• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10 
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/rculist.h>
32 #include <linux/uaccess.h>
33 #include <linux/syscalls.h>
34 #include <linux/anon_inodes.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/cgroup.h>
37 #include <linux/perf_event.h>
38 #include <linux/trace_events.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/mm_types.h>
41 #include <linux/module.h>
42 #include <linux/mman.h>
43 #include <linux/compat.h>
44 #include <linux/bpf.h>
45 #include <linux/filter.h>
46 #include <linux/namei.h>
47 #include <linux/parser.h>
48 #include <linux/sched/clock.h>
49 #include <linux/sched/mm.h>
50 #include <linux/proc_ns.h>
51 #include <linux/mount.h>
52 
53 #include "internal.h"
54 
55 #include <asm/irq_regs.h>
56 
57 typedef int (*remote_function_f)(void *);
58 
59 struct remote_function_call {
60 	struct task_struct	*p;
61 	remote_function_f	func;
62 	void			*info;
63 	int			ret;
64 };
65 
remote_function(void * data)66 static void remote_function(void *data)
67 {
68 	struct remote_function_call *tfc = data;
69 	struct task_struct *p = tfc->p;
70 
71 	if (p) {
72 		/* -EAGAIN */
73 		if (task_cpu(p) != smp_processor_id())
74 			return;
75 
76 		/*
77 		 * Now that we're on right CPU with IRQs disabled, we can test
78 		 * if we hit the right task without races.
79 		 */
80 
81 		tfc->ret = -ESRCH; /* No such (running) process */
82 		if (p != current)
83 			return;
84 	}
85 
86 	tfc->ret = tfc->func(tfc->info);
87 }
88 
89 /**
90  * task_function_call - call a function on the cpu on which a task runs
91  * @p:		the task to evaluate
92  * @func:	the function to be called
93  * @info:	the function call argument
94  *
95  * Calls the function @func when the task is currently running. This might
96  * be on the current CPU, which just calls the function directly
97  *
98  * returns: @func return value, or
99  *	    -ESRCH  - when the process isn't running
100  *	    -EAGAIN - when the process moved away
101  */
102 static int
task_function_call(struct task_struct * p,remote_function_f func,void * info)103 task_function_call(struct task_struct *p, remote_function_f func, void *info)
104 {
105 	struct remote_function_call data = {
106 		.p	= p,
107 		.func	= func,
108 		.info	= info,
109 		.ret	= -EAGAIN,
110 	};
111 	int ret;
112 
113 	do {
114 		ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
115 		if (!ret)
116 			ret = data.ret;
117 	} while (ret == -EAGAIN);
118 
119 	return ret;
120 }
121 
122 /**
123  * cpu_function_call - call a function on the cpu
124  * @func:	the function to be called
125  * @info:	the function call argument
126  *
127  * Calls the function @func on the remote cpu.
128  *
129  * returns: @func return value or -ENXIO when the cpu is offline
130  */
cpu_function_call(int cpu,remote_function_f func,void * info)131 static int cpu_function_call(int cpu, remote_function_f func, void *info)
132 {
133 	struct remote_function_call data = {
134 		.p	= NULL,
135 		.func	= func,
136 		.info	= info,
137 		.ret	= -ENXIO, /* No such CPU */
138 	};
139 
140 	smp_call_function_single(cpu, remote_function, &data, 1);
141 
142 	return data.ret;
143 }
144 
145 static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context * ctx)146 __get_cpu_context(struct perf_event_context *ctx)
147 {
148 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
149 }
150 
perf_ctx_lock(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)151 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
152 			  struct perf_event_context *ctx)
153 {
154 	raw_spin_lock(&cpuctx->ctx.lock);
155 	if (ctx)
156 		raw_spin_lock(&ctx->lock);
157 }
158 
perf_ctx_unlock(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)159 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
160 			    struct perf_event_context *ctx)
161 {
162 	if (ctx)
163 		raw_spin_unlock(&ctx->lock);
164 	raw_spin_unlock(&cpuctx->ctx.lock);
165 }
166 
167 #define TASK_TOMBSTONE ((void *)-1L)
168 
is_kernel_event(struct perf_event * event)169 static bool is_kernel_event(struct perf_event *event)
170 {
171 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
172 }
173 
174 /*
175  * On task ctx scheduling...
176  *
177  * When !ctx->nr_events a task context will not be scheduled. This means
178  * we can disable the scheduler hooks (for performance) without leaving
179  * pending task ctx state.
180  *
181  * This however results in two special cases:
182  *
183  *  - removing the last event from a task ctx; this is relatively straight
184  *    forward and is done in __perf_remove_from_context.
185  *
186  *  - adding the first event to a task ctx; this is tricky because we cannot
187  *    rely on ctx->is_active and therefore cannot use event_function_call().
188  *    See perf_install_in_context().
189  *
190  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
191  */
192 
193 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
194 			struct perf_event_context *, void *);
195 
196 struct event_function_struct {
197 	struct perf_event *event;
198 	event_f func;
199 	void *data;
200 };
201 
event_function(void * info)202 static int event_function(void *info)
203 {
204 	struct event_function_struct *efs = info;
205 	struct perf_event *event = efs->event;
206 	struct perf_event_context *ctx = event->ctx;
207 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
208 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
209 	int ret = 0;
210 
211 	lockdep_assert_irqs_disabled();
212 
213 	perf_ctx_lock(cpuctx, task_ctx);
214 	/*
215 	 * Since we do the IPI call without holding ctx->lock things can have
216 	 * changed, double check we hit the task we set out to hit.
217 	 */
218 	if (ctx->task) {
219 		if (ctx->task != current) {
220 			ret = -ESRCH;
221 			goto unlock;
222 		}
223 
224 		/*
225 		 * We only use event_function_call() on established contexts,
226 		 * and event_function() is only ever called when active (or
227 		 * rather, we'll have bailed in task_function_call() or the
228 		 * above ctx->task != current test), therefore we must have
229 		 * ctx->is_active here.
230 		 */
231 		WARN_ON_ONCE(!ctx->is_active);
232 		/*
233 		 * And since we have ctx->is_active, cpuctx->task_ctx must
234 		 * match.
235 		 */
236 		WARN_ON_ONCE(task_ctx != ctx);
237 	} else {
238 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
239 	}
240 
241 	efs->func(event, cpuctx, ctx, efs->data);
242 unlock:
243 	perf_ctx_unlock(cpuctx, task_ctx);
244 
245 	return ret;
246 }
247 
event_function_call(struct perf_event * event,event_f func,void * data)248 static void event_function_call(struct perf_event *event, event_f func, void *data)
249 {
250 	struct perf_event_context *ctx = event->ctx;
251 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
252 	struct event_function_struct efs = {
253 		.event = event,
254 		.func = func,
255 		.data = data,
256 	};
257 
258 	if (!event->parent) {
259 		/*
260 		 * If this is a !child event, we must hold ctx::mutex to
261 		 * stabilize the the event->ctx relation. See
262 		 * perf_event_ctx_lock().
263 		 */
264 		lockdep_assert_held(&ctx->mutex);
265 	}
266 
267 	if (!task) {
268 		cpu_function_call(event->cpu, event_function, &efs);
269 		return;
270 	}
271 
272 	if (task == TASK_TOMBSTONE)
273 		return;
274 
275 again:
276 	if (!task_function_call(task, event_function, &efs))
277 		return;
278 
279 	raw_spin_lock_irq(&ctx->lock);
280 	/*
281 	 * Reload the task pointer, it might have been changed by
282 	 * a concurrent perf_event_context_sched_out().
283 	 */
284 	task = ctx->task;
285 	if (task == TASK_TOMBSTONE) {
286 		raw_spin_unlock_irq(&ctx->lock);
287 		return;
288 	}
289 	if (ctx->is_active) {
290 		raw_spin_unlock_irq(&ctx->lock);
291 		goto again;
292 	}
293 	func(event, NULL, ctx, data);
294 	raw_spin_unlock_irq(&ctx->lock);
295 }
296 
297 /*
298  * Similar to event_function_call() + event_function(), but hard assumes IRQs
299  * are already disabled and we're on the right CPU.
300  */
event_function_local(struct perf_event * event,event_f func,void * data)301 static void event_function_local(struct perf_event *event, event_f func, void *data)
302 {
303 	struct perf_event_context *ctx = event->ctx;
304 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
305 	struct task_struct *task = READ_ONCE(ctx->task);
306 	struct perf_event_context *task_ctx = NULL;
307 
308 	lockdep_assert_irqs_disabled();
309 
310 	if (task) {
311 		if (task == TASK_TOMBSTONE)
312 			return;
313 
314 		task_ctx = ctx;
315 	}
316 
317 	perf_ctx_lock(cpuctx, task_ctx);
318 
319 	task = ctx->task;
320 	if (task == TASK_TOMBSTONE)
321 		goto unlock;
322 
323 	if (task) {
324 		/*
325 		 * We must be either inactive or active and the right task,
326 		 * otherwise we're screwed, since we cannot IPI to somewhere
327 		 * else.
328 		 */
329 		if (ctx->is_active) {
330 			if (WARN_ON_ONCE(task != current))
331 				goto unlock;
332 
333 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
334 				goto unlock;
335 		}
336 	} else {
337 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
338 	}
339 
340 	func(event, cpuctx, ctx, data);
341 unlock:
342 	perf_ctx_unlock(cpuctx, task_ctx);
343 }
344 
345 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
346 		       PERF_FLAG_FD_OUTPUT  |\
347 		       PERF_FLAG_PID_CGROUP |\
348 		       PERF_FLAG_FD_CLOEXEC)
349 
350 /*
351  * branch priv levels that need permission checks
352  */
353 #define PERF_SAMPLE_BRANCH_PERM_PLM \
354 	(PERF_SAMPLE_BRANCH_KERNEL |\
355 	 PERF_SAMPLE_BRANCH_HV)
356 
357 enum event_type_t {
358 	EVENT_FLEXIBLE = 0x1,
359 	EVENT_PINNED = 0x2,
360 	EVENT_TIME = 0x4,
361 	/* see ctx_resched() for details */
362 	EVENT_CPU = 0x8,
363 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
364 };
365 
366 /*
367  * perf_sched_events : >0 events exist
368  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
369  */
370 
371 static void perf_sched_delayed(struct work_struct *work);
372 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
373 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
374 static DEFINE_MUTEX(perf_sched_mutex);
375 static atomic_t perf_sched_count;
376 
377 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
378 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
379 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
380 
381 static atomic_t nr_mmap_events __read_mostly;
382 static atomic_t nr_comm_events __read_mostly;
383 static atomic_t nr_namespaces_events __read_mostly;
384 static atomic_t nr_task_events __read_mostly;
385 static atomic_t nr_freq_events __read_mostly;
386 static atomic_t nr_switch_events __read_mostly;
387 static atomic_t nr_ksymbol_events __read_mostly;
388 static atomic_t nr_bpf_events __read_mostly;
389 
390 static LIST_HEAD(pmus);
391 static DEFINE_MUTEX(pmus_lock);
392 static struct srcu_struct pmus_srcu;
393 static cpumask_var_t perf_online_mask;
394 
395 /*
396  * perf event paranoia level:
397  *  -1 - not paranoid at all
398  *   0 - disallow raw tracepoint access for unpriv
399  *   1 - disallow cpu events for unpriv
400  *   2 - disallow kernel profiling for unpriv
401  */
402 int sysctl_perf_event_paranoid __read_mostly = 2;
403 
404 /* Minimum for 512 kiB + 1 user control page */
405 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
406 
407 /*
408  * max perf event sample rate
409  */
410 #define DEFAULT_MAX_SAMPLE_RATE		100000
411 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
412 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
413 
414 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
415 
416 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
417 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
418 
419 static int perf_sample_allowed_ns __read_mostly =
420 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
421 
update_perf_cpu_limits(void)422 static void update_perf_cpu_limits(void)
423 {
424 	u64 tmp = perf_sample_period_ns;
425 
426 	tmp *= sysctl_perf_cpu_time_max_percent;
427 	tmp = div_u64(tmp, 100);
428 	if (!tmp)
429 		tmp = 1;
430 
431 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
432 }
433 
434 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
435 
perf_proc_update_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)436 int perf_proc_update_handler(struct ctl_table *table, int write,
437 		void __user *buffer, size_t *lenp,
438 		loff_t *ppos)
439 {
440 	int ret;
441 	int perf_cpu = sysctl_perf_cpu_time_max_percent;
442 	/*
443 	 * If throttling is disabled don't allow the write:
444 	 */
445 	if (write && (perf_cpu == 100 || perf_cpu == 0))
446 		return -EINVAL;
447 
448 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
449 	if (ret || !write)
450 		return ret;
451 
452 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
453 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
454 	update_perf_cpu_limits();
455 
456 	return 0;
457 }
458 
459 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
460 
perf_cpu_time_max_percent_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)461 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
462 				void __user *buffer, size_t *lenp,
463 				loff_t *ppos)
464 {
465 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
466 
467 	if (ret || !write)
468 		return ret;
469 
470 	if (sysctl_perf_cpu_time_max_percent == 100 ||
471 	    sysctl_perf_cpu_time_max_percent == 0) {
472 		printk(KERN_WARNING
473 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
474 		WRITE_ONCE(perf_sample_allowed_ns, 0);
475 	} else {
476 		update_perf_cpu_limits();
477 	}
478 
479 	return 0;
480 }
481 
482 /*
483  * perf samples are done in some very critical code paths (NMIs).
484  * If they take too much CPU time, the system can lock up and not
485  * get any real work done.  This will drop the sample rate when
486  * we detect that events are taking too long.
487  */
488 #define NR_ACCUMULATED_SAMPLES 128
489 static DEFINE_PER_CPU(u64, running_sample_length);
490 
491 static u64 __report_avg;
492 static u64 __report_allowed;
493 
perf_duration_warn(struct irq_work * w)494 static void perf_duration_warn(struct irq_work *w)
495 {
496 	printk_ratelimited(KERN_INFO
497 		"perf: interrupt took too long (%lld > %lld), lowering "
498 		"kernel.perf_event_max_sample_rate to %d\n",
499 		__report_avg, __report_allowed,
500 		sysctl_perf_event_sample_rate);
501 }
502 
503 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
504 
perf_sample_event_took(u64 sample_len_ns)505 void perf_sample_event_took(u64 sample_len_ns)
506 {
507 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
508 	u64 running_len;
509 	u64 avg_len;
510 	u32 max;
511 
512 	if (max_len == 0)
513 		return;
514 
515 	/* Decay the counter by 1 average sample. */
516 	running_len = __this_cpu_read(running_sample_length);
517 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
518 	running_len += sample_len_ns;
519 	__this_cpu_write(running_sample_length, running_len);
520 
521 	/*
522 	 * Note: this will be biased artifically low until we have
523 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
524 	 * from having to maintain a count.
525 	 */
526 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
527 	if (avg_len <= max_len)
528 		return;
529 
530 	__report_avg = avg_len;
531 	__report_allowed = max_len;
532 
533 	/*
534 	 * Compute a throttle threshold 25% below the current duration.
535 	 */
536 	avg_len += avg_len / 4;
537 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
538 	if (avg_len < max)
539 		max /= (u32)avg_len;
540 	else
541 		max = 1;
542 
543 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
544 	WRITE_ONCE(max_samples_per_tick, max);
545 
546 	sysctl_perf_event_sample_rate = max * HZ;
547 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
548 
549 	if (!irq_work_queue(&perf_duration_work)) {
550 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
551 			     "kernel.perf_event_max_sample_rate to %d\n",
552 			     __report_avg, __report_allowed,
553 			     sysctl_perf_event_sample_rate);
554 	}
555 }
556 
557 static atomic64_t perf_event_id;
558 
559 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
560 			      enum event_type_t event_type);
561 
562 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
563 			     enum event_type_t event_type,
564 			     struct task_struct *task);
565 
566 static void update_context_time(struct perf_event_context *ctx);
567 static u64 perf_event_time(struct perf_event *event);
568 
perf_event_print_debug(void)569 void __weak perf_event_print_debug(void)	{ }
570 
perf_pmu_name(void)571 extern __weak const char *perf_pmu_name(void)
572 {
573 	return "pmu";
574 }
575 
perf_clock(void)576 static inline u64 perf_clock(void)
577 {
578 	return local_clock();
579 }
580 
perf_event_clock(struct perf_event * event)581 static inline u64 perf_event_clock(struct perf_event *event)
582 {
583 	return event->clock();
584 }
585 
586 /*
587  * State based event timekeeping...
588  *
589  * The basic idea is to use event->state to determine which (if any) time
590  * fields to increment with the current delta. This means we only need to
591  * update timestamps when we change state or when they are explicitly requested
592  * (read).
593  *
594  * Event groups make things a little more complicated, but not terribly so. The
595  * rules for a group are that if the group leader is OFF the entire group is
596  * OFF, irrespecive of what the group member states are. This results in
597  * __perf_effective_state().
598  *
599  * A futher ramification is that when a group leader flips between OFF and
600  * !OFF, we need to update all group member times.
601  *
602  *
603  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
604  * need to make sure the relevant context time is updated before we try and
605  * update our timestamps.
606  */
607 
608 static __always_inline enum perf_event_state
__perf_effective_state(struct perf_event * event)609 __perf_effective_state(struct perf_event *event)
610 {
611 	struct perf_event *leader = event->group_leader;
612 
613 	if (leader->state <= PERF_EVENT_STATE_OFF)
614 		return leader->state;
615 
616 	return event->state;
617 }
618 
619 static __always_inline void
__perf_update_times(struct perf_event * event,u64 now,u64 * enabled,u64 * running)620 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
621 {
622 	enum perf_event_state state = __perf_effective_state(event);
623 	u64 delta = now - event->tstamp;
624 
625 	*enabled = event->total_time_enabled;
626 	if (state >= PERF_EVENT_STATE_INACTIVE)
627 		*enabled += delta;
628 
629 	*running = event->total_time_running;
630 	if (state >= PERF_EVENT_STATE_ACTIVE)
631 		*running += delta;
632 }
633 
perf_event_update_time(struct perf_event * event)634 static void perf_event_update_time(struct perf_event *event)
635 {
636 	u64 now = perf_event_time(event);
637 
638 	__perf_update_times(event, now, &event->total_time_enabled,
639 					&event->total_time_running);
640 	event->tstamp = now;
641 }
642 
perf_event_update_sibling_time(struct perf_event * leader)643 static void perf_event_update_sibling_time(struct perf_event *leader)
644 {
645 	struct perf_event *sibling;
646 
647 	for_each_sibling_event(sibling, leader)
648 		perf_event_update_time(sibling);
649 }
650 
651 static void
perf_event_set_state(struct perf_event * event,enum perf_event_state state)652 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
653 {
654 	if (event->state == state)
655 		return;
656 
657 	perf_event_update_time(event);
658 	/*
659 	 * If a group leader gets enabled/disabled all its siblings
660 	 * are affected too.
661 	 */
662 	if ((event->state < 0) ^ (state < 0))
663 		perf_event_update_sibling_time(event);
664 
665 	WRITE_ONCE(event->state, state);
666 }
667 
668 #ifdef CONFIG_CGROUP_PERF
669 
670 static inline bool
perf_cgroup_match(struct perf_event * event)671 perf_cgroup_match(struct perf_event *event)
672 {
673 	struct perf_event_context *ctx = event->ctx;
674 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
675 
676 	/* @event doesn't care about cgroup */
677 	if (!event->cgrp)
678 		return true;
679 
680 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
681 	if (!cpuctx->cgrp)
682 		return false;
683 
684 	/*
685 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
686 	 * also enabled for all its descendant cgroups.  If @cpuctx's
687 	 * cgroup is a descendant of @event's (the test covers identity
688 	 * case), it's a match.
689 	 */
690 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
691 				    event->cgrp->css.cgroup);
692 }
693 
perf_detach_cgroup(struct perf_event * event)694 static inline void perf_detach_cgroup(struct perf_event *event)
695 {
696 	css_put(&event->cgrp->css);
697 	event->cgrp = NULL;
698 }
699 
is_cgroup_event(struct perf_event * event)700 static inline int is_cgroup_event(struct perf_event *event)
701 {
702 	return event->cgrp != NULL;
703 }
704 
perf_cgroup_event_time(struct perf_event * event)705 static inline u64 perf_cgroup_event_time(struct perf_event *event)
706 {
707 	struct perf_cgroup_info *t;
708 
709 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
710 	return t->time;
711 }
712 
__update_cgrp_time(struct perf_cgroup * cgrp)713 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
714 {
715 	struct perf_cgroup_info *info;
716 	u64 now;
717 
718 	now = perf_clock();
719 
720 	info = this_cpu_ptr(cgrp->info);
721 
722 	info->time += now - info->timestamp;
723 	info->timestamp = now;
724 }
725 
update_cgrp_time_from_cpuctx(struct perf_cpu_context * cpuctx)726 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
727 {
728 	struct perf_cgroup *cgrp = cpuctx->cgrp;
729 	struct cgroup_subsys_state *css;
730 
731 	if (cgrp) {
732 		for (css = &cgrp->css; css; css = css->parent) {
733 			cgrp = container_of(css, struct perf_cgroup, css);
734 			__update_cgrp_time(cgrp);
735 		}
736 	}
737 }
738 
update_cgrp_time_from_event(struct perf_event * event)739 static inline void update_cgrp_time_from_event(struct perf_event *event)
740 {
741 	struct perf_cgroup *cgrp;
742 
743 	/*
744 	 * ensure we access cgroup data only when needed and
745 	 * when we know the cgroup is pinned (css_get)
746 	 */
747 	if (!is_cgroup_event(event))
748 		return;
749 
750 	cgrp = perf_cgroup_from_task(current, event->ctx);
751 	/*
752 	 * Do not update time when cgroup is not active
753 	 */
754 	if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
755 		__update_cgrp_time(event->cgrp);
756 }
757 
758 static inline void
perf_cgroup_set_timestamp(struct task_struct * task,struct perf_event_context * ctx)759 perf_cgroup_set_timestamp(struct task_struct *task,
760 			  struct perf_event_context *ctx)
761 {
762 	struct perf_cgroup *cgrp;
763 	struct perf_cgroup_info *info;
764 	struct cgroup_subsys_state *css;
765 
766 	/*
767 	 * ctx->lock held by caller
768 	 * ensure we do not access cgroup data
769 	 * unless we have the cgroup pinned (css_get)
770 	 */
771 	if (!task || !ctx->nr_cgroups)
772 		return;
773 
774 	cgrp = perf_cgroup_from_task(task, ctx);
775 
776 	for (css = &cgrp->css; css; css = css->parent) {
777 		cgrp = container_of(css, struct perf_cgroup, css);
778 		info = this_cpu_ptr(cgrp->info);
779 		info->timestamp = ctx->timestamp;
780 	}
781 }
782 
783 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
784 
785 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
786 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
787 
788 /*
789  * reschedule events based on the cgroup constraint of task.
790  *
791  * mode SWOUT : schedule out everything
792  * mode SWIN : schedule in based on cgroup for next
793  */
perf_cgroup_switch(struct task_struct * task,int mode)794 static void perf_cgroup_switch(struct task_struct *task, int mode)
795 {
796 	struct perf_cpu_context *cpuctx;
797 	struct list_head *list;
798 	unsigned long flags;
799 
800 	/*
801 	 * Disable interrupts and preemption to avoid this CPU's
802 	 * cgrp_cpuctx_entry to change under us.
803 	 */
804 	local_irq_save(flags);
805 
806 	list = this_cpu_ptr(&cgrp_cpuctx_list);
807 	list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
808 		WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
809 
810 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
811 		perf_pmu_disable(cpuctx->ctx.pmu);
812 
813 		if (mode & PERF_CGROUP_SWOUT) {
814 			cpu_ctx_sched_out(cpuctx, EVENT_ALL);
815 			/*
816 			 * must not be done before ctxswout due
817 			 * to event_filter_match() in event_sched_out()
818 			 */
819 			cpuctx->cgrp = NULL;
820 		}
821 
822 		if (mode & PERF_CGROUP_SWIN) {
823 			WARN_ON_ONCE(cpuctx->cgrp);
824 			/*
825 			 * set cgrp before ctxsw in to allow
826 			 * event_filter_match() to not have to pass
827 			 * task around
828 			 * we pass the cpuctx->ctx to perf_cgroup_from_task()
829 			 * because cgorup events are only per-cpu
830 			 */
831 			cpuctx->cgrp = perf_cgroup_from_task(task,
832 							     &cpuctx->ctx);
833 			cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
834 		}
835 		perf_pmu_enable(cpuctx->ctx.pmu);
836 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
837 	}
838 
839 	local_irq_restore(flags);
840 }
841 
perf_cgroup_sched_out(struct task_struct * task,struct task_struct * next)842 static inline void perf_cgroup_sched_out(struct task_struct *task,
843 					 struct task_struct *next)
844 {
845 	struct perf_cgroup *cgrp1;
846 	struct perf_cgroup *cgrp2 = NULL;
847 
848 	rcu_read_lock();
849 	/*
850 	 * we come here when we know perf_cgroup_events > 0
851 	 * we do not need to pass the ctx here because we know
852 	 * we are holding the rcu lock
853 	 */
854 	cgrp1 = perf_cgroup_from_task(task, NULL);
855 	cgrp2 = perf_cgroup_from_task(next, NULL);
856 
857 	/*
858 	 * only schedule out current cgroup events if we know
859 	 * that we are switching to a different cgroup. Otherwise,
860 	 * do no touch the cgroup events.
861 	 */
862 	if (cgrp1 != cgrp2)
863 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
864 
865 	rcu_read_unlock();
866 }
867 
perf_cgroup_sched_in(struct task_struct * prev,struct task_struct * task)868 static inline void perf_cgroup_sched_in(struct task_struct *prev,
869 					struct task_struct *task)
870 {
871 	struct perf_cgroup *cgrp1;
872 	struct perf_cgroup *cgrp2 = NULL;
873 
874 	rcu_read_lock();
875 	/*
876 	 * we come here when we know perf_cgroup_events > 0
877 	 * we do not need to pass the ctx here because we know
878 	 * we are holding the rcu lock
879 	 */
880 	cgrp1 = perf_cgroup_from_task(task, NULL);
881 	cgrp2 = perf_cgroup_from_task(prev, NULL);
882 
883 	/*
884 	 * only need to schedule in cgroup events if we are changing
885 	 * cgroup during ctxsw. Cgroup events were not scheduled
886 	 * out of ctxsw out if that was not the case.
887 	 */
888 	if (cgrp1 != cgrp2)
889 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
890 
891 	rcu_read_unlock();
892 }
893 
perf_cgroup_connect(int fd,struct perf_event * event,struct perf_event_attr * attr,struct perf_event * group_leader)894 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
895 				      struct perf_event_attr *attr,
896 				      struct perf_event *group_leader)
897 {
898 	struct perf_cgroup *cgrp;
899 	struct cgroup_subsys_state *css;
900 	struct fd f = fdget(fd);
901 	int ret = 0;
902 
903 	if (!f.file)
904 		return -EBADF;
905 
906 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
907 					 &perf_event_cgrp_subsys);
908 	if (IS_ERR(css)) {
909 		ret = PTR_ERR(css);
910 		goto out;
911 	}
912 
913 	cgrp = container_of(css, struct perf_cgroup, css);
914 	event->cgrp = cgrp;
915 
916 	/*
917 	 * all events in a group must monitor
918 	 * the same cgroup because a task belongs
919 	 * to only one perf cgroup at a time
920 	 */
921 	if (group_leader && group_leader->cgrp != cgrp) {
922 		perf_detach_cgroup(event);
923 		ret = -EINVAL;
924 	}
925 out:
926 	fdput(f);
927 	return ret;
928 }
929 
930 static inline void
perf_cgroup_set_shadow_time(struct perf_event * event,u64 now)931 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
932 {
933 	struct perf_cgroup_info *t;
934 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
935 	event->shadow_ctx_time = now - t->timestamp;
936 }
937 
938 /*
939  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
940  * cleared when last cgroup event is removed.
941  */
942 static inline void
list_update_cgroup_event(struct perf_event * event,struct perf_event_context * ctx,bool add)943 list_update_cgroup_event(struct perf_event *event,
944 			 struct perf_event_context *ctx, bool add)
945 {
946 	struct perf_cpu_context *cpuctx;
947 	struct list_head *cpuctx_entry;
948 
949 	if (!is_cgroup_event(event))
950 		return;
951 
952 	/*
953 	 * Because cgroup events are always per-cpu events,
954 	 * this will always be called from the right CPU.
955 	 */
956 	cpuctx = __get_cpu_context(ctx);
957 
958 	/*
959 	 * Since setting cpuctx->cgrp is conditional on the current @cgrp
960 	 * matching the event's cgroup, we must do this for every new event,
961 	 * because if the first would mismatch, the second would not try again
962 	 * and we would leave cpuctx->cgrp unset.
963 	 */
964 	if (add && !cpuctx->cgrp) {
965 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
966 
967 		if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
968 			cpuctx->cgrp = cgrp;
969 	}
970 
971 	if (add && ctx->nr_cgroups++)
972 		return;
973 	else if (!add && --ctx->nr_cgroups)
974 		return;
975 
976 	/* no cgroup running */
977 	if (!add)
978 		cpuctx->cgrp = NULL;
979 
980 	cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
981 	if (add)
982 		list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
983 	else
984 		list_del(cpuctx_entry);
985 }
986 
987 #else /* !CONFIG_CGROUP_PERF */
988 
989 static inline bool
perf_cgroup_match(struct perf_event * event)990 perf_cgroup_match(struct perf_event *event)
991 {
992 	return true;
993 }
994 
perf_detach_cgroup(struct perf_event * event)995 static inline void perf_detach_cgroup(struct perf_event *event)
996 {}
997 
is_cgroup_event(struct perf_event * event)998 static inline int is_cgroup_event(struct perf_event *event)
999 {
1000 	return 0;
1001 }
1002 
update_cgrp_time_from_event(struct perf_event * event)1003 static inline void update_cgrp_time_from_event(struct perf_event *event)
1004 {
1005 }
1006 
update_cgrp_time_from_cpuctx(struct perf_cpu_context * cpuctx)1007 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1008 {
1009 }
1010 
perf_cgroup_sched_out(struct task_struct * task,struct task_struct * next)1011 static inline void perf_cgroup_sched_out(struct task_struct *task,
1012 					 struct task_struct *next)
1013 {
1014 }
1015 
perf_cgroup_sched_in(struct task_struct * prev,struct task_struct * task)1016 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1017 					struct task_struct *task)
1018 {
1019 }
1020 
perf_cgroup_connect(pid_t pid,struct perf_event * event,struct perf_event_attr * attr,struct perf_event * group_leader)1021 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1022 				      struct perf_event_attr *attr,
1023 				      struct perf_event *group_leader)
1024 {
1025 	return -EINVAL;
1026 }
1027 
1028 static inline void
perf_cgroup_set_timestamp(struct task_struct * task,struct perf_event_context * ctx)1029 perf_cgroup_set_timestamp(struct task_struct *task,
1030 			  struct perf_event_context *ctx)
1031 {
1032 }
1033 
1034 static inline void
perf_cgroup_switch(struct task_struct * task,struct task_struct * next)1035 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1036 {
1037 }
1038 
1039 static inline void
perf_cgroup_set_shadow_time(struct perf_event * event,u64 now)1040 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1041 {
1042 }
1043 
perf_cgroup_event_time(struct perf_event * event)1044 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1045 {
1046 	return 0;
1047 }
1048 
1049 static inline void
list_update_cgroup_event(struct perf_event * event,struct perf_event_context * ctx,bool add)1050 list_update_cgroup_event(struct perf_event *event,
1051 			 struct perf_event_context *ctx, bool add)
1052 {
1053 }
1054 
1055 #endif
1056 
1057 /*
1058  * set default to be dependent on timer tick just
1059  * like original code
1060  */
1061 #define PERF_CPU_HRTIMER (1000 / HZ)
1062 /*
1063  * function must be called with interrupts disabled
1064  */
perf_mux_hrtimer_handler(struct hrtimer * hr)1065 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1066 {
1067 	struct perf_cpu_context *cpuctx;
1068 	bool rotations;
1069 
1070 	lockdep_assert_irqs_disabled();
1071 
1072 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1073 	rotations = perf_rotate_context(cpuctx);
1074 
1075 	raw_spin_lock(&cpuctx->hrtimer_lock);
1076 	if (rotations)
1077 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1078 	else
1079 		cpuctx->hrtimer_active = 0;
1080 	raw_spin_unlock(&cpuctx->hrtimer_lock);
1081 
1082 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1083 }
1084 
__perf_mux_hrtimer_init(struct perf_cpu_context * cpuctx,int cpu)1085 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1086 {
1087 	struct hrtimer *timer = &cpuctx->hrtimer;
1088 	struct pmu *pmu = cpuctx->ctx.pmu;
1089 	u64 interval;
1090 
1091 	/* no multiplexing needed for SW PMU */
1092 	if (pmu->task_ctx_nr == perf_sw_context)
1093 		return;
1094 
1095 	/*
1096 	 * check default is sane, if not set then force to
1097 	 * default interval (1/tick)
1098 	 */
1099 	interval = pmu->hrtimer_interval_ms;
1100 	if (interval < 1)
1101 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1102 
1103 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1104 
1105 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
1106 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1107 	timer->function = perf_mux_hrtimer_handler;
1108 }
1109 
perf_mux_hrtimer_restart(struct perf_cpu_context * cpuctx)1110 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1111 {
1112 	struct hrtimer *timer = &cpuctx->hrtimer;
1113 	struct pmu *pmu = cpuctx->ctx.pmu;
1114 	unsigned long flags;
1115 
1116 	/* not for SW PMU */
1117 	if (pmu->task_ctx_nr == perf_sw_context)
1118 		return 0;
1119 
1120 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1121 	if (!cpuctx->hrtimer_active) {
1122 		cpuctx->hrtimer_active = 1;
1123 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1124 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1125 	}
1126 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1127 
1128 	return 0;
1129 }
1130 
perf_pmu_disable(struct pmu * pmu)1131 void perf_pmu_disable(struct pmu *pmu)
1132 {
1133 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1134 	if (!(*count)++)
1135 		pmu->pmu_disable(pmu);
1136 }
1137 
perf_pmu_enable(struct pmu * pmu)1138 void perf_pmu_enable(struct pmu *pmu)
1139 {
1140 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1141 	if (!--(*count))
1142 		pmu->pmu_enable(pmu);
1143 }
1144 
1145 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1146 
1147 /*
1148  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1149  * perf_event_task_tick() are fully serialized because they're strictly cpu
1150  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1151  * disabled, while perf_event_task_tick is called from IRQ context.
1152  */
perf_event_ctx_activate(struct perf_event_context * ctx)1153 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1154 {
1155 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1156 
1157 	lockdep_assert_irqs_disabled();
1158 
1159 	WARN_ON(!list_empty(&ctx->active_ctx_list));
1160 
1161 	list_add(&ctx->active_ctx_list, head);
1162 }
1163 
perf_event_ctx_deactivate(struct perf_event_context * ctx)1164 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1165 {
1166 	lockdep_assert_irqs_disabled();
1167 
1168 	WARN_ON(list_empty(&ctx->active_ctx_list));
1169 
1170 	list_del_init(&ctx->active_ctx_list);
1171 }
1172 
get_ctx(struct perf_event_context * ctx)1173 static void get_ctx(struct perf_event_context *ctx)
1174 {
1175 	refcount_inc(&ctx->refcount);
1176 }
1177 
free_ctx(struct rcu_head * head)1178 static void free_ctx(struct rcu_head *head)
1179 {
1180 	struct perf_event_context *ctx;
1181 
1182 	ctx = container_of(head, struct perf_event_context, rcu_head);
1183 	kfree(ctx->task_ctx_data);
1184 	kfree(ctx);
1185 }
1186 
put_ctx(struct perf_event_context * ctx)1187 static void put_ctx(struct perf_event_context *ctx)
1188 {
1189 	if (refcount_dec_and_test(&ctx->refcount)) {
1190 		if (ctx->parent_ctx)
1191 			put_ctx(ctx->parent_ctx);
1192 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1193 			put_task_struct(ctx->task);
1194 		call_rcu(&ctx->rcu_head, free_ctx);
1195 	}
1196 }
1197 
1198 /*
1199  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1200  * perf_pmu_migrate_context() we need some magic.
1201  *
1202  * Those places that change perf_event::ctx will hold both
1203  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1204  *
1205  * Lock ordering is by mutex address. There are two other sites where
1206  * perf_event_context::mutex nests and those are:
1207  *
1208  *  - perf_event_exit_task_context()	[ child , 0 ]
1209  *      perf_event_exit_event()
1210  *        put_event()			[ parent, 1 ]
1211  *
1212  *  - perf_event_init_context()		[ parent, 0 ]
1213  *      inherit_task_group()
1214  *        inherit_group()
1215  *          inherit_event()
1216  *            perf_event_alloc()
1217  *              perf_init_event()
1218  *                perf_try_init_event()	[ child , 1 ]
1219  *
1220  * While it appears there is an obvious deadlock here -- the parent and child
1221  * nesting levels are inverted between the two. This is in fact safe because
1222  * life-time rules separate them. That is an exiting task cannot fork, and a
1223  * spawning task cannot (yet) exit.
1224  *
1225  * But remember that that these are parent<->child context relations, and
1226  * migration does not affect children, therefore these two orderings should not
1227  * interact.
1228  *
1229  * The change in perf_event::ctx does not affect children (as claimed above)
1230  * because the sys_perf_event_open() case will install a new event and break
1231  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1232  * concerned with cpuctx and that doesn't have children.
1233  *
1234  * The places that change perf_event::ctx will issue:
1235  *
1236  *   perf_remove_from_context();
1237  *   synchronize_rcu();
1238  *   perf_install_in_context();
1239  *
1240  * to affect the change. The remove_from_context() + synchronize_rcu() should
1241  * quiesce the event, after which we can install it in the new location. This
1242  * means that only external vectors (perf_fops, prctl) can perturb the event
1243  * while in transit. Therefore all such accessors should also acquire
1244  * perf_event_context::mutex to serialize against this.
1245  *
1246  * However; because event->ctx can change while we're waiting to acquire
1247  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1248  * function.
1249  *
1250  * Lock order:
1251  *    cred_guard_mutex
1252  *	task_struct::perf_event_mutex
1253  *	  perf_event_context::mutex
1254  *	    perf_event::child_mutex;
1255  *	      perf_event_context::lock
1256  *	    perf_event::mmap_mutex
1257  *	    mmap_sem
1258  *	      perf_addr_filters_head::lock
1259  *
1260  *    cpu_hotplug_lock
1261  *      pmus_lock
1262  *	  cpuctx->mutex / perf_event_context::mutex
1263  */
1264 static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event * event,int nesting)1265 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1266 {
1267 	struct perf_event_context *ctx;
1268 
1269 again:
1270 	rcu_read_lock();
1271 	ctx = READ_ONCE(event->ctx);
1272 	if (!refcount_inc_not_zero(&ctx->refcount)) {
1273 		rcu_read_unlock();
1274 		goto again;
1275 	}
1276 	rcu_read_unlock();
1277 
1278 	mutex_lock_nested(&ctx->mutex, nesting);
1279 	if (event->ctx != ctx) {
1280 		mutex_unlock(&ctx->mutex);
1281 		put_ctx(ctx);
1282 		goto again;
1283 	}
1284 
1285 	return ctx;
1286 }
1287 
1288 static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event * event)1289 perf_event_ctx_lock(struct perf_event *event)
1290 {
1291 	return perf_event_ctx_lock_nested(event, 0);
1292 }
1293 
perf_event_ctx_unlock(struct perf_event * event,struct perf_event_context * ctx)1294 static void perf_event_ctx_unlock(struct perf_event *event,
1295 				  struct perf_event_context *ctx)
1296 {
1297 	mutex_unlock(&ctx->mutex);
1298 	put_ctx(ctx);
1299 }
1300 
1301 /*
1302  * This must be done under the ctx->lock, such as to serialize against
1303  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1304  * calling scheduler related locks and ctx->lock nests inside those.
1305  */
1306 static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context * ctx)1307 unclone_ctx(struct perf_event_context *ctx)
1308 {
1309 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1310 
1311 	lockdep_assert_held(&ctx->lock);
1312 
1313 	if (parent_ctx)
1314 		ctx->parent_ctx = NULL;
1315 	ctx->generation++;
1316 
1317 	return parent_ctx;
1318 }
1319 
perf_event_pid_type(struct perf_event * event,struct task_struct * p,enum pid_type type)1320 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1321 				enum pid_type type)
1322 {
1323 	u32 nr;
1324 	/*
1325 	 * only top level events have the pid namespace they were created in
1326 	 */
1327 	if (event->parent)
1328 		event = event->parent;
1329 
1330 	nr = __task_pid_nr_ns(p, type, event->ns);
1331 	/* avoid -1 if it is idle thread or runs in another ns */
1332 	if (!nr && !pid_alive(p))
1333 		nr = -1;
1334 	return nr;
1335 }
1336 
perf_event_pid(struct perf_event * event,struct task_struct * p)1337 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1338 {
1339 	return perf_event_pid_type(event, p, PIDTYPE_TGID);
1340 }
1341 
perf_event_tid(struct perf_event * event,struct task_struct * p)1342 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1343 {
1344 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1345 }
1346 
1347 /*
1348  * If we inherit events we want to return the parent event id
1349  * to userspace.
1350  */
primary_event_id(struct perf_event * event)1351 static u64 primary_event_id(struct perf_event *event)
1352 {
1353 	u64 id = event->id;
1354 
1355 	if (event->parent)
1356 		id = event->parent->id;
1357 
1358 	return id;
1359 }
1360 
1361 /*
1362  * Get the perf_event_context for a task and lock it.
1363  *
1364  * This has to cope with with the fact that until it is locked,
1365  * the context could get moved to another task.
1366  */
1367 static struct perf_event_context *
perf_lock_task_context(struct task_struct * task,int ctxn,unsigned long * flags)1368 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1369 {
1370 	struct perf_event_context *ctx;
1371 
1372 retry:
1373 	/*
1374 	 * One of the few rules of preemptible RCU is that one cannot do
1375 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1376 	 * part of the read side critical section was irqs-enabled -- see
1377 	 * rcu_read_unlock_special().
1378 	 *
1379 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1380 	 * side critical section has interrupts disabled.
1381 	 */
1382 	local_irq_save(*flags);
1383 	rcu_read_lock();
1384 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1385 	if (ctx) {
1386 		/*
1387 		 * If this context is a clone of another, it might
1388 		 * get swapped for another underneath us by
1389 		 * perf_event_task_sched_out, though the
1390 		 * rcu_read_lock() protects us from any context
1391 		 * getting freed.  Lock the context and check if it
1392 		 * got swapped before we could get the lock, and retry
1393 		 * if so.  If we locked the right context, then it
1394 		 * can't get swapped on us any more.
1395 		 */
1396 		raw_spin_lock(&ctx->lock);
1397 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1398 			raw_spin_unlock(&ctx->lock);
1399 			rcu_read_unlock();
1400 			local_irq_restore(*flags);
1401 			goto retry;
1402 		}
1403 
1404 		if (ctx->task == TASK_TOMBSTONE ||
1405 		    !refcount_inc_not_zero(&ctx->refcount)) {
1406 			raw_spin_unlock(&ctx->lock);
1407 			ctx = NULL;
1408 		} else {
1409 			WARN_ON_ONCE(ctx->task != task);
1410 		}
1411 	}
1412 	rcu_read_unlock();
1413 	if (!ctx)
1414 		local_irq_restore(*flags);
1415 	return ctx;
1416 }
1417 
1418 /*
1419  * Get the context for a task and increment its pin_count so it
1420  * can't get swapped to another task.  This also increments its
1421  * reference count so that the context can't get freed.
1422  */
1423 static struct perf_event_context *
perf_pin_task_context(struct task_struct * task,int ctxn)1424 perf_pin_task_context(struct task_struct *task, int ctxn)
1425 {
1426 	struct perf_event_context *ctx;
1427 	unsigned long flags;
1428 
1429 	ctx = perf_lock_task_context(task, ctxn, &flags);
1430 	if (ctx) {
1431 		++ctx->pin_count;
1432 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1433 	}
1434 	return ctx;
1435 }
1436 
perf_unpin_context(struct perf_event_context * ctx)1437 static void perf_unpin_context(struct perf_event_context *ctx)
1438 {
1439 	unsigned long flags;
1440 
1441 	raw_spin_lock_irqsave(&ctx->lock, flags);
1442 	--ctx->pin_count;
1443 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1444 }
1445 
1446 /*
1447  * Update the record of the current time in a context.
1448  */
update_context_time(struct perf_event_context * ctx)1449 static void update_context_time(struct perf_event_context *ctx)
1450 {
1451 	u64 now = perf_clock();
1452 
1453 	ctx->time += now - ctx->timestamp;
1454 	ctx->timestamp = now;
1455 }
1456 
perf_event_time(struct perf_event * event)1457 static u64 perf_event_time(struct perf_event *event)
1458 {
1459 	struct perf_event_context *ctx = event->ctx;
1460 
1461 	if (is_cgroup_event(event))
1462 		return perf_cgroup_event_time(event);
1463 
1464 	return ctx ? ctx->time : 0;
1465 }
1466 
get_event_type(struct perf_event * event)1467 static enum event_type_t get_event_type(struct perf_event *event)
1468 {
1469 	struct perf_event_context *ctx = event->ctx;
1470 	enum event_type_t event_type;
1471 
1472 	lockdep_assert_held(&ctx->lock);
1473 
1474 	/*
1475 	 * It's 'group type', really, because if our group leader is
1476 	 * pinned, so are we.
1477 	 */
1478 	if (event->group_leader != event)
1479 		event = event->group_leader;
1480 
1481 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1482 	if (!ctx->task)
1483 		event_type |= EVENT_CPU;
1484 
1485 	return event_type;
1486 }
1487 
1488 /*
1489  * Helper function to initialize event group nodes.
1490  */
init_event_group(struct perf_event * event)1491 static void init_event_group(struct perf_event *event)
1492 {
1493 	RB_CLEAR_NODE(&event->group_node);
1494 	event->group_index = 0;
1495 }
1496 
1497 /*
1498  * Extract pinned or flexible groups from the context
1499  * based on event attrs bits.
1500  */
1501 static struct perf_event_groups *
get_event_groups(struct perf_event * event,struct perf_event_context * ctx)1502 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1503 {
1504 	if (event->attr.pinned)
1505 		return &ctx->pinned_groups;
1506 	else
1507 		return &ctx->flexible_groups;
1508 }
1509 
1510 /*
1511  * Helper function to initializes perf_event_group trees.
1512  */
perf_event_groups_init(struct perf_event_groups * groups)1513 static void perf_event_groups_init(struct perf_event_groups *groups)
1514 {
1515 	groups->tree = RB_ROOT;
1516 	groups->index = 0;
1517 }
1518 
1519 /*
1520  * Compare function for event groups;
1521  *
1522  * Implements complex key that first sorts by CPU and then by virtual index
1523  * which provides ordering when rotating groups for the same CPU.
1524  */
1525 static bool
perf_event_groups_less(struct perf_event * left,struct perf_event * right)1526 perf_event_groups_less(struct perf_event *left, struct perf_event *right)
1527 {
1528 	if (left->cpu < right->cpu)
1529 		return true;
1530 	if (left->cpu > right->cpu)
1531 		return false;
1532 
1533 	if (left->group_index < right->group_index)
1534 		return true;
1535 	if (left->group_index > right->group_index)
1536 		return false;
1537 
1538 	return false;
1539 }
1540 
1541 /*
1542  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1543  * key (see perf_event_groups_less). This places it last inside the CPU
1544  * subtree.
1545  */
1546 static void
perf_event_groups_insert(struct perf_event_groups * groups,struct perf_event * event)1547 perf_event_groups_insert(struct perf_event_groups *groups,
1548 			 struct perf_event *event)
1549 {
1550 	struct perf_event *node_event;
1551 	struct rb_node *parent;
1552 	struct rb_node **node;
1553 
1554 	event->group_index = ++groups->index;
1555 
1556 	node = &groups->tree.rb_node;
1557 	parent = *node;
1558 
1559 	while (*node) {
1560 		parent = *node;
1561 		node_event = container_of(*node, struct perf_event, group_node);
1562 
1563 		if (perf_event_groups_less(event, node_event))
1564 			node = &parent->rb_left;
1565 		else
1566 			node = &parent->rb_right;
1567 	}
1568 
1569 	rb_link_node(&event->group_node, parent, node);
1570 	rb_insert_color(&event->group_node, &groups->tree);
1571 }
1572 
1573 /*
1574  * Helper function to insert event into the pinned or flexible groups.
1575  */
1576 static void
add_event_to_groups(struct perf_event * event,struct perf_event_context * ctx)1577 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1578 {
1579 	struct perf_event_groups *groups;
1580 
1581 	groups = get_event_groups(event, ctx);
1582 	perf_event_groups_insert(groups, event);
1583 }
1584 
1585 /*
1586  * Delete a group from a tree.
1587  */
1588 static void
perf_event_groups_delete(struct perf_event_groups * groups,struct perf_event * event)1589 perf_event_groups_delete(struct perf_event_groups *groups,
1590 			 struct perf_event *event)
1591 {
1592 	WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1593 		     RB_EMPTY_ROOT(&groups->tree));
1594 
1595 	rb_erase(&event->group_node, &groups->tree);
1596 	init_event_group(event);
1597 }
1598 
1599 /*
1600  * Helper function to delete event from its groups.
1601  */
1602 static void
del_event_from_groups(struct perf_event * event,struct perf_event_context * ctx)1603 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1604 {
1605 	struct perf_event_groups *groups;
1606 
1607 	groups = get_event_groups(event, ctx);
1608 	perf_event_groups_delete(groups, event);
1609 }
1610 
1611 /*
1612  * Get the leftmost event in the @cpu subtree.
1613  */
1614 static struct perf_event *
perf_event_groups_first(struct perf_event_groups * groups,int cpu)1615 perf_event_groups_first(struct perf_event_groups *groups, int cpu)
1616 {
1617 	struct perf_event *node_event = NULL, *match = NULL;
1618 	struct rb_node *node = groups->tree.rb_node;
1619 
1620 	while (node) {
1621 		node_event = container_of(node, struct perf_event, group_node);
1622 
1623 		if (cpu < node_event->cpu) {
1624 			node = node->rb_left;
1625 		} else if (cpu > node_event->cpu) {
1626 			node = node->rb_right;
1627 		} else {
1628 			match = node_event;
1629 			node = node->rb_left;
1630 		}
1631 	}
1632 
1633 	return match;
1634 }
1635 
1636 /*
1637  * Like rb_entry_next_safe() for the @cpu subtree.
1638  */
1639 static struct perf_event *
perf_event_groups_next(struct perf_event * event)1640 perf_event_groups_next(struct perf_event *event)
1641 {
1642 	struct perf_event *next;
1643 
1644 	next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1645 	if (next && next->cpu == event->cpu)
1646 		return next;
1647 
1648 	return NULL;
1649 }
1650 
1651 /*
1652  * Iterate through the whole groups tree.
