF_ATTR_SIZE_VER0;
10658 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
10659 goto err_size;
10660
10661 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
10662 if (ret) {
10663 if (ret == -E2BIG)
10664 goto err_size;
10665 return ret;
10666 }
10667
10668 attr->size = size;
10669
10670 if (attr->__reserved_1 || attr->__reserved_2)
10671 return -EINVAL;
10672
10673 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
10674 return -EINVAL;
10675
10676 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
10677 return -EINVAL;
10678
10679 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
10680 u64 mask = attr->branch_sample_type;
10681
10682 /* only using defined bits */
10683 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
10684 return -EINVAL;
10685
10686 /* at least one branch bit must be set */
10687 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
10688 return -EINVAL;
10689
10690 /* propagate priv level, when not set for branch */
10691 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
10692
10693 /* exclude_kernel checked on syscall entry */
10694 if (!attr->exclude_kernel)
10695 mask |= PERF_SAMPLE_BRANCH_KERNEL;
10696
10697 if (!attr->exclude_user)
10698 mask |= PERF_SAMPLE_BRANCH_USER;
10699
10700 if (!attr->exclude_hv)
10701 mask |= PERF_SAMPLE_BRANCH_HV;
10702 /*
10703 * adjust user setting (for HW filter setup)
10704 */
10705 attr->branch_sample_type = mask;
10706 }
10707 /* privileged levels capture (kernel, hv): check permissions */
10708 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
10709 ret = perf_allow_kernel(attr);
10710 if (ret)
10711 return ret;
10712 }
10713 }
10714
10715 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
10716 ret = perf_reg_validate(attr->sample_regs_user);
10717 if (ret)
10718 return ret;
10719 }
10720
10721 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
10722 if (!arch_perf_have_user_stack_dump())
10723 return -ENOSYS;
10724
10725 /*
10726 * We have __u32 type for the size, but so far
10727 * we can only use __u16 as maximum due to the
10728 * __u16 sample size limit.
10729 */
10730 if (attr->sample_stack_user >= USHRT_MAX)
10731 return -EINVAL;
10732 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
10733 return -EINVAL;
10734 }
10735
10736 if (!attr->sample_max_stack)
10737 attr->sample_max_stack = sysctl_perf_event_max_stack;
10738
10739 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
10740 ret = perf_reg_validate(attr->sample_regs_intr);
10741 out:
10742 return ret;
10743
10744 err_size:
10745 put_user(sizeof(*attr), &uattr->size);
10746 ret = -E2BIG;
10747 goto out;
10748 }
10749
10750 static int
perf_event_set_output(struct perf_event * event,struct perf_event * output_event)10751 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
10752 {
10753 struct ring_buffer *rb = NULL;
10754 int ret = -EINVAL;
10755
10756 if (!output_event)
10757 goto set;
10758
10759 /* don't allow circular references */
10760 if (event == output_event)
10761 goto out;
10762
10763 /*
10764 * Don't allow cross-cpu buffers
10765 */
10766 if (output_event->cpu != event->cpu)
10767 goto out;
10768
10769 /*
10770 * If its not a per-cpu rb, it must be the same task.
10771 */
10772 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
10773 goto out;
10774
10775 /*
10776 * Mixing clocks in the same buffer is trouble you don't need.
10777 */
10778 if (output_event->clock != event->clock)
10779 goto out;
10780
10781 /*
10782 * Either writing ring buffer from beginning or from end.
10783 * Mixing is not allowed.
10784 */
10785 if (is_write_backward(output_event) != is_write_backward(event))
10786 goto out;
10787
10788 /*
10789 * If both events generate aux data, they must be on the same PMU
10790 */
10791 if (has_aux(event) && has_aux(output_event) &&
10792 event->pmu != output_event->pmu)
10793 goto out;
10794
10795 set:
10796 mutex_lock(&event->mmap_mutex);
10797 /* Can't redirect output if we've got an active mmap() */
10798 if (atomic_read(&event->mmap_count))
10799 goto unlock;
10800
10801 if (output_event) {
10802 /* get the rb we want to redirect to */
10803 rb = ring_buffer_get(output_event);
10804 if (!rb)
10805 goto unlock;
10806 }
10807
10808 ring_buffer_attach(event, rb);
10809
10810 ret = 0;
10811 unlock:
10812 mutex_unlock(&event->mmap_mutex);
10813
10814 out:
10815 return ret;
10816 }
10817
mutex_lock_double(struct mutex * a,struct mutex * b)10818 static void mutex_lock_double(struct mutex *a, struct mutex *b)
10819 {
10820 if (b < a)
10821 swap(a, b);
10822
10823 mutex_lock(a);
10824 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
10825 }
10826
perf_event_set_clock(struct perf_event * event,clockid_t clk_id)10827 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
10828 {
10829 bool nmi_safe = false;
10830
10831 switch (clk_id) {
10832 case CLOCK_MONOTONIC:
10833 event->clock = &ktime_get_mono_fast_ns;
10834 nmi_safe = true;
10835 break;
10836
10837 case CLOCK_MONOTONIC_RAW:
10838 event->clock = &ktime_get_raw_fast_ns;
10839 nmi_safe = true;
10840 break;
10841
10842 case CLOCK_REALTIME:
10843 event->clock = &ktime_get_real_ns;
10844 break;
10845
10846 case CLOCK_BOOTTIME:
10847 event->clock = &ktime_get_boottime_ns;
10848 break;
10849
10850 case CLOCK_TAI:
10851 event->clock = &ktime_get_clocktai_ns;
10852 break;
10853
10854 default:
10855 return -EINVAL;
10856 }
10857
10858 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
10859 return -EINVAL;
10860
10861 return 0;
10862 }
10863
10864 /*
10865 * Variation on perf_event_ctx_lock_nested(), except we take two context
10866 * mutexes.
