• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1  // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3   * INET		An implementation of the TCP/IP protocol suite for the LINUX
4   *		operating system.  INET is implemented using the  BSD Socket
5   *		interface as the means of communication with the user level.
6   *
7   *		Generic socket support routines. Memory allocators, socket lock/release
8   *		handler for protocols to use and generic option handler.
9   *
10   * Authors:	Ross Biro
11   *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12   *		Florian La Roche, <flla@stud.uni-sb.de>
13   *		Alan Cox, <A.Cox@swansea.ac.uk>
14   *
15   * Fixes:
16   *		Alan Cox	: 	Numerous verify_area() problems
17   *		Alan Cox	:	Connecting on a connecting socket
18   *					now returns an error for tcp.
19   *		Alan Cox	:	sock->protocol is set correctly.
20   *					and is not sometimes left as 0.
21   *		Alan Cox	:	connect handles icmp errors on a
22   *					connect properly. Unfortunately there
23   *					is a restart syscall nasty there. I
24   *					can't match BSD without hacking the C
25   *					library. Ideas urgently sought!
26   *		Alan Cox	:	Disallow bind() to addresses that are
27   *					not ours - especially broadcast ones!!
28   *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
29   *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
30   *					instead they leave that for the DESTROY timer.
31   *		Alan Cox	:	Clean up error flag in accept
32   *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
33   *					was buggy. Put a remove_sock() in the handler
34   *					for memory when we hit 0. Also altered the timer
35   *					code. The ACK stuff can wait and needs major
36   *					TCP layer surgery.
37   *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
38   *					and fixed timer/inet_bh race.
39   *		Alan Cox	:	Added zapped flag for TCP
40   *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
41   *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42   *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
43   *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
44   *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45   *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
46   *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
47   *	Pauline Middelink	:	identd support
48   *		Alan Cox	:	Fixed connect() taking signals I think.
49   *		Alan Cox	:	SO_LINGER supported
50   *		Alan Cox	:	Error reporting fixes
51   *		Anonymous	:	inet_create tidied up (sk->reuse setting)
52   *		Alan Cox	:	inet sockets don't set sk->type!
53   *		Alan Cox	:	Split socket option code
54   *		Alan Cox	:	Callbacks
55   *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
56   *		Alex		:	Removed restriction on inet fioctl
57   *		Alan Cox	:	Splitting INET from NET core
58   *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
59   *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
60   *		Alan Cox	:	Split IP from generic code
61   *		Alan Cox	:	New kfree_skbmem()
62   *		Alan Cox	:	Make SO_DEBUG superuser only.
63   *		Alan Cox	:	Allow anyone to clear SO_DEBUG
64   *					(compatibility fix)
65   *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
66   *		Alan Cox	:	Allocator for a socket is settable.
67   *		Alan Cox	:	SO_ERROR includes soft errors.
68   *		Alan Cox	:	Allow NULL arguments on some SO_ opts
69   *		Alan Cox	: 	Generic socket allocation to make hooks
70   *					easier (suggested by Craig Metz).
71   *		Michael Pall	:	SO_ERROR returns positive errno again
72   *              Steve Whitehouse:       Added default destructor to free
73   *                                      protocol private data.
74   *              Steve Whitehouse:       Added various other default routines
75   *                                      common to several socket families.
76   *              Chris Evans     :       Call suser() check last on F_SETOWN
77   *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78   *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
79   *		Andi Kleen	:	Fix write_space callback
80   *		Chris Evans	:	Security fixes - signedness again
81   *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
82   *
83   * To Fix:
84   */
85  
86  #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
87  
88  #include <asm/unaligned.h>
89  #include <linux/capability.h>
90  #include <linux/errno.h>
91  #include <linux/errqueue.h>
92  #include <linux/types.h>
93  #include <linux/socket.h>
94  #include <linux/in.h>
95  #include <linux/kernel.h>
96  #include <linux/module.h>
97  #include <linux/proc_fs.h>
98  #include <linux/seq_file.h>
99  #include <linux/sched.h>
100  #include <linux/sched/mm.h>
101  #include <linux/timer.h>
102  #include <linux/string.h>
103  #include <linux/sockios.h>
104  #include <linux/net.h>
105  #include <linux/mm.h>
106  #include <linux/slab.h>
107  #include <linux/interrupt.h>
108  #include <linux/poll.h>
109  #include <linux/tcp.h>
110  #include <linux/init.h>
111  #include <linux/highmem.h>
112  #include <linux/user_namespace.h>
113  #include <linux/static_key.h>
114  #include <linux/memcontrol.h>
115  #include <linux/prefetch.h>
116  
117  #include <linux/uaccess.h>
118  
119  #include <linux/netdevice.h>
120  #include <net/protocol.h>
121  #include <linux/skbuff.h>
122  #include <net/net_namespace.h>
123  #include <net/request_sock.h>
124  #include <net/sock.h>
125  #include <linux/net_tstamp.h>
126  #include <net/xfrm.h>
127  #include <linux/ipsec.h>
128  #include <net/cls_cgroup.h>
129  #include <net/netprio_cgroup.h>
130  #include <linux/sock_diag.h>
131  
132  #include <linux/filter.h>
133  #include <net/sock_reuseport.h>
134  #include <net/bpf_sk_storage.h>
135  
136  #include <trace/events/sock.h>
137  
138  #include <net/tcp.h>
139  #include <net/busy_poll.h>
140  
141  static DEFINE_MUTEX(proto_list_mutex);
142  static LIST_HEAD(proto_list);
143  
144  static void sock_inuse_add(struct net *net, int val);
145  
146  /**
147   * sk_ns_capable - General socket capability test
148   * @sk: Socket to use a capability on or through
149   * @user_ns: The user namespace of the capability to use
150   * @cap: The capability to use
151   *
152   * Test to see if the opener of the socket had when the socket was
153   * created and the current process has the capability @cap in the user
154   * namespace @user_ns.