1653  */
1654 #define perf_event_groups_for_each(event, groups)			\
1655 	for (event = rb_entry_safe(rb_first(&((groups)->tree)),		\
1656 				typeof(*event), group_node); event;	\
1657 		event = rb_entry_safe(rb_next(&event->group_node),	\
1658 				typeof(*event), group_node))
1659 
1660 /*
1661  * Add an event from the lists for its context.
1662  * Must be called with ctx->mutex and ctx->lock held.
1663  */
1664 static void
list_add_event(struct perf_event * event,struct perf_event_context * ctx)1665 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1666 {
1667 	lockdep_assert_held(&ctx->lock);
1668 
1669 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1670 	event->attach_state |= PERF_ATTACH_CONTEXT;
1671 
1672 	event->tstamp = perf_event_time(event);
1673 
1674 	/*
1675 	 * If we're a stand alone event or group leader, we go to the context
1676 	 * list, group events are kept attached to the group so that
1677 	 * perf_group_detach can, at all times, locate all siblings.
1678 	 */
1679 	if (event->group_leader == event) {
1680 		event->group_caps = event->event_caps;
1681 		add_event_to_groups(event, ctx);
1682 	}
1683 
1684 	list_update_cgroup_event(event, ctx, true);
1685 
1686 	list_add_rcu(&event->event_entry, &ctx->event_list);
1687 	ctx->nr_events++;
1688 	if (event->attr.inherit_stat)
1689 		ctx->nr_stat++;
1690 
1691 	ctx->generation++;
1692 }
1693 
1694 /*
1695  * Initialize event state based on the perf_event_attr::disabled.
1696  */
perf_event__state_init(struct perf_event * event)1697 static inline void perf_event__state_init(struct perf_event *event)
1698 {
1699 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1700 					      PERF_EVENT_STATE_INACTIVE;
1701 }
1702 
__perf_event_read_size(struct perf_event * event,int nr_siblings)1703 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1704 {
1705 	int entry = sizeof(u64); /* value */
1706 	int size = 0;
1707 	int nr = 1;
1708 
1709 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1710 		size += sizeof(u64);
1711 
1712 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1713 		size += sizeof(u64);
1714 
1715 	if (event->attr.read_format & PERF_FORMAT_ID)
1716 		entry += sizeof(u64);
1717 
1718 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1719 		nr += nr_siblings;
1720 		size += sizeof(u64);
1721 	}
1722 
1723 	size += entry * nr;
1724 	event->read_size = size;
1725 }
1726 
__perf_event_header_size(struct perf_event * event,u64 sample_type)1727 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1728 {
1729 	struct perf_sample_data *data;
1730 	u16 size = 0;
1731 
1732 	if (sample_type & PERF_SAMPLE_IP)
1733 		size += sizeof(data->ip);
1734 
1735 	if (sample_type & PERF_SAMPLE_ADDR)
1736 		size += sizeof(data->addr);
1737 
1738 	if (sample_type & PERF_SAMPLE_PERIOD)
1739 		size += sizeof(data->period);
1740 
1741 	if (sample_type & PERF_SAMPLE_WEIGHT)
1742 		size += sizeof(data->weight);
1743 
1744 	if (sample_type & PERF_SAMPLE_READ)
1745 		size += event->read_size;
1746 
1747 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1748 		size += sizeof(data->data_src.val);
1749 
1750 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1751 		size += sizeof(data->txn);
1752 
1753 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1754 		size += sizeof(data->phys_addr);
1755 
1756 	event->header_size = size;
1757 }
1758 
1759 /*
1760  * Called at perf_event creation and when events are attached/detached from a
1761  * group.
1762  */
perf_event__header_size(struct perf_event * event)1763 static void perf_event__header_size(struct perf_event *event)
1764 {
1765 	__perf_event_read_size(event,
1766 			       event->group_leader->nr_siblings);
1767 	__perf_event_header_size(event, event->attr.sample_type);
1768 }
1769 
perf_event__id_header_size(struct perf_event * event)1770 static void perf_event__id_header_size(struct perf_event *event)
1771 {
1772 	struct perf_sample_data *data;
1773 	u64 sample_type = event->attr.sample_type;
1774 	u16 size = 0;
1775 
1776 	if (sample_type & PERF_SAMPLE_TID)
1777 		size += sizeof(data->tid_entry);
1778 
1779 	if (sample_type & PERF_SAMPLE_TIME)
1780 		size += sizeof(data->time);
1781 
1782 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1783 		size += sizeof(data->id);
1784 
1785 	if (sample_type & PERF_SAMPLE_ID)
1786 		size += sizeof(data->id);
1787 
1788 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1789 		size += sizeof(data->stream_id);
1790 
1791 	if (sample_type & PERF_SAMPLE_CPU)
1792 		size += sizeof(data->cpu_entry);
1793 
1794 	event->id_header_size = size;
1795 }
1796 
perf_event_validate_size(struct perf_event * event)1797 static bool perf_event_validate_size(struct perf_event *event)
1798 {
1799 	/*
1800 	 * The values computed here will be over-written when we actually
1801 	 * attach the event.
1802 	 */
1803 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1804 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1805 	perf_event__id_header_size(event);
1806 
1807 	/*
1808 	 * Sum the lot; should not exceed the 64k limit we have on records.
1809 	 * Conservative limit to allow for callchains and other variable fields.
1810 	 */
1811 	if (event->read_size + event->header_size +
1812 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1813 		return false;
1814 
1815 	return true;
1816 }
1817 
perf_group_attach(struct perf_event * event)1818 static void perf_group_attach(struct perf_event *event)
1819 {
1820 	struct perf_event *group_leader = event->group_leader, *pos;
1821 
1822 	lockdep_assert_held(&event->ctx->lock);
1823 
1824 	/*
1825 	 * We can have double attach due to group movement in perf_event_open.
1826 	 */
1827 	if (event->attach_state & PERF_ATTACH_GROUP)
1828 		return;
1829 
1830 	event->attach_state |= PERF_ATTACH_GROUP;
1831 
1832 	if (group_leader == event)
1833 		return;
1834 
1835 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1836 
1837 	group_leader->group_caps &= event->event_caps;
1838 
1839 	list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1840 	group_leader->nr_siblings++;
1841 
1842 	perf_event__header_size(group_leader);
1843 
1844 	for_each_sibling_event(pos, group_leader)
1845 		perf_event__header_size(pos);
1846 }
1847 
1848 /*
1849  * Remove an event from the lists for its context.
1850  * Must be called with ctx->mutex and ctx->lock held.
1851  */
1852 static void
list_del_event(struct perf_event * event,struct perf_event_context * ctx)1853 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1854 {
1855 	WARN_ON_ONCE(event->ctx != ctx);
1856 	lockdep_assert_held(&ctx->lock);
1857 
1858 	/*
1859 	 * We can have double detach due to exit/hot-unplug + close.
1860 	 */
1861 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1862 		return;
1863 
1864 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1865 
1866 	list_update_cgroup_event(event, ctx, false);
1867 
1868 	ctx->nr_events--;
1869 	if (event->attr.inherit_stat)
1870 		ctx->nr_stat--;
1871 
1872 	list_del_rcu(&event->event_entry);
1873 
1874 	if (event->group_leader == event)
1875 		del_event_from_groups(event, ctx);
1876 
1877 	/*
1878 	 * If event was in error state, then keep it
1879 	 * that way, otherwise bogus counts will be
1880 	 * returned on read(). The only way to get out
1881 	 * of error state is by explicit re-enabling
1882 	 * of the event
1883 	 */
1884 	if (event->state > PERF_EVENT_STATE_OFF)
1885 		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1886 
1887 	ctx->generation++;
1888 }
1889 
1890 static int
perf_aux_output_match(struct perf_event * event,struct perf_event * aux_event)1891 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
1892 {
1893 	if (!has_aux(aux_event))
1894 		return 0;
1895 
1896 	if (!event->pmu->aux_output_match)
1897 		return 0;
1898 
1899 	return event->pmu->aux_output_match(aux_event);
1900 }
1901 
1902 static void put_event(struct perf_event *event);
1903 static void event_sched_out(struct perf_event *event,
1904 			    struct perf_cpu_context *cpuctx,
1905 			    struct perf_event_context *ctx);
1906 
perf_put_aux_event(struct perf_event * event)1907 static void perf_put_aux_event(struct perf_event *event)
1908 {
1909 	struct perf_event_context *ctx = event->ctx;
1910 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1911 	struct perf_event *iter;
1912 
1913 	/*
1914 	 * If event uses aux_event tear down the link
1915 	 */
1916 	if (event->aux_event) {
1917 		iter = event->aux_event;
1918 		event->aux_event = NULL;
1919 		put_event(iter);
1920 		return;
1921 	}
1922 
1923 	/*
1924 	 * If the event is an aux_event, tear down all links to
1925 	 * it from other events.
1926 	 */
1927 	for_each_sibling_event(iter, event->group_leader) {
1928 		if (iter->aux_event != event)
1929 			continue;
1930 
1931 		iter->aux_event = NULL;
1932 		put_event(event);
1933 
1934 		/*
1935 		 * If it's ACTIVE, schedule it out and put it into ERROR
1936 		 * state so that we don't try to schedule it again. Note
1937 		 * that perf_event_enable() will clear the ERROR status.
1938 		 */
1939 		event_sched_out(iter, cpuctx, ctx);
1940 		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
1941 	}
1942 }
1943 
perf_get_aux_event(struct perf_event * event,struct perf_event * group_leader)1944 static int perf_get_aux_event(struct perf_event *event,
1945 			      struct perf_event *group_leader)
1946 {
1947 	/*
1948 	 * Our group leader must be an aux event if we want to be
1949 	 * an aux_output. This way, the aux event will precede its
1950 	 * aux_output events in the group, and therefore will always
1951 	 * schedule first.
1952 	 */
1953 	if (!group_leader)
1954 		return 0;
1955 
1956 	if (!perf_aux_output_match(event, group_leader))
1957 		return 0;
1958 
1959 	if (!atomic_long_inc_not_zero(&group_leader->refcount))
1960 		return 0;
1961 
1962 	/*
1963 	 * Link aux_outputs to their aux event; this is undone in
1964 	 * perf_group_detach() by perf_put_aux_event(). When the
1965 	 * group in torn down, the aux_output events loose their
1966 	 * link to the aux_event and can't schedule any more.
1967 	 */
1968 	event->aux_event = group_leader;
1969 
1970 	return 1;
1971 }
1972 
perf_group_detach(struct perf_event * event)1973 static void perf_group_detach(struct perf_event *event)
1974 {
1975 	struct perf_event *sibling, *tmp;
1976 	struct perf_event_context *ctx = event->ctx;
1977 
1978 	lockdep_assert_held(&ctx->lock);
1979 
1980 	/*
1981 	 * We can have double detach due to exit/hot-unplug + close.
1982 	 */
1983 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1984 		return;
1985 
1986 	event->attach_state &= ~PERF_ATTACH_GROUP;
1987 
1988 	perf_put_aux_event(event);
1989 
1990 	/*
1991 	 * If this is a sibling, remove it from its group.
1992 	 */
1993 	if (event->group_leader != event) {
1994 		list_del_init(&event->sibling_list);
1995 		event->group_leader->nr_siblings--;
1996 		goto out;
1997 	}
1998 
1999 	/*
2000 	 * If this was a group event with sibling events then
2001 	 * upgrade the siblings to singleton events by adding them
2002 	 * to whatever list we are on.
2003 	 */
2004 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2005 
2006 		sibling->group_leader = sibling;
2007 		list_del_init(&sibling->sibling_list);
2008 
2009 		/* Inherit group flags from the previous leader */
2010 		sibling->group_caps = event->group_caps;
2011 
2012 		if (!RB_EMPTY_NODE(&event->group_node)) {
2013 			add_event_to_groups(sibling, event->ctx);
2014 
2015 			if (sibling->state == PERF_EVENT_STATE_ACTIVE) {
2016 				struct list_head *list = sibling->attr.pinned ?
2017 					&ctx->pinned_active : &ctx->flexible_active;
2018 
2019 				list_add_tail(&sibling->active_list, list);
2020 			}
2021 		}
2022 
2023 		WARN_ON_ONCE(sibling->ctx != event->ctx);
2024 	}
2025 
2026 out:
2027 	perf_event__header_size(event->group_leader);
2028 
2029 	for_each_sibling_event(tmp, event->group_leader)
2030 		perf_event__header_size(tmp);
2031 }
2032 
is_orphaned_event(struct perf_event * event)2033 static bool is_orphaned_event(struct perf_event *event)
2034 {
2035 	return event->state == PERF_EVENT_STATE_DEAD;
2036 }
2037 
__pmu_filter_match(struct perf_event * event)2038 static inline int __pmu_filter_match(struct perf_event *event)
2039 {
2040 	struct pmu *pmu = event->pmu;
2041 	return pmu->filter_match ? pmu->filter_match(event) : 1;
2042 }
2043 
2044 /*
2045  * Check whether we should attempt to schedule an event group based on
2046  * PMU-specific filtering. An event group can consist of HW and SW events,
2047  * potentially with a SW leader, so we must check all the filters, to
2048  * determine whether a group is schedulable:
2049  */
pmu_filter_match(struct perf_event * event)2050 static inline int pmu_filter_match(struct perf_event *event)
2051 {
2052 	struct perf_event *sibling;
2053 
2054 	if (!__pmu_filter_match(event))
2055 		return 0;
2056 
2057 	for_each_sibling_event(sibling, event) {
2058 		if (!__pmu_filter_match(sibling))
2059 			return 0;
2060 	}
2061 
2062 	return 1;
2063 }
2064 
2065 static inline int
event_filter_match(struct perf_event * event)2066 event_filter_match(struct perf_event *event)
2067 {
2068 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2069 	       perf_cgroup_match(event) && pmu_filter_match(event);
2070 }
2071 
2072 static void
event_sched_out(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)2073 event_sched_out(struct perf_event *event,
2074 		  struct perf_cpu_context *cpuctx,
2075 		  struct perf_event_context *ctx)
2076 {
2077 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2078 
2079 	WARN_ON_ONCE(event->ctx != ctx);
2080 	lockdep_assert_held(&ctx->lock);
2081 
2082 	if (event->state != PERF_EVENT_STATE_ACTIVE)
2083 		return;
2084 
2085 	/*
2086 	 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2087 	 * we can schedule events _OUT_ individually through things like
2088 	 * __perf_remove_from_context().
2089 	 */
2090 	list_del_init(&event->active_list);
2091 
2092 	perf_pmu_disable(event->pmu);
2093 
2094 	event->pmu->del(event, 0);
2095 	event->oncpu = -1;
2096 
2097 	if (READ_ONCE(event->pending_disable) >= 0) {
2098 		WRITE_ONCE(event->pending_disable, -1);
2099 		state = PERF_EVENT_STATE_OFF;
2100 	}
2101 	perf_event_set_state(event, state);
2102 
2103 	if (!is_software_event(event))
2104 		cpuctx->active_oncpu--;
2105 	if (!--ctx->nr_active)
2106 		perf_event_ctx_deactivate(ctx);
2107 	if (event->attr.freq && event->attr.sample_freq)
2108 		ctx->nr_freq--;
2109 	if (event->attr.exclusive || !cpuctx->active_oncpu)
2110 		cpuctx->exclusive = 0;
2111 
2112 	perf_pmu_enable(event->pmu);
2113 }
2114 
2115 static void
group_sched_out(struct perf_event * group_event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)2116 group_sched_out(struct perf_event *group_event,
2117 		struct perf_cpu_context *cpuctx,
2118 		struct perf_event_context *ctx)
2119 {
2120 	struct perf_event *event;
2121 
2122 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2123 		return;
2124 
2125 	perf_pmu_disable(ctx->pmu);
2126 
2127 	event_sched_out(group_event, cpuctx, ctx);
2128 
2129 	/*
2130 	 * Schedule out siblings (if any):
2131 	 */
2132 	for_each_sibling_event(event, group_event)
2133 		event_sched_out(event, cpuctx, ctx);
2134 
2135 	perf_pmu_enable(ctx->pmu);
2136 
2137 	if (group_event->attr.exclusive)
2138 		cpuctx->exclusive = 0;
2139 }
2140 
2141 #define DETACH_GROUP	0x01UL
2142 
2143 /*
2144  * Cross CPU call to remove a performance event
2145  *
2146  * We disable the event on the hardware level first. After that we
2147  * remove it from the context list.
2148  */
2149 static void
__perf_remove_from_context(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)2150 __perf_remove_from_context(struct perf_event *event,
2151 			   struct perf_cpu_context *cpuctx,
2152 			   struct perf_event_context *ctx,
2153 			   void *info)
2154 {
2155 	unsigned long flags = (unsigned long)info;
2156 
2157 	if (ctx->is_active & EVENT_TIME) {
2158 		update_context_time(ctx);
2159 		update_cgrp_time_from_cpuctx(cpuctx);
2160 	}
2161 
2162 	event_sched_out(event, cpuctx, ctx);
2163 	if (flags & DETACH_GROUP)
2164 		perf_group_detach(event);
2165 	list_del_event(event, ctx);
2166 
2167 	if (!ctx->nr_events && ctx->is_active) {
2168 		ctx->is_active = 0;
2169 		if (ctx->task) {
2170 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2171 			cpuctx->task_ctx = NULL;
2172 		}
2173 	}
2174 }
2175 
2176 /*
2177  * Remove the event from a task's (or a CPU's) list of events.
2178  *
2179  * If event->ctx is a cloned context, callers must make sure that
2180  * every task struct that event->ctx->task could possibly point to
2181  * remains valid.  This is OK when called from perf_release since
2182  * that only calls us on the top-level context, which can't be a clone.
2183  * When called from perf_event_exit_task, it's OK because the
2184  * context has been detached from its task.
2185  */
perf_remove_from_context(struct perf_event * event,unsigned long flags)2186 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2187 {
2188 	struct perf_event_context *ctx = event->ctx;
2189 
2190 	lockdep_assert_held(&ctx->mutex);
2191 
2192 	event_function_call(event, __perf_remove_from_context, (void *)flags);
2193 
2194 	/*
2195 	 * The above event_function_call() can NO-OP when it hits
2196 	 * TASK_TOMBSTONE. In that case we must already have been detached
2197 	 * from the context (by perf_event_exit_event()) but the grouping
2198 	 * might still be in-tact.
2199 	 */
2200 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2201 	if ((flags & DETACH_GROUP) &&
2202 	    (event->attach_state & PERF_ATTACH_GROUP)) {
2203 		/*
2204 		 * Since in that case we cannot possibly be scheduled, simply
2205 		 * detach now.
2206 		 */
2207 		raw_spin_lock_irq(&ctx->lock);
2208 		perf_group_detach(event);
2209 		raw_spin_unlock_irq(&ctx->lock);
2210 	}
2211 }
2212 
2213 /*
2214  * Cross CPU call to disable a performance event
2215  */
__perf_event_disable(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)2216 static void __perf_event_disable(struct perf_event *event,
2217 				 struct perf_cpu_context *cpuctx,
2218 				 struct perf_event_context *ctx,
2219 				 void *info)
2220 {
2221 	if (event->state < PERF_EVENT_STATE_INACTIVE)
2222 		return;
2223 
2224 	if (ctx->is_active & EVENT_TIME) {
2225 		update_context_time(ctx);
2226 		update_cgrp_time_from_event(event);
2227 	}
2228 
2229 	if (event == event->group_leader)
2230 		group_sched_out(event, cpuctx, ctx);
2231 	else
2232 		event_sched_out(event, cpuctx, ctx);
2233 
2234 	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2235 }
2236 
2237 /*
2238  * Disable an event.
2239  *
2240  * If event->ctx is a cloned context, callers must make sure that
2241  * every task struct that event->ctx->task could possibly point to
2242  * remains valid.  This condition is satisfied when called through
2243  * perf_event_for_each_child or perf_event_for_each because they
2244  * hold the top-level event's child_mutex, so any descendant that
2245  * goes to exit will block in perf_event_exit_event().
2246  *
2247  * When called from perf_pending_event it's OK because event->ctx
2248  * is the current context on this CPU and preemption is disabled,
2249  * hence we can't get into perf_event_task_sched_out for this context.
2250  */
_perf_event_disable(struct perf_event * event)2251 static void _perf_event_disable(struct perf_event *event)
2252 {
2253 	struct perf_event_context *ctx = event->ctx;
2254 
2255 	raw_spin_lock_irq(&ctx->lock);
2256 	if (event->state <= PERF_EVENT_STATE_OFF) {
2257 		raw_spin_unlock_irq(&ctx->lock);
2258 		return;
2259 	}
2260 	raw_spin_unlock_irq(&ctx->lock);
2261 
2262 	event_function_call(event, __perf_event_disable, NULL);
2263 }
2264 
perf_event_disable_local(struct perf_event * event)2265 void perf_event_disable_local(struct perf_event *event)
2266 {
2267 	event_function_local(event, __perf_event_disable, NULL);
2268 }
2269 
2270 /*
2271  * Strictly speaking kernel users cannot create groups and therefore this
2272  * interface does not need the perf_event_ctx_lock() magic.
2273  */
perf_event_disable(struct perf_event * event)2274 void perf_event_disable(struct perf_event *event)
2275 {
2276 	struct perf_event_context *ctx;
2277 
2278 	ctx = perf_event_ctx_lock(event);
2279 	_perf_event_disable(event);
2280 	perf_event_ctx_unlock(event, ctx);
2281 }
2282 EXPORT_SYMBOL_GPL(perf_event_disable);
2283 
perf_event_disable_inatomic(struct perf_event * event)2284 void perf_event_disable_inatomic(struct perf_event *event)
2285 {
2286 	WRITE_ONCE(event->pending_disable, smp_processor_id());
2287 	/* can fail, see perf_pending_event_disable() */
2288 	irq_work_queue(&event->pending);
2289 }
2290 
perf_set_shadow_time(struct perf_event * event,struct perf_event_context * ctx)2291 static void perf_set_shadow_time(struct perf_event *event,
2292 				 struct perf_event_context *ctx)
2293 {
2294 	/*
2295 	 * use the correct time source for the time snapshot
2296 	 *
2297 	 * We could get by without this by leveraging the
2298 	 * fact that to get to this function, the caller
2299 	 * has most likely already called update_context_time()
2300 	 * and update_cgrp_time_xx() and thus both timestamp
2301 	 * are identical (or very close). Given that tstamp is,
2302 	 * already adjusted for cgroup, we could say that:
2303 	 *    tstamp - ctx->timestamp
2304 	 * is equivalent to
2305 	 *    tstamp - cgrp->timestamp.
2306 	 *
2307 	 * Then, in perf_output_read(), the calculation would
2308 	 * work with no changes because:
2309 	 * - event is guaranteed scheduled in
2310 	 * - no scheduled out in between
2311 	 * - thus the timestamp would be the same
2312 	 *
2313 	 * But this is a bit hairy.
2314 	 *
2315 	 * So instead, we have an explicit cgroup call to remain
2316 	 * within the time time source all along. We believe it
2317 	 * is cleaner and simpler to understand.
2318 	 */
2319 	if (is_cgroup_event(event))
2320 		perf_cgroup_set_shadow_time(event, event->tstamp);
2321 	else
2322 		event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2323 }
2324 
2325 #define MAX_INTERRUPTS (~0ULL)
2326 
2327 static void perf_log_throttle(struct perf_event *event, int enable);
2328 static void perf_log_itrace_start(struct perf_event *event);
2329 
2330 static int
event_sched_in(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)2331 event_sched_in(struct perf_event *event,
2332 		 struct perf_cpu_context *cpuctx,
2333 		 struct perf_event_context *ctx)
2334 {
2335 	int ret = 0;
2336 
2337 	lockdep_assert_held(&ctx->lock);
2338 
2339 	if (event->state <= PERF_EVENT_STATE_OFF)
2340 		return 0;
2341 
2342 	WRITE_ONCE(event->oncpu, smp_processor_id());
2343 	/*
2344 	 * Order event::oncpu write to happen before the ACTIVE state is
2345 	 * visible. This allows perf_event_{stop,read}() to observe the correct
2346 	 * ->oncpu if it sees ACTIVE.
2347 	 */
2348 	smp_wmb();
2349 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2350 
2351 	/*
2352 	 * Unthrottle events, since we scheduled we might have missed several
2353 	 * ticks already, also for a heavily scheduling task there is little
2354 	 * guarantee it'll get a tick in a timely manner.
2355 	 */
2356 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2357 		perf_log_throttle(event, 1);
2358 		event->hw.interrupts = 0;
2359 	}
2360 
2361 	perf_pmu_disable(event->pmu);
2362 
2363 	perf_set_shadow_time(event, ctx);
2364 
2365 	perf_log_itrace_start(event);
2366 
2367 	if (event->pmu->add(event, PERF_EF_START)) {
2368 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2369 		event->oncpu = -1;
2370 		ret = -EAGAIN;
2371 		goto out;
2372 	}
2373 
2374 	if (!is_software_event(event))
2375 		cpuctx->active_oncpu++;
2376 	if (!ctx->nr_active++)
2377 		perf_event_ctx_activate(ctx);
2378 	if (event->attr.freq && event->attr.sample_freq)
2379 		ctx->nr_freq++;
2380 
2381 	if (event->attr.exclusive)
2382 		cpuctx->exclusive = 1;
2383 
2384 out:
2385 	perf_pmu_enable(event->pmu);
2386 
2387 	return ret;
2388 }
2389 
2390 static int
group_sched_in(struct perf_event * group_event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)2391 group_sched_in(struct perf_event *group_event,
2392 	       struct perf_cpu_context *cpuctx,
2393 	       struct perf_event_context *ctx)
2394 {
2395 	struct perf_event *event, *partial_group = NULL;
2396 	struct pmu *pmu = ctx->pmu;
2397 
2398 	if (group_event->state == PERF_EVENT_STATE_OFF)
2399 		return 0;
2400 
2401 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2402 
2403 	if (event_sched_in(group_event, cpuctx, ctx)) {
2404 		pmu->cancel_txn(pmu);
2405 		perf_mux_hrtimer_restart(cpuctx);
2406 		return -EAGAIN;
2407 	}
2408 
2409 	/*
2410 	 * Schedule in siblings as one group (if any):
2411 	 */
2412 	for_each_sibling_event(event, group_event) {
2413 		if (event_sched_in(event, cpuctx, ctx)) {
2414 			partial_group = event;
2415 			goto group_error;
2416 		}
2417 	}
2418 
2419 	if (!pmu->commit_txn(pmu))
2420 		return 0;
2421 
2422 group_error:
2423 	/*
2424 	 * Groups can be scheduled in as one unit only, so undo any
2425 	 * partial group before returning:
2426 	 * The events up to the failed event are scheduled out normally.
2427 	 */
2428 	for_each_sibling_event(event, group_event) {
2429 		if (event == partial_group)
2430 			break;
2431 
2432 		event_sched_out(event, cpuctx, ctx);
2433 	}
2434 	event_sched_out(group_event, cpuctx, ctx);
2435 
2436 	pmu->cancel_txn(pmu);
2437 
2438 	perf_mux_hrtimer_restart(cpuctx);
2439 
2440 	return -EAGAIN;
2441 }
2442 
2443 /*
2444  * Work out whether we can put this event group on the CPU now.
2445  */
group_can_go_on(struct perf_event * event,struct perf_cpu_context * cpuctx,int can_add_hw)2446 static int group_can_go_on(struct perf_event *event,
2447 			   struct perf_cpu_context *cpuctx,
2448 			   int can_add_hw)
2449 {
2450 	/*
2451 	 * Groups consisting entirely of software events can always go on.
2452 	 */
2453 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2454 		return 1;
2455 	/*
2456 	 * If an exclusive group is already on, no other hardware
2457 	 * events can go on.
2458 	 */
2459 	if (cpuctx->exclusive)
2460 		return 0;
2461 	/*
2462 	 * If this group is exclusive and there are already
2463 	 * events on the CPU, it can't go on.
2464 	 */
2465 	if (event->attr.exclusive && cpuctx->active_oncpu)
2466 		return 0;
2467 	/*
2468 	 * Otherwise, try to add it if all previous groups were able
2469 	 * to go on.
2470 	 */
2471 	return can_add_hw;
2472 }
2473 
add_event_to_ctx(struct perf_event * event,struct perf_event_context * ctx)2474 static void add_event_to_ctx(struct perf_event *event,
2475 			       struct perf_event_context *ctx)
2476 {
2477 	list_add_event(event, ctx);
2478 	perf_group_attach(event);
2479 }
2480 
2481 static void ctx_sched_out(struct perf_event_context *ctx,
2482 			  struct perf_cpu_context *cpuctx,
2483 			  enum event_type_t event_type);
2484 static void
2485 ctx_sched_in(struct perf_event_context *ctx,
2486 	     struct perf_cpu_context *cpuctx,
2487 	     enum event_type_t event_type,
2488 	     struct task_struct *task);
2489 
task_ctx_sched_out(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,enum event_type_t event_type)2490 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2491 			       struct perf_event_context *ctx,
2492 			       enum event_type_t event_type)
2493 {
2494 	if (!cpuctx->task_ctx)
2495 		return;
2496 
2497 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2498 		return;
2499 
2500 	ctx_sched_out(ctx, cpuctx, event_type);
2501 }
2502 
perf_event_sched_in(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,struct task_struct * task)2503 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2504 				struct perf_event_context *ctx,
2505 				struct task_struct *task)
2506 {
2507 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2508 	if (ctx)
2509 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2510 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2511 	if (ctx)
2512 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2513 }
2514 
2515 /*
2516  * We want to maintain the following priority of scheduling:
2517  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2518  *  - task pinned (EVENT_PINNED)
2519  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2520  *  - task flexible (EVENT_FLEXIBLE).
2521  *
2522  * In order to avoid unscheduling and scheduling back in everything every
2523  * time an event is added, only do it for the groups of equal priority and
2524  * below.
2525  *
2526  * This can be called after a batch operation on task events, in which case
2527  * event_type is a bit mask of the types of events involved. For CPU events,
2528  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2529  */
ctx_resched(struct perf_cpu_context * cpuctx,struct perf_event_context * task_ctx,enum event_type_t event_type)2530 static void ctx_resched(struct perf_cpu_context *cpuctx,
2531 			struct perf_event_context *task_ctx,
2532 			enum event_type_t event_type)
2533 {
2534 	enum event_type_t ctx_event_type;
2535 	bool cpu_event = !!(event_type & EVENT_CPU);
2536 
2537 	/*
2538 	 * If pinned groups are involved, flexible groups also need to be
2539 	 * scheduled out.
2540 	 */
2541 	if (event_type & EVENT_PINNED)
2542 		event_type |= EVENT_FLEXIBLE;
2543 
2544 	ctx_event_type = event_type & EVENT_ALL;
2545 
2546 	perf_pmu_disable(cpuctx->ctx.pmu);
2547 	if (task_ctx)
2548 		task_ctx_sched_out(cpuctx, task_ctx, event_type);
2549 
2550 	/*
2551 	 * Decide which cpu ctx groups to schedule out based on the types
2552 	 * of events that caused rescheduling:
2553 	 *  - EVENT_CPU: schedule out corresponding groups;
2554 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2555 	 *  - otherwise, do nothing more.
2556 	 */
2557 	if (cpu_event)
2558 		cpu_ctx_sched_out(cpuctx, ctx_event_type);
2559 	else if (ctx_event_type & EVENT_PINNED)
2560 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2561 
2562 	perf_event_sched_in(cpuctx, task_ctx, current);
2563 	perf_pmu_enable(cpuctx->ctx.pmu);
2564 }
2565 
perf_pmu_resched(struct pmu * pmu)2566 void perf_pmu_resched(struct pmu *pmu)
2567 {
2568 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2569 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2570 
2571 	perf_ctx_lock(cpuctx, task_ctx);
2572 	ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2573 	perf_ctx_unlock(cpuctx, task_ctx);
2574 }
2575 
2576 /*
2577  * Cross CPU call to install and enable a performance event
2578  *
2579  * Very similar to remote_function() + event_function() but cannot assume that
2580  * things like ctx->is_active and cpuctx->task_ctx are set.
2581  */
__perf_install_in_context(void * info)2582 static int  __perf_install_in_context(void *info)
2583 {
2584 	struct perf_event *event = info;
2585 	struct perf_event_context *ctx = event->ctx;
2586 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2587 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2588 	bool reprogram = true;
2589 	int ret = 0;
2590 
2591 	raw_spin_lock(&cpuctx->ctx.lock);
2592 	if (ctx->task) {
2593 		raw_spin_lock(&ctx->lock);
2594 		task_ctx = ctx;
2595 
2596 		reprogram = (ctx->task == current);
2597 
2598 		/*
2599 		 * If the task is running, it must be running on this CPU,
2600 		 * otherwise we cannot reprogram things.
2601 		 *
2602 		 * If its not running, we don't care, ctx->lock will
2603 		 * serialize against it becoming runnable.
2604 		 */
2605 		if (task_curr(ctx->task) && !reprogram) {
2606 			ret = -ESRCH;
2607 			goto unlock;
2608 		}
2609 
2610 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2611 	} else if (task_ctx) {
2612 		raw_spin_lock(&task_ctx->lock);
2613 	}
2614 
2615 #ifdef CONFIG_CGROUP_PERF
2616 	if (is_cgroup_event(event)) {
2617 		/*
2618 		 * If the current cgroup doesn't match the event's
2619 		 * cgroup, we should not try to schedule it.
2620 		 */
2621 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2622 		reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2623 					event->cgrp->css.cgroup);
2624 	}
2625 #endif
2626 
2627 	if (reprogram) {
2628 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2629 		add_event_to_ctx(event, ctx);
2630 		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2631 	} else {
2632 		add_event_to_ctx(event, ctx);
2633 	}
2634 
2635 unlock:
2636 	perf_ctx_unlock(cpuctx, task_ctx);
2637 
2638 	return ret;
2639 }
2640 
2641 static bool exclusive_event_installable(struct perf_event *event,
2642 					struct perf_event_context *ctx);
2643 
2644 /*
2645  * Attach a performance event to a context.
2646  *
2647  * Very similar to event_function_call, see comment there.
2648  */
2649 static void
perf_install_in_context(struct perf_event_context * ctx,struct perf_event * event,int cpu)2650 perf_install_in_context(struct perf_event_context *ctx,
2651 			struct perf_event *event,
2652 			int cpu)
2653 {
2654 	struct task_struct *task = READ_ONCE(ctx->task);
2655 
2656 	lockdep_assert_held(&ctx->mutex);
2657 
2658 	WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2659 
2660 	if (event->cpu != -1)
2661 		event->cpu = cpu;
2662 
2663 	/*
2664 	 * Ensures that if we can observe event->ctx, both the event and ctx
2665 	 * will be 'complete'. See perf_iterate_sb_cpu().
2666 	 */
2667 	smp_store_release(&event->ctx, ctx);
2668 
2669 	if (!task) {
2670 		cpu_function_call(cpu, __perf_install_in_context, event);
2671 		return;
2672 	}
2673 
2674 	/*
2675 	 * Should not happen, we validate the ctx is still alive before calling.
2676 	 */
2677 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2678 		return;
2679 
2680 	/*
2681 	 * Installing events is tricky because we cannot rely on ctx->is_active
2682 	 * to be set in case this is the nr_events 0 -> 1 transition.
2683 	 *
2684 	 * Instead we use task_curr(), which tells us if the task is running.
2685 	 * However, since we use task_curr() outside of rq::lock, we can race
2686 	 * against the actual state. This means the result can be wrong.
2687 	 *
2688 	 * If we get a false positive, we retry, this is harmless.
2689 	 *
2690 	 * If we get a false negative, things are complicated. If we are after
2691 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2692 	 * value must be correct. If we're before, it doesn't matter since
2693 	 * perf_event_context_sched_in() will program the counter.
2694 	 *
2695 	 * However, this hinges on the remote context switch having observed
2696 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2697 	 * ctx::lock in perf_event_context_sched_in().
2698 	 *
2699 	 * We do this by task_function_call(), if the IPI fails to hit the task
2700 	 * we know any future context switch of task must see the
2701 	 * perf_event_ctpx[] store.
2702 	 */
2703 
2704 	/*
2705 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2706 	 * task_cpu() load, such that if the IPI then does not find the task
2707 	 * running, a future context switch of that task must observe the
2708 	 * store.
2709 	 */
2710 	smp_mb();
2711 again:
2712 	if (!task_function_call(task, __perf_install_in_context, event))
2713 		return;
2714 
2715 	raw_spin_lock_irq(&ctx->lock);
2716 	task = ctx->task;
2717 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2718 		/*
2719 		 * Cannot happen because we already checked above (which also
2720 		 * cannot happen), and we hold ctx->mutex, which serializes us
2721 		 * against perf_event_exit_task_context().
2722 		 */
2723 		raw_spin_unlock_irq(&ctx->lock);
2724 		return;
2725 	}
2726 	/*
2727 	 * If the task is not running, ctx->lock will avoid it becoming so,
2728 	 * thus we can safely install the event.
2729 	 */
2730 	if (task_curr(task)) {
2731 		raw_spin_unlock_irq(&ctx->lock);
2732 		goto again;
2733 	}
2734 	add_event_to_ctx(event, ctx);
2735 	raw_spin_unlock_irq(&ctx->lock);
2736 }
2737 
2738 /*
2739  * Cross CPU call to enable a performance event
2740  */
__perf_event_enable(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)2741 static void __perf_event_enable(struct perf_event *event,
2742 				struct perf_cpu_context *cpuctx,
2743 				struct perf_event_context *ctx,
2744 				void *info)
2745 {
2746 	struct perf_event *leader = event->group_leader;
2747 	struct perf_event_context *task_ctx;
2748 
2749 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2750 	    event->state <= PERF_EVENT_STATE_ERROR)
2751 		return;
2752 
2753 	if (ctx->is_active)
2754 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2755 
2756 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2757 
2758 	if (!ctx->is_active)
2759 		return;
2760 
2761 	if (!event_filter_match(event)) {
2762 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2763 		return;
2764 	}
2765 
2766 	/*
2767 	 * If the event is in a group and isn't the group leader,
2768 	 * then don't put it on unless the group is on.
2769 	 */
2770 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2771 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2772 		return;
2773 	}
2774 
2775 	task_ctx = cpuctx->task_ctx;
2776 	if (ctx->task)
2777 		WARN_ON_ONCE(task_ctx != ctx);
2778 
2779 	ctx_resched(cpuctx, task_ctx, get_event_type(event));
2780 }
2781 
2782 /*
2783  * Enable an event.
2784  *
2785  * If event->ctx is a cloned context, callers must make sure that
2786  * every task struct that event->ctx->task could possibly point to
2787  * remains valid.  This condition is satisfied when called through
2788  * perf_event_for_each_child or perf_event_for_each as described
2789  * for perf_event_disable.
2790  */
_perf_event_enable(struct perf_event * event)2791 static void _perf_event_enable(struct perf_event *event)
2792 {
2793 	struct perf_event_context *ctx = event->ctx;
2794 
2795 	raw_spin_lock_irq(&ctx->lock);
2796 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2797 	    event->state <  PERF_EVENT_STATE_ERROR) {
2798 		raw_spin_unlock_irq(&ctx->lock);
2799 		return;
2800 	}
2801 
2802 	/*
2803 	 * If the event is in error state, clear that first.
2804 	 *
2805 	 * That way, if we see the event in error state below, we know that it
2806 	 * has gone back into error state, as distinct from the task having
2807 	 * been scheduled away before the cross-call arrived.
2808 	 */
2809 	if (event->state == PERF_EVENT_STATE_ERROR)
2810 		event->state = PERF_EVENT_STATE_OFF;
2811 	raw_spin_unlock_irq(&ctx->lock);
2812 
2813 	event_function_call(event, __perf_event_enable, NULL);
2814 }
2815 
2816 /*
2817  * See perf_event_disable();
2818  */
perf_event_enable(struct perf_event * event)2819 void perf_event_enable(struct perf_event *event)
2820 {
2821 	struct perf_event_context *ctx;
2822 
2823 	ctx = perf_event_ctx_lock(event);
2824 	_perf_event_enable(event);
2825 	perf_event_ctx_unlock(event, ctx);
2826 }
2827 EXPORT_SYMBOL_GPL(perf_event_enable);
2828 
2829 struct stop_event_data {
2830 	struct perf_event	*event;
2831 	unsigned int		restart;
2832 };
2833 
__perf_event_stop(void * info)2834 static int __perf_event_stop(void *info)
2835 {
2836 	struct stop_event_data *sd = info;
2837 	struct perf_event *event = sd->event;
2838 
2839 	/* if it's already INACTIVE, do nothing */
2840 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2841 		return 0;
2842 
2843 	/* matches smp_wmb() in event_sched_in() */
2844 	smp_rmb();
2845 
2846 	/*
2847 	 * There is a window with interrupts enabled before we get here,
2848 	 * so we need to check again lest we try to stop another CPU's event.
2849 	 */
2850 	if (READ_ONCE(event->oncpu) != smp_processor_id())
2851 		return -EAGAIN;
2852 
2853 	event->pmu->stop(event, PERF_EF_UPDATE);
2854 
2855 	/*
2856 	 * May race with the actual stop (through perf_pmu_output_stop()),
2857 	 * but it is only used for events with AUX ring buffer, and such
2858 	 * events will refuse to restart because of rb::aux_mmap_count==0,
2859 	 * see comments in perf_aux_output_begin().
2860 	 *
2861 	 * Since this is happening on an event-local CPU, no trace is lost
2862 	 * while restarting.
2863 	 */
2864 	if (sd->restart)
2865 		event->pmu->start(event, 0);
2866 
2867 	return 0;
2868 }
2869 
perf_event_stop(struct perf_event * event,int restart)2870 static int perf_event_stop(struct perf_event *event, int restart)
2871 {
2872 	struct stop_event_data sd = {
2873 		.event		= event,
2874 		.restart	= restart,
2875 	};
2876 	int ret = 0;
2877 
2878 	do {
2879 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2880 			return 0;
2881 
2882 		/* matches smp_wmb() in event_sched_in() */
2883 		smp_rmb();
2884 
2885 		/*
2886 		 * We only want to restart ACTIVE events, so if the event goes
2887 		 * inactive here (event->oncpu==-1), there's nothing more to do;
2888 		 * fall through with ret==-ENXIO.
2889 		 */
2890 		ret = cpu_function_call(READ_ONCE(event->oncpu),
2891 					__perf_event_stop, &sd);
2892 	} while (ret == -EAGAIN);
2893 
2894 	return ret;
2895 }
2896 
2897 /*
2898  * In order to contain the amount of racy and tricky in the address filter
2899  * configuration management, it is a two part process:
2900  *
2901  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2902  *      we update the addresses of corresponding vmas in
2903  *	event::addr_filter_ranges array and bump the event::addr_filters_gen;
2904  * (p2) when an event is scheduled in (pmu::add), it calls
2905  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2906  *      if the generation has changed since the previous call.
2907  *
2908  * If (p1) happens while the event is active, we restart it to force (p2).
2909  *
2910  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2911  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2912  *     ioctl;
2913  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2914  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2915  *     for reading;
2916  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2917  *     of exec.
2918  */
perf_event_addr_filters_sync(struct perf_event * event)2919 void perf_event_addr_filters_sync(struct perf_event *event)
2920 {
2921 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2922 
2923 	if (!has_addr_filter(event))
2924 		return;
2925 
2926 	raw_spin_lock(&ifh->lock);
2927 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2928 		event->pmu->addr_filters_sync(event);
2929 		event->hw.addr_filters_gen = event->addr_filters_gen;
2930 	}
2931 	raw_spin_unlock(&ifh->lock);
2932 }
2933 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2934 
_perf_event_refresh(struct perf_event * event,int refresh)2935 static int _perf_event_refresh(struct perf_event *event, int refresh)
2936 {
2937 	/*
2938 	 * not supported on inherited events
2939 	 */
2940 	if (event->attr.inherit || !is_sampling_event(event))
2941 		return -EINVAL;
2942 
2943 	atomic_add(refresh, &event->event_limit);
2944 	_perf_event_enable(event);
2945 
2946 	return 0;
2947 }
2948 
2949 /*
2950  * See perf_event_disable()
2951  */
perf_event_refresh(struct perf_event * event,int refresh)2952 int perf_event_refresh(struct perf_event *event, int refresh)
2953 {
2954 	struct perf_event_context *ctx;
2955 	int ret;
2956 
2957 	ctx = perf_event_ctx_lock(event);
2958 	ret = _perf_event_refresh(event, refresh);
2959 	perf_event_ctx_unlock(event, ctx);
2960 
2961 	return ret;
2962 }
2963 EXPORT_SYMBOL_GPL(perf_event_refresh);
2964 
perf_event_modify_breakpoint(struct perf_event * bp,struct perf_event_attr * attr)2965 static int perf_event_modify_breakpoint(struct perf_event *bp,
2966 					 struct perf_event_attr *attr)
2967 {
2968 	int err;
2969 
2970 	_perf_event_disable(bp);
2971 
2972 	err = modify_user_hw_breakpoint_check(bp, attr, true);
2973 
2974 	if (!bp->attr.disabled)
2975 		_perf_event_enable(bp);
2976 
2977 	return err;
2978 }
2979 
perf_event_modify_attr(struct perf_event * event,struct perf_event_attr * attr)2980 static int perf_event_modify_attr(struct perf_event *event,
2981 				  struct perf_event_attr *attr)
2982 {
2983 	if (event->attr.type != attr->type)
2984 		return -EINVAL;
2985 
2986 	switch (event->attr.type) {
2987 	case PERF_TYPE_BREAKPOINT:
2988 		return perf_event_modify_breakpoint(event, attr);
2989 	default:
2990 		/* Place holder for future additions. */
2991 		return -EOPNOTSUPP;
2992 	}
2993 }
2994 
ctx_sched_out(struct perf_event_context * ctx,struct perf_cpu_context * cpuctx,enum event_type_t event_type)2995 static void ctx_sched_out(struct perf_event_context *ctx,
2996 			  struct perf_cpu_context *cpuctx,
2997 			  enum event_type_t event_type)
2998 {
2999 	struct perf_event *event, *tmp;
3000 	int is_active = ctx->is_active;
3001 
3002 	lockdep_assert_held(&ctx->lock);
3003 
3004 	if (likely(!ctx->nr_events)) {
3005 		/*
3006 		 * See __perf_remove_from_context().
3007 		 */
3008 		WARN_ON_ONCE(ctx->is_active);
3009 		if (ctx->task)
3010 			WARN_ON_ONCE(cpuctx->task_ctx);
3011 		return;
3012 	}
3013 
3014 	ctx->is_active &= ~event_type;
3015 	if (!(ctx->is_active & EVENT_ALL))
3016 		ctx->is_active = 0;
3017 
3018 	if (ctx->task) {
3019 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3020 		if (!ctx->is_active)
3021 			cpuctx->task_ctx = NULL;
3022 	}
3023 
3024 	/*
3025 	 * Always update time if it was set; not only when it changes.
3026 	 * Otherwise we can 'forget' to update time for any but the last
3027 	 * context we sched out. For example:
3028 	 *
3029 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3030 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
3031 	 *
3032 	 * would only update time for the pinned events.
3033 	 */
3034 	if (is_active & EVENT_TIME) {
3035 		/* update (and stop) ctx time */
3036 		update_context_time(ctx);
3037 		update_cgrp_time_from_cpuctx(cpuctx);
3038 	}
3039 
3040 	is_active ^= ctx->is_active; /* changed bits */
3041 
3042 	if (!ctx->nr_active || !(is_active & EVENT_ALL))
3043 		return;
3044 
3045 	/*
3046 	 * If we had been multiplexing, no rotations are necessary, now no events
3047 	 * are active.
3048 	 */
3049 	ctx->rotate_necessary = 0;
3050 
3051 	perf_pmu_disable(ctx->pmu);
3052 	if (is_active & EVENT_PINNED) {
3053 		list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
3054 			group_sched_out(event, cpuctx, ctx);
3055 	}
3056 
3057 	if (is_active & EVENT_FLEXIBLE) {
3058 		list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
3059 			group_sched_out(event, cpuctx, ctx);
3060 	}
3061 	perf_pmu_enable(ctx->pmu);
3062 }
3063 
3064 /*
3065  * Test whether two contexts are equivalent, i.e. whether they have both been
3066  * cloned from the same version of the same context.
3067  *
3068  * Equivalence is measured using a generation number in the context that is
3069  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3070  * and list_del_event().
3071  */
context_equiv(struct perf_event_context * ctx1,struct perf_event_context * ctx2)3072 static int context_equiv(struct perf_event_context *ctx1,
3073 			 struct perf_event_context *ctx2)
3074 {
3075 	lockdep_assert_held(&ctx1->lock);
3076 	lockdep_assert_held(&ctx2->lock);
3077 
3078 	/* Pinning disables the swap optimization */
3079 	if (ctx1->pin_count || ctx2->pin_count)
3080 		return 0;
3081 
3082 	/* If ctx1 is the parent of ctx2 */
3083 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3084 		return 1;
3085 
3086 	/* If ctx2 is the parent of ctx1 */
3087 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3088 		return 1;
3089 
3090 	/*
3091 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
3092 	 * hierarchy, see perf_event_init_context().
3093 	 */
3094 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3095 			ctx1->parent_gen == ctx2->parent_gen)
3096 		return 1;
3097 
3098 	/* Unmatched */
3099 	return 0;
3100 }
3101 
__perf_event_sync_stat(struct perf_event * event,struct perf_event * next_event)3102 static void __perf_event_sync_stat(struct perf_event *event,
3103 				     struct perf_event *next_event)
3104 {
3105 	u64 value;
3106 
3107 	if (!event->attr.inherit_stat)
3108 		return;
3109 
3110 	/*
3111 	 * Update the event value, we cannot use perf_event_read()
3112 	 * because we're in the middle of a context switch and have IRQs
3113 	 * disabled, which upsets smp_call_function_single(), however
3114 	 * we know the event must be on the current CPU, therefore we
3115 	 * don't need to use it.
3116 	 */
3117 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3118 		event->pmu->read(event);
3119 
3120 	perf_event_update_time(event);
3121 
3122 	/*
3123 	 * In order to keep per-task stats reliable we need to flip the event
3124 	 * values when we flip the contexts.
3125 	 */
3126 	value = local64_read(&next_event->count);
3127 	value = local64_xchg(&event->count, value);
3128 	local64_set(&next_event->count, value);
3129 
3130 	swap(event->total_time_enabled, next_event->total_time_enabled);
3131 	swap(event->total_time_running, next_event->total_time_running);
3132 
3133 	/*
3134 	 * Since we swizzled the values, update the user visible data too.
