• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Generic socket support routines. Memory allocators, socket lock/release
8  *		handler for protocols to use and generic option handler.
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Alan Cox, <A.Cox@swansea.ac.uk>
14  *
15  * Fixes:
16  *		Alan Cox	: 	Numerous verify_area() problems
17  *		Alan Cox	:	Connecting on a connecting socket
18  *					now returns an error for tcp.
19  *		Alan Cox	:	sock->protocol is set correctly.
20  *					and is not sometimes left as 0.
21  *		Alan Cox	:	connect handles icmp errors on a
22  *					connect properly. Unfortunately there
23  *					is a restart syscall nasty there. I
24  *					can't match BSD without hacking the C
25  *					library. Ideas urgently sought!
26  *		Alan Cox	:	Disallow bind() to addresses that are
27  *					not ours - especially broadcast ones!!
28  *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
29  *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
30  *					instead they leave that for the DESTROY timer.
31  *		Alan Cox	:	Clean up error flag in accept
32  *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
33  *					was buggy. Put a remove_sock() in the handler
34  *					for memory when we hit 0. Also altered the timer
35  *					code. The ACK stuff can wait and needs major
36  *					TCP layer surgery.
37  *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
38  *					and fixed timer/inet_bh race.
39  *		Alan Cox	:	Added zapped flag for TCP
40  *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
41  *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42  *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
43  *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
44  *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45  *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
46  *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
47  *	Pauline Middelink	:	identd support
48  *		Alan Cox	:	Fixed connect() taking signals I think.
49  *		Alan Cox	:	SO_LINGER supported
50  *		Alan Cox	:	Error reporting fixes
51  *		Anonymous	:	inet_create tidied up (sk->reuse setting)
52  *		Alan Cox	:	inet sockets don't set sk->type!
53  *		Alan Cox	:	Split socket option code
54  *		Alan Cox	:	Callbacks
55  *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
56  *		Alex		:	Removed restriction on inet fioctl
57  *		Alan Cox	:	Splitting INET from NET core
58  *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
59  *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
60  *		Alan Cox	:	Split IP from generic code
61  *		Alan Cox	:	New kfree_skbmem()
62  *		Alan Cox	:	Make SO_DEBUG superuser only.
63  *		Alan Cox	:	Allow anyone to clear SO_DEBUG
64  *					(compatibility fix)
65  *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
66  *		Alan Cox	:	Allocator for a socket is settable.
67  *		Alan Cox	:	SO_ERROR includes soft errors.
68  *		Alan Cox	:	Allow NULL arguments on some SO_ opts
69  *		Alan Cox	: 	Generic socket allocation to make hooks
70  *					easier (suggested by Craig Metz).
71  *		Michael Pall	:	SO_ERROR returns positive errno again
72  *              Steve Whitehouse:       Added default destructor to free
73  *                                      protocol private data.
74  *              Steve Whitehouse:       Added various other default routines
75  *                                      common to several socket families.
76  *              Chris Evans     :       Call suser() check last on F_SETOWN
77  *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78  *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
79  *		Andi Kleen	:	Fix write_space callback
80  *		Chris Evans	:	Security fixes - signedness again
81  *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
82  *
83  * To Fix:
84  */
85 
86 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
87 
88 #include <asm/unaligned.h>
89 #include <linux/capability.h>
90 #include <linux/errno.h>
91 #include <linux/errqueue.h>
92 #include <linux/types.h>
93 #include <linux/socket.h>
94 #include <linux/in.h>
95 #include <linux/kernel.h>
96 #include <linux/module.h>
97 #include <linux/proc_fs.h>
98 #include <linux/seq_file.h>
99 #include <linux/sched.h>
100 #include <linux/sched/mm.h>
101 #include <linux/timer.h>
102 #include <linux/string.h>
103 #include <linux/sockios.h>
104 #include <linux/net.h>
105 #include <linux/mm.h>
106 #include <linux/slab.h>
107 #include <linux/interrupt.h>
108 #include <linux/poll.h>
109 #include <linux/tcp.h>
110 #include <linux/init.h>
111 #include <linux/highmem.h>
112 #include <linux/user_namespace.h>
113 #include <linux/static_key.h>
114 #include <linux/memcontrol.h>
115 #include <linux/prefetch.h>
116 
117 #include <linux/uaccess.h>
118 
119 #include <linux/netdevice.h>
120 #include <net/protocol.h>
121 #include <linux/skbuff.h>
122 #include <net/net_namespace.h>
123 #include <net/request_sock.h>
124 #include <net/sock.h>
125 #include <linux/net_tstamp.h>
126 #include <net/xfrm.h>
127 #include <linux/ipsec.h>
128 #include <net/cls_cgroup.h>
129 #include <net/netprio_cgroup.h>
130 #include <linux/sock_diag.h>
131 
132 #include <linux/filter.h>
133 #include <net/sock_reuseport.h>
134 #include <net/bpf_sk_storage.h>
135 
136 #include <trace/events/sock.h>
137 
138 #include <net/tcp.h>
139 #include <net/busy_poll.h>
140 
141 static DEFINE_MUTEX(proto_list_mutex);
142 static LIST_HEAD(proto_list);
143 
144 static void sock_inuse_add(struct net *net, int val);
145 
146 /**
147  * sk_ns_capable - General socket capability test
148  * @sk: Socket to use a capability on or through
149  * @user_ns: The user namespace of the capability to use
150  * @cap: The capability to use
151  *
152  * Test to see if the opener of the socket had when the socket was
153  * created and the current process has the capability @cap in the user
154  * namespace @user_ns.
155  */
sk_ns_capable(const struct sock * sk,struct user_namespace * user_ns,int cap)156 bool sk_ns_capable(const struct sock *sk,
157 		   struct user_namespace *user_ns, int cap)
158 {
159 	return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
160 		ns_capable(user_ns, cap);
161 }
162 EXPORT_SYMBOL(sk_ns_capable);
163 
164 /**
165  * sk_capable - Socket global capability test
166  * @sk: Socket to use a capability on or through
167  * @cap: The global capability to use
168  *
169  * Test to see if the opener of the socket had when the socket was
170  * created and the current process has the capability @cap in all user
171  * namespaces.
172  */
sk_capable(const struct sock * sk,int cap)173 bool sk_capable(const struct sock *sk, int cap)
174 {
175 	return sk_ns_capable(sk, &init_user_ns, cap);
176 }
177 EXPORT_SYMBOL(sk_capable);
178 
179 /**
180  * sk_net_capable - Network namespace socket capability test
181  * @sk: Socket to use a capability on or through
182  * @cap: The capability to use
183  *
184  * Test to see if the opener of the socket had when the socket was created
185  * and the current process has the capability @cap over the network namespace
186  * the socket is a member of.
187  */
sk_net_capable(const struct sock * sk,int cap)188 bool sk_net_capable(const struct sock *sk, int cap)
189 {
190 	return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
191 }
192 EXPORT_SYMBOL(sk_net_capable);
193 
194 /*
195  * Each address family might have different locking rules, so we have
196  * one slock key per address family and separate keys for internal and
197  * userspace sockets.
198  */
199 static struct lock_class_key af_family_keys[AF_MAX];
200 static struct lock_class_key af_family_kern_keys[AF_MAX];
201 static struct lock_class_key af_family_slock_keys[AF_MAX];
202 static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
203 
204 /*
205  * Make lock validator output more readable. (we pre-construct these
206  * strings build-time, so that runtime initialization of socket
207  * locks is fast):
208  */
209 
210 #define _sock_locks(x)						  \
211   x "AF_UNSPEC",	x "AF_UNIX"     ,	x "AF_INET"     , \
212   x "AF_AX25"  ,	x "AF_IPX"      ,	x "AF_APPLETALK", \
213   x "AF_NETROM",	x "AF_BRIDGE"   ,	x "AF_ATMPVC"   , \
214   x "AF_X25"   ,	x "AF_INET6"    ,	x "AF_ROSE"     , \
215   x "AF_DECnet",	x "AF_NETBEUI"  ,	x "AF_SECURITY" , \
216   x "AF_KEY"   ,	x "AF_NETLINK"  ,	x "AF_PACKET"   , \
217   x "AF_ASH"   ,	x "AF_ECONET"   ,	x "AF_ATMSVC"   , \
218   x "AF_RDS"   ,	x "AF_SNA"      ,	x "AF_IRDA"     , \
219   x "AF_PPPOX" ,	x "AF_WANPIPE"  ,	x "AF_LLC"      , \
220   x "27"       ,	x "28"          ,	x "AF_CAN"      , \
221   x "AF_TIPC"  ,	x "AF_BLUETOOTH",	x "IUCV"        , \
222   x "AF_RXRPC" ,	x "AF_ISDN"     ,	x "AF_PHONET"   , \
223   x "AF_IEEE802154",	x "AF_CAIF"	,	x "AF_ALG"      , \
224   x "AF_NFC"   ,	x "AF_VSOCK"    ,	x "AF_KCM"      , \
225   x "AF_QIPCRTR",	x "AF_SMC"	,	x "AF_XDP"	, \
226   x "AF_MAX"
227 
228 static const char *const af_family_key_strings[AF_MAX+1] = {
229 	_sock_locks("sk_lock-")
230 };
231 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
232 	_sock_locks("slock-")
233 };
234 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
235 	_sock_locks("clock-")
236 };
237 
238 static const char *const af_family_kern_key_strings[AF_MAX+1] = {
239 	_sock_locks("k-sk_lock-")
240 };
241 static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
242 	_sock_locks("k-slock-")
243 };
244 static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
245 	_sock_locks("k-clock-")
246 };
247 static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
248 	_sock_locks("rlock-")
249 };
250 static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
251 	_sock_locks("wlock-")
252 };
253 static const char *const af_family_elock_key_strings[AF_MAX+1] = {
254 	_sock_locks("elock-")
255 };
256 
257 /*
258  * sk_callback_lock and sk queues locking rules are per-address-family,
259  * so split the lock classes by using a per-AF key:
260  */
261 static struct lock_class_key af_callback_keys[AF_MAX];
262 static struct lock_class_key af_rlock_keys[AF_MAX];
263 static struct lock_class_key af_wlock_keys[AF_MAX];
264 static struct lock_class_key af_elock_keys[AF_MAX];
265 static struct lock_class_key af_kern_callback_keys[AF_MAX];
266 
267 /* Run time adjustable parameters. */
268 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
269 EXPORT_SYMBOL(sysctl_wmem_max);
270 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
271 EXPORT_SYMBOL(sysctl_rmem_max);
272 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
273 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
274 
275 /* Maximal space eaten by iovec or ancillary data plus some space */
276 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
277 EXPORT_SYMBOL(sysctl_optmem_max);
278 
279 int sysctl_tstamp_allow_data __read_mostly = 1;
280 
281 DEFINE_STATIC_KEY_FALSE(memalloc_socks_key);
282 EXPORT_SYMBOL_GPL(memalloc_socks_key);
283 
284 /**
285  * sk_set_memalloc - sets %SOCK_MEMALLOC
286  * @sk: socket to set it on
287  *
288  * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
289  * It's the responsibility of the admin to adjust min_free_kbytes
290  * to meet the requirements
291  */
sk_set_memalloc(struct sock * sk)292 void sk_set_memalloc(struct sock *sk)
293 {
294 	sock_set_flag(sk, SOCK_MEMALLOC);
295 	sk->sk_allocation |= __GFP_MEMALLOC;
296 	static_branch_inc(&memalloc_socks_key);
297 }
298 EXPORT_SYMBOL_GPL(sk_set_memalloc);
299 
sk_clear_memalloc(struct sock * sk)300 void sk_clear_memalloc(struct sock *sk)
301 {
302 	sock_reset_flag(sk, SOCK_MEMALLOC);
303 	sk->sk_allocation &= ~__GFP_MEMALLOC;
304 	static_branch_dec(&memalloc_socks_key);
305 
306 	/*
307 	 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
308 	 * progress of swapping. SOCK_MEMALLOC may be cleared while
309 	 * it has rmem allocations due to the last swapfile being deactivated
310 	 * but there is a risk that the socket is unusable due to exceeding
311 	 * the rmem limits. Reclaim the reserves and obey rmem limits again.