155   */
sk_ns_capable(const struct sock * sk,struct user_namespace * user_ns,int cap)156  bool sk_ns_capable(const struct sock *sk,
157  		   struct user_namespace *user_ns, int cap)
158  {
159  	return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
160  		ns_capable(user_ns, cap);
161  }
162  EXPORT_SYMBOL(sk_ns_capable);
163  
164  /**
165   * sk_capable - Socket global capability test
166   * @sk: Socket to use a capability on or through
167   * @cap: The global capability to use
168   *
169   * Test to see if the opener of the socket had when the socket was
170   * created and the current process has the capability @cap in all user
171   * namespaces.
172   */
sk_capable(const struct sock * sk,int cap)173  bool sk_capable(const struct sock *sk, int cap)
174  {
175  	return sk_ns_capable(sk, &init_user_ns, cap);
176  }
177  EXPORT_SYMBOL(sk_capable);
178  
179  /**
180   * sk_net_capable - Network namespace socket capability test
181   * @sk: Socket to use a capability on or through
182   * @cap: The capability to use
183   *
184   * Test to see if the opener of the socket had when the socket was created
185   * and the current process has the capability @cap over the network namespace
186   * the socket is a member of.
187   */
sk_net_capable(const struct sock * sk,int cap)188  bool sk_net_capable(const struct sock *sk, int cap)
189  {
190  	return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
191  }
192  EXPORT_SYMBOL(sk_net_capable);
193  
194  /*
195   * Each address family might have different locking rules, so we have
196   * one slock key per address family and separate keys for internal and
197   * userspace sockets.
198   */
199  static struct lock_class_key af_family_keys[AF_MAX];
200  static struct lock_class_key af_family_kern_keys[AF_MAX];
201  static struct lock_class_key af_family_slock_keys[AF_MAX];
202  static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
203  
204  /*
205   * Make lock validator output more readable. (we pre-construct these
206   * strings build-time, so that runtime initialization of socket
207   * locks is fast):
208   */
209  
210  #define _sock_locks(x)						  \
211    x "AF_UNSPEC",	x "AF_UNIX"     ,	x "AF_INET"     , \
212    x "AF_AX25"  ,	x "AF_IPX"      ,	x "AF_APPLETALK", \
213    x "AF_NETROM",	x "AF_BRIDGE"   ,	x "AF_ATMPVC"   , \
214    x "AF_X25"   ,	x "AF_INET6"    ,	x "AF_ROSE"     , \
215    x "AF_DECnet",	x "AF_NETBEUI"  ,	x "AF_SECURITY" , \
216    x "AF_KEY"   ,	x "AF_NETLINK"  ,	x "AF_PACKET"   , \
217    x "AF_ASH"   ,	x "AF_ECONET"   ,	x "AF_ATMSVC"   , \
218    x "AF_RDS"   ,	x "AF_SNA"      ,	x "AF_IRDA"     , \
219    x "AF_PPPOX" ,	x "AF_WANPIPE"  ,	x "AF_LLC"      , \
220    x "27"       ,	x "28"          ,	x "AF_CAN"      , \
221    x "AF_TIPC"  ,	x "AF_BLUETOOTH",	x "IUCV"        , \
222    x "AF_RXRPC" ,	x "AF_ISDN"     ,	x "AF_PHONET"   , \
223    x "AF_IEEE802154",	x "AF_CAIF"	,	x "AF_ALG"      , \
224    x "AF_NFC"   ,	x "AF_VSOCK"    ,	x "AF_KCM"      , \
225    x "AF_QIPCRTR",	x "AF_SMC"	,	x "AF_XDP"	, \
226    x "AF_MAX"
227  
228  static const char *const af_family_key_strings[AF_MAX+1] = {
229  	_sock_locks("sk_lock-")
230  };
231  static const char *const af_family_slock_key_strings[AF_MAX+1] = {
232  	_sock_locks("slock-")
233  };
234  static const char *const af_family_clock_key_strings[AF_MAX+1] = {
235  	_sock_locks("clock-")
236  };
237  
238  static const char *const af_family_kern_key_strings[AF_MAX+1] = {
239  	_sock_locks("k-sk_lock-")
240  };
241  static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
242  	_sock_locks("k-slock-")
243  };
244  static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
245  	_sock_locks("k-clock-")
246  };
247  static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
248  	_sock_locks("rlock-")
249  };
250  static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
251  	_sock_locks("wlock-")
252  };
253  static const char *const af_family_elock_key_strings[AF_MAX+1] = {
254  	_sock_locks("elock-")
255  };
256  
257  /*
258   * sk_callback_lock and sk queues locking rules are per-address-family,
259   * so split the lock classes by using a per-AF key:
260   */
261  static struct lock_class_key af_callback_keys[AF_MAX];
262  static struct lock_class_key af_rlock_keys[AF_MAX];
263  static struct lock_class_key af_wlock_keys[AF_MAX];
264  static struct lock_class_key af_elock_keys[AF_MAX];
265  static struct lock_class_key af_kern_callback_keys[AF_MAX];
266  
267  /* Run time adjustable parameters. */
268  __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
269  EXPORT_SYMBOL(sysctl_wmem_max);
270  __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
271  EXPORT_SYMBOL(sysctl_rmem_max);
272  __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
273  __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
274  
275  /* Maximal space eaten by iovec or ancillary data plus some space */
276  int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
277  EXPORT_SYMBOL(sysctl_optmem_max);
278  
279  int sysctl_tstamp_allow_data __read_mostly = 1;
280  
281  DEFINE_STATIC_KEY_FALSE(memalloc_socks_key);
282  EXPORT_SYMBOL_GPL(memalloc_socks_key);
283  
284  /**
285   * sk_set_memalloc - sets %SOCK_MEMALLOC
286   * @sk: socket to set it on
287   *
288   * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
289   * It's the responsibility of the admin to adjust min_free_kbytes
290   * to meet the requirements
291   */
sk_set_memalloc(struct sock * sk)292  void sk_set_memalloc(struct sock *sk)
293  {
294  	sock_set_flag(sk, SOCK_MEMALLOC);
295  	sk->sk_allocation |= __GFP_MEMALLOC;
296  	static_branch_inc(&memalloc_socks_key);
297  }
298  EXPORT_SYMBOL_GPL(sk_set_memalloc);
299  
sk_clear_memalloc(struct sock * sk)300  void sk_clear_memalloc(struct sock *sk)
301  {
302  	sock_reset_flag(sk, SOCK_MEMALLOC);
303  	sk->sk_allocation &= ~__GFP_MEMALLOC;
304  	static_branch_dec(&memalloc_socks_key);
305  
306  	/*
307  	 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
308  	 * progress of swapping. SOCK_MEMALLOC may be cleared while
309  	 * it has rmem allocations due to the last swapfile being deactivated
310  	 * but there is a risk that the socket is unusable due to exceeding
311  	 * the rmem limits. Reclaim the reserves and obey rmem limits again.