10867 */
10868 static struct perf_event_context *
__perf_event_ctx_lock_double(struct perf_event * group_leader,struct perf_event_context * ctx)10869 __perf_event_ctx_lock_double(struct perf_event *group_leader,
10870 struct perf_event_context *ctx)
10871 {
10872 struct perf_event_context *gctx;
10873
10874 again:
10875 rcu_read_lock();
10876 gctx = READ_ONCE(group_leader->ctx);
10877 if (!refcount_inc_not_zero(&gctx->refcount)) {
10878 rcu_read_unlock();
10879 goto again;
10880 }
10881 rcu_read_unlock();
10882
10883 mutex_lock_double(&gctx->mutex, &ctx->mutex);
10884
10885 if (group_leader->ctx != gctx) {
10886 mutex_unlock(&ctx->mutex);
10887 mutex_unlock(&gctx->mutex);
10888 put_ctx(gctx);
10889 goto again;
10890 }
10891
10892 return gctx;
10893 }
10894
10895 /**
10896 * sys_perf_event_open - open a performance event, associate it to a task/cpu
10897 *
10898 * @attr_uptr: event_id type attributes for monitoring/sampling
10899 * @pid: target pid
10900 * @cpu: target cpu
10901 * @group_fd: group leader event fd
10902 */
SYSCALL_DEFINE5(perf_event_open,struct perf_event_attr __user *,attr_uptr,pid_t,pid,int,cpu,int,group_fd,unsigned long,flags)10903 SYSCALL_DEFINE5(perf_event_open,
10904 struct perf_event_attr __user *, attr_uptr,
10905 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
10906 {
10907 struct perf_event *group_leader = NULL, *output_event = NULL;
10908 struct perf_event *event, *sibling;
10909 struct perf_event_attr attr;
10910 struct perf_event_context *ctx, *uninitialized_var(gctx);
10911 struct file *event_file = NULL;
10912 struct fd group = {NULL, 0};
10913 struct task_struct *task = NULL;
10914 struct pmu *pmu;
10915 int event_fd;
10916 int move_group = 0;
10917 int err;
10918 int f_flags = O_RDWR;
10919 int cgroup_fd = -1;
10920
10921 /* for future expandability... */
10922 if (flags & ~PERF_FLAG_ALL)
10923 return -EINVAL;
10924
10925 /* Do we allow access to perf_event_open(2) ? */
10926 err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
10927 if (err)
10928 return err;
10929
10930 err = perf_copy_attr(attr_uptr, &attr);
10931 if (err)
10932 return err;
10933
10934 if (!attr.exclude_kernel) {
10935 err = perf_allow_kernel(&attr);
10936 if (err)
10937 return err;
10938 }
10939
10940 if (attr.namespaces) {
10941 if (!capable(CAP_SYS_ADMIN))
10942 return -EACCES;
10943 }
10944
10945 if (attr.freq) {
10946 if (attr.sample_freq > sysctl_perf_event_sample_rate)
10947 return -EINVAL;
10948 } else {
10949 if (attr.sample_period & (1ULL << 63))
10950 return -EINVAL;
10951 }
10952
10953 /* Only privileged users can get physical addresses */
10954 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
10955 err = perf_allow_kernel(&attr);
10956 if (err)
10957 return err;
10958 }
10959
10960 err = security_locked_down(LOCKDOWN_PERF);
10961 if (err && (attr.sample_type & PERF_SAMPLE_REGS_INTR))
10962 /* REGS_INTR can leak data, lockdown must prevent this */
10963 return err;
10964
10965 err = 0;
10966
10967 /*
10968 * In cgroup mode, the pid argument is used to pass the fd
10969 * opened to the cgroup directory in cgroupfs. The cpu argument
10970 * designates the cpu on which to monitor threads from that
10971 * cgroup.
10972 */
10973 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
10974 return -EINVAL;
10975
10976 if (flags & PERF_FLAG_FD_CLOEXEC)
10977 f_flags |= O_CLOEXEC;
10978
10979 event_fd = get_unused_fd_flags(f_flags);
10980 if (event_fd < 0)
10981 return event_fd;
10982
10983 if (group_fd != -1) {
10984 err = perf_fget_light(group_fd, &group);
10985 if (err)
10986 goto err_fd;
10987 group_leader = group.file->private_data;
10988 if (flags & PERF_FLAG_FD_OUTPUT)
10989 output_event = group_leader;
10990 if (flags & PERF_FLAG_FD_NO_GROUP)
10991 group_leader = NULL;
10992 }
10993
10994 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
10995 task = find_lively_task_by_vpid(pid);
10996 if (IS_ERR(task)) {
10997 err = PTR_ERR(task);
10998 goto err_group_fd;
10999 }
11000 }
11001
11002 if (task && group_leader &&
11003 group_leader->attr.inherit != attr.inherit) {
11004 err = -EINVAL;
11005 goto err_task;
11006 }
11007
11008 if (task) {
11009 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
11010 if (err)
11011 goto err_task;
11012
11013 /*
11014 * Reuse ptrace permission checks for now.
11015 *
11016 * We must hold cred_guard_mutex across this and any potential
11017 * perf_install_in_context() call for this new event to
11018 * serialize against exec() altering our credentials (and the
11019 * perf_event_exit_task() that could imply).
11020 */
11021 err = -EACCES;
11022 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
11023 goto err_cred;
11024 }
11025
11026 if (flags & PERF_FLAG_PID_CGROUP)
11027 cgroup_fd = pid;
11028
11029 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
11030 NULL, NULL, cgroup_fd);
11031 if (IS_ERR(event)) {
11032 err = PTR_ERR(event);
11033 goto err_cred;
11034 }
11035
11036 if (is_sampling_event(event)) {
11037 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
11038 err = -EOPNOTSUPP;
11039 goto err_alloc;
11040 }
11041 }
11042
11043 /*
11044 * Special case software events and allow them to be part of
11045 * any hardware group.
11046 */
11047 pmu = event->pmu;
11048
11049 if (attr.use_clockid) {
11050 err = perf_event_set_clock(event, attr.clockid);
11051 if (err)
11052 goto err_alloc;
11053 }
11054
11055 if (pmu->task_ctx_nr == perf_sw_context)
11056 event->event_caps |= PERF_EV_CAP_SOFTWARE;
11057
11058 if (group_leader) {
11059 if (is_software_event(event) &&
11060 !in_software_context(group_leader)) {
11061 /*
11062 * If the event is a sw event, but the group_leader
11063 * is on hw context.
11064 *
11065 * Allow the addition of software events to hw
11066 * groups, this is safe because software events
11067 * never fail to schedule.
11068 */
11069 pmu = group_leader->ctx->pmu;
11070 } else if (!is_software_event(event) &&
11071 is_software_event(group_leader) &&
11072 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11073 /*
11074 * In case the group is a pure software group, and we
11075 * try to add a hardware event, move the whole group to
11076 * the hardware context.
11077 */
11078 move_group = 1;
11079 }
11080 }
11081
11082 /*
11083 * Get the target context (task or percpu):
11084 */
11085 ctx = find_get_context(pmu, task, event);
11086 if (IS_ERR(ctx)) {
11087 err = PTR_ERR(ctx);
11088 goto err_alloc;
11089 }
11090
11091 /*
11092 * Look up the group leader (we will attach this event to it):
11093 */
11094 if (group_leader) {
11095 err = -EINVAL;
11096
11097 /*
11098 * Do not allow a recursive hierarchy (this new sibling
11099 * becoming part of another group-sibling):
11100 */
11101 if (group_leader->group_leader != group_leader)
11102 goto err_context;
11103
11104 /* All events in a group should have the same clock */
11105 if (group_leader->clock != event->clock)
11106 goto err_context;
11107
11108 /*
11109 * Make sure we're both events for the same CPU;
11110 * grouping events for different CPUs is broken; since
11111 * you can never concurrently schedule them anyhow.