312 	 */
313 	sk_mem_reclaim(sk);
314 }
315 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
316 
__sk_backlog_rcv(struct sock * sk,struct sk_buff * skb)317 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
318 {
319 	int ret;
320 	unsigned int noreclaim_flag;
321 
322 	/* these should have been dropped before queueing */
323 	BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
324 
325 	noreclaim_flag = memalloc_noreclaim_save();
326 	ret = sk->sk_backlog_rcv(sk, skb);
327 	memalloc_noreclaim_restore(noreclaim_flag);
328 
329 	return ret;
330 }
331 EXPORT_SYMBOL(__sk_backlog_rcv);
332 
sock_get_timeout(long timeo,void * optval,bool old_timeval)333 static int sock_get_timeout(long timeo, void *optval, bool old_timeval)
334 {
335 	struct __kernel_sock_timeval tv;
336 	int size;
337 
338 	if (timeo == MAX_SCHEDULE_TIMEOUT) {
339 		tv.tv_sec = 0;
340 		tv.tv_usec = 0;
341 	} else {
342 		tv.tv_sec = timeo / HZ;
343 		tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ;
344 	}
345 
346 	if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
347 		struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec };
348 		*(struct old_timeval32 *)optval = tv32;
349 		return sizeof(tv32);
350 	}
351 
352 	if (old_timeval) {
353 		struct __kernel_old_timeval old_tv;
354 		old_tv.tv_sec = tv.tv_sec;
355 		old_tv.tv_usec = tv.tv_usec;
356 		*(struct __kernel_old_timeval *)optval = old_tv;
357 		size = sizeof(old_tv);
358 	} else {
359 		*(struct __kernel_sock_timeval *)optval = tv;
360 		size = sizeof(tv);
361 	}
362 
363 	return size;
364 }
365 
sock_set_timeout(long * timeo_p,char __user * optval,int optlen,bool old_timeval)366 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen, bool old_timeval)
367 {
368 	struct __kernel_sock_timeval tv;
369 
370 	if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
371 		struct old_timeval32 tv32;
372 
373 		if (optlen < sizeof(tv32))
374 			return -EINVAL;
375 
376 		if (copy_from_user(&tv32, optval, sizeof(tv32)))
377 			return -EFAULT;
378 		tv.tv_sec = tv32.tv_sec;
379 		tv.tv_usec = tv32.tv_usec;
380 	} else if (old_timeval) {
381 		struct __kernel_old_timeval old_tv;
382 
383 		if (optlen < sizeof(old_tv))
384 			return -EINVAL;
385 		if (copy_from_user(&old_tv, optval, sizeof(old_tv)))
386 			return -EFAULT;
387 		tv.tv_sec = old_tv.tv_sec;
388 		tv.tv_usec = old_tv.tv_usec;
389 	} else {
390 		if (optlen < sizeof(tv))
391 			return -EINVAL;
392 		if (copy_from_user(&tv, optval, sizeof(tv)))
393 			return -EFAULT;
394 	}
395 	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
396 		return -EDOM;
397 
398 	if (tv.tv_sec < 0) {
399 		static int warned __read_mostly;
400 
401 		*timeo_p = 0;
402 		if (warned < 10 && net_ratelimit()) {
403 			warned++;
404 			pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
405 				__func__, current->comm, task_pid_nr(current));
406 		}
407 		return 0;
408 	}
409 	*timeo_p = MAX_SCHEDULE_TIMEOUT;
410 	if (tv.tv_sec == 0 && tv.tv_usec == 0)
411 		return 0;
412 	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1))
413 		*timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, USEC_PER_SEC / HZ);
414 	return 0;
415 }
416 
sock_warn_obsolete_bsdism(const char * name)417 static void sock_warn_obsolete_bsdism(const char *name)
418 {
419 	static int warned;
420 	static char warncomm[TASK_COMM_LEN];
421 	if (strcmp(warncomm, current->comm) && warned < 5) {
422 		strcpy(warncomm,  current->comm);
423 		pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
424 			warncomm, name);
425 		warned++;
426 	}
427 }
428 
sock_needs_netstamp(const struct sock * sk)429 static bool sock_needs_netstamp(const struct sock *sk)
430 {
431 	switch (sk->sk_family) {
432 	case AF_UNSPEC:
433 	case AF_UNIX:
434 		return false;
435 	default:
436 		return true;
437 	}
438 }
439 
sock_disable_timestamp(struct sock * sk,unsigned long flags)440 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
441 {
442 	if (sk->sk_flags & flags) {
443 		sk->sk_flags &= ~flags;
444 		if (sock_needs_netstamp(sk) &&
445 		    !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
446 			net_disable_timestamp();
447 	}
448 }
449 
450 
__sock_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)451 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
452 {
453 	unsigned long flags;
454 	struct sk_buff_head *list = &sk->sk_receive_queue;
455 
456 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
457 		atomic_inc(&sk->sk_drops);
458 		trace_sock_rcvqueue_full(sk, skb);
459 		return -ENOMEM;
460 	}
461 
462 	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
463 		atomic_inc(&sk->sk_drops);
464 		return -ENOBUFS;
465 	}
466 
467 	skb->dev = NULL;
468 	skb_set_owner_r(skb, sk);
469 
470 	/* we escape from rcu protected region, make sure we dont leak
471 	 * a norefcounted dst
472 	 */
473 	skb_dst_force(skb);
474 
475 	spin_lock_irqsave(&list->lock, flags);
476 	sock_skb_set_dropcount(sk, skb);
477 	__skb_queue_tail(list, skb);
478 	spin_unlock_irqrestore(&list->lock, flags);
479 
480 	if (!sock_flag(sk, SOCK_DEAD))
481 		sk->sk_data_ready(sk);
482 	return 0;
483 }
484 EXPORT_SYMBOL(__sock_queue_rcv_skb);
485 
sock_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)486 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
487 {
488 	int err;
489 
490 	err = sk_filter(sk, skb);
491 	if (err)
492 		return err;
493 
494 	return __sock_queue_rcv_skb(sk, skb);
495 }
496 EXPORT_SYMBOL(sock_queue_rcv_skb);
497 
__sk_receive_skb(struct sock * sk,struct sk_buff * skb,const int nested,unsigned int trim_cap,bool refcounted)498 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
499 		     const int nested, unsigned int trim_cap, bool refcounted)
500 {
501 	int rc = NET_RX_SUCCESS;
502 
503 	if (sk_filter_trim_cap(sk, skb, trim_cap))
504 		goto discard_and_relse;
505 
506 	skb->dev = NULL;
507 
508 	if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
509 		atomic_inc(&sk->sk_drops);
510 		goto discard_and_relse;
511 	}
512 	if (nested)
513 		bh_lock_sock_nested(sk);
514 	else
515 		bh_lock_sock(sk);
516 	if (!sock_owned_by_user(sk)) {
517 		/*
518 		 * trylock + unlock semantics:
519 		 */
520 		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
521 
522 		rc = sk_backlog_rcv(sk, skb);
523 
524 		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
525 	} else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) {
526 		bh_unlock_sock(sk);
527 		atomic_inc(&sk->sk_drops);
528 		goto discard_and_relse;
529 	}
530 
531 	bh_unlock_sock(sk);
532 out:
533 	if (refcounted)
534 		sock_put(sk);
535 	return rc;
536 discard_and_relse:
537 	kfree_skb(skb);
538 	goto out;
539 }
540 EXPORT_SYMBOL(__sk_receive_skb);
541 
__sk_dst_check(struct sock * sk,u32 cookie)542 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
543 {
544 	struct dst_entry *dst = __sk_dst_get(sk);
545 
546 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
547 		sk_tx_queue_clear(sk);
548 		sk->sk_dst_pending_confirm = 0;
549 		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
550 		dst_release(dst);
551 		return NULL;
552 	}
553 
554 	return dst;
555 }
556 EXPORT_SYMBOL(__sk_dst_check);
557 
sk_dst_check(struct sock * sk,u32 cookie)558 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
559 {
560 	struct dst_entry *dst = sk_dst_get(sk);
561 
562 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
563 		sk_dst_reset(sk);
564 		dst_release(dst);
565 		return NULL;
566 	}
567 
568 	return dst;
569 }
570 EXPORT_SYMBOL(sk_dst_check);
571 
sock_setbindtodevice_locked(struct sock * sk,int ifindex)572 static int sock_setbindtodevice_locked(struct sock *sk, int ifindex)
573 {
574 	int ret = -ENOPROTOOPT;
575 #ifdef CONFIG_NETDEVICES
576 	struct net *net = sock_net(sk);
577 
578 	/* Sorry... */
579 	ret = -EPERM;
580 	if (!ns_capable(net->user_ns, CAP_NET_RAW))
581 		goto out;
582 
583 	ret = -EINVAL;
584 	if (ifindex < 0)
585 		goto out;
586 
587 	sk->sk_bound_dev_if = ifindex;
588 	if (sk->sk_prot->rehash)
589 		sk->sk_prot->rehash(sk);
590 	sk_dst_reset(sk);
591 
592 	ret = 0;
593 
594 out:
595 #endif
596 
597 	return ret;
598 }
599 
sock_setbindtodevice(struct sock * sk,char __user * optval,int optlen)600 static int sock_setbindtodevice(struct sock *sk, char __user *optval,
601 				int optlen)
602 {
603 	int ret = -ENOPROTOOPT;
604 #ifdef CONFIG_NETDEVICES
605 	struct net *net = sock_net(sk);
606 	char devname[IFNAMSIZ];
607 	int index;
608 
609 	ret = -EINVAL;
610 	if (optlen < 0)
611 		goto out;
612 
613 	/* Bind this socket to a particular device like "eth0",
614 	 * as specified in the passed interface name. If the
615 	 * name is "" or the option length is zero the socket
616 	 * is not bound.
617 	 */
618 	if (optlen > IFNAMSIZ - 1)
619 		optlen = IFNAMSIZ - 1;
620 	memset(devname, 0, sizeof(devname));
621 
622 	ret = -EFAULT;
623 	if (copy_from_user(devname, optval, optlen))
624 		goto out;
625 
626 	index = 0;
627 	if (devname[0] != '\0') {
628 		struct net_device *dev;
629 
630 		rcu_read_lock();
631 		dev = dev_get_by_name_rcu(net, devname);
632 		if (dev)
633 			index = dev->ifindex;
634 		rcu_read_unlock();
635 		ret = -ENODEV;
636 		if (!dev)
637 			goto out;
638 	}
639 
640 	lock_sock(sk);
641 	ret = sock_setbindtodevice_locked(sk, index);
642 	release_sock(sk);
643 
644 out:
645 #endif
646 
647 	return ret;
648 }
649 
sock_getbindtodevice(struct sock * sk,char __user * optval,int __user * optlen,int len)650 static int sock_getbindtodevice(struct sock *sk, char __user *optval,
651 				int __user *optlen, int len)
652 {
653 	int ret = -ENOPROTOOPT;
654 #ifdef CONFIG_NETDEVICES
655 	struct net *net = sock_net(sk);
656 	char devname[IFNAMSIZ];
657 
658 	if (sk->sk_bound_dev_if == 0) {
659 		len = 0;
660 		goto zero;
661 	}
662 
663 	ret = -EINVAL;
664 	if (len < IFNAMSIZ)
665 		goto out;
666 
667 	ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
668 	if (ret)
669 		goto out;
670 
671 	len = strlen(devname) + 1;
672 
673 	ret = -EFAULT;
674 	if (copy_to_user(optval, devname, len))
675 		goto out;
676 
677 zero:
678 	ret = -EFAULT;
679 	if (put_user(len, optlen))
680 		goto out;
681 
682 	ret = 0;
683 
684 out:
685 #endif
686 
687 	return ret;
688 }
689 
sock_valbool_flag(struct sock * sk,int bit,int valbool)690 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
691 {
692 	if (valbool)
693 		sock_set_flag(sk, bit);
694 	else
695 		sock_reset_flag(sk, bit);
696 }
697 
sk_mc_loop(struct sock * sk)698 bool sk_mc_loop(struct sock *sk)
699 {
700 	if (dev_recursion_level())
701 		return false;
702 	if (!sk)
703 		return true;
704 	switch (sk->sk_family) {
705 	case AF_INET:
706 		return inet_sk(sk)->mc_loop;
707 #if IS_ENABLED(CONFIG_IPV6)
708 	case AF_INET6:
709 		return inet6_sk(sk)->mc_loop;
710 #endif
711 	}
712 	WARN_ON(1);
713 	return true;
714 }
715 EXPORT_SYMBOL(sk_mc_loop);
716 
717 /*
718  *	This is meant for all protocols to use and covers goings on
719  *	at the socket level. Everything here is generic.
720  */
721 
sock_setsockopt(struct socket * sock,int level,int optname,char __user * optval,unsigned int optlen)722 int sock_setsockopt(struct socket *sock, int level, int optname,
723 		    char __user *optval, unsigned int optlen)
724 {
725 	struct sock_txtime sk_txtime;
726 	struct sock *sk = sock->sk;
727 	int val;
728 	int valbool;
729 	struct linger ling;
730 	int ret = 0;
731 
732 	/*
733 	 *	Options without arguments
734 	 */
735 
736 	if (optname == SO_BINDTODEVICE)
737 		return sock_setbindtodevice(sk, optval, optlen);
738 
739 	if (optlen < sizeof(int))
740 		return -EINVAL;
741 
742 	if (get_user(val, (int __user *)optval))
743 		return -EFAULT;
744 
745 	valbool = val ? 1 : 0;
746 
747 	lock_sock(sk);
748 
749 	switch (optname) {
750 	case SO_DEBUG:
751 		if (val && !capable(CAP_NET_ADMIN))
752 			ret = -EACCES;
753 		else
754 			sock_valbool_flag(sk, SOCK_DBG, valbool);
755 		break;
756 	case SO_REUSEADDR:
757 		sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
758 		break;
759 	case SO_REUSEPORT:
760 		sk->sk_reuseport = valbool;
761 		break;
762 	case SO_TYPE:
763 	case SO_PROTOCOL:
764 	case SO_DOMAIN:
765 	case SO_ERROR:
766 		ret = -ENOPROTOOPT;
767 		break;
768 	case SO_DONTROUTE:
769 		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
770 		sk_dst_reset(sk);
771 		break;
772 	case SO_BROADCAST:
773 		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
774 		break;
775 	case SO_SNDBUF:
776 		/* Don't error on this BSD doesn't and if you think
777 		 * about it this is right. Otherwise apps have to
778 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
779 		 * are treated in BSD as hints
780 		 */
781 		val = min_t(u32, val, sysctl_wmem_max);
782 set_sndbuf:
783 		/* Ensure val * 2 fits into an int, to prevent max_t()
784 		 * from treating it as a negative value.
785 		 */
786 		val = min_t(int, val, INT_MAX / 2);
787 		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
788 		WRITE_ONCE(sk->sk_sndbuf,
789 			   max_t(int, val * 2, SOCK_MIN_SNDBUF));
790 		/* Wake up sending tasks if we upped the value. */
791 		sk->sk_write_space(sk);
792 		break;
793 
794 	case SO_SNDBUFFORCE:
795 		if (!capable(CAP_NET_ADMIN)) {
796 			ret = -EPERM;
797 			break;
798 		}
799 
800 		/* No negative values (to prevent underflow, as val will be
801 		 * multiplied by 2).
802 		 */
803 		if (val < 0)
804 			val = 0;
805 		goto set_sndbuf;
806 
807 	case SO_RCVBUF:
808 		/* Don't error on this BSD doesn't and if you think
809 		 * about it this is right. Otherwise apps have to
810 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
811 		 * are treated in BSD as hints
812 		 */
813 		val = min_t(u32, val, sysctl_rmem_max);
814 set_rcvbuf:
815 		/* Ensure val * 2 fits into an int, to prevent max_t()
816 		 * from treating it as a negative value.
817 		 */
818 		val = min_t(int, val, INT_MAX / 2);
819 		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
820 		/*
821 		 * We double it on the way in to account for
822 		 * "struct sk_buff" etc. overhead.   Applications
823 		 * assume that the SO_RCVBUF setting they make will
824 		 * allow that much actual data to be received on that
825 		 * socket.
826 		 *
827 		 * Applications are unaware that "struct sk_buff" and
828 		 * other overheads allocate from the receive buffer
829 		 * during socket buffer allocation.
830 		 *
831 		 * And after considering the possible alternatives,
832 		 * returning the value we actually used in getsockopt
833 		 * is the most desirable behavior.
834 		 */
835 		WRITE_ONCE(sk->sk_rcvbuf,
836 			   max_t(int, val * 2, SOCK_MIN_RCVBUF));
837 		break;
838 
839 	case SO_RCVBUFFORCE:
840 		if (!capable(CAP_NET_ADMIN)) {
841 			ret = -EPERM;
842 			break;
843 		}
844 
845 		/* No negative values (to prevent underflow, as val will be
846 		 * multiplied by 2).