3135 	 */
3136 	perf_event_update_userpage(event);
3137 	perf_event_update_userpage(next_event);
3138 }
3139 
perf_event_sync_stat(struct perf_event_context * ctx,struct perf_event_context * next_ctx)3140 static void perf_event_sync_stat(struct perf_event_context *ctx,
3141 				   struct perf_event_context *next_ctx)
3142 {
3143 	struct perf_event *event, *next_event;
3144 
3145 	if (!ctx->nr_stat)
3146 		return;
3147 
3148 	update_context_time(ctx);
3149 
3150 	event = list_first_entry(&ctx->event_list,
3151 				   struct perf_event, event_entry);
3152 
3153 	next_event = list_first_entry(&next_ctx->event_list,
3154 					struct perf_event, event_entry);
3155 
3156 	while (&event->event_entry != &ctx->event_list &&
3157 	       &next_event->event_entry != &next_ctx->event_list) {
3158 
3159 		__perf_event_sync_stat(event, next_event);
3160 
3161 		event = list_next_entry(event, event_entry);
3162 		next_event = list_next_entry(next_event, event_entry);
3163 	}
3164 }
3165 
perf_event_context_sched_out(struct task_struct * task,int ctxn,struct task_struct * next)3166 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3167 					 struct task_struct *next)
3168 {
3169 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3170 	struct perf_event_context *next_ctx;
3171 	struct perf_event_context *parent, *next_parent;
3172 	struct perf_cpu_context *cpuctx;
3173 	int do_switch = 1;
3174 
3175 	if (likely(!ctx))
3176 		return;
3177 
3178 	cpuctx = __get_cpu_context(ctx);
3179 	if (!cpuctx->task_ctx)
3180 		return;
3181 
3182 	rcu_read_lock();
3183 	next_ctx = next->perf_event_ctxp[ctxn];
3184 	if (!next_ctx)
3185 		goto unlock;
3186 
3187 	parent = rcu_dereference(ctx->parent_ctx);
3188 	next_parent = rcu_dereference(next_ctx->parent_ctx);
3189 
3190 	/* If neither context have a parent context; they cannot be clones. */
3191 	if (!parent && !next_parent)
3192 		goto unlock;
3193 
3194 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3195 		/*
3196 		 * Looks like the two contexts are clones, so we might be
3197 		 * able to optimize the context switch.  We lock both
3198 		 * contexts and check that they are clones under the
3199 		 * lock (including re-checking that neither has been
3200 		 * uncloned in the meantime).  It doesn't matter which
3201 		 * order we take the locks because no other cpu could
3202 		 * be trying to lock both of these tasks.
3203 		 */
3204 		raw_spin_lock(&ctx->lock);
3205 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3206 		if (context_equiv(ctx, next_ctx)) {
3207 			WRITE_ONCE(ctx->task, next);
3208 			WRITE_ONCE(next_ctx->task, task);
3209 
3210 			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3211 
3212 			/*
3213 			 * RCU_INIT_POINTER here is safe because we've not
3214 			 * modified the ctx and the above modification of
3215 			 * ctx->task and ctx->task_ctx_data are immaterial
3216 			 * since those values are always verified under
3217 			 * ctx->lock which we're now holding.
3218 			 */
3219 			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3220 			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3221 
3222 			do_switch = 0;
3223 
3224 			perf_event_sync_stat(ctx, next_ctx);
3225 		}
3226 		raw_spin_unlock(&next_ctx->lock);
3227 		raw_spin_unlock(&ctx->lock);
3228 	}
3229 unlock:
3230 	rcu_read_unlock();
3231 
3232 	if (do_switch) {
3233 		raw_spin_lock(&ctx->lock);
3234 		task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3235 		raw_spin_unlock(&ctx->lock);
3236 	}
3237 }
3238 
3239 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3240 
perf_sched_cb_dec(struct pmu * pmu)3241 void perf_sched_cb_dec(struct pmu *pmu)
3242 {
3243 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3244 
3245 	this_cpu_dec(perf_sched_cb_usages);
3246 
3247 	if (!--cpuctx->sched_cb_usage)
3248 		list_del(&cpuctx->sched_cb_entry);
3249 }
3250 
3251 
perf_sched_cb_inc(struct pmu * pmu)3252 void perf_sched_cb_inc(struct pmu *pmu)
3253 {
3254 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3255 
3256 	if (!cpuctx->sched_cb_usage++)
3257 		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3258 
3259 	this_cpu_inc(perf_sched_cb_usages);
3260 }
3261 
3262 /*
3263  * This function provides the context switch callback to the lower code
3264  * layer. It is invoked ONLY when the context switch callback is enabled.
3265  *
3266  * This callback is relevant even to per-cpu events; for example multi event
3267  * PEBS requires this to provide PID/TID information. This requires we flush
3268  * all queued PEBS records before we context switch to a new task.
3269  */
perf_pmu_sched_task(struct task_struct * prev,struct task_struct * next,bool sched_in)3270 static void perf_pmu_sched_task(struct task_struct *prev,
3271 				struct task_struct *next,
3272 				bool sched_in)
3273 {
3274 	struct perf_cpu_context *cpuctx;
3275 	struct pmu *pmu;
3276 
3277 	if (prev == next)
3278 		return;
3279 
3280 	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3281 		pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3282 
3283 		if (WARN_ON_ONCE(!pmu->sched_task))
3284 			continue;
3285 
3286 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3287 		perf_pmu_disable(pmu);
3288 
3289 		pmu->sched_task(cpuctx->task_ctx, sched_in);
3290 
3291 		perf_pmu_enable(pmu);
3292 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3293 	}
3294 }
3295 
3296 static void perf_event_switch(struct task_struct *task,
3297 			      struct task_struct *next_prev, bool sched_in);
3298 
3299 #define for_each_task_context_nr(ctxn)					\
3300 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3301 
3302 /*
3303  * Called from scheduler to remove the events of the current task,
3304  * with interrupts disabled.
3305  *
3306  * We stop each event and update the event value in event->count.
3307  *
3308  * This does not protect us against NMI, but disable()
3309  * sets the disabled bit in the control field of event _before_
3310  * accessing the event control register. If a NMI hits, then it will
3311  * not restart the event.
3312  */
__perf_event_task_sched_out(struct task_struct * task,struct task_struct * next)3313 void __perf_event_task_sched_out(struct task_struct *task,
3314 				 struct task_struct *next)
3315 {
3316 	int ctxn;
3317 
3318 	if (__this_cpu_read(perf_sched_cb_usages))
3319 		perf_pmu_sched_task(task, next, false);
3320 
3321 	if (atomic_read(&nr_switch_events))
3322 		perf_event_switch(task, next, false);
3323 
3324 	for_each_task_context_nr(ctxn)
3325 		perf_event_context_sched_out(task, ctxn, next);
3326 
3327 	/*
3328 	 * if cgroup events exist on this CPU, then we need
3329 	 * to check if we have to switch out PMU state.
3330 	 * cgroup event are system-wide mode only
3331 	 */
3332 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3333 		perf_cgroup_sched_out(task, next);
3334 }
3335 
3336 /*
3337  * Called with IRQs disabled
3338  */
cpu_ctx_sched_out(struct perf_cpu_context * cpuctx,enum event_type_t event_type)3339 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3340 			      enum event_type_t event_type)
3341 {
3342 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3343 }
3344 
visit_groups_merge(struct perf_event_groups * groups,int cpu,int (* func)(struct perf_event *,void *),void * data)3345 static int visit_groups_merge(struct perf_event_groups *groups, int cpu,
3346 			      int (*func)(struct perf_event *, void *), void *data)
3347 {
3348 	struct perf_event **evt, *evt1, *evt2;
3349 	int ret;
3350 
3351 	evt1 = perf_event_groups_first(groups, -1);
3352 	evt2 = perf_event_groups_first(groups, cpu);
3353 
3354 	while (evt1 || evt2) {
3355 		if (evt1 && evt2) {
3356 			if (evt1->group_index < evt2->group_index)
3357 				evt = &evt1;
3358 			else
3359 				evt = &evt2;
3360 		} else if (evt1) {
3361 			evt = &evt1;
3362 		} else {
3363 			evt = &evt2;
3364 		}
3365 
3366 		ret = func(*evt, data);
3367 		if (ret)
3368 			return ret;
3369 
3370 		*evt = perf_event_groups_next(*evt);
3371 	}
3372 
3373 	return 0;
3374 }
3375 
3376 struct sched_in_data {
3377 	struct perf_event_context *ctx;
3378 	struct perf_cpu_context *cpuctx;
3379 	int can_add_hw;
3380 };
3381 
pinned_sched_in(struct perf_event * event,void * data)3382 static int pinned_sched_in(struct perf_event *event, void *data)
3383 {
3384 	struct sched_in_data *sid = data;
3385 
3386 	if (event->state <= PERF_EVENT_STATE_OFF)
3387 		return 0;
3388 
3389 	if (!event_filter_match(event))
3390 		return 0;
3391 
3392 	if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3393 		if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3394 			list_add_tail(&event->active_list, &sid->ctx->pinned_active);
3395 	}
3396 
3397 	/*
3398 	 * If this pinned group hasn't been scheduled,
3399 	 * put it in error state.
3400 	 */
3401 	if (event->state == PERF_EVENT_STATE_INACTIVE)
3402 		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3403 
3404 	return 0;
3405 }
3406 
flexible_sched_in(struct perf_event * event,void * data)3407 static int flexible_sched_in(struct perf_event *event, void *data)
3408 {
3409 	struct sched_in_data *sid = data;
3410 
3411 	if (event->state <= PERF_EVENT_STATE_OFF)
3412 		return 0;
3413 
3414 	if (!event_filter_match(event))
3415 		return 0;
3416 
3417 	if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3418 		int ret = group_sched_in(event, sid->cpuctx, sid->ctx);
3419 		if (ret) {
3420 			sid->can_add_hw = 0;
3421 			sid->ctx->rotate_necessary = 1;
3422 			return 0;
3423 		}
3424 		list_add_tail(&event->active_list, &sid->ctx->flexible_active);
3425 	}
3426 
3427 	return 0;
3428 }
3429 
3430 static void
ctx_pinned_sched_in(struct perf_event_context * ctx,struct perf_cpu_context * cpuctx)3431 ctx_pinned_sched_in(struct perf_event_context *ctx,
3432 		    struct perf_cpu_context *cpuctx)
3433 {
3434 	struct sched_in_data sid = {
3435 		.ctx = ctx,
3436 		.cpuctx = cpuctx,
3437 		.can_add_hw = 1,
3438 	};
3439 
3440 	visit_groups_merge(&ctx->pinned_groups,
3441 			   smp_processor_id(),
3442 			   pinned_sched_in, &sid);
3443 }
3444 
3445 static void
ctx_flexible_sched_in(struct perf_event_context * ctx,struct perf_cpu_context * cpuctx)3446 ctx_flexible_sched_in(struct perf_event_context *ctx,
3447 		      struct perf_cpu_context *cpuctx)
3448 {
3449 	struct sched_in_data sid = {
3450 		.ctx = ctx,
3451 		.cpuctx = cpuctx,
3452 		.can_add_hw = 1,
3453 	};
3454 
3455 	visit_groups_merge(&ctx->flexible_groups,
3456 			   smp_processor_id(),
3457 			   flexible_sched_in, &sid);
3458 }
3459 
3460 static void
ctx_sched_in(struct perf_event_context * ctx,struct perf_cpu_context * cpuctx,enum event_type_t event_type,struct task_struct * task)3461 ctx_sched_in(struct perf_event_context *ctx,
3462 	     struct perf_cpu_context *cpuctx,
3463 	     enum event_type_t event_type,
3464 	     struct task_struct *task)
3465 {
3466 	int is_active = ctx->is_active;
3467 	u64 now;
3468 
3469 	lockdep_assert_held(&ctx->lock);
3470 
3471 	if (likely(!ctx->nr_events))
3472 		return;
3473 
3474 	ctx->is_active |= (event_type | EVENT_TIME);
3475 	if (ctx->task) {
3476 		if (!is_active)
3477 			cpuctx->task_ctx = ctx;
3478 		else
3479 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3480 	}
3481 
3482 	is_active ^= ctx->is_active; /* changed bits */
3483 
3484 	if (is_active & EVENT_TIME) {
3485 		/* start ctx time */
3486 		now = perf_clock();
3487 		ctx->timestamp = now;
3488 		perf_cgroup_set_timestamp(task, ctx);
3489 	}
3490 
3491 	/*
3492 	 * First go through the list and put on any pinned groups
3493 	 * in order to give them the best chance of going on.
3494 	 */
3495 	if (is_active & EVENT_PINNED)
3496 		ctx_pinned_sched_in(ctx, cpuctx);
3497 
3498 	/* Then walk through the lower prio flexible groups */
3499 	if (is_active & EVENT_FLEXIBLE)
3500 		ctx_flexible_sched_in(ctx, cpuctx);
3501 }
3502 
cpu_ctx_sched_in(struct perf_cpu_context * cpuctx,enum event_type_t event_type,struct task_struct * task)3503 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3504 			     enum event_type_t event_type,
3505 			     struct task_struct *task)
3506 {
3507 	struct perf_event_context *ctx = &cpuctx->ctx;
3508 
3509 	ctx_sched_in(ctx, cpuctx, event_type, task);
3510 }
3511 
perf_event_context_sched_in(struct perf_event_context * ctx,struct task_struct * task)3512 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3513 					struct task_struct *task)
3514 {
3515 	struct perf_cpu_context *cpuctx;
3516 
3517 	cpuctx = __get_cpu_context(ctx);
3518 	if (cpuctx->task_ctx == ctx)
3519 		return;
3520 
3521 	perf_ctx_lock(cpuctx, ctx);
3522 	/*
3523 	 * We must check ctx->nr_events while holding ctx->lock, such
3524 	 * that we serialize against perf_install_in_context().
3525 	 */
3526 	if (!ctx->nr_events)
3527 		goto unlock;
3528 
3529 	perf_pmu_disable(ctx->pmu);
3530 	/*
3531 	 * We want to keep the following priority order:
3532 	 * cpu pinned (that don't need to move), task pinned,
3533 	 * cpu flexible, task flexible.
3534 	 *
3535 	 * However, if task's ctx is not carrying any pinned
3536 	 * events, no need to flip the cpuctx's events around.
3537 	 */
3538 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3539 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3540 	perf_event_sched_in(cpuctx, ctx, task);
3541 	perf_pmu_enable(ctx->pmu);
3542 
3543 unlock:
3544 	perf_ctx_unlock(cpuctx, ctx);
3545 }
3546 
3547 /*
3548  * Called from scheduler to add the events of the current task
3549  * with interrupts disabled.
3550  *
3551  * We restore the event value and then enable it.
3552  *
3553  * This does not protect us against NMI, but enable()
3554  * sets the enabled bit in the control field of event _before_
3555  * accessing the event control register. If a NMI hits, then it will
3556  * keep the event running.
3557  */
__perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)3558 void __perf_event_task_sched_in(struct task_struct *prev,
3559 				struct task_struct *task)
3560 {
3561 	struct perf_event_context *ctx;
3562 	int ctxn;
3563 
3564 	/*
3565 	 * If cgroup events exist on this CPU, then we need to check if we have
3566 	 * to switch in PMU state; cgroup event are system-wide mode only.
3567 	 *
3568 	 * Since cgroup events are CPU events, we must schedule these in before
3569 	 * we schedule in the task events.
3570 	 */
3571 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3572 		perf_cgroup_sched_in(prev, task);
3573 
3574 	for_each_task_context_nr(ctxn) {
3575 		ctx = task->perf_event_ctxp[ctxn];
3576 		if (likely(!ctx))
3577 			continue;
3578 
3579 		perf_event_context_sched_in(ctx, task);
3580 	}
3581 
3582 	if (atomic_read(&nr_switch_events))
3583 		perf_event_switch(task, prev, true);
3584 
3585 	if (__this_cpu_read(perf_sched_cb_usages))
3586 		perf_pmu_sched_task(prev, task, true);
3587 }
3588 
perf_calculate_period(struct perf_event * event,u64 nsec,u64 count)3589 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3590 {
3591 	u64 frequency = event->attr.sample_freq;
3592 	u64 sec = NSEC_PER_SEC;
3593 	u64 divisor, dividend;
3594 
3595 	int count_fls, nsec_fls, frequency_fls, sec_fls;
3596 
3597 	count_fls = fls64(count);
3598 	nsec_fls = fls64(nsec);
3599 	frequency_fls = fls64(frequency);
3600 	sec_fls = 30;
3601 
3602 	/*
3603 	 * We got @count in @nsec, with a target of sample_freq HZ
3604 	 * the target period becomes:
3605 	 *
3606 	 *             @count * 10^9
3607 	 * period = -------------------
3608 	 *          @nsec * sample_freq
3609 	 *
3610 	 */
3611 
3612 	/*
3613 	 * Reduce accuracy by one bit such that @a and @b converge
3614 	 * to a similar magnitude.
3615 	 */
3616 #define REDUCE_FLS(a, b)		\
3617 do {					\
3618 	if (a##_fls > b##_fls) {	\
3619 		a >>= 1;		\
3620 		a##_fls--;		\
3621 	} else {			\
3622 		b >>= 1;		\
3623 		b##_fls--;		\
3624 	}				\
3625 } while (0)
3626 
3627 	/*
3628 	 * Reduce accuracy until either term fits in a u64, then proceed with
3629 	 * the other, so that finally we can do a u64/u64 division.
3630 	 */
3631 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3632 		REDUCE_FLS(nsec, frequency);
3633 		REDUCE_FLS(sec, count);
3634 	}
3635 
3636 	if (count_fls + sec_fls > 64) {
3637 		divisor = nsec * frequency;
3638 
3639 		while (count_fls + sec_fls > 64) {
3640 			REDUCE_FLS(count, sec);
3641 			divisor >>= 1;
3642 		}
3643 
3644 		dividend = count * sec;
3645 	} else {
3646 		dividend = count * sec;
3647 
3648 		while (nsec_fls + frequency_fls > 64) {
3649 			REDUCE_FLS(nsec, frequency);
3650 			dividend >>= 1;
3651 		}
3652 
3653 		divisor = nsec * frequency;
3654 	}
3655 
3656 	if (!divisor)
3657 		return dividend;
3658 
3659 	return div64_u64(dividend, divisor);
3660 }
3661 
3662 static DEFINE_PER_CPU(int, perf_throttled_count);
3663 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3664 
perf_adjust_period(struct perf_event * event,u64 nsec,u64 count,bool disable)3665 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3666 {
3667 	struct hw_perf_event *hwc = &event->hw;
3668 	s64 period, sample_period;
3669 	s64 delta;
3670 
3671 	period = perf_calculate_period(event, nsec, count);
3672 
3673 	delta = (s64)(period - hwc->sample_period);
3674 	delta = (delta + 7) / 8; /* low pass filter */
3675 
3676 	sample_period = hwc->sample_period + delta;
3677 
3678 	if (!sample_period)
3679 		sample_period = 1;
3680 
3681 	hwc->sample_period = sample_period;
3682 
3683 	if (local64_read(&hwc->period_left) > 8*sample_period) {
3684 		if (disable)
3685 			event->pmu->stop(event, PERF_EF_UPDATE);
3686 
3687 		local64_set(&hwc->period_left, 0);
3688 
3689 		if (disable)
3690 			event->pmu->start(event, PERF_EF_RELOAD);
3691 	}
3692 }
3693 
3694 /*
3695  * combine freq adjustment with unthrottling to avoid two passes over the
3696  * events. At the same time, make sure, having freq events does not change
3697  * the rate of unthrottling as that would introduce bias.
3698  */
perf_adjust_freq_unthr_context(struct perf_event_context * ctx,int needs_unthr)3699 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3700 					   int needs_unthr)
3701 {
3702 	struct perf_event *event;
3703 	struct hw_perf_event *hwc;
3704 	u64 now, period = TICK_NSEC;
3705 	s64 delta;
3706 
3707 	/*
3708 	 * only need to iterate over all events iff:
3709 	 * - context have events in frequency mode (needs freq adjust)
3710 	 * - there are events to unthrottle on this cpu
3711 	 */
3712 	if (!(ctx->nr_freq || needs_unthr))
3713 		return;
3714 
3715 	raw_spin_lock(&ctx->lock);
3716 	perf_pmu_disable(ctx->pmu);
3717 
3718 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3719 		if (event->state != PERF_EVENT_STATE_ACTIVE)
3720 			continue;
3721 
3722 		if (!event_filter_match(event))
3723 			continue;
3724 
3725 		perf_pmu_disable(event->pmu);
3726 
3727 		hwc = &event->hw;
3728 
3729 		if (hwc->interrupts == MAX_INTERRUPTS) {
3730 			hwc->interrupts = 0;
3731 			perf_log_throttle(event, 1);
3732 			event->pmu->start(event, 0);
3733 		}
3734 
3735 		if (!event->attr.freq || !event->attr.sample_freq)
3736 			goto next;
3737 
3738 		/*
3739 		 * stop the event and update event->count
3740 		 */
3741 		event->pmu->stop(event, PERF_EF_UPDATE);
3742 
3743 		now = local64_read(&event->count);
3744 		delta = now - hwc->freq_count_stamp;
3745 		hwc->freq_count_stamp = now;
3746 
3747 		/*
3748 		 * restart the event
3749 		 * reload only if value has changed
3750 		 * we have stopped the event so tell that
3751 		 * to perf_adjust_period() to avoid stopping it
3752 		 * twice.
3753 		 */
3754 		if (delta > 0)
3755 			perf_adjust_period(event, period, delta, false);
3756 
3757 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3758 	next:
3759 		perf_pmu_enable(event->pmu);
3760 	}
3761 
3762 	perf_pmu_enable(ctx->pmu);
3763 	raw_spin_unlock(&ctx->lock);
3764 }
3765 
3766 /*
3767  * Move @event to the tail of the @ctx's elegible events.
3768  */
rotate_ctx(struct perf_event_context * ctx,struct perf_event * event)3769 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
3770 {
3771 	/*
3772 	 * Rotate the first entry last of non-pinned groups. Rotation might be
3773 	 * disabled by the inheritance code.
3774 	 */
3775 	if (ctx->rotate_disable)
3776 		return;
3777 
3778 	perf_event_groups_delete(&ctx->flexible_groups, event);
3779 	perf_event_groups_insert(&ctx->flexible_groups, event);
3780 }
3781 
3782 /* pick an event from the flexible_groups to rotate */
3783 static inline struct perf_event *
ctx_event_to_rotate(struct perf_event_context * ctx)3784 ctx_event_to_rotate(struct perf_event_context *ctx)
3785 {
3786 	struct perf_event *event;
3787 
3788 	/* pick the first active flexible event */
3789 	event = list_first_entry_or_null(&ctx->flexible_active,
3790 					 struct perf_event, active_list);
3791 
3792 	/* if no active flexible event, pick the first event */
3793 	if (!event) {
3794 		event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
3795 				      typeof(*event), group_node);
3796 	}
3797 
3798 	return event;
3799 }
3800 
perf_rotate_context(struct perf_cpu_context * cpuctx)3801 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
3802 {
3803 	struct perf_event *cpu_event = NULL, *task_event = NULL;
3804 	struct perf_event_context *task_ctx = NULL;
3805 	int cpu_rotate, task_rotate;
3806 
3807 	/*
3808 	 * Since we run this from IRQ context, nobody can install new
3809 	 * events, thus the event count values are stable.
3810 	 */
3811 
3812 	cpu_rotate = cpuctx->ctx.rotate_necessary;
3813 	task_ctx = cpuctx->task_ctx;
3814 	task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
3815 
3816 	if (!(cpu_rotate || task_rotate))
3817 		return false;
3818 
3819 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3820 	perf_pmu_disable(cpuctx->ctx.pmu);
3821 
3822 	if (task_rotate)
3823 		task_event = ctx_event_to_rotate(task_ctx);
3824 	if (cpu_rotate)
3825 		cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
3826 
3827 	/*
3828 	 * As per the order given at ctx_resched() first 'pop' task flexible
3829 	 * and then, if needed CPU flexible.
3830 	 */
3831 	if (task_event || (task_ctx && cpu_event))
3832 		ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
3833 	if (cpu_event)
3834 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3835 
3836 	if (task_event)
3837 		rotate_ctx(task_ctx, task_event);
3838 	if (cpu_event)
3839 		rotate_ctx(&cpuctx->ctx, cpu_event);
3840 
3841 	perf_event_sched_in(cpuctx, task_ctx, current);
3842 
3843 	perf_pmu_enable(cpuctx->ctx.pmu);
3844 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3845 
3846 	return true;
3847 }
3848 
perf_event_task_tick(void)3849 void perf_event_task_tick(void)
3850 {
3851 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
3852 	struct perf_event_context *ctx, *tmp;
3853 	int throttled;
3854 
3855 	lockdep_assert_irqs_disabled();
3856 
3857 	__this_cpu_inc(perf_throttled_seq);
3858 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3859 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3860 
3861 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3862 		perf_adjust_freq_unthr_context(ctx, throttled);
3863 }
3864 
event_enable_on_exec(struct perf_event * event,struct perf_event_context * ctx)3865 static int event_enable_on_exec(struct perf_event *event,
3866 				struct perf_event_context *ctx)
3867 {
3868 	if (!event->attr.enable_on_exec)
3869 		return 0;
3870 
3871 	event->attr.enable_on_exec = 0;
3872 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
3873 		return 0;
3874 
3875 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3876 
3877 	return 1;
3878 }
3879 
3880 /*
3881  * Enable all of a task's events that have been marked enable-on-exec.
3882  * This expects task == current.
3883  */
perf_event_enable_on_exec(int ctxn)3884 static void perf_event_enable_on_exec(int ctxn)
3885 {
3886 	struct perf_event_context *ctx, *clone_ctx = NULL;
3887 	enum event_type_t event_type = 0;
3888 	struct perf_cpu_context *cpuctx;
3889 	struct perf_event *event;
3890 	unsigned long flags;
3891 	int enabled = 0;
3892 
3893 	local_irq_save(flags);
3894 	ctx = current->perf_event_ctxp[ctxn];
3895 	if (!ctx || !ctx->nr_events)
3896 		goto out;
3897 
3898 	cpuctx = __get_cpu_context(ctx);
3899 	perf_ctx_lock(cpuctx, ctx);
3900 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3901 	list_for_each_entry(event, &ctx->event_list, event_entry) {
3902 		enabled |= event_enable_on_exec(event, ctx);
3903 		event_type |= get_event_type(event);
3904 	}
3905 
3906 	/*
3907 	 * Unclone and reschedule this context if we enabled any event.
3908 	 */
3909 	if (enabled) {
3910 		clone_ctx = unclone_ctx(ctx);
3911 		ctx_resched(cpuctx, ctx, event_type);
3912 	} else {
3913 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3914 	}
3915 	perf_ctx_unlock(cpuctx, ctx);
3916 
3917 out:
3918 	local_irq_restore(flags);
3919 
3920 	if (clone_ctx)
3921 		put_ctx(clone_ctx);
3922 }
3923 
3924 struct perf_read_data {
3925 	struct perf_event *event;
3926 	bool group;
3927 	int ret;
3928 };
3929 
__perf_event_read_cpu(struct perf_event * event,int event_cpu)3930 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3931 {
3932 	u16 local_pkg, event_pkg;
3933 
3934 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3935 		int local_cpu = smp_processor_id();
3936 
3937 		event_pkg = topology_physical_package_id(event_cpu);
3938 		local_pkg = topology_physical_package_id(local_cpu);
3939 
3940 		if (event_pkg == local_pkg)
3941 			return local_cpu;
3942 	}
3943 
3944 	return event_cpu;
3945 }
3946 
3947 /*
3948  * Cross CPU call to read the hardware event
3949  */
__perf_event_read(void * info)3950 static void __perf_event_read(void *info)
3951 {
3952 	struct perf_read_data *data = info;
3953 	struct perf_event *sub, *event = data->event;
3954 	struct perf_event_context *ctx = event->ctx;
3955 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3956 	struct pmu *pmu = event->pmu;
3957 
3958 	/*
3959 	 * If this is a task context, we need to check whether it is
3960 	 * the current task context of this cpu.  If not it has been
3961 	 * scheduled out before the smp call arrived.  In that case
3962 	 * event->count would have been updated to a recent sample
3963 	 * when the event was scheduled out.
3964 	 */
3965 	if (ctx->task && cpuctx->task_ctx != ctx)
3966 		return;
3967 
3968 	raw_spin_lock(&ctx->lock);
3969 	if (ctx->is_active & EVENT_TIME) {
3970 		update_context_time(ctx);
3971 		update_cgrp_time_from_event(event);
3972 	}
3973 
3974 	perf_event_update_time(event);
3975 	if (data->group)
3976 		perf_event_update_sibling_time(event);
3977 
3978 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3979 		goto unlock;
3980 
3981 	if (!data->group) {
3982 		pmu->read(event);
3983 		data->ret = 0;
3984 		goto unlock;
3985 	}
3986 
3987 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3988 
3989 	pmu->read(event);
3990 
3991 	for_each_sibling_event(sub, event) {
3992 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3993 			/*
3994 			 * Use sibling's PMU rather than @event's since
3995 			 * sibling could be on different (eg: software) PMU.
3996 			 */
3997 			sub->pmu->read(sub);
3998 		}
3999 	}
4000 
4001 	data->ret = pmu->commit_txn(pmu);
4002 
4003 unlock:
4004 	raw_spin_unlock(&ctx->lock);
4005 }
4006 
perf_event_count(struct perf_event * event)4007 static inline u64 perf_event_count(struct perf_event *event)
4008 {
4009 	return local64_read(&event->count) + atomic64_read(&event->child_count);
4010 }
4011 
4012 /*
4013  * NMI-safe method to read a local event, that is an event that
4014  * is:
4015  *   - either for the current task, or for this CPU
4016  *   - does not have inherit set, for inherited task events
4017  *     will not be local and we cannot read them atomically
4018  *   - must not have a pmu::count method
4019  */
perf_event_read_local(struct perf_event * event,u64 * value,u64 * enabled,u64 * running)4020 int perf_event_read_local(struct perf_event *event, u64 *value,
4021 			  u64 *enabled, u64 *running)
4022 {
4023 	unsigned long flags;
4024 	int ret = 0;
4025 
4026 	/*
4027 	 * Disabling interrupts avoids all counter scheduling (context
4028 	 * switches, timer based rotation and IPIs).
4029 	 */
4030 	local_irq_save(flags);
4031 
4032 	/*
4033 	 * It must not be an event with inherit set, we cannot read
4034 	 * all child counters from atomic context.
4035 	 */
4036 	if (event->attr.inherit) {
4037 		ret = -EOPNOTSUPP;
4038 		goto out;
4039 	}
4040 
4041 	/* If this is a per-task event, it must be for current */
4042 	if ((event->attach_state & PERF_ATTACH_TASK) &&
4043 	    event->hw.target != current) {
4044 		ret = -EINVAL;
4045 		goto out;
4046 	}
4047 
4048 	/* If this is a per-CPU event, it must be for this CPU */
4049 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
4050 	    event->cpu != smp_processor_id()) {
4051 		ret = -EINVAL;
4052 		goto out;
4053 	}
4054 
4055 	/* If this is a pinned event it must be running on this CPU */
4056 	if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4057 		ret = -EBUSY;
4058 		goto out;
4059 	}
4060 
4061 	/*
4062 	 * If the event is currently on this CPU, its either a per-task event,
4063 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4064 	 * oncpu == -1).
4065 	 */
4066 	if (event->oncpu == smp_processor_id())
4067 		event->pmu->read(event);
4068 
4069 	*value = local64_read(&event->count);
4070 	if (enabled || running) {
4071 		u64 now = event->shadow_ctx_time + perf_clock();
4072 		u64 __enabled, __running;
4073 
4074 		__perf_update_times(event, now, &__enabled, &__running);
4075 		if (enabled)
4076 			*enabled = __enabled;
4077 		if (running)
4078 			*running = __running;
4079 	}
4080 out:
4081 	local_irq_restore(flags);
4082 
4083 	return ret;
4084 }
4085 
perf_event_read(struct perf_event * event,bool group)4086 static int perf_event_read(struct perf_event *event, bool group)
4087 {
4088 	enum perf_event_state state = READ_ONCE(event->state);
4089 	int event_cpu, ret = 0;
4090 
4091 	/*
4092 	 * If event is enabled and currently active on a CPU, update the
4093 	 * value in the event structure:
4094 	 */
4095 again:
4096 	if (state == PERF_EVENT_STATE_ACTIVE) {
4097 		struct perf_read_data data;
4098 
4099 		/*
4100 		 * Orders the ->state and ->oncpu loads such that if we see
4101 		 * ACTIVE we must also see the right ->oncpu.
4102 		 *
4103 		 * Matches the smp_wmb() from event_sched_in().
4104 		 */
4105 		smp_rmb();
4106 
4107 		event_cpu = READ_ONCE(event->oncpu);
4108 		if ((unsigned)event_cpu >= nr_cpu_ids)
4109 			return 0;
4110 
4111 		data = (struct perf_read_data){
4112 			.event = event,
4113 			.group = group,
4114 			.ret = 0,
4115 		};
4116 
4117 		preempt_disable();
4118 		event_cpu = __perf_event_read_cpu(event, event_cpu);
4119 
4120 		/*
4121 		 * Purposely ignore the smp_call_function_single() return
4122 		 * value.
4123 		 *
4124 		 * If event_cpu isn't a valid CPU it means the event got
4125 		 * scheduled out and that will have updated the event count.
4126 		 *
4127 		 * Therefore, either way, we'll have an up-to-date event count
4128 		 * after this.
4129 		 */
4130 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4131 		preempt_enable();
4132 		ret = data.ret;
4133 
4134 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
4135 		struct perf_event_context *ctx = event->ctx;
4136 		unsigned long flags;
4137 
4138 		raw_spin_lock_irqsave(&ctx->lock, flags);
4139 		state = event->state;
4140 		if (state != PERF_EVENT_STATE_INACTIVE) {
4141 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
4142 			goto again;
4143 		}
4144 
4145 		/*
4146 		 * May read while context is not active (e.g., thread is
4147 		 * blocked), in that case we cannot update context time
4148 		 */
4149 		if (ctx->is_active & EVENT_TIME) {
4150 			update_context_time(ctx);
4151 			update_cgrp_time_from_event(event);
4152 		}
4153 
4154 		perf_event_update_time(event);
4155 		if (group)
4156 			perf_event_update_sibling_time(event);
4157 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4158 	}
4159 
4160 	return ret;
4161 }
4162 
4163 /*
4164  * Initialize the perf_event context in a task_struct:
4165  */
__perf_event_init_context(struct perf_event_context * ctx)4166 static void __perf_event_init_context(struct perf_event_context *ctx)
4167 {
4168 	raw_spin_lock_init(&ctx->lock);
4169 	mutex_init(&ctx->mutex);
4170 	INIT_LIST_HEAD(&ctx->active_ctx_list);
4171 	perf_event_groups_init(&ctx->pinned_groups);
4172 	perf_event_groups_init(&ctx->flexible_groups);
4173 	INIT_LIST_HEAD(&ctx->event_list);
4174 	INIT_LIST_HEAD(&ctx->pinned_active);
4175 	INIT_LIST_HEAD(&ctx->flexible_active);
4176 	refcount_set(&ctx->refcount, 1);
4177 }
4178 
4179 static struct perf_event_context *
alloc_perf_context(struct pmu * pmu,struct task_struct * task)4180 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4181 {
4182 	struct perf_event_context *ctx;
4183 
4184 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4185 	if (!ctx)
4186 		return NULL;
4187 
4188 	__perf_event_init_context(ctx);
4189 	if (task)
4190 		ctx->task = get_task_struct(task);
4191 	ctx->pmu = pmu;
4192 
4193 	return ctx;
4194 }
4195 
4196 static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)4197 find_lively_task_by_vpid(pid_t vpid)
4198 {
4199 	struct task_struct *task;
4200 
4201 	rcu_read_lock();
4202 	if (!vpid)
4203 		task = current;
4204 	else
4205 		task = find_task_by_vpid(vpid);
4206 	if (task)
4207 		get_task_struct(task);
4208 	rcu_read_unlock();
4209 
4210 	if (!task)
4211 		return ERR_PTR(-ESRCH);
4212 
4213 	return task;
4214 }
4215 
4216 /*
4217  * Returns a matching context with refcount and pincount.
4218  */
4219 static struct perf_event_context *
find_get_context(struct pmu * pmu,struct task_struct * task,struct perf_event * event)4220 find_get_context(struct pmu *pmu, struct task_struct *task,
4221 		struct perf_event *event)
4222 {
4223 	struct perf_event_context *ctx, *clone_ctx = NULL;
4224 	struct perf_cpu_context *cpuctx;
4225 	void *task_ctx_data = NULL;
4226 	unsigned long flags;
4227 	int ctxn, err;
4228 	int cpu = event->cpu;
4229 
4230 	if (!task) {
4231 		/* Must be root to operate on a CPU event: */
4232 		err = perf_allow_cpu(&event->attr);
4233 		if (err)
4234 			return ERR_PTR(err);
4235 
4236 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4237 		ctx = &cpuctx->ctx;
4238 		get_ctx(ctx);
4239 		++ctx->pin_count;
4240 
4241 		return ctx;
4242 	}
4243 
4244 	err = -EINVAL;
4245 	ctxn = pmu->task_ctx_nr;
4246 	if (ctxn < 0)
4247 		goto errout;
4248 
4249 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4250 		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
4251 		if (!task_ctx_data) {
4252 			err = -ENOMEM;
4253 			goto errout;
4254 		}
4255 	}
4256 
4257 retry:
4258 	ctx = perf_lock_task_context(task, ctxn, &flags);
4259 	if (ctx) {
4260 		clone_ctx = unclone_ctx(ctx);
4261 		++ctx->pin_count;
4262 
4263 		if (task_ctx_data && !ctx->task_ctx_data) {
4264 			ctx->task_ctx_data = task_ctx_data;
4265 			task_ctx_data = NULL;
4266 		}
4267 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4268 
4269 		if (clone_ctx)
4270 			put_ctx(clone_ctx);
4271 	} else {
4272 		ctx = alloc_perf_context(pmu, task);
4273 		err = -ENOMEM;
4274 		if (!ctx)
4275 			goto errout;
4276 
4277 		if (task_ctx_data) {
4278 			ctx->task_ctx_data = task_ctx_data;
4279 			task_ctx_data = NULL;
4280 		}
4281 
4282 		err = 0;
4283 		mutex_lock(&task->perf_event_mutex);
4284 		/*
4285 		 * If it has already passed perf_event_exit_task().
4286 		 * we must see PF_EXITING, it takes this mutex too.
4287 		 */
4288 		if (task->flags & PF_EXITING)
4289 			err = -ESRCH;
4290 		else if (task->perf_event_ctxp[ctxn])
4291 			err = -EAGAIN;
4292 		else {
4293 			get_ctx(ctx);
4294 			++ctx->pin_count;
4295 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4296 		}
4297 		mutex_unlock(&task->perf_event_mutex);
4298 
4299 		if (unlikely(err)) {
4300 			put_ctx(ctx);
4301 
4302 			if (err == -EAGAIN)
4303 				goto retry;
4304 			goto errout;
4305 		}
4306 	}
4307 
4308 	kfree(task_ctx_data);
4309 	return ctx;
4310 
4311 errout:
4312 	kfree(task_ctx_data);
4313 	return ERR_PTR(err);
4314 }
4315 
4316 static void perf_event_free_filter(struct perf_event *event);
4317 static void perf_event_free_bpf_prog(struct perf_event *event);
4318 
free_event_rcu(struct rcu_head * head)4319 static void free_event_rcu(struct rcu_head *head)
4320 {
4321 	struct perf_event *event;
4322 
4323 	event = container_of(head, struct perf_event, rcu_head);
4324 	if (event->ns)
4325 		put_pid_ns(event->ns);
4326 	perf_event_free_filter(event);
4327 	kfree(event);
4328 }
4329 
4330 static void ring_buffer_attach(struct perf_event *event,
4331 			       struct ring_buffer *rb);
4332 
detach_sb_event(struct perf_event * event)4333 static void detach_sb_event(struct perf_event *event)
4334 {
4335 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4336 
4337 	raw_spin_lock(&pel->lock);
4338 	list_del_rcu(&event->sb_list);
4339 	raw_spin_unlock(&pel->lock);
4340 }
4341 
is_sb_event(struct perf_event * event)4342 static bool is_sb_event(struct perf_event *event)
4343 {
4344 	struct perf_event_attr *attr = &event->attr;
4345 
4346 	if (event->parent)
4347 		return false;
4348 
4349 	if (event->attach_state & PERF_ATTACH_TASK)
4350 		return false;
4351 
4352 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4353 	    attr->comm || attr->comm_exec ||
4354 	    attr->task || attr->ksymbol ||
4355 	    attr->context_switch ||
4356 	    attr->bpf_event)
4357 		return true;
4358 	return false;
4359 }
4360 
unaccount_pmu_sb_event(struct perf_event * event)4361 static void unaccount_pmu_sb_event(struct perf_event *event)
4362 {
4363 	if (is_sb_event(event))
4364 		detach_sb_event(event);
4365 }
4366 
unaccount_event_cpu(struct perf_event * event,int cpu)4367 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4368 {
4369 	if (event->parent)
4370 		return;
4371 
4372 	if (is_cgroup_event(event))
4373 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4374 }
4375 
4376 #ifdef CONFIG_NO_HZ_FULL
4377 static DEFINE_SPINLOCK(nr_freq_lock);
4378 #endif
4379 
unaccount_freq_event_nohz(void)4380 static void unaccount_freq_event_nohz(void)
4381 {
4382 #ifdef CONFIG_NO_HZ_FULL
4383 	spin_lock(&nr_freq_lock);
4384 	if (atomic_dec_and_test(&nr_freq_events))
4385 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4386 	spin_unlock(&nr_freq_lock);
4387 #endif
4388 }
4389 
unaccount_freq_event(void)4390 static void unaccount_freq_event(void)
4391 {
4392 	if (tick_nohz_full_enabled())
4393 		unaccount_freq_event_nohz();
4394 	else
4395 		atomic_dec(&nr_freq_events);
4396 }
4397 
unaccount_event(struct perf_event * event)4398 static void unaccount_event(struct perf_event *event)
4399 {
4400 	bool dec = false;
4401 
4402 	if (event->parent)
4403 		return;
4404 
4405 	if (event->attach_state & PERF_ATTACH_TASK)
4406 		dec = true;
4407 	if (event->attr.mmap || event->attr.mmap_data)
4408 		atomic_dec(&nr_mmap_events);
4409 	if (event->attr.comm)
4410 		atomic_dec(&nr_comm_events);
4411 	if (event->attr.namespaces)
4412 		atomic_dec(&nr_namespaces_events);
4413 	if (event->attr.task)
4414 		atomic_dec(&nr_task_events);
4415 	if (event->attr.freq)
4416 		unaccount_freq_event();
4417 	if (event->attr.context_switch) {
4418 		dec = true;
4419 		atomic_dec(&nr_switch_events);
4420 	}
4421 	if (is_cgroup_event(event))
4422 		dec = true;
4423 	if (has_branch_stack(event))
4424 		dec = true;
4425 	if (event->attr.ksymbol)
4426 		atomic_dec(&nr_ksymbol_events);
4427 	if (event->attr.bpf_event)
4428 		atomic_dec(&nr_bpf_events);
4429 
4430 	if (dec) {
4431 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
4432 			schedule_delayed_work(&perf_sched_work, HZ);
4433 	}
4434 
4435 	unaccount_event_cpu(event, event->cpu);
4436 
4437 	unaccount_pmu_sb_event(event);
4438 }
4439 
perf_sched_delayed(struct work_struct * work)4440 static void perf_sched_delayed(struct work_struct *work)
4441 {
4442 	mutex_lock(&perf_sched_mutex);
4443 	if (atomic_dec_and_test(&perf_sched_count))
4444 		static_branch_disable(&perf_sched_events);
4445 	mutex_unlock(&perf_sched_mutex);
4446 }
4447 
4448 /*
4449  * The following implement mutual exclusion of events on "exclusive" pmus
4450  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4451  * at a time, so we disallow creating events that might conflict, namely:
4452  *
4453  *  1) cpu-wide events in the presence of per-task events,
4454  *  2) per-task events in the presence of cpu-wide events,
4455  *  3) two matching events on the same context.
4456  *
4457  * The former two cases are handled in the allocation path (perf_event_alloc(),
4458  * _free_event()), the latter -- before the first perf_install_in_context().
4459  */
exclusive_event_init(struct perf_event * event)4460 static int exclusive_event_init(struct perf_event *event)
4461 {
4462 	struct pmu *pmu = event->pmu;
4463 
4464 	if (!is_exclusive_pmu(pmu))
4465 		return 0;
4466 
4467 	/*
4468 	 * Prevent co-existence of per-task and cpu-wide events on the
4469 	 * same exclusive pmu.
4470 	 *
4471 	 * Negative pmu::exclusive_cnt means there are cpu-wide
4472 	 * events on this "exclusive" pmu, positive means there are
4473 	 * per-task events.
4474 	 *
4475 	 * Since this is called in perf_event_alloc() path, event::ctx
4476 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4477 	 * to mean "per-task event", because unlike other attach states it
4478 	 * never gets cleared.
4479 	 */
4480 	if (event->attach_state & PERF_ATTACH_TASK) {
4481 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4482 			return -EBUSY;
4483 	} else {
4484 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4485 			return -EBUSY;
4486 	}
4487 
4488 	return 0;
4489 }
4490 
exclusive_event_destroy(struct perf_event * event)4491 static void exclusive_event_destroy(struct perf_event *event)
4492 {
4493 	struct pmu *pmu = event->pmu;
4494 
4495 	if (!is_exclusive_pmu(pmu))
4496 		return;
4497 
4498 	/* see comment in exclusive_event_init() */
4499 	if (event->attach_state & PERF_ATTACH_TASK)
4500 		atomic_dec(&pmu->exclusive_cnt);
4501 	else
4502 		atomic_inc(&pmu->exclusive_cnt);
4503 }
4504 
exclusive_event_match(struct perf_event * e1,struct perf_event * e2)4505 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4506 {
4507 	if ((e1->pmu == e2->pmu) &&
4508 	    (e1->cpu == e2->cpu ||
4509 	     e1->cpu == -1 ||
4510 	     e2->cpu == -1))
4511 		return true;
4512 	return false;
4513 }
4514 
exclusive_event_installable(struct perf_event * event,struct perf_event_context * ctx)4515 static bool exclusive_event_installable(struct perf_event *event,
4516 					struct perf_event_context *ctx)
4517 {
4518 	struct perf_event *iter_event;
4519 	struct pmu *pmu = event->pmu;
4520 
4521 	lockdep_assert_held(&ctx->mutex);
4522 
4523 	if (!is_exclusive_pmu(pmu))
4524 		return true;
4525 
4526 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4527 		if (exclusive_event_match(iter_event, event))
4528 			return false;
4529 	}
4530 
4531 	return true;
4532 }
4533 
4534 static void perf_addr_filters_splice(struct perf_event *event,
4535 				       struct list_head *head);
4536 
_free_event(struct perf_event * event)4537 static void _free_event(struct perf_event *event)
4538 {
4539 	irq_work_sync(&event->pending);
4540 
4541 	unaccount_event(event);
4542 
4543 	security_perf_event_free(event);
4544 
4545 	if (event->rb) {
4546 		/*
4547 		 * Can happen when we close an event with re-directed output.
4548 		 *
4549 		 * Since we have a 0 refcount, perf_mmap_close() will skip
4550 		 * over us; possibly making our ring_buffer_put() the last.
4551 		 */
4552 		mutex_lock(&event->mmap_mutex);
4553 		ring_buffer_attach(event, NULL);
4554 		mutex_unlock(&event->mmap_mutex);
4555 	}
4556 
4557 	if (is_cgroup_event(event))
4558 		perf_detach_cgroup(event);
4559 
4560 	if (!event->parent) {
4561 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4562 			put_callchain_buffers();
4563 	}
4564 
4565 	perf_event_free_bpf_prog(event);
4566 	perf_addr_filters_splice(event, NULL);
4567 	kfree(event->addr_filter_ranges);
4568 
4569 	if (event->destroy)
4570 		event->destroy(event);
4571 
4572 	/*
4573 	 * Must be after ->destroy(), due to uprobe_perf_close() using
4574 	 * hw.target.
4575 	 */
4576 	if (event->hw.target)
4577 		put_task_struct(event->hw.target);
4578 
4579 	/*
4580 	 * perf_event_free_task() relies on put_ctx() being 'last', in particular
4581 	 * all task references must be cleaned up.
4582 	 */
4583 	if (event->ctx)
4584 		put_ctx(event->ctx);
4585 
4586 	exclusive_event_destroy(event);
4587 	module_put(event->pmu->module);
4588 
4589 	call_rcu(&event->rcu_head, free_event_rcu);
4590 }
4591 
4592 /*
4593  * Used to free events which have a known refcount of 1, such as in error paths
4594  * where the event isn't exposed yet and inherited events.
4595  */
free_event(struct perf_event * event)4596 static void free_event(struct perf_event *event)
4597 {
4598 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4599 				"unexpected event refcount: %ld; ptr=%p\n",
4600 				atomic_long_read(&event->refcount), event)) {
4601 		/* leak to avoid use-after-free */
4602 		return;
4603 	}
4604 
4605 	_free_event(event);
4606 }
4607 
4608 /*
4609  * Remove user event from the owner task.
4610  */
perf_remove_from_owner(struct perf_event * event)4611 static void perf_remove_from_owner(struct perf_event *event)
4612 {
4613 	struct task_struct *owner;
4614 
4615 	rcu_read_lock();
4616 	/*
4617 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
4618 	 * observe !owner it means the list deletion is complete and we can
4619 	 * indeed free this event, otherwise we need to serialize on
4620 	 * owner->perf_event_mutex.
4621 	 */
4622 	owner = READ_ONCE(event->owner);
4623 	if (owner) {
4624 		/*
4625 		 * Since delayed_put_task_struct() also drops the last
4626 		 * task reference we can safely take a new reference
4627 		 * while holding the rcu_read_lock().
4628 		 */
4629 		get_task_struct(owner);
4630 	}
4631 	rcu_read_unlock();
4632 
4633 	if (owner) {
4634 		/*
4635 		 * If we're here through perf_event_exit_task() we're already
4636 		 * holding ctx->mutex which would be an inversion wrt. the
4637 		 * normal lock order.
4638 		 *
4639 		 * However we can safely take this lock because its the child
4640 		 * ctx->mutex.
4641 		 */
4642 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4643 
4644 		/*
4645 		 * We have to re-check the event->owner field, if it is cleared
4646 		 * we raced with perf_event_exit_task(), acquiring the mutex
4647 		 * ensured they're done, and we can proceed with freeing the
4648 		 * event.
4649 		 */
4650 		if (event->owner) {
4651 			list_del_init(&event->owner_entry);
4652 			smp_store_release(&event->owner, NULL);
4653 		}
4654 		mutex_unlock(&owner->perf_event_mutex);
4655 		put_task_struct(owner);
4656 	}
4657 }
4658 
put_event(struct perf_event * event)4659 static void put_event(struct perf_event *event)
4660 {
4661 	if (!atomic_long_dec_and_test(&event->refcount))
4662 		return;
4663 
4664 	_free_event(event);
4665 }
4666 
4667 /*
4668  * Kill an event dead; while event:refcount will preserve the event
4669  * object, it will not preserve its functionality. Once the last 'user'
4670  * gives up the object, we'll destroy the thing.