11112 */
11113 if (group_leader->cpu != event->cpu)
11114 goto err_context;
11115
11116 /*
11117 * Make sure we're both on the same task, or both
11118 * per-CPU events.
11119 */
11120 if (group_leader->ctx->task != ctx->task)
11121 goto err_context;
11122
11123 /*
11124 * Do not allow to attach to a group in a different task
11125 * or CPU context. If we're moving SW events, we'll fix
11126 * this up later, so allow that.
11127 */
11128 if (!move_group && group_leader->ctx != ctx)
11129 goto err_context;
11130
11131 /*
11132 * Only a group leader can be exclusive or pinned
11133 */
11134 if (attr.exclusive || attr.pinned)
11135 goto err_context;
11136 }
11137
11138 if (output_event) {
11139 err = perf_event_set_output(event, output_event);
11140 if (err)
11141 goto err_context;
11142 }
11143
11144 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
11145 f_flags);
11146 if (IS_ERR(event_file)) {
11147 err = PTR_ERR(event_file);
11148 event_file = NULL;
11149 goto err_context;
11150 }
11151
11152 if (move_group) {
11153 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
11154
11155 if (gctx->task == TASK_TOMBSTONE) {
11156 err = -ESRCH;
11157 goto err_locked;
11158 }
11159
11160 /*
11161 * Check if we raced against another sys_perf_event_open() call
11162 * moving the software group underneath us.
11163 */
11164 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11165 /*
11166 * If someone moved the group out from under us, check
11167 * if this new event wound up on the same ctx, if so
11168 * its the regular !move_group case, otherwise fail.
11169 */
11170 if (gctx != ctx) {
11171 err = -EINVAL;
11172 goto err_locked;
11173 } else {
11174 perf_event_ctx_unlock(group_leader, gctx);
11175 move_group = 0;
11176 }
11177 }
11178
11179 /*
11180 * Failure to create exclusive events returns -EBUSY.
11181 */
11182 err = -EBUSY;
11183 if (!exclusive_event_installable(group_leader, ctx))
11184 goto err_locked;
11185
11186 for_each_sibling_event(sibling, group_leader) {
11187 if (!exclusive_event_installable(sibling, ctx))
11188 goto err_locked;
11189 }
11190 } else {
11191 mutex_lock(&ctx->mutex);
11192 }
11193
11194 if (ctx->task == TASK_TOMBSTONE) {
11195 err = -ESRCH;
11196 goto err_locked;
11197 }
11198
11199 if (!perf_event_validate_size(event)) {
11200 err = -E2BIG;
11201 goto err_locked;
11202 }
11203
11204 if (!task) {
11205 /*
11206 * Check if the @cpu we're creating an event for is online.
11207 *
11208 * We use the perf_cpu_context::ctx::mutex to serialize against
11209 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11210 */
11211 struct perf_cpu_context *cpuctx =
11212 container_of(ctx, struct perf_cpu_context, ctx);
11213
11214 if (!cpuctx->online) {
11215 err = -ENODEV;
11216 goto err_locked;
11217 }
11218 }
11219
11220 if (event->attr.aux_output && !perf_get_aux_event(event, group_leader)) {
11221 err = -EINVAL;
11222 goto err_locked;
11223 }
11224
11225 /*
11226 * Must be under the same ctx::mutex as perf_install_in_context(),
11227 * because we need to serialize with concurrent event creation.
11228 */
11229 if (!exclusive_event_installable(event, ctx)) {
11230 err = -EBUSY;
11231 goto err_locked;
11232 }
11233
11234 WARN_ON_ONCE(ctx->parent_ctx);
11235
11236 /*
11237 * This is the point on no return; we cannot fail hereafter. This is
11238 * where we start modifying current state.
11239 */
11240
11241 if (move_group) {
11242 /*
11243 * See perf_event_ctx_lock() for comments on the details
11244 * of swizzling perf_event::ctx.
11245 */
11246 perf_remove_from_context(group_leader, 0);
11247 put_ctx(gctx);
11248
11249 for_each_sibling_event(sibling, group_leader) {
11250 perf_remove_from_context(sibling, 0);
11251 put_ctx(gctx);
11252 }
11253
11254 /*
11255 * Wait for everybody to stop referencing the events through
11256 * the old lists, before installing it on new lists.
11257 */
11258 synchronize_rcu();
11259
11260 /*
11261 * Install the group siblings before the group leader.
11262 *
11263 * Because a group leader will try and install the entire group
11264 * (through the sibling list, which is still in-tact), we can
11265 * end up with siblings installed in the wrong context.
11266 *
11267 * By installing siblings first we NO-OP because they're not
11268 * reachable through the group lists.
11269 */
11270 for_each_sibling_event(sibling, group_leader) {
11271 perf_event__state_init(sibling);
11272 perf_install_in_context(ctx, sibling, sibling->cpu);
11273 get_ctx(ctx);
11274 }
11275
11276 /*
11277 * Removing from the context ends up with disabled
11278 * event. What we want here is event in the initial
11279 * startup state, ready to be add into new context.
11280 */
11281 perf_event__state_init(group_leader);
11282 perf_install_in_context(ctx, group_leader, group_leader->cpu);
11283 get_ctx(ctx);
11284 }
11285
11286 /*
11287 * Precalculate sample_data sizes; do while holding ctx::mutex such
11288 * that we're serialized against further additions and before
11289 * perf_install_in_context() which is the point the event is active and
11290 * can use these values.
11291 */
11292 perf_event__header_size(event);
11293 perf_event__id_header_size(event);
11294
11295 event->owner = current;
11296
11297 perf_install_in_context(ctx, event, event->cpu);
11298 perf_unpin_context(ctx);
11299
11300 if (move_group)
11301 perf_event_ctx_unlock(group_leader, gctx);
11302 mutex_unlock(&ctx->mutex);
11303
11304 if (task) {
11305 mutex_unlock(&task->signal->cred_guard_mutex);
11306 put_task_struct(task);
11307 }
11308
11309 mutex_lock(¤t->perf_event_mutex);
11310 list_add_tail(&event->owner_entry, ¤t->perf_event_list);
11311 mutex_unlock(¤t->perf_event_mutex);
11312
11313 /*
11314 * Drop the reference on the group_event after placing the
11315 * new event on the sibling_list. This ensures destruction
11316 * of the group leader will find the pointer to itself in
11317 * perf_group_detach().
11318 */
11319 fdput(group);
11320 fd_install(event_fd, event_file);
11321 return event_fd;
11322
11323 err_locked:
11324 if (move_group)
11325 perf_event_ctx_unlock(group_leader, gctx);
11326 mutex_unlock(&ctx->mutex);
11327 /* err_file: */
11328 fput(event_file);
11329 err_context:
11330 perf_unpin_context(ctx);
11331 put_ctx(ctx);
11332 err_alloc:
11333 /*
11334 * If event_file is set, the fput() above will have called ->release()
11335 * and that will take care of freeing the event.