847 		 */
848 		if (val < 0)
849 			val = 0;
850 		goto set_rcvbuf;
851 
852 	case SO_KEEPALIVE:
853 		if (sk->sk_prot->keepalive)
854 			sk->sk_prot->keepalive(sk, valbool);
855 		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
856 		break;
857 
858 	case SO_OOBINLINE:
859 		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
860 		break;
861 
862 	case SO_NO_CHECK:
863 		sk->sk_no_check_tx = valbool;
864 		break;
865 
866 	case SO_PRIORITY:
867 		if ((val >= 0 && val <= 6) ||
868 		    ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
869 			sk->sk_priority = val;
870 		else
871 			ret = -EPERM;
872 		break;
873 
874 	case SO_LINGER:
875 		if (optlen < sizeof(ling)) {
876 			ret = -EINVAL;	/* 1003.1g */
877 			break;
878 		}
879 		if (copy_from_user(&ling, optval, sizeof(ling))) {
880 			ret = -EFAULT;
881 			break;
882 		}
883 		if (!ling.l_onoff)
884 			sock_reset_flag(sk, SOCK_LINGER);
885 		else {
886 #if (BITS_PER_LONG == 32)
887 			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
888 				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
889 			else
890 #endif
891 				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
892 			sock_set_flag(sk, SOCK_LINGER);
893 		}
894 		break;
895 
896 	case SO_BSDCOMPAT:
897 		sock_warn_obsolete_bsdism("setsockopt");
898 		break;
899 
900 	case SO_PASSCRED:
901 		if (valbool)
902 			set_bit(SOCK_PASSCRED, &sock->flags);
903 		else
904 			clear_bit(SOCK_PASSCRED, &sock->flags);
905 		break;
906 
907 	case SO_TIMESTAMP_OLD:
908 	case SO_TIMESTAMP_NEW:
909 	case SO_TIMESTAMPNS_OLD:
910 	case SO_TIMESTAMPNS_NEW:
911 		if (valbool)  {
912 			if (optname == SO_TIMESTAMP_NEW || optname == SO_TIMESTAMPNS_NEW)
913 				sock_set_flag(sk, SOCK_TSTAMP_NEW);
914 			else
915 				sock_reset_flag(sk, SOCK_TSTAMP_NEW);
916 
917 			if (optname == SO_TIMESTAMP_OLD || optname == SO_TIMESTAMP_NEW)
918 				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
919 			else
920 				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
921 			sock_set_flag(sk, SOCK_RCVTSTAMP);
922 			sock_enable_timestamp(sk, SOCK_TIMESTAMP);
923 		} else {
924 			sock_reset_flag(sk, SOCK_RCVTSTAMP);
925 			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
926 			sock_reset_flag(sk, SOCK_TSTAMP_NEW);
927 		}
928 		break;
929 
930 	case SO_TIMESTAMPING_NEW:
931 		sock_set_flag(sk, SOCK_TSTAMP_NEW);
932 		/* fall through */
933 	case SO_TIMESTAMPING_OLD:
934 		if (val & ~SOF_TIMESTAMPING_MASK) {
935 			ret = -EINVAL;
936 			break;
937 		}
938 
939 		if (val & SOF_TIMESTAMPING_OPT_ID &&
940 		    !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
941 			if (sk->sk_protocol == IPPROTO_TCP &&
942 			    sk->sk_type == SOCK_STREAM) {
943 				if ((1 << sk->sk_state) &
944 				    (TCPF_CLOSE | TCPF_LISTEN)) {
945 					ret = -EINVAL;
946 					break;
947 				}
948 				sk->sk_tskey = tcp_sk(sk)->snd_una;
949 			} else {
950 				sk->sk_tskey = 0;
951 			}
952 		}
953 
954 		if (val & SOF_TIMESTAMPING_OPT_STATS &&
955 		    !(val & SOF_TIMESTAMPING_OPT_TSONLY)) {
956 			ret = -EINVAL;
957 			break;
958 		}
959 
960 		sk->sk_tsflags = val;
961 		if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
962 			sock_enable_timestamp(sk,
963 					      SOCK_TIMESTAMPING_RX_SOFTWARE);
964 		else {
965 			if (optname == SO_TIMESTAMPING_NEW)
966 				sock_reset_flag(sk, SOCK_TSTAMP_NEW);
967 
968 			sock_disable_timestamp(sk,
969 					       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
970 		}
971 		break;
972 
973 	case SO_RCVLOWAT:
974 		if (val < 0)
975 			val = INT_MAX;
976 		if (sock->ops->set_rcvlowat)
977 			ret = sock->ops->set_rcvlowat(sk, val);
978 		else
979 			WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
980 		break;
981 
982 	case SO_RCVTIMEO_OLD:
983 	case SO_RCVTIMEO_NEW:
984 		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen, optname == SO_RCVTIMEO_OLD);
985 		break;
986 
987 	case SO_SNDTIMEO_OLD:
988 	case SO_SNDTIMEO_NEW:
989 		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen, optname == SO_SNDTIMEO_OLD);
990 		break;
991 
992 	case SO_ATTACH_FILTER:
993 		ret = -EINVAL;
994 		if (optlen == sizeof(struct sock_fprog)) {
995 			struct sock_fprog fprog;
996 
997 			ret = -EFAULT;
998 			if (copy_from_user(&fprog, optval, sizeof(fprog)))
999 				break;
1000 
1001 			ret = sk_attach_filter(&fprog, sk);
1002 		}
1003 		break;
1004 
1005 	case SO_ATTACH_BPF:
1006 		ret = -EINVAL;
1007 		if (optlen == sizeof(u32)) {
1008 			u32 ufd;
1009 
1010 			ret = -EFAULT;
1011 			if (copy_from_user(&ufd, optval, sizeof(ufd)))
1012 				break;
1013 
1014 			ret = sk_attach_bpf(ufd, sk);
1015 		}
1016 		break;
1017 
1018 	case SO_ATTACH_REUSEPORT_CBPF:
1019 		ret = -EINVAL;
1020 		if (optlen == sizeof(struct sock_fprog)) {
1021 			struct sock_fprog fprog;
1022 
1023 			ret = -EFAULT;
1024 			if (copy_from_user(&fprog, optval, sizeof(fprog)))
1025 				break;
1026 
1027 			ret = sk_reuseport_attach_filter(&fprog, sk);
1028 		}
1029 		break;
1030 
1031 	case SO_ATTACH_REUSEPORT_EBPF:
1032 		ret = -EINVAL;
1033 		if (optlen == sizeof(u32)) {
1034 			u32 ufd;
1035 
1036 			ret = -EFAULT;
1037 			if (copy_from_user(&ufd, optval, sizeof(ufd)))
1038 				break;
1039 
1040 			ret = sk_reuseport_attach_bpf(ufd, sk);
1041 		}
1042 		break;
1043 
1044 	case SO_DETACH_REUSEPORT_BPF:
1045 		ret = reuseport_detach_prog(sk);
1046 		break;
1047 
1048 	case SO_DETACH_FILTER:
1049 		ret = sk_detach_filter(sk);
1050 		break;
1051 
1052 	case SO_LOCK_FILTER:
1053 		if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
1054 			ret = -EPERM;
1055 		else
1056 			sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
1057 		break;
1058 
1059 	case SO_PASSSEC:
1060 		if (valbool)
1061 			set_bit(SOCK_PASSSEC, &sock->flags);
1062 		else
1063 			clear_bit(SOCK_PASSSEC, &sock->flags);
1064 		break;
1065 	case SO_MARK:
1066 		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1067 			ret = -EPERM;
1068 		} else if (val != sk->sk_mark) {
1069 			sk->sk_mark = val;
1070 			sk_dst_reset(sk);
1071 		}
1072 		break;
1073 
1074 	case SO_RXQ_OVFL:
1075 		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
1076 		break;
1077 
1078 	case SO_WIFI_STATUS:
1079 		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1080 		break;
1081 
1082 	case SO_PEEK_OFF:
1083 		if (sock->ops->set_peek_off)
1084 			ret = sock->ops->set_peek_off(sk, val);
1085 		else
1086 			ret = -EOPNOTSUPP;
1087 		break;
1088 
1089 	case SO_NOFCS:
1090 		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1091 		break;
1092 
1093 	case SO_SELECT_ERR_QUEUE:
1094 		sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1095 		break;
1096 
1097 #ifdef CONFIG_NET_RX_BUSY_POLL
1098 	case SO_BUSY_POLL:
1099 		/* allow unprivileged users to decrease the value */
1100 		if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
1101 			ret = -EPERM;
1102 		else {
1103 			if (val < 0)
1104 				ret = -EINVAL;
1105 			else
1106 				sk->sk_ll_usec = val;
1107 		}
1108 		break;
1109 #endif
1110 
1111 	case SO_MAX_PACING_RATE:
1112 		{
1113 		unsigned long ulval = (val == ~0U) ? ~0UL : val;
1114 
1115 		if (sizeof(ulval) != sizeof(val) &&
1116 		    optlen >= sizeof(ulval) &&
1117 		    get_user(ulval, (unsigned long __user *)optval)) {
1118 			ret = -EFAULT;
1119 			break;
1120 		}
1121 		if (ulval != ~0UL)
1122 			cmpxchg(&sk->sk_pacing_status,
1123 				SK_PACING_NONE,
1124 				SK_PACING_NEEDED);
1125 		sk->sk_max_pacing_rate = ulval;
1126 		sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval);
1127 		break;
1128 		}
1129 	case SO_INCOMING_CPU:
1130 		WRITE_ONCE(sk->sk_incoming_cpu, val);
1131 		break;
1132 
1133 	case SO_CNX_ADVICE:
1134 		if (val == 1)
1135 			dst_negative_advice(sk);
1136 		break;
1137 
1138 	case SO_ZEROCOPY:
1139 		if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) {
1140 			if (!((sk->sk_type == SOCK_STREAM &&
1141 			       sk->sk_protocol == IPPROTO_TCP) ||
1142 			      (sk->sk_type == SOCK_DGRAM &&
1143 			       sk->sk_protocol == IPPROTO_UDP)))
1144 				ret = -ENOTSUPP;
1145 		} else if (sk->sk_family != PF_RDS) {
1146 			ret = -ENOTSUPP;
1147 		}
1148 		if (!ret) {
1149 			if (val < 0 || val > 1)
1150 				ret = -EINVAL;
1151 			else
1152 				sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1153 		}
1154 		break;
1155 
1156 	case SO_TXTIME:
1157 		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1158 			ret = -EPERM;
1159 		} else if (optlen != sizeof(struct sock_txtime)) {
1160 			ret = -EINVAL;
1161 		} else if (copy_from_user(&sk_txtime, optval,
1162 			   sizeof(struct sock_txtime))) {
1163 			ret = -EFAULT;
1164 		} else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) {
1165 			ret = -EINVAL;
1166 		} else {
1167 			sock_valbool_flag(sk, SOCK_TXTIME, true);
1168 			sk->sk_clockid = sk_txtime.clockid;
1169 			sk->sk_txtime_deadline_mode =
1170 				!!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE);
1171 			sk->sk_txtime_report_errors =
1172 				!!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS);
1173 		}
1174 		break;
1175 
1176 	case SO_BINDTOIFINDEX:
1177 		ret = sock_setbindtodevice_locked(sk, val);
1178 		break;
1179 
1180 	default:
1181 		ret = -ENOPROTOOPT;
1182 		break;
1183 	}
1184 	release_sock(sk);
1185 	return ret;
1186 }
1187 EXPORT_SYMBOL(sock_setsockopt);
1188 
1189 
cred_to_ucred(struct pid * pid,const struct cred * cred,struct ucred * ucred)1190 static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1191 			  struct ucred *ucred)
1192 {
1193 	ucred->pid = pid_vnr(pid);
1194 	ucred->uid = ucred->gid = -1;
1195 	if (cred) {
1196 		struct user_namespace *current_ns = current_user_ns();
1197 
1198 		ucred->uid = from_kuid_munged(current_ns, cred->euid);
1199 		ucred->gid = from_kgid_munged(current_ns, cred->egid);
1200 	}
1201 }
1202 
groups_to_user(gid_t __user * dst,const struct group_info * src)1203 static int groups_to_user(gid_t __user *dst, const struct group_info *src)
1204 {
1205 	struct user_namespace *user_ns = current_user_ns();
1206 	int i;
1207 
1208 	for (i = 0; i < src->ngroups; i++)
1209 		if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i))
1210 			return -EFAULT;
1211 
1212 	return 0;
1213 }
1214 
sock_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)1215 int sock_getsockopt(struct socket *sock, int level, int optname,
1216 		    char __user *optval, int __user *optlen)
1217 {
1218 	struct sock *sk = sock->sk;
1219 
1220 	union {
1221 		int val;
1222 		u64 val64;
1223 		unsigned long ulval;
1224 		struct linger ling;
1225 		struct old_timeval32 tm32;
1226 		struct __kernel_old_timeval tm;
1227 		struct  __kernel_sock_timeval stm;
1228 		struct sock_txtime txtime;
1229 	} v;
1230 
1231 	int lv = sizeof(int);
1232 	int len;
1233 
1234 	if (get_user(len, optlen))
1235 		return -EFAULT;
1236 	if (len < 0)
1237 		return -EINVAL;
1238 
1239 	memset(&v, 0, sizeof(v));
1240 
1241 	switch (optname) {
1242 	case SO_DEBUG:
1243 		v.val = sock_flag(sk, SOCK_DBG);
1244 		break;
1245 
1246 	case SO_DONTROUTE:
1247 		v.val = sock_flag(sk, SOCK_LOCALROUTE);
1248 		break;
1249 
1250 	case SO_BROADCAST:
1251 		v.val = sock_flag(sk, SOCK_BROADCAST);
1252 		break;
1253 
1254 	case SO_SNDBUF:
1255 		v.val = sk->sk_sndbuf;
1256 		break;
1257 
1258 	case SO_RCVBUF:
1259 		v.val = sk->sk_rcvbuf;
1260 		break;
1261 
1262 	case SO_REUSEADDR:
1263 		v.val = sk->sk_reuse;
1264 		break;
1265 
1266 	case SO_REUSEPORT:
1267 		v.val = sk->sk_reuseport;
1268 		break;
1269 
1270 	case SO_KEEPALIVE:
1271 		v.val = sock_flag(sk, SOCK_KEEPOPEN);
1272 		break;
1273 
1274 	case SO_TYPE:
1275 		v.val = sk->sk_type;
1276 		break;
1277 
1278 	case SO_PROTOCOL:
1279 		v.val = sk->sk_protocol;
1280 		break;
1281 
1282 	case SO_DOMAIN:
1283 		v.val = sk->sk_family;
1284 		break;
1285 
1286 	case SO_ERROR:
1287 		v.val = -sock_error(sk);
1288 		if (v.val == 0)
1289 			v.val = xchg(&sk->sk_err_soft, 0);
1290 		break;
1291 
1292 	case SO_OOBINLINE:
1293 		v.val = sock_flag(sk, SOCK_URGINLINE);
1294 		break;
1295 
1296 	case SO_NO_CHECK:
1297 		v.val = sk->sk_no_check_tx;
1298 		break;
1299 
1300 	case SO_PRIORITY:
1301 		v.val = sk->sk_priority;
1302 		break;
1303 
1304 	case SO_LINGER:
1305 		lv		= sizeof(v.ling);
1306 		v.ling.l_onoff	= sock_flag(sk, SOCK_LINGER);
1307 		v.ling.l_linger	= sk->sk_lingertime / HZ;
1308 		break;
1309 
1310 	case SO_BSDCOMPAT:
1311 		sock_warn_obsolete_bsdism("getsockopt");
1312 		break;
1313 
1314 	case SO_TIMESTAMP_OLD:
1315 		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1316 				!sock_flag(sk, SOCK_TSTAMP_NEW) &&
1317 				!sock_flag(sk, SOCK_RCVTSTAMPNS);
1318 		break;
1319 
1320 	case SO_TIMESTAMPNS_OLD:
1321 		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW);
1322 		break;
1323 
1324 	case SO_TIMESTAMP_NEW:
1325 		v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW);
1326 		break;
1327 
1328 	case SO_TIMESTAMPNS_NEW:
1329 		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW);
1330 		break;
1331 
1332 	case SO_TIMESTAMPING_OLD:
1333 		v.val = sk->sk_tsflags;
1334 		break;
1335 
1336 	case SO_RCVTIMEO_OLD:
1337 	case SO_RCVTIMEO_NEW:
1338 		lv = sock_get_timeout(sk->sk_rcvtimeo, &v, SO_RCVTIMEO_OLD == optname);
1339 		break;
1340 
1341 	case SO_SNDTIMEO_OLD:
1342 	case SO_SNDTIMEO_NEW:
1343 		lv = sock_get_timeout(sk->sk_sndtimeo, &v, SO_SNDTIMEO_OLD == optname);
1344 		break;
1345 
1346 	case SO_RCVLOWAT:
1347 		v.val = sk->sk_rcvlowat;
1348 		break;
1349 
1350 	case SO_SNDLOWAT:
1351 		v.val = 1;
1352 		break;
1353 
1354 	case SO_PASSCRED:
1355 		v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1356 		break;
1357 
1358 	case SO_PEERCRED:
1359 	{
1360 		struct ucred peercred;
1361 		if (len > sizeof(peercred))
1362 			len = sizeof(peercred);
1363 		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1364 		if (copy_to_user(optval, &peercred, len))
1365 			return -EFAULT;
1366 		goto lenout;
1367 	}
1368 
1369 	case SO_PEERGROUPS:
1370 	{
1371 		int ret, n;
1372 
1373 		if (!sk->sk_peer_cred)
1374 			return -ENODATA;
1375 
1376 		n = sk->sk_peer_cred->group_info->ngroups;
1377 		if (len < n * sizeof(gid_t)) {
1378 			len = n * sizeof(gid_t);
1379 			return put_user(len, optlen) ? -EFAULT : -ERANGE;
1380 		}
1381 		len = n * sizeof(gid_t);
1382 
1383 		ret = groups_to_user((gid_t __user *)optval,
1384 				     sk->sk_peer_cred->group_info);
1385 		if (ret)
1386 			return ret;
1387 		goto lenout;
1388 	}
1389 
1390 	case SO_PEERNAME:
1391 	{
1392 		char address[128];
1393 
1394 		lv = sock->ops->getname(sock, (struct sockaddr *)address, 2);
1395 		if (lv < 0)
1396 			return -ENOTCONN;
1397 		if (lv < len)
1398 			return -EINVAL;
1399 		if (copy_to_user(optval, address, len))
1400 			return -EFAULT;
1401 		goto lenout;
1402 	}
1403 
1404 	/* Dubious BSD thing... Probably nobody even uses it, but
1405 	 * the UNIX standard wants it for whatever reason... -DaveM
1406 	 */
1407 	case SO_ACCEPTCONN:
1408 		v.val = sk->sk_state == TCP_LISTEN;
1409 		break;
1410 
1411 	case SO_PASSSEC:
1412 		v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1413 		break;
1414 
1415 	case SO_PEERSEC:
1416 		return security_socket_getpeersec_stream(sock, optval, optlen, len);
1417 
1418 	case SO_MARK:
1419 		v.val = sk->sk_mark;
1420 		break;
1421 
1422 	case SO_RXQ_OVFL:
1423 		v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1424 		break;
1425 
1426 	case SO_WIFI_STATUS:
1427 		v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1428 		break;
1429 
1430 	case SO_PEEK_OFF:
1431 		if (!sock->ops->set_peek_off)
1432 			return -EOPNOTSUPP;
1433 
1434 		v.val = sk->sk_peek_off;
1435 		break;
1436 	case SO_NOFCS:
1437 		v.val = sock_flag(sk, SOCK_NOFCS);
1438 		break;
1439 
1440 	case SO_BINDTODEVICE:
1441 		return sock_getbindtodevice(sk, optval, optlen, len);
1442 
1443 	case SO_GET_FILTER:
1444 		len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1445 		if (len < 0)
1446 			return len;
1447 
1448 		goto lenout;
1449 
1450 	case SO_LOCK_FILTER:
1451 		v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1452 		break;
1453 
1454 	case SO_BPF_EXTENSIONS:
1455 		v.val = bpf_tell_extensions();
1456 		break;
1457 
1458 	case SO_SELECT_ERR_QUEUE:
1459 		v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1460 		break;
1461 
1462 #ifdef CONFIG_NET_RX_BUSY_POLL
1463 	case SO_BUSY_POLL:
1464 		v.val = sk->sk_ll_usec;
1465 		break;
1466 #endif
1467 
1468 	case SO_MAX_PACING_RATE:
1469 		if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) {
1470 			lv = sizeof(v.ulval);
1471 			v.ulval = sk->sk_max_pacing_rate;
1472 		} else {
1473 			/* 32bit version */
1474 			v.val = min_t(unsigned long, sk->sk_max_pacing_rate, ~0U);
1475 		}
1476 		break;
1477 
1478 	case SO_INCOMING_CPU:
1479 		v.val = READ_ONCE(sk->sk_incoming_cpu);
1480 		break;
1481 
1482 	case SO_MEMINFO:
1483 	{
1484 		u32 meminfo[SK_MEMINFO_VARS];
1485 
1486 		sk_get_meminfo(sk, meminfo);
1487 
1488 		len = min_t(unsigned int, len, sizeof(meminfo));
1489 		if (copy_to_user(optval, &meminfo, len))
1490 			return -EFAULT;
1491 
1492 		goto lenout;
1493 	}
1494 
1495 #ifdef CONFIG_NET_RX_BUSY_POLL
1496 	case SO_INCOMING_NAPI_ID:
1497 		v.val = READ_ONCE(sk->sk_napi_id);
1498 
1499 		/* aggregate non-NAPI IDs down to 0 */
1500 		if (v.val < MIN_NAPI_ID)
1501 			v.val = 0;
1502 
1503 		break;
1504 #endif
1505 
1506 	case SO_COOKIE:
1507 		lv = sizeof(u64);
1508 		if (len < lv)
1509 			return -EINVAL;
1510 		v.val64 = sock_gen_cookie(sk);
1511 		break;
1512 
1513 	case SO_ZEROCOPY:
1514 		v.val = sock_flag(sk, SOCK_ZEROCOPY);
1515 		break;
1516 
1517 	case SO_TXTIME:
1518 		lv = sizeof(v.txtime);
1519 		v.txtime.clockid = sk->sk_clockid;
1520 		v.txtime.flags |= sk->sk_txtime_deadline_mode ?