4671  */
perf_event_release_kernel(struct perf_event * event)4672 int perf_event_release_kernel(struct perf_event *event)
4673 {
4674 	struct perf_event_context *ctx = event->ctx;
4675 	struct perf_event *child, *tmp;
4676 	LIST_HEAD(free_list);
4677 
4678 	/*
4679 	 * If we got here through err_file: fput(event_file); we will not have
4680 	 * attached to a context yet.
4681 	 */
4682 	if (!ctx) {
4683 		WARN_ON_ONCE(event->attach_state &
4684 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4685 		goto no_ctx;
4686 	}
4687 
4688 	if (!is_kernel_event(event))
4689 		perf_remove_from_owner(event);
4690 
4691 	ctx = perf_event_ctx_lock(event);
4692 	WARN_ON_ONCE(ctx->parent_ctx);
4693 	perf_remove_from_context(event, DETACH_GROUP);
4694 
4695 	raw_spin_lock_irq(&ctx->lock);
4696 	/*
4697 	 * Mark this event as STATE_DEAD, there is no external reference to it
4698 	 * anymore.
4699 	 *
4700 	 * Anybody acquiring event->child_mutex after the below loop _must_
4701 	 * also see this, most importantly inherit_event() which will avoid
4702 	 * placing more children on the list.
4703 	 *
4704 	 * Thus this guarantees that we will in fact observe and kill _ALL_
4705 	 * child events.
4706 	 */
4707 	event->state = PERF_EVENT_STATE_DEAD;
4708 	raw_spin_unlock_irq(&ctx->lock);
4709 
4710 	perf_event_ctx_unlock(event, ctx);
4711 
4712 again:
4713 	mutex_lock(&event->child_mutex);
4714 	list_for_each_entry(child, &event->child_list, child_list) {
4715 
4716 		/*
4717 		 * Cannot change, child events are not migrated, see the
4718 		 * comment with perf_event_ctx_lock_nested().
4719 		 */
4720 		ctx = READ_ONCE(child->ctx);
4721 		/*
4722 		 * Since child_mutex nests inside ctx::mutex, we must jump
4723 		 * through hoops. We start by grabbing a reference on the ctx.
4724 		 *
4725 		 * Since the event cannot get freed while we hold the
4726 		 * child_mutex, the context must also exist and have a !0
4727 		 * reference count.
4728 		 */
4729 		get_ctx(ctx);
4730 
4731 		/*
4732 		 * Now that we have a ctx ref, we can drop child_mutex, and
4733 		 * acquire ctx::mutex without fear of it going away. Then we
4734 		 * can re-acquire child_mutex.
4735 		 */
4736 		mutex_unlock(&event->child_mutex);
4737 		mutex_lock(&ctx->mutex);
4738 		mutex_lock(&event->child_mutex);
4739 
4740 		/*
4741 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
4742 		 * state, if child is still the first entry, it didn't get freed
4743 		 * and we can continue doing so.
4744 		 */
4745 		tmp = list_first_entry_or_null(&event->child_list,
4746 					       struct perf_event, child_list);
4747 		if (tmp == child) {
4748 			perf_remove_from_context(child, DETACH_GROUP);
4749 			list_move(&child->child_list, &free_list);
4750 			/*
4751 			 * This matches the refcount bump in inherit_event();
4752 			 * this can't be the last reference.
4753 			 */
4754 			put_event(event);
4755 		}
4756 
4757 		mutex_unlock(&event->child_mutex);
4758 		mutex_unlock(&ctx->mutex);
4759 		put_ctx(ctx);
4760 		goto again;
4761 	}
4762 	mutex_unlock(&event->child_mutex);
4763 
4764 	list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4765 		void *var = &child->ctx->refcount;
4766 
4767 		list_del(&child->child_list);
4768 		free_event(child);
4769 
4770 		/*
4771 		 * Wake any perf_event_free_task() waiting for this event to be
4772 		 * freed.
4773 		 */
4774 		smp_mb(); /* pairs with wait_var_event() */
4775 		wake_up_var(var);
4776 	}
4777 
4778 no_ctx:
4779 	put_event(event); /* Must be the 'last' reference */
4780 	return 0;
4781 }
4782 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4783 
4784 /*
4785  * Called when the last reference to the file is gone.
4786  */
perf_release(struct inode * inode,struct file * file)4787 static int perf_release(struct inode *inode, struct file *file)
4788 {
4789 	perf_event_release_kernel(file->private_data);
4790 	return 0;
4791 }
4792 
__perf_event_read_value(struct perf_event * event,u64 * enabled,u64 * running)4793 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4794 {
4795 	struct perf_event *child;
4796 	u64 total = 0;
4797 
4798 	*enabled = 0;
4799 	*running = 0;
4800 
4801 	mutex_lock(&event->child_mutex);
4802 
4803 	(void)perf_event_read(event, false);
4804 	total += perf_event_count(event);
4805 
4806 	*enabled += event->total_time_enabled +
4807 			atomic64_read(&event->child_total_time_enabled);
4808 	*running += event->total_time_running +
4809 			atomic64_read(&event->child_total_time_running);
4810 
4811 	list_for_each_entry(child, &event->child_list, child_list) {
4812 		(void)perf_event_read(child, false);
4813 		total += perf_event_count(child);
4814 		*enabled += child->total_time_enabled;
4815 		*running += child->total_time_running;
4816 	}
4817 	mutex_unlock(&event->child_mutex);
4818 
4819 	return total;
4820 }
4821 
perf_event_read_value(struct perf_event * event,u64 * enabled,u64 * running)4822 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4823 {
4824 	struct perf_event_context *ctx;
4825 	u64 count;
4826 
4827 	ctx = perf_event_ctx_lock(event);
4828 	count = __perf_event_read_value(event, enabled, running);
4829 	perf_event_ctx_unlock(event, ctx);
4830 
4831 	return count;
4832 }
4833 EXPORT_SYMBOL_GPL(perf_event_read_value);
4834 
__perf_read_group_add(struct perf_event * leader,u64 read_format,u64 * values)4835 static int __perf_read_group_add(struct perf_event *leader,
4836 					u64 read_format, u64 *values)
4837 {
4838 	struct perf_event_context *ctx = leader->ctx;
4839 	struct perf_event *sub;
4840 	unsigned long flags;
4841 	int n = 1; /* skip @nr */
4842 	int ret;
4843 
4844 	ret = perf_event_read(leader, true);
4845 	if (ret)
4846 		return ret;
4847 
4848 	raw_spin_lock_irqsave(&ctx->lock, flags);
4849 
4850 	/*
4851 	 * Since we co-schedule groups, {enabled,running} times of siblings
4852 	 * will be identical to those of the leader, so we only publish one
4853 	 * set.
4854 	 */
4855 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4856 		values[n++] += leader->total_time_enabled +
4857 			atomic64_read(&leader->child_total_time_enabled);
4858 	}
4859 
4860 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4861 		values[n++] += leader->total_time_running +
4862 			atomic64_read(&leader->child_total_time_running);
4863 	}
4864 
4865 	/*
4866 	 * Write {count,id} tuples for every sibling.
4867 	 */
4868 	values[n++] += perf_event_count(leader);
4869 	if (read_format & PERF_FORMAT_ID)
4870 		values[n++] = primary_event_id(leader);
4871 
4872 	for_each_sibling_event(sub, leader) {
4873 		values[n++] += perf_event_count(sub);
4874 		if (read_format & PERF_FORMAT_ID)
4875 			values[n++] = primary_event_id(sub);
4876 	}
4877 
4878 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4879 	return 0;
4880 }
4881 
perf_read_group(struct perf_event * event,u64 read_format,char __user * buf)4882 static int perf_read_group(struct perf_event *event,
4883 				   u64 read_format, char __user *buf)
4884 {
4885 	struct perf_event *leader = event->group_leader, *child;
4886 	struct perf_event_context *ctx = leader->ctx;
4887 	int ret;
4888 	u64 *values;
4889 
4890 	lockdep_assert_held(&ctx->mutex);
4891 
4892 	values = kzalloc(event->read_size, GFP_KERNEL);
4893 	if (!values)
4894 		return -ENOMEM;
4895 
4896 	values[0] = 1 + leader->nr_siblings;
4897 
4898 	/*
4899 	 * By locking the child_mutex of the leader we effectively
4900 	 * lock the child list of all siblings.. XXX explain how.
4901 	 */
4902 	mutex_lock(&leader->child_mutex);
4903 
4904 	ret = __perf_read_group_add(leader, read_format, values);
4905 	if (ret)
4906 		goto unlock;
4907 
4908 	list_for_each_entry(child, &leader->child_list, child_list) {
4909 		ret = __perf_read_group_add(child, read_format, values);
4910 		if (ret)
4911 			goto unlock;
4912 	}
4913 
4914 	mutex_unlock(&leader->child_mutex);
4915 
4916 	ret = event->read_size;
4917 	if (copy_to_user(buf, values, event->read_size))
4918 		ret = -EFAULT;
4919 	goto out;
4920 
4921 unlock:
4922 	mutex_unlock(&leader->child_mutex);
4923 out:
4924 	kfree(values);
4925 	return ret;
4926 }
4927 
perf_read_one(struct perf_event * event,u64 read_format,char __user * buf)4928 static int perf_read_one(struct perf_event *event,
4929 				 u64 read_format, char __user *buf)
4930 {
4931 	u64 enabled, running;
4932 	u64 values[4];
4933 	int n = 0;
4934 
4935 	values[n++] = __perf_event_read_value(event, &enabled, &running);
4936 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4937 		values[n++] = enabled;
4938 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4939 		values[n++] = running;
4940 	if (read_format & PERF_FORMAT_ID)
4941 		values[n++] = primary_event_id(event);
4942 
4943 	if (copy_to_user(buf, values, n * sizeof(u64)))
4944 		return -EFAULT;
4945 
4946 	return n * sizeof(u64);
4947 }
4948 
is_event_hup(struct perf_event * event)4949 static bool is_event_hup(struct perf_event *event)
4950 {
4951 	bool no_children;
4952 
4953 	if (event->state > PERF_EVENT_STATE_EXIT)
4954 		return false;
4955 
4956 	mutex_lock(&event->child_mutex);
4957 	no_children = list_empty(&event->child_list);
4958 	mutex_unlock(&event->child_mutex);
4959 	return no_children;
4960 }
4961 
4962 /*
4963  * Read the performance event - simple non blocking version for now
4964  */
4965 static ssize_t
__perf_read(struct perf_event * event,char __user * buf,size_t count)4966 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4967 {
4968 	u64 read_format = event->attr.read_format;
4969 	int ret;
4970 
4971 	/*
4972 	 * Return end-of-file for a read on an event that is in
4973 	 * error state (i.e. because it was pinned but it couldn't be
4974 	 * scheduled on to the CPU at some point).
4975 	 */
4976 	if (event->state == PERF_EVENT_STATE_ERROR)
4977 		return 0;
4978 
4979 	if (count < event->read_size)
4980 		return -ENOSPC;
4981 
4982 	WARN_ON_ONCE(event->ctx->parent_ctx);
4983 	if (read_format & PERF_FORMAT_GROUP)
4984 		ret = perf_read_group(event, read_format, buf);
4985 	else
4986 		ret = perf_read_one(event, read_format, buf);
4987 
4988 	return ret;
4989 }
4990 
4991 static ssize_t
perf_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)4992 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4993 {
4994 	struct perf_event *event = file->private_data;
4995 	struct perf_event_context *ctx;
4996 	int ret;
4997 
4998 	ret = security_perf_event_read(event);
4999 	if (ret)
5000 		return ret;
5001 
5002 	ctx = perf_event_ctx_lock(event);
5003 	ret = __perf_read(event, buf, count);
5004 	perf_event_ctx_unlock(event, ctx);
5005 
5006 	return ret;
5007 }
5008 
perf_poll(struct file * file,poll_table * wait)5009 static __poll_t perf_poll(struct file *file, poll_table *wait)
5010 {
5011 	struct perf_event *event = file->private_data;
5012 	struct ring_buffer *rb;
5013 	__poll_t events = EPOLLHUP;
5014 
5015 	poll_wait(file, &event->waitq, wait);
5016 
5017 	if (is_event_hup(event))
5018 		return events;
5019 
5020 	/*
5021 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
5022 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5023 	 */
5024 	mutex_lock(&event->mmap_mutex);
5025 	rb = event->rb;
5026 	if (rb)
5027 		events = atomic_xchg(&rb->poll, 0);
5028 	mutex_unlock(&event->mmap_mutex);
5029 	return events;
5030 }
5031 
_perf_event_reset(struct perf_event * event)5032 static void _perf_event_reset(struct perf_event *event)
5033 {
5034 	(void)perf_event_read(event, false);
5035 	local64_set(&event->count, 0);
5036 	perf_event_update_userpage(event);
5037 }
5038 
5039 /*
5040  * Holding the top-level event's child_mutex means that any
5041  * descendant process that has inherited this event will block
5042  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5043  * task existence requirements of perf_event_enable/disable.
5044  */
perf_event_for_each_child(struct perf_event * event,void (* func)(struct perf_event *))5045 static void perf_event_for_each_child(struct perf_event *event,
5046 					void (*func)(struct perf_event *))
5047 {
5048 	struct perf_event *child;
5049 
5050 	WARN_ON_ONCE(event->ctx->parent_ctx);
5051 
5052 	mutex_lock(&event->child_mutex);
5053 	func(event);
5054 	list_for_each_entry(child, &event->child_list, child_list)
5055 		func(child);
5056 	mutex_unlock(&event->child_mutex);
5057 }
5058 
perf_event_for_each(struct perf_event * event,void (* func)(struct perf_event *))5059 static void perf_event_for_each(struct perf_event *event,
5060 				  void (*func)(struct perf_event *))
5061 {
5062 	struct perf_event_context *ctx = event->ctx;
5063 	struct perf_event *sibling;
5064 
5065 	lockdep_assert_held(&ctx->mutex);
5066 
5067 	event = event->group_leader;
5068 
5069 	perf_event_for_each_child(event, func);
5070 	for_each_sibling_event(sibling, event)
5071 		perf_event_for_each_child(sibling, func);
5072 }
5073 
__perf_event_period(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)5074 static void __perf_event_period(struct perf_event *event,
5075 				struct perf_cpu_context *cpuctx,
5076 				struct perf_event_context *ctx,
5077 				void *info)
5078 {
5079 	u64 value = *((u64 *)info);
5080 	bool active;
5081 
5082 	if (event->attr.freq) {
5083 		event->attr.sample_freq = value;
5084 	} else {
5085 		event->attr.sample_period = value;
5086 		event->hw.sample_period = value;
5087 	}
5088 
5089 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
5090 	if (active) {
5091 		perf_pmu_disable(ctx->pmu);
5092 		/*
5093 		 * We could be throttled; unthrottle now to avoid the tick
5094 		 * trying to unthrottle while we already re-started the event.
5095 		 */
5096 		if (event->hw.interrupts == MAX_INTERRUPTS) {
5097 			event->hw.interrupts = 0;
5098 			perf_log_throttle(event, 1);
5099 		}
5100 		event->pmu->stop(event, PERF_EF_UPDATE);
5101 	}
5102 
5103 	local64_set(&event->hw.period_left, 0);
5104 
5105 	if (active) {
5106 		event->pmu->start(event, PERF_EF_RELOAD);
5107 		perf_pmu_enable(ctx->pmu);
5108 	}
5109 }
5110 
perf_event_check_period(struct perf_event * event,u64 value)5111 static int perf_event_check_period(struct perf_event *event, u64 value)
5112 {
5113 	return event->pmu->check_period(event, value);
5114 }
5115 
perf_event_period(struct perf_event * event,u64 __user * arg)5116 static int perf_event_period(struct perf_event *event, u64 __user *arg)
5117 {
5118 	u64 value;
5119 
5120 	if (!is_sampling_event(event))
5121 		return -EINVAL;
5122 
5123 	if (copy_from_user(&value, arg, sizeof(value)))
5124 		return -EFAULT;
5125 
5126 	if (!value)
5127 		return -EINVAL;
5128 
5129 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5130 		return -EINVAL;
5131 
5132 	if (perf_event_check_period(event, value))
5133 		return -EINVAL;
5134 
5135 	if (!event->attr.freq && (value & (1ULL << 63)))
5136 		return -EINVAL;
5137 
5138 	event_function_call(event, __perf_event_period, &value);
5139 
5140 	return 0;
5141 }
5142 
5143 static const struct file_operations perf_fops;
5144 
perf_fget_light(int fd,struct fd * p)5145 static inline int perf_fget_light(int fd, struct fd *p)
5146 {
5147 	struct fd f = fdget(fd);
5148 	if (!f.file)
5149 		return -EBADF;
5150 
5151 	if (f.file->f_op != &perf_fops) {
5152 		fdput(f);
5153 		return -EBADF;
5154 	}
5155 	*p = f;
5156 	return 0;
5157 }
5158 
5159 static int perf_event_set_output(struct perf_event *event,
5160 				 struct perf_event *output_event);
5161 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5162 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5163 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5164 			  struct perf_event_attr *attr);
5165 
_perf_ioctl(struct perf_event * event,unsigned int cmd,unsigned long arg)5166 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5167 {
5168 	void (*func)(struct perf_event *);
5169 	u32 flags = arg;
5170 
5171 	switch (cmd) {
5172 	case PERF_EVENT_IOC_ENABLE:
5173 		func = _perf_event_enable;
5174 		break;
5175 	case PERF_EVENT_IOC_DISABLE:
5176 		func = _perf_event_disable;
5177 		break;
5178 	case PERF_EVENT_IOC_RESET:
5179 		func = _perf_event_reset;
5180 		break;
5181 
5182 	case PERF_EVENT_IOC_REFRESH:
5183 		return _perf_event_refresh(event, arg);
5184 
5185 	case PERF_EVENT_IOC_PERIOD:
5186 		return perf_event_period(event, (u64 __user *)arg);
5187 
5188 	case PERF_EVENT_IOC_ID:
5189 	{
5190 		u64 id = primary_event_id(event);
5191 
5192 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5193 			return -EFAULT;
5194 		return 0;
5195 	}
5196 
5197 	case PERF_EVENT_IOC_SET_OUTPUT:
5198 	{
5199 		int ret;
5200 		if (arg != -1) {
5201 			struct perf_event *output_event;
5202 			struct fd output;
5203 			ret = perf_fget_light(arg, &output);
5204 			if (ret)
5205 				return ret;
5206 			output_event = output.file->private_data;
5207 			ret = perf_event_set_output(event, output_event);
5208 			fdput(output);
5209 		} else {
5210 			ret = perf_event_set_output(event, NULL);
5211 		}
5212 		return ret;
5213 	}
5214 
5215 	case PERF_EVENT_IOC_SET_FILTER:
5216 		return perf_event_set_filter(event, (void __user *)arg);
5217 
5218 	case PERF_EVENT_IOC_SET_BPF:
5219 		return perf_event_set_bpf_prog(event, arg);
5220 
5221 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5222 		struct ring_buffer *rb;
5223 
5224 		rcu_read_lock();
5225 		rb = rcu_dereference(event->rb);
5226 		if (!rb || !rb->nr_pages) {
5227 			rcu_read_unlock();
5228 			return -EINVAL;
5229 		}
5230 		rb_toggle_paused(rb, !!arg);
5231 		rcu_read_unlock();
5232 		return 0;
5233 	}
5234 
5235 	case PERF_EVENT_IOC_QUERY_BPF:
5236 		return perf_event_query_prog_array(event, (void __user *)arg);
5237 
5238 	case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5239 		struct perf_event_attr new_attr;
5240 		int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5241 					 &new_attr);
5242 
5243 		if (err)
5244 			return err;
5245 
5246 		return perf_event_modify_attr(event,  &new_attr);
5247 	}
5248 	default:
5249 		return -ENOTTY;
5250 	}
5251 
5252 	if (flags & PERF_IOC_FLAG_GROUP)
5253 		perf_event_for_each(event, func);
5254 	else
5255 		perf_event_for_each_child(event, func);
5256 
5257 	return 0;
5258 }
5259 
perf_ioctl(struct file * file,unsigned int cmd,unsigned long arg)5260 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5261 {
5262 	struct perf_event *event = file->private_data;
5263 	struct perf_event_context *ctx;
5264 	long ret;
5265 
5266 	/* Treat ioctl like writes as it is likely a mutating operation. */
5267 	ret = security_perf_event_write(event);
5268 	if (ret)
5269 		return ret;
5270 
5271 	ctx = perf_event_ctx_lock(event);
5272 	ret = _perf_ioctl(event, cmd, arg);
5273 	perf_event_ctx_unlock(event, ctx);
5274 
5275 	return ret;
5276 }
5277 
5278 #ifdef CONFIG_COMPAT
perf_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)5279 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5280 				unsigned long arg)
5281 {
5282 	switch (_IOC_NR(cmd)) {
5283 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5284 	case _IOC_NR(PERF_EVENT_IOC_ID):
5285 	case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5286 	case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5287 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5288 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5289 			cmd &= ~IOCSIZE_MASK;
5290 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5291 		}
5292 		break;
5293 	}
5294 	return perf_ioctl(file, cmd, arg);
5295 }
5296 #else
5297 # define perf_compat_ioctl NULL
5298 #endif
5299 
perf_event_task_enable(void)5300 int perf_event_task_enable(void)
5301 {
5302 	struct perf_event_context *ctx;
5303 	struct perf_event *event;
5304 
5305 	mutex_lock(&current->perf_event_mutex);
5306 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5307 		ctx = perf_event_ctx_lock(event);
5308 		perf_event_for_each_child(event, _perf_event_enable);
5309 		perf_event_ctx_unlock(event, ctx);
5310 	}
5311 	mutex_unlock(&current->perf_event_mutex);
5312 
5313 	return 0;
5314 }
5315 
perf_event_task_disable(void)5316 int perf_event_task_disable(void)
5317 {
5318 	struct perf_event_context *ctx;
5319 	struct perf_event *event;
5320 
5321 	mutex_lock(&current->perf_event_mutex);
5322 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5323 		ctx = perf_event_ctx_lock(event);
5324 		perf_event_for_each_child(event, _perf_event_disable);
5325 		perf_event_ctx_unlock(event, ctx);
5326 	}
5327 	mutex_unlock(&current->perf_event_mutex);
5328 
5329 	return 0;
5330 }
5331 
perf_event_index(struct perf_event * event)5332 static int perf_event_index(struct perf_event *event)
5333 {
5334 	if (event->hw.state & PERF_HES_STOPPED)
5335 		return 0;
5336 
5337 	if (event->state != PERF_EVENT_STATE_ACTIVE)
5338 		return 0;
5339 
5340 	return event->pmu->event_idx(event);
5341 }
5342 
calc_timer_values(struct perf_event * event,u64 * now,u64 * enabled,u64 * running)5343 static void calc_timer_values(struct perf_event *event,
5344 				u64 *now,
5345 				u64 *enabled,
5346 				u64 *running)
5347 {
5348 	u64 ctx_time;
5349 
5350 	*now = perf_clock();
5351 	ctx_time = event->shadow_ctx_time + *now;
5352 	__perf_update_times(event, ctx_time, enabled, running);
5353 }
5354 
perf_event_init_userpage(struct perf_event * event)5355 static void perf_event_init_userpage(struct perf_event *event)
5356 {
5357 	struct perf_event_mmap_page *userpg;
5358 	struct ring_buffer *rb;
5359 
5360 	rcu_read_lock();
5361 	rb = rcu_dereference(event->rb);
5362 	if (!rb)
5363 		goto unlock;
5364 
5365 	userpg = rb->user_page;
5366 
5367 	/* Allow new userspace to detect that bit 0 is deprecated */
5368 	userpg->cap_bit0_is_deprecated = 1;
5369 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5370 	userpg->data_offset = PAGE_SIZE;
5371 	userpg->data_size = perf_data_size(rb);
5372 
5373 unlock:
5374 	rcu_read_unlock();
5375 }
5376 
arch_perf_update_userpage(struct perf_event * event,struct perf_event_mmap_page * userpg,u64 now)5377 void __weak arch_perf_update_userpage(
5378 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5379 {
5380 }
5381 
5382 /*
5383  * Callers need to ensure there can be no nesting of this function, otherwise
5384  * the seqlock logic goes bad. We can not serialize this because the arch
5385  * code calls this from NMI context.
5386  */
perf_event_update_userpage(struct perf_event * event)5387 void perf_event_update_userpage(struct perf_event *event)
5388 {
5389 	struct perf_event_mmap_page *userpg;
5390 	struct ring_buffer *rb;
5391 	u64 enabled, running, now;
5392 
5393 	rcu_read_lock();
5394 	rb = rcu_dereference(event->rb);
5395 	if (!rb)
5396 		goto unlock;
5397 
5398 	/*
5399 	 * compute total_time_enabled, total_time_running
5400 	 * based on snapshot values taken when the event
5401 	 * was last scheduled in.
5402 	 *
5403 	 * we cannot simply called update_context_time()
5404 	 * because of locking issue as we can be called in
5405 	 * NMI context
5406 	 */
5407 	calc_timer_values(event, &now, &enabled, &running);
5408 
5409 	userpg = rb->user_page;
5410 	/*
5411 	 * Disable preemption to guarantee consistent time stamps are stored to
5412 	 * the user page.
5413 	 */
5414 	preempt_disable();
5415 	++userpg->lock;
5416 	barrier();
5417 	userpg->index = perf_event_index(event);
5418 	userpg->offset = perf_event_count(event);
5419 	if (userpg->index)
5420 		userpg->offset -= local64_read(&event->hw.prev_count);
5421 
5422 	userpg->time_enabled = enabled +
5423 			atomic64_read(&event->child_total_time_enabled);
5424 
5425 	userpg->time_running = running +
5426 			atomic64_read(&event->child_total_time_running);
5427 
5428 	arch_perf_update_userpage(event, userpg, now);
5429 
5430 	barrier();
5431 	++userpg->lock;
5432 	preempt_enable();
5433 unlock:
5434 	rcu_read_unlock();
5435 }
5436 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5437 
perf_mmap_fault(struct vm_fault * vmf)5438 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5439 {
5440 	struct perf_event *event = vmf->vma->vm_file->private_data;
5441 	struct ring_buffer *rb;
5442 	vm_fault_t ret = VM_FAULT_SIGBUS;
5443 
5444 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
5445 		if (vmf->pgoff == 0)
5446 			ret = 0;
5447 		return ret;
5448 	}
5449 
5450 	rcu_read_lock();
5451 	rb = rcu_dereference(event->rb);
5452 	if (!rb)
5453 		goto unlock;
5454 
5455 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5456 		goto unlock;
5457 
5458 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5459 	if (!vmf->page)
5460 		goto unlock;
5461 
5462 	get_page(vmf->page);
5463 	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5464 	vmf->page->index   = vmf->pgoff;
5465 
5466 	ret = 0;
5467 unlock:
5468 	rcu_read_unlock();
5469 
5470 	return ret;
5471 }
5472 
ring_buffer_attach(struct perf_event * event,struct ring_buffer * rb)5473 static void ring_buffer_attach(struct perf_event *event,
5474 			       struct ring_buffer *rb)
5475 {
5476 	struct ring_buffer *old_rb = NULL;
5477 	unsigned long flags;
5478 
5479 	if (event->rb) {
5480 		/*
5481 		 * Should be impossible, we set this when removing
5482 		 * event->rb_entry and wait/clear when adding event->rb_entry.
5483 		 */
5484 		WARN_ON_ONCE(event->rcu_pending);
5485 
5486 		old_rb = event->rb;
5487 		spin_lock_irqsave(&old_rb->event_lock, flags);
5488 		list_del_rcu(&event->rb_entry);
5489 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
5490 
5491 		event->rcu_batches = get_state_synchronize_rcu();
5492 		event->rcu_pending = 1;
5493 	}
5494 
5495 	if (rb) {
5496 		if (event->rcu_pending) {
5497 			cond_synchronize_rcu(event->rcu_batches);
5498 			event->rcu_pending = 0;
5499 		}
5500 
5501 		spin_lock_irqsave(&rb->event_lock, flags);
5502 		list_add_rcu(&event->rb_entry, &rb->event_list);
5503 		spin_unlock_irqrestore(&rb->event_lock, flags);
5504 	}
5505 
5506 	/*
5507 	 * Avoid racing with perf_mmap_close(AUX): stop the event
5508 	 * before swizzling the event::rb pointer; if it's getting
5509 	 * unmapped, its aux_mmap_count will be 0 and it won't
5510 	 * restart. See the comment in __perf_pmu_output_stop().
5511 	 *
5512 	 * Data will inevitably be lost when set_output is done in
5513 	 * mid-air, but then again, whoever does it like this is
5514 	 * not in for the data anyway.
5515 	 */
5516 	if (has_aux(event))
5517 		perf_event_stop(event, 0);
5518 
5519 	rcu_assign_pointer(event->rb, rb);
5520 
5521 	if (old_rb) {
5522 		ring_buffer_put(old_rb);
5523 		/*
5524 		 * Since we detached before setting the new rb, so that we
5525 		 * could attach the new rb, we could have missed a wakeup.
5526 		 * Provide it now.
5527 		 */
5528 		wake_up_all(&event->waitq);
5529 	}
5530 }
5531 
ring_buffer_wakeup(struct perf_event * event)5532 static void ring_buffer_wakeup(struct perf_event *event)
5533 {
5534 	struct ring_buffer *rb;
5535 
5536 	rcu_read_lock();
5537 	rb = rcu_dereference(event->rb);
5538 	if (rb) {
5539 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5540 			wake_up_all(&event->waitq);
5541 	}
5542 	rcu_read_unlock();
5543 }
5544 
ring_buffer_get(struct perf_event * event)5545 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5546 {
5547 	struct ring_buffer *rb;
5548 
5549 	rcu_read_lock();
5550 	rb = rcu_dereference(event->rb);
5551 	if (rb) {
5552 		if (!refcount_inc_not_zero(&rb->refcount))
5553 			rb = NULL;
5554 	}
5555 	rcu_read_unlock();
5556 
5557 	return rb;
5558 }
5559 
ring_buffer_put(struct ring_buffer * rb)5560 void ring_buffer_put(struct ring_buffer *rb)
5561 {
5562 	if (!refcount_dec_and_test(&rb->refcount))
5563 		return;
5564 
5565 	WARN_ON_ONCE(!list_empty(&rb->event_list));
5566 
5567 	call_rcu(&rb->rcu_head, rb_free_rcu);
5568 }
5569 
perf_mmap_open(struct vm_area_struct * vma)5570 static void perf_mmap_open(struct vm_area_struct *vma)
5571 {
5572 	struct perf_event *event = vma->vm_file->private_data;
5573 
5574 	atomic_inc(&event->mmap_count);
5575 	atomic_inc(&event->rb->mmap_count);
5576 
5577 	if (vma->vm_pgoff)
5578 		atomic_inc(&event->rb->aux_mmap_count);
5579 
5580 	if (event->pmu->event_mapped)
5581 		event->pmu->event_mapped(event, vma->vm_mm);
5582 }
5583 
5584 static void perf_pmu_output_stop(struct perf_event *event);
5585 
5586 /*
5587  * A buffer can be mmap()ed multiple times; either directly through the same
5588  * event, or through other events by use of perf_event_set_output().
5589  *
5590  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5591  * the buffer here, where we still have a VM context. This means we need
5592  * to detach all events redirecting to us.
5593  */
perf_mmap_close(struct vm_area_struct * vma)5594 static void perf_mmap_close(struct vm_area_struct *vma)
5595 {
5596 	struct perf_event *event = vma->vm_file->private_data;
5597 
5598 	struct ring_buffer *rb = ring_buffer_get(event);
5599 	struct user_struct *mmap_user = rb->mmap_user;
5600 	int mmap_locked = rb->mmap_locked;
5601 	unsigned long size = perf_data_size(rb);
5602 
5603 	if (event->pmu->event_unmapped)
5604 		event->pmu->event_unmapped(event, vma->vm_mm);
5605 
5606 	/*
5607 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
5608 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
5609 	 * serialize with perf_mmap here.
5610 	 */
5611 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5612 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5613 		/*
5614 		 * Stop all AUX events that are writing to this buffer,
5615 		 * so that we can free its AUX pages and corresponding PMU
5616 		 * data. Note that after rb::aux_mmap_count dropped to zero,
5617 		 * they won't start any more (see perf_aux_output_begin()).
5618 		 */
5619 		perf_pmu_output_stop(event);
5620 
5621 		/* now it's safe to free the pages */
5622 		atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
5623 		atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
5624 
5625 		/* this has to be the last one */
5626 		rb_free_aux(rb);
5627 		WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
5628 
5629 		mutex_unlock(&event->mmap_mutex);
5630 	}
5631 
5632 	atomic_dec(&rb->mmap_count);
5633 
5634 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5635 		goto out_put;
5636 
5637 	ring_buffer_attach(event, NULL);
5638 	mutex_unlock(&event->mmap_mutex);
5639 
5640 	/* If there's still other mmap()s of this buffer, we're done. */
5641 	if (atomic_read(&rb->mmap_count))
5642 		goto out_put;
5643 
5644 	/*
5645 	 * No other mmap()s, detach from all other events that might redirect
5646 	 * into the now unreachable buffer. Somewhat complicated by the
5647 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5648 	 */
5649 again:
5650 	rcu_read_lock();
5651 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5652 		if (!atomic_long_inc_not_zero(&event->refcount)) {
5653 			/*
5654 			 * This event is en-route to free_event() which will
5655 			 * detach it and remove it from the list.
5656 			 */
5657 			continue;
5658 		}
5659 		rcu_read_unlock();
5660 
5661 		mutex_lock(&event->mmap_mutex);
5662 		/*
5663 		 * Check we didn't race with perf_event_set_output() which can
5664 		 * swizzle the rb from under us while we were waiting to
5665 		 * acquire mmap_mutex.
5666 		 *
5667 		 * If we find a different rb; ignore this event, a next
5668 		 * iteration will no longer find it on the list. We have to
5669 		 * still restart the iteration to make sure we're not now
5670 		 * iterating the wrong list.
5671 		 */
5672 		if (event->rb == rb)
5673 			ring_buffer_attach(event, NULL);
5674 
5675 		mutex_unlock(&event->mmap_mutex);
5676 		put_event(event);
5677 
5678 		/*
5679 		 * Restart the iteration; either we're on the wrong list or
5680 		 * destroyed its integrity by doing a deletion.
5681 		 */
5682 		goto again;
5683 	}
5684 	rcu_read_unlock();
5685 
5686 	/*
5687 	 * It could be there's still a few 0-ref events on the list; they'll
5688 	 * get cleaned up by free_event() -- they'll also still have their
5689 	 * ref on the rb and will free it whenever they are done with it.
5690 	 *
5691 	 * Aside from that, this buffer is 'fully' detached and unmapped,
5692 	 * undo the VM accounting.
5693 	 */
5694 
5695 	atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
5696 			&mmap_user->locked_vm);
5697 	atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
5698 	free_uid(mmap_user);
5699 
5700 out_put:
5701 	ring_buffer_put(rb); /* could be last */
5702 }
5703 
5704 static const struct vm_operations_struct perf_mmap_vmops = {
5705 	.open		= perf_mmap_open,
5706 	.close		= perf_mmap_close, /* non mergeable */
5707 	.fault		= perf_mmap_fault,
5708 	.page_mkwrite	= perf_mmap_fault,
5709 };
5710 
perf_mmap(struct file * file,struct vm_area_struct * vma)5711 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5712 {
5713 	struct perf_event *event = file->private_data;
5714 	unsigned long user_locked, user_lock_limit;
5715 	struct user_struct *user = current_user();
5716 	unsigned long locked, lock_limit;
5717 	struct ring_buffer *rb = NULL;
5718 	unsigned long vma_size;
5719 	unsigned long nr_pages;
5720 	long user_extra = 0, extra = 0;
5721 	int ret = 0, flags = 0;
5722 
5723 	/*
5724 	 * Don't allow mmap() of inherited per-task counters. This would
5725 	 * create a performance issue due to all children writing to the
5726 	 * same rb.
5727 	 */
5728 	if (event->cpu == -1 && event->attr.inherit)
5729 		return -EINVAL;
5730 
5731 	if (!(vma->vm_flags & VM_SHARED))
5732 		return -EINVAL;
5733 
5734 	ret = security_perf_event_read(event);
5735 	if (ret)
5736 		return ret;
5737 
5738 	vma_size = vma->vm_end - vma->vm_start;
5739 
5740 	if (vma->vm_pgoff == 0) {
5741 		nr_pages = (vma_size / PAGE_SIZE) - 1;
5742 	} else {
5743 		/*
5744 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5745 		 * mapped, all subsequent mappings should have the same size
5746 		 * and offset. Must be above the normal perf buffer.
5747 		 */
5748 		u64 aux_offset, aux_size;
5749 
5750 		if (!event->rb)
5751 			return -EINVAL;
5752 
5753 		nr_pages = vma_size / PAGE_SIZE;
5754 
5755 		mutex_lock(&event->mmap_mutex);
5756 		ret = -EINVAL;
5757 
5758 		rb = event->rb;
5759 		if (!rb)
5760 			goto aux_unlock;
5761 
5762 		aux_offset = READ_ONCE(rb->user_page->aux_offset);
5763 		aux_size = READ_ONCE(rb->user_page->aux_size);
5764 
5765 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5766 			goto aux_unlock;
5767 
5768 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5769 			goto aux_unlock;
5770 
5771 		/* already mapped with a different offset */
5772 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5773 			goto aux_unlock;
5774 
5775 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5776 			goto aux_unlock;
5777 
5778 		/* already mapped with a different size */
5779 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5780 			goto aux_unlock;
5781 
5782 		if (!is_power_of_2(nr_pages))
5783 			goto aux_unlock;
5784 
5785 		if (!atomic_inc_not_zero(&rb->mmap_count))
5786 			goto aux_unlock;
5787 
5788 		if (rb_has_aux(rb)) {
5789 			atomic_inc(&rb->aux_mmap_count);
5790 			ret = 0;
5791 			goto unlock;
5792 		}
5793 
5794 		atomic_set(&rb->aux_mmap_count, 1);
5795 		user_extra = nr_pages;
5796 
5797 		goto accounting;
5798 	}
5799 
5800 	/*
5801 	 * If we have rb pages ensure they're a power-of-two number, so we
5802 	 * can do bitmasks instead of modulo.
5803 	 */
5804 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
5805 		return -EINVAL;
5806 
5807 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
5808 		return -EINVAL;
5809 
5810 	WARN_ON_ONCE(event->ctx->parent_ctx);
5811 again:
5812 	mutex_lock(&event->mmap_mutex);
5813 	if (event->rb) {
5814 		if (event->rb->nr_pages != nr_pages) {
5815 			ret = -EINVAL;
5816 			goto unlock;
5817 		}
5818 
5819 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5820 			/*
5821 			 * Raced against perf_mmap_close() through
5822 			 * perf_event_set_output(). Try again, hope for better
5823 			 * luck.
5824 			 */
5825 			mutex_unlock(&event->mmap_mutex);
5826 			goto again;
5827 		}
5828 
5829 		goto unlock;
5830 	}
5831 
5832 	user_extra = nr_pages + 1;
5833 
5834 accounting:
5835 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5836 
5837 	/*
5838 	 * Increase the limit linearly with more CPUs:
5839 	 */
5840 	user_lock_limit *= num_online_cpus();
5841 
5842 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5843 
5844 	if (user_locked <= user_lock_limit) {
5845 		/* charge all to locked_vm */
5846 	} else if (atomic_long_read(&user->locked_vm) >= user_lock_limit) {
5847 		/* charge all to pinned_vm */
5848 		extra = user_extra;
5849 		user_extra = 0;
5850 	} else {
5851 		/*
5852 		 * charge locked_vm until it hits user_lock_limit;
5853 		 * charge the rest from pinned_vm
5854 		 */
5855 		extra = user_locked - user_lock_limit;
5856 		user_extra -= extra;
5857 	}
5858 
5859 	lock_limit = rlimit(RLIMIT_MEMLOCK);
5860 	lock_limit >>= PAGE_SHIFT;
5861 	locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
5862 
5863 	if ((locked > lock_limit) && perf_is_paranoid() &&
5864 		!capable(CAP_IPC_LOCK)) {
5865 		ret = -EPERM;
5866 		goto unlock;
5867 	}
5868 
5869 	WARN_ON(!rb && event->rb);
5870 
5871 	if (vma->vm_flags & VM_WRITE)
5872 		flags |= RING_BUFFER_WRITABLE;
5873 
5874 	if (!rb) {
5875 		rb = rb_alloc(nr_pages,
5876 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
5877 			      event->cpu, flags);
5878 
5879 		if (!rb) {
5880 			ret = -ENOMEM;
5881 			goto unlock;
5882 		}
5883 
5884 		atomic_set(&rb->mmap_count, 1);
5885 		rb->mmap_user = get_current_user();
5886 		rb->mmap_locked = extra;
5887 
5888 		ring_buffer_attach(event, rb);
5889 
5890 		perf_event_init_userpage(event);
5891 		perf_event_update_userpage(event);
5892 	} else {
5893 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5894 				   event->attr.aux_watermark, flags);
5895 		if (!ret)
5896 			rb->aux_mmap_locked = extra;
5897 	}
5898 
5899 unlock:
5900 	if (!ret) {
5901 		atomic_long_add(user_extra, &user->locked_vm);
5902 		atomic64_add(extra, &vma->vm_mm->pinned_vm);
5903 
5904 		atomic_inc(&event->mmap_count);
5905 	} else if (rb) {
5906 		atomic_dec(&rb->mmap_count);
5907 	}
5908 aux_unlock:
5909 	mutex_unlock(&event->mmap_mutex);
5910 
5911 	/*
5912 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
5913 	 * vma.
5914 	 */
5915 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5916 	vma->vm_ops = &perf_mmap_vmops;
5917 
5918 	if (event->pmu->event_mapped)
5919 		event->pmu->event_mapped(event, vma->vm_mm);
5920 
5921 	return ret;
5922 }
5923 
perf_fasync(int fd,struct file * filp,int on)5924 static int perf_fasync(int fd, struct file *filp, int on)
5925 {
5926 	struct inode *inode = file_inode(filp);
5927 	struct perf_event *event = filp->private_data;
5928 	int retval;
5929 
5930 	inode_lock(inode);
5931 	retval = fasync_helper(fd, filp, on, &event->fasync);
5932 	inode_unlock(inode);
5933 
5934 	if (retval < 0)
5935 		return retval;
5936 
5937 	return 0;
5938 }
5939 
5940 static const struct file_operations perf_fops = {
5941 	.llseek			= no_llseek,
5942 	.release		= perf_release,
5943 	.read			= perf_read,
5944 	.poll			= perf_poll,
5945 	.unlocked_ioctl		= perf_ioctl,
5946 	.compat_ioctl		= perf_compat_ioctl,
5947 	.mmap			= perf_mmap,
5948 	.fasync			= perf_fasync,
5949 };
5950 
5951 /*
5952  * Perf event wakeup
5953  *
5954  * If there's data, ensure we set the poll() state and publish everything
5955  * to user-space before waking everybody up.
5956  */
5957 
perf_event_fasync(struct perf_event * event)5958 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5959 {
5960 	/* only the parent has fasync state */
5961 	if (event->parent)
5962 		event = event->parent;
5963 	return &event->fasync;
5964 }
5965 
perf_event_wakeup(struct perf_event * event)5966 void perf_event_wakeup(struct perf_event *event)
5967 {
5968 	ring_buffer_wakeup(event);
5969 
5970 	if (event->pending_kill) {
5971 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5972 		event->pending_kill = 0;
5973 	}
5974 }
5975 
perf_pending_event_disable(struct perf_event * event)5976 static void perf_pending_event_disable(struct perf_event *event)
5977 {
5978 	int cpu = READ_ONCE(event->pending_disable);
5979 
5980 	if (cpu < 0)
5981 		return;
5982 
5983 	if (cpu == smp_processor_id()) {
5984 		WRITE_ONCE(event->pending_disable, -1);
5985 		perf_event_disable_local(event);
5986 		return;
5987 	}
5988 
5989 	/*
5990 	 *  CPU-A			CPU-B
5991 	 *
5992 	 *  perf_event_disable_inatomic()
5993 	 *    @pending_disable = CPU-A;
5994 	 *    irq_work_queue();
5995 	 *
5996 	 *  sched-out
5997 	 *    @pending_disable = -1;
5998 	 *
5999 	 *				sched-in
6000 	 *				perf_event_disable_inatomic()
6001 	 *				  @pending_disable = CPU-B;
6002 	 *				  irq_work_queue(); // FAILS
6003 	 *
6004 	 *  irq_work_run()
6005 	 *    perf_pending_event()
6006 	 *
6007 	 * But the event runs on CPU-B and wants disabling there.
6008 	 */
6009 	irq_work_queue_on(&event->pending, cpu);
6010 }
6011 
perf_pending_event(struct irq_work * entry)6012 static void perf_pending_event(struct irq_work *entry)
6013 {
6014 	struct perf_event *event = container_of(entry, struct perf_event, pending);
6015 	int rctx;
6016 
6017 	rctx = perf_swevent_get_recursion_context();
6018 	/*
6019 	 * If we 'fail' here, that's OK, it means recursion is already disabled
6020 	 * and we won't recurse 'further'.
6021 	 */
6022 
6023 	perf_pending_event_disable(event);
6024 
6025 	if (event->pending_wakeup) {
6026 		event->pending_wakeup = 0;
6027 		perf_event_wakeup(event);
6028 	}
6029 
6030 	if (rctx >= 0)
6031 		perf_swevent_put_recursion_context(rctx);
6032 }
6033 
6034 /*
6035  * We assume there is only KVM supporting the callbacks.
6036  * Later on, we might change it to a list if there is
6037  * another virtualization implementation supporting the callbacks.
6038  */
6039 struct perf_guest_info_callbacks *perf_guest_cbs;
6040 
perf_register_guest_info_callbacks(struct perf_guest_info_callbacks * cbs)6041 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6042 {
6043 	perf_guest_cbs = cbs;
6044 	return 0;
6045 }
6046 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6047 
perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks * cbs)6048 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6049 {
6050 	perf_guest_cbs = NULL;
6051 	return 0;
6052 }
6053 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6054 
6055 static void
perf_output_sample_regs(struct perf_output_handle * handle,struct pt_regs * regs,u64 mask)6056 perf_output_sample_regs(struct perf_output_handle *handle,
6057 			struct pt_regs *regs, u64 mask)
6058 {
6059 	int bit;
6060 	DECLARE_BITMAP(_mask, 64);
6061 
6062 	bitmap_from_u64(_mask, mask);
6063 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6064 		u64 val;
6065 
6066 		val = perf_reg_value(regs, bit);
6067 		perf_output_put(handle, val);
6068 	}
6069 }
6070 
perf_sample_regs_user(struct perf_regs * regs_user,struct pt_regs * regs,struct pt_regs * regs_user_copy)6071 static void perf_sample_regs_user(struct perf_regs *regs_user,
6072 				  struct pt_regs *regs,
6073 				  struct pt_regs *regs_user_copy)
6074 {
6075 	if (user_mode(regs)) {
6076 		regs_user->abi = perf_reg_abi(current);
6077 		regs_user->regs = regs;
6078 	} else if (!(current->flags & PF_KTHREAD)) {
6079 		perf_get_regs_user(regs_user, regs, regs_user_copy);
6080 	} else {
6081 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6082 		regs_user->regs = NULL;
6083 	}
6084 }
6085 
perf_sample_regs_intr(struct perf_regs * regs_intr,struct pt_regs * regs)6086 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6087 				  struct pt_regs *regs)
6088 {
6089 	regs_intr->regs = regs;
6090 	regs_intr->abi  = perf_reg_abi(current);
6091 }
6092 
6093 
6094 /*
6095  * Get remaining task size from user stack pointer.
6096  *
6097  * It'd be better to take stack vma map and limit this more
6098  * precisely, but there's no way to get it safely under interrupt,
6099  * so using TASK_SIZE as limit.
6100  */
perf_ustack_task_size(struct pt_regs * regs)6101 static u64 perf_ustack_task_size(struct pt_regs *regs)
6102 {
6103 	unsigned long addr = perf_user_stack_pointer(regs);
6104 
6105 	if (!addr || addr >= TASK_SIZE)
6106 		return 0;
6107 
6108 	return TASK_SIZE - addr;
6109 }
6110 
6111 static u16
perf_sample_ustack_size(u16 stack_size,u16 header_size,struct pt_regs * regs)6112 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6113 			struct pt_regs *regs)
6114 {
6115 	u64 task_size;
6116 
6117 	/* No regs, no stack pointer, no dump. */
6118 	if (!regs)
6119 		return 0;
6120 
6121 	/*
6122 	 * Check if we fit in with the requested stack size into the:
6123 	 * - TASK_SIZE
6124 	 *   If we don't, we limit the size to the TASK_SIZE.
6125 	 *
6126 	 * - remaining sample size
6127 	 *   If we don't, we customize the stack size to
6128 	 *   fit in to the remaining sample size.
6129 	 */
6130 
6131 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6132 	stack_size = min(stack_size, (u16) task_size);
6133 
6134 	/* Current header size plus static size and dynamic size. */
6135 	header_size += 2 * sizeof(u64);
6136 
6137 	/* Do we fit in with the current stack dump size? */
6138 	if ((u16) (header_size + stack_size) < header_size) {
6139 		/*
6140 		 * If we overflow the maximum size for the sample,
6141 		 * we customize the stack dump size to fit in.