11336 */
11337 if (!event_file)
11338 free_event(event);
11339 err_cred:
11340 if (task)
11341 mutex_unlock(&task->signal->cred_guard_mutex);
11342 err_task:
11343 if (task)
11344 put_task_struct(task);
11345 err_group_fd:
11346 fdput(group);
11347 err_fd:
11348 put_unused_fd(event_fd);
11349 return err;
11350 }
11351
11352 /**
11353 * perf_event_create_kernel_counter
11354 *
11355 * @attr: attributes of the counter to create
11356 * @cpu: cpu in which the counter is bound
11357 * @task: task to profile (NULL for percpu)
11358 */
11359 struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr * attr,int cpu,struct task_struct * task,perf_overflow_handler_t overflow_handler,void * context)11360 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
11361 struct task_struct *task,
11362 perf_overflow_handler_t overflow_handler,
11363 void *context)
11364 {
11365 struct perf_event_context *ctx;
11366 struct perf_event *event;
11367 int err;
11368
11369 /*
11370 * Grouping is not supported for kernel events, neither is 'AUX',
11371 * make sure the caller's intentions are adjusted.
11372 */
11373 if (attr->aux_output)
11374 return ERR_PTR(-EINVAL);
11375
11376 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
11377 overflow_handler, context, -1);
11378 if (IS_ERR(event)) {
11379 err = PTR_ERR(event);
11380 goto err;
11381 }
11382
11383 /* Mark owner so we could distinguish it from user events. */
11384 event->owner = TASK_TOMBSTONE;
11385
11386 /*
11387 * Get the target context (task or percpu):
11388 */
11389 ctx = find_get_context(event->pmu, task, event);
11390 if (IS_ERR(ctx)) {
11391 err = PTR_ERR(ctx);
11392 goto err_free;
11393 }
11394
11395 WARN_ON_ONCE(ctx->parent_ctx);
11396 mutex_lock(&ctx->mutex);
11397 if (ctx->task == TASK_TOMBSTONE) {
11398 err = -ESRCH;
11399 goto err_unlock;
11400 }
11401
11402 if (!task) {
11403 /*
11404 * Check if the @cpu we're creating an event for is online.
11405 *
11406 * We use the perf_cpu_context::ctx::mutex to serialize against
11407 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11408 */
11409 struct perf_cpu_context *cpuctx =
11410 container_of(ctx, struct perf_cpu_context, ctx);
11411 if (!cpuctx->online) {
11412 err = -ENODEV;
11413 goto err_unlock;
11414 }
11415 }
11416
11417 if (!exclusive_event_installable(event, ctx)) {
11418 err = -EBUSY;
11419 goto err_unlock;
11420 }
11421
11422 perf_install_in_context(ctx, event, event->cpu);
11423 perf_unpin_context(ctx);
11424 mutex_unlock(&ctx->mutex);
11425
11426 return event;
11427
11428 err_unlock:
11429 mutex_unlock(&ctx->mutex);
11430 perf_unpin_context(ctx);
11431 put_ctx(ctx);
11432 err_free:
11433 free_event(event);
11434 err:
11435 return ERR_PTR(err);
11436 }
11437 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
11438
perf_pmu_migrate_context(struct pmu * pmu,int src_cpu,int dst_cpu)11439 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
11440 {
11441 struct perf_event_context *src_ctx;
11442 struct perf_event_context *dst_ctx;
11443 struct perf_event *event, *tmp;
11444 LIST_HEAD(events);
11445
11446 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
11447 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
11448
11449 /*
11450 * See perf_event_ctx_lock() for comments on the details
11451 * of swizzling perf_event::ctx.
11452 */
11453 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
11454 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
11455 event_entry) {
11456 perf_remove_from_context(event, 0);
11457 unaccount_event_cpu(event, src_cpu);
11458 put_ctx(src_ctx);
11459 list_add(&event->migrate_entry, &events);
11460 }
11461
11462 /*
11463 * Wait for the events to quiesce before re-instating them.
11464 */
11465 synchronize_rcu();
11466
11467 /*
11468 * Re-instate events in 2 passes.
11469 *
11470 * Skip over group leaders and only install siblings on this first
11471 * pass, siblings will not get enabled without a leader, however a
11472 * leader will enable its siblings, even if those are still on the old
11473 * context.
11474 */
11475 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11476 if (event->group_leader == event)
11477 continue;
11478
11479 list_del(&event->migrate_entry);
11480 if (event->state >= PERF_EVENT_STATE_OFF)
11481 event->state = PERF_EVENT_STATE_INACTIVE;
11482 account_event_cpu(event, dst_cpu);
11483 perf_install_in_context(dst_ctx, event, dst_cpu);
11484 get_ctx(dst_ctx);
11485 }
11486
11487 /*
11488 * Once all the siblings are setup properly, install the group leaders
11489 * to make it go.
11490 */
11491 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11492 list_del(&event->migrate_entry);
11493 if (event->state >= PERF_EVENT_STATE_OFF)
11494 event->state = PERF_EVENT_STATE_INACTIVE;
11495 account_event_cpu(event, dst_cpu);
11496 perf_install_in_context(dst_ctx, event, dst_cpu);
11497 get_ctx(dst_ctx);
11498 }
11499 mutex_unlock(&dst_ctx->mutex);
11500 mutex_unlock(&src_ctx->mutex);
11501 }
11502 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
11503
sync_child_event(struct perf_event * child_event,struct task_struct * child)11504 static void sync_child_event(struct perf_event *child_event,
11505 struct task_struct *child)
11506 {
11507 struct perf_event *parent_event = child_event->parent;
11508 u64 child_val;
11509
11510 if (child_event->attr.inherit_stat)
11511 perf_event_read_event(child_event, child);
11512
11513 child_val = perf_event_count(child_event);
11514
11515 /*
11516 * Add back the child's count to the parent's count:
11517 */
11518 atomic64_add(child_val, &parent_event->child_count);
11519 atomic64_add(child_event->total_time_enabled,
11520 &parent_event->child_total_time_enabled);
11521 atomic64_add(child_event->total_time_running,
11522 &parent_event->child_total_time_running);
11523 }
11524
11525 static void
perf_event_exit_event(struct perf_event * child_event,struct perf_event_context * child_ctx,struct task_struct * child)11526 perf_event_exit_event(struct perf_event *child_event,
11527 struct perf_event_context *child_ctx,
11528 struct task_struct *child)
11529 {
11530 struct perf_event *parent_event = child_event->parent;
11531
11532 /*
11533 * Do not destroy the 'original' grouping; because of the context
11534 * switch optimization the original events could've ended up in a
11535 * random child task.
11536 *
11537 * If we were to destroy the original group, all group related
11538 * operations would cease to function properly after this random
11539 * child dies.