1521 				  SOF_TXTIME_DEADLINE_MODE : 0;
1522 		v.txtime.flags |= sk->sk_txtime_report_errors ?
1523 				  SOF_TXTIME_REPORT_ERRORS : 0;
1524 		break;
1525 
1526 	case SO_BINDTOIFINDEX:
1527 		v.val = sk->sk_bound_dev_if;
1528 		break;
1529 
1530 	default:
1531 		/* We implement the SO_SNDLOWAT etc to not be settable
1532 		 * (1003.1g 7).
1533 		 */
1534 		return -ENOPROTOOPT;
1535 	}
1536 
1537 	if (len > lv)
1538 		len = lv;
1539 	if (copy_to_user(optval, &v, len))
1540 		return -EFAULT;
1541 lenout:
1542 	if (put_user(len, optlen))
1543 		return -EFAULT;
1544 	return 0;
1545 }
1546 
1547 /*
1548  * Initialize an sk_lock.
1549  *
1550  * (We also register the sk_lock with the lock validator.)
1551  */
sock_lock_init(struct sock * sk)1552 static inline void sock_lock_init(struct sock *sk)
1553 {
1554 	if (sk->sk_kern_sock)
1555 		sock_lock_init_class_and_name(
1556 			sk,
1557 			af_family_kern_slock_key_strings[sk->sk_family],
1558 			af_family_kern_slock_keys + sk->sk_family,
1559 			af_family_kern_key_strings[sk->sk_family],
1560 			af_family_kern_keys + sk->sk_family);
1561 	else
1562 		sock_lock_init_class_and_name(
1563 			sk,
1564 			af_family_slock_key_strings[sk->sk_family],
1565 			af_family_slock_keys + sk->sk_family,
1566 			af_family_key_strings[sk->sk_family],
1567 			af_family_keys + sk->sk_family);
1568 }
1569 
1570 /*
1571  * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1572  * even temporarly, because of RCU lookups. sk_node should also be left as is.
1573  * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1574  */
sock_copy(struct sock * nsk,const struct sock * osk)1575 static void sock_copy(struct sock *nsk, const struct sock *osk)
1576 {
1577 #ifdef CONFIG_SECURITY_NETWORK
1578 	void *sptr = nsk->sk_security;
1579 #endif
1580 	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1581 
1582 	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1583 	       osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1584 
1585 #ifdef CONFIG_SECURITY_NETWORK
1586 	nsk->sk_security = sptr;
1587 	security_sk_clone(osk, nsk);
1588 #endif
1589 }
1590 
sk_prot_alloc(struct proto * prot,gfp_t priority,int family)1591 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1592 		int family)
1593 {
1594 	struct sock *sk;
1595 	struct kmem_cache *slab;
1596 
1597 	slab = prot->slab;
1598 	if (slab != NULL) {
1599 		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1600 		if (!sk)
1601 			return sk;
1602 		if (want_init_on_alloc(priority))
1603 			sk_prot_clear_nulls(sk, prot->obj_size);
1604 	} else
1605 		sk = kmalloc(prot->obj_size, priority);
1606 
1607 	if (sk != NULL) {
1608 		if (security_sk_alloc(sk, family, priority))
1609 			goto out_free;
1610 
1611 		if (!try_module_get(prot->owner))
1612 			goto out_free_sec;
1613 		sk_tx_queue_clear(sk);
1614 	}
1615 
1616 	return sk;
1617 
1618 out_free_sec:
1619 	security_sk_free(sk);
1620 out_free:
1621 	if (slab != NULL)
1622 		kmem_cache_free(slab, sk);
1623 	else
1624 		kfree(sk);
1625 	return NULL;
1626 }
1627 
sk_prot_free(struct proto * prot,struct sock * sk)1628 static void sk_prot_free(struct proto *prot, struct sock *sk)
1629 {
1630 	struct kmem_cache *slab;
1631 	struct module *owner;
1632 
1633 	owner = prot->owner;
1634 	slab = prot->slab;
1635 
1636 	cgroup_sk_free(&sk->sk_cgrp_data);
1637 	mem_cgroup_sk_free(sk);
1638 	security_sk_free(sk);
1639 	if (slab != NULL)
1640 		kmem_cache_free(slab, sk);
1641 	else
1642 		kfree(sk);
1643 	module_put(owner);
1644 }
1645 
1646 /**
1647  *	sk_alloc - All socket objects are allocated here
1648  *	@net: the applicable net namespace
1649  *	@family: protocol family
1650  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1651  *	@prot: struct proto associated with this new sock instance
1652  *	@kern: is this to be a kernel socket?
1653  */
sk_alloc(struct net * net,int family,gfp_t priority,struct proto * prot,int kern)1654 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1655 		      struct proto *prot, int kern)
1656 {
1657 	struct sock *sk;
1658 
1659 	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1660 	if (sk) {
1661 		sk->sk_family = family;
1662 		/*
1663 		 * See comment in struct sock definition to understand
1664 		 * why we need sk_prot_creator -acme
1665 		 */
1666 		sk->sk_prot = sk->sk_prot_creator = prot;
1667 		sk->sk_kern_sock = kern;
1668 		sock_lock_init(sk);
1669 		sk->sk_net_refcnt = kern ? 0 : 1;
1670 		if (likely(sk->sk_net_refcnt)) {
1671 			get_net(net);
1672 			sock_inuse_add(net, 1);
1673 		}
1674 
1675 		sock_net_set(sk, net);
1676 		refcount_set(&sk->sk_wmem_alloc, 1);
1677 
1678 		mem_cgroup_sk_alloc(sk);
1679 		cgroup_sk_alloc(&sk->sk_cgrp_data);
1680 		sock_update_classid(&sk->sk_cgrp_data);
1681 		sock_update_netprioidx(&sk->sk_cgrp_data);
1682 	}
1683 
1684 	return sk;
1685 }
1686 EXPORT_SYMBOL(sk_alloc);
1687 
1688 /* Sockets having SOCK_RCU_FREE will call this function after one RCU
1689  * grace period. This is the case for UDP sockets and TCP listeners.
1690  */
__sk_destruct(struct rcu_head * head)1691 static void __sk_destruct(struct rcu_head *head)
1692 {
1693 	struct sock *sk = container_of(head, struct sock, sk_rcu);
1694 	struct sk_filter *filter;
1695 
1696 	if (sk->sk_destruct)
1697 		sk->sk_destruct(sk);
1698 
1699 	filter = rcu_dereference_check(sk->sk_filter,
1700 				       refcount_read(&sk->sk_wmem_alloc) == 0);
1701 	if (filter) {
1702 		sk_filter_uncharge(sk, filter);
1703 		RCU_INIT_POINTER(sk->sk_filter, NULL);
1704 	}
1705 
1706 	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1707 
1708 #ifdef CONFIG_BPF_SYSCALL
1709 	bpf_sk_storage_free(sk);
1710 #endif
1711 
1712 	if (atomic_read(&sk->sk_omem_alloc))
1713 		pr_debug("%s: optmem leakage (%d bytes) detected\n",
1714 			 __func__, atomic_read(&sk->sk_omem_alloc));
1715 
1716 	if (sk->sk_frag.page) {
1717 		put_page(sk->sk_frag.page);
1718 		sk->sk_frag.page = NULL;
1719 	}
1720 
1721 	if (sk->sk_peer_cred)
1722 		put_cred(sk->sk_peer_cred);
1723 	put_pid(sk->sk_peer_pid);
1724 	if (likely(sk->sk_net_refcnt))
1725 		put_net(sock_net(sk));
1726 	sk_prot_free(sk->sk_prot_creator, sk);
1727 }
1728 
sk_destruct(struct sock * sk)1729 void sk_destruct(struct sock *sk)
1730 {
1731 	bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE);
1732 
1733 	if (rcu_access_pointer(sk->sk_reuseport_cb)) {
1734 		reuseport_detach_sock(sk);
1735 		use_call_rcu = true;
1736 	}
1737 
1738 	if (use_call_rcu)
1739 		call_rcu(&sk->sk_rcu, __sk_destruct);
1740 	else
1741 		__sk_destruct(&sk->sk_rcu);
1742 }
1743 
__sk_free(struct sock * sk)1744 static void __sk_free(struct sock *sk)
1745 {
1746 	if (likely(sk->sk_net_refcnt))
1747 		sock_inuse_add(sock_net(sk), -1);
1748 
1749 	if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
1750 		sock_diag_broadcast_destroy(sk);
1751 	else
1752 		sk_destruct(sk);
1753 }
1754 
sk_free(struct sock * sk)1755 void sk_free(struct sock *sk)
1756 {
1757 	/*
1758 	 * We subtract one from sk_wmem_alloc and can know if
1759 	 * some packets are still in some tx queue.
1760 	 * If not null, sock_wfree() will call __sk_free(sk) later
1761 	 */
1762 	if (refcount_dec_and_test(&sk->sk_wmem_alloc))
1763 		__sk_free(sk);
1764 }
1765 EXPORT_SYMBOL(sk_free);
1766 
sk_init_common(struct sock * sk)1767 static void sk_init_common(struct sock *sk)
1768 {
1769 	skb_queue_head_init(&sk->sk_receive_queue);
1770 	skb_queue_head_init(&sk->sk_write_queue);
1771 	skb_queue_head_init(&sk->sk_error_queue);
1772 
1773 	rwlock_init(&sk->sk_callback_lock);
1774 	lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
1775 			af_rlock_keys + sk->sk_family,
1776 			af_family_rlock_key_strings[sk->sk_family]);
1777 	lockdep_set_class_and_name(&sk->sk_write_queue.lock,
1778 			af_wlock_keys + sk->sk_family,
1779 			af_family_wlock_key_strings[sk->sk_family]);
1780 	lockdep_set_class_and_name(&sk->sk_error_queue.lock,
1781 			af_elock_keys + sk->sk_family,
1782 			af_family_elock_key_strings[sk->sk_family]);
1783 	lockdep_set_class_and_name(&sk->sk_callback_lock,
1784 			af_callback_keys + sk->sk_family,
1785 			af_family_clock_key_strings[sk->sk_family]);
1786 }
1787 
1788 /**
1789  *	sk_clone_lock - clone a socket, and lock its clone
1790  *	@sk: the socket to clone
1791  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1792  *
1793  *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1794  */
sk_clone_lock(const struct sock * sk,const gfp_t priority)1795 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1796 {
1797 	struct sock *newsk;
1798 	bool is_charged = true;
1799 
1800 	newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1801 	if (newsk != NULL) {
1802 		struct sk_filter *filter;
1803 
1804 		sock_copy(newsk, sk);
1805 
1806 		newsk->sk_prot_creator = sk->sk_prot;
1807 
1808 		/* SANITY */
1809 		if (likely(newsk->sk_net_refcnt))
1810 			get_net(sock_net(newsk));
1811 		sk_node_init(&newsk->sk_node);
1812 		sock_lock_init(newsk);
1813 		bh_lock_sock(newsk);
1814 		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1815 		newsk->sk_backlog.len = 0;
1816 
1817 		atomic_set(&newsk->sk_rmem_alloc, 0);
1818 		/*
1819 		 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1820 		 */
1821 		refcount_set(&newsk->sk_wmem_alloc, 1);
1822 		atomic_set(&newsk->sk_omem_alloc, 0);
1823 		sk_init_common(newsk);
1824 
1825 		newsk->sk_dst_cache	= NULL;
1826 		newsk->sk_dst_pending_confirm = 0;
1827 		newsk->sk_wmem_queued	= 0;
1828 		newsk->sk_forward_alloc = 0;
1829 		atomic_set(&newsk->sk_drops, 0);
1830 		newsk->sk_send_head	= NULL;
1831 		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1832 		atomic_set(&newsk->sk_zckey, 0);
1833 
1834 		sock_reset_flag(newsk, SOCK_DONE);
1835 		mem_cgroup_sk_alloc(newsk);
1836 		cgroup_sk_alloc(&newsk->sk_cgrp_data);
1837 
1838 		rcu_read_lock();
1839 		filter = rcu_dereference(sk->sk_filter);
1840 		if (filter != NULL)
1841 			/* though it's an empty new sock, the charging may fail
1842 			 * if sysctl_optmem_max was changed between creation of
1843 			 * original socket and cloning
1844 			 */
1845 			is_charged = sk_filter_charge(newsk, filter);
1846 		RCU_INIT_POINTER(newsk->sk_filter, filter);
1847 		rcu_read_unlock();
1848 
1849 		if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
1850 			/* We need to make sure that we don't uncharge the new
1851 			 * socket if we couldn't charge it in the first place
1852 			 * as otherwise we uncharge the parent's filter.