6142 		 */
6143 		stack_size = USHRT_MAX - header_size - sizeof(u64);
6144 		stack_size = round_up(stack_size, sizeof(u64));
6145 	}
6146 
6147 	return stack_size;
6148 }
6149 
6150 static void
perf_output_sample_ustack(struct perf_output_handle * handle,u64 dump_size,struct pt_regs * regs)6151 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6152 			  struct pt_regs *regs)
6153 {
6154 	/* Case of a kernel thread, nothing to dump */
6155 	if (!regs) {
6156 		u64 size = 0;
6157 		perf_output_put(handle, size);
6158 	} else {
6159 		unsigned long sp;
6160 		unsigned int rem;
6161 		u64 dyn_size;
6162 		mm_segment_t fs;
6163 
6164 		/*
6165 		 * We dump:
6166 		 * static size
6167 		 *   - the size requested by user or the best one we can fit
6168 		 *     in to the sample max size
6169 		 * data
6170 		 *   - user stack dump data
6171 		 * dynamic size
6172 		 *   - the actual dumped size
6173 		 */
6174 
6175 		/* Static size. */
6176 		perf_output_put(handle, dump_size);
6177 
6178 		/* Data. */
6179 		sp = perf_user_stack_pointer(regs);
6180 		fs = get_fs();
6181 		set_fs(USER_DS);
6182 		rem = __output_copy_user(handle, (void *) sp, dump_size);
6183 		set_fs(fs);
6184 		dyn_size = dump_size - rem;
6185 
6186 		perf_output_skip(handle, rem);
6187 
6188 		/* Dynamic size. */
6189 		perf_output_put(handle, dyn_size);
6190 	}
6191 }
6192 
__perf_event_header__init_id(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)6193 static void __perf_event_header__init_id(struct perf_event_header *header,
6194 					 struct perf_sample_data *data,
6195 					 struct perf_event *event)
6196 {
6197 	u64 sample_type = event->attr.sample_type;
6198 
6199 	data->type = sample_type;
6200 	header->size += event->id_header_size;
6201 
6202 	if (sample_type & PERF_SAMPLE_TID) {
6203 		/* namespace issues */
6204 		data->tid_entry.pid = perf_event_pid(event, current);
6205 		data->tid_entry.tid = perf_event_tid(event, current);
6206 	}
6207 
6208 	if (sample_type & PERF_SAMPLE_TIME)
6209 		data->time = perf_event_clock(event);
6210 
6211 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6212 		data->id = primary_event_id(event);
6213 
6214 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6215 		data->stream_id = event->id;
6216 
6217 	if (sample_type & PERF_SAMPLE_CPU) {
6218 		data->cpu_entry.cpu	 = raw_smp_processor_id();
6219 		data->cpu_entry.reserved = 0;
6220 	}
6221 }
6222 
perf_event_header__init_id(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)6223 void perf_event_header__init_id(struct perf_event_header *header,
6224 				struct perf_sample_data *data,
6225 				struct perf_event *event)
6226 {
6227 	if (event->attr.sample_id_all)
6228 		__perf_event_header__init_id(header, data, event);
6229 }
6230 
__perf_event__output_id_sample(struct perf_output_handle * handle,struct perf_sample_data * data)6231 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6232 					   struct perf_sample_data *data)
6233 {
6234 	u64 sample_type = data->type;
6235 
6236 	if (sample_type & PERF_SAMPLE_TID)
6237 		perf_output_put(handle, data->tid_entry);
6238 
6239 	if (sample_type & PERF_SAMPLE_TIME)
6240 		perf_output_put(handle, data->time);
6241 
6242 	if (sample_type & PERF_SAMPLE_ID)
6243 		perf_output_put(handle, data->id);
6244 
6245 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6246 		perf_output_put(handle, data->stream_id);
6247 
6248 	if (sample_type & PERF_SAMPLE_CPU)
6249 		perf_output_put(handle, data->cpu_entry);
6250 
6251 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
6252 		perf_output_put(handle, data->id);
6253 }
6254 
perf_event__output_id_sample(struct perf_event * event,struct perf_output_handle * handle,struct perf_sample_data * sample)6255 void perf_event__output_id_sample(struct perf_event *event,
6256 				  struct perf_output_handle *handle,
6257 				  struct perf_sample_data *sample)
6258 {
6259 	if (event->attr.sample_id_all)
6260 		__perf_event__output_id_sample(handle, sample);
6261 }
6262 
perf_output_read_one(struct perf_output_handle * handle,struct perf_event * event,u64 enabled,u64 running)6263 static void perf_output_read_one(struct perf_output_handle *handle,
6264 				 struct perf_event *event,
6265 				 u64 enabled, u64 running)
6266 {
6267 	u64 read_format = event->attr.read_format;
6268 	u64 values[4];
6269 	int n = 0;
6270 
6271 	values[n++] = perf_event_count(event);
6272 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6273 		values[n++] = enabled +
6274 			atomic64_read(&event->child_total_time_enabled);
6275 	}
6276 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6277 		values[n++] = running +
6278 			atomic64_read(&event->child_total_time_running);
6279 	}
6280 	if (read_format & PERF_FORMAT_ID)
6281 		values[n++] = primary_event_id(event);
6282 
6283 	__output_copy(handle, values, n * sizeof(u64));
6284 }
6285 
perf_output_read_group(struct perf_output_handle * handle,struct perf_event * event,u64 enabled,u64 running)6286 static void perf_output_read_group(struct perf_output_handle *handle,
6287 			    struct perf_event *event,
6288 			    u64 enabled, u64 running)
6289 {
6290 	struct perf_event *leader = event->group_leader, *sub;
6291 	u64 read_format = event->attr.read_format;
6292 	u64 values[5];
6293 	int n = 0;
6294 
6295 	values[n++] = 1 + leader->nr_siblings;
6296 
6297 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6298 		values[n++] = enabled;
6299 
6300 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6301 		values[n++] = running;
6302 
6303 	if ((leader != event) &&
6304 	    (leader->state == PERF_EVENT_STATE_ACTIVE))
6305 		leader->pmu->read(leader);
6306 
6307 	values[n++] = perf_event_count(leader);
6308 	if (read_format & PERF_FORMAT_ID)
6309 		values[n++] = primary_event_id(leader);
6310 
6311 	__output_copy(handle, values, n * sizeof(u64));
6312 
6313 	for_each_sibling_event(sub, leader) {
6314 		n = 0;
6315 
6316 		if ((sub != event) &&
6317 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
6318 			sub->pmu->read(sub);
6319 
6320 		values[n++] = perf_event_count(sub);
6321 		if (read_format & PERF_FORMAT_ID)
6322 			values[n++] = primary_event_id(sub);
6323 
6324 		__output_copy(handle, values, n * sizeof(u64));
6325 	}
6326 }
6327 
6328 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6329 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
6330 
6331 /*
6332  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6333  *
6334  * The problem is that its both hard and excessively expensive to iterate the
6335  * child list, not to mention that its impossible to IPI the children running
6336  * on another CPU, from interrupt/NMI context.
6337  */
perf_output_read(struct perf_output_handle * handle,struct perf_event * event)6338 static void perf_output_read(struct perf_output_handle *handle,
6339 			     struct perf_event *event)
6340 {
6341 	u64 enabled = 0, running = 0, now;
6342 	u64 read_format = event->attr.read_format;
6343 
6344 	/*
6345 	 * compute total_time_enabled, total_time_running
6346 	 * based on snapshot values taken when the event
6347 	 * was last scheduled in.
6348 	 *
6349 	 * we cannot simply called update_context_time()
6350 	 * because of locking issue as we are called in
6351 	 * NMI context
6352 	 */
6353 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
6354 		calc_timer_values(event, &now, &enabled, &running);
6355 
6356 	if (event->attr.read_format & PERF_FORMAT_GROUP)
6357 		perf_output_read_group(handle, event, enabled, running);
6358 	else
6359 		perf_output_read_one(handle, event, enabled, running);
6360 }
6361 
perf_output_sample(struct perf_output_handle * handle,struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)6362 void perf_output_sample(struct perf_output_handle *handle,
6363 			struct perf_event_header *header,
6364 			struct perf_sample_data *data,
6365 			struct perf_event *event)
6366 {
6367 	u64 sample_type = data->type;
6368 
6369 	perf_output_put(handle, *header);
6370 
6371 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
6372 		perf_output_put(handle, data->id);
6373 
6374 	if (sample_type & PERF_SAMPLE_IP)
6375 		perf_output_put(handle, data->ip);
6376 
6377 	if (sample_type & PERF_SAMPLE_TID)
6378 		perf_output_put(handle, data->tid_entry);
6379 
6380 	if (sample_type & PERF_SAMPLE_TIME)
6381 		perf_output_put(handle, data->time);
6382 
6383 	if (sample_type & PERF_SAMPLE_ADDR)
6384 		perf_output_put(handle, data->addr);
6385 
6386 	if (sample_type & PERF_SAMPLE_ID)
6387 		perf_output_put(handle, data->id);
6388 
6389 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6390 		perf_output_put(handle, data->stream_id);
6391 
6392 	if (sample_type & PERF_SAMPLE_CPU)
6393 		perf_output_put(handle, data->cpu_entry);
6394 
6395 	if (sample_type & PERF_SAMPLE_PERIOD)
6396 		perf_output_put(handle, data->period);
6397 
6398 	if (sample_type & PERF_SAMPLE_READ)
6399 		perf_output_read(handle, event);
6400 
6401 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6402 		int size = 1;
6403 
6404 		size += data->callchain->nr;
6405 		size *= sizeof(u64);
6406 		__output_copy(handle, data->callchain, size);
6407 	}
6408 
6409 	if (sample_type & PERF_SAMPLE_RAW) {
6410 		struct perf_raw_record *raw = data->raw;
6411 
6412 		if (raw) {
6413 			struct perf_raw_frag *frag = &raw->frag;
6414 
6415 			perf_output_put(handle, raw->size);
6416 			do {
6417 				if (frag->copy) {
6418 					__output_custom(handle, frag->copy,
6419 							frag->data, frag->size);
6420 				} else {
6421 					__output_copy(handle, frag->data,
6422 						      frag->size);
6423 				}
6424 				if (perf_raw_frag_last(frag))
6425 					break;
6426 				frag = frag->next;
6427 			} while (1);
6428 			if (frag->pad)
6429 				__output_skip(handle, NULL, frag->pad);
6430 		} else {
6431 			struct {
6432 				u32	size;
6433 				u32	data;
6434 			} raw = {
6435 				.size = sizeof(u32),
6436 				.data = 0,
6437 			};
6438 			perf_output_put(handle, raw);
6439 		}
6440 	}
6441 
6442 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6443 		if (data->br_stack) {
6444 			size_t size;
6445 
6446 			size = data->br_stack->nr
6447 			     * sizeof(struct perf_branch_entry);
6448 
6449 			perf_output_put(handle, data->br_stack->nr);
6450 			perf_output_copy(handle, data->br_stack->entries, size);
6451 		} else {
6452 			/*
6453 			 * we always store at least the value of nr
6454 			 */
6455 			u64 nr = 0;
6456 			perf_output_put(handle, nr);
6457 		}
6458 	}
6459 
6460 	if (sample_type & PERF_SAMPLE_REGS_USER) {
6461 		u64 abi = data->regs_user.abi;
6462 
6463 		/*
6464 		 * If there are no regs to dump, notice it through
6465 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6466 		 */
6467 		perf_output_put(handle, abi);
6468 
6469 		if (abi) {
6470 			u64 mask = event->attr.sample_regs_user;
6471 			perf_output_sample_regs(handle,
6472 						data->regs_user.regs,
6473 						mask);
6474 		}
6475 	}
6476 
6477 	if (sample_type & PERF_SAMPLE_STACK_USER) {
6478 		perf_output_sample_ustack(handle,
6479 					  data->stack_user_size,
6480 					  data->regs_user.regs);
6481 	}
6482 
6483 	if (sample_type & PERF_SAMPLE_WEIGHT)
6484 		perf_output_put(handle, data->weight);
6485 
6486 	if (sample_type & PERF_SAMPLE_DATA_SRC)
6487 		perf_output_put(handle, data->data_src.val);
6488 
6489 	if (sample_type & PERF_SAMPLE_TRANSACTION)
6490 		perf_output_put(handle, data->txn);
6491 
6492 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
6493 		u64 abi = data->regs_intr.abi;
6494 		/*
6495 		 * If there are no regs to dump, notice it through
6496 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6497 		 */
6498 		perf_output_put(handle, abi);
6499 
6500 		if (abi) {
6501 			u64 mask = event->attr.sample_regs_intr;
6502 
6503 			perf_output_sample_regs(handle,
6504 						data->regs_intr.regs,
6505 						mask);
6506 		}
6507 	}
6508 
6509 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6510 		perf_output_put(handle, data->phys_addr);
6511 
6512 	if (!event->attr.watermark) {
6513 		int wakeup_events = event->attr.wakeup_events;
6514 
6515 		if (wakeup_events) {
6516 			struct ring_buffer *rb = handle->rb;
6517 			int events = local_inc_return(&rb->events);
6518 
6519 			if (events >= wakeup_events) {
6520 				local_sub(wakeup_events, &rb->events);
6521 				local_inc(&rb->wakeup);
6522 			}
6523 		}
6524 	}
6525 }
6526 
perf_virt_to_phys(u64 virt)6527 static u64 perf_virt_to_phys(u64 virt)
6528 {
6529 	u64 phys_addr = 0;
6530 	struct page *p = NULL;
6531 
6532 	if (!virt)
6533 		return 0;
6534 
6535 	if (virt >= TASK_SIZE) {
6536 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
6537 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
6538 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
6539 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6540 	} else {
6541 		/*
6542 		 * Walking the pages tables for user address.
6543 		 * Interrupts are disabled, so it prevents any tear down
6544 		 * of the page tables.
6545 		 * Try IRQ-safe __get_user_pages_fast first.
6546 		 * If failed, leave phys_addr as 0.
6547 		 */
6548 		if ((current->mm != NULL) &&
6549 		    (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6550 			phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6551 
6552 		if (p)
6553 			put_page(p);
6554 	}
6555 
6556 	return phys_addr;
6557 }
6558 
6559 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6560 
6561 struct perf_callchain_entry *
perf_callchain(struct perf_event * event,struct pt_regs * regs)6562 perf_callchain(struct perf_event *event, struct pt_regs *regs)
6563 {
6564 	bool kernel = !event->attr.exclude_callchain_kernel;
6565 	bool user   = !event->attr.exclude_callchain_user;
6566 	/* Disallow cross-task user callchains. */
6567 	bool crosstask = event->ctx->task && event->ctx->task != current;
6568 	const u32 max_stack = event->attr.sample_max_stack;
6569 	struct perf_callchain_entry *callchain;
6570 
6571 	if (!kernel && !user)
6572 		return &__empty_callchain;
6573 
6574 	callchain = get_perf_callchain(regs, 0, kernel, user,
6575 				       max_stack, crosstask, true);
6576 	return callchain ?: &__empty_callchain;
6577 }
6578 
perf_prepare_sample(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event,struct pt_regs * regs)6579 void perf_prepare_sample(struct perf_event_header *header,
6580 			 struct perf_sample_data *data,
6581 			 struct perf_event *event,
6582 			 struct pt_regs *regs)
6583 {
6584 	u64 sample_type = event->attr.sample_type;
6585 
6586 	header->type = PERF_RECORD_SAMPLE;
6587 	header->size = sizeof(*header) + event->header_size;
6588 
6589 	header->misc = 0;
6590 	header->misc |= perf_misc_flags(regs);
6591 
6592 	__perf_event_header__init_id(header, data, event);
6593 
6594 	if (sample_type & PERF_SAMPLE_IP)
6595 		data->ip = perf_instruction_pointer(regs);
6596 
6597 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6598 		int size = 1;
6599 
6600 		if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
6601 			data->callchain = perf_callchain(event, regs);
6602 
6603 		size += data->callchain->nr;
6604 
6605 		header->size += size * sizeof(u64);
6606 	}
6607 
6608 	if (sample_type & PERF_SAMPLE_RAW) {
6609 		struct perf_raw_record *raw = data->raw;
6610 		int size;
6611 
6612 		if (raw) {
6613 			struct perf_raw_frag *frag = &raw->frag;
6614 			u32 sum = 0;
6615 
6616 			do {
6617 				sum += frag->size;
6618 				if (perf_raw_frag_last(frag))
6619 					break;
6620 				frag = frag->next;
6621 			} while (1);
6622 
6623 			size = round_up(sum + sizeof(u32), sizeof(u64));
6624 			raw->size = size - sizeof(u32);
6625 			frag->pad = raw->size - sum;
6626 		} else {
6627 			size = sizeof(u64);
6628 		}
6629 
6630 		header->size += size;
6631 	}
6632 
6633 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6634 		int size = sizeof(u64); /* nr */
6635 		if (data->br_stack) {
6636 			size += data->br_stack->nr
6637 			      * sizeof(struct perf_branch_entry);
6638 		}
6639 		header->size += size;
6640 	}
6641 
6642 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6643 		perf_sample_regs_user(&data->regs_user, regs,
6644 				      &data->regs_user_copy);
6645 
6646 	if (sample_type & PERF_SAMPLE_REGS_USER) {
6647 		/* regs dump ABI info */
6648 		int size = sizeof(u64);
6649 
6650 		if (data->regs_user.regs) {
6651 			u64 mask = event->attr.sample_regs_user;
6652 			size += hweight64(mask) * sizeof(u64);
6653 		}
6654 
6655 		header->size += size;
6656 	}
6657 
6658 	if (sample_type & PERF_SAMPLE_STACK_USER) {
6659 		/*
6660 		 * Either we need PERF_SAMPLE_STACK_USER bit to be always
6661 		 * processed as the last one or have additional check added
6662 		 * in case new sample type is added, because we could eat
6663 		 * up the rest of the sample size.
6664 		 */
6665 		u16 stack_size = event->attr.sample_stack_user;
6666 		u16 size = sizeof(u64);
6667 
6668 		stack_size = perf_sample_ustack_size(stack_size, header->size,
6669 						     data->regs_user.regs);
6670 
6671 		/*
6672 		 * If there is something to dump, add space for the dump
6673 		 * itself and for the field that tells the dynamic size,
6674 		 * which is how many have been actually dumped.
6675 		 */
6676 		if (stack_size)
6677 			size += sizeof(u64) + stack_size;
6678 
6679 		data->stack_user_size = stack_size;
6680 		header->size += size;
6681 	}
6682 
6683 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
6684 		/* regs dump ABI info */
6685 		int size = sizeof(u64);
6686 
6687 		perf_sample_regs_intr(&data->regs_intr, regs);
6688 
6689 		if (data->regs_intr.regs) {
6690 			u64 mask = event->attr.sample_regs_intr;
6691 
6692 			size += hweight64(mask) * sizeof(u64);
6693 		}
6694 
6695 		header->size += size;
6696 	}
6697 
6698 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6699 		data->phys_addr = perf_virt_to_phys(data->addr);
6700 }
6701 
6702 static __always_inline int
__perf_event_output(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs,int (* output_begin)(struct perf_output_handle *,struct perf_event *,unsigned int))6703 __perf_event_output(struct perf_event *event,
6704 		    struct perf_sample_data *data,
6705 		    struct pt_regs *regs,
6706 		    int (*output_begin)(struct perf_output_handle *,
6707 					struct perf_event *,
6708 					unsigned int))
6709 {
6710 	struct perf_output_handle handle;
6711 	struct perf_event_header header;
6712 	int err;
6713 
6714 	/* protect the callchain buffers */
6715 	rcu_read_lock();
6716 
6717 	perf_prepare_sample(&header, data, event, regs);
6718 
6719 	err = output_begin(&handle, event, header.size);
6720 	if (err)
6721 		goto exit;
6722 
6723 	perf_output_sample(&handle, &header, data, event);
6724 
6725 	perf_output_end(&handle);
6726 
6727 exit:
6728 	rcu_read_unlock();
6729 	return err;
6730 }
6731 
6732 void
perf_event_output_forward(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)6733 perf_event_output_forward(struct perf_event *event,
6734 			 struct perf_sample_data *data,
6735 			 struct pt_regs *regs)
6736 {
6737 	__perf_event_output(event, data, regs, perf_output_begin_forward);
6738 }
6739 
6740 void
perf_event_output_backward(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)6741 perf_event_output_backward(struct perf_event *event,
6742 			   struct perf_sample_data *data,
6743 			   struct pt_regs *regs)
6744 {
6745 	__perf_event_output(event, data, regs, perf_output_begin_backward);
6746 }
6747 
6748 int
perf_event_output(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)6749 perf_event_output(struct perf_event *event,
6750 		  struct perf_sample_data *data,
6751 		  struct pt_regs *regs)
6752 {
6753 	return __perf_event_output(event, data, regs, perf_output_begin);
6754 }
6755 
6756 /*
6757  * read event_id
6758  */
6759 
6760 struct perf_read_event {
6761 	struct perf_event_header	header;
6762 
6763 	u32				pid;
6764 	u32				tid;
6765 };
6766 
6767 static void
perf_event_read_event(struct perf_event * event,struct task_struct * task)6768 perf_event_read_event(struct perf_event *event,
6769 			struct task_struct *task)
6770 {
6771 	struct perf_output_handle handle;
6772 	struct perf_sample_data sample;
6773 	struct perf_read_event read_event = {
6774 		.header = {
6775 			.type = PERF_RECORD_READ,
6776 			.misc = 0,
6777 			.size = sizeof(read_event) + event->read_size,
6778 		},
6779 		.pid = perf_event_pid(event, task),
6780 		.tid = perf_event_tid(event, task),
6781 	};
6782 	int ret;
6783 
6784 	perf_event_header__init_id(&read_event.header, &sample, event);
6785 	ret = perf_output_begin(&handle, event, read_event.header.size);
6786 	if (ret)
6787 		return;
6788 
6789 	perf_output_put(&handle, read_event);
6790 	perf_output_read(&handle, event);
6791 	perf_event__output_id_sample(event, &handle, &sample);
6792 
6793 	perf_output_end(&handle);
6794 }
6795 
6796 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6797 
6798 static void
perf_iterate_ctx(struct perf_event_context * ctx,perf_iterate_f output,void * data,bool all)6799 perf_iterate_ctx(struct perf_event_context *ctx,
6800 		   perf_iterate_f output,
6801 		   void *data, bool all)
6802 {
6803 	struct perf_event *event;
6804 
6805 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6806 		if (!all) {
6807 			if (event->state < PERF_EVENT_STATE_INACTIVE)
6808 				continue;
6809 			if (!event_filter_match(event))
6810 				continue;
6811 		}
6812 
6813 		output(event, data);
6814 	}
6815 }
6816 
perf_iterate_sb_cpu(perf_iterate_f output,void * data)6817 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6818 {
6819 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6820 	struct perf_event *event;
6821 
6822 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
6823 		/*
6824 		 * Skip events that are not fully formed yet; ensure that
6825 		 * if we observe event->ctx, both event and ctx will be
6826 		 * complete enough. See perf_install_in_context().
6827 		 */
6828 		if (!smp_load_acquire(&event->ctx))
6829 			continue;
6830 
6831 		if (event->state < PERF_EVENT_STATE_INACTIVE)
6832 			continue;
6833 		if (!event_filter_match(event))
6834 			continue;
6835 		output(event, data);
6836 	}
6837 }
6838 
6839 /*
6840  * Iterate all events that need to receive side-band events.
6841  *
6842  * For new callers; ensure that account_pmu_sb_event() includes
6843  * your event, otherwise it might not get delivered.
6844  */
6845 static void
perf_iterate_sb(perf_iterate_f output,void * data,struct perf_event_context * task_ctx)6846 perf_iterate_sb(perf_iterate_f output, void *data,
6847 	       struct perf_event_context *task_ctx)
6848 {
6849 	struct perf_event_context *ctx;
6850 	int ctxn;
6851 
6852 	rcu_read_lock();
6853 	preempt_disable();
6854 
6855 	/*
6856 	 * If we have task_ctx != NULL we only notify the task context itself.
6857 	 * The task_ctx is set only for EXIT events before releasing task
6858 	 * context.
6859 	 */
6860 	if (task_ctx) {
6861 		perf_iterate_ctx(task_ctx, output, data, false);
6862 		goto done;
6863 	}
6864 
6865 	perf_iterate_sb_cpu(output, data);
6866 
6867 	for_each_task_context_nr(ctxn) {
6868 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6869 		if (ctx)
6870 			perf_iterate_ctx(ctx, output, data, false);
6871 	}
6872 done:
6873 	preempt_enable();
6874 	rcu_read_unlock();
6875 }
6876 
6877 /*
6878  * Clear all file-based filters at exec, they'll have to be
6879  * re-instated when/if these objects are mmapped again.
6880  */
perf_event_addr_filters_exec(struct perf_event * event,void * data)6881 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6882 {
6883 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6884 	struct perf_addr_filter *filter;
6885 	unsigned int restart = 0, count = 0;
6886 	unsigned long flags;
6887 
6888 	if (!has_addr_filter(event))
6889 		return;
6890 
6891 	raw_spin_lock_irqsave(&ifh->lock, flags);
6892 	list_for_each_entry(filter, &ifh->list, entry) {
6893 		if (filter->path.dentry) {
6894 			event->addr_filter_ranges[count].start = 0;
6895 			event->addr_filter_ranges[count].size = 0;
6896 			restart++;
6897 		}
6898 
6899 		count++;
6900 	}
6901 
6902 	if (restart)
6903 		event->addr_filters_gen++;
6904 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
6905 
6906 	if (restart)
6907 		perf_event_stop(event, 1);
6908 }
6909 
perf_event_exec(void)6910 void perf_event_exec(void)
6911 {
6912 	struct perf_event_context *ctx;
6913 	int ctxn;
6914 
6915 	rcu_read_lock();
6916 	for_each_task_context_nr(ctxn) {
6917 		ctx = current->perf_event_ctxp[ctxn];
6918 		if (!ctx)
6919 			continue;
6920 
6921 		perf_event_enable_on_exec(ctxn);
6922 
6923 		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6924 				   true);
6925 	}
6926 	rcu_read_unlock();
6927 }
6928 
6929 struct remote_output {
6930 	struct ring_buffer	*rb;
6931 	int			err;
6932 };
6933 
__perf_event_output_stop(struct perf_event * event,void * data)6934 static void __perf_event_output_stop(struct perf_event *event, void *data)
6935 {
6936 	struct perf_event *parent = event->parent;
6937 	struct remote_output *ro = data;
6938 	struct ring_buffer *rb = ro->rb;
6939 	struct stop_event_data sd = {
6940 		.event	= event,
6941 	};
6942 
6943 	if (!has_aux(event))
6944 		return;
6945 
6946 	if (!parent)
6947 		parent = event;
6948 
6949 	/*
6950 	 * In case of inheritance, it will be the parent that links to the
6951 	 * ring-buffer, but it will be the child that's actually using it.
6952 	 *
6953 	 * We are using event::rb to determine if the event should be stopped,
6954 	 * however this may race with ring_buffer_attach() (through set_output),
6955 	 * which will make us skip the event that actually needs to be stopped.
6956 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
6957 	 * its rb pointer.
6958 	 */
6959 	if (rcu_dereference(parent->rb) == rb)
6960 		ro->err = __perf_event_stop(&sd);
6961 }
6962 
__perf_pmu_output_stop(void * info)6963 static int __perf_pmu_output_stop(void *info)
6964 {
6965 	struct perf_event *event = info;
6966 	struct pmu *pmu = event->ctx->pmu;
6967 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6968 	struct remote_output ro = {
6969 		.rb	= event->rb,
6970 	};
6971 
6972 	rcu_read_lock();
6973 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6974 	if (cpuctx->task_ctx)
6975 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6976 				   &ro, false);
6977 	rcu_read_unlock();
6978 
6979 	return ro.err;
6980 }
6981 
perf_pmu_output_stop(struct perf_event * event)6982 static void perf_pmu_output_stop(struct perf_event *event)
6983 {
6984 	struct perf_event *iter;
6985 	int err, cpu;
6986 
6987 restart:
6988 	rcu_read_lock();
6989 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6990 		/*
6991 		 * For per-CPU events, we need to make sure that neither they
6992 		 * nor their children are running; for cpu==-1 events it's
6993 		 * sufficient to stop the event itself if it's active, since
6994 		 * it can't have children.
6995 		 */
6996 		cpu = iter->cpu;
6997 		if (cpu == -1)
6998 			cpu = READ_ONCE(iter->oncpu);
6999 
7000 		if (cpu == -1)
7001 			continue;
7002 
7003 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
7004 		if (err == -EAGAIN) {
7005 			rcu_read_unlock();
7006 			goto restart;
7007 		}
7008 	}
7009 	rcu_read_unlock();
7010 }
7011 
7012 /*
7013  * task tracking -- fork/exit
7014  *
7015  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
7016  */
7017 
7018 struct perf_task_event {
7019 	struct task_struct		*task;
7020 	struct perf_event_context	*task_ctx;
7021 
7022 	struct {
7023 		struct perf_event_header	header;
7024 
7025 		u32				pid;
7026 		u32				ppid;
7027 		u32				tid;
7028 		u32				ptid;
7029 		u64				time;
7030 	} event_id;
7031 };
7032 
perf_event_task_match(struct perf_event * event)7033 static int perf_event_task_match(struct perf_event *event)
7034 {
7035 	return event->attr.comm  || event->attr.mmap ||
7036 	       event->attr.mmap2 || event->attr.mmap_data ||
7037 	       event->attr.task;
7038 }
7039 
perf_event_task_output(struct perf_event * event,void * data)7040 static void perf_event_task_output(struct perf_event *event,
7041 				   void *data)
7042 {
7043 	struct perf_task_event *task_event = data;
7044 	struct perf_output_handle handle;
7045 	struct perf_sample_data	sample;
7046 	struct task_struct *task = task_event->task;
7047 	int ret, size = task_event->event_id.header.size;
7048 
7049 	if (!perf_event_task_match(event))
7050 		return;
7051 
7052 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
7053 
7054 	ret = perf_output_begin(&handle, event,
7055 				task_event->event_id.header.size);
7056 	if (ret)
7057 		goto out;
7058 
7059 	task_event->event_id.pid = perf_event_pid(event, task);
7060 	task_event->event_id.ppid = perf_event_pid(event, current);
7061 
7062 	task_event->event_id.tid = perf_event_tid(event, task);
7063 	task_event->event_id.ptid = perf_event_tid(event, current);
7064 
7065 	task_event->event_id.time = perf_event_clock(event);
7066 
7067 	perf_output_put(&handle, task_event->event_id);
7068 
7069 	perf_event__output_id_sample(event, &handle, &sample);
7070 
7071 	perf_output_end(&handle);
7072 out:
7073 	task_event->event_id.header.size = size;
7074 }
7075 
perf_event_task(struct task_struct * task,struct perf_event_context * task_ctx,int new)7076 static void perf_event_task(struct task_struct *task,
7077 			      struct perf_event_context *task_ctx,
7078 			      int new)
7079 {
7080 	struct perf_task_event task_event;
7081 
7082 	if (!atomic_read(&nr_comm_events) &&
7083 	    !atomic_read(&nr_mmap_events) &&
7084 	    !atomic_read(&nr_task_events))
7085 		return;
7086 
7087 	task_event = (struct perf_task_event){
7088 		.task	  = task,
7089 		.task_ctx = task_ctx,
7090 		.event_id    = {
7091 			.header = {
7092 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
7093 				.misc = 0,
7094 				.size = sizeof(task_event.event_id),
7095 			},
7096 			/* .pid  */
7097 			/* .ppid */
7098 			/* .tid  */
7099 			/* .ptid */
7100 			/* .time */
7101 		},
7102 	};
7103 
7104 	perf_iterate_sb(perf_event_task_output,
7105 		       &task_event,
7106 		       task_ctx);
7107 }
7108 
perf_event_fork(struct task_struct * task)7109 void perf_event_fork(struct task_struct *task)
7110 {
7111 	perf_event_task(task, NULL, 1);
7112 	perf_event_namespaces(task);
7113 }
7114 
7115 /*
7116  * comm tracking
7117  */
7118 
7119 struct perf_comm_event {
7120 	struct task_struct	*task;
7121 	char			*comm;
7122 	int			comm_size;
7123 
7124 	struct {
7125 		struct perf_event_header	header;
7126 
7127 		u32				pid;
7128 		u32				tid;
7129 	} event_id;
7130 };
7131 
perf_event_comm_match(struct perf_event * event)7132 static int perf_event_comm_match(struct perf_event *event)
7133 {
7134 	return event->attr.comm;
7135 }
7136 
perf_event_comm_output(struct perf_event * event,void * data)7137 static void perf_event_comm_output(struct perf_event *event,
7138 				   void *data)
7139 {
7140 	struct perf_comm_event *comm_event = data;
7141 	struct perf_output_handle handle;
7142 	struct perf_sample_data sample;
7143 	int size = comm_event->event_id.header.size;
7144 	int ret;
7145 
7146 	if (!perf_event_comm_match(event))
7147 		return;
7148 
7149 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7150 	ret = perf_output_begin(&handle, event,
7151 				comm_event->event_id.header.size);
7152 
7153 	if (ret)
7154 		goto out;
7155 
7156 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7157 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
7158 
7159 	perf_output_put(&handle, comm_event->event_id);
7160 	__output_copy(&handle, comm_event->comm,
7161 				   comm_event->comm_size);
7162 
7163 	perf_event__output_id_sample(event, &handle, &sample);
7164 
7165 	perf_output_end(&handle);
7166 out:
7167 	comm_event->event_id.header.size = size;
7168 }
7169 
perf_event_comm_event(struct perf_comm_event * comm_event)7170 static void perf_event_comm_event(struct perf_comm_event *comm_event)
7171 {
7172 	char comm[TASK_COMM_LEN];
7173 	unsigned int size;
7174 
7175 	memset(comm, 0, sizeof(comm));
7176 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
7177 	size = ALIGN(strlen(comm)+1, sizeof(u64));
7178 
7179 	comm_event->comm = comm;
7180 	comm_event->comm_size = size;
7181 
7182 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7183 
7184 	perf_iterate_sb(perf_event_comm_output,
7185 		       comm_event,
7186 		       NULL);
7187 }
7188 
perf_event_comm(struct task_struct * task,bool exec)7189 void perf_event_comm(struct task_struct *task, bool exec)
7190 {
7191 	struct perf_comm_event comm_event;
7192 
7193 	if (!atomic_read(&nr_comm_events))
7194 		return;
7195 
7196 	comm_event = (struct perf_comm_event){
7197 		.task	= task,
7198 		/* .comm      */
7199 		/* .comm_size */
7200 		.event_id  = {
7201 			.header = {
7202 				.type = PERF_RECORD_COMM,
7203 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7204 				/* .size */
7205 			},
7206 			/* .pid */
7207 			/* .tid */
7208 		},
7209 	};
7210 
7211 	perf_event_comm_event(&comm_event);
7212 }
7213 
7214 /*
7215  * namespaces tracking
7216  */
7217 
7218 struct perf_namespaces_event {
7219 	struct task_struct		*task;
7220 
7221 	struct {
7222 		struct perf_event_header	header;
7223 
7224 		u32				pid;
7225 		u32				tid;
7226 		u64				nr_namespaces;
7227 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
7228 	} event_id;
7229 };
7230 
perf_event_namespaces_match(struct perf_event * event)7231 static int perf_event_namespaces_match(struct perf_event *event)
7232 {
7233 	return event->attr.namespaces;
7234 }
7235 
perf_event_namespaces_output(struct perf_event * event,void * data)7236 static void perf_event_namespaces_output(struct perf_event *event,
7237 					 void *data)
7238 {
7239 	struct perf_namespaces_event *namespaces_event = data;
7240 	struct perf_output_handle handle;
7241 	struct perf_sample_data sample;
7242 	u16 header_size = namespaces_event->event_id.header.size;
7243 	int ret;
7244 
7245 	if (!perf_event_namespaces_match(event))
7246 		return;
7247 
7248 	perf_event_header__init_id(&namespaces_event->event_id.header,
7249 				   &sample, event);
7250 	ret = perf_output_begin(&handle, event,
7251 				namespaces_event->event_id.header.size);
7252 	if (ret)
7253 		goto out;
7254 
7255 	namespaces_event->event_id.pid = perf_event_pid(event,
7256 							namespaces_event->task);
7257 	namespaces_event->event_id.tid = perf_event_tid(event,
7258 							namespaces_event->task);
7259 
7260 	perf_output_put(&handle, namespaces_event->event_id);
7261 
7262 	perf_event__output_id_sample(event, &handle, &sample);
7263 
7264 	perf_output_end(&handle);
7265 out:
7266 	namespaces_event->event_id.header.size = header_size;
7267 }
7268 
perf_fill_ns_link_info(struct perf_ns_link_info * ns_link_info,struct task_struct * task,const struct proc_ns_operations * ns_ops)7269 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7270 				   struct task_struct *task,
7271 				   const struct proc_ns_operations *ns_ops)
7272 {
7273 	struct path ns_path;
7274 	struct inode *ns_inode;
7275 	void *error;
7276 
7277 	error = ns_get_path(&ns_path, task, ns_ops);
7278 	if (!error) {
7279 		ns_inode = ns_path.dentry->d_inode;
7280 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7281 		ns_link_info->ino = ns_inode->i_ino;
7282 		path_put(&ns_path);
7283 	}
7284 }
7285 
perf_event_namespaces(struct task_struct * task)7286 void perf_event_namespaces(struct task_struct *task)
7287 {
7288 	struct perf_namespaces_event namespaces_event;
7289 	struct perf_ns_link_info *ns_link_info;
7290 
7291 	if (!atomic_read(&nr_namespaces_events))
7292 		return;
7293 
7294 	namespaces_event = (struct perf_namespaces_event){
7295 		.task	= task,
7296 		.event_id  = {
7297 			.header = {
7298 				.type = PERF_RECORD_NAMESPACES,
7299 				.misc = 0,
7300 				.size = sizeof(namespaces_event.event_id),
7301 			},
7302 			/* .pid */
7303 			/* .tid */
7304 			.nr_namespaces = NR_NAMESPACES,
7305 			/* .link_info[NR_NAMESPACES] */
7306 		},
7307 	};
7308 
7309 	ns_link_info = namespaces_event.event_id.link_info;
7310 
7311 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7312 			       task, &mntns_operations);
7313 
7314 #ifdef CONFIG_USER_NS
7315 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7316 			       task, &userns_operations);
7317 #endif
7318 #ifdef CONFIG_NET_NS
7319 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7320 			       task, &netns_operations);
7321 #endif
7322 #ifdef CONFIG_UTS_NS
7323 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7324 			       task, &utsns_operations);
7325 #endif
7326 #ifdef CONFIG_IPC_NS
7327 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7328 			       task, &ipcns_operations);
7329 #endif
7330 #ifdef CONFIG_PID_NS
7331 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7332 			       task, &pidns_operations);
7333 #endif
7334 #ifdef CONFIG_CGROUPS
7335 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7336 			       task, &cgroupns_operations);
7337 #endif
7338 
7339 	perf_iterate_sb(perf_event_namespaces_output,
7340 			&namespaces_event,
7341 			NULL);
7342 }
7343 
7344 /*
7345  * mmap tracking
7346  */
7347 
7348 struct perf_mmap_event {
7349 	struct vm_area_struct	*vma;
7350 
7351 	const char		*file_name;
7352 	int			file_size;
7353 	int			maj, min;
7354 	u64			ino;
7355 	u64			ino_generation;
7356 	u32			prot, flags;
7357 
7358 	struct {
7359 		struct perf_event_header	header;
7360 
7361 		u32				pid;
7362 		u32				tid;
7363 		u64				start;
7364 		u64				len;
7365 		u64				pgoff;
7366 	} event_id;
7367 };
7368 
perf_event_mmap_match(struct perf_event * event,void * data)7369 static int perf_event_mmap_match(struct perf_event *event,
7370 				 void *data)
7371 {
7372 	struct perf_mmap_event *mmap_event = data;
7373 	struct vm_area_struct *vma = mmap_event->vma;
7374 	int executable = vma->vm_flags & VM_EXEC;
7375 
7376 	return (!executable && event->attr.mmap_data) ||
7377 	       (executable && (event->attr.mmap || event->attr.mmap2));
7378 }
7379 
perf_event_mmap_output(struct perf_event * event,void * data)7380 static void perf_event_mmap_output(struct perf_event *event,
7381 				   void *data)
7382 {
7383 	struct perf_mmap_event *mmap_event = data;
7384 	struct perf_output_handle handle;
7385 	struct perf_sample_data sample;
7386 	int size = mmap_event->event_id.header.size;
7387 	u32 type = mmap_event->event_id.header.type;
7388 	int ret;
7389 
7390 	if (!perf_event_mmap_match(event, data))
7391 		return;
7392 
7393 	if (event->attr.mmap2) {
7394 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7395 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7396 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
7397 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
7398 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
7399 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7400 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
7401 	}
7402 
7403 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7404 	ret = perf_output_begin(&handle, event,
7405 				mmap_event->event_id.header.size);
7406 	if (ret)
7407 		goto out;
7408 
7409 	mmap_event->event_id.pid = perf_event_pid(event, current);
7410 	mmap_event->event_id.tid = perf_event_tid(event, current);
7411 
7412 	perf_output_put(&handle, mmap_event->event_id);
7413 
7414 	if (event->attr.mmap2) {
7415 		perf_output_put(&handle, mmap_event->maj);
7416 		perf_output_put(&handle, mmap_event->min);
7417 		perf_output_put(&handle, mmap_event->ino);
7418 		perf_output_put(&handle, mmap_event->ino_generation);
7419 		perf_output_put(&handle, mmap_event->prot);
7420 		perf_output_put(&handle, mmap_event->flags);
7421 	}
7422 
7423 	__output_copy(&handle, mmap_event->file_name,
7424 				   mmap_event->file_size);
7425 
7426 	perf_event__output_id_sample(event, &handle, &sample);
7427 
7428 	perf_output_end(&handle);
7429 out:
7430 	mmap_event->event_id.header.size = size;
7431 	mmap_event->event_id.header.type = type;
7432 }
7433 
perf_event_mmap_event(struct perf_mmap_event * mmap_event)7434 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
7435 {
7436 	struct vm_area_struct *vma = mmap_event->vma;
7437 	struct file *file = vma->vm_file;
7438 	int maj = 0, min = 0;
7439 	u64 ino = 0, gen = 0;
7440 	u32 prot = 0, flags = 0;
7441 	unsigned int size;
7442 	char tmp[16];
7443 	char *buf = NULL;
7444 	char *name;
7445 
7446 	if (vma->vm_flags & VM_READ)
7447 		prot |= PROT_READ;
7448 	if (vma->vm_flags & VM_WRITE)
7449 		prot |= PROT_WRITE;
7450 	if (vma->vm_flags & VM_EXEC)
7451 		prot |= PROT_EXEC;
7452 
7453 	if (vma->vm_flags & VM_MAYSHARE)
7454 		flags = MAP_SHARED;
7455 	else
7456 		flags = MAP_PRIVATE;
7457 
7458 	if (vma->vm_flags & VM_DENYWRITE)
7459 		flags |= MAP_DENYWRITE;
7460 	if (vma->vm_flags & VM_MAYEXEC)
7461 		flags |= MAP_EXECUTABLE;
7462 	if (vma->vm_flags & VM_LOCKED)
7463 		flags |= MAP_LOCKED;
7464 	if (vma->vm_flags & VM_HUGETLB)
7465 		flags |= MAP_HUGETLB;
7466 
7467 	if (file) {
7468 		struct inode *inode;
7469 		dev_t dev;
7470 
7471 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
7472 		if (!buf) {
7473 			name = "//enomem";
7474 			goto cpy_name;
7475 		}
7476 		/*
7477 		 * d_path() works from the end of the rb backwards, so we
7478 		 * need to add enough zero bytes after the string to handle
7479 		 * the 64bit alignment we do later.
7480 		 */
7481 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
7482 		if (IS_ERR(name)) {
7483 			name = "//toolong";
7484 			goto cpy_name;
7485 		}
7486 		inode = file_inode(vma->vm_file);
7487 		dev = inode->i_sb->s_dev;
7488 		ino = inode->i_ino;
7489 		gen = inode->i_generation;
7490 		maj = MAJOR(dev);
7491 		min = MINOR(dev);
7492 
7493 		goto got_name;
7494 	} else {
7495 		if (vma->vm_ops && vma->vm_ops->name) {
7496 			name = (char *) vma->vm_ops->name(vma);
7497 			if (name)
7498 				goto cpy_name;
7499 		}
7500 
7501 		name = (char *)arch_vma_name(vma);
7502 		if (name)
7503 			goto cpy_name;
7504 
7505 		if (vma->vm_start <= vma->vm_mm->start_brk &&
7506 				vma->vm_end >= vma->vm_mm->brk) {
7507 			name = "[heap]";
7508 			goto cpy_name;
7509 		}
7510 		if (vma->vm_start <= vma->vm_mm->start_stack &&
7511 				vma->vm_end >= vma->vm_mm->start_stack) {
7512 			name = "[stack]";
7513 			goto cpy_name;
7514 		}
7515 
7516 		name = "//anon";
7517 		goto cpy_name;
7518 	}
7519 
7520 cpy_name:
7521 	strlcpy(tmp, name, sizeof(tmp));
7522 	name = tmp;
7523 got_name:
7524 	/*
7525 	 * Since our buffer works in 8 byte units we need to align our string
7526 	 * size to a multiple of 8. However, we must guarantee the tail end is
7527 	 * zero'd out to avoid leaking random bits to userspace.
7528 	 */
7529 	size = strlen(name)+1;
7530 	while (!IS_ALIGNED(size, sizeof(u64)))
7531 		name[size++] = '\0';
7532 
7533 	mmap_event->file_name = name;
7534 	mmap_event->file_size = size;
7535 	mmap_event->maj = maj;
7536 	mmap_event->min = min;
7537 	mmap_event->ino = ino;
7538 	mmap_event->ino_generation = gen;
7539 	mmap_event->prot = prot;
7540 	mmap_event->flags = flags;
7541 
7542 	if (!(vma->vm_flags & VM_EXEC))
7543 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7544 
7545 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
7546 
7547 	perf_iterate_sb(perf_event_mmap_output,
7548 		       mmap_event,
7549 		       NULL);
7550 
7551 	kfree(buf);
7552 }
7553 
7554 /*
7555  * Check whether inode and address range match filter criteria.