312  	 */
313  	sk_mem_reclaim(sk);
314  }
315  EXPORT_SYMBOL_GPL(sk_clear_memalloc);
316  
__sk_backlog_rcv(struct sock * sk,struct sk_buff * skb)317  int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
318  {
319  	int ret;
320  	unsigned int noreclaim_flag;
321  
322  	/* these should have been dropped before queueing */
323  	BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
324  
325  	noreclaim_flag = memalloc_noreclaim_save();
326  	ret = sk->sk_backlog_rcv(sk, skb);
327  	memalloc_noreclaim_restore(noreclaim_flag);
328  
329  	return ret;
330  }
331  EXPORT_SYMBOL(__sk_backlog_rcv);
332  
sock_get_timeout(long timeo,void * optval,bool old_timeval)333  static int sock_get_timeout(long timeo, void *optval, bool old_timeval)
334  {
335  	struct __kernel_sock_timeval tv;
336  	int size;
337  
338  	if (timeo == MAX_SCHEDULE_TIMEOUT) {
339  		tv.tv_sec = 0;
340  		tv.tv_usec = 0;
341  	} else {
342  		tv.tv_sec = timeo / HZ;
343  		tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ;
344  	}
345  
346  	if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
347  		struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec };
348  		*(struct old_timeval32 *)optval = tv32;
349  		return sizeof(tv32);
350  	}
351  
352  	if (old_timeval) {
353  		struct __kernel_old_timeval old_tv;
354  		old_tv.tv_sec = tv.tv_sec;
355  		old_tv.tv_usec = tv.tv_usec;
356  		*(struct __kernel_old_timeval *)optval = old_tv;
357  		size = sizeof(old_tv);
358  	} else {
359  		*(struct __kernel_sock_timeval *)optval = tv;
360  		size = sizeof(tv);
361  	}
362  
363  	return size;
364  }
365  
sock_set_timeout(long * timeo_p,char __user * optval,int optlen,bool old_timeval)366  static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen, bool old_timeval)
367  {
368  	struct __kernel_sock_timeval tv;
369  
370  	if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
371  		struct old_timeval32 tv32;
372  
373  		if (optlen < sizeof(tv32))
374  			return -EINVAL;
375  
376  		if (copy_from_user(&tv32, optval, sizeof(tv32)))
377  			return -EFAULT;
378  		tv.tv_sec = tv32.tv_sec;
379  		tv.tv_usec = tv32.tv_usec;
380  	} else if (old_timeval) {
381  		struct __kernel_old_timeval old_tv;
382  
383  		if (optlen < sizeof(old_tv))
384  			return -EINVAL;
385  		if (copy_from_user(&old_tv, optval, sizeof(old_tv)))
386  			return -EFAULT;
387  		tv.tv_sec = old_tv.tv_sec;
388  		tv.tv_usec = old_tv.tv_usec;
389  	} else {
390  		if (optlen < sizeof(tv))
391  			return -EINVAL;
392  		if (copy_from_user(&tv, optval, sizeof(tv)))
393  			return -EFAULT;
394  	}
395  	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
396  		return -EDOM;
397  
398  	if (tv.tv_sec < 0) {
399  		static int warned __read_mostly;
400  
401  		*timeo_p = 0;
402  		if (warned < 10 && net_ratelimit()) {
403  			warned++;
404  			pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
405  				__func__, current->comm, task_pid_nr(current));
406  		}
407  		return 0;
408  	}
409  	*timeo_p = MAX_SCHEDULE_TIMEOUT;
410  	if (tv.tv_sec == 0 && tv.tv_usec == 0)
411  		return 0;
412  	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1))
413  		*timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, USEC_PER_SEC / HZ);
414  	return 0;
415  }
416  
sock_warn_obsolete_bsdism(const char * name)417  static void sock_warn_obsolete_bsdism(const char *name)
418  {
419  	static int warned;
420  	static char warncomm[TASK_COMM_LEN];
421  	if (strcmp(warncomm, current->comm) && warned < 5) {
422  		strcpy(warncomm,  current->comm);
423  		pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
424  			warncomm, name);
425  		warned++;
426  	}
427  }
428  
sock_needs_netstamp(const struct sock * sk)429  static bool sock_needs_netstamp(const struct sock *sk)
430  {
431  	switch (sk->sk_family) {
432  	case AF_UNSPEC:
433  	case AF_UNIX:
434  		return false;
435  	default:
436  		return true;
437  	}
438  }
439  
sock_disable_timestamp(struct sock * sk,unsigned long flags)440  static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
441  {
442  	if (sk->sk_flags & flags) {
443  		sk->sk_flags &= ~flags;
444  		if (sock_needs_netstamp(sk) &&
445  		    !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
446  			net_disable_timestamp();
447  	}
448  }
449  
450  
__sock_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)451  int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
452  {
453  	unsigned long flags;
454  	struct sk_buff_head *list = &sk->sk_receive_queue;