11540 *
11541 * Do destroy all inherited groups, we don't care about those
11542 * and being thorough is better.
11543 */
11544 raw_spin_lock_irq(&child_ctx->lock);
11545 WARN_ON_ONCE(child_ctx->is_active);
11546
11547 if (parent_event)
11548 perf_group_detach(child_event);
11549 list_del_event(child_event, child_ctx);
11550 perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
11551 raw_spin_unlock_irq(&child_ctx->lock);
11552
11553 /*
11554 * Parent events are governed by their filedesc, retain them.
11555 */
11556 if (!parent_event) {
11557 perf_event_wakeup(child_event);
11558 return;
11559 }
11560 /*
11561 * Child events can be cleaned up.
11562 */
11563
11564 sync_child_event(child_event, child);
11565
11566 /*
11567 * Remove this event from the parent's list
11568 */
11569 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
11570 mutex_lock(&parent_event->child_mutex);
11571 list_del_init(&child_event->child_list);
11572 mutex_unlock(&parent_event->child_mutex);
11573
11574 /*
11575 * Kick perf_poll() for is_event_hup().
11576 */
11577 perf_event_wakeup(parent_event);
11578 free_event(child_event);
11579 put_event(parent_event);
11580 }
11581
perf_event_exit_task_context(struct task_struct * child,int ctxn)11582 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
11583 {
11584 struct perf_event_context *child_ctx, *clone_ctx = NULL;
11585 struct perf_event *child_event, *next;
11586
11587 WARN_ON_ONCE(child != current);
11588
11589 child_ctx = perf_pin_task_context(child, ctxn);
11590 if (!child_ctx)
11591 return;
11592
11593 /*
11594 * In order to reduce the amount of tricky in ctx tear-down, we hold
11595 * ctx::mutex over the entire thing. This serializes against almost
11596 * everything that wants to access the ctx.
11597 *
11598 * The exception is sys_perf_event_open() /
11599 * perf_event_create_kernel_count() which does find_get_context()
11600 * without ctx::mutex (it cannot because of the move_group double mutex
11601 * lock thing). See the comments in perf_install_in_context().
11602 */
11603 mutex_lock(&child_ctx->mutex);
11604
11605 /*
11606 * In a single ctx::lock section, de-schedule the events and detach the
11607 * context from the task such that we cannot ever get it scheduled back
11608 * in.
11609 */
11610 raw_spin_lock_irq(&child_ctx->lock);
11611 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
11612
11613 /*
11614 * Now that the context is inactive, destroy the task <-> ctx relation
11615 * and mark the context dead.
11616 */
11617 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
11618 put_ctx(child_ctx); /* cannot be last */
11619 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
11620 put_task_struct(current); /* cannot be last */
11621
11622 clone_ctx = unclone_ctx(child_ctx);
11623 raw_spin_unlock_irq(&child_ctx->lock);
11624
11625 if (clone_ctx)
11626 put_ctx(clone_ctx);
11627
11628 /*
11629 * Report the task dead after unscheduling the events so that we
11630 * won't get any samples after PERF_RECORD_EXIT. We can however still
11631 * get a few PERF_RECORD_READ events.
11632 */
11633 perf_event_task(child, child_ctx, 0);
11634
11635 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
11636 perf_event_exit_event(child_event, child_ctx, child);
11637
11638 mutex_unlock(&child_ctx->mutex);
11639
11640 put_ctx(child_ctx);
11641 }
11642
11643 /*
11644 * When a child task exits, feed back event values to parent events.
11645 *
11646 * Can be called with cred_guard_mutex held when called from
11647 * install_exec_creds().
11648 */
perf_event_exit_task(struct task_struct * child)11649 void perf_event_exit_task(struct task_struct *child)
11650 {
11651 struct perf_event *event, *tmp;
11652 int ctxn;
11653
11654 mutex_lock(&child->perf_event_mutex);
11655 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
11656 owner_entry) {
11657 list_del_init(&event->owner_entry);
11658
11659 /*
11660 * Ensure the list deletion is visible before we clear
11661 * the owner, closes a race against perf_release() where
11662 * we need to serialize on the owner->perf_event_mutex.
11663 */
11664 smp_store_release(&event->owner, NULL);
11665 }
11666 mutex_unlock(&child->perf_event_mutex);
11667
11668 for_each_task_context_nr(ctxn)
11669 perf_event_exit_task_context(child, ctxn);
11670
11671 /*
11672 * The perf_event_exit_task_context calls perf_event_task
11673 * with child's task_ctx, which generates EXIT events for
11674 * child contexts and sets child->perf_event_ctxp[] to NULL.
11675 * At this point we need to send EXIT events to cpu contexts.
11676 */
11677 perf_event_task(child, NULL, 0);
11678 }
11679
perf_free_event(struct perf_event * event,struct perf_event_context * ctx)11680 static void perf_free_event(struct perf_event *event,
11681 struct perf_event_context *ctx)
11682 {
11683 struct perf_event *parent = event->parent;
11684
11685 if (WARN_ON_ONCE(!parent))
11686 return;
11687
11688 mutex_lock(&parent->child_mutex);
11689 list_del_init(&event->child_list);
11690 mutex_unlock(&parent->child_mutex);
11691
11692 put_event(parent);
11693
11694 raw_spin_lock_irq(&ctx->lock);
11695 perf_group_detach(event);
11696 list_del_event(event, ctx);
11697 raw_spin_unlock_irq(&ctx->lock);
11698 free_event(event);
11699 }
11700
11701 /*
11702 * Free a context as created by inheritance by perf_event_init_task() below,
11703 * used by fork() in case of fail.
11704 *
11705 * Even though the task has never lived, the context and events have been
11706 * exposed through the child_list, so we must take care tearing it all down.
11707 */
perf_event_free_task(struct task_struct * task)11708 void perf_event_free_task(struct task_struct *task)
11709 {
11710 struct perf_event_context *ctx;
11711 struct perf_event *event, *tmp;
11712 int ctxn;
11713
11714 for_each_task_context_nr(ctxn) {
11715 ctx = task->perf_event_ctxp[ctxn];
11716 if (!ctx)
11717 continue;
11718
11719 mutex_lock(&ctx->mutex);
11720 raw_spin_lock_irq(&ctx->lock);
11721 /*
11722 * Destroy the task <-> ctx relation and mark the context dead.
11723 *
11724 * This is important because even though the task hasn't been
11725 * exposed yet the context has been (through child_list).
11726 */
11727 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
11728 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
11729 put_task_struct(task); /* cannot be last */
11730 raw_spin_unlock_irq(&ctx->lock);
11731
11732 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
11733 perf_free_event(event, ctx);
11734
11735 mutex_unlock(&ctx->mutex);
11736
11737 /*
11738 * perf_event_release_kernel() could've stolen some of our
11739 * child events and still have them on its free_list. In that
11740 * case we must wait for these events to have been freed (in
11741 * particular all their references to this task must've been
11742 * dropped).