1853 			 */
1854 			if (!is_charged)
1855 				RCU_INIT_POINTER(newsk->sk_filter, NULL);
1856 			sk_free_unlock_clone(newsk);
1857 			newsk = NULL;
1858 			goto out;
1859 		}
1860 		RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
1861 
1862 		if (bpf_sk_storage_clone(sk, newsk)) {
1863 			sk_free_unlock_clone(newsk);
1864 			newsk = NULL;
1865 			goto out;
1866 		}
1867 
1868 		newsk->sk_err	   = 0;
1869 		newsk->sk_err_soft = 0;
1870 		newsk->sk_priority = 0;
1871 		newsk->sk_incoming_cpu = raw_smp_processor_id();
1872 		if (likely(newsk->sk_net_refcnt))
1873 			sock_inuse_add(sock_net(newsk), 1);
1874 
1875 		/*
1876 		 * Before updating sk_refcnt, we must commit prior changes to memory
1877 		 * (Documentation/RCU/rculist_nulls.txt for details)
1878 		 */
1879 		smp_wmb();
1880 		refcount_set(&newsk->sk_refcnt, 2);
1881 
1882 		/*
1883 		 * Increment the counter in the same struct proto as the master
1884 		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1885 		 * is the same as sk->sk_prot->socks, as this field was copied
1886 		 * with memcpy).
1887 		 *
1888 		 * This _changes_ the previous behaviour, where
1889 		 * tcp_create_openreq_child always was incrementing the
1890 		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1891 		 * to be taken into account in all callers. -acme
1892 		 */
1893 		sk_refcnt_debug_inc(newsk);
1894 		sk_set_socket(newsk, NULL);
1895 		RCU_INIT_POINTER(newsk->sk_wq, NULL);
1896 
1897 		if (newsk->sk_prot->sockets_allocated)
1898 			sk_sockets_allocated_inc(newsk);
1899 
1900 		if (sock_needs_netstamp(sk) &&
1901 		    newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1902 			net_enable_timestamp();
1903 	}
1904 out:
1905 	return newsk;
1906 }
1907 EXPORT_SYMBOL_GPL(sk_clone_lock);
1908 
sk_free_unlock_clone(struct sock * sk)1909 void sk_free_unlock_clone(struct sock *sk)
1910 {
1911 	/* It is still raw copy of parent, so invalidate
1912 	 * destructor and make plain sk_free() */
1913 	sk->sk_destruct = NULL;
1914 	bh_unlock_sock(sk);
1915 	sk_free(sk);
1916 }
1917 EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
1918 
sk_setup_caps(struct sock * sk,struct dst_entry * dst)1919 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1920 {
1921 	u32 max_segs = 1;
1922 
1923 	sk_dst_set(sk, dst);
1924 	sk->sk_route_caps = dst->dev->features | sk->sk_route_forced_caps;
1925 	if (sk->sk_route_caps & NETIF_F_GSO)
1926 		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1927 	sk->sk_route_caps &= ~sk->sk_route_nocaps;
1928 	if (sk_can_gso(sk)) {
1929 		if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
1930 			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1931 		} else {
1932 			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1933 			sk->sk_gso_max_size = dst->dev->gso_max_size;
1934 			max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
1935 		}
1936 	}
1937 	sk->sk_gso_max_segs = max_segs;
1938 }
1939 EXPORT_SYMBOL_GPL(sk_setup_caps);
1940 
1941 /*
1942  *	Simple resource managers for sockets.
1943  */
1944 
1945 
1946 /*
1947  * Write buffer destructor automatically called from kfree_skb.
1948  */
sock_wfree(struct sk_buff * skb)1949 void sock_wfree(struct sk_buff *skb)
1950 {
1951 	struct sock *sk = skb->sk;
1952 	unsigned int len = skb->truesize;
1953 
1954 	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1955 		/*
1956 		 * Keep a reference on sk_wmem_alloc, this will be released
1957 		 * after sk_write_space() call
1958 		 */
1959 		WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
1960 		sk->sk_write_space(sk);
1961 		len = 1;
1962 	}
1963 	/*
1964 	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1965 	 * could not do because of in-flight packets
1966 	 */
1967 	if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
1968 		__sk_free(sk);
1969 }
1970 EXPORT_SYMBOL(sock_wfree);
1971 
1972 /* This variant of sock_wfree() is used by TCP,
1973  * since it sets SOCK_USE_WRITE_QUEUE.
1974  */
__sock_wfree(struct sk_buff * skb)1975 void __sock_wfree(struct sk_buff *skb)
1976 {
1977 	struct sock *sk = skb->sk;
1978 
1979 	if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
1980 		__sk_free(sk);
1981 }
1982 
skb_set_owner_w(struct sk_buff * skb,struct sock * sk)1983 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1984 {
1985 	skb_orphan(skb);
1986 	skb->sk = sk;
1987 #ifdef CONFIG_INET
1988 	if (unlikely(!sk_fullsock(sk))) {
1989 		skb->destructor = sock_edemux;
1990 		sock_hold(sk);
1991 		return;
1992 	}
1993 #endif
1994 	skb->destructor = sock_wfree;
1995 	skb_set_hash_from_sk(skb, sk);
1996 	/*
1997 	 * We used to take a refcount on sk, but following operation
1998 	 * is enough to guarantee sk_free() wont free this sock until
1999 	 * all in-flight packets are completed
2000 	 */
2001 	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
2002 }
2003 EXPORT_SYMBOL(skb_set_owner_w);
2004 
can_skb_orphan_partial(const struct sk_buff * skb)2005 static bool can_skb_orphan_partial(const struct sk_buff *skb)
2006 {
2007 #ifdef CONFIG_TLS_DEVICE
2008 	/* Drivers depend on in-order delivery for crypto offload,
2009 	 * partial orphan breaks out-of-order-OK logic.
2010 	 */
2011 	if (skb->decrypted)
2012 		return false;
2013 #endif
2014 	return (skb->destructor == sock_wfree ||
2015 		(IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree));
2016 }
2017 
2018 /* This helper is used by netem, as it can hold packets in its
2019  * delay queue. We want to allow the owner socket to send more
2020  * packets, as if they were already TX completed by a typical driver.
2021  * But we also want to keep skb->sk set because some packet schedulers
2022  * rely on it (sch_fq for example).
2023  */
skb_orphan_partial(struct sk_buff * skb)2024 void skb_orphan_partial(struct sk_buff *skb)
2025 {
2026 	if (skb_is_tcp_pure_ack(skb))
2027 		return;
2028 
2029 	if (can_skb_orphan_partial(skb)) {
2030 		struct sock *sk = skb->sk;
2031 
2032 		if (refcount_inc_not_zero(&sk->sk_refcnt)) {
2033 			WARN_ON(refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc));
2034 			skb->destructor = sock_efree;
2035 		}
2036 	} else {
2037 		skb_orphan(skb);
2038 	}
2039 }
2040 EXPORT_SYMBOL(skb_orphan_partial);
2041 
2042 /*
2043  * Read buffer destructor automatically called from kfree_skb.
2044  */
sock_rfree(struct sk_buff * skb)2045 void sock_rfree(struct sk_buff *skb)
2046 {
2047 	struct sock *sk = skb->sk;
2048 	unsigned int len = skb->truesize;
2049 
2050 	atomic_sub(len, &sk->sk_rmem_alloc);
2051 	sk_mem_uncharge(sk, len);
2052 }
2053 EXPORT_SYMBOL(sock_rfree);
2054 
2055 /*
2056  * Buffer destructor for skbs that are not used directly in read or write
2057  * path, e.g. for error handler skbs. Automatically called from kfree_skb.
2058  */
sock_efree(struct sk_buff * skb)2059 void sock_efree(struct sk_buff *skb)
2060 {
2061 	sock_put(skb->sk);
2062 }
2063 EXPORT_SYMBOL(sock_efree);
2064 
sock_i_uid(struct sock * sk)2065 kuid_t sock_i_uid(struct sock *sk)
2066 {
2067 	kuid_t uid;
2068 
2069 	read_lock_bh(&sk->sk_callback_lock);
2070 	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
2071 	read_unlock_bh(&sk->sk_callback_lock);
2072 	return uid;
2073 }
2074 EXPORT_SYMBOL(sock_i_uid);
2075 
sock_i_ino(struct sock * sk)2076 unsigned long sock_i_ino(struct sock *sk)
2077 {
2078 	unsigned long ino;
2079 
2080 	read_lock_bh(&sk->sk_callback_lock);
2081 	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
2082 	read_unlock_bh(&sk->sk_callback_lock);
2083 	return ino;
2084 }
2085 EXPORT_SYMBOL(sock_i_ino);
2086 
2087 /*
2088  * Allocate a skb from the socket's send buffer.
2089  */
sock_wmalloc(struct sock * sk,unsigned long size,int force,gfp_t priority)2090 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
2091 			     gfp_t priority)
2092 {
2093 	if (force ||
2094 	    refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) {
2095 		struct sk_buff *skb = alloc_skb(size, priority);
2096 
2097 		if (skb) {
2098 			skb_set_owner_w(skb, sk);
2099 			return skb;
2100 		}
2101 	}
2102 	return NULL;
2103 }
2104 EXPORT_SYMBOL(sock_wmalloc);
2105 
sock_ofree(struct sk_buff * skb)2106 static void sock_ofree(struct sk_buff *skb)
2107 {
2108 	struct sock *sk = skb->sk;
2109 
2110 	atomic_sub(skb->truesize, &sk->sk_omem_alloc);
2111 }
2112 
sock_omalloc(struct sock * sk,unsigned long size,gfp_t priority)2113 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
2114 			     gfp_t priority)
2115 {
2116 	struct sk_buff *skb;
2117 
2118 	/* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
2119 	if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
2120 	    sysctl_optmem_max)
2121 		return NULL;
2122 
2123 	skb = alloc_skb(size, priority);
2124 	if (!skb)
2125 		return NULL;
2126 
2127 	atomic_add(skb->truesize, &sk->sk_omem_alloc);
2128 	skb->sk = sk;
2129 	skb->destructor = sock_ofree;
2130 	return skb;
2131 }
2132 
2133 /*
2134  * Allocate a memory block from the socket's option memory buffer.
2135  */
sock_kmalloc(struct sock * sk,int size,gfp_t priority)2136 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
2137 {
2138 	if ((unsigned int)size <= sysctl_optmem_max &&
2139 	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
2140 		void *mem;
2141 		/* First do the add, to avoid the race if kmalloc
2142 		 * might sleep.
2143 		 */
2144 		atomic_add(size, &sk->sk_omem_alloc);
2145 		mem = kmalloc(size, priority);
2146 		if (mem)
2147 			return mem;
2148 		atomic_sub(size, &sk->sk_omem_alloc);
2149 	}
2150 	return NULL;
2151 }
2152 EXPORT_SYMBOL(sock_kmalloc);
2153 
2154 /* Free an option memory block. Note, we actually want the inline
2155  * here as this allows gcc to detect the nullify and fold away the
2156  * condition entirely.
2157  */
__sock_kfree_s(struct sock * sk,void * mem,int size,const bool nullify)2158 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
2159 				  const bool nullify)
2160 {
2161 	if (WARN_ON_ONCE(!mem))
2162 		return;
2163 	if (nullify)
2164 		kzfree(mem);
2165 	else
2166 		kfree(mem);
2167 	atomic_sub(size, &sk->sk_omem_alloc);
2168 }
2169 
sock_kfree_s(struct sock * sk,void * mem,int size)2170 void sock_kfree_s(struct sock *sk, void *mem, int size)
2171 {
2172 	__sock_kfree_s(sk, mem, size, false);
2173 }
2174 EXPORT_SYMBOL(sock_kfree_s);
2175 
sock_kzfree_s(struct sock * sk,void * mem,int size)2176 void sock_kzfree_s(struct sock *sk, void *mem, int size)
2177 {
2178 	__sock_kfree_s(sk, mem, size, true);
2179 }
2180 EXPORT_SYMBOL(sock_kzfree_s);
2181 
2182 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2183    I think, these locks should be removed for datagram sockets.
2184  */
sock_wait_for_wmem(struct sock * sk,long timeo)2185 static long sock_wait_for_wmem(struct sock *sk, long timeo)
2186 {
2187 	DEFINE_WAIT(wait);
2188 
2189 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2190 	for (;;) {
2191 		if (!timeo)
2192 			break;
2193 		if (signal_pending(current))
2194 			break;
2195 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2196 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2197 		if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf))
2198 			break;
2199 		if (sk->sk_shutdown & SEND_SHUTDOWN)
2200 			break;
2201 		if (sk->sk_err)
2202 			break;
2203 		timeo = schedule_timeout(timeo);
2204 	}
2205 	finish_wait(sk_sleep(sk), &wait);
2206 	return timeo;
2207 }
2208 
2209 
2210 /*
2211  *	Generic send/receive buffer handlers
2212  */
2213 
sock_alloc_send_pskb(struct sock * sk,unsigned long header_len,unsigned long data_len,int noblock,int * errcode,int max_page_order)2214 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2215 				     unsigned long data_len, int noblock,
2216 				     int *errcode, int max_page_order)
2217 {
2218 	struct sk_buff *skb;
2219 	long timeo;
2220 	int err;
2221 
2222 	timeo = sock_sndtimeo(sk, noblock);
2223 	for (;;) {
2224 		err = sock_error(sk);
2225 		if (err != 0)
2226 			goto failure;
2227 
2228 		err = -EPIPE;
2229 		if (sk->sk_shutdown & SEND_SHUTDOWN)
2230 			goto failure;
2231 
2232 		if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf))
2233 			break;
2234 
2235 		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2236 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2237 		err = -EAGAIN;
2238 		if (!timeo)
2239 			goto failure;
2240 		if (signal_pending(current))
2241 			goto interrupted;
2242 		timeo = sock_wait_for_wmem(sk, timeo);
2243 	}
2244 	skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2245 				   errcode, sk->sk_allocation);
2246 	if (skb)
2247 		skb_set_owner_w(skb, sk);
2248 	return skb;
2249 
2250 interrupted:
2251 	err = sock_intr_errno(timeo);
2252 failure:
2253 	*errcode = err;
2254 	return NULL;
2255 }
2256 EXPORT_SYMBOL(sock_alloc_send_pskb);
2257 
sock_alloc_send_skb(struct sock * sk,unsigned long size,int noblock,int * errcode)2258 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
2259 				    int noblock, int *errcode)
2260 {
2261 	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
2262 }
2263 EXPORT_SYMBOL(sock_alloc_send_skb);
2264 
__sock_cmsg_send(struct sock * sk,struct msghdr * msg,struct cmsghdr * cmsg,struct sockcm_cookie * sockc)2265 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
2266 		     struct sockcm_cookie *sockc)
2267 {
2268 	u32 tsflags;
2269 
2270 	switch (cmsg->cmsg_type) {
2271 	case SO_MARK:
2272 		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2273 			return -EPERM;
2274 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2275 			return -EINVAL;
2276 		sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2277 		break;
2278 	case SO_TIMESTAMPING_OLD:
2279 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2280 			return -EINVAL;
2281 
2282 		tsflags = *(u32 *)CMSG_DATA(cmsg);
2283 		if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2284 			return -EINVAL;
2285 
2286 		sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2287 		sockc->tsflags |= tsflags;
2288 		break;
2289 	case SCM_TXTIME:
2290 		if (!sock_flag(sk, SOCK_TXTIME))
2291 			return -EINVAL;
2292 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64)))
2293 			return -EINVAL;
2294 		sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg));
2295 		break;
2296 	/* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2297 	case SCM_RIGHTS:
2298 	case SCM_CREDENTIALS:
2299 		break;
2300 	default:
2301 		return -EINVAL;
2302 	}
2303 	return 0;
2304 }
2305 EXPORT_SYMBOL(__sock_cmsg_send);
2306 
sock_cmsg_send(struct sock * sk,struct msghdr * msg,struct sockcm_cookie * sockc)2307 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2308 		   struct sockcm_cookie *sockc)
2309 {
2310 	struct cmsghdr *cmsg;
2311 	int ret;
2312 
2313 	for_each_cmsghdr(cmsg, msg) {
2314 		if (!CMSG_OK(msg, cmsg))
2315 			return -EINVAL;
2316 		if (cmsg->cmsg_level != SOL_SOCKET)
2317 			continue;
2318 		ret = __sock_cmsg_send(sk, msg, cmsg, sockc);
2319 		if (ret)
2320 			return ret;
2321 	}
2322 	return 0;
2323 }
2324 EXPORT_SYMBOL(sock_cmsg_send);
2325 
sk_enter_memory_pressure(struct sock * sk)2326 static void sk_enter_memory_pressure(struct sock *sk)
2327 {
2328 	if (!sk->sk_prot->enter_memory_pressure)
2329 		return;
2330 
2331 	sk->sk_prot->enter_memory_pressure(sk);
2332 }
2333 
sk_leave_memory_pressure(struct sock * sk)2334 static void sk_leave_memory_pressure(struct sock *sk)
2335 {
2336 	if (sk->sk_prot->leave_memory_pressure) {
2337 		sk->sk_prot->leave_memory_pressure(sk);
2338 	} else {
2339 		unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
2340 
2341 		if (memory_pressure && READ_ONCE(*memory_pressure))
2342 			WRITE_ONCE(*memory_pressure, 0);
2343 	}
2344 }
2345 
2346 /* On 32bit arches, an skb frag is limited to 2^15 */
2347 #define SKB_FRAG_PAGE_ORDER	get_order(32768)
2348 DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2349 
2350 /**
2351  * skb_page_frag_refill - check that a page_frag contains enough room
2352  * @sz: minimum size of the fragment we want to get
2353  * @pfrag: pointer to page_frag
2354  * @gfp: priority for memory allocation
2355  *
2356  * Note: While this allocator tries to use high order pages, there is
2357  * no guarantee that allocations succeed. Therefore, @sz MUST be
2358  * less or equal than PAGE_SIZE.