455  
456  	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
457  		atomic_inc(&sk->sk_drops);
458  		trace_sock_rcvqueue_full(sk, skb);
459  		return -ENOMEM;
460  	}
461  
462  	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
463  		atomic_inc(&sk->sk_drops);
464  		return -ENOBUFS;
465  	}
466  
467  	skb->dev = NULL;
468  	skb_set_owner_r(skb, sk);
469  
470  	/* we escape from rcu protected region, make sure we dont leak
471  	 * a norefcounted dst
472  	 */
473  	skb_dst_force(skb);
474  
475  	spin_lock_irqsave(&list->lock, flags);
476  	sock_skb_set_dropcount(sk, skb);
477  	__skb_queue_tail(list, skb);
478  	spin_unlock_irqrestore(&list->lock, flags);
479  
480  	if (!sock_flag(sk, SOCK_DEAD))
481  		sk->sk_data_ready(sk);
482  	return 0;
483  }
484  EXPORT_SYMBOL(__sock_queue_rcv_skb);
485  
sock_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)486  int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
487  {
488  	int err;
489  
490  	err = sk_filter(sk, skb);
491  	if (err)
492  		return err;
493  
494  	return __sock_queue_rcv_skb(sk, skb);
495  }
496  EXPORT_SYMBOL(sock_queue_rcv_skb);
497  
__sk_receive_skb(struct sock * sk,struct sk_buff * skb,const int nested,unsigned int trim_cap,bool refcounted)498  int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
499  		     const int nested, unsigned int trim_cap, bool refcounted)
500  {
501  	int rc = NET_RX_SUCCESS;
502  
503  	if (sk_filter_trim_cap(sk, skb, trim_cap))
504  		goto discard_and_relse;
505  
506  	skb->dev = NULL;
507  
508  	if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
509  		atomic_inc(&sk->sk_drops);
510  		goto discard_and_relse;
511  	}
512  	if (nested)
513  		bh_lock_sock_nested(sk);
514  	else
515  		bh_lock_sock(sk);
516  	if (!sock_owned_by_user(sk)) {
517  		/*
518  		 * trylock + unlock semantics:
519  		 */
520  		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
521  
522  		rc = sk_backlog_rcv(sk, skb);
523  
524  		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
525  	} else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) {
526  		bh_unlock_sock(sk);
527  		atomic_inc(&sk->sk_drops);
528  		goto discard_and_relse;
529  	}
530  
531  	bh_unlock_sock(sk);
532  out:
533  	if (refcounted)
534  		sock_put(sk);
535  	return rc;
536  discard_and_relse:
537  	kfree_skb(skb);
538  	goto out;
539  }
540  EXPORT_SYMBOL(__sk_receive_skb);
541  
__sk_dst_check(struct sock * sk,u32 cookie)542  struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
543  {
544  	struct dst_entry *dst = __sk_dst_get(sk);
545  
546  	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
547  		sk_tx_queue_clear(sk);
548  		sk->sk_dst_pending_confirm = 0;
549  		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
550  		dst_release(dst);
551  		return NULL;
552  	}
553  
554  	return dst;
555  }
556  EXPORT_SYMBOL(__sk_dst_check);
557  
sk_dst_check(struct sock * sk,u32 cookie)558  struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
559  {
560  	struct dst_entry *dst = sk_dst_get(sk);
561  
562  	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
563  		sk_dst_reset(sk);
564  		dst_release(dst);
565  		return NULL;
566  	}
567  
568  	return dst;
569  }
570  EXPORT_SYMBOL(sk_dst_check);
571  
sock_setbindtodevice_locked(struct sock * sk,int ifindex)572  static int sock_setbindtodevice_locked(struct sock *sk, int ifindex)
573  {
574  	int ret = -ENOPROTOOPT;
575  #ifdef CONFIG_NETDEVICES
576  	struct net *net = sock_net(sk);
577  
578  	/* Sorry... */
579  	ret = -EPERM;
580  	if (!ns_capable(net->user_ns, CAP_NET_RAW))
581  		goto out;
582  
583  	ret = -EINVAL;
584  	if (ifindex < 0)
585  		goto out;
586  
587  	sk->sk_bound_dev_if = ifindex;
588  	if (sk->sk_prot->rehash)
589  		sk->sk_prot->rehash(sk);
590  	sk_dst_reset(sk);
591  
592  	ret = 0;
593  
594  out:
595  #endif
596  
597  	return ret;
598  }
599  
sock_setbindtodevice(struct sock * sk,char __user * optval,int optlen)600  static int sock_setbindtodevice(struct sock *sk, char __user *optval,
601  				int optlen)
602  {
603  	int ret = -ENOPROTOOPT;
604  #ifdef CONFIG_NETDEVICES
605  	struct net *net = sock_net(sk);
606  	char devname[IFNAMSIZ];
607  	int index;
608  
609  	ret = -EINVAL;
610  	if (optlen < 0)
611  		goto out;
612  
613  	/* Bind this socket to a particular device like "eth0",
614  	 * as specified in the passed interface name. If the
615  	 * name is "" or the option length is zero the socket
616  	 * is not bound.