11743 *
11744 * Without this copy_process() will unconditionally free this
11745 * task (irrespective of its reference count) and
11746 * _free_event()'s put_task_struct(event->hw.target) will be a
11747 * use-after-free.
11748 *
11749 * Wait for all events to drop their context reference.
11750 */
11751 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
11752 put_ctx(ctx); /* must be last */
11753 }
11754 }
11755
perf_event_delayed_put(struct task_struct * task)11756 void perf_event_delayed_put(struct task_struct *task)
11757 {
11758 int ctxn;
11759
11760 for_each_task_context_nr(ctxn)
11761 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
11762 }
11763
perf_event_get(unsigned int fd)11764 struct file *perf_event_get(unsigned int fd)
11765 {
11766 struct file *file = fget(fd);
11767 if (!file)
11768 return ERR_PTR(-EBADF);
11769
11770 if (file->f_op != &perf_fops) {
11771 fput(file);
11772 return ERR_PTR(-EBADF);
11773 }
11774
11775 return file;
11776 }
11777
perf_get_event(struct file * file)11778 const struct perf_event *perf_get_event(struct file *file)
11779 {
11780 if (file->f_op != &perf_fops)
11781 return ERR_PTR(-EINVAL);
11782
11783 return file->private_data;
11784 }
11785
perf_event_attrs(struct perf_event * event)11786 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
11787 {
11788 if (!event)
11789 return ERR_PTR(-EINVAL);
11790
11791 return &event->attr;
11792 }
11793
11794 /*
11795 * Inherit an event from parent task to child task.
11796 *
11797 * Returns:
11798 * - valid pointer on success
11799 * - NULL for orphaned events
11800 * - IS_ERR() on error
11801 */
11802 static struct perf_event *
inherit_event(struct perf_event * parent_event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,struct perf_event * group_leader,struct perf_event_context * child_ctx)11803 inherit_event(struct perf_event *parent_event,
11804 struct task_struct *parent,
11805 struct perf_event_context *parent_ctx,
11806 struct task_struct *child,
11807 struct perf_event *group_leader,
11808 struct perf_event_context *child_ctx)
11809 {
11810 enum perf_event_state parent_state = parent_event->state;
11811 struct perf_event *child_event;
11812 unsigned long flags;
11813
11814 /*
11815 * Instead of creating recursive hierarchies of events,
11816 * we link inherited events back to the original parent,
11817 * which has a filp for sure, which we use as the reference
11818 * count:
11819 */
11820 if (parent_event->parent)
11821 parent_event = parent_event->parent;
11822
11823 child_event = perf_event_alloc(&parent_event->attr,
11824 parent_event->cpu,
11825 child,
11826 group_leader, parent_event,
11827 NULL, NULL, -1);
11828 if (IS_ERR(child_event))
11829 return child_event;
11830
11831
11832 if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
11833 !child_ctx->task_ctx_data) {
11834 struct pmu *pmu = child_event->pmu;
11835
11836 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
11837 GFP_KERNEL);
11838 if (!child_ctx->task_ctx_data) {
11839 free_event(child_event);
11840 return ERR_PTR(-ENOMEM);
11841 }
11842 }
11843
11844 /*
11845 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
11846 * must be under the same lock in order to serialize against
11847 * perf_event_release_kernel(), such that either we must observe
11848 * is_orphaned_event() or they will observe us on the child_list.
11849 */
11850 mutex_lock(&parent_event->child_mutex);
11851 if (is_orphaned_event(parent_event) ||
11852 !atomic_long_inc_not_zero(&parent_event->refcount)) {
11853 mutex_unlock(&parent_event->child_mutex);
11854 /* task_ctx_data is freed with child_ctx */
11855 free_event(child_event);
11856 return NULL;
11857 }
11858
11859 get_ctx(child_ctx);
11860
11861 /*
11862 * Make the child state follow the state of the parent event,
11863 * not its attr.disabled bit. We hold the parent's mutex,
11864 * so we won't race with perf_event_{en, dis}able_family.
11865 */
11866 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
11867 child_event->state = PERF_EVENT_STATE_INACTIVE;
11868 else
11869 child_event->state = PERF_EVENT_STATE_OFF;
11870
11871 if (parent_event->attr.freq) {
11872 u64 sample_period = parent_event->hw.sample_period;
11873 struct hw_perf_event *hwc = &child_event->hw;
11874
11875 hwc->sample_period = sample_period;
11876 hwc->last_period = sample_period;
11877
11878 local64_set(&hwc->period_left, sample_period);
11879 }
11880
11881 child_event->ctx = child_ctx;
11882 child_event->overflow_handler = parent_event->overflow_handler;
11883 child_event->overflow_handler_context
11884 = parent_event->overflow_handler_context;
11885
11886 /*
11887 * Precalculate sample_data sizes
11888 */
11889 perf_event__header_size(child_event);
11890 perf_event__id_header_size(child_event);
11891
11892 /*
11893 * Link it up in the child's context:
11894 */
11895 raw_spin_lock_irqsave(&child_ctx->lock, flags);
11896 add_event_to_ctx(child_event, child_ctx);
11897 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
11898
11899 /*
11900 * Link this into the parent event's child list
11901 */
11902 list_add_tail(&child_event->child_list, &parent_event->child_list);
11903 mutex_unlock(&parent_event->child_mutex);
11904
11905 return child_event;
11906 }
11907
11908 /*
11909 * Inherits an event group.
11910 *
11911 * This will quietly suppress orphaned events; !inherit_event() is not an error.
11912 * This matches with perf_event_release_kernel() removing all child events.
11913 *
11914 * Returns:
11915 * - 0 on success
11916 * - <0 on error
11917 */
inherit_group(struct perf_event * parent_event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,struct perf_event_context * child_ctx)11918 static int inherit_group(struct perf_event *parent_event,
11919 struct task_struct *parent,
11920 struct perf_event_context *parent_ctx,
11921 struct task_struct *child,
11922 struct perf_event_context *child_ctx)
11923 {
11924 struct perf_event *leader;
11925 struct perf_event *sub;
11926 struct perf_event *child_ctr;
11927
11928 leader = inherit_event(parent_event, parent, parent_ctx,
11929 child, NULL, child_ctx);
11930 if (IS_ERR(leader))
11931 return PTR_ERR(leader);
11932 /*
11933 * @leader can be NULL here because of is_orphaned_event(). In this
11934 * case inherit_event() will create individual events, similar to what
11935 * perf_group_detach() would do anyway.