7556  */
perf_addr_filter_match(struct perf_addr_filter * filter,struct file * file,unsigned long offset,unsigned long size)7557 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7558 				     struct file *file, unsigned long offset,
7559 				     unsigned long size)
7560 {
7561 	/* d_inode(NULL) won't be equal to any mapped user-space file */
7562 	if (!filter->path.dentry)
7563 		return false;
7564 
7565 	if (d_inode(filter->path.dentry) != file_inode(file))
7566 		return false;
7567 
7568 	if (filter->offset > offset + size)
7569 		return false;
7570 
7571 	if (filter->offset + filter->size < offset)
7572 		return false;
7573 
7574 	return true;
7575 }
7576 
perf_addr_filter_vma_adjust(struct perf_addr_filter * filter,struct vm_area_struct * vma,struct perf_addr_filter_range * fr)7577 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
7578 					struct vm_area_struct *vma,
7579 					struct perf_addr_filter_range *fr)
7580 {
7581 	unsigned long vma_size = vma->vm_end - vma->vm_start;
7582 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7583 	struct file *file = vma->vm_file;
7584 
7585 	if (!perf_addr_filter_match(filter, file, off, vma_size))
7586 		return false;
7587 
7588 	if (filter->offset < off) {
7589 		fr->start = vma->vm_start;
7590 		fr->size = min(vma_size, filter->size - (off - filter->offset));
7591 	} else {
7592 		fr->start = vma->vm_start + filter->offset - off;
7593 		fr->size = min(vma->vm_end - fr->start, filter->size);
7594 	}
7595 
7596 	return true;
7597 }
7598 
__perf_addr_filters_adjust(struct perf_event * event,void * data)7599 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7600 {
7601 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7602 	struct vm_area_struct *vma = data;
7603 	struct perf_addr_filter *filter;
7604 	unsigned int restart = 0, count = 0;
7605 	unsigned long flags;
7606 
7607 	if (!has_addr_filter(event))
7608 		return;
7609 
7610 	if (!vma->vm_file)
7611 		return;
7612 
7613 	raw_spin_lock_irqsave(&ifh->lock, flags);
7614 	list_for_each_entry(filter, &ifh->list, entry) {
7615 		if (perf_addr_filter_vma_adjust(filter, vma,
7616 						&event->addr_filter_ranges[count]))
7617 			restart++;
7618 
7619 		count++;
7620 	}
7621 
7622 	if (restart)
7623 		event->addr_filters_gen++;
7624 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
7625 
7626 	if (restart)
7627 		perf_event_stop(event, 1);
7628 }
7629 
7630 /*
7631  * Adjust all task's events' filters to the new vma
7632  */
perf_addr_filters_adjust(struct vm_area_struct * vma)7633 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7634 {
7635 	struct perf_event_context *ctx;
7636 	int ctxn;
7637 
7638 	/*
7639 	 * Data tracing isn't supported yet and as such there is no need
7640 	 * to keep track of anything that isn't related to executable code:
7641 	 */
7642 	if (!(vma->vm_flags & VM_EXEC))
7643 		return;
7644 
7645 	rcu_read_lock();
7646 	for_each_task_context_nr(ctxn) {
7647 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7648 		if (!ctx)
7649 			continue;
7650 
7651 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7652 	}
7653 	rcu_read_unlock();
7654 }
7655 
perf_event_mmap(struct vm_area_struct * vma)7656 void perf_event_mmap(struct vm_area_struct *vma)
7657 {
7658 	struct perf_mmap_event mmap_event;
7659 
7660 	if (!atomic_read(&nr_mmap_events))
7661 		return;
7662 
7663 	mmap_event = (struct perf_mmap_event){
7664 		.vma	= vma,
7665 		/* .file_name */
7666 		/* .file_size */
7667 		.event_id  = {
7668 			.header = {
7669 				.type = PERF_RECORD_MMAP,
7670 				.misc = PERF_RECORD_MISC_USER,
7671 				/* .size */
7672 			},
7673 			/* .pid */
7674 			/* .tid */
7675 			.start  = vma->vm_start,
7676 			.len    = vma->vm_end - vma->vm_start,
7677 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7678 		},
7679 		/* .maj (attr_mmap2 only) */
7680 		/* .min (attr_mmap2 only) */
7681 		/* .ino (attr_mmap2 only) */
7682 		/* .ino_generation (attr_mmap2 only) */
7683 		/* .prot (attr_mmap2 only) */
7684 		/* .flags (attr_mmap2 only) */
7685 	};
7686 
7687 	perf_addr_filters_adjust(vma);
7688 	perf_event_mmap_event(&mmap_event);
7689 }
7690 
perf_event_aux_event(struct perf_event * event,unsigned long head,unsigned long size,u64 flags)7691 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7692 			  unsigned long size, u64 flags)
7693 {
7694 	struct perf_output_handle handle;
7695 	struct perf_sample_data sample;
7696 	struct perf_aux_event {
7697 		struct perf_event_header	header;
7698 		u64				offset;
7699 		u64				size;
7700 		u64				flags;
7701 	} rec = {
7702 		.header = {
7703 			.type = PERF_RECORD_AUX,
7704 			.misc = 0,
7705 			.size = sizeof(rec),
7706 		},
7707 		.offset		= head,
7708 		.size		= size,
7709 		.flags		= flags,
7710 	};
7711 	int ret;
7712 
7713 	perf_event_header__init_id(&rec.header, &sample, event);
7714 	ret = perf_output_begin(&handle, event, rec.header.size);
7715 
7716 	if (ret)
7717 		return;
7718 
7719 	perf_output_put(&handle, rec);
7720 	perf_event__output_id_sample(event, &handle, &sample);
7721 
7722 	perf_output_end(&handle);
7723 }
7724 
7725 /*
7726  * Lost/dropped samples logging
7727  */
perf_log_lost_samples(struct perf_event * event,u64 lost)7728 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7729 {
7730 	struct perf_output_handle handle;
7731 	struct perf_sample_data sample;
7732 	int ret;
7733 
7734 	struct {
7735 		struct perf_event_header	header;
7736 		u64				lost;
7737 	} lost_samples_event = {
7738 		.header = {
7739 			.type = PERF_RECORD_LOST_SAMPLES,
7740 			.misc = 0,
7741 			.size = sizeof(lost_samples_event),
7742 		},
7743 		.lost		= lost,
7744 	};
7745 
7746 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7747 
7748 	ret = perf_output_begin(&handle, event,
7749 				lost_samples_event.header.size);
7750 	if (ret)
7751 		return;
7752 
7753 	perf_output_put(&handle, lost_samples_event);
7754 	perf_event__output_id_sample(event, &handle, &sample);
7755 	perf_output_end(&handle);
7756 }
7757 
7758 /*
7759  * context_switch tracking
7760  */
7761 
7762 struct perf_switch_event {
7763 	struct task_struct	*task;
7764 	struct task_struct	*next_prev;
7765 
7766 	struct {
7767 		struct perf_event_header	header;
7768 		u32				next_prev_pid;
7769 		u32				next_prev_tid;
7770 	} event_id;
7771 };
7772 
perf_event_switch_match(struct perf_event * event)7773 static int perf_event_switch_match(struct perf_event *event)
7774 {
7775 	return event->attr.context_switch;
7776 }
7777 
perf_event_switch_output(struct perf_event * event,void * data)7778 static void perf_event_switch_output(struct perf_event *event, void *data)
7779 {
7780 	struct perf_switch_event *se = data;
7781 	struct perf_output_handle handle;
7782 	struct perf_sample_data sample;
7783 	int ret;
7784 
7785 	if (!perf_event_switch_match(event))
7786 		return;
7787 
7788 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
7789 	if (event->ctx->task) {
7790 		se->event_id.header.type = PERF_RECORD_SWITCH;
7791 		se->event_id.header.size = sizeof(se->event_id.header);
7792 	} else {
7793 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7794 		se->event_id.header.size = sizeof(se->event_id);
7795 		se->event_id.next_prev_pid =
7796 					perf_event_pid(event, se->next_prev);
7797 		se->event_id.next_prev_tid =
7798 					perf_event_tid(event, se->next_prev);
7799 	}
7800 
7801 	perf_event_header__init_id(&se->event_id.header, &sample, event);
7802 
7803 	ret = perf_output_begin(&handle, event, se->event_id.header.size);
7804 	if (ret)
7805 		return;
7806 
7807 	if (event->ctx->task)
7808 		perf_output_put(&handle, se->event_id.header);
7809 	else
7810 		perf_output_put(&handle, se->event_id);
7811 
7812 	perf_event__output_id_sample(event, &handle, &sample);
7813 
7814 	perf_output_end(&handle);
7815 }
7816 
perf_event_switch(struct task_struct * task,struct task_struct * next_prev,bool sched_in)7817 static void perf_event_switch(struct task_struct *task,
7818 			      struct task_struct *next_prev, bool sched_in)
7819 {
7820 	struct perf_switch_event switch_event;
7821 
7822 	/* N.B. caller checks nr_switch_events != 0 */
7823 
7824 	switch_event = (struct perf_switch_event){
7825 		.task		= task,
7826 		.next_prev	= next_prev,
7827 		.event_id	= {
7828 			.header = {
7829 				/* .type */
7830 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7831 				/* .size */
7832 			},
7833 			/* .next_prev_pid */
7834 			/* .next_prev_tid */
7835 		},
7836 	};
7837 
7838 	if (!sched_in && task->state == TASK_RUNNING)
7839 		switch_event.event_id.header.misc |=
7840 				PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
7841 
7842 	perf_iterate_sb(perf_event_switch_output,
7843 		       &switch_event,
7844 		       NULL);
7845 }
7846 
7847 /*
7848  * IRQ throttle logging
7849  */
7850 
perf_log_throttle(struct perf_event * event,int enable)7851 static void perf_log_throttle(struct perf_event *event, int enable)
7852 {
7853 	struct perf_output_handle handle;
7854 	struct perf_sample_data sample;
7855 	int ret;
7856 
7857 	struct {
7858 		struct perf_event_header	header;
7859 		u64				time;
7860 		u64				id;
7861 		u64				stream_id;
7862 	} throttle_event = {
7863 		.header = {
7864 			.type = PERF_RECORD_THROTTLE,
7865 			.misc = 0,
7866 			.size = sizeof(throttle_event),
7867 		},
7868 		.time		= perf_event_clock(event),
7869 		.id		= primary_event_id(event),
7870 		.stream_id	= event->id,
7871 	};
7872 
7873 	if (enable)
7874 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7875 
7876 	perf_event_header__init_id(&throttle_event.header, &sample, event);
7877 
7878 	ret = perf_output_begin(&handle, event,
7879 				throttle_event.header.size);
7880 	if (ret)
7881 		return;
7882 
7883 	perf_output_put(&handle, throttle_event);
7884 	perf_event__output_id_sample(event, &handle, &sample);
7885 	perf_output_end(&handle);
7886 }
7887 
7888 /*
7889  * ksymbol register/unregister tracking
7890  */
7891 
7892 struct perf_ksymbol_event {
7893 	const char	*name;
7894 	int		name_len;
7895 	struct {
7896 		struct perf_event_header        header;
7897 		u64				addr;
7898 		u32				len;
7899 		u16				ksym_type;
7900 		u16				flags;
7901 	} event_id;
7902 };
7903 
perf_event_ksymbol_match(struct perf_event * event)7904 static int perf_event_ksymbol_match(struct perf_event *event)
7905 {
7906 	return event->attr.ksymbol;
7907 }
7908 
perf_event_ksymbol_output(struct perf_event * event,void * data)7909 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
7910 {
7911 	struct perf_ksymbol_event *ksymbol_event = data;
7912 	struct perf_output_handle handle;
7913 	struct perf_sample_data sample;
7914 	int ret;
7915 
7916 	if (!perf_event_ksymbol_match(event))
7917 		return;
7918 
7919 	perf_event_header__init_id(&ksymbol_event->event_id.header,
7920 				   &sample, event);
7921 	ret = perf_output_begin(&handle, event,
7922 				ksymbol_event->event_id.header.size);
7923 	if (ret)
7924 		return;
7925 
7926 	perf_output_put(&handle, ksymbol_event->event_id);
7927 	__output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
7928 	perf_event__output_id_sample(event, &handle, &sample);
7929 
7930 	perf_output_end(&handle);
7931 }
7932 
perf_event_ksymbol(u16 ksym_type,u64 addr,u32 len,bool unregister,const char * sym)7933 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
7934 			const char *sym)
7935 {
7936 	struct perf_ksymbol_event ksymbol_event;
7937 	char name[KSYM_NAME_LEN];
7938 	u16 flags = 0;
7939 	int name_len;
7940 
7941 	if (!atomic_read(&nr_ksymbol_events))
7942 		return;
7943 
7944 	if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
7945 	    ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
7946 		goto err;
7947 
7948 	strlcpy(name, sym, KSYM_NAME_LEN);
7949 	name_len = strlen(name) + 1;
7950 	while (!IS_ALIGNED(name_len, sizeof(u64)))
7951 		name[name_len++] = '\0';
7952 	BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
7953 
7954 	if (unregister)
7955 		flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
7956 
7957 	ksymbol_event = (struct perf_ksymbol_event){
7958 		.name = name,
7959 		.name_len = name_len,
7960 		.event_id = {
7961 			.header = {
7962 				.type = PERF_RECORD_KSYMBOL,
7963 				.size = sizeof(ksymbol_event.event_id) +
7964 					name_len,
7965 			},
7966 			.addr = addr,
7967 			.len = len,
7968 			.ksym_type = ksym_type,
7969 			.flags = flags,
7970 		},
7971 	};
7972 
7973 	perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
7974 	return;
7975 err:
7976 	WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
7977 }
7978 
7979 /*
7980  * bpf program load/unload tracking
7981  */
7982 
7983 struct perf_bpf_event {
7984 	struct bpf_prog	*prog;
7985 	struct {
7986 		struct perf_event_header        header;
7987 		u16				type;
7988 		u16				flags;
7989 		u32				id;
7990 		u8				tag[BPF_TAG_SIZE];
7991 	} event_id;
7992 };
7993 
perf_event_bpf_match(struct perf_event * event)7994 static int perf_event_bpf_match(struct perf_event *event)
7995 {
7996 	return event->attr.bpf_event;
7997 }
7998 
perf_event_bpf_output(struct perf_event * event,void * data)7999 static void perf_event_bpf_output(struct perf_event *event, void *data)
8000 {
8001 	struct perf_bpf_event *bpf_event = data;
8002 	struct perf_output_handle handle;
8003 	struct perf_sample_data sample;
8004 	int ret;
8005 
8006 	if (!perf_event_bpf_match(event))
8007 		return;
8008 
8009 	perf_event_header__init_id(&bpf_event->event_id.header,
8010 				   &sample, event);
8011 	ret = perf_output_begin(&handle, event,
8012 				bpf_event->event_id.header.size);
8013 	if (ret)
8014 		return;
8015 
8016 	perf_output_put(&handle, bpf_event->event_id);
8017 	perf_event__output_id_sample(event, &handle, &sample);
8018 
8019 	perf_output_end(&handle);
8020 }
8021 
perf_event_bpf_emit_ksymbols(struct bpf_prog * prog,enum perf_bpf_event_type type)8022 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
8023 					 enum perf_bpf_event_type type)
8024 {
8025 	bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
8026 	char sym[KSYM_NAME_LEN];
8027 	int i;
8028 
8029 	if (prog->aux->func_cnt == 0) {
8030 		bpf_get_prog_name(prog, sym);
8031 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
8032 				   (u64)(unsigned long)prog->bpf_func,
8033 				   prog->jited_len, unregister, sym);
8034 	} else {
8035 		for (i = 0; i < prog->aux->func_cnt; i++) {
8036 			struct bpf_prog *subprog = prog->aux->func[i];
8037 
8038 			bpf_get_prog_name(subprog, sym);
8039 			perf_event_ksymbol(
8040 				PERF_RECORD_KSYMBOL_TYPE_BPF,
8041 				(u64)(unsigned long)subprog->bpf_func,
8042 				subprog->jited_len, unregister, sym);
8043 		}
8044 	}
8045 }
8046 
perf_event_bpf_event(struct bpf_prog * prog,enum perf_bpf_event_type type,u16 flags)8047 void perf_event_bpf_event(struct bpf_prog *prog,
8048 			  enum perf_bpf_event_type type,
8049 			  u16 flags)
8050 {
8051 	struct perf_bpf_event bpf_event;
8052 
8053 	if (type <= PERF_BPF_EVENT_UNKNOWN ||
8054 	    type >= PERF_BPF_EVENT_MAX)
8055 		return;
8056 
8057 	switch (type) {
8058 	case PERF_BPF_EVENT_PROG_LOAD:
8059 	case PERF_BPF_EVENT_PROG_UNLOAD:
8060 		if (atomic_read(&nr_ksymbol_events))
8061 			perf_event_bpf_emit_ksymbols(prog, type);
8062 		break;
8063 	default:
8064 		break;
8065 	}
8066 
8067 	if (!atomic_read(&nr_bpf_events))
8068 		return;
8069 
8070 	bpf_event = (struct perf_bpf_event){
8071 		.prog = prog,
8072 		.event_id = {
8073 			.header = {
8074 				.type = PERF_RECORD_BPF_EVENT,
8075 				.size = sizeof(bpf_event.event_id),
8076 			},
8077 			.type = type,
8078 			.flags = flags,
8079 			.id = prog->aux->id,
8080 		},
8081 	};
8082 
8083 	BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
8084 
8085 	memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
8086 	perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
8087 }
8088 
perf_event_itrace_started(struct perf_event * event)8089 void perf_event_itrace_started(struct perf_event *event)
8090 {
8091 	event->attach_state |= PERF_ATTACH_ITRACE;
8092 }
8093 
perf_log_itrace_start(struct perf_event * event)8094 static void perf_log_itrace_start(struct perf_event *event)
8095 {
8096 	struct perf_output_handle handle;
8097 	struct perf_sample_data sample;
8098 	struct perf_aux_event {
8099 		struct perf_event_header        header;
8100 		u32				pid;
8101 		u32				tid;
8102 	} rec;
8103 	int ret;
8104 
8105 	if (event->parent)
8106 		event = event->parent;
8107 
8108 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
8109 	    event->attach_state & PERF_ATTACH_ITRACE)
8110 		return;
8111 
8112 	rec.header.type	= PERF_RECORD_ITRACE_START;
8113 	rec.header.misc	= 0;
8114 	rec.header.size	= sizeof(rec);
8115 	rec.pid	= perf_event_pid(event, current);
8116 	rec.tid	= perf_event_tid(event, current);
8117 
8118 	perf_event_header__init_id(&rec.header, &sample, event);
8119 	ret = perf_output_begin(&handle, event, rec.header.size);
8120 
8121 	if (ret)
8122 		return;
8123 
8124 	perf_output_put(&handle, rec);
8125 	perf_event__output_id_sample(event, &handle, &sample);
8126 
8127 	perf_output_end(&handle);
8128 }
8129 
8130 static int
__perf_event_account_interrupt(struct perf_event * event,int throttle)8131 __perf_event_account_interrupt(struct perf_event *event, int throttle)
8132 {
8133 	struct hw_perf_event *hwc = &event->hw;
8134 	int ret = 0;
8135 	u64 seq;
8136 
8137 	seq = __this_cpu_read(perf_throttled_seq);
8138 	if (seq != hwc->interrupts_seq) {
8139 		hwc->interrupts_seq = seq;
8140 		hwc->interrupts = 1;
8141 	} else {
8142 		hwc->interrupts++;
8143 		if (unlikely(throttle
8144 			     && hwc->interrupts >= max_samples_per_tick)) {
8145 			__this_cpu_inc(perf_throttled_count);
8146 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
8147 			hwc->interrupts = MAX_INTERRUPTS;
8148 			perf_log_throttle(event, 0);
8149 			ret = 1;
8150 		}
8151 	}
8152 
8153 	if (event->attr.freq) {
8154 		u64 now = perf_clock();
8155 		s64 delta = now - hwc->freq_time_stamp;
8156 
8157 		hwc->freq_time_stamp = now;
8158 
8159 		if (delta > 0 && delta < 2*TICK_NSEC)
8160 			perf_adjust_period(event, delta, hwc->last_period, true);
8161 	}
8162 
8163 	return ret;
8164 }
8165 
perf_event_account_interrupt(struct perf_event * event)8166 int perf_event_account_interrupt(struct perf_event *event)
8167 {
8168 	return __perf_event_account_interrupt(event, 1);
8169 }
8170 
8171 /*
8172  * Generic event overflow handling, sampling.
8173  */
8174 
__perf_event_overflow(struct perf_event * event,int throttle,struct perf_sample_data * data,struct pt_regs * regs)8175 static int __perf_event_overflow(struct perf_event *event,
8176 				   int throttle, struct perf_sample_data *data,
8177 				   struct pt_regs *regs)
8178 {
8179 	int events = atomic_read(&event->event_limit);
8180 	int ret = 0;
8181 
8182 	/*
8183 	 * Non-sampling counters might still use the PMI to fold short
8184 	 * hardware counters, ignore those.
8185 	 */
8186 	if (unlikely(!is_sampling_event(event)))
8187 		return 0;
8188 
8189 	ret = __perf_event_account_interrupt(event, throttle);
8190 
8191 	/*
8192 	 * XXX event_limit might not quite work as expected on inherited
8193 	 * events
8194 	 */
8195 
8196 	event->pending_kill = POLL_IN;
8197 	if (events && atomic_dec_and_test(&event->event_limit)) {
8198 		ret = 1;
8199 		event->pending_kill = POLL_HUP;
8200 
8201 		perf_event_disable_inatomic(event);
8202 	}
8203 
8204 	READ_ONCE(event->overflow_handler)(event, data, regs);
8205 
8206 	if (*perf_event_fasync(event) && event->pending_kill) {
8207 		event->pending_wakeup = 1;
8208 		irq_work_queue(&event->pending);
8209 	}
8210 
8211 	return ret;
8212 }
8213 
perf_event_overflow(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)8214 int perf_event_overflow(struct perf_event *event,
8215 			  struct perf_sample_data *data,
8216 			  struct pt_regs *regs)
8217 {
8218 	return __perf_event_overflow(event, 1, data, regs);
8219 }
8220 
8221 /*
8222  * Generic software event infrastructure
8223  */
8224 
8225 struct swevent_htable {
8226 	struct swevent_hlist		*swevent_hlist;
8227 	struct mutex			hlist_mutex;
8228 	int				hlist_refcount;
8229 
8230 	/* Recursion avoidance in each contexts */
8231 	int				recursion[PERF_NR_CONTEXTS];
8232 };
8233 
8234 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
8235 
8236 /*
8237  * We directly increment event->count and keep a second value in
8238  * event->hw.period_left to count intervals. This period event
8239  * is kept in the range [-sample_period, 0] so that we can use the
8240  * sign as trigger.
8241  */
8242 
perf_swevent_set_period(struct perf_event * event)8243 u64 perf_swevent_set_period(struct perf_event *event)
8244 {
8245 	struct hw_perf_event *hwc = &event->hw;
8246 	u64 period = hwc->last_period;
8247 	u64 nr, offset;
8248 	s64 old, val;
8249 
8250 	hwc->last_period = hwc->sample_period;
8251 
8252 again:
8253 	old = val = local64_read(&hwc->period_left);
8254 	if (val < 0)
8255 		return 0;
8256 
8257 	nr = div64_u64(period + val, period);
8258 	offset = nr * period;
8259 	val -= offset;
8260 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
8261 		goto again;
8262 
8263 	return nr;
8264 }
8265 
perf_swevent_overflow(struct perf_event * event,u64 overflow,struct perf_sample_data * data,struct pt_regs * regs)8266 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
8267 				    struct perf_sample_data *data,
8268 				    struct pt_regs *regs)
8269 {
8270 	struct hw_perf_event *hwc = &event->hw;
8271 	int throttle = 0;
8272 
8273 	if (!overflow)
8274 		overflow = perf_swevent_set_period(event);
8275 
8276 	if (hwc->interrupts == MAX_INTERRUPTS)
8277 		return;
8278 
8279 	for (; overflow; overflow--) {
8280 		if (__perf_event_overflow(event, throttle,
8281 					    data, regs)) {
8282 			/*
8283 			 * We inhibit the overflow from happening when
8284 			 * hwc->interrupts == MAX_INTERRUPTS.
8285 			 */
8286 			break;
8287 		}
8288 		throttle = 1;
8289 	}
8290 }
8291 
perf_swevent_event(struct perf_event * event,u64 nr,struct perf_sample_data * data,struct pt_regs * regs)8292 static void perf_swevent_event(struct perf_event *event, u64 nr,
8293 			       struct perf_sample_data *data,
8294 			       struct pt_regs *regs)
8295 {
8296 	struct hw_perf_event *hwc = &event->hw;
8297 
8298 	local64_add(nr, &event->count);
8299 
8300 	if (!regs)
8301 		return;
8302 
8303 	if (!is_sampling_event(event))
8304 		return;
8305 
8306 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
8307 		data->period = nr;
8308 		return perf_swevent_overflow(event, 1, data, regs);
8309 	} else
8310 		data->period = event->hw.last_period;
8311 
8312 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
8313 		return perf_swevent_overflow(event, 1, data, regs);
8314 
8315 	if (local64_add_negative(nr, &hwc->period_left))
8316 		return;
8317 
8318 	perf_swevent_overflow(event, 0, data, regs);
8319 }
8320 
perf_exclude_event(struct perf_event * event,struct pt_regs * regs)8321 static int perf_exclude_event(struct perf_event *event,
8322 			      struct pt_regs *regs)
8323 {
8324 	if (event->hw.state & PERF_HES_STOPPED)
8325 		return 1;
8326 
8327 	if (regs) {
8328 		if (event->attr.exclude_user && user_mode(regs))
8329 			return 1;
8330 
8331 		if (event->attr.exclude_kernel && !user_mode(regs))
8332 			return 1;
8333 	}
8334 
8335 	return 0;
8336 }
8337 
perf_swevent_match(struct perf_event * event,enum perf_type_id type,u32 event_id,struct perf_sample_data * data,struct pt_regs * regs)8338 static int perf_swevent_match(struct perf_event *event,
8339 				enum perf_type_id type,
8340 				u32 event_id,
8341 				struct perf_sample_data *data,
8342 				struct pt_regs *regs)
8343 {
8344 	if (event->attr.type != type)
8345 		return 0;
8346 
8347 	if (event->attr.config != event_id)
8348 		return 0;
8349 
8350 	if (perf_exclude_event(event, regs))
8351 		return 0;
8352 
8353 	return 1;
8354 }
8355 
swevent_hash(u64 type,u32 event_id)8356 static inline u64 swevent_hash(u64 type, u32 event_id)
8357 {
8358 	u64 val = event_id | (type << 32);
8359 
8360 	return hash_64(val, SWEVENT_HLIST_BITS);
8361 }
8362 
8363 static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist * hlist,u64 type,u32 event_id)8364 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
8365 {
8366 	u64 hash = swevent_hash(type, event_id);
8367 
8368 	return &hlist->heads[hash];
8369 }
8370 
8371 /* For the read side: events when they trigger */
8372 static inline struct hlist_head *
find_swevent_head_rcu(struct swevent_htable * swhash,u64 type,u32 event_id)8373 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
8374 {
8375 	struct swevent_hlist *hlist;
8376 
8377 	hlist = rcu_dereference(swhash->swevent_hlist);
8378 	if (!hlist)
8379 		return NULL;
8380 
8381 	return __find_swevent_head(hlist, type, event_id);
8382 }
8383 
8384 /* For the event head insertion and removal in the hlist */
8385 static inline struct hlist_head *
find_swevent_head(struct swevent_htable * swhash,struct perf_event * event)8386 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
8387 {
8388 	struct swevent_hlist *hlist;
8389 	u32 event_id = event->attr.config;
8390 	u64 type = event->attr.type;
8391 
8392 	/*
8393 	 * Event scheduling is always serialized against hlist allocation
8394 	 * and release. Which makes the protected version suitable here.
8395 	 * The context lock guarantees that.
8396 	 */
8397 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
8398 					  lockdep_is_held(&event->ctx->lock));
8399 	if (!hlist)
8400 		return NULL;
8401 
8402 	return __find_swevent_head(hlist, type, event_id);
8403 }
8404 
do_perf_sw_event(enum perf_type_id type,u32 event_id,u64 nr,struct perf_sample_data * data,struct pt_regs * regs)8405 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
8406 				    u64 nr,
8407 				    struct perf_sample_data *data,
8408 				    struct pt_regs *regs)
8409 {
8410 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8411 	struct perf_event *event;
8412 	struct hlist_head *head;
8413 
8414 	rcu_read_lock();
8415 	head = find_swevent_head_rcu(swhash, type, event_id);
8416 	if (!head)
8417 		goto end;
8418 
8419 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
8420 		if (perf_swevent_match(event, type, event_id, data, regs))
8421 			perf_swevent_event(event, nr, data, regs);
8422 	}
8423 end:
8424 	rcu_read_unlock();
8425 }
8426 
8427 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
8428 
perf_swevent_get_recursion_context(void)8429 int perf_swevent_get_recursion_context(void)
8430 {
8431 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8432 
8433 	return get_recursion_context(swhash->recursion);
8434 }
8435 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
8436 
perf_swevent_put_recursion_context(int rctx)8437 void perf_swevent_put_recursion_context(int rctx)
8438 {
8439 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8440 
8441 	put_recursion_context(swhash->recursion, rctx);
8442 }
8443 
___perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)8444 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8445 {
8446 	struct perf_sample_data data;
8447 
8448 	if (WARN_ON_ONCE(!regs))
8449 		return;
8450 
8451 	perf_sample_data_init(&data, addr, 0);
8452 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
8453 }
8454 
__perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)8455 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8456 {
8457 	int rctx;
8458 
8459 	preempt_disable_notrace();
8460 	rctx = perf_swevent_get_recursion_context();
8461 	if (unlikely(rctx < 0))
8462 		goto fail;
8463 
8464 	___perf_sw_event(event_id, nr, regs, addr);
8465 
8466 	perf_swevent_put_recursion_context(rctx);
8467 fail:
8468 	preempt_enable_notrace();
8469 }
8470 
perf_swevent_read(struct perf_event * event)8471 static void perf_swevent_read(struct perf_event *event)
8472 {
8473 }
8474 
perf_swevent_add(struct perf_event * event,int flags)8475 static int perf_swevent_add(struct perf_event *event, int flags)
8476 {
8477 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8478 	struct hw_perf_event *hwc = &event->hw;
8479 	struct hlist_head *head;
8480 
8481 	if (is_sampling_event(event)) {
8482 		hwc->last_period = hwc->sample_period;
8483 		perf_swevent_set_period(event);
8484 	}
8485 
8486 	hwc->state = !(flags & PERF_EF_START);
8487 
8488 	head = find_swevent_head(swhash, event);
8489 	if (WARN_ON_ONCE(!head))
8490 		return -EINVAL;
8491 
8492 	hlist_add_head_rcu(&event->hlist_entry, head);
8493 	perf_event_update_userpage(event);
8494 
8495 	return 0;
8496 }
8497 
perf_swevent_del(struct perf_event * event,int flags)8498 static void perf_swevent_del(struct perf_event *event, int flags)
8499 {
8500 	hlist_del_rcu(&event->hlist_entry);
8501 }
8502 
perf_swevent_start(struct perf_event * event,int flags)8503 static void perf_swevent_start(struct perf_event *event, int flags)
8504 {
8505 	event->hw.state = 0;
8506 }
8507 
perf_swevent_stop(struct perf_event * event,int flags)8508 static void perf_swevent_stop(struct perf_event *event, int flags)
8509 {
8510 	event->hw.state = PERF_HES_STOPPED;
8511 }
8512 
8513 /* Deref the hlist from the update side */
8514 static inline struct swevent_hlist *
swevent_hlist_deref(struct swevent_htable * swhash)8515 swevent_hlist_deref(struct swevent_htable *swhash)
8516 {
8517 	return rcu_dereference_protected(swhash->swevent_hlist,
8518 					 lockdep_is_held(&swhash->hlist_mutex));
8519 }
8520 
swevent_hlist_release(struct swevent_htable * swhash)8521 static void swevent_hlist_release(struct swevent_htable *swhash)
8522 {
8523 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
8524 
8525 	if (!hlist)
8526 		return;
8527 
8528 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
8529 	kfree_rcu(hlist, rcu_head);
8530 }
8531 
swevent_hlist_put_cpu(int cpu)8532 static void swevent_hlist_put_cpu(int cpu)
8533 {
8534 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8535 
8536 	mutex_lock(&swhash->hlist_mutex);
8537 
8538 	if (!--swhash->hlist_refcount)
8539 		swevent_hlist_release(swhash);
8540 
8541 	mutex_unlock(&swhash->hlist_mutex);
8542 }
8543 
swevent_hlist_put(void)8544 static void swevent_hlist_put(void)
8545 {
8546 	int cpu;
8547 
8548 	for_each_possible_cpu(cpu)
8549 		swevent_hlist_put_cpu(cpu);
8550 }
8551 
swevent_hlist_get_cpu(int cpu)8552 static int swevent_hlist_get_cpu(int cpu)
8553 {
8554 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8555 	int err = 0;
8556 
8557 	mutex_lock(&swhash->hlist_mutex);
8558 	if (!swevent_hlist_deref(swhash) &&
8559 	    cpumask_test_cpu(cpu, perf_online_mask)) {
8560 		struct swevent_hlist *hlist;
8561 
8562 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
8563 		if (!hlist) {
8564 			err = -ENOMEM;
8565 			goto exit;
8566 		}
8567 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
8568 	}
8569 	swhash->hlist_refcount++;
8570 exit:
8571 	mutex_unlock(&swhash->hlist_mutex);
8572 
8573 	return err;
8574 }
8575 
swevent_hlist_get(void)8576 static int swevent_hlist_get(void)
8577 {
8578 	int err, cpu, failed_cpu;
8579 
8580 	mutex_lock(&pmus_lock);
8581 	for_each_possible_cpu(cpu) {
8582 		err = swevent_hlist_get_cpu(cpu);
8583 		if (err) {
8584 			failed_cpu = cpu;
8585 			goto fail;
8586 		}
8587 	}
8588 	mutex_unlock(&pmus_lock);
8589 	return 0;
8590 fail:
8591 	for_each_possible_cpu(cpu) {
8592 		if (cpu == failed_cpu)
8593 			break;
8594 		swevent_hlist_put_cpu(cpu);
8595 	}
8596 	mutex_unlock(&pmus_lock);
8597 	return err;
8598 }
8599 
8600 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
8601 
sw_perf_event_destroy(struct perf_event * event)8602 static void sw_perf_event_destroy(struct perf_event *event)
8603 {
8604 	u64 event_id = event->attr.config;
8605 
8606 	WARN_ON(event->parent);
8607 
8608 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
8609 	swevent_hlist_put();
8610 }
8611 
perf_swevent_init(struct perf_event * event)8612 static int perf_swevent_init(struct perf_event *event)
8613 {
8614 	u64 event_id = event->attr.config;
8615 
8616 	if (event->attr.type != PERF_TYPE_SOFTWARE)
8617 		return -ENOENT;
8618 
8619 	/*
8620 	 * no branch sampling for software events
8621 	 */
8622 	if (has_branch_stack(event))
8623 		return -EOPNOTSUPP;
8624 
8625 	switch (event_id) {
8626 	case PERF_COUNT_SW_CPU_CLOCK:
8627 	case PERF_COUNT_SW_TASK_CLOCK:
8628 		return -ENOENT;
8629 
8630 	default:
8631 		break;
8632 	}
8633 
8634 	if (event_id >= PERF_COUNT_SW_MAX)
8635 		return -ENOENT;
8636 
8637 	if (!event->parent) {
8638 		int err;
8639 
8640 		err = swevent_hlist_get();
8641 		if (err)
8642 			return err;
8643 
8644 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
8645 		event->destroy = sw_perf_event_destroy;
8646 	}
8647 
8648 	return 0;
8649 }
8650 
8651 static struct pmu perf_swevent = {
8652 	.task_ctx_nr	= perf_sw_context,
8653 
8654 	.capabilities	= PERF_PMU_CAP_NO_NMI,
8655 
8656 	.event_init	= perf_swevent_init,
8657 	.add		= perf_swevent_add,
8658 	.del		= perf_swevent_del,
8659 	.start		= perf_swevent_start,
8660 	.stop		= perf_swevent_stop,
8661 	.read		= perf_swevent_read,
8662 };
8663 
8664 #ifdef CONFIG_EVENT_TRACING
8665 
perf_tp_filter_match(struct perf_event * event,struct perf_sample_data * data)8666 static int perf_tp_filter_match(struct perf_event *event,
8667 				struct perf_sample_data *data)
8668 {
8669 	void *record = data->raw->frag.data;
8670 
8671 	/* only top level events have filters set */
8672 	if (event->parent)
8673 		event = event->parent;
8674 
8675 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
8676 		return 1;
8677 	return 0;
8678 }
8679 
perf_tp_event_match(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)8680 static int perf_tp_event_match(struct perf_event *event,
8681 				struct perf_sample_data *data,
8682 				struct pt_regs *regs)
8683 {
8684 	if (event->hw.state & PERF_HES_STOPPED)
8685 		return 0;
8686 	/*
8687 	 * If exclude_kernel, only trace user-space tracepoints (uprobes)
8688 	 */
8689 	if (event->attr.exclude_kernel && !user_mode(regs))
8690 		return 0;
8691 
8692 	if (!perf_tp_filter_match(event, data))
8693 		return 0;
8694 
8695 	return 1;
8696 }
8697 
perf_trace_run_bpf_submit(void * raw_data,int size,int rctx,struct trace_event_call * call,u64 count,struct pt_regs * regs,struct hlist_head * head,struct task_struct * task)8698 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
8699 			       struct trace_event_call *call, u64 count,
8700 			       struct pt_regs *regs, struct hlist_head *head,
8701 			       struct task_struct *task)
8702 {
8703 	if (bpf_prog_array_valid(call)) {
8704 		*(struct pt_regs **)raw_data = regs;
8705 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
8706 			perf_swevent_put_recursion_context(rctx);
8707 			return;
8708 		}
8709 	}
8710 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8711 		      rctx, task);
8712 }
8713 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
8714 
perf_tp_event(u16 event_type,u64 count,void * record,int entry_size,struct pt_regs * regs,struct hlist_head * head,int rctx,struct task_struct * task)8715 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
8716 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
8717 		   struct task_struct *task)
8718 {
8719 	struct perf_sample_data data;
8720 	struct perf_event *event;
8721 
8722 	struct perf_raw_record raw = {
8723 		.frag = {
8724 			.size = entry_size,
8725 			.data = record,
8726 		},
8727 	};
8728 
8729 	perf_sample_data_init(&data, 0, 0);
8730 	data.raw = &raw;
8731 
8732 	perf_trace_buf_update(record, event_type);
8733 
8734 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
8735 		if (perf_tp_event_match(event, &data, regs))
8736 			perf_swevent_event(event, count, &data, regs);
8737 	}
8738 
8739 	/*
8740 	 * If we got specified a target task, also iterate its context and
8741 	 * deliver this event there too.
8742 	 */
8743 	if (task && task != current) {
8744 		struct perf_event_context *ctx;
8745 		struct trace_entry *entry = record;
8746 
8747 		rcu_read_lock();
8748 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8749 		if (!ctx)
8750 			goto unlock;
8751 
8752 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8753 			if (event->cpu != smp_processor_id())
8754 				continue;
8755 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
8756 				continue;
8757 			if (event->attr.config != entry->type)
8758 				continue;
8759 			if (perf_tp_event_match(event, &data, regs))
8760 				perf_swevent_event(event, count, &data, regs);
8761 		}
8762 unlock:
8763 		rcu_read_unlock();
8764 	}
8765 
8766 	perf_swevent_put_recursion_context(rctx);
8767 }
8768 EXPORT_SYMBOL_GPL(perf_tp_event);
8769 
tp_perf_event_destroy(struct perf_event * event)8770 static void tp_perf_event_destroy(struct perf_event *event)
8771 {
8772 	perf_trace_destroy(event);
8773 }
8774 
perf_tp_event_init(struct perf_event * event)8775 static int perf_tp_event_init(struct perf_event *event)
8776 {
8777 	int err;
8778 
8779 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
8780 		return -ENOENT;
8781 
8782 	/*
8783 	 * no branch sampling for tracepoint events
8784 	 */
8785 	if (has_branch_stack(event))
8786 		return -EOPNOTSUPP;
8787 
8788 	err = perf_trace_init(event);
8789 	if (err)
8790 		return err;
8791 
8792 	event->destroy = tp_perf_event_destroy;
8793 
8794 	return 0;
8795 }
8796 
8797 static struct pmu perf_tracepoint = {
8798 	.task_ctx_nr	= perf_sw_context,
8799 
8800 	.event_init	= perf_tp_event_init,
8801 	.add		= perf_trace_add,
8802 	.del		= perf_trace_del,
8803 	.start		= perf_swevent_start,
8804 	.stop		= perf_swevent_stop,
8805 	.read		= perf_swevent_read,
8806 };
8807 
8808 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
8809 /*
8810  * Flags in config, used by dynamic PMU kprobe and uprobe
8811  * The flags should match following PMU_FORMAT_ATTR().
8812  *
8813  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
8814  *                               if not set, create kprobe/uprobe
8815  *
8816  * The following values specify a reference counter (or semaphore in the
8817  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
8818  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
8819  *
8820  * PERF_UPROBE_REF_CTR_OFFSET_BITS	# of bits in config as th offset
8821  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT	# of bits to shift left
8822  */
8823 enum perf_probe_config {
8824 	PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
8825 	PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
8826 	PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
8827 };
8828 
8829 PMU_FORMAT_ATTR(retprobe, "config:0");
8830 #endif
8831 
8832 #ifdef CONFIG_KPROBE_EVENTS
8833 static struct attribute *kprobe_attrs[] = {
8834 	&format_attr_retprobe.attr,
8835 	NULL,
8836 };
8837 
8838 static struct attribute_group kprobe_format_group = {
8839 	.name = "format",
8840 	.attrs = kprobe_attrs,
8841 };
8842 
8843 static const struct attribute_group *kprobe_attr_groups[] = {
8844 	&kprobe_format_group,
8845 	NULL,
8846 };
8847 
8848 static int perf_kprobe_event_init(struct perf_event *event);
8849 static struct pmu perf_kprobe = {
8850 	.task_ctx_nr	= perf_sw_context,
8851 	.event_init	= perf_kprobe_event_init,
8852 	.add		= perf_trace_add,
8853 	.del		= perf_trace_del,
8854 	.start		= perf_swevent_start,
8855 	.stop		= perf_swevent_stop,
8856 	.read		= perf_swevent_read,
8857 	.attr_groups	= kprobe_attr_groups,
8858 };
8859 
perf_kprobe_event_init(struct perf_event * event)8860 static int perf_kprobe_event_init(struct perf_event *event)
8861 {
8862 	int err;
8863 	bool is_retprobe;
8864 
8865 	if (event->attr.type != perf_kprobe.type)
8866 		return -ENOENT;
8867 
8868 	if (!capable(CAP_SYS_ADMIN))
8869 		return -EACCES;
8870 
8871 	/*
8872 	 * no branch sampling for probe events
8873 	 */
8874 	if (has_branch_stack(event))
8875 		return -EOPNOTSUPP;
8876 
8877 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8878 	err = perf_kprobe_init(event, is_retprobe);
8879 	if (err)
8880 		return err;
8881 
8882 	event->destroy = perf_kprobe_destroy;
8883 
8884 	return 0;
8885 }
8886 #endif /* CONFIG_KPROBE_EVENTS */
8887 
8888 #ifdef CONFIG_UPROBE_EVENTS
8889 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
8890 
8891 static struct attribute *uprobe_attrs[] = {
8892 	&format_attr_retprobe.attr,
8893 	&format_attr_ref_ctr_offset.attr,
8894 	NULL,
8895 };
8896 
8897 static struct attribute_group uprobe_format_group = {
8898 	.name = "format",
8899 	.attrs = uprobe_attrs,
8900 };
8901 
8902 static const struct attribute_group *uprobe_attr_groups[] = {
8903 	&uprobe_format_group,
8904 	NULL,
8905 };
8906 
8907 static int perf_uprobe_event_init(struct perf_event *event);
8908 static struct pmu perf_uprobe = {
8909 	.task_ctx_nr	= perf_sw_context,
8910 	.event_init	= perf_uprobe_event_init,
8911 	.add		= perf_trace_add,
8912 	.del		= perf_trace_del,
8913 	.start		= perf_swevent_start,
8914 	.stop		= perf_swevent_stop,
8915 	.read		= perf_swevent_read,
8916 	.attr_groups	= uprobe_attr_groups,
8917 };
8918 
perf_uprobe_event_init(struct perf_event * event)8919 static int perf_uprobe_event_init(struct perf_event *event)
8920 {
8921 	int err;
8922 	unsigned long ref_ctr_offset;
8923 	bool is_retprobe;
8924 
8925 	if (event->attr.type != perf_uprobe.type)
8926 		return -ENOENT;
8927 
8928 	if (!capable(CAP_SYS_ADMIN))
8929 		return -EACCES;
8930 
8931 	/*
8932 	 * no branch sampling for probe events
8933 	 */
8934 	if (has_branch_stack(event))
8935 		return -EOPNOTSUPP;
8936 
8937 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8938 	ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
8939 	err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
8940 	if (err)
8941 		return err;
8942 
8943 	event->destroy = perf_uprobe_destroy;
8944 
8945 	return 0;
8946 }
8947 #endif /* CONFIG_UPROBE_EVENTS */
8948 
perf_tp_register(void)8949 static inline void perf_tp_register(void)
8950 {
8951 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
8952 #ifdef CONFIG_KPROBE_EVENTS
8953 	perf_pmu_register(&perf_kprobe, "kprobe", -1);
8954 #endif
8955 #ifdef CONFIG_UPROBE_EVENTS
8956 	perf_pmu_register(&perf_uprobe, "uprobe", -1);
8957 #endif
8958 }
8959 
perf_event_free_filter(struct perf_event * event)8960 static void perf_event_free_filter(struct perf_event *event)
8961 {
8962 	ftrace_profile_free_filter(event);
8963 }
8964 
8965 #ifdef CONFIG_BPF_SYSCALL
bpf_overflow_handler(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)8966 static void bpf_overflow_handler(struct perf_event *event,
8967 				 struct perf_sample_data *data,
8968 				 struct pt_regs *regs)
8969 {
8970 	struct bpf_perf_event_data_kern ctx = {
8971 		.data = data,
8972 		.event = event,
8973 	};
8974 	int ret = 0;
8975 
8976 	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
8977 	preempt_disable();
8978 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8979 		goto out;
8980 	rcu_read_lock();
8981 	ret = BPF_PROG_RUN(event->prog, &ctx);
8982 	rcu_read_unlock();
8983 out:
8984 	__this_cpu_dec(bpf_prog_active);
8985 	preempt_enable();
8986 	if (!ret)
8987 		return;
8988 
8989 	event->orig_overflow_handler(event, data, regs);
8990 }
8991 
perf_event_set_bpf_handler(struct perf_event * event,u32 prog_fd)8992 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8993 {
8994 	struct bpf_prog *prog;
8995 
8996 	if (event->overflow_handler_context)
8997 		/* hw breakpoint or kernel counter */
8998 		return -EINVAL;
8999 
9000 	if (event->prog)
9001 		return -EEXIST;
9002 
9003 	prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
9004 	if (IS_ERR(prog))
9005 		return PTR_ERR(prog);
9006 
9007 	event->prog = prog;
9008 	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
9009 	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
9010 	return 0;
9011 }
9012 
perf_event_free_bpf_handler(struct perf_event * event)9013 static void perf_event_free_bpf_handler(struct perf_event *event)
9014 {
9015 	struct bpf_prog *prog = event->prog;
9016 
9017 	if (!prog)
9018 		return;
9019 
9020 	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
9021 	event->prog = NULL;
9022 	bpf_prog_put(prog);
9023 }
9024 #else
perf_event_set_bpf_handler(struct perf_event * event,u32 prog_fd)9025 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9026 {
9027 	return -EOPNOTSUPP;
9028 }
perf_event_free_bpf_handler(struct perf_event * event)9029 static void perf_event_free_bpf_handler(struct perf_event *event)
9030 {
9031 }
9032 #endif
9033 
9034 /*
9035  * returns true if the event is a tracepoint, or a kprobe/upprobe created
9036  * with perf_event_open()
9037  */
perf_event_is_tracing(struct perf_event * event)9038 static inline bool perf_event_is_tracing(struct perf_event *event)
9039 {
9040 	if (event->pmu == &perf_tracepoint)
9041 		return true;
9042 #ifdef CONFIG_KPROBE_EVENTS
9043 	if (event->pmu == &perf_kprobe)
9044 		return true;
9045 #endif
9046 #ifdef CONFIG_UPROBE_EVENTS
9047 	if (event->pmu == &perf_uprobe)
9048 		return true;
9049 #endif
9050 	return false;
9051 }
9052 
perf_event_set_bpf_prog(struct perf_event * event,u32 prog_fd)9053 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9054 {
9055 	bool is_kprobe, is_tracepoint, is_syscall_tp;
9056 	struct bpf_prog *prog;
9057 	int ret;
9058 
9059 	if (!perf_event_is_tracing(event))
9060 		return perf_event_set_bpf_handler(event, prog_fd);
9061 
9062 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
9063 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
9064 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
9065 	if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
9066 		/* bpf programs can only be attached to u/kprobe or tracepoint */
9067 		return -EINVAL;
9068 
9069 	prog = bpf_prog_get(prog_fd);
9070 	if (IS_ERR(prog))
9071 		return PTR_ERR(prog);
9072 
9073 	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
9074 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
9075 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
9076 		/* valid fd, but invalid bpf program type */
9077 		bpf_prog_put(prog);
9078 		return -EINVAL;
9079 	}
9080 
9081 	/* Kprobe override only works for kprobes, not uprobes. */
9082 	if (prog->kprobe_override &&
9083 	    !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
9084 		bpf_prog_put(prog);
9085 		return -EINVAL;
9086 	}
9087 
9088 	if (is_tracepoint || is_syscall_tp) {
9089 		int off = trace_event_get_offsets(event->tp_event);
9090 
9091 		if (prog->aux->max_ctx_offset > off) {
9092 			bpf_prog_put(prog);
9093 			return -EACCES;
9094 		}
9095 	}
9096 
9097 	ret = perf_event_attach_bpf_prog(event, prog);
9098 	if (ret)
9099 		bpf_prog_put(prog);
9100 	return ret;
9101 }
9102 
perf_event_free_bpf_prog(struct perf_event * event)9103 static void perf_event_free_bpf_prog(struct perf_event *event)
9104 {
9105 	if (!perf_event_is_tracing(event)) {
9106 		perf_event_free_bpf_handler(event);
9107 		return;
9108 	}
9109 	perf_event_detach_bpf_prog(event);
9110 }
9111 
9112 #else
9113 
perf_tp_register(void)9114 static inline void perf_tp_register(void)
9115 {
9116 }
9117 
perf_event_free_filter(struct perf_event * event)9118 static void perf_event_free_filter(struct perf_event *event)
9119 {
9120 }
9121 
perf_event_set_bpf_prog(struct perf_event * event,u32 prog_fd)9122 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9123 {
9124 	return -ENOENT;
9125 }
9126 
perf_event_free_bpf_prog(struct perf_event * event)9127 static void perf_event_free_bpf_prog(struct perf_event *event)
9128 {
9129 }
9130 #endif /* CONFIG_EVENT_TRACING */
9131 
9132 #ifdef CONFIG_HAVE_HW_BREAKPOINT
perf_bp_event(struct perf_event * bp,void * data)9133 void perf_bp_event(struct perf_event *bp, void *data)
9134 {
9135 	struct perf_sample_data sample;
9136 	struct pt_regs *regs = data;
9137 
9138 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
9139 
9140 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
9141 		perf_swevent_event(bp, 1, &sample, regs);
9142 }
9143 #endif
9144 
9145 /*
9146  * Allocate a new address filter
9147  */
9148 static struct perf_addr_filter *
perf_addr_filter_new(struct perf_event * event,struct list_head * filters)9149 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
9150 {
9151 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
9152 	struct perf_addr_filter *filter;
9153 
9154 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
9155 	if (!filter)
9156 		return NULL;
9157 
9158 	INIT_LIST_HEAD(&filter->entry);
9159 	list_add_tail(&filter->entry, filters);
9160 
9161 	return filter;
9162 }
9163 
free_filters_list(struct list_head * filters)9164 static void free_filters_list(struct list_head *filters)
9165 {
9166 	struct perf_addr_filter *filter, *iter;
9167 
9168 	list_for_each_entry_safe(filter, iter, filters, entry) {
9169 		path_put(&filter->path);
9170 		list_del(&filter->entry);
9171 		kfree(filter);
9172 	}
9173 }
9174 
9175 /*
9176  * Free existing address filters and optionally install new ones
9177  */
perf_addr_filters_splice(struct perf_event * event,struct list_head * head)9178 static void perf_addr_filters_splice(struct perf_event *event,
9179 				     struct list_head *head)
9180 {
9181 	unsigned long flags;
9182 	LIST_HEAD(list);
9183 
9184 	if (!has_addr_filter(event))
9185 		return;
9186 
9187 	/* don't bother with children, they don't have their own filters */
9188 	if (event->parent)
9189 		return;
9190 
9191 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
9192 
9193 	list_splice_init(&event->addr_filters.list, &list);
9194 	if (head)
9195 		list_splice(head, &event->addr_filters.list);
9196 
9197 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
9198 
9199 	free_filters_list(&list);
9200 }
9201 
9202 /*
9203  * Scan through mm's vmas and see if one of them matches the
9204  * @filter; if so, adjust filter's address range.
9205  * Called with mm::mmap_sem down for reading.
9206  */
perf_addr_filter_apply(struct perf_addr_filter * filter,struct mm_struct * mm,struct perf_addr_filter_range * fr)9207 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
9208 				   struct mm_struct *mm,
9209 				   struct perf_addr_filter_range *fr)
9210 {
9211 	struct vm_area_struct *vma;
9212 
9213 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
9214 		if (!vma->vm_file)
9215 			continue;
9216 
9217 		if (perf_addr_filter_vma_adjust(filter, vma, fr))
9218 			return;
9219 	}
9220 }
9221 
9222 /*
9223  * Update event's address range filters based on the
9224  * task's existing mappings, if any.
9225  */
perf_event_addr_filters_apply(struct perf_event * event)9226 static void perf_event_addr_filters_apply(struct perf_event *event)
9227 {
9228 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
9229 	struct task_struct *task = READ_ONCE(event->ctx->task);
9230 	struct perf_addr_filter *filter;
9231 	struct mm_struct *mm = NULL;
9232 	unsigned int count = 0;
9233 	unsigned long flags;
9234 
9235 	/*
9236 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
9237 	 * will stop on the parent's child_mutex that our caller is also holding
9238 	 */
9239 	if (task == TASK_TOMBSTONE)
9240 		return;
9241 
9242 	if (ifh->nr_file_filters) {
9243 		mm = get_task_mm(event->ctx->task);
9244 		if (!mm)
9245 			goto restart;
9246 
9247 		down_read(&mm->mmap_sem);
9248 	}
9249 
9250 	raw_spin_lock_irqsave(&ifh->lock, flags);
9251 	list_for_each_entry(filter, &ifh->list, entry) {
9252 		if (filter->path.dentry) {
9253 			/*
9254 			 * Adjust base offset if the filter is associated to a
9255 			 * binary that needs to be mapped:
9256 			 */
9257 			event->addr_filter_ranges[count].start = 0;
9258 			event->addr_filter_ranges[count].size = 0;
9259 
9260 			perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
9261 		} else {
9262 			event->addr_filter_ranges[count].start = filter->offset;
9263 			event->addr_filter_ranges[count].size  = filter->size;
9264 		}
9265 
9266 		count++;
9267 	}
9268 
9269 	event->addr_filters_gen++;
9270 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
9271 
9272 	if (ifh->nr_file_filters) {
9273 		up_read(&mm->mmap_sem);
9274 
9275 		mmput(mm);
9276 	}
9277 
9278 restart:
9279 	perf_event_stop(event, 1);
9280 }
9281 
9282 /*
9283  * Address range filtering: limiting the data to certain
9284  * instruction address ranges. Filters are ioctl()ed to us from
9285  * userspace as ascii strings.
9286  *
9287  * Filter string format:
9288  *
9289  * ACTION RANGE_SPEC
9290  * where ACTION is one of the
9291  *  * "filter": limit the trace to this region
9292  *  * "start": start tracing from this address
9293  *  * "stop": stop tracing at this address/region;
9294  * RANGE_SPEC is
9295  *  * for kernel addresses: <start address>[/<size>]
9296  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
9297  *
9298  * if <size> is not specified or is zero, the range is treated as a single
9299  * address; not valid for ACTION=="filter".