617  	 */
618  	if (optlen > IFNAMSIZ - 1)
619  		optlen = IFNAMSIZ - 1;
620  	memset(devname, 0, sizeof(devname));
621  
622  	ret = -EFAULT;
623  	if (copy_from_user(devname, optval, optlen))
624  		goto out;
625  
626  	index = 0;
627  	if (devname[0] != '\0') {
628  		struct net_device *dev;
629  
630  		rcu_read_lock();
631  		dev = dev_get_by_name_rcu(net, devname);
632  		if (dev)
633  			index = dev->ifindex;
634  		rcu_read_unlock();
635  		ret = -ENODEV;
636  		if (!dev)
637  			goto out;
638  	}
639  
640  	lock_sock(sk);
641  	ret = sock_setbindtodevice_locked(sk, index);
642  	release_sock(sk);
643  
644  out:
645  #endif
646  
647  	return ret;
648  }
649  
sock_getbindtodevice(struct sock * sk,char __user * optval,int __user * optlen,int len)650  static int sock_getbindtodevice(struct sock *sk, char __user *optval,
651  				int __user *optlen, int len)
652  {
653  	int ret = -ENOPROTOOPT;
654  #ifdef CONFIG_NETDEVICES
655  	struct net *net = sock_net(sk);
656  	char devname[IFNAMSIZ];
657  
658  	if (sk->sk_bound_dev_if == 0) {
659  		len = 0;
660  		goto zero;
661  	}
662  
663  	ret = -EINVAL;
664  	if (len < IFNAMSIZ)
665  		goto out;
666  
667  	ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
668  	if (ret)
669  		goto out;
670  
671  	len = strlen(devname) + 1;
672  
673  	ret = -EFAULT;
674  	if (copy_to_user(optval, devname, len))
675  		goto out;
676  
677  zero:
678  	ret = -EFAULT;
679  	if (put_user(len, optlen))
680  		goto out;
681  
682  	ret = 0;
683  
684  out:
685  #endif
686  
687  	return ret;
688  }
689  
sock_valbool_flag(struct sock * sk,int bit,int valbool)690  static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
691  {
692  	if (valbool)
693  		sock_set_flag(sk, bit);
694  	else
695  		sock_reset_flag(sk, bit);
696  }
697  
sk_mc_loop(struct sock * sk)698  bool sk_mc_loop(struct sock *sk)
699  {
700  	if (dev_recursion_level())
701  		return false;
702  	if (!sk)
703  		return true;
704  	switch (sk->sk_family) {
705  	case AF_INET:
706  		return inet_sk(sk)->mc_loop;
707  #if IS_ENABLED(CONFIG_IPV6)
708  	case AF_INET6:
709  		return inet6_sk(sk)->mc_loop;
710  #endif
711  	}
712  	WARN_ON(1);
713  	return true;
714  }
715  EXPORT_SYMBOL(sk_mc_loop);
716  
717  /*
718   *	This is meant for all protocols to use and covers goings on
719   *	at the socket level. Everything here is generic.
720   */
721  
sock_setsockopt(struct socket * sock,int level,int optname,char __user * optval,unsigned int optlen)722  int sock_setsockopt(struct socket *sock, int level, int optname,
723  		    char __user *optval, unsigned int optlen)
724  {
725  	struct sock_txtime sk_txtime;
726  	struct sock *sk = sock->sk;
727  	int val;
728  	int valbool;
729  	struct linger ling;
730  	int ret = 0;
731  
732  	/*
733  	 *	Options without arguments
734  	 */
735  
736  	if (optname == SO_BINDTODEVICE)
737  		return sock_setbindtodevice(sk, optval, optlen);
738  
739  	if (optlen < sizeof(int))
740  		return -EINVAL;
741  
742  	if (get_user(val, (int __user *)optval))
743  		return -EFAULT;
744  
745  	valbool = val ? 1 : 0;
746  
747  	lock_sock(sk);
748  
749  	switch (optname) {
750  	case SO_DEBUG:
751  		if (val && !capable(CAP_NET_ADMIN))
752  			ret = -EACCES;
753  		else
754  			sock_valbool_flag(sk, SOCK_DBG, valbool);
755  		break;
756  	case SO_REUSEADDR:
757  		sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
758  		break;
759  	case SO_REUSEPORT:
760  		sk->sk_reuseport = valbool;
761  		break;
762  	case SO_TYPE:
763  	case SO_PROTOCOL:
764  	case SO_DOMAIN:
765  	case SO_ERROR:
766  		ret = -ENOPROTOOPT;
767  		break;
768  	case SO_DONTROUTE:
769  		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
770  		sk_dst_reset(sk);
771  		break;
772  	case SO_BROADCAST:
773  		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
774  		break;
775  	case SO_SNDBUF:
776  		/* Don't error on this BSD doesn't and if you think
777  		 * about it this is right. Otherwise apps have to
778  		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
779  		 * are treated in BSD as hints
780  		 */
781  		val = min_t(u32, val, sysctl_wmem_max);
782  set_sndbuf:
783  		/* Ensure val * 2 fits into an int, to prevent max_t()
784  		 * from treating it as a negative value.
785  		 */
786  		val = min_t(int, val, INT_MAX / 2);
787  		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
788  		WRITE_ONCE(sk->sk_sndbuf,
789  			   max_t(int, val * 2, SOCK_MIN_SNDBUF));
790  		/* Wake up sending tasks if we upped the value. */
791  		sk->sk_write_space(sk);
792  		break;
793  
794  	case SO_SNDBUFFORCE:
795  		if (!capable(CAP_NET_ADMIN)) {
796  			ret = -EPERM;
797  			break;
798  		}
799  
800  		/* No negative values (to prevent underflow, as val will be
801  		 * multiplied by 2).
802  		 */
803  		if (val < 0)
804  			val = 0;
805  		goto set_sndbuf;
806  
807  	case SO_RCVBUF:
808  		/* Don't error on this BSD doesn't and if you think
809  		 * about it this is right. Otherwise apps have to
810  		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
811  		 * are treated in BSD as hints
812  		 */
813  		val = min_t(u32, val, sysctl_rmem_max);
814  set_rcvbuf:
815  		/* Ensure val * 2 fits into an int, to prevent max_t()
816  		 * from treating it as a negative value.