2359  */
skb_page_frag_refill(unsigned int sz,struct page_frag * pfrag,gfp_t gfp)2360 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
2361 {
2362 	if (pfrag->page) {
2363 		if (page_ref_count(pfrag->page) == 1) {
2364 			pfrag->offset = 0;
2365 			return true;
2366 		}
2367 		if (pfrag->offset + sz <= pfrag->size)
2368 			return true;
2369 		put_page(pfrag->page);
2370 	}
2371 
2372 	pfrag->offset = 0;
2373 	if (SKB_FRAG_PAGE_ORDER &&
2374 	    !static_branch_unlikely(&net_high_order_alloc_disable_key)) {
2375 		/* Avoid direct reclaim but allow kswapd to wake */
2376 		pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2377 					  __GFP_COMP | __GFP_NOWARN |
2378 					  __GFP_NORETRY,
2379 					  SKB_FRAG_PAGE_ORDER);
2380 		if (likely(pfrag->page)) {
2381 			pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2382 			return true;
2383 		}
2384 	}
2385 	pfrag->page = alloc_page(gfp);
2386 	if (likely(pfrag->page)) {
2387 		pfrag->size = PAGE_SIZE;
2388 		return true;
2389 	}
2390 	return false;
2391 }
2392 EXPORT_SYMBOL(skb_page_frag_refill);
2393 
sk_page_frag_refill(struct sock * sk,struct page_frag * pfrag)2394 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2395 {
2396 	if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2397 		return true;
2398 
2399 	sk_enter_memory_pressure(sk);
2400 	sk_stream_moderate_sndbuf(sk);
2401 	return false;
2402 }
2403 EXPORT_SYMBOL(sk_page_frag_refill);
2404 
__lock_sock(struct sock * sk)2405 static void __lock_sock(struct sock *sk)
2406 	__releases(&sk->sk_lock.slock)
2407 	__acquires(&sk->sk_lock.slock)
2408 {
2409 	DEFINE_WAIT(wait);
2410 
2411 	for (;;) {
2412 		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2413 					TASK_UNINTERRUPTIBLE);
2414 		spin_unlock_bh(&sk->sk_lock.slock);
2415 		schedule();
2416 		spin_lock_bh(&sk->sk_lock.slock);
2417 		if (!sock_owned_by_user(sk))
2418 			break;
2419 	}
2420 	finish_wait(&sk->sk_lock.wq, &wait);
2421 }
2422 
__release_sock(struct sock * sk)2423 void __release_sock(struct sock *sk)
2424 	__releases(&sk->sk_lock.slock)
2425 	__acquires(&sk->sk_lock.slock)
2426 {
2427 	struct sk_buff *skb, *next;
2428 
2429 	while ((skb = sk->sk_backlog.head) != NULL) {
2430 		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2431 
2432 		spin_unlock_bh(&sk->sk_lock.slock);
2433 
2434 		do {
2435 			next = skb->next;
2436 			prefetch(next);
2437 			WARN_ON_ONCE(skb_dst_is_noref(skb));
2438 			skb_mark_not_on_list(skb);
2439 			sk_backlog_rcv(sk, skb);
2440 
2441 			cond_resched();
2442 
2443 			skb = next;
2444 		} while (skb != NULL);
2445 
2446 		spin_lock_bh(&sk->sk_lock.slock);
2447 	}
2448 
2449 	/*
2450 	 * Doing the zeroing here guarantee we can not loop forever
2451 	 * while a wild producer attempts to flood us.
2452 	 */
2453 	sk->sk_backlog.len = 0;
2454 }
2455 
__sk_flush_backlog(struct sock * sk)2456 void __sk_flush_backlog(struct sock *sk)
2457 {
2458 	spin_lock_bh(&sk->sk_lock.slock);
2459 	__release_sock(sk);
2460 	spin_unlock_bh(&sk->sk_lock.slock);
2461 }
2462 
2463 /**
2464  * sk_wait_data - wait for data to arrive at sk_receive_queue
2465  * @sk:    sock to wait on
2466  * @timeo: for how long
2467  * @skb:   last skb seen on sk_receive_queue
2468  *
2469  * Now socket state including sk->sk_err is changed only under lock,
2470  * hence we may omit checks after joining wait queue.
2471  * We check receive queue before schedule() only as optimization;
2472  * it is very likely that release_sock() added new data.
2473  */
sk_wait_data(struct sock * sk,long * timeo,const struct sk_buff * skb)2474 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2475 {
2476 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
2477 	int rc;
2478 
2479 	add_wait_queue(sk_sleep(sk), &wait);
2480 	sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2481 	rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
2482 	sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2483 	remove_wait_queue(sk_sleep(sk), &wait);
2484 	return rc;
2485 }
2486 EXPORT_SYMBOL(sk_wait_data);
2487 
2488 /**
2489  *	__sk_mem_raise_allocated - increase memory_allocated
2490  *	@sk: socket
2491  *	@size: memory size to allocate
2492  *	@amt: pages to allocate
2493  *	@kind: allocation type
2494  *
2495  *	Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
2496  */
__sk_mem_raise_allocated(struct sock * sk,int size,int amt,int kind)2497 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
2498 {
2499 	struct proto *prot = sk->sk_prot;
2500 	long allocated = sk_memory_allocated_add(sk, amt);
2501 	bool charged = true;
2502 
2503 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
2504 	    !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt)))
2505 		goto suppress_allocation;
2506 
2507 	/* Under limit. */
2508 	if (allocated <= sk_prot_mem_limits(sk, 0)) {
2509 		sk_leave_memory_pressure(sk);
2510 		return 1;
2511 	}
2512 
2513 	/* Under pressure. */
2514 	if (allocated > sk_prot_mem_limits(sk, 1))
2515 		sk_enter_memory_pressure(sk);
2516 
2517 	/* Over hard limit. */
2518 	if (allocated > sk_prot_mem_limits(sk, 2))
2519 		goto suppress_allocation;
2520 
2521 	/* guarantee minimum buffer size under pressure */
2522 	if (kind == SK_MEM_RECV) {
2523 		if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
2524 			return 1;
2525 
2526 	} else { /* SK_MEM_SEND */
2527 		int wmem0 = sk_get_wmem0(sk, prot);
2528 
2529 		if (sk->sk_type == SOCK_STREAM) {
2530 			if (sk->sk_wmem_queued < wmem0)
2531 				return 1;
2532 		} else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
2533 				return 1;
2534 		}
2535 	}
2536 
2537 	if (sk_has_memory_pressure(sk)) {
2538 		u64 alloc;
2539 
2540 		if (!sk_under_memory_pressure(sk))
2541 			return 1;
2542 		alloc = sk_sockets_allocated_read_positive(sk);
2543 		if (sk_prot_mem_limits(sk, 2) > alloc *
2544 		    sk_mem_pages(sk->sk_wmem_queued +
2545 				 atomic_read(&sk->sk_rmem_alloc) +
2546 				 sk->sk_forward_alloc))
2547 			return 1;
2548 	}
2549 
2550 suppress_allocation:
2551 
2552 	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2553 		sk_stream_moderate_sndbuf(sk);
2554 
2555 		/* Fail only if socket is _under_ its sndbuf.
2556 		 * In this case we cannot block, so that we have to fail.
2557 		 */
2558 		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2559 			return 1;
2560 	}
2561 
2562 	if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged))
2563 		trace_sock_exceed_buf_limit(sk, prot, allocated, kind);
2564 
2565 	sk_memory_allocated_sub(sk, amt);
2566 
2567 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2568 		mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
2569 
2570 	return 0;
2571 }
2572 EXPORT_SYMBOL(__sk_mem_raise_allocated);
2573 
2574 /**
2575  *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2576  *	@sk: socket
2577  *	@size: memory size to allocate
2578  *	@kind: allocation type
2579  *
2580  *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2581  *	rmem allocation. This function assumes that protocols which have
2582  *	memory_pressure use sk_wmem_queued as write buffer accounting.
2583  */
__sk_mem_schedule(struct sock * sk,int size,int kind)2584 int __sk_mem_schedule(struct sock *sk, int size, int kind)
2585 {
2586 	int ret, amt = sk_mem_pages(size);
2587 
2588 	sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT;
2589 	ret = __sk_mem_raise_allocated(sk, size, amt, kind);
2590 	if (!ret)
2591 		sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT;
2592 	return ret;
2593 }
2594 EXPORT_SYMBOL(__sk_mem_schedule);
2595 
2596 /**
2597  *	__sk_mem_reduce_allocated - reclaim memory_allocated
2598  *	@sk: socket
2599  *	@amount: number of quanta
2600  *
2601  *	Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
2602  */
__sk_mem_reduce_allocated(struct sock * sk,int amount)2603 void __sk_mem_reduce_allocated(struct sock *sk, int amount)
2604 {
2605 	sk_memory_allocated_sub(sk, amount);
2606 
2607 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2608 		mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
2609 
2610 	if (sk_under_memory_pressure(sk) &&
2611 	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2612 		sk_leave_memory_pressure(sk);
2613 }
2614 EXPORT_SYMBOL(__sk_mem_reduce_allocated);
2615 
2616 /**
2617  *	__sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
2618  *	@sk: socket
2619  *	@amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2620  */
__sk_mem_reclaim(struct sock * sk,int amount)2621 void __sk_mem_reclaim(struct sock *sk, int amount)
2622 {
2623 	amount >>= SK_MEM_QUANTUM_SHIFT;
2624 	sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2625 	__sk_mem_reduce_allocated(sk, amount);
2626 }
2627 EXPORT_SYMBOL(__sk_mem_reclaim);
2628 
sk_set_peek_off(struct sock * sk,int val)2629 int sk_set_peek_off(struct sock *sk, int val)
2630 {
2631 	sk->sk_peek_off = val;
2632 	return 0;
2633 }
2634 EXPORT_SYMBOL_GPL(sk_set_peek_off);
2635 
2636 /*
2637  * Set of default routines for initialising struct proto_ops when
2638  * the protocol does not support a particular function. In certain
2639  * cases where it makes no sense for a protocol to have a "do nothing"
2640  * function, some default processing is provided.