11936 */
11937 for_each_sibling_event(sub, parent_event) {
11938 child_ctr = inherit_event(sub, parent, parent_ctx,
11939 child, leader, child_ctx);
11940 if (IS_ERR(child_ctr))
11941 return PTR_ERR(child_ctr);
11942
11943 if (sub->aux_event == parent_event && child_ctr &&
11944 !perf_get_aux_event(child_ctr, leader))
11945 return -EINVAL;
11946 }
11947 return 0;
11948 }
11949
11950 /*
11951 * Creates the child task context and tries to inherit the event-group.
11952 *
11953 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
11954 * inherited_all set when we 'fail' to inherit an orphaned event; this is
11955 * consistent with perf_event_release_kernel() removing all child events.
11956 *
11957 * Returns:
11958 * - 0 on success
11959 * - <0 on error
11960 */
11961 static int
inherit_task_group(struct perf_event * event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,int ctxn,int * inherited_all)11962 inherit_task_group(struct perf_event *event, struct task_struct *parent,
11963 struct perf_event_context *parent_ctx,
11964 struct task_struct *child, int ctxn,
11965 int *inherited_all)
11966 {
11967 int ret;
11968 struct perf_event_context *child_ctx;
11969
11970 if (!event->attr.inherit) {
11971 *inherited_all = 0;
11972 return 0;
11973 }
11974
11975 child_ctx = child->perf_event_ctxp[ctxn];
11976 if (!child_ctx) {
11977 /*
11978 * This is executed from the parent task context, so
11979 * inherit events that have been marked for cloning.
11980 * First allocate and initialize a context for the
11981 * child.
11982 */
11983 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
11984 if (!child_ctx)
11985 return -ENOMEM;
11986
11987 child->perf_event_ctxp[ctxn] = child_ctx;
11988 }
11989
11990 ret = inherit_group(event, parent, parent_ctx,
11991 child, child_ctx);
11992
11993 if (ret)
11994 *inherited_all = 0;
11995
11996 return ret;
11997 }
11998
11999 /*
12000 * Initialize the perf_event context in task_struct
12001 */
perf_event_init_context(struct task_struct * child,int ctxn)12002 static int perf_event_init_context(struct task_struct *child, int ctxn)
12003 {
12004 struct perf_event_context *child_ctx, *parent_ctx;
12005 struct perf_event_context *cloned_ctx;
12006 struct perf_event *event;
12007 struct task_struct *parent = current;
12008 int inherited_all = 1;
12009 unsigned long flags;
12010 int ret = 0;
12011
12012 if (likely(!parent->perf_event_ctxp[ctxn]))
12013 return 0;
12014
12015 /*
12016 * If the parent's context is a clone, pin it so it won't get
12017 * swapped under us.
12018 */
12019 parent_ctx = perf_pin_task_context(parent, ctxn);
12020 if (!parent_ctx)
12021 return 0;
12022
12023 /*
12024 * No need to check if parent_ctx != NULL here; since we saw
12025 * it non-NULL earlier, the only reason for it to become NULL
12026 * is if we exit, and since we're currently in the middle of
12027 * a fork we can't be exiting at the same time.
12028 */
12029
12030 /*
12031 * Lock the parent list. No need to lock the child - not PID
12032 * hashed yet and not running, so nobody can access it.
12033 */
12034 mutex_lock(&parent_ctx->mutex);
12035
12036 /*
12037 * We dont have to disable NMIs - we are only looking at
12038 * the list, not manipulating it:
12039 */
12040 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
12041 ret = inherit_task_group(event, parent, parent_ctx,
12042 child, ctxn, &inherited_all);
12043 if (ret)
12044 goto out_unlock;
12045 }
12046
12047 /*
12048 * We can't hold ctx->lock when iterating the ->flexible_group list due
12049 * to allocations, but we need to prevent rotation because
12050 * rotate_ctx() will change the list from interrupt context.
12051 */
12052 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12053 parent_ctx->rotate_disable = 1;
12054 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12055
12056 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
12057 ret = inherit_task_group(event, parent, parent_ctx,
12058 child, ctxn, &inherited_all);
12059 if (ret)
12060 goto out_unlock;
12061 }
12062
12063 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12064 parent_ctx->rotate_disable = 0;
12065
12066 child_ctx = child->perf_event_ctxp[ctxn];
12067
12068 if (child_ctx && inherited_all) {
12069 /*
12070 * Mark the child context as a clone of the parent
12071 * context, or of whatever the parent is a clone of.
12072 *
12073 * Note that if the parent is a clone, the holding of
12074 * parent_ctx->lock avoids it from being uncloned.
12075 */
12076 cloned_ctx = parent_ctx->parent_ctx;
12077 if (cloned_ctx) {
12078 child_ctx->parent_ctx = cloned_ctx;
12079 child_ctx->parent_gen = parent_ctx->parent_gen;
12080 } else {
12081 child_ctx->parent_ctx = parent_ctx;
12082 child_ctx->parent_gen = parent_ctx->generation;
12083 }
12084 get_ctx(child_ctx->parent_ctx);
12085 }
12086
12087 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12088 out_unlock:
12089 mutex_unlock(&parent_ctx->mutex);
12090
12091 perf_unpin_context(parent_ctx);
12092 put_ctx(parent_ctx);
12093
12094 return ret;
12095 }
12096
12097 /*
12098 * Initialize the perf_event context in task_struct
12099 */
perf_event_init_task(struct task_struct * child)12100 int perf_event_init_task(struct task_struct *child)
12101 {
12102 int ctxn, ret;
12103
12104 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
12105 mutex_init(&child->perf_event_mutex);
12106 INIT_LIST_HEAD(&child->perf_event_list);
12107
12108 for_each_task_context_nr(ctxn) {
12109 ret = perf_event_init_context(child, ctxn);
12110 if (ret) {
12111 perf_event_free_task(child);
12112 return ret;
12113 }
12114 }
12115
12116 return 0;
12117 }
12118
perf_event_init_all_cpus(void)12119 static void __init perf_event_init_all_cpus(void)
12120 {
12121 struct swevent_htable *swhash;
12122 int cpu;
12123
12124 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
12125
12126 for_each_possible_cpu(cpu) {
12127 swhash = &per_cpu(swevent_htable, cpu);
12128 mutex_init(&swhash->hlist_mutex);
12129 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
12130
12131 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
12132 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
12133
12134 #ifdef CONFIG_CGROUP_PERF
12135 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
12136 #endif
12137 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
12138 }
12139 }
12140
perf_swevent_init_cpu(unsigned int cpu)12141 static void perf_swevent_init_cpu(unsigned int cpu)
12142 {
12143 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
12144
12145 mutex_lock(&swhash->hlist_mutex);
12146 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
12147 struct swevent_hlist *hlist;