817  		 */
818  		val = min_t(int, val, INT_MAX / 2);
819  		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
820  		/*
821  		 * We double it on the way in to account for
822  		 * "struct sk_buff" etc. overhead.   Applications
823  		 * assume that the SO_RCVBUF setting they make will
824  		 * allow that much actual data to be received on that
825  		 * socket.
826  		 *
827  		 * Applications are unaware that "struct sk_buff" and
828  		 * other overheads allocate from the receive buffer
829  		 * during socket buffer allocation.
830  		 *
831  		 * And after considering the possible alternatives,
832  		 * returning the value we actually used in getsockopt
833  		 * is the most desirable behavior.
834  		 */
835  		WRITE_ONCE(sk->sk_rcvbuf,
836  			   max_t(int, val * 2, SOCK_MIN_RCVBUF));
837  		break;
838  
839  	case SO_RCVBUFFORCE:
840  		if (!capable(CAP_NET_ADMIN)) {
841  			ret = -EPERM;
842  			break;
843  		}
844  
845  		/* No negative values (to prevent underflow, as val will be
846  		 * multiplied by 2).
847  		 */
848  		if (val < 0)
849  			val = 0;
850  		goto set_rcvbuf;
851  
852  	case SO_KEEPALIVE:
853  		if (sk->sk_prot->keepalive)
854  			sk->sk_prot->keepalive(sk, valbool);
855  		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
856  		break;
857  
858  	case SO_OOBINLINE:
859  		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
860  		break;
861  
862  	case SO_NO_CHECK:
863  		sk->sk_no_check_tx = valbool;
864  		break;
865  
866  	case SO_PRIORITY:
867  		if ((val >= 0 && val <= 6) ||
868  		    ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
869  			sk->sk_priority = val;
870  		else
871  			ret = -EPERM;
872  		break;
873  
874  	case SO_LINGER:
875  		if (optlen < sizeof(ling)) {
876  			ret = -EINVAL;	/* 1003.1g */
877  			break;
878  		}
879  		if (copy_from_user(&ling, optval, sizeof(ling))) {
880  			ret = -EFAULT;
881  			break;
882  		}
883  		if (!ling.l_onoff)
884  			sock_reset_flag(sk, SOCK_LINGER);
885  		else {
886  #if (BITS_PER_LONG == 32)
887  			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
888  				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
889  			else
890  #endif
891  				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
892  			sock_set_flag(sk, SOCK_LINGER);
893  		}
894  		break;
895  
896  	case SO_BSDCOMPAT:
897  		sock_warn_obsolete_bsdism("setsockopt");
898  		break;
899  
900  	case SO_PASSCRED:
901  		if (valbool)
902  			set_bit(SOCK_PASSCRED, &sock->flags);
903  		else
904  			clear_bit(SOCK_PASSCRED, &sock->flags);
905  		break;
906  
907  	case SO_TIMESTAMP_OLD:
908  	case SO_TIMESTAMP_NEW:
909  	case SO_TIMESTAMPNS_OLD:
910  	case SO_TIMESTAMPNS_NEW:
911  		if (valbool)  {
912  			if (optname == SO_TIMESTAMP_NEW || optname == SO_TIMESTAMPNS_NEW)
913  				sock_set_flag(sk, SOCK_TSTAMP_NEW);
914  			else
915  				sock_reset_flag(sk, SOCK_TSTAMP_NEW);
916  
917  			if (optname == SO_TIMESTAMP_OLD || optname == SO_TIMESTAMP_NEW)
918  				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
919  			else
920  				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
921  			sock_set_flag(sk, SOCK_RCVTSTAMP);
922  			sock_enable_timestamp(sk, SOCK_TIMESTAMP);
923  		} else {
924  			sock_reset_flag(sk, SOCK_RCVTSTAMP);
925  			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
926  			sock_reset_flag(sk, SOCK_TSTAMP_NEW);
927  		}
928  		break;
929  
930  	case SO_TIMESTAMPING_NEW:
931  		sock_set_flag(sk, SOCK_TSTAMP_NEW);
932  		/* fall through */
933  	case SO_TIMESTAMPING_OLD:
934  		if (val & ~SOF_TIMESTAMPING_MASK) {
935  			ret = -EINVAL;
936  			break;
937  		}
938  
939  		if (val & SOF_TIMESTAMPING_OPT_ID &&
940  		    !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
941  			if (sk->sk_protocol == IPPROTO_TCP &&
942  			    sk->sk_type == SOCK_STREAM) {
943  				if ((1 << sk->sk_state) &
944  				    (TCPF_CLOSE | TCPF_LISTEN)) {
945  					ret = -EINVAL;
946  					break;
947  				}
948  				sk->sk_tskey = tcp_sk(sk)->snd_una;
949  			} else {
950  				sk->sk_tskey = 0;
951  			}
952  		}
953  
954  		if (val & SOF_TIMESTAMPING_OPT_STATS &&
955  		    !(val & SOF_TIMESTAMPING_OPT_TSONLY)) {
956  			ret = -EINVAL;
957  			break;
958  		}
959  
960  		sk->sk_tsflags = val;
961  		if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
962  			sock_enable_timestamp(sk,
963  					      SOCK_TIMESTAMPING_RX_SOFTWARE);
964  		else {
965  			if (optname == SO_TIMESTAMPING_NEW)
966  				sock_reset_flag(sk, SOCK_TSTAMP_NEW);
967  
968  			sock_disable_timestamp(sk,
969  					       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
970  		}
971  		break;
972  
973  	case SO_RCVLOWAT:
974  		if (val < 0)