9300  */
9301 enum {
9302 	IF_ACT_NONE = -1,
9303 	IF_ACT_FILTER,
9304 	IF_ACT_START,
9305 	IF_ACT_STOP,
9306 	IF_SRC_FILE,
9307 	IF_SRC_KERNEL,
9308 	IF_SRC_FILEADDR,
9309 	IF_SRC_KERNELADDR,
9310 };
9311 
9312 enum {
9313 	IF_STATE_ACTION = 0,
9314 	IF_STATE_SOURCE,
9315 	IF_STATE_END,
9316 };
9317 
9318 static const match_table_t if_tokens = {
9319 	{ IF_ACT_FILTER,	"filter" },
9320 	{ IF_ACT_START,		"start" },
9321 	{ IF_ACT_STOP,		"stop" },
9322 	{ IF_SRC_FILE,		"%u/%u@%s" },
9323 	{ IF_SRC_KERNEL,	"%u/%u" },
9324 	{ IF_SRC_FILEADDR,	"%u@%s" },
9325 	{ IF_SRC_KERNELADDR,	"%u" },
9326 	{ IF_ACT_NONE,		NULL },
9327 };
9328 
9329 /*
9330  * Address filter string parser
9331  */
9332 static int
perf_event_parse_addr_filter(struct perf_event * event,char * fstr,struct list_head * filters)9333 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
9334 			     struct list_head *filters)
9335 {
9336 	struct perf_addr_filter *filter = NULL;
9337 	char *start, *orig, *filename = NULL;
9338 	substring_t args[MAX_OPT_ARGS];
9339 	int state = IF_STATE_ACTION, token;
9340 	unsigned int kernel = 0;
9341 	int ret = -EINVAL;
9342 
9343 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
9344 	if (!fstr)
9345 		return -ENOMEM;
9346 
9347 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
9348 		static const enum perf_addr_filter_action_t actions[] = {
9349 			[IF_ACT_FILTER]	= PERF_ADDR_FILTER_ACTION_FILTER,
9350 			[IF_ACT_START]	= PERF_ADDR_FILTER_ACTION_START,
9351 			[IF_ACT_STOP]	= PERF_ADDR_FILTER_ACTION_STOP,
9352 		};
9353 		ret = -EINVAL;
9354 
9355 		if (!*start)
9356 			continue;
9357 
9358 		/* filter definition begins */
9359 		if (state == IF_STATE_ACTION) {
9360 			filter = perf_addr_filter_new(event, filters);
9361 			if (!filter)
9362 				goto fail;
9363 		}
9364 
9365 		token = match_token(start, if_tokens, args);
9366 		switch (token) {
9367 		case IF_ACT_FILTER:
9368 		case IF_ACT_START:
9369 		case IF_ACT_STOP:
9370 			if (state != IF_STATE_ACTION)
9371 				goto fail;
9372 
9373 			filter->action = actions[token];
9374 			state = IF_STATE_SOURCE;
9375 			break;
9376 
9377 		case IF_SRC_KERNELADDR:
9378 		case IF_SRC_KERNEL:
9379 			kernel = 1;
9380 			/* fall through */
9381 
9382 		case IF_SRC_FILEADDR:
9383 		case IF_SRC_FILE:
9384 			if (state != IF_STATE_SOURCE)
9385 				goto fail;
9386 
9387 			*args[0].to = 0;
9388 			ret = kstrtoul(args[0].from, 0, &filter->offset);
9389 			if (ret)
9390 				goto fail;
9391 
9392 			if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
9393 				*args[1].to = 0;
9394 				ret = kstrtoul(args[1].from, 0, &filter->size);
9395 				if (ret)
9396 					goto fail;
9397 			}
9398 
9399 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
9400 				int fpos = token == IF_SRC_FILE ? 2 : 1;
9401 
9402 				filename = match_strdup(&args[fpos]);
9403 				if (!filename) {
9404 					ret = -ENOMEM;
9405 					goto fail;
9406 				}
9407 			}
9408 
9409 			state = IF_STATE_END;
9410 			break;
9411 
9412 		default:
9413 			goto fail;
9414 		}
9415 
9416 		/*
9417 		 * Filter definition is fully parsed, validate and install it.
9418 		 * Make sure that it doesn't contradict itself or the event's
9419 		 * attribute.
9420 		 */
9421 		if (state == IF_STATE_END) {
9422 			ret = -EINVAL;
9423 			if (kernel && event->attr.exclude_kernel)
9424 				goto fail;
9425 
9426 			/*
9427 			 * ACTION "filter" must have a non-zero length region
9428 			 * specified.
9429 			 */
9430 			if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
9431 			    !filter->size)
9432 				goto fail;
9433 
9434 			if (!kernel) {
9435 				if (!filename)
9436 					goto fail;
9437 
9438 				/*
9439 				 * For now, we only support file-based filters
9440 				 * in per-task events; doing so for CPU-wide
9441 				 * events requires additional context switching
9442 				 * trickery, since same object code will be
9443 				 * mapped at different virtual addresses in
9444 				 * different processes.
9445 				 */
9446 				ret = -EOPNOTSUPP;
9447 				if (!event->ctx->task)
9448 					goto fail_free_name;
9449 
9450 				/* look up the path and grab its inode */
9451 				ret = kern_path(filename, LOOKUP_FOLLOW,
9452 						&filter->path);
9453 				if (ret)
9454 					goto fail_free_name;
9455 
9456 				kfree(filename);
9457 				filename = NULL;
9458 
9459 				ret = -EINVAL;
9460 				if (!filter->path.dentry ||
9461 				    !S_ISREG(d_inode(filter->path.dentry)
9462 					     ->i_mode))
9463 					goto fail;
9464 
9465 				event->addr_filters.nr_file_filters++;
9466 			}
9467 
9468 			/* ready to consume more filters */
9469 			state = IF_STATE_ACTION;
9470 			filter = NULL;
9471 		}
9472 	}
9473 
9474 	if (state != IF_STATE_ACTION)
9475 		goto fail;
9476 
9477 	kfree(orig);
9478 
9479 	return 0;
9480 
9481 fail_free_name:
9482 	kfree(filename);
9483 fail:
9484 	free_filters_list(filters);
9485 	kfree(orig);
9486 
9487 	return ret;
9488 }
9489 
9490 static int
perf_event_set_addr_filter(struct perf_event * event,char * filter_str)9491 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
9492 {
9493 	LIST_HEAD(filters);
9494 	int ret;
9495 
9496 	/*
9497 	 * Since this is called in perf_ioctl() path, we're already holding
9498 	 * ctx::mutex.
9499 	 */
9500 	lockdep_assert_held(&event->ctx->mutex);
9501 
9502 	if (WARN_ON_ONCE(event->parent))
9503 		return -EINVAL;
9504 
9505 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
9506 	if (ret)
9507 		goto fail_clear_files;
9508 
9509 	ret = event->pmu->addr_filters_validate(&filters);
9510 	if (ret)
9511 		goto fail_free_filters;
9512 
9513 	/* remove existing filters, if any */
9514 	perf_addr_filters_splice(event, &filters);
9515 
9516 	/* install new filters */
9517 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
9518 
9519 	return ret;
9520 
9521 fail_free_filters:
9522 	free_filters_list(&filters);
9523 
9524 fail_clear_files:
9525 	event->addr_filters.nr_file_filters = 0;
9526 
9527 	return ret;
9528 }
9529 
perf_event_set_filter(struct perf_event * event,void __user * arg)9530 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
9531 {
9532 	int ret = -EINVAL;
9533 	char *filter_str;
9534 
9535 	filter_str = strndup_user(arg, PAGE_SIZE);
9536 	if (IS_ERR(filter_str))
9537 		return PTR_ERR(filter_str);
9538 
9539 #ifdef CONFIG_EVENT_TRACING
9540 	if (perf_event_is_tracing(event)) {
9541 		struct perf_event_context *ctx = event->ctx;
9542 
9543 		/*
9544 		 * Beware, here be dragons!!
9545 		 *
9546 		 * the tracepoint muck will deadlock against ctx->mutex, but
9547 		 * the tracepoint stuff does not actually need it. So
9548 		 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
9549 		 * already have a reference on ctx.
9550 		 *
9551 		 * This can result in event getting moved to a different ctx,
9552 		 * but that does not affect the tracepoint state.
9553 		 */
9554 		mutex_unlock(&ctx->mutex);
9555 		ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
9556 		mutex_lock(&ctx->mutex);
9557 	} else
9558 #endif
9559 	if (has_addr_filter(event))
9560 		ret = perf_event_set_addr_filter(event, filter_str);
9561 
9562 	kfree(filter_str);
9563 	return ret;
9564 }
9565 
9566 /*
9567  * hrtimer based swevent callback
9568  */
9569 
perf_swevent_hrtimer(struct hrtimer * hrtimer)9570 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
9571 {
9572 	enum hrtimer_restart ret = HRTIMER_RESTART;
9573 	struct perf_sample_data data;
9574 	struct pt_regs *regs;
9575 	struct perf_event *event;
9576 	u64 period;
9577 
9578 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
9579 
9580 	if (event->state != PERF_EVENT_STATE_ACTIVE)
9581 		return HRTIMER_NORESTART;
9582 
9583 	event->pmu->read(event);
9584 
9585 	perf_sample_data_init(&data, 0, event->hw.last_period);
9586 	regs = get_irq_regs();
9587 
9588 	if (regs && !perf_exclude_event(event, regs)) {
9589 		if (!(event->attr.exclude_idle && is_idle_task(current)))
9590 			if (__perf_event_overflow(event, 1, &data, regs))
9591 				ret = HRTIMER_NORESTART;
9592 	}
9593 
9594 	period = max_t(u64, 10000, event->hw.sample_period);
9595 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
9596 
9597 	return ret;
9598 }
9599 
perf_swevent_start_hrtimer(struct perf_event * event)9600 static void perf_swevent_start_hrtimer(struct perf_event *event)
9601 {
9602 	struct hw_perf_event *hwc = &event->hw;
9603 	s64 period;
9604 
9605 	if (!is_sampling_event(event))
9606 		return;
9607 
9608 	period = local64_read(&hwc->period_left);
9609 	if (period) {
9610 		if (period < 0)
9611 			period = 10000;
9612 
9613 		local64_set(&hwc->period_left, 0);
9614 	} else {
9615 		period = max_t(u64, 10000, hwc->sample_period);
9616 	}
9617 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
9618 		      HRTIMER_MODE_REL_PINNED_HARD);
9619 }
9620 
perf_swevent_cancel_hrtimer(struct perf_event * event)9621 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
9622 {
9623 	struct hw_perf_event *hwc = &event->hw;
9624 
9625 	if (is_sampling_event(event)) {
9626 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
9627 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
9628 
9629 		hrtimer_cancel(&hwc->hrtimer);
9630 	}
9631 }
9632 
perf_swevent_init_hrtimer(struct perf_event * event)9633 static void perf_swevent_init_hrtimer(struct perf_event *event)
9634 {
9635 	struct hw_perf_event *hwc = &event->hw;
9636 
9637 	if (!is_sampling_event(event))
9638 		return;
9639 
9640 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
9641 	hwc->hrtimer.function = perf_swevent_hrtimer;
9642 
9643 	/*
9644 	 * Since hrtimers have a fixed rate, we can do a static freq->period
9645 	 * mapping and avoid the whole period adjust feedback stuff.
9646 	 */
9647 	if (event->attr.freq) {
9648 		long freq = event->attr.sample_freq;
9649 
9650 		event->attr.sample_period = NSEC_PER_SEC / freq;
9651 		hwc->sample_period = event->attr.sample_period;
9652 		local64_set(&hwc->period_left, hwc->sample_period);
9653 		hwc->last_period = hwc->sample_period;
9654 		event->attr.freq = 0;
9655 	}
9656 }
9657 
9658 /*
9659  * Software event: cpu wall time clock
9660  */
9661 
cpu_clock_event_update(struct perf_event * event)9662 static void cpu_clock_event_update(struct perf_event *event)
9663 {
9664 	s64 prev;
9665 	u64 now;
9666 
9667 	now = local_clock();
9668 	prev = local64_xchg(&event->hw.prev_count, now);
9669 	local64_add(now - prev, &event->count);
9670 }
9671 
cpu_clock_event_start(struct perf_event * event,int flags)9672 static void cpu_clock_event_start(struct perf_event *event, int flags)
9673 {
9674 	local64_set(&event->hw.prev_count, local_clock());
9675 	perf_swevent_start_hrtimer(event);
9676 }
9677 
cpu_clock_event_stop(struct perf_event * event,int flags)9678 static void cpu_clock_event_stop(struct perf_event *event, int flags)
9679 {
9680 	perf_swevent_cancel_hrtimer(event);
9681 	cpu_clock_event_update(event);
9682 }
9683 
cpu_clock_event_add(struct perf_event * event,int flags)9684 static int cpu_clock_event_add(struct perf_event *event, int flags)
9685 {
9686 	if (flags & PERF_EF_START)
9687 		cpu_clock_event_start(event, flags);
9688 	perf_event_update_userpage(event);
9689 
9690 	return 0;
9691 }
9692 
cpu_clock_event_del(struct perf_event * event,int flags)9693 static void cpu_clock_event_del(struct perf_event *event, int flags)
9694 {
9695 	cpu_clock_event_stop(event, flags);
9696 }
9697 
cpu_clock_event_read(struct perf_event * event)9698 static void cpu_clock_event_read(struct perf_event *event)
9699 {
9700 	cpu_clock_event_update(event);
9701 }
9702 
cpu_clock_event_init(struct perf_event * event)9703 static int cpu_clock_event_init(struct perf_event *event)
9704 {
9705 	if (event->attr.type != PERF_TYPE_SOFTWARE)
9706 		return -ENOENT;
9707 
9708 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
9709 		return -ENOENT;
9710 
9711 	/*
9712 	 * no branch sampling for software events
9713 	 */
9714 	if (has_branch_stack(event))
9715 		return -EOPNOTSUPP;
9716 
9717 	perf_swevent_init_hrtimer(event);
9718 
9719 	return 0;
9720 }
9721 
9722 static struct pmu perf_cpu_clock = {
9723 	.task_ctx_nr	= perf_sw_context,
9724 
9725 	.capabilities	= PERF_PMU_CAP_NO_NMI,
9726 
9727 	.event_init	= cpu_clock_event_init,
9728 	.add		= cpu_clock_event_add,
9729 	.del		= cpu_clock_event_del,
9730 	.start		= cpu_clock_event_start,
9731 	.stop		= cpu_clock_event_stop,
9732 	.read		= cpu_clock_event_read,
9733 };
9734 
9735 /*
9736  * Software event: task time clock
9737  */
9738 
task_clock_event_update(struct perf_event * event,u64 now)9739 static void task_clock_event_update(struct perf_event *event, u64 now)
9740 {
9741 	u64 prev;
9742 	s64 delta;
9743 
9744 	prev = local64_xchg(&event->hw.prev_count, now);
9745 	delta = now - prev;
9746 	local64_add(delta, &event->count);
9747 }
9748 
task_clock_event_start(struct perf_event * event,int flags)9749 static void task_clock_event_start(struct perf_event *event, int flags)
9750 {
9751 	local64_set(&event->hw.prev_count, event->ctx->time);
9752 	perf_swevent_start_hrtimer(event);
9753 }
9754 
task_clock_event_stop(struct perf_event * event,int flags)9755 static void task_clock_event_stop(struct perf_event *event, int flags)
9756 {
9757 	perf_swevent_cancel_hrtimer(event);
9758 	task_clock_event_update(event, event->ctx->time);
9759 }
9760 
task_clock_event_add(struct perf_event * event,int flags)9761 static int task_clock_event_add(struct perf_event *event, int flags)
9762 {
9763 	if (flags & PERF_EF_START)
9764 		task_clock_event_start(event, flags);
9765 	perf_event_update_userpage(event);
9766 
9767 	return 0;
9768 }
9769 
task_clock_event_del(struct perf_event * event,int flags)9770 static void task_clock_event_del(struct perf_event *event, int flags)
9771 {
9772 	task_clock_event_stop(event, PERF_EF_UPDATE);
9773 }
9774 
task_clock_event_read(struct perf_event * event)9775 static void task_clock_event_read(struct perf_event *event)
9776 {
9777 	u64 now = perf_clock();
9778 	u64 delta = now - event->ctx->timestamp;
9779 	u64 time = event->ctx->time + delta;
9780 
9781 	task_clock_event_update(event, time);
9782 }
9783 
task_clock_event_init(struct perf_event * event)9784 static int task_clock_event_init(struct perf_event *event)
9785 {
9786 	if (event->attr.type != PERF_TYPE_SOFTWARE)
9787 		return -ENOENT;
9788 
9789 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
9790 		return -ENOENT;
9791 
9792 	/*
9793 	 * no branch sampling for software events
9794 	 */
9795 	if (has_branch_stack(event))
9796 		return -EOPNOTSUPP;
9797 
9798 	perf_swevent_init_hrtimer(event);
9799 
9800 	return 0;
9801 }
9802 
9803 static struct pmu perf_task_clock = {
9804 	.task_ctx_nr	= perf_sw_context,
9805 
9806 	.capabilities	= PERF_PMU_CAP_NO_NMI,
9807 
9808 	.event_init	= task_clock_event_init,
9809 	.add		= task_clock_event_add,
9810 	.del		= task_clock_event_del,
9811 	.start		= task_clock_event_start,
9812 	.stop		= task_clock_event_stop,
9813 	.read		= task_clock_event_read,
9814 };
9815 
perf_pmu_nop_void(struct pmu * pmu)9816 static void perf_pmu_nop_void(struct pmu *pmu)
9817 {
9818 }
9819 
perf_pmu_nop_txn(struct pmu * pmu,unsigned int flags)9820 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
9821 {
9822 }
9823 
perf_pmu_nop_int(struct pmu * pmu)9824 static int perf_pmu_nop_int(struct pmu *pmu)
9825 {
9826 	return 0;
9827 }
9828 
perf_event_nop_int(struct perf_event * event,u64 value)9829 static int perf_event_nop_int(struct perf_event *event, u64 value)
9830 {
9831 	return 0;
9832 }
9833 
9834 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
9835 
perf_pmu_start_txn(struct pmu * pmu,unsigned int flags)9836 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
9837 {
9838 	__this_cpu_write(nop_txn_flags, flags);
9839 
9840 	if (flags & ~PERF_PMU_TXN_ADD)
9841 		return;
9842 
9843 	perf_pmu_disable(pmu);
9844 }
9845 
perf_pmu_commit_txn(struct pmu * pmu)9846 static int perf_pmu_commit_txn(struct pmu *pmu)
9847 {
9848 	unsigned int flags = __this_cpu_read(nop_txn_flags);
9849 
9850 	__this_cpu_write(nop_txn_flags, 0);
9851 
9852 	if (flags & ~PERF_PMU_TXN_ADD)
9853 		return 0;
9854 
9855 	perf_pmu_enable(pmu);
9856 	return 0;
9857 }
9858 
perf_pmu_cancel_txn(struct pmu * pmu)9859 static void perf_pmu_cancel_txn(struct pmu *pmu)
9860 {
9861 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
9862 
9863 	__this_cpu_write(nop_txn_flags, 0);
9864 
9865 	if (flags & ~PERF_PMU_TXN_ADD)
9866 		return;
9867 
9868 	perf_pmu_enable(pmu);
9869 }
9870 
perf_event_idx_default(struct perf_event * event)9871 static int perf_event_idx_default(struct perf_event *event)
9872 {
9873 	return 0;
9874 }
9875 
9876 /*
9877  * Ensures all contexts with the same task_ctx_nr have the same
9878  * pmu_cpu_context too.
9879  */
find_pmu_context(int ctxn)9880 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
9881 {
9882 	struct pmu *pmu;
9883 
9884 	if (ctxn < 0)
9885 		return NULL;
9886 
9887 	list_for_each_entry(pmu, &pmus, entry) {
9888 		if (pmu->task_ctx_nr == ctxn)
9889 			return pmu->pmu_cpu_context;
9890 	}
9891 
9892 	return NULL;
9893 }
9894 
free_pmu_context(struct pmu * pmu)9895 static void free_pmu_context(struct pmu *pmu)
9896 {
9897 	/*
9898 	 * Static contexts such as perf_sw_context have a global lifetime
9899 	 * and may be shared between different PMUs. Avoid freeing them
9900 	 * when a single PMU is going away.
9901 	 */
9902 	if (pmu->task_ctx_nr > perf_invalid_context)
9903 		return;
9904 
9905 	free_percpu(pmu->pmu_cpu_context);
9906 }
9907 
9908 /*
9909  * Let userspace know that this PMU supports address range filtering:
9910  */
nr_addr_filters_show(struct device * dev,struct device_attribute * attr,char * page)9911 static ssize_t nr_addr_filters_show(struct device *dev,
9912 				    struct device_attribute *attr,
9913 				    char *page)
9914 {
9915 	struct pmu *pmu = dev_get_drvdata(dev);
9916 
9917 	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
9918 }
9919 DEVICE_ATTR_RO(nr_addr_filters);
9920 
9921 static struct idr pmu_idr;
9922 
9923 static ssize_t
type_show(struct device * dev,struct device_attribute * attr,char * page)9924 type_show(struct device *dev, struct device_attribute *attr, char *page)
9925 {
9926 	struct pmu *pmu = dev_get_drvdata(dev);
9927 
9928 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
9929 }
9930 static DEVICE_ATTR_RO(type);
9931 
9932 static ssize_t
perf_event_mux_interval_ms_show(struct device * dev,struct device_attribute * attr,char * page)9933 perf_event_mux_interval_ms_show(struct device *dev,
9934 				struct device_attribute *attr,
9935 				char *page)
9936 {
9937 	struct pmu *pmu = dev_get_drvdata(dev);
9938 
9939 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
9940 }
9941 
9942 static DEFINE_MUTEX(mux_interval_mutex);
9943 
9944 static ssize_t
perf_event_mux_interval_ms_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)9945 perf_event_mux_interval_ms_store(struct device *dev,
9946 				 struct device_attribute *attr,
9947 				 const char *buf, size_t count)
9948 {
9949 	struct pmu *pmu = dev_get_drvdata(dev);
9950 	int timer, cpu, ret;
9951 
9952 	ret = kstrtoint(buf, 0, &timer);
9953 	if (ret)
9954 		return ret;
9955 
9956 	if (timer < 1)
9957 		return -EINVAL;
9958 
9959 	/* same value, noting to do */
9960 	if (timer == pmu->hrtimer_interval_ms)
9961 		return count;
9962 
9963 	mutex_lock(&mux_interval_mutex);
9964 	pmu->hrtimer_interval_ms = timer;
9965 
9966 	/* update all cpuctx for this PMU */
9967 	cpus_read_lock();
9968 	for_each_online_cpu(cpu) {
9969 		struct perf_cpu_context *cpuctx;
9970 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9971 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9972 
9973 		cpu_function_call(cpu,
9974 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
9975 	}
9976 	cpus_read_unlock();
9977 	mutex_unlock(&mux_interval_mutex);
9978 
9979 	return count;
9980 }
9981 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
9982 
9983 static struct attribute *pmu_dev_attrs[] = {
9984 	&dev_attr_type.attr,
9985 	&dev_attr_perf_event_mux_interval_ms.attr,
9986 	NULL,
9987 };
9988 ATTRIBUTE_GROUPS(pmu_dev);
9989 
9990 static int pmu_bus_running;
9991 static struct bus_type pmu_bus = {
9992 	.name		= "event_source",
9993 	.dev_groups	= pmu_dev_groups,
9994 };
9995 
pmu_dev_release(struct device * dev)9996 static void pmu_dev_release(struct device *dev)
9997 {
9998 	kfree(dev);
9999 }
10000 
pmu_dev_alloc(struct pmu * pmu)10001 static int pmu_dev_alloc(struct pmu *pmu)
10002 {
10003 	int ret = -ENOMEM;
10004 
10005 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
10006 	if (!pmu->dev)
10007 		goto out;
10008 
10009 	pmu->dev->groups = pmu->attr_groups;
10010 	device_initialize(pmu->dev);
10011 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
10012 	if (ret)
10013 		goto free_dev;
10014 
10015 	dev_set_drvdata(pmu->dev, pmu);
10016 	pmu->dev->bus = &pmu_bus;
10017 	pmu->dev->release = pmu_dev_release;
10018 	ret = device_add(pmu->dev);
10019 	if (ret)
10020 		goto free_dev;
10021 
10022 	/* For PMUs with address filters, throw in an extra attribute: */
10023 	if (pmu->nr_addr_filters)
10024 		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
10025 
10026 	if (ret)
10027 		goto del_dev;
10028 
10029 	if (pmu->attr_update)
10030 		ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
10031 
10032 	if (ret)
10033 		goto del_dev;
10034 
10035 out:
10036 	return ret;
10037 
10038 del_dev:
10039 	device_del(pmu->dev);
10040 
10041 free_dev:
10042 	put_device(pmu->dev);
10043 	goto out;
10044 }
10045 
10046 static struct lock_class_key cpuctx_mutex;
10047 static struct lock_class_key cpuctx_lock;
10048 
perf_pmu_register(struct pmu * pmu,const char * name,int type)10049 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
10050 {
10051 	int cpu, ret;
10052 
10053 	mutex_lock(&pmus_lock);
10054 	ret = -ENOMEM;
10055 	pmu->pmu_disable_count = alloc_percpu(int);
10056 	if (!pmu->pmu_disable_count)
10057 		goto unlock;
10058 
10059 	pmu->type = -1;
10060 	if (!name)
10061 		goto skip_type;
10062 	pmu->name = name;
10063 
10064 	if (type < 0) {
10065 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
10066 		if (type < 0) {
10067 			ret = type;
10068 			goto free_pdc;
10069 		}
10070 	}
10071 	pmu->type = type;
10072 
10073 	if (pmu_bus_running) {
10074 		ret = pmu_dev_alloc(pmu);
10075 		if (ret)
10076 			goto free_idr;
10077 	}
10078 
10079 skip_type:
10080 	if (pmu->task_ctx_nr == perf_hw_context) {
10081 		static int hw_context_taken = 0;
10082 
10083 		/*
10084 		 * Other than systems with heterogeneous CPUs, it never makes
10085 		 * sense for two PMUs to share perf_hw_context. PMUs which are
10086 		 * uncore must use perf_invalid_context.
10087 		 */
10088 		if (WARN_ON_ONCE(hw_context_taken &&
10089 		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
10090 			pmu->task_ctx_nr = perf_invalid_context;
10091 
10092 		hw_context_taken = 1;
10093 	}
10094 
10095 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
10096 	if (pmu->pmu_cpu_context)
10097 		goto got_cpu_context;
10098 
10099 	ret = -ENOMEM;
10100 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
10101 	if (!pmu->pmu_cpu_context)
10102 		goto free_dev;
10103 
10104 	for_each_possible_cpu(cpu) {
10105 		struct perf_cpu_context *cpuctx;
10106 
10107 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10108 		__perf_event_init_context(&cpuctx->ctx);
10109 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
10110 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
10111 		cpuctx->ctx.pmu = pmu;
10112 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
10113 
10114 		__perf_mux_hrtimer_init(cpuctx, cpu);
10115 	}
10116 
10117 got_cpu_context:
10118 	if (!pmu->start_txn) {
10119 		if (pmu->pmu_enable) {
10120 			/*
10121 			 * If we have pmu_enable/pmu_disable calls, install
10122 			 * transaction stubs that use that to try and batch
10123 			 * hardware accesses.
10124 			 */
10125 			pmu->start_txn  = perf_pmu_start_txn;
10126 			pmu->commit_txn = perf_pmu_commit_txn;
10127 			pmu->cancel_txn = perf_pmu_cancel_txn;
10128 		} else {
10129 			pmu->start_txn  = perf_pmu_nop_txn;
10130 			pmu->commit_txn = perf_pmu_nop_int;
10131 			pmu->cancel_txn = perf_pmu_nop_void;
10132 		}
10133 	}
10134 
10135 	if (!pmu->pmu_enable) {
10136 		pmu->pmu_enable  = perf_pmu_nop_void;
10137 		pmu->pmu_disable = perf_pmu_nop_void;
10138 	}
10139 
10140 	if (!pmu->check_period)
10141 		pmu->check_period = perf_event_nop_int;
10142 
10143 	if (!pmu->event_idx)
10144 		pmu->event_idx = perf_event_idx_default;
10145 
10146 	list_add_rcu(&pmu->entry, &pmus);
10147 	atomic_set(&pmu->exclusive_cnt, 0);
10148 	ret = 0;
10149 unlock:
10150 	mutex_unlock(&pmus_lock);
10151 
10152 	return ret;
10153 
10154 free_dev:
10155 	device_del(pmu->dev);
10156 	put_device(pmu->dev);
10157 
10158 free_idr:
10159 	if (pmu->type >= PERF_TYPE_MAX)
10160 		idr_remove(&pmu_idr, pmu->type);
10161 
10162 free_pdc:
10163 	free_percpu(pmu->pmu_disable_count);
10164 	goto unlock;
10165 }
10166 EXPORT_SYMBOL_GPL(perf_pmu_register);
10167 
perf_pmu_unregister(struct pmu * pmu)10168 void perf_pmu_unregister(struct pmu *pmu)
10169 {
10170 	mutex_lock(&pmus_lock);
10171 	list_del_rcu(&pmu->entry);
10172 
10173 	/*
10174 	 * We dereference the pmu list under both SRCU and regular RCU, so
10175 	 * synchronize against both of those.
10176 	 */
10177 	synchronize_srcu(&pmus_srcu);
10178 	synchronize_rcu();
10179 
10180 	free_percpu(pmu->pmu_disable_count);
10181 	if (pmu->type >= PERF_TYPE_MAX)
10182 		idr_remove(&pmu_idr, pmu->type);
10183 	if (pmu_bus_running) {
10184 		if (pmu->nr_addr_filters)
10185 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
10186 		device_del(pmu->dev);
10187 		put_device(pmu->dev);
10188 	}
10189 	free_pmu_context(pmu);
10190 	mutex_unlock(&pmus_lock);
10191 }
10192 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
10193 
has_extended_regs(struct perf_event * event)10194 static inline bool has_extended_regs(struct perf_event *event)
10195 {
10196 	return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
10197 	       (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
10198 }
10199 
perf_try_init_event(struct pmu * pmu,struct perf_event * event)10200 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
10201 {
10202 	struct perf_event_context *ctx = NULL;
10203 	int ret;
10204 
10205 	if (!try_module_get(pmu->module))
10206 		return -ENODEV;
10207 
10208 	/*
10209 	 * A number of pmu->event_init() methods iterate the sibling_list to,
10210 	 * for example, validate if the group fits on the PMU. Therefore,
10211 	 * if this is a sibling event, acquire the ctx->mutex to protect
10212 	 * the sibling_list.
10213 	 */
10214 	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
10215 		/*
10216 		 * This ctx->mutex can nest when we're called through
10217 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
10218 		 */
10219 		ctx = perf_event_ctx_lock_nested(event->group_leader,
10220 						 SINGLE_DEPTH_NESTING);
10221 		BUG_ON(!ctx);
10222 	}
10223 
10224 	event->pmu = pmu;
10225 	ret = pmu->event_init(event);
10226 
10227 	if (ctx)
10228 		perf_event_ctx_unlock(event->group_leader, ctx);
10229 
10230 	if (!ret) {
10231 		if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
10232 		    has_extended_regs(event))
10233 			ret = -EOPNOTSUPP;
10234 
10235 		if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
10236 		    event_has_any_exclude_flag(event))
10237 			ret = -EINVAL;
10238 
10239 		if (ret && event->destroy)
10240 			event->destroy(event);
10241 	}
10242 
10243 	if (ret)
10244 		module_put(pmu->module);
10245 
10246 	return ret;
10247 }
10248 
perf_init_event(struct perf_event * event)10249 static struct pmu *perf_init_event(struct perf_event *event)
10250 {
10251 	struct pmu *pmu;
10252 	int idx;
10253 	int ret;
10254 
10255 	idx = srcu_read_lock(&pmus_srcu);
10256 
10257 	/* Try parent's PMU first: */
10258 	if (event->parent && event->parent->pmu) {
10259 		pmu = event->parent->pmu;
10260 		ret = perf_try_init_event(pmu, event);
10261 		if (!ret)
10262 			goto unlock;
10263 	}
10264 
10265 	rcu_read_lock();
10266 	pmu = idr_find(&pmu_idr, event->attr.type);
10267 	rcu_read_unlock();
10268 	if (pmu) {
10269 		ret = perf_try_init_event(pmu, event);
10270 		if (ret)
10271 			pmu = ERR_PTR(ret);
10272 		goto unlock;
10273 	}
10274 
10275 	list_for_each_entry_rcu(pmu, &pmus, entry) {
10276 		ret = perf_try_init_event(pmu, event);
10277 		if (!ret)
10278 			goto unlock;
10279 
10280 		if (ret != -ENOENT) {
10281 			pmu = ERR_PTR(ret);
10282 			goto unlock;
10283 		}
10284 	}
10285 	pmu = ERR_PTR(-ENOENT);
10286 unlock:
10287 	srcu_read_unlock(&pmus_srcu, idx);
10288 
10289 	return pmu;
10290 }
10291 
attach_sb_event(struct perf_event * event)10292 static void attach_sb_event(struct perf_event *event)
10293 {
10294 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
10295 
10296 	raw_spin_lock(&pel->lock);
10297 	list_add_rcu(&event->sb_list, &pel->list);
10298 	raw_spin_unlock(&pel->lock);
10299 }
10300 
10301 /*
10302  * We keep a list of all !task (and therefore per-cpu) events
10303  * that need to receive side-band records.
10304  *
10305  * This avoids having to scan all the various PMU per-cpu contexts
10306  * looking for them.
10307  */
account_pmu_sb_event(struct perf_event * event)10308 static void account_pmu_sb_event(struct perf_event *event)
10309 {
10310 	if (is_sb_event(event))
10311 		attach_sb_event(event);
10312 }
10313 
account_event_cpu(struct perf_event * event,int cpu)10314 static void account_event_cpu(struct perf_event *event, int cpu)
10315 {
10316 	if (event->parent)
10317 		return;
10318 
10319 	if (is_cgroup_event(event))
10320 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
10321 }
10322 
10323 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
account_freq_event_nohz(void)10324 static void account_freq_event_nohz(void)
10325 {
10326 #ifdef CONFIG_NO_HZ_FULL
10327 	/* Lock so we don't race with concurrent unaccount */
10328 	spin_lock(&nr_freq_lock);
10329 	if (atomic_inc_return(&nr_freq_events) == 1)
10330 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
10331 	spin_unlock(&nr_freq_lock);
10332 #endif
10333 }
10334 
account_freq_event(void)10335 static void account_freq_event(void)
10336 {
10337 	if (tick_nohz_full_enabled())
10338 		account_freq_event_nohz();
10339 	else
10340 		atomic_inc(&nr_freq_events);
10341 }
10342 
10343 
account_event(struct perf_event * event)10344 static void account_event(struct perf_event *event)
10345 {
10346 	bool inc = false;
10347 
10348 	if (event->parent)
10349 		return;
10350 
10351 	if (event->attach_state & PERF_ATTACH_TASK)
10352 		inc = true;
10353 	if (event->attr.mmap || event->attr.mmap_data)
10354 		atomic_inc(&nr_mmap_events);
10355 	if (event->attr.comm)
10356 		atomic_inc(&nr_comm_events);
10357 	if (event->attr.namespaces)
10358 		atomic_inc(&nr_namespaces_events);
10359 	if (event->attr.task)
10360 		atomic_inc(&nr_task_events);
10361 	if (event->attr.freq)
10362 		account_freq_event();
10363 	if (event->attr.context_switch) {
10364 		atomic_inc(&nr_switch_events);
10365 		inc = true;
10366 	}
10367 	if (has_branch_stack(event))
10368 		inc = true;
10369 	if (is_cgroup_event(event))
10370 		inc = true;
10371 	if (event->attr.ksymbol)
10372 		atomic_inc(&nr_ksymbol_events);
10373 	if (event->attr.bpf_event)
10374 		atomic_inc(&nr_bpf_events);
10375 
10376 	if (inc) {
10377 		/*
10378 		 * We need the mutex here because static_branch_enable()
10379 		 * must complete *before* the perf_sched_count increment
10380 		 * becomes visible.
10381 		 */
10382 		if (atomic_inc_not_zero(&perf_sched_count))
10383 			goto enabled;
10384 
10385 		mutex_lock(&perf_sched_mutex);
10386 		if (!atomic_read(&perf_sched_count)) {
10387 			static_branch_enable(&perf_sched_events);
10388 			/*
10389 			 * Guarantee that all CPUs observe they key change and
10390 			 * call the perf scheduling hooks before proceeding to
10391 			 * install events that need them.
10392 			 */
10393 			synchronize_rcu();
10394 		}
10395 		/*
10396 		 * Now that we have waited for the sync_sched(), allow further
10397 		 * increments to by-pass the mutex.
10398 		 */
10399 		atomic_inc(&perf_sched_count);
10400 		mutex_unlock(&perf_sched_mutex);
10401 	}
10402 enabled:
10403 
10404 	account_event_cpu(event, event->cpu);
10405 
10406 	account_pmu_sb_event(event);
10407 }
10408 
10409 /*
10410  * Allocate and initialize an event structure
10411  */
10412 static struct perf_event *
perf_event_alloc(struct perf_event_attr * attr,int cpu,struct task_struct * task,struct perf_event * group_leader,struct perf_event * parent_event,perf_overflow_handler_t overflow_handler,void * context,int cgroup_fd)10413 perf_event_alloc(struct perf_event_attr *attr, int cpu,
10414 		 struct task_struct *task,
10415 		 struct perf_event *group_leader,
10416 		 struct perf_event *parent_event,
10417 		 perf_overflow_handler_t overflow_handler,
10418 		 void *context, int cgroup_fd)
10419 {
10420 	struct pmu *pmu;
10421 	struct perf_event *event;
10422 	struct hw_perf_event *hwc;
10423 	long err = -EINVAL;
10424 
10425 	if ((unsigned)cpu >= nr_cpu_ids) {
10426 		if (!task || cpu != -1)
10427 			return ERR_PTR(-EINVAL);
10428 	}
10429 
10430 	event = kzalloc(sizeof(*event), GFP_KERNEL);
10431 	if (!event)
10432 		return ERR_PTR(-ENOMEM);
10433 
10434 	/*
10435 	 * Single events are their own group leaders, with an
10436 	 * empty sibling list:
10437 	 */
10438 	if (!group_leader)
10439 		group_leader = event;
10440 
10441 	mutex_init(&event->child_mutex);
10442 	INIT_LIST_HEAD(&event->child_list);
10443 
10444 	INIT_LIST_HEAD(&event->event_entry);
10445 	INIT_LIST_HEAD(&event->sibling_list);
10446 	INIT_LIST_HEAD(&event->active_list);
10447 	init_event_group(event);
10448 	INIT_LIST_HEAD(&event->rb_entry);
10449 	INIT_LIST_HEAD(&event->active_entry);
10450 	INIT_LIST_HEAD(&event->addr_filters.list);
10451 	INIT_HLIST_NODE(&event->hlist_entry);
10452 
10453 
10454 	init_waitqueue_head(&event->waitq);
10455 	event->pending_disable = -1;
10456 	init_irq_work(&event->pending, perf_pending_event);
10457 
10458 	mutex_init(&event->mmap_mutex);
10459 	raw_spin_lock_init(&event->addr_filters.lock);
10460 
10461 	atomic_long_set(&event->refcount, 1);
10462 	event->cpu		= cpu;
10463 	event->attr		= *attr;
10464 	event->group_leader	= group_leader;
10465 	event->pmu		= NULL;
10466 	event->oncpu		= -1;
10467 
10468 	event->parent		= parent_event;
10469 
10470 	event->ns		= get_pid_ns(task_active_pid_ns(current));
10471 	event->id		= atomic64_inc_return(&perf_event_id);
10472 
10473 	event->state		= PERF_EVENT_STATE_INACTIVE;
10474 
10475 	if (task) {
10476 		event->attach_state = PERF_ATTACH_TASK;
10477 		/*
10478 		 * XXX pmu::event_init needs to know what task to account to
10479 		 * and we cannot use the ctx information because we need the
10480 		 * pmu before we get a ctx.
10481 		 */
10482 		event->hw.target = get_task_struct(task);
10483 	}
10484 
10485 	event->clock = &local_clock;
10486 	if (parent_event)
10487 		event->clock = parent_event->clock;
10488 
10489 	if (!overflow_handler && parent_event) {
10490 		overflow_handler = parent_event->overflow_handler;
10491 		context = parent_event->overflow_handler_context;
10492 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
10493 		if (overflow_handler == bpf_overflow_handler) {
10494 			struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
10495 
10496 			if (IS_ERR(prog)) {
10497 				err = PTR_ERR(prog);
10498 				goto err_ns;
10499 			}
10500 			event->prog = prog;
10501 			event->orig_overflow_handler =
10502 				parent_event->orig_overflow_handler;
10503 		}
10504 #endif
10505 	}
10506 
10507 	if (overflow_handler) {
10508 		event->overflow_handler	= overflow_handler;
10509 		event->overflow_handler_context = context;
10510 	} else if (is_write_backward(event)){
10511 		event->overflow_handler = perf_event_output_backward;
10512 		event->overflow_handler_context = NULL;
10513 	} else {
10514 		event->overflow_handler = perf_event_output_forward;
10515 		event->overflow_handler_context = NULL;
10516 	}
10517 
10518 	perf_event__state_init(event);
10519 
10520 	pmu = NULL;
10521 
10522 	hwc = &event->hw;
10523 	hwc->sample_period = attr->sample_period;
10524 	if (attr->freq && attr->sample_freq)
10525 		hwc->sample_period = 1;
10526 	hwc->last_period = hwc->sample_period;
10527 
10528 	local64_set(&hwc->period_left, hwc->sample_period);
10529 
10530 	/*
10531 	 * We currently do not support PERF_SAMPLE_READ on inherited events.
10532 	 * See perf_output_read().
10533 	 */
10534 	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
10535 		goto err_ns;
10536 
10537 	if (!has_branch_stack(event))
10538 		event->attr.branch_sample_type = 0;
10539 
10540 	if (cgroup_fd != -1) {
10541 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
10542 		if (err)
10543 			goto err_ns;
10544 	}
10545 
10546 	pmu = perf_init_event(event);
10547 	if (IS_ERR(pmu)) {
10548 		err = PTR_ERR(pmu);
10549 		goto err_ns;
10550 	}
10551 
10552 	/*
10553 	 * Disallow uncore-cgroup events, they don't make sense as the cgroup will
10554 	 * be different on other CPUs in the uncore mask.
10555 	 */
10556 	if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
10557 		err = -EINVAL;
10558 		goto err_pmu;
10559 	}
10560 
10561 	if (event->attr.aux_output &&
10562 	    !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
10563 		err = -EOPNOTSUPP;
10564 		goto err_pmu;
10565 	}
10566 
10567 	err = exclusive_event_init(event);
10568 	if (err)
10569 		goto err_pmu;
10570 
10571 	if (has_addr_filter(event)) {
10572 		event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
10573 						    sizeof(struct perf_addr_filter_range),
10574 						    GFP_KERNEL);
10575 		if (!event->addr_filter_ranges) {
10576 			err = -ENOMEM;
10577 			goto err_per_task;
10578 		}
10579 
10580 		/*
10581 		 * Clone the parent's vma offsets: they are valid until exec()
10582 		 * even if the mm is not shared with the parent.
10583 		 */
10584 		if (event->parent) {
10585 			struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10586 
10587 			raw_spin_lock_irq(&ifh->lock);
10588 			memcpy(event->addr_filter_ranges,
10589 			       event->parent->addr_filter_ranges,
10590 			       pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
10591 			raw_spin_unlock_irq(&ifh->lock);
10592 		}
10593 
10594 		/* force hw sync on the address filters */
10595 		event->addr_filters_gen = 1;
10596 	}
10597 
10598 	if (!event->parent) {
10599 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
10600 			err = get_callchain_buffers(attr->sample_max_stack);
10601 			if (err)
10602 				goto err_addr_filters;
10603 		}
10604 	}
10605 
10606 	err = security_perf_event_alloc(event);
10607 	if (err)
10608 		goto err_callchain_buffer;
10609 
10610 	/* symmetric to unaccount_event() in _free_event() */
10611 	account_event(event);
10612 
10613 	return event;
10614 
10615 err_callchain_buffer:
10616 	if (!event->parent) {
10617 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
10618 			put_callchain_buffers();
10619 	}
10620 err_addr_filters:
10621 	kfree(event->addr_filter_ranges);
10622 
10623 err_per_task:
10624 	exclusive_event_destroy(event);
10625 
10626 err_pmu:
10627 	if (event->destroy)
10628 		event->destroy(event);
10629 	module_put(pmu->module);
10630 err_ns:
10631 	if (is_cgroup_event(event))
10632 		perf_detach_cgroup(event);
10633 	if (event->ns)
10634 		put_pid_ns(event->ns);
10635 	if (event->hw.target)
10636 		put_task_struct(event->hw.target);
10637 	kfree(event);
10638 
10639 	return ERR_PTR(err);
10640 }
10641 
perf_copy_attr(struct perf_event_attr __user * uattr,struct perf_event_attr * attr)10642 static int perf_copy_attr(struct perf_event_attr __user *uattr,
10643 			  struct perf_event_attr *attr)
10644 {
10645 	u32 size;
10646 	int ret;
10647 
10648 	/* Zero the full structure, so that a short copy will be nice. */
10649 	memset(attr, 0, sizeof(*attr));
10650 
10651 	ret = get_user(size, &uattr->size);
10652 	if (ret)
10653 		return ret;
10654 
10655 	/* ABI compatibility quirk: */
10656 	if (!size)
10657 		size = PERF_ATTR_SIZE_VER0;
10658 	if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
10659 		goto err_size;
10660 
10661 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
10662 	if (ret) {
10663 		if (ret == -E2BIG)
10664 			goto err_size;
10665 		return ret;
10666 	}
10667 
10668 	attr->size = size;
10669 
10670 	if (attr->__reserved_1 || attr->__reserved_2)
10671 		return -EINVAL;
10672 
10673 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
10674 		return -EINVAL;
10675 
10676 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
10677 		return -EINVAL;
10678 
10679 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
10680 		u64 mask = attr->branch_sample_type;
10681 
10682 		/* only using defined bits */
10683 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
10684 			return -EINVAL;
10685 
10686 		/* at least one branch bit must be set */
10687 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
10688 			return -EINVAL;
10689 
10690 		/* propagate priv level, when not set for branch */
10691 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
10692 
10693 			/* exclude_kernel checked on syscall entry */
10694 			if (!attr->exclude_kernel)
10695 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
10696 
10697 			if (!attr->exclude_user)
10698 				mask |= PERF_SAMPLE_BRANCH_USER;
10699 
10700 			if (!attr->exclude_hv)
10701 				mask |= PERF_SAMPLE_BRANCH_HV;
10702 			/*
10703 			 * adjust user setting (for HW filter setup)
10704 			 */
10705 			attr->branch_sample_type = mask;
10706 		}
10707 		/* privileged levels capture (kernel, hv): check permissions */
10708 		if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
10709 			ret = perf_allow_kernel(attr);
10710 			if (ret)
10711 				return ret;
10712 		}
10713 	}
10714 
10715 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
10716 		ret = perf_reg_validate(attr->sample_regs_user);
10717 		if (ret)
10718 			return ret;
10719 	}
10720 
10721 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
10722 		if (!arch_perf_have_user_stack_dump())
10723 			return -ENOSYS;
10724 
10725 		/*
10726 		 * We have __u32 type for the size, but so far
10727 		 * we can only use __u16 as maximum due to the
10728 		 * __u16 sample size limit.
10729 		 */
10730 		if (attr->sample_stack_user >= USHRT_MAX)
10731 			return -EINVAL;
10732 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
10733 			return -EINVAL;
10734 	}
10735 
10736 	if (!attr->sample_max_stack)
10737 		attr->sample_max_stack = sysctl_perf_event_max_stack;
10738 
10739 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
10740 		ret = perf_reg_validate(attr->sample_regs_intr);
10741 out:
10742 	return ret;
10743 
10744 err_size:
10745 	put_user(sizeof(*attr), &uattr->size);
10746 	ret = -E2BIG;
10747 	goto out;
10748 }
10749 
10750 static int
perf_event_set_output(struct perf_event * event,struct perf_event * output_event)10751 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
10752 {
10753 	struct ring_buffer *rb = NULL;
10754 	int ret = -EINVAL;
10755 
10756 	if (!output_event)
10757 		goto set;
10758 
10759 	/* don't allow circular references */
10760 	if (event == output_event)
10761 		goto out;
10762 
10763 	/*
10764 	 * Don't allow cross-cpu buffers
10765 	 */
10766 	if (output_event->cpu != event->cpu)
10767 		goto out;
10768 
10769 	/*
10770 	 * If its not a per-cpu rb, it must be the same task.
10771 	 */
10772 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
10773 		goto out;
10774 
10775 	/*
10776 	 * Mixing clocks in the same buffer is trouble you don't need.
10777 	 */
10778 	if (output_event->clock != event->clock)
10779 		goto out;
10780 
10781 	/*
10782 	 * Either writing ring buffer from beginning or from end.
10783 	 * Mixing is not allowed.
10784 	 */
10785 	if (is_write_backward(output_event) != is_write_backward(event))
10786 		goto out;
10787 
10788 	/*
10789 	 * If both events generate aux data, they must be on the same PMU
10790 	 */
10791 	if (has_aux(event) && has_aux(output_event) &&
10792 	    event->pmu != output_event->pmu)
10793 		goto out;
10794 
10795 set:
10796 	mutex_lock(&event->mmap_mutex);
10797 	/* Can't redirect output if we've got an active mmap() */
10798 	if (atomic_read(&event->mmap_count))
10799 		goto unlock;
10800 
10801 	if (output_event) {
10802 		/* get the rb we want to redirect to */
10803 		rb = ring_buffer_get(output_event);
10804 		if (!rb)
10805 			goto unlock;
10806 	}
10807 
10808 	ring_buffer_attach(event, rb);
10809 
10810 	ret = 0;
10811 unlock:
10812 	mutex_unlock(&event->mmap_mutex);
10813 
10814 out:
10815 	return ret;
10816 }
10817 
mutex_lock_double(struct mutex * a,struct mutex * b)10818 static void mutex_lock_double(struct mutex *a, struct mutex *b)
10819 {
10820 	if (b < a)
10821 		swap(a, b);
10822 
10823 	mutex_lock(a);
10824 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
10825 }
10826 
perf_event_set_clock(struct perf_event * event,clockid_t clk_id)10827 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
10828 {
10829 	bool nmi_safe = false;
10830 
10831 	switch (clk_id) {
10832 	case CLOCK_MONOTONIC:
10833 		event->clock = &ktime_get_mono_fast_ns;
10834 		nmi_safe = true;
10835 		break;
10836 
10837 	case CLOCK_MONOTONIC_RAW:
10838 		event->clock = &ktime_get_raw_fast_ns;
10839 		nmi_safe = true;
10840 		break;
10841 
10842 	case CLOCK_REALTIME:
10843 		event->clock = &ktime_get_real_ns;
10844 		break;
10845 
10846 	case CLOCK_BOOTTIME:
10847 		event->clock = &ktime_get_boottime_ns;
10848 		break;
10849 
10850 	case CLOCK_TAI:
10851 		event->clock = &ktime_get_clocktai_ns;
10852 		break;
10853 
10854 	default:
10855 		return -EINVAL;
10856 	}
10857 
10858 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
10859 		return -EINVAL;
10860 
10861 	return 0;
10862 }
10863 
10864 /*
10865  * Variation on perf_event_ctx_lock_nested(), except we take two context
10866  * mutexes.