2641  */
2642 
sock_no_bind(struct socket * sock,struct sockaddr * saddr,int len)2643 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2644 {
2645 	return -EOPNOTSUPP;
2646 }
2647 EXPORT_SYMBOL(sock_no_bind);
2648 
sock_no_connect(struct socket * sock,struct sockaddr * saddr,int len,int flags)2649 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2650 		    int len, int flags)
2651 {
2652 	return -EOPNOTSUPP;
2653 }
2654 EXPORT_SYMBOL(sock_no_connect);
2655 
sock_no_socketpair(struct socket * sock1,struct socket * sock2)2656 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2657 {
2658 	return -EOPNOTSUPP;
2659 }
2660 EXPORT_SYMBOL(sock_no_socketpair);
2661 
sock_no_accept(struct socket * sock,struct socket * newsock,int flags,bool kern)2662 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags,
2663 		   bool kern)
2664 {
2665 	return -EOPNOTSUPP;
2666 }
2667 EXPORT_SYMBOL(sock_no_accept);
2668 
sock_no_getname(struct socket * sock,struct sockaddr * saddr,int peer)2669 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2670 		    int peer)
2671 {
2672 	return -EOPNOTSUPP;
2673 }
2674 EXPORT_SYMBOL(sock_no_getname);
2675 
sock_no_ioctl(struct socket * sock,unsigned int cmd,unsigned long arg)2676 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2677 {
2678 	return -EOPNOTSUPP;
2679 }
2680 EXPORT_SYMBOL(sock_no_ioctl);
2681 
sock_no_listen(struct socket * sock,int backlog)2682 int sock_no_listen(struct socket *sock, int backlog)
2683 {
2684 	return -EOPNOTSUPP;
2685 }
2686 EXPORT_SYMBOL(sock_no_listen);
2687 
sock_no_shutdown(struct socket * sock,int how)2688 int sock_no_shutdown(struct socket *sock, int how)
2689 {
2690 	return -EOPNOTSUPP;
2691 }
2692 EXPORT_SYMBOL(sock_no_shutdown);
2693 
sock_no_setsockopt(struct socket * sock,int level,int optname,char __user * optval,unsigned int optlen)2694 int sock_no_setsockopt(struct socket *sock, int level, int optname,
2695 		    char __user *optval, unsigned int optlen)
2696 {
2697 	return -EOPNOTSUPP;
2698 }
2699 EXPORT_SYMBOL(sock_no_setsockopt);
2700 
sock_no_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)2701 int sock_no_getsockopt(struct socket *sock, int level, int optname,
2702 		    char __user *optval, int __user *optlen)
2703 {
2704 	return -EOPNOTSUPP;
2705 }
2706 EXPORT_SYMBOL(sock_no_getsockopt);
2707 
sock_no_sendmsg(struct socket * sock,struct msghdr * m,size_t len)2708 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
2709 {
2710 	return -EOPNOTSUPP;
2711 }
2712 EXPORT_SYMBOL(sock_no_sendmsg);
2713 
sock_no_sendmsg_locked(struct sock * sk,struct msghdr * m,size_t len)2714 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
2715 {
2716 	return -EOPNOTSUPP;
2717 }
2718 EXPORT_SYMBOL(sock_no_sendmsg_locked);
2719 
sock_no_recvmsg(struct socket * sock,struct msghdr * m,size_t len,int flags)2720 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2721 		    int flags)
2722 {
2723 	return -EOPNOTSUPP;
2724 }
2725 EXPORT_SYMBOL(sock_no_recvmsg);
2726 
sock_no_mmap(struct file * file,struct socket * sock,struct vm_area_struct * vma)2727 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2728 {
2729 	/* Mirror missing mmap method error code */
2730 	return -ENODEV;
2731 }
2732 EXPORT_SYMBOL(sock_no_mmap);
2733 
sock_no_sendpage(struct socket * sock,struct page * page,int offset,size_t size,int flags)2734 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2735 {
2736 	ssize_t res;
2737 	struct msghdr msg = {.msg_flags = flags};
2738 	struct kvec iov;
2739 	char *kaddr = kmap(page);
2740 	iov.iov_base = kaddr + offset;
2741 	iov.iov_len = size;
2742 	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2743 	kunmap(page);
2744 	return res;
2745 }
2746 EXPORT_SYMBOL(sock_no_sendpage);
2747 
sock_no_sendpage_locked(struct sock * sk,struct page * page,int offset,size_t size,int flags)2748 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
2749 				int offset, size_t size, int flags)
2750 {
2751 	ssize_t res;
2752 	struct msghdr msg = {.msg_flags = flags};
2753 	struct kvec iov;
2754 	char *kaddr = kmap(page);
2755 
2756 	iov.iov_base = kaddr + offset;
2757 	iov.iov_len = size;
2758 	res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size);
2759 	kunmap(page);
2760 	return res;
2761 }
2762 EXPORT_SYMBOL(sock_no_sendpage_locked);
2763 
2764 /*
2765  *	Default Socket Callbacks
2766  */
2767 
sock_def_wakeup(struct sock * sk)2768 static void sock_def_wakeup(struct sock *sk)
2769 {
2770 	struct socket_wq *wq;
2771 
2772 	rcu_read_lock();
2773 	wq = rcu_dereference(sk->sk_wq);
2774 	if (skwq_has_sleeper(wq))
2775 		wake_up_interruptible_all(&wq->wait);
2776 	rcu_read_unlock();
2777 }
2778 
sock_def_error_report(struct sock * sk)2779 static void sock_def_error_report(struct sock *sk)
2780 {
2781 	struct socket_wq *wq;
2782 
2783 	rcu_read_lock();
2784 	wq = rcu_dereference(sk->sk_wq);
2785 	if (skwq_has_sleeper(wq))
2786 		wake_up_interruptible_poll(&wq->wait, EPOLLERR);
2787 	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2788 	rcu_read_unlock();
2789 }
2790 
sock_def_readable(struct sock * sk)2791 static void sock_def_readable(struct sock *sk)
2792 {
2793 	struct socket_wq *wq;
2794 
2795 	rcu_read_lock();
2796 	wq = rcu_dereference(sk->sk_wq);
2797 	if (skwq_has_sleeper(wq))
2798 		wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
2799 						EPOLLRDNORM | EPOLLRDBAND);
2800 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2801 	rcu_read_unlock();
2802 }
2803 
sock_def_write_space(struct sock * sk)2804 static void sock_def_write_space(struct sock *sk)
2805 {
2806 	struct socket_wq *wq;
2807 
2808 	rcu_read_lock();
2809 
2810 	/* Do not wake up a writer until he can make "significant"
2811 	 * progress.  --DaveM
2812 	 */
2813 	if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= READ_ONCE(sk->sk_sndbuf)) {
2814 		wq = rcu_dereference(sk->sk_wq);
2815 		if (skwq_has_sleeper(wq))
2816 			wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
2817 						EPOLLWRNORM | EPOLLWRBAND);
2818 
2819 		/* Should agree with poll, otherwise some programs break */
2820 		if (sock_writeable(sk))
2821 			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2822 	}
2823 
2824 	rcu_read_unlock();
2825 }
2826 
sock_def_destruct(struct sock * sk)2827 static void sock_def_destruct(struct sock *sk)
2828 {
2829 }
2830 
sk_send_sigurg(struct sock * sk)2831 void sk_send_sigurg(struct sock *sk)
2832 {
2833 	if (sk->sk_socket && sk->sk_socket->file)
2834 		if (send_sigurg(&sk->sk_socket->file->f_owner))
2835 			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2836 }
2837 EXPORT_SYMBOL(sk_send_sigurg);
2838 
sk_reset_timer(struct sock * sk,struct timer_list * timer,unsigned long expires)2839 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2840 		    unsigned long expires)
2841 {
2842 	if (!mod_timer(timer, expires))
2843 		sock_hold(sk);
2844 }
2845 EXPORT_SYMBOL(sk_reset_timer);
2846 
sk_stop_timer(struct sock * sk,struct timer_list * timer)2847 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2848 {
2849 	if (del_timer(timer))
2850 		__sock_put(sk);
2851 }
2852 EXPORT_SYMBOL(sk_stop_timer);
2853 
sock_init_data(struct socket * sock,struct sock * sk)2854 void sock_init_data(struct socket *sock, struct sock *sk)
2855 {
2856 	sk_init_common(sk);
2857 	sk->sk_send_head	=	NULL;
2858 
2859 	timer_setup(&sk->sk_timer, NULL, 0);
2860 
2861 	sk->sk_allocation	=	GFP_KERNEL;
2862 	sk->sk_rcvbuf		=	sysctl_rmem_default;
2863 	sk->sk_sndbuf		=	sysctl_wmem_default;
2864 	sk->sk_state		=	TCP_CLOSE;
2865 	sk_set_socket(sk, sock);
2866 
2867 	sock_set_flag(sk, SOCK_ZAPPED);
2868 
2869 	if (sock) {
2870 		sk->sk_type	=	sock->type;
2871 		RCU_INIT_POINTER(sk->sk_wq, &sock->wq);
2872 		sock->sk	=	sk;
2873 		sk->sk_uid	=	SOCK_INODE(sock)->i_uid;
2874 	} else {
2875 		RCU_INIT_POINTER(sk->sk_wq, NULL);
2876 		sk->sk_uid	=	make_kuid(sock_net(sk)->user_ns, 0);
2877 	}
2878 
2879 	rwlock_init(&sk->sk_callback_lock);
2880 	if (sk->sk_kern_sock)
2881 		lockdep_set_class_and_name(
2882 			&sk->sk_callback_lock,
2883 			af_kern_callback_keys + sk->sk_family,
2884 			af_family_kern_clock_key_strings[sk->sk_family]);
2885 	else
2886 		lockdep_set_class_and_name(
2887 			&sk->sk_callback_lock,
2888 			af_callback_keys + sk->sk_family,
2889 			af_family_clock_key_strings[sk->sk_family]);
2890 
2891 	sk->sk_state_change	=	sock_def_wakeup;
2892 	sk->sk_data_ready	=	sock_def_readable;
2893 	sk->sk_write_space	=	sock_def_write_space;
2894 	sk->sk_error_report	=	sock_def_error_report;
2895 	sk->sk_destruct		=	sock_def_destruct;
2896 
2897 	sk->sk_frag.page	=	NULL;
2898 	sk->sk_frag.offset	=	0;
2899 	sk->sk_peek_off		=	-1;
2900 
2901 	sk->sk_peer_pid 	=	NULL;
2902 	sk->sk_peer_cred	=	NULL;
2903 	sk->sk_write_pending	=	0;
2904 	sk->sk_rcvlowat		=	1;
2905 	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
2906 	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
2907 
2908 	sk->sk_stamp = SK_DEFAULT_STAMP;
2909 #if BITS_PER_LONG==32
2910 	seqlock_init(&sk->sk_stamp_seq);
2911 #endif
2912 	atomic_set(&sk->sk_zckey, 0);
2913 
2914 #ifdef CONFIG_NET_RX_BUSY_POLL
2915 	sk->sk_napi_id		=	0;
2916 	sk->sk_ll_usec		=	sysctl_net_busy_read;
2917 #endif
2918 
2919 	sk->sk_max_pacing_rate = ~0UL;
2920 	sk->sk_pacing_rate = ~0UL;
2921 	WRITE_ONCE(sk->sk_pacing_shift, 10);
2922 	sk->sk_incoming_cpu = -1;
2923 
2924 	sk_rx_queue_clear(sk);
2925 	/*
2926 	 * Before updating sk_refcnt, we must commit prior changes to memory
2927 	 * (Documentation/RCU/rculist_nulls.txt for details)
2928 	 */
2929 	smp_wmb();
2930 	refcount_set(&sk->sk_refcnt, 1);
2931 	atomic_set(&sk->sk_drops, 0);
2932 }
2933 EXPORT_SYMBOL(sock_init_data);
2934 
lock_sock_nested(struct sock * sk,int subclass)2935 void lock_sock_nested(struct sock *sk, int subclass)
2936 {
2937 	might_sleep();
2938 	spin_lock_bh(&sk->sk_lock.slock);
2939 	if (sk->sk_lock.owned)
2940 		__lock_sock(sk);
2941 	sk->sk_lock.owned = 1;
2942 	spin_unlock(&sk->sk_lock.slock);
2943 	/*
2944 	 * The sk_lock has mutex_lock() semantics here:
2945 	 */
2946 	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2947 	local_bh_enable();
2948 }
2949 EXPORT_SYMBOL(lock_sock_nested);
2950 
release_sock(struct sock * sk)2951 void release_sock(struct sock *sk)
2952 {
2953 	spin_lock_bh(&sk->sk_lock.slock);
2954 	if (sk->sk_backlog.tail)
2955 		__release_sock(sk);
2956 
2957 	/* Warning : release_cb() might need to release sk ownership,
2958 	 * ie call sock_release_ownership(sk) before us.
2959 	 */
2960 	if (sk->sk_prot->release_cb)
2961 		sk->sk_prot->release_cb(sk);
2962 
2963 	sock_release_ownership(sk);
2964 	if (waitqueue_active(&sk->sk_lock.wq))
2965 		wake_up(&sk->sk_lock.wq);
2966 	spin_unlock_bh(&sk->sk_lock.slock);
2967 }
2968 EXPORT_SYMBOL(release_sock);
2969 
2970 /**
2971  * lock_sock_fast - fast version of lock_sock
2972  * @sk: socket
2973  *
2974  * This version should be used for very small section, where process wont block
2975  * return false if fast path is taken:
2976  *
2977  *   sk_lock.slock locked, owned = 0, BH disabled
2978  *
2979  * return true if slow path is taken:
2980  *
2981  *   sk_lock.slock unlocked, owned = 1, BH enabled
2982  */
lock_sock_fast(struct sock * sk)2983 bool lock_sock_fast(struct sock *sk)
2984 {
2985 	might_sleep();
2986 	spin_lock_bh(&sk->sk_lock.slock);
2987 
2988 	if (!sk->sk_lock.owned)
2989 		/*
2990 		 * Note : We must disable BH
2991 		 */
2992 		return false;
2993 
2994 	__lock_sock(sk);
2995 	sk->sk_lock.owned = 1;
2996 	spin_unlock(&sk->sk_lock.slock);
2997 	/*
2998 	 * The sk_lock has mutex_lock() semantics here:
2999 	 */
3000 	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
3001 	local_bh_enable();
3002 	return true;
3003 }
3004 EXPORT_SYMBOL(lock_sock_fast);
3005 
sock_gettstamp(struct socket * sock,void __user * userstamp,bool timeval,bool time32)3006 int sock_gettstamp(struct socket *sock, void __user *userstamp,
3007 		   bool timeval, bool time32)
3008 {
3009 	struct sock *sk = sock->sk;
3010 	struct timespec64 ts;
3011 
3012 	sock_enable_timestamp(sk, SOCK_TIMESTAMP);
3013 	ts = ktime_to_timespec64(sock_read_timestamp(sk));
3014 	if (ts.tv_sec == -1)
3015 		return -ENOENT;
3016 	if (ts.tv_sec == 0) {
3017 		ktime_t kt = ktime_get_real();
3018 		sock_write_timestamp(sk, kt);;
3019 		ts = ktime_to_timespec64(kt);
3020 	}
3021 
3022 	if (timeval)
3023 		ts.tv_nsec /= 1000;
3024 
3025 #ifdef CONFIG_COMPAT_32BIT_TIME
3026 	if (time32)
3027 		return put_old_timespec32(&ts, userstamp);
3028 #endif
3029 #ifdef CONFIG_SPARC64
3030 	/* beware of padding in sparc64 timeval */
3031 	if (timeval && !in_compat_syscall()) {
3032 		struct __kernel_old_timeval __user tv = {
3033 			.tv_sec = ts.tv_sec,
3034 			.tv_usec = ts.tv_nsec,
3035 		};
3036 		if (copy_to_user(userstamp, &tv, sizeof(tv)))
3037 			return -EFAULT;
3038 		return 0;
3039 	}
3040 #endif
3041 	return put_timespec64(&ts, userstamp);
3042 }
3043 EXPORT_SYMBOL(sock_gettstamp);
3044 
sock_enable_timestamp(struct sock * sk,int flag)3045 void sock_enable_timestamp(struct sock *sk, int flag)
3046 {
3047 	if (!sock_flag(sk, flag)) {
3048 		unsigned long previous_flags = sk->sk_flags;
3049 
3050 		sock_set_flag(sk, flag);
3051 		/*
3052 		 * we just set one of the two flags which require net
3053 		 * time stamping, but time stamping might have been on
3054 		 * already because of the other one
3055 		 */
3056 		if (sock_needs_netstamp(sk) &&
3057 		    !(previous_flags & SK_FLAGS_TIMESTAMP))
3058 			net_enable_timestamp();
3059 	}
3060 }
3061 
sock_recv_errqueue(struct sock * sk,struct msghdr * msg,int len,int level,int type)3062 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
3063 		       int level, int type)
3064 {
3065 	struct sock_exterr_skb *serr;
3066 	struct sk_buff *skb;
3067 	int copied, err;
3068 
3069 	err = -EAGAIN;
3070 	skb = sock_dequeue_err_skb(sk);
3071 	if (skb == NULL)
3072 		goto out;
3073 
3074 	copied = skb->len;
3075 	if (copied > len) {
3076 		msg->msg_flags |= MSG_TRUNC;
3077 		copied = len;
3078 	}
3079 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
3080 	if (err)
3081 		goto out_free_skb;
3082 
3083 	sock_recv_timestamp(msg, sk, skb);
3084 
3085 	serr = SKB_EXT_ERR(skb);
3086 	put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
3087 
3088 	msg->msg_flags |= MSG_ERRQUEUE;
3089 	err = copied;
3090 
3091 out_free_skb:
3092 	kfree_skb(skb);
3093 out:
3094 	return err;
3095 }
3096 EXPORT_SYMBOL(sock_recv_errqueue);
3097 
3098 /*
3099  *	Get a socket option on an socket.
3100  *
3101  *	FIX: POSIX 1003.1g is very ambiguous here. It states that
3102  *	asynchronous errors should be reported by getsockopt. We assume
3103  *	this means if you specify SO_ERROR (otherwise whats the point of it).
3104  */
sock_common_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)3105 int sock_common_getsockopt(struct socket *sock, int level, int optname,
3106 			   char __user *optval, int __user *optlen)
3107 {
3108 	struct sock *sk = sock->sk;
3109 
3110 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
3111 }
3112 EXPORT_SYMBOL(sock_common_getsockopt);
3113 
3114 #ifdef CONFIG_COMPAT
compat_sock_common_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)3115 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
3116 				  char __user *optval, int __user *optlen)
3117 {
3118 	struct sock *sk = sock->sk;
3119 
3120 	if (sk->sk_prot->compat_getsockopt != NULL)
3121 		return sk->sk_prot->compat_getsockopt(sk, level, optname,
3122 						      optval, optlen);
3123 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
3124 }
3125 EXPORT_SYMBOL(compat_sock_common_getsockopt);
3126 #endif
3127 
sock_common_recvmsg(struct socket * sock,struct msghdr * msg,size_t size,int flags)3128 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
3129 			int flags)
3130 {
3131 	struct sock *sk = sock->sk;
3132 	int addr_len = 0;
3133 	int err;
3134 
3135 	err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
3136 				   flags & ~MSG_DONTWAIT, &addr_len);
3137 	if (err >= 0)
3138 		msg->msg_namelen = addr_len;
3139 	return err;
3140 }
3141 EXPORT_SYMBOL(sock_common_recvmsg);
3142 
3143 /*
3144  *	Set socket options on an inet socket.
3145  */
sock_common_setsockopt(struct socket * sock,int level,int optname,char __user * optval,unsigned int optlen)3146 int sock_common_setsockopt(struct socket *sock, int level, int optname,
3147 			   char __user *optval, unsigned int optlen)
3148 {
3149 	struct sock *sk = sock->sk;
3150 
3151 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
3152 }
3153 EXPORT_SYMBOL(sock_common_setsockopt);
3154 
3155 #ifdef CONFIG_COMPAT
compat_sock_common_setsockopt(struct socket * sock,int level,int optname,char __user * optval,unsigned int optlen)3156 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
3157 				  char __user *optval, unsigned int optlen)
3158 {
3159 	struct sock *sk = sock->sk;
3160 
3161 	if (sk->sk_prot->compat_setsockopt != NULL)
3162 		return sk->sk_prot->compat_setsockopt(sk, level, optname,
3163 						      optval, optlen);
3164 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
3165 }
3166 EXPORT_SYMBOL(compat_sock_common_setsockopt);
3167 #endif
3168 
sk_common_release(struct sock * sk)3169 void sk_common_release(struct sock *sk)
3170 {
3171 	if (sk->sk_prot->destroy)
3172 		sk->sk_prot->destroy(sk);
3173 
3174 	/*
3175 	 * Observation: when sock_common_release is called, processes have
3176 	 * no access to socket. But net still has.