975  			val = INT_MAX;
976  		if (sock->ops->set_rcvlowat)
977  			ret = sock->ops->set_rcvlowat(sk, val);
978  		else
979  			WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
980  		break;
981  
982  	case SO_RCVTIMEO_OLD:
983  	case SO_RCVTIMEO_NEW:
984  		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen, optname == SO_RCVTIMEO_OLD);
985  		break;
986  
987  	case SO_SNDTIMEO_OLD:
988  	case SO_SNDTIMEO_NEW:
989  		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen, optname == SO_SNDTIMEO_OLD);
990  		break;
991  
992  	case SO_ATTACH_FILTER:
993  		ret = -EINVAL;
994  		if (optlen == sizeof(struct sock_fprog)) {
995  			struct sock_fprog fprog;
996  
997  			ret = -EFAULT;
998  			if (copy_from_user(&fprog, optval, sizeof(fprog)))
999  				break;
1000  
1001  			ret = sk_attach_filter(&fprog, sk);
1002  		}
1003  		break;
1004  
1005  	case SO_ATTACH_BPF:
1006  		ret = -EINVAL;
1007  		if (optlen == sizeof(u32)) {
1008  			u32 ufd;
1009  
1010  			ret = -EFAULT;
1011  			if (copy_from_user(&ufd, optval, sizeof(ufd)))
1012  				break;
1013  
1014  			ret = sk_attach_bpf(ufd, sk);
1015  		}
1016  		break;
1017  
1018  	case SO_ATTACH_REUSEPORT_CBPF:
1019  		ret = -EINVAL;
1020  		if (optlen == sizeof(struct sock_fprog)) {
1021  			struct sock_fprog fprog;
1022  
1023  			ret = -EFAULT;
1024  			if (copy_from_user(&fprog, optval, sizeof(fprog)))
1025  				break;
1026  
1027  			ret = sk_reuseport_attach_filter(&fprog, sk);
1028  		}
1029  		break;
1030  
1031  	case SO_ATTACH_REUSEPORT_EBPF:
1032  		ret = -EINVAL;
1033  		if (optlen == sizeof(u32)) {
1034  			u32 ufd;
1035  
1036  			ret = -EFAULT;
1037  			if (copy_from_user(&ufd, optval, sizeof(ufd)))
1038  				break;
1039  
1040  			ret = sk_reuseport_attach_bpf(ufd, sk);
1041  		}
1042  		break;
1043  
1044  	case SO_DETACH_REUSEPORT_BPF:
1045  		ret = reuseport_detach_prog(sk);
1046  		break;
1047  
1048  	case SO_DETACH_FILTER:
1049  		ret = sk_detach_filter(sk);
1050  		break;
1051  
1052  	case SO_LOCK_FILTER:
1053  		if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
1054  			ret = -EPERM;
1055  		else
1056  			sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
1057  		break;
1058  
1059  	case SO_PASSSEC:
1060  		if (valbool)
1061  			set_bit(SOCK_PASSSEC, &sock->flags);
1062  		else
1063  			clear_bit(SOCK_PASSSEC, &sock->flags);
1064  		break;
1065  	case SO_MARK:
1066  		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1067  			ret = -EPERM;
1068  		} else if (val != sk->sk_mark) {
1069  			sk->sk_mark = val;
1070  			sk_dst_reset(sk);
1071  		}
1072  		break;
1073  
1074  	case SO_RXQ_OVFL:
1075  		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
1076  		break;
1077  
1078  	case SO_WIFI_STATUS:
1079  		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1080  		break;
1081  
1082  	case SO_PEEK_OFF:
1083  		if (sock->ops->set_peek_off)
1084  			ret = sock->ops->set_peek_off(sk, val);
1085  		else
1086  			ret = -EOPNOTSUPP;
1087  		break;
1088  
1089  	case SO_NOFCS:
1090  		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1091  		break;
1092  
1093  	case SO_SELECT_ERR_QUEUE:
1094  		sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1095  		break;
1096  
1097  #ifdef CONFIG_NET_RX_BUSY_POLL
1098  	case SO_BUSY_POLL:
1099  		/* allow unprivileged users to decrease the value */
1100  		if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
1101  			ret = -EPERM;
1102  		else {
1103  			if (val < 0)
1104  				ret = -EINVAL;
1105  			else
1106  				sk->sk_ll_usec = val;
1107  		}
1108  		break;
1109  #endif
1110  
1111  	case SO_MAX_PACING_RATE:
1112  		{
1113  		unsigned long ulval = (val == ~0U) ? ~0UL : val;
1114  
1115  		if (sizeof(ulval) != sizeof(val) &&
1116  		    optlen >= sizeof(ulval) &&
1117  		    get_user(ulval, (unsigned long __user *)optval)) {
1118  			ret = -EFAULT;
1119  			break;
1120  		}
1121  		if (ulval != ~0UL)
1122  			cmpxchg(&sk->sk_pacing_status,
1123  				SK_PACING_NONE,
1124  				SK_PACING_NEEDED);
1125  		sk->sk_max_pacing_rate = ulval;
1126  		sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval);
1127  		break;
1128  		}
1129  	case SO_INCOMING_CPU:
1130  		WRITE_ONCE(sk->sk_incoming_cpu, val);
1131  		break;
1132  
1133  	case SO_CNX_ADVICE:
1134  		if (val == 1)
1135  			dst_negative_advice(sk);
1136  		break;
1137  
1138  	case SO_ZEROCOPY:
1139  		if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) {
1140  			if (!((sk->sk_type == SOCK_STREAM &&
1141  			       sk->sk_protocol == IPPROTO_TCP) ||
1142  			      (sk->sk_type == SOCK_DGRAM &&
1143  			       sk->sk_protocol == IPPROTO_UDP)))
1144  				ret = -ENOTSUPP;
1145  		} else if (sk->sk_family != PF_RDS) {
1146  			ret = -ENOTSUPP;