10867  */
10868 static struct perf_event_context *
__perf_event_ctx_lock_double(struct perf_event * group_leader,struct perf_event_context * ctx)10869 __perf_event_ctx_lock_double(struct perf_event *group_leader,
10870 			     struct perf_event_context *ctx)
10871 {
10872 	struct perf_event_context *gctx;
10873 
10874 again:
10875 	rcu_read_lock();
10876 	gctx = READ_ONCE(group_leader->ctx);
10877 	if (!refcount_inc_not_zero(&gctx->refcount)) {
10878 		rcu_read_unlock();
10879 		goto again;
10880 	}
10881 	rcu_read_unlock();
10882 
10883 	mutex_lock_double(&gctx->mutex, &ctx->mutex);
10884 
10885 	if (group_leader->ctx != gctx) {
10886 		mutex_unlock(&ctx->mutex);
10887 		mutex_unlock(&gctx->mutex);
10888 		put_ctx(gctx);
10889 		goto again;
10890 	}
10891 
10892 	return gctx;
10893 }
10894 
10895 /**
10896  * sys_perf_event_open - open a performance event, associate it to a task/cpu
10897  *
10898  * @attr_uptr:	event_id type attributes for monitoring/sampling
10899  * @pid:		target pid
10900  * @cpu:		target cpu
10901  * @group_fd:		group leader event fd
10902  */
SYSCALL_DEFINE5(perf_event_open,struct perf_event_attr __user *,attr_uptr,pid_t,pid,int,cpu,int,group_fd,unsigned long,flags)10903 SYSCALL_DEFINE5(perf_event_open,
10904 		struct perf_event_attr __user *, attr_uptr,
10905 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
10906 {
10907 	struct perf_event *group_leader = NULL, *output_event = NULL;
10908 	struct perf_event *event, *sibling;
10909 	struct perf_event_attr attr;
10910 	struct perf_event_context *ctx, *uninitialized_var(gctx);
10911 	struct file *event_file = NULL;
10912 	struct fd group = {NULL, 0};
10913 	struct task_struct *task = NULL;
10914 	struct pmu *pmu;
10915 	int event_fd;
10916 	int move_group = 0;
10917 	int err;
10918 	int f_flags = O_RDWR;
10919 	int cgroup_fd = -1;
10920 
10921 	/* for future expandability... */
10922 	if (flags & ~PERF_FLAG_ALL)
10923 		return -EINVAL;
10924 
10925 	/* Do we allow access to perf_event_open(2) ? */
10926 	err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
10927 	if (err)
10928 		return err;
10929 
10930 	err = perf_copy_attr(attr_uptr, &attr);
10931 	if (err)
10932 		return err;
10933 
10934 	if (!attr.exclude_kernel) {
10935 		err = perf_allow_kernel(&attr);
10936 		if (err)
10937 			return err;
10938 	}
10939 
10940 	if (attr.namespaces) {
10941 		if (!capable(CAP_SYS_ADMIN))
10942 			return -EACCES;
10943 	}
10944 
10945 	if (attr.freq) {
10946 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
10947 			return -EINVAL;
10948 	} else {
10949 		if (attr.sample_period & (1ULL << 63))
10950 			return -EINVAL;
10951 	}
10952 
10953 	/* Only privileged users can get physical addresses */
10954 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
10955 		err = perf_allow_kernel(&attr);
10956 		if (err)
10957 			return err;
10958 	}
10959 
10960 	err = security_locked_down(LOCKDOWN_PERF);
10961 	if (err && (attr.sample_type & PERF_SAMPLE_REGS_INTR))
10962 		/* REGS_INTR can leak data, lockdown must prevent this */
10963 		return err;
10964 
10965 	err = 0;
10966 
10967 	/*
10968 	 * In cgroup mode, the pid argument is used to pass the fd
10969 	 * opened to the cgroup directory in cgroupfs. The cpu argument
10970 	 * designates the cpu on which to monitor threads from that
10971 	 * cgroup.
10972 	 */
10973 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
10974 		return -EINVAL;
10975 
10976 	if (flags & PERF_FLAG_FD_CLOEXEC)
10977 		f_flags |= O_CLOEXEC;
10978 
10979 	event_fd = get_unused_fd_flags(f_flags);
10980 	if (event_fd < 0)
10981 		return event_fd;
10982 
10983 	if (group_fd != -1) {
10984 		err = perf_fget_light(group_fd, &group);
10985 		if (err)
10986 			goto err_fd;
10987 		group_leader = group.file->private_data;
10988 		if (flags & PERF_FLAG_FD_OUTPUT)
10989 			output_event = group_leader;
10990 		if (flags & PERF_FLAG_FD_NO_GROUP)
10991 			group_leader = NULL;
10992 	}
10993 
10994 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
10995 		task = find_lively_task_by_vpid(pid);
10996 		if (IS_ERR(task)) {
10997 			err = PTR_ERR(task);
10998 			goto err_group_fd;
10999 		}
11000 	}
11001 
11002 	if (task && group_leader &&
11003 	    group_leader->attr.inherit != attr.inherit) {
11004 		err = -EINVAL;
11005 		goto err_task;
11006 	}
11007 
11008 	if (task) {
11009 		err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
11010 		if (err)
11011 			goto err_task;
11012 
11013 		/*
11014 		 * Reuse ptrace permission checks for now.
11015 		 *
11016 		 * We must hold cred_guard_mutex across this and any potential
11017 		 * perf_install_in_context() call for this new event to
11018 		 * serialize against exec() altering our credentials (and the
11019 		 * perf_event_exit_task() that could imply).
11020 		 */
11021 		err = -EACCES;
11022 		if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
11023 			goto err_cred;
11024 	}
11025 
11026 	if (flags & PERF_FLAG_PID_CGROUP)
11027 		cgroup_fd = pid;
11028 
11029 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
11030 				 NULL, NULL, cgroup_fd);
11031 	if (IS_ERR(event)) {
11032 		err = PTR_ERR(event);
11033 		goto err_cred;
11034 	}
11035 
11036 	if (is_sampling_event(event)) {
11037 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
11038 			err = -EOPNOTSUPP;
11039 			goto err_alloc;
11040 		}
11041 	}
11042 
11043 	/*
11044 	 * Special case software events and allow them to be part of
11045 	 * any hardware group.
11046 	 */
11047 	pmu = event->pmu;
11048 
11049 	if (attr.use_clockid) {
11050 		err = perf_event_set_clock(event, attr.clockid);
11051 		if (err)
11052 			goto err_alloc;
11053 	}
11054 
11055 	if (pmu->task_ctx_nr == perf_sw_context)
11056 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
11057 
11058 	if (group_leader) {
11059 		if (is_software_event(event) &&
11060 		    !in_software_context(group_leader)) {
11061 			/*
11062 			 * If the event is a sw event, but the group_leader
11063 			 * is on hw context.
11064 			 *
11065 			 * Allow the addition of software events to hw
11066 			 * groups, this is safe because software events
11067 			 * never fail to schedule.
11068 			 */
11069 			pmu = group_leader->ctx->pmu;
11070 		} else if (!is_software_event(event) &&
11071 			   is_software_event(group_leader) &&
11072 			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11073 			/*
11074 			 * In case the group is a pure software group, and we
11075 			 * try to add a hardware event, move the whole group to
11076 			 * the hardware context.
11077 			 */
11078 			move_group = 1;
11079 		}
11080 	}
11081 
11082 	/*
11083 	 * Get the target context (task or percpu):
11084 	 */
11085 	ctx = find_get_context(pmu, task, event);
11086 	if (IS_ERR(ctx)) {
11087 		err = PTR_ERR(ctx);
11088 		goto err_alloc;
11089 	}
11090 
11091 	/*
11092 	 * Look up the group leader (we will attach this event to it):
11093 	 */
11094 	if (group_leader) {
11095 		err = -EINVAL;
11096 
11097 		/*
11098 		 * Do not allow a recursive hierarchy (this new sibling
11099 		 * becoming part of another group-sibling):
11100 		 */
11101 		if (group_leader->group_leader != group_leader)
11102 			goto err_context;
11103 
11104 		/* All events in a group should have the same clock */
11105 		if (group_leader->clock != event->clock)
11106 			goto err_context;
11107 
11108 		/*
11109 		 * Make sure we're both events for the same CPU;
11110 		 * grouping events for different CPUs is broken; since
11111 		 * you can never concurrently schedule them anyhow.
11112 		 */
11113 		if (group_leader->cpu != event->cpu)
11114 			goto err_context;
11115 
11116 		/*
11117 		 * Make sure we're both on the same task, or both
11118 		 * per-CPU events.
11119 		 */
11120 		if (group_leader->ctx->task != ctx->task)
11121 			goto err_context;
11122 
11123 		/*
11124 		 * Do not allow to attach to a group in a different task
11125 		 * or CPU context. If we're moving SW events, we'll fix
11126 		 * this up later, so allow that.
11127 		 */
11128 		if (!move_group && group_leader->ctx != ctx)
11129 			goto err_context;
11130 
11131 		/*
11132 		 * Only a group leader can be exclusive or pinned
11133 		 */
11134 		if (attr.exclusive || attr.pinned)
11135 			goto err_context;
11136 	}
11137 
11138 	if (output_event) {
11139 		err = perf_event_set_output(event, output_event);
11140 		if (err)
11141 			goto err_context;
11142 	}
11143 
11144 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
11145 					f_flags);
11146 	if (IS_ERR(event_file)) {
11147 		err = PTR_ERR(event_file);
11148 		event_file = NULL;
11149 		goto err_context;
11150 	}
11151 
11152 	if (move_group) {
11153 		gctx = __perf_event_ctx_lock_double(group_leader, ctx);
11154 
11155 		if (gctx->task == TASK_TOMBSTONE) {
11156 			err = -ESRCH;
11157 			goto err_locked;
11158 		}
11159 
11160 		/*
11161 		 * Check if we raced against another sys_perf_event_open() call
11162 		 * moving the software group underneath us.
11163 		 */
11164 		if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11165 			/*
11166 			 * If someone moved the group out from under us, check
11167 			 * if this new event wound up on the same ctx, if so
11168 			 * its the regular !move_group case, otherwise fail.
11169 			 */
11170 			if (gctx != ctx) {
11171 				err = -EINVAL;
11172 				goto err_locked;
11173 			} else {
11174 				perf_event_ctx_unlock(group_leader, gctx);
11175 				move_group = 0;
11176 			}
11177 		}
11178 
11179 		/*
11180 		 * Failure to create exclusive events returns -EBUSY.
11181 		 */
11182 		err = -EBUSY;
11183 		if (!exclusive_event_installable(group_leader, ctx))
11184 			goto err_locked;
11185 
11186 		for_each_sibling_event(sibling, group_leader) {
11187 			if (!exclusive_event_installable(sibling, ctx))
11188 				goto err_locked;
11189 		}
11190 	} else {
11191 		mutex_lock(&ctx->mutex);
11192 	}
11193 
11194 	if (ctx->task == TASK_TOMBSTONE) {
11195 		err = -ESRCH;
11196 		goto err_locked;
11197 	}
11198 
11199 	if (!perf_event_validate_size(event)) {
11200 		err = -E2BIG;
11201 		goto err_locked;
11202 	}
11203 
11204 	if (!task) {
11205 		/*
11206 		 * Check if the @cpu we're creating an event for is online.
11207 		 *
11208 		 * We use the perf_cpu_context::ctx::mutex to serialize against
11209 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11210 		 */
11211 		struct perf_cpu_context *cpuctx =
11212 			container_of(ctx, struct perf_cpu_context, ctx);
11213 
11214 		if (!cpuctx->online) {
11215 			err = -ENODEV;
11216 			goto err_locked;
11217 		}
11218 	}
11219 
11220 	if (event->attr.aux_output && !perf_get_aux_event(event, group_leader)) {
11221 		err = -EINVAL;
11222 		goto err_locked;
11223 	}
11224 
11225 	/*
11226 	 * Must be under the same ctx::mutex as perf_install_in_context(),
11227 	 * because we need to serialize with concurrent event creation.
11228 	 */
11229 	if (!exclusive_event_installable(event, ctx)) {
11230 		err = -EBUSY;
11231 		goto err_locked;
11232 	}
11233 
11234 	WARN_ON_ONCE(ctx->parent_ctx);
11235 
11236 	/*
11237 	 * This is the point on no return; we cannot fail hereafter. This is
11238 	 * where we start modifying current state.
11239 	 */
11240 
11241 	if (move_group) {
11242 		/*
11243 		 * See perf_event_ctx_lock() for comments on the details
11244 		 * of swizzling perf_event::ctx.
11245 		 */
11246 		perf_remove_from_context(group_leader, 0);
11247 		put_ctx(gctx);
11248 
11249 		for_each_sibling_event(sibling, group_leader) {
11250 			perf_remove_from_context(sibling, 0);
11251 			put_ctx(gctx);
11252 		}
11253 
11254 		/*
11255 		 * Wait for everybody to stop referencing the events through
11256 		 * the old lists, before installing it on new lists.
11257 		 */
11258 		synchronize_rcu();
11259 
11260 		/*
11261 		 * Install the group siblings before the group leader.
11262 		 *
11263 		 * Because a group leader will try and install the entire group
11264 		 * (through the sibling list, which is still in-tact), we can
11265 		 * end up with siblings installed in the wrong context.
11266 		 *
11267 		 * By installing siblings first we NO-OP because they're not
11268 		 * reachable through the group lists.
11269 		 */
11270 		for_each_sibling_event(sibling, group_leader) {
11271 			perf_event__state_init(sibling);
11272 			perf_install_in_context(ctx, sibling, sibling->cpu);
11273 			get_ctx(ctx);
11274 		}
11275 
11276 		/*
11277 		 * Removing from the context ends up with disabled
11278 		 * event. What we want here is event in the initial
11279 		 * startup state, ready to be add into new context.
11280 		 */
11281 		perf_event__state_init(group_leader);
11282 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
11283 		get_ctx(ctx);
11284 	}
11285 
11286 	/*
11287 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
11288 	 * that we're serialized against further additions and before
11289 	 * perf_install_in_context() which is the point the event is active and
11290 	 * can use these values.
11291 	 */
11292 	perf_event__header_size(event);
11293 	perf_event__id_header_size(event);
11294 
11295 	event->owner = current;
11296 
11297 	perf_install_in_context(ctx, event, event->cpu);
11298 	perf_unpin_context(ctx);
11299 
11300 	if (move_group)
11301 		perf_event_ctx_unlock(group_leader, gctx);
11302 	mutex_unlock(&ctx->mutex);
11303 
11304 	if (task) {
11305 		mutex_unlock(&task->signal->cred_guard_mutex);
11306 		put_task_struct(task);
11307 	}
11308 
11309 	mutex_lock(&current->perf_event_mutex);
11310 	list_add_tail(&event->owner_entry, &current->perf_event_list);
11311 	mutex_unlock(&current->perf_event_mutex);
11312 
11313 	/*
11314 	 * Drop the reference on the group_event after placing the
11315 	 * new event on the sibling_list. This ensures destruction
11316 	 * of the group leader will find the pointer to itself in
11317 	 * perf_group_detach().
11318 	 */
11319 	fdput(group);
11320 	fd_install(event_fd, event_file);
11321 	return event_fd;
11322 
11323 err_locked:
11324 	if (move_group)
11325 		perf_event_ctx_unlock(group_leader, gctx);
11326 	mutex_unlock(&ctx->mutex);
11327 /* err_file: */
11328 	fput(event_file);
11329 err_context:
11330 	perf_unpin_context(ctx);
11331 	put_ctx(ctx);
11332 err_alloc:
11333 	/*
11334 	 * If event_file is set, the fput() above will have called ->release()
11335 	 * and that will take care of freeing the event.
11336 	 */
11337 	if (!event_file)
11338 		free_event(event);
11339 err_cred:
11340 	if (task)
11341 		mutex_unlock(&task->signal->cred_guard_mutex);
11342 err_task:
11343 	if (task)
11344 		put_task_struct(task);
11345 err_group_fd:
11346 	fdput(group);
11347 err_fd:
11348 	put_unused_fd(event_fd);
11349 	return err;
11350 }
11351 
11352 /**
11353  * perf_event_create_kernel_counter
11354  *
11355  * @attr: attributes of the counter to create
11356  * @cpu: cpu in which the counter is bound
11357  * @task: task to profile (NULL for percpu)
11358  */
11359 struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr * attr,int cpu,struct task_struct * task,perf_overflow_handler_t overflow_handler,void * context)11360 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
11361 				 struct task_struct *task,
11362 				 perf_overflow_handler_t overflow_handler,
11363 				 void *context)
11364 {
11365 	struct perf_event_context *ctx;
11366 	struct perf_event *event;
11367 	int err;
11368 
11369 	/*
11370 	 * Grouping is not supported for kernel events, neither is 'AUX',
11371 	 * make sure the caller's intentions are adjusted.
11372 	 */
11373 	if (attr->aux_output)
11374 		return ERR_PTR(-EINVAL);
11375 
11376 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
11377 				 overflow_handler, context, -1);
11378 	if (IS_ERR(event)) {
11379 		err = PTR_ERR(event);
11380 		goto err;
11381 	}
11382 
11383 	/* Mark owner so we could distinguish it from user events. */
11384 	event->owner = TASK_TOMBSTONE;
11385 
11386 	/*
11387 	 * Get the target context (task or percpu):
11388 	 */
11389 	ctx = find_get_context(event->pmu, task, event);
11390 	if (IS_ERR(ctx)) {
11391 		err = PTR_ERR(ctx);
11392 		goto err_free;
11393 	}
11394 
11395 	WARN_ON_ONCE(ctx->parent_ctx);
11396 	mutex_lock(&ctx->mutex);
11397 	if (ctx->task == TASK_TOMBSTONE) {
11398 		err = -ESRCH;
11399 		goto err_unlock;
11400 	}
11401 
11402 	if (!task) {
11403 		/*
11404 		 * Check if the @cpu we're creating an event for is online.
11405 		 *
11406 		 * We use the perf_cpu_context::ctx::mutex to serialize against
11407 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11408 		 */
11409 		struct perf_cpu_context *cpuctx =
11410 			container_of(ctx, struct perf_cpu_context, ctx);
11411 		if (!cpuctx->online) {
11412 			err = -ENODEV;
11413 			goto err_unlock;
11414 		}
11415 	}
11416 
11417 	if (!exclusive_event_installable(event, ctx)) {
11418 		err = -EBUSY;
11419 		goto err_unlock;
11420 	}
11421 
11422 	perf_install_in_context(ctx, event, event->cpu);
11423 	perf_unpin_context(ctx);
11424 	mutex_unlock(&ctx->mutex);
11425 
11426 	return event;
11427 
11428 err_unlock:
11429 	mutex_unlock(&ctx->mutex);
11430 	perf_unpin_context(ctx);
11431 	put_ctx(ctx);
11432 err_free:
11433 	free_event(event);
11434 err:
11435 	return ERR_PTR(err);
11436 }
11437 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
11438 
perf_pmu_migrate_context(struct pmu * pmu,int src_cpu,int dst_cpu)11439 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
11440 {
11441 	struct perf_event_context *src_ctx;
11442 	struct perf_event_context *dst_ctx;
11443 	struct perf_event *event, *tmp;
11444 	LIST_HEAD(events);
11445 
11446 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
11447 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
11448 
11449 	/*
11450 	 * See perf_event_ctx_lock() for comments on the details
11451 	 * of swizzling perf_event::ctx.
11452 	 */
11453 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
11454 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
11455 				 event_entry) {
11456 		perf_remove_from_context(event, 0);
11457 		unaccount_event_cpu(event, src_cpu);
11458 		put_ctx(src_ctx);
11459 		list_add(&event->migrate_entry, &events);
11460 	}
11461 
11462 	/*
11463 	 * Wait for the events to quiesce before re-instating them.
11464 	 */
11465 	synchronize_rcu();
11466 
11467 	/*
11468 	 * Re-instate events in 2 passes.
11469 	 *
11470 	 * Skip over group leaders and only install siblings on this first
11471 	 * pass, siblings will not get enabled without a leader, however a
11472 	 * leader will enable its siblings, even if those are still on the old
11473 	 * context.
11474 	 */
11475 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11476 		if (event->group_leader == event)
11477 			continue;
11478 
11479 		list_del(&event->migrate_entry);
11480 		if (event->state >= PERF_EVENT_STATE_OFF)
11481 			event->state = PERF_EVENT_STATE_INACTIVE;
11482 		account_event_cpu(event, dst_cpu);
11483 		perf_install_in_context(dst_ctx, event, dst_cpu);
11484 		get_ctx(dst_ctx);
11485 	}
11486 
11487 	/*
11488 	 * Once all the siblings are setup properly, install the group leaders
11489 	 * to make it go.
11490 	 */
11491 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11492 		list_del(&event->migrate_entry);
11493 		if (event->state >= PERF_EVENT_STATE_OFF)
11494 			event->state = PERF_EVENT_STATE_INACTIVE;
11495 		account_event_cpu(event, dst_cpu);
11496 		perf_install_in_context(dst_ctx, event, dst_cpu);
11497 		get_ctx(dst_ctx);
11498 	}
11499 	mutex_unlock(&dst_ctx->mutex);
11500 	mutex_unlock(&src_ctx->mutex);
11501 }
11502 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
11503 
sync_child_event(struct perf_event * child_event,struct task_struct * child)11504 static void sync_child_event(struct perf_event *child_event,
11505 			       struct task_struct *child)
11506 {
11507 	struct perf_event *parent_event = child_event->parent;
11508 	u64 child_val;
11509 
11510 	if (child_event->attr.inherit_stat)
11511 		perf_event_read_event(child_event, child);
11512 
11513 	child_val = perf_event_count(child_event);
11514 
11515 	/*
11516 	 * Add back the child's count to the parent's count:
11517 	 */
11518 	atomic64_add(child_val, &parent_event->child_count);
11519 	atomic64_add(child_event->total_time_enabled,
11520 		     &parent_event->child_total_time_enabled);
11521 	atomic64_add(child_event->total_time_running,
11522 		     &parent_event->child_total_time_running);
11523 }
11524 
11525 static void
perf_event_exit_event(struct perf_event * child_event,struct perf_event_context * child_ctx,struct task_struct * child)11526 perf_event_exit_event(struct perf_event *child_event,
11527 		      struct perf_event_context *child_ctx,
11528 		      struct task_struct *child)
11529 {
11530 	struct perf_event *parent_event = child_event->parent;
11531 
11532 	/*
11533 	 * Do not destroy the 'original' grouping; because of the context
11534 	 * switch optimization the original events could've ended up in a
11535 	 * random child task.
11536 	 *
11537 	 * If we were to destroy the original group, all group related
11538 	 * operations would cease to function properly after this random
11539 	 * child dies.
11540 	 *
11541 	 * Do destroy all inherited groups, we don't care about those
11542 	 * and being thorough is better.
11543 	 */
11544 	raw_spin_lock_irq(&child_ctx->lock);
11545 	WARN_ON_ONCE(child_ctx->is_active);
11546 
11547 	if (parent_event)
11548 		perf_group_detach(child_event);
11549 	list_del_event(child_event, child_ctx);
11550 	perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
11551 	raw_spin_unlock_irq(&child_ctx->lock);
11552 
11553 	/*
11554 	 * Parent events are governed by their filedesc, retain them.
11555 	 */
11556 	if (!parent_event) {
11557 		perf_event_wakeup(child_event);
11558 		return;
11559 	}
11560 	/*
11561 	 * Child events can be cleaned up.
11562 	 */
11563 
11564 	sync_child_event(child_event, child);
11565 
11566 	/*
11567 	 * Remove this event from the parent's list
11568 	 */
11569 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
11570 	mutex_lock(&parent_event->child_mutex);
11571 	list_del_init(&child_event->child_list);
11572 	mutex_unlock(&parent_event->child_mutex);
11573 
11574 	/*
11575 	 * Kick perf_poll() for is_event_hup().
11576 	 */
11577 	perf_event_wakeup(parent_event);
11578 	free_event(child_event);
11579 	put_event(parent_event);
11580 }
11581 
perf_event_exit_task_context(struct task_struct * child,int ctxn)11582 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
11583 {
11584 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
11585 	struct perf_event *child_event, *next;
11586 
11587 	WARN_ON_ONCE(child != current);
11588 
11589 	child_ctx = perf_pin_task_context(child, ctxn);
11590 	if (!child_ctx)
11591 		return;
11592 
11593 	/*
11594 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
11595 	 * ctx::mutex over the entire thing. This serializes against almost
11596 	 * everything that wants to access the ctx.
11597 	 *
11598 	 * The exception is sys_perf_event_open() /
11599 	 * perf_event_create_kernel_count() which does find_get_context()
11600 	 * without ctx::mutex (it cannot because of the move_group double mutex
11601 	 * lock thing). See the comments in perf_install_in_context().
11602 	 */
11603 	mutex_lock(&child_ctx->mutex);
11604 
11605 	/*
11606 	 * In a single ctx::lock section, de-schedule the events and detach the
11607 	 * context from the task such that we cannot ever get it scheduled back
11608 	 * in.
11609 	 */
11610 	raw_spin_lock_irq(&child_ctx->lock);
11611 	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
11612 
11613 	/*
11614 	 * Now that the context is inactive, destroy the task <-> ctx relation
11615 	 * and mark the context dead.
11616 	 */
11617 	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
11618 	put_ctx(child_ctx); /* cannot be last */
11619 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
11620 	put_task_struct(current); /* cannot be last */
11621 
11622 	clone_ctx = unclone_ctx(child_ctx);
11623 	raw_spin_unlock_irq(&child_ctx->lock);
11624 
11625 	if (clone_ctx)
11626 		put_ctx(clone_ctx);
11627 
11628 	/*
11629 	 * Report the task dead after unscheduling the events so that we
11630 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
11631 	 * get a few PERF_RECORD_READ events.
11632 	 */
11633 	perf_event_task(child, child_ctx, 0);
11634 
11635 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
11636 		perf_event_exit_event(child_event, child_ctx, child);
11637 
11638 	mutex_unlock(&child_ctx->mutex);
11639 
11640 	put_ctx(child_ctx);
11641 }
11642 
11643 /*
11644  * When a child task exits, feed back event values to parent events.
11645  *
11646  * Can be called with cred_guard_mutex held when called from
11647  * install_exec_creds().
11648  */
perf_event_exit_task(struct task_struct * child)11649 void perf_event_exit_task(struct task_struct *child)
11650 {
11651 	struct perf_event *event, *tmp;
11652 	int ctxn;
11653 
11654 	mutex_lock(&child->perf_event_mutex);
11655 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
11656 				 owner_entry) {
11657 		list_del_init(&event->owner_entry);
11658 
11659 		/*
11660 		 * Ensure the list deletion is visible before we clear
11661 		 * the owner, closes a race against perf_release() where
11662 		 * we need to serialize on the owner->perf_event_mutex.
11663 		 */
11664 		smp_store_release(&event->owner, NULL);
11665 	}
11666 	mutex_unlock(&child->perf_event_mutex);
11667 
11668 	for_each_task_context_nr(ctxn)
11669 		perf_event_exit_task_context(child, ctxn);
11670 
11671 	/*
11672 	 * The perf_event_exit_task_context calls perf_event_task
11673 	 * with child's task_ctx, which generates EXIT events for
11674 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
11675 	 * At this point we need to send EXIT events to cpu contexts.
11676 	 */
11677 	perf_event_task(child, NULL, 0);
11678 }
11679 
perf_free_event(struct perf_event * event,struct perf_event_context * ctx)11680 static void perf_free_event(struct perf_event *event,
11681 			    struct perf_event_context *ctx)
11682 {
11683 	struct perf_event *parent = event->parent;
11684 
11685 	if (WARN_ON_ONCE(!parent))
11686 		return;
11687 
11688 	mutex_lock(&parent->child_mutex);
11689 	list_del_init(&event->child_list);
11690 	mutex_unlock(&parent->child_mutex);
11691 
11692 	put_event(parent);
11693 
11694 	raw_spin_lock_irq(&ctx->lock);
11695 	perf_group_detach(event);
11696 	list_del_event(event, ctx);
11697 	raw_spin_unlock_irq(&ctx->lock);
11698 	free_event(event);
11699 }
11700 
11701 /*
11702  * Free a context as created by inheritance by perf_event_init_task() below,
11703  * used by fork() in case of fail.
11704  *
11705  * Even though the task has never lived, the context and events have been
11706  * exposed through the child_list, so we must take care tearing it all down.
11707  */
perf_event_free_task(struct task_struct * task)11708 void perf_event_free_task(struct task_struct *task)
11709 {
11710 	struct perf_event_context *ctx;
11711 	struct perf_event *event, *tmp;
11712 	int ctxn;
11713 
11714 	for_each_task_context_nr(ctxn) {
11715 		ctx = task->perf_event_ctxp[ctxn];
11716 		if (!ctx)
11717 			continue;
11718 
11719 		mutex_lock(&ctx->mutex);
11720 		raw_spin_lock_irq(&ctx->lock);
11721 		/*
11722 		 * Destroy the task <-> ctx relation and mark the context dead.
11723 		 *
11724 		 * This is important because even though the task hasn't been
11725 		 * exposed yet the context has been (through child_list).
11726 		 */
11727 		RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
11728 		WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
11729 		put_task_struct(task); /* cannot be last */
11730 		raw_spin_unlock_irq(&ctx->lock);
11731 
11732 		list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
11733 			perf_free_event(event, ctx);
11734 
11735 		mutex_unlock(&ctx->mutex);
11736 
11737 		/*
11738 		 * perf_event_release_kernel() could've stolen some of our
11739 		 * child events and still have them on its free_list. In that
11740 		 * case we must wait for these events to have been freed (in
11741 		 * particular all their references to this task must've been
11742 		 * dropped).
11743 		 *
11744 		 * Without this copy_process() will unconditionally free this
11745 		 * task (irrespective of its reference count) and
11746 		 * _free_event()'s put_task_struct(event->hw.target) will be a
11747 		 * use-after-free.
11748 		 *
11749 		 * Wait for all events to drop their context reference.
11750 		 */
11751 		wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
11752 		put_ctx(ctx); /* must be last */
11753 	}
11754 }
11755 
perf_event_delayed_put(struct task_struct * task)11756 void perf_event_delayed_put(struct task_struct *task)
11757 {
11758 	int ctxn;
11759 
11760 	for_each_task_context_nr(ctxn)
11761 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
11762 }
11763 
perf_event_get(unsigned int fd)11764 struct file *perf_event_get(unsigned int fd)
11765 {
11766 	struct file *file = fget(fd);
11767 	if (!file)
11768 		return ERR_PTR(-EBADF);
11769 
11770 	if (file->f_op != &perf_fops) {
11771 		fput(file);
11772 		return ERR_PTR(-EBADF);
11773 	}
11774 
11775 	return file;
11776 }
11777 
perf_get_event(struct file * file)11778 const struct perf_event *perf_get_event(struct file *file)
11779 {
11780 	if (file->f_op != &perf_fops)
11781 		return ERR_PTR(-EINVAL);
11782 
11783 	return file->private_data;
11784 }
11785 
perf_event_attrs(struct perf_event * event)11786 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
11787 {
11788 	if (!event)
11789 		return ERR_PTR(-EINVAL);
11790 
11791 	return &event->attr;
11792 }
11793 
11794 /*
11795  * Inherit an event from parent task to child task.
11796  *
11797  * Returns:
11798  *  - valid pointer on success
11799  *  - NULL for orphaned events
11800  *  - IS_ERR() on error
11801  */
11802 static struct perf_event *
inherit_event(struct perf_event * parent_event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,struct perf_event * group_leader,struct perf_event_context * child_ctx)11803 inherit_event(struct perf_event *parent_event,
11804 	      struct task_struct *parent,
11805 	      struct perf_event_context *parent_ctx,
11806 	      struct task_struct *child,
11807 	      struct perf_event *group_leader,
11808 	      struct perf_event_context *child_ctx)
11809 {
11810 	enum perf_event_state parent_state = parent_event->state;
11811 	struct perf_event *child_event;
11812 	unsigned long flags;
11813 
11814 	/*
11815 	 * Instead of creating recursive hierarchies of events,
11816 	 * we link inherited events back to the original parent,
11817 	 * which has a filp for sure, which we use as the reference
11818 	 * count:
11819 	 */
11820 	if (parent_event->parent)
11821 		parent_event = parent_event->parent;
11822 
11823 	child_event = perf_event_alloc(&parent_event->attr,
11824 					   parent_event->cpu,
11825 					   child,
11826 					   group_leader, parent_event,
11827 					   NULL, NULL, -1);
11828 	if (IS_ERR(child_event))
11829 		return child_event;
11830 
11831 
11832 	if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
11833 	    !child_ctx->task_ctx_data) {
11834 		struct pmu *pmu = child_event->pmu;
11835 
11836 		child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
11837 						   GFP_KERNEL);
11838 		if (!child_ctx->task_ctx_data) {
11839 			free_event(child_event);
11840 			return ERR_PTR(-ENOMEM);
11841 		}
11842 	}
11843 
11844 	/*
11845 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
11846 	 * must be under the same lock in order to serialize against
11847 	 * perf_event_release_kernel(), such that either we must observe
11848 	 * is_orphaned_event() or they will observe us on the child_list.
11849 	 */
11850 	mutex_lock(&parent_event->child_mutex);
11851 	if (is_orphaned_event(parent_event) ||
11852 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
11853 		mutex_unlock(&parent_event->child_mutex);
11854 		/* task_ctx_data is freed with child_ctx */
11855 		free_event(child_event);
11856 		return NULL;
11857 	}
11858 
11859 	get_ctx(child_ctx);
11860 
11861 	/*
11862 	 * Make the child state follow the state of the parent event,
11863 	 * not its attr.disabled bit.  We hold the parent's mutex,
11864 	 * so we won't race with perf_event_{en, dis}able_family.
11865 	 */
11866 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
11867 		child_event->state = PERF_EVENT_STATE_INACTIVE;
11868 	else
11869 		child_event->state = PERF_EVENT_STATE_OFF;
11870 
11871 	if (parent_event->attr.freq) {
11872 		u64 sample_period = parent_event->hw.sample_period;
11873 		struct hw_perf_event *hwc = &child_event->hw;
11874 
11875 		hwc->sample_period = sample_period;
11876 		hwc->last_period   = sample_period;
11877 
11878 		local64_set(&hwc->period_left, sample_period);
11879 	}
11880 
11881 	child_event->ctx = child_ctx;
11882 	child_event->overflow_handler = parent_event->overflow_handler;
11883 	child_event->overflow_handler_context
11884 		= parent_event->overflow_handler_context;
11885 
11886 	/*
11887 	 * Precalculate sample_data sizes
11888 	 */
11889 	perf_event__header_size(child_event);
11890 	perf_event__id_header_size(child_event);
11891 
11892 	/*
11893 	 * Link it up in the child's context:
11894 	 */
11895 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
11896 	add_event_to_ctx(child_event, child_ctx);
11897 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
11898 
11899 	/*
11900 	 * Link this into the parent event's child list
11901 	 */
11902 	list_add_tail(&child_event->child_list, &parent_event->child_list);
11903 	mutex_unlock(&parent_event->child_mutex);
11904 
11905 	return child_event;
11906 }
11907 
11908 /*
11909  * Inherits an event group.
11910  *
11911  * This will quietly suppress orphaned events; !inherit_event() is not an error.
11912  * This matches with perf_event_release_kernel() removing all child events.
11913  *
11914  * Returns:
11915  *  - 0 on success
11916  *  - <0 on error
11917  */
inherit_group(struct perf_event * parent_event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,struct perf_event_context * child_ctx)11918 static int inherit_group(struct perf_event *parent_event,
11919 	      struct task_struct *parent,
11920 	      struct perf_event_context *parent_ctx,
11921 	      struct task_struct *child,
11922 	      struct perf_event_context *child_ctx)
11923 {
11924 	struct perf_event *leader;
11925 	struct perf_event *sub;
11926 	struct perf_event *child_ctr;
11927 
11928 	leader = inherit_event(parent_event, parent, parent_ctx,
11929 				 child, NULL, child_ctx);
11930 	if (IS_ERR(leader))
11931 		return PTR_ERR(leader);
11932 	/*
11933 	 * @leader can be NULL here because of is_orphaned_event(). In this
11934 	 * case inherit_event() will create individual events, similar to what
11935 	 * perf_group_detach() would do anyway.
11936 	 */
11937 	for_each_sibling_event(sub, parent_event) {
11938 		child_ctr = inherit_event(sub, parent, parent_ctx,
11939 					    child, leader, child_ctx);
11940 		if (IS_ERR(child_ctr))
11941 			return PTR_ERR(child_ctr);
11942 
11943 		if (sub->aux_event == parent_event && child_ctr &&
11944 		    !perf_get_aux_event(child_ctr, leader))
11945 			return -EINVAL;
11946 	}
11947 	return 0;
11948 }
11949 
11950 /*
11951  * Creates the child task context and tries to inherit the event-group.
11952  *
11953  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
11954  * inherited_all set when we 'fail' to inherit an orphaned event; this is
11955  * consistent with perf_event_release_kernel() removing all child events.
11956  *
11957  * Returns:
11958  *  - 0 on success
11959  *  - <0 on error
11960  */
11961 static int
inherit_task_group(struct perf_event * event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,int ctxn,int * inherited_all)11962 inherit_task_group(struct perf_event *event, struct task_struct *parent,
11963 		   struct perf_event_context *parent_ctx,
11964 		   struct task_struct *child, int ctxn,
11965 		   int *inherited_all)
11966 {
11967 	int ret;
11968 	struct perf_event_context *child_ctx;
11969 
11970 	if (!event->attr.inherit) {
11971 		*inherited_all = 0;
11972 		return 0;
11973 	}
11974 
11975 	child_ctx = child->perf_event_ctxp[ctxn];
11976 	if (!child_ctx) {
11977 		/*
11978 		 * This is executed from the parent task context, so
11979 		 * inherit events that have been marked for cloning.
11980 		 * First allocate and initialize a context for the
11981 		 * child.
11982 		 */
11983 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
11984 		if (!child_ctx)
11985 			return -ENOMEM;
11986 
11987 		child->perf_event_ctxp[ctxn] = child_ctx;
11988 	}
11989 
11990 	ret = inherit_group(event, parent, parent_ctx,
11991 			    child, child_ctx);
11992 
11993 	if (ret)
11994 		*inherited_all = 0;
11995 
11996 	return ret;
11997 }
11998 
11999 /*
12000  * Initialize the perf_event context in task_struct
12001  */
perf_event_init_context(struct task_struct * child,int ctxn)12002 static int perf_event_init_context(struct task_struct *child, int ctxn)
12003 {
12004 	struct perf_event_context *child_ctx, *parent_ctx;
12005 	struct perf_event_context *cloned_ctx;
12006 	struct perf_event *event;
12007 	struct task_struct *parent = current;
12008 	int inherited_all = 1;
12009 	unsigned long flags;
12010 	int ret = 0;
12011 
12012 	if (likely(!parent->perf_event_ctxp[ctxn]))
12013 		return 0;
12014 
12015 	/*
12016 	 * If the parent's context is a clone, pin it so it won't get
12017 	 * swapped under us.
12018 	 */
12019 	parent_ctx = perf_pin_task_context(parent, ctxn);
12020 	if (!parent_ctx)
12021 		return 0;
12022 
12023 	/*
12024 	 * No need to check if parent_ctx != NULL here; since we saw
12025 	 * it non-NULL earlier, the only reason for it to become NULL
12026 	 * is if we exit, and since we're currently in the middle of
12027 	 * a fork we can't be exiting at the same time.
12028 	 */
12029 
12030 	/*
12031 	 * Lock the parent list. No need to lock the child - not PID
12032 	 * hashed yet and not running, so nobody can access it.
12033 	 */
12034 	mutex_lock(&parent_ctx->mutex);
12035 
12036 	/*
12037 	 * We dont have to disable NMIs - we are only looking at
12038 	 * the list, not manipulating it:
12039 	 */
12040 	perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
12041 		ret = inherit_task_group(event, parent, parent_ctx,
12042 					 child, ctxn, &inherited_all);
12043 		if (ret)
12044 			goto out_unlock;
12045 	}
12046 
12047 	/*
12048 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
12049 	 * to allocations, but we need to prevent rotation because
12050 	 * rotate_ctx() will change the list from interrupt context.
12051 	 */
12052 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12053 	parent_ctx->rotate_disable = 1;
12054 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12055 
12056 	perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
12057 		ret = inherit_task_group(event, parent, parent_ctx,
12058 					 child, ctxn, &inherited_all);
12059 		if (ret)
12060 			goto out_unlock;
12061 	}
12062 
12063 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12064 	parent_ctx->rotate_disable = 0;
12065 
12066 	child_ctx = child->perf_event_ctxp[ctxn];
12067 
12068 	if (child_ctx && inherited_all) {
12069 		/*
12070 		 * Mark the child context as a clone of the parent
12071 		 * context, or of whatever the parent is a clone of.
12072 		 *
12073 		 * Note that if the parent is a clone, the holding of
12074 		 * parent_ctx->lock avoids it from being uncloned.
12075 		 */
12076 		cloned_ctx = parent_ctx->parent_ctx;
12077 		if (cloned_ctx) {
12078 			child_ctx->parent_ctx = cloned_ctx;
12079 			child_ctx->parent_gen = parent_ctx->parent_gen;
12080 		} else {
12081 			child_ctx->parent_ctx = parent_ctx;
12082 			child_ctx->parent_gen = parent_ctx->generation;
12083 		}
12084 		get_ctx(child_ctx->parent_ctx);
12085 	}
12086 
12087 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12088 out_unlock:
12089 	mutex_unlock(&parent_ctx->mutex);
12090 
12091 	perf_unpin_context(parent_ctx);
12092 	put_ctx(parent_ctx);
12093 
12094 	return ret;
12095 }
12096 
12097 /*
12098  * Initialize the perf_event context in task_struct
12099  */
perf_event_init_task(struct task_struct * child)12100 int perf_event_init_task(struct task_struct *child)
12101 {
12102 	int ctxn, ret;
12103 
12104 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
12105 	mutex_init(&child->perf_event_mutex);
12106 	INIT_LIST_HEAD(&child->perf_event_list);
12107 
12108 	for_each_task_context_nr(ctxn) {
12109 		ret = perf_event_init_context(child, ctxn);
12110 		if (ret) {
12111 			perf_event_free_task(child);
12112 			return ret;
12113 		}
12114 	}
12115 
12116 	return 0;
12117 }
12118 
perf_event_init_all_cpus(void)12119 static void __init perf_event_init_all_cpus(void)
12120 {
12121 	struct swevent_htable *swhash;
12122 	int cpu;
12123 
12124 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
12125 
12126 	for_each_possible_cpu(cpu) {
12127 		swhash = &per_cpu(swevent_htable, cpu);
12128 		mutex_init(&swhash->hlist_mutex);
12129 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
12130 
12131 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
12132 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
12133 
12134 #ifdef CONFIG_CGROUP_PERF
12135 		INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
12136 #endif
12137 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
12138 	}
12139 }
12140 
perf_swevent_init_cpu(unsigned int cpu)12141 static void perf_swevent_init_cpu(unsigned int cpu)
12142 {
12143 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
12144 
12145 	mutex_lock(&swhash->hlist_mutex);
12146 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
12147 		struct swevent_hlist *hlist;
12148 
12149 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
12150 		WARN_ON(!hlist);
12151 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
12152 	}
12153 	mutex_unlock(&swhash->hlist_mutex);
12154 }
12155 
12156 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
__perf_event_exit_context(void * __info)12157 static void __perf_event_exit_context(void *__info)
12158 {
12159 	struct perf_event_context *ctx = __info;
12160 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
12161 	struct perf_event *event;
12162 
12163 	raw_spin_lock(&ctx->lock);
12164 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
12165 	list_for_each_entry(event, &ctx->event_list, event_entry)
12166 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
12167 	raw_spin_unlock(&ctx->lock);
12168 }
12169 
perf_event_exit_cpu_context(int cpu)12170 static void perf_event_exit_cpu_context(int cpu)
12171 {
12172 	struct perf_cpu_context *cpuctx;
12173 	struct perf_event_context *ctx;
12174 	struct pmu *pmu;
12175 
12176 	mutex_lock(&pmus_lock);
12177 	list_for_each_entry(pmu, &pmus, entry) {
12178 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12179 		ctx = &cpuctx->ctx;
12180 
12181 		mutex_lock(&ctx->mutex);
12182 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
12183 		cpuctx->online = 0;
12184 		mutex_unlock(&ctx->mutex);
12185 	}
12186 	cpumask_clear_cpu(cpu, perf_online_mask);
12187 	mutex_unlock(&pmus_lock);
12188 }
12189 #else
12190 
perf_event_exit_cpu_context(int cpu)12191 static void perf_event_exit_cpu_context(int cpu) { }
12192 
12193 #endif
12194 
perf_event_init_cpu(unsigned int cpu)12195 int perf_event_init_cpu(unsigned int cpu)
12196 {
12197 	struct perf_cpu_context *cpuctx;
12198 	struct perf_event_context *ctx;
12199 	struct pmu *pmu;
12200 
12201 	perf_swevent_init_cpu(cpu);
12202 
12203 	mutex_lock(&pmus_lock);
12204 	cpumask_set_cpu(cpu, perf_online_mask);
12205 	list_for_each_entry(pmu, &pmus, entry) {
12206 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12207 		ctx = &cpuctx->ctx;
12208 
12209 		mutex_lock(&ctx->mutex);
12210 		cpuctx->online = 1;
12211 		mutex_unlock(&ctx->mutex);
12212 	}
12213 	mutex_unlock(&pmus_lock);
12214 
12215 	return 0;
12216 }
12217 
perf_event_exit_cpu(unsigned int cpu)12218 int perf_event_exit_cpu(unsigned int cpu)
12219 {
12220 	perf_event_exit_cpu_context(cpu);
12221 	return 0;
12222 }
12223 
12224 static int
perf_reboot(struct notifier_block * notifier,unsigned long val,void * v)12225 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
12226 {
12227 	int cpu;
12228 
12229 	for_each_online_cpu(cpu)
12230 		perf_event_exit_cpu(cpu);
12231 
12232 	return NOTIFY_OK;
12233 }
12234 
12235 /*
12236  * Run the perf reboot notifier at the very last possible moment so that
12237  * the generic watchdog code runs as long as possible.
12238  */
12239 static struct notifier_block perf_reboot_notifier = {
12240 	.notifier_call = perf_reboot,
12241 	.priority = INT_MIN,
12242 };
12243 
perf_event_init(void)12244 void __init perf_event_init(void)
12245 {
12246 	int ret;
12247 
12248 	idr_init(&pmu_idr);
12249 
12250 	perf_event_init_all_cpus();
12251 	init_srcu_struct(&pmus_srcu);
12252 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
12253 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
12254 	perf_pmu_register(&perf_task_clock, NULL, -1);
12255 	perf_tp_register();
12256 	perf_event_init_cpu(smp_processor_id());
12257 	register_reboot_notifier(&perf_reboot_notifier);
12258 
12259 	ret = init_hw_breakpoint();
12260 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
12261 
12262 	/*
12263 	 * Build time assertion that we keep the data_head at the intended
12264 	 * location.  IOW, validation we got the __reserved[] size right.
12265 	 */
12266 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
12267 		     != 1024);
12268 }
12269 
perf_event_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)12270 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
12271 			      char *page)
12272 {
12273 	struct perf_pmu_events_attr *pmu_attr =
12274 		container_of(attr, struct perf_pmu_events_attr, attr);
12275 
12276 	if (pmu_attr->event_str)
12277 		return sprintf(page, "%s\n", pmu_attr->event_str);
12278 
12279 	return 0;
12280 }
12281 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
12282 
perf_event_sysfs_init(void)12283 static int __init perf_event_sysfs_init(void)
12284 {
12285 	struct pmu *pmu;
12286 	int ret;
12287 
12288 	mutex_lock(&pmus_lock);
12289 
12290 	ret = bus_register(&pmu_bus);
12291 	if (ret)
12292 		goto unlock;
12293 
12294 	list_for_each_entry(pmu, &pmus, entry) {
12295 		if (!pmu->name || pmu->type < 0)
12296 			continue;
12297 
12298 		ret = pmu_dev_alloc(pmu);
12299 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
12300 	}
12301 	pmu_bus_running = 1;
12302 	ret = 0;
12303 
12304 unlock:
12305 	mutex_unlock(&pmus_lock);
12306 
12307 	return ret;
12308 }
12309 device_initcall(perf_event_sysfs_init);
12310 
12311 #ifdef CONFIG_CGROUP_PERF
12312 static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)12313 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
12314 {
12315 	struct perf_cgroup *jc;
12316 
12317 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
12318 	if (!jc)
12319 		return ERR_PTR(-ENOMEM);
12320 
12321 	jc->info = alloc_percpu(struct perf_cgroup_info);
12322 	if (!jc->info) {
12323 		kfree(jc);
12324 		return ERR_PTR(-ENOMEM);
12325 	}
12326 
12327 	return &jc->css;
12328 }
12329 
perf_cgroup_css_free(struct cgroup_subsys_state * css)12330 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
12331 {
12332 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
12333 
12334 	free_percpu(jc->info);
12335 	kfree(jc);
12336 }
12337 
__perf_cgroup_move(void * info)12338 static int __perf_cgroup_move(void *info)
12339 {
12340 	struct task_struct *task = info;
12341 	rcu_read_lock();
12342 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
12343 	rcu_read_unlock();
12344 	return 0;
12345 }
12346 
perf_cgroup_attach(struct cgroup_taskset * tset)12347 static void perf_cgroup_attach(struct cgroup_taskset *tset)
12348 {
12349 	struct task_struct *task;
12350 	struct cgroup_subsys_state *css;
12351 
12352 	cgroup_taskset_for_each(task, css, tset)
12353 		task_function_call(task, __perf_cgroup_move, task);
12354 }
12355 
12356 struct cgroup_subsys perf_event_cgrp_subsys = {
12357 	.css_alloc	= perf_cgroup_css_alloc,
12358 	.css_free	= perf_cgroup_css_free,
12359 	.attach		= perf_cgroup_attach,
12360 	/*
12361 	 * Implicitly enable on dfl hierarchy so that perf events can
12362 	 * always be filtered by cgroup2 path as long as perf_event
12363 	 * controller is not mounted on a legacy hierarchy.
12364 	 */
12365 	.implicit_on_dfl = true,
12366 	.threaded	= true,
12367 };
12368 #endif /* CONFIG_CGROUP_PERF */
12369