3177 	 * Step one, detach it from networking:
3178 	 *
3179 	 * A. Remove from hash tables.
3180 	 */
3181 
3182 	sk->sk_prot->unhash(sk);
3183 
3184 	/*
3185 	 * In this point socket cannot receive new packets, but it is possible
3186 	 * that some packets are in flight because some CPU runs receiver and
3187 	 * did hash table lookup before we unhashed socket. They will achieve
3188 	 * receive queue and will be purged by socket destructor.
3189 	 *
3190 	 * Also we still have packets pending on receive queue and probably,
3191 	 * our own packets waiting in device queues. sock_destroy will drain
3192 	 * receive queue, but transmitted packets will delay socket destruction
3193 	 * until the last reference will be released.
3194 	 */
3195 
3196 	sock_orphan(sk);
3197 
3198 	xfrm_sk_free_policy(sk);
3199 
3200 	sk_refcnt_debug_release(sk);
3201 
3202 	sock_put(sk);
3203 }
3204 EXPORT_SYMBOL(sk_common_release);
3205 
sk_get_meminfo(const struct sock * sk,u32 * mem)3206 void sk_get_meminfo(const struct sock *sk, u32 *mem)
3207 {
3208 	memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3209 
3210 	mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3211 	mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf);
3212 	mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3213 	mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf);
3214 	mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc;
3215 	mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued);
3216 	mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3217 	mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len);
3218 	mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3219 }
3220 
3221 #ifdef CONFIG_PROC_FS
3222 #define PROTO_INUSE_NR	64	/* should be enough for the first time */
3223 struct prot_inuse {
3224 	int val[PROTO_INUSE_NR];
3225 };
3226 
3227 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3228 
sock_prot_inuse_add(struct net * net,struct proto * prot,int val)3229 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
3230 {
3231 	__this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
3232 }
3233 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
3234 
sock_prot_inuse_get(struct net * net,struct proto * prot)3235 int sock_prot_inuse_get(struct net *net, struct proto *prot)
3236 {
3237 	int cpu, idx = prot->inuse_idx;
3238 	int res = 0;
3239 
3240 	for_each_possible_cpu(cpu)
3241 		res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
3242 
3243 	return res >= 0 ? res : 0;
3244 }
3245 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3246 
sock_inuse_add(struct net * net,int val)3247 static void sock_inuse_add(struct net *net, int val)
3248 {
3249 	this_cpu_add(*net->core.sock_inuse, val);
3250 }
3251 
sock_inuse_get(struct net * net)3252 int sock_inuse_get(struct net *net)
3253 {
3254 	int cpu, res = 0;
3255 
3256 	for_each_possible_cpu(cpu)
3257 		res += *per_cpu_ptr(net->core.sock_inuse, cpu);
3258 
3259 	return res;
3260 }
3261 
3262 EXPORT_SYMBOL_GPL(sock_inuse_get);
3263 
sock_inuse_init_net(struct net * net)3264 static int __net_init sock_inuse_init_net(struct net *net)
3265 {
3266 	net->core.prot_inuse = alloc_percpu(struct prot_inuse);
3267 	if (net->core.prot_inuse == NULL)
3268 		return -ENOMEM;
3269 
3270 	net->core.sock_inuse = alloc_percpu(int);
3271 	if (net->core.sock_inuse == NULL)
3272 		goto out;
3273 
3274 	return 0;
3275 
3276 out:
3277 	free_percpu(net->core.prot_inuse);
3278 	return -ENOMEM;
3279 }
3280 
sock_inuse_exit_net(struct net * net)3281 static void __net_exit sock_inuse_exit_net(struct net *net)
3282 {
3283 	free_percpu(net->core.prot_inuse);
3284 	free_percpu(net->core.sock_inuse);
3285 }
3286 
3287 static struct pernet_operations net_inuse_ops = {
3288 	.init = sock_inuse_init_net,
3289 	.exit = sock_inuse_exit_net,
3290 };
3291 
net_inuse_init(void)3292 static __init int net_inuse_init(void)
3293 {
3294 	if (register_pernet_subsys(&net_inuse_ops))
3295 		panic("Cannot initialize net inuse counters");
3296 
3297 	return 0;
3298 }
3299 
3300 core_initcall(net_inuse_init);
3301 
assign_proto_idx(struct proto * prot)3302 static int assign_proto_idx(struct proto *prot)
3303 {
3304 	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3305 
3306 	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3307 		pr_err("PROTO_INUSE_NR exhausted\n");
3308 		return -ENOSPC;
3309 	}
3310 
3311 	set_bit(prot->inuse_idx, proto_inuse_idx);
3312 	return 0;
3313 }
3314 
release_proto_idx(struct proto * prot)3315 static void release_proto_idx(struct proto *prot)
3316 {
3317 	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3318 		clear_bit(prot->inuse_idx, proto_inuse_idx);
3319 }
3320 #else
assign_proto_idx(struct proto * prot)3321 static inline int assign_proto_idx(struct proto *prot)
3322 {
3323 	return 0;
3324 }
3325 
release_proto_idx(struct proto * prot)3326 static inline void release_proto_idx(struct proto *prot)
3327 {
3328 }
3329 
sock_inuse_add(struct net * net,int val)3330 static void sock_inuse_add(struct net *net, int val)
3331 {
3332 }
3333 #endif
3334 
req_prot_cleanup(struct request_sock_ops * rsk_prot)3335 static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3336 {
3337 	if (!rsk_prot)
3338 		return;
3339 	kfree(rsk_prot->slab_name);
3340 	rsk_prot->slab_name = NULL;
3341 	kmem_cache_destroy(rsk_prot->slab);
3342 	rsk_prot->slab = NULL;
3343 }
3344 
req_prot_init(const struct proto * prot)3345 static int req_prot_init(const struct proto *prot)
3346 {
3347 	struct request_sock_ops *rsk_prot = prot->rsk_prot;
3348 
3349 	if (!rsk_prot)
3350 		return 0;
3351 
3352 	rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
3353 					prot->name);
3354 	if (!rsk_prot->slab_name)
3355 		return -ENOMEM;
3356 
3357 	rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
3358 					   rsk_prot->obj_size, 0,
3359 					   SLAB_ACCOUNT | prot->slab_flags,
3360 					   NULL);
3361 
3362 	if (!rsk_prot->slab) {
3363 		pr_crit("%s: Can't create request sock SLAB cache!\n",
3364 			prot->name);
3365 		return -ENOMEM;
3366 	}
3367 	return 0;
3368 }
3369 
proto_register(struct proto * prot,int alloc_slab)3370 int proto_register(struct proto *prot, int alloc_slab)
3371 {
3372 	int ret = -ENOBUFS;
3373 
3374 	if (alloc_slab) {
3375 		prot->slab = kmem_cache_create_usercopy(prot->name,
3376 					prot->obj_size, 0,
3377 					SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT |
3378 					prot->slab_flags,
3379 					prot->useroffset, prot->usersize,
3380 					NULL);
3381 
3382 		if (prot->slab == NULL) {
3383 			pr_crit("%s: Can't create sock SLAB cache!\n",
3384 				prot->name);
3385 			goto out;
3386 		}
3387 
3388 		if (req_prot_init(prot))
3389 			goto out_free_request_sock_slab;
3390 
3391 		if (prot->twsk_prot != NULL) {
3392 			prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
3393 
3394 			if (prot->twsk_prot->twsk_slab_name == NULL)
3395 				goto out_free_request_sock_slab;
3396 
3397 			prot->twsk_prot->twsk_slab =
3398 				kmem_cache_create(prot->twsk_prot->twsk_slab_name,
3399 						  prot->twsk_prot->twsk_obj_size,
3400 						  0,
3401 						  SLAB_ACCOUNT |
3402 						  prot->slab_flags,
3403 						  NULL);
3404 			if (prot->twsk_prot->twsk_slab == NULL)
3405 				goto out_free_timewait_sock_slab_name;
3406 		}
3407 	}
3408 
3409 	mutex_lock(&proto_list_mutex);
3410 	ret = assign_proto_idx(prot);
3411 	if (ret) {
3412 		mutex_unlock(&proto_list_mutex);
3413 		goto out_free_timewait_sock_slab_name;
3414 	}
3415 	list_add(&prot->node, &proto_list);
3416 	mutex_unlock(&proto_list_mutex);
3417 	return ret;
3418 
3419 out_free_timewait_sock_slab_name:
3420 	if (alloc_slab && prot->twsk_prot)
3421 		kfree(prot->twsk_prot->twsk_slab_name);
3422 out_free_request_sock_slab:
3423 	if (alloc_slab) {
3424 		req_prot_cleanup(prot->rsk_prot);
3425 
3426 		kmem_cache_destroy(prot->slab);
3427 		prot->slab = NULL;
3428 	}
3429 out:
3430 	return ret;
3431 }
3432 EXPORT_SYMBOL(proto_register);
3433 
proto_unregister(struct proto * prot)3434 void proto_unregister(struct proto *prot)
3435 {
3436 	mutex_lock(&proto_list_mutex);
3437 	release_proto_idx(prot);
3438 	list_del(&prot->node);
3439 	mutex_unlock(&proto_list_mutex);
3440 
3441 	kmem_cache_destroy(prot->slab);
3442 	prot->slab = NULL;
3443 
3444 	req_prot_cleanup(prot->rsk_prot);
3445 
3446 	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
3447 		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
3448 		kfree(prot->twsk_prot->twsk_slab_name);
3449 		prot->twsk_prot->twsk_slab = NULL;
3450 	}
3451 }
3452 EXPORT_SYMBOL(proto_unregister);
3453 
sock_load_diag_module(int family,int protocol)3454 int sock_load_diag_module(int family, int protocol)
3455 {
3456 	if (!protocol) {
3457 		if (!sock_is_registered(family))
3458 			return -ENOENT;
3459 
3460 		return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK,
3461 				      NETLINK_SOCK_DIAG, family);
3462 	}
3463 
3464 #ifdef CONFIG_INET
3465 	if (family == AF_INET &&
3466 	    protocol != IPPROTO_RAW &&
3467 	    !rcu_access_pointer(inet_protos[protocol]))
3468 		return -ENOENT;
3469 #endif
3470 
3471 	return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK,
3472 			      NETLINK_SOCK_DIAG, family, protocol);
3473 }
3474 EXPORT_SYMBOL(sock_load_diag_module);
3475 
3476 #ifdef CONFIG_PROC_FS
proto_seq_start(struct seq_file * seq,loff_t * pos)3477 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
3478 	__acquires(proto_list_mutex)
3479 {
3480 	mutex_lock(&proto_list_mutex);
3481 	return seq_list_start_head(&proto_list, *pos);
3482 }
3483 
proto_seq_next(struct seq_file * seq,void * v,loff_t * pos)3484 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3485 {
3486 	return seq_list_next(v, &proto_list, pos);
3487 }
3488 
proto_seq_stop(struct seq_file * seq,void * v)3489 static void proto_seq_stop(struct seq_file *seq, void *v)
3490 	__releases(proto_list_mutex)
3491 {
3492 	mutex_unlock(&proto_list_mutex);
3493 }
3494 
proto_method_implemented(const void * method)3495 static char proto_method_implemented(const void *method)
3496 {
3497 	return method == NULL ? 'n' : 'y';
3498 }
sock_prot_memory_allocated(struct proto * proto)3499 static long sock_prot_memory_allocated(struct proto *proto)
3500 {
3501 	return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
3502 }
3503 
sock_prot_memory_pressure(struct proto * proto)3504 static const char *sock_prot_memory_pressure(struct proto *proto)
3505 {
3506 	return proto->memory_pressure != NULL ?
3507 	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
3508 }
3509 
proto_seq_printf(struct seq_file * seq,struct proto * proto)3510 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
3511 {
3512 
3513 	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
3514 			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
3515 		   proto->name,
3516 		   proto->obj_size,
3517 		   sock_prot_inuse_get(seq_file_net(seq), proto),
3518 		   sock_prot_memory_allocated(proto),
3519 		   sock_prot_memory_pressure(proto),
3520 		   proto->max_header,
3521 		   proto->slab == NULL ? "no" : "yes",
3522 		   module_name(proto->owner),
3523 		   proto_method_implemented(proto->close),
3524 		   proto_method_implemented(proto->connect),
3525 		   proto_method_implemented(proto->disconnect),
3526 		   proto_method_implemented(proto->accept),
3527 		   proto_method_implemented(proto->ioctl),
3528 		   proto_method_implemented(proto->init),
3529 		   proto_method_implemented(proto->destroy),
3530 		   proto_method_implemented(proto->shutdown),
3531 		   proto_method_implemented(proto->setsockopt),
3532 		   proto_method_implemented(proto->getsockopt),
3533 		   proto_method_implemented(proto->sendmsg),
3534 		   proto_method_implemented(proto->recvmsg),
3535 		   proto_method_implemented(proto->sendpage),
3536 		   proto_method_implemented(proto->bind),
3537 		   proto_method_implemented(proto->backlog_rcv),
3538 		   proto_method_implemented(proto->hash),
3539 		   proto_method_implemented(proto->unhash),
3540 		   proto_method_implemented(proto->get_port),
3541 		   proto_method_implemented(proto->enter_memory_pressure));
3542 }
3543 
proto_seq_show(struct seq_file * seq,void * v)3544 static int proto_seq_show(struct seq_file *seq, void *v)
3545 {
3546 	if (v == &proto_list)
3547 		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3548 			   "protocol",
3549 			   "size",
3550 			   "sockets",
3551 			   "memory",
3552 			   "press",
3553 			   "maxhdr",
3554 			   "slab",
3555 			   "module",
3556 			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3557 	else
3558 		proto_seq_printf(seq, list_entry(v, struct proto, node));
3559 	return 0;
3560 }
3561 
3562 static const struct seq_operations proto_seq_ops = {
3563 	.start  = proto_seq_start,
3564 	.next   = proto_seq_next,
3565 	.stop   = proto_seq_stop,
3566 	.show   = proto_seq_show,
3567 };
3568 
proto_init_net(struct net * net)3569 static __net_init int proto_init_net(struct net *net)
3570 {
3571 	if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops,
3572 			sizeof(struct seq_net_private)))
3573 		return -ENOMEM;
3574 
3575 	return 0;
3576 }
3577 
proto_exit_net(struct net * net)3578 static __net_exit void proto_exit_net(struct net *net)
3579 {
3580 	remove_proc_entry("protocols", net->proc_net);
3581 }
3582 
3583 
3584 static __net_initdata struct pernet_operations proto_net_ops = {
3585 	.init = proto_init_net,
3586 	.exit = proto_exit_net,
3587 };
3588 
proto_init(void)3589 static int __init proto_init(void)
3590 {
3591 	return register_pernet_subsys(&proto_net_ops);
3592 }
3593 
3594 subsys_initcall(proto_init);
3595 
3596 #endif /* PROC_FS */
3597 
3598 #ifdef CONFIG_NET_RX_BUSY_POLL
sk_busy_loop_end(void * p,unsigned long start_time)3599 bool sk_busy_loop_end(void *p, unsigned long start_time)
3600 {
3601 	struct sock *sk = p;
3602 
3603 	return !skb_queue_empty_lockless(&sk->sk_receive_queue) ||
3604 	       sk_busy_loop_timeout(sk, start_time);
3605 }
3606 EXPORT_SYMBOL(sk_busy_loop_end);
3607 #endif /* CONFIG_NET_RX_BUSY_POLL */
3608