12148
12149 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
12150 WARN_ON(!hlist);
12151 rcu_assign_pointer(swhash->swevent_hlist, hlist);
12152 }
12153 mutex_unlock(&swhash->hlist_mutex);
12154 }
12155
12156 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
__perf_event_exit_context(void * __info)12157 static void __perf_event_exit_context(void *__info)
12158 {
12159 struct perf_event_context *ctx = __info;
12160 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
12161 struct perf_event *event;
12162
12163 raw_spin_lock(&ctx->lock);
12164 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
12165 list_for_each_entry(event, &ctx->event_list, event_entry)
12166 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
12167 raw_spin_unlock(&ctx->lock);
12168 }
12169
perf_event_exit_cpu_context(int cpu)12170 static void perf_event_exit_cpu_context(int cpu)
12171 {
12172 struct perf_cpu_context *cpuctx;
12173 struct perf_event_context *ctx;
12174 struct pmu *pmu;
12175
12176 mutex_lock(&pmus_lock);
12177 list_for_each_entry(pmu, &pmus, entry) {
12178 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12179 ctx = &cpuctx->ctx;
12180
12181 mutex_lock(&ctx->mutex);
12182 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
12183 cpuctx->online = 0;
12184 mutex_unlock(&ctx->mutex);
12185 }
12186 cpumask_clear_cpu(cpu, perf_online_mask);
12187 mutex_unlock(&pmus_lock);
12188 }
12189 #else
12190
perf_event_exit_cpu_context(int cpu)12191 static void perf_event_exit_cpu_context(int cpu) { }
12192
12193 #endif
12194
perf_event_init_cpu(unsigned int cpu)12195 int perf_event_init_cpu(unsigned int cpu)
12196 {
12197 struct perf_cpu_context *cpuctx;
12198 struct perf_event_context *ctx;
12199 struct pmu *pmu;
12200
12201 perf_swevent_init_cpu(cpu);
12202
12203 mutex_lock(&pmus_lock);
12204 cpumask_set_cpu(cpu, perf_online_mask);
12205 list_for_each_entry(pmu, &pmus, entry) {
12206 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12207 ctx = &cpuctx->ctx;
12208
12209 mutex_lock(&ctx->mutex);
12210 cpuctx->online = 1;
12211 mutex_unlock(&ctx->mutex);
12212 }
12213 mutex_unlock(&pmus_lock);
12214
12215 return 0;
12216 }
12217
perf_event_exit_cpu(unsigned int cpu)12218 int perf_event_exit_cpu(unsigned int cpu)
12219 {
12220 perf_event_exit_cpu_context(cpu);
12221 return 0;
12222 }
12223
12224 static int
perf_reboot(struct notifier_block * notifier,unsigned long val,void * v)12225 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
12226 {
12227 int cpu;
12228
12229 for_each_online_cpu(cpu)
12230 perf_event_exit_cpu(cpu);
12231
12232 return NOTIFY_OK;
12233 }
12234
12235 /*
12236 * Run the perf reboot notifier at the very last possible moment so that
12237 * the generic watchdog code runs as long as possible.
12238 */
12239 static struct notifier_block perf_reboot_notifier = {
12240 .notifier_call = perf_reboot,
12241 .priority = INT_MIN,
12242 };
12243
perf_event_init(void)12244 void __init perf_event_init(void)
12245 {
12246 int ret;
12247
12248 idr_init(&pmu_idr);
12249
12250 perf_event_init_all_cpus();
12251 init_srcu_struct(&pmus_srcu);
12252 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
12253 perf_pmu_register(&perf_cpu_clock, NULL, -1);
12254 perf_pmu_register(&perf_task_clock, NULL, -1);
12255 perf_tp_register();
12256 perf_event_init_cpu(smp_processor_id());
12257 register_reboot_notifier(&perf_reboot_notifier);
12258
12259 ret = init_hw_breakpoint();
12260 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
12261
12262 /*
12263 * Build time assertion that we keep the data_head at the intended
12264 * location. IOW, validation we got the __reserved[] size right.
12265 */
12266 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
12267 != 1024);
12268 }
12269
perf_event_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)12270 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
12271 char *page)
12272 {
12273 struct perf_pmu_events_attr *pmu_attr =
12274 container_of(attr, struct perf_pmu_events_attr, attr);
12275
12276 if (pmu_attr->event_str)
12277 return sprintf(page, "%s\n", pmu_attr->event_str);
12278
12279 return 0;
12280 }
12281 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
12282
perf_event_sysfs_init(void)12283 static int __init perf_event_sysfs_init(void)
12284 {
12285 struct pmu *pmu;
12286 int ret;
12287
12288 mutex_lock(&pmus_lock);
12289
12290 ret = bus_register(&pmu_bus);
12291 if (ret)
12292 goto unlock;
12293
12294 list_for_each_entry(pmu, &pmus, entry) {
12295 if (!pmu->name || pmu->type < 0)
12296 continue;
12297
12298 ret = pmu_dev_alloc(pmu);
12299 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
12300 }
12301 pmu_bus_running = 1;
12302 ret = 0;
12303
12304 unlock:
12305 mutex_unlock(&pmus_lock);
12306
12307 return ret;
12308 }
12309 device_initcall(perf_event_sysfs_init);
12310
12311 #ifdef CONFIG_CGROUP_PERF
12312 static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)12313 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
12314 {
12315 struct perf_cgroup *jc;
12316
12317 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
12318 if (!jc)
12319 return ERR_PTR(-ENOMEM);
12320
12321 jc->info = alloc_percpu(struct perf_cgroup_info);
12322 if (!jc->info) {
12323 kfree(jc);
12324 return ERR_PTR(-ENOMEM);
12325 }
12326
12327 return &jc->css;
12328 }
12329
perf_cgroup_css_free(struct cgroup_subsys_state * css)12330 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
12331 {
12332 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
12333
12334 free_percpu(jc->info);
12335 kfree(jc);
12336 }
12337
__perf_cgroup_move(void * info)12338 static int __perf_cgroup_move(void *info)
12339 {
12340 struct task_struct *task = info;
12341 rcu_read_lock();
12342 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
12343 rcu_read_unlock();
12344 return 0;
12345 }
12346
perf_cgroup_attach(struct cgroup_taskset * tset)12347 static void perf_cgroup_attach(struct cgroup_taskset *tset)
12348 {
12349 struct task_struct *task;
12350 struct cgroup_subsys_state *css;
12351
12352 cgroup_taskset_for_each(task, css, tset)
12353 task_function_call(task, __perf_cgroup_move, task);
12354 }
12355
12356 struct cgroup_subsys perf_event_cgrp_subsys = {
12357 .css_alloc = perf_cgroup_css_alloc,
12358 .css_free = perf_cgroup_css_free,
12359 .attach = perf_cgroup_attach,
12360 /*
12361 * Implicitly enable on dfl hierarchy so that perf events can
12362 * always be filtered by cgroup2 path as long as perf_event
12363 * controller is not mounted on a legacy hierarchy.
12364 */
12365 .implicit_on_dfl = true,
12366 .threaded = true,
12367 };
12368 #endif /* CONFIG_CGROUP_PERF */
12369