1147  		}
1148  		if (!ret) {
1149  			if (val < 0 || val > 1)
1150  				ret = -EINVAL;
1151  			else
1152  				sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1153  		}
1154  		break;
1155  
1156  	case SO_TXTIME:
1157  		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1158  			ret = -EPERM;
1159  		} else if (optlen != sizeof(struct sock_txtime)) {
1160  			ret = -EINVAL;
1161  		} else if (copy_from_user(&sk_txtime, optval,
1162  			   sizeof(struct sock_txtime))) {
1163  			ret = -EFAULT;
1164  		} else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) {
1165  			ret = -EINVAL;
1166  		} else {
1167  			sock_valbool_flag(sk, SOCK_TXTIME, true);
1168  			sk->sk_clockid = sk_txtime.clockid;
1169  			sk->sk_txtime_deadline_mode =
1170  				!!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE);
1171  			sk->sk_txtime_report_errors =
1172  				!!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS);
1173  		}
1174  		break;
1175  
1176  	case SO_BINDTOIFINDEX:
1177  		ret = sock_setbindtodevice_locked(sk, val);
1178  		break;
1179  
1180  	default:
1181  		ret = -ENOPROTOOPT;
1182  		break;
1183  	}
1184  	release_sock(sk);
1185  	return ret;
1186  }
1187  EXPORT_SYMBOL(sock_setsockopt);
1188  
1189  
cred_to_ucred(struct pid * pid,const struct cred * cred,struct ucred * ucred)1190  static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1191  			  struct ucred *ucred)
1192  {
1193  	ucred->pid = pid_vnr(pid);
1194  	ucred->uid = ucred->gid = -1;
1195  	if (cred) {
1196  		struct user_namespace *current_ns = current_user_ns();
1197  
1198  		ucred->uid = from_kuid_munged(current_ns, cred->euid);
1199  		ucred->gid = from_kgid_munged(current_ns, cred->egid);
1200  	}
1201  }
1202  
groups_to_user(gid_t __user * dst,const struct group_info * src)1203  static int groups_to_user(gid_t __user *dst, const struct group_info *src)
1204  {
1205  	struct user_namespace *user_ns = current_user_ns();
1206  	int i;
1207  
1208  	for (i = 0; i < src->ngroups; i++)
1209  		if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i))
1210  			return -EFAULT;
1211  
1212  	return 0;
1213  }
1214  
sock_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)1215  int sock_getsockopt(struct socket *sock, int level, int optname,
1216  		    char __user *optval, int __user *optlen)
1217  {
1218  	struct sock *sk = sock->sk;
1219  
1220  	union {
1221  		int val;
1222  		u64 val64;
1223  		unsigned long ulval;
1224  		struct linger ling;
1225  		struct old_timeval32 tm32;
1226  		struct __kernel_old_timeval tm;
1227  		struct  __kernel_sock_timeval stm;
1228  		struct sock_txtime txtime;
1229  	} v;
1230  
1231  	int lv = sizeof(int);
1232  	int len;
1233  
1234  	if (get_user(len, optlen))
1235  		return -EFAULT;
1236  	if (len < 0)
1237  		return -EINVAL;
1238  
1239  	memset(&v, 0, sizeof(v));
1240  
1241  	switch (optname) {
1242  	case SO_DEBUG:
1243  		v.val = sock_flag(sk, SOCK_DBG);
1244  		break;
1245  
1246  	case SO_DONTROUTE:
1247  		v.val = sock_flag(sk, SOCK_LOCALROUTE);
1248  		break;
1249  
1250  	case SO_BROADCAST:
1251  		v.val = sock_flag(sk, SOCK_BROADCAST);
1252  		break;
1253  
1254  	case SO_SNDBUF:
1255  		v.val = sk->sk_sndbuf;
1256  		break;
1257  
1258  	case SO_RCVBUF:
1259  		v.val = sk->sk_rcvbuf;
1260  		break;
1261  
1262  	case SO_REUSEADDR:
1263  		v.val = sk->sk_reuse;
1264  		break;
1265  
1266  	case SO_REUSEPORT:
1267  		v.val = sk->sk_reuseport;
1268  		break;
1269  
1270  	case SO_KEEPALIVE:
1271  		v.val = sock_flag(sk, SOCK_KEEPOPEN);
1272  		break;
1273  
1274  	case SO_TYPE:
1275  		v.val = sk->sk_type;
1276  		break;
1277  
1278  	case SO_PROTOCOL:
1279  		v.val = sk->sk_protocol;
1280  		break;
1281  
1282  	case SO_DOMAIN:
1283  		v.val = sk->sk_family;
1284  		break;
1285  
1286  	case SO_ERROR:
1287  		v.val = -sock_error(sk);
1288  		if (v.val == 0)
1289  			v.val = xchg(&sk->sk_err_soft, 0);
1290  		break;
1291  
1292  	case SO_OOBINLINE:
1293  		v.val = sock_flag(sk, SOCK_URGINLINE);
1294  		break;
1295  
1296  	case SO_NO_CHECK:
1297  		v.val = sk->sk_no_check_tx;
1298  		break;
1299  
1300  	case SO_PRIORITY:
1301  		v.val = sk->sk_priority;
1302  		break;
1303  
1304  	case SO_LINGER:
1305  		lv		= sizeof(v.ling);
1306  		v.ling.l_onoff	= sock_flag(sk, SOCK_LINGER);
1307  		v.ling.l_linger	= sk->sk_lingertime / HZ;
1308  		break;
1309  
1310  	case SO_BSDCOMPAT:
1311  		sock_warn_obsolete_bsdism("getsockopt");
1312  		break;
1313  
1314  	case SO_TIMESTAMP_OLD:
1315  		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1316  				!sock_flag(sk, SOCK_TSTAMP_NEW) &&
1317  				!sock_flag(sk, SOCK_RCVTSTAMPNS);
1318  		break;
1319  
1320  	case SO_TIMESTAMPNS_OLD:
1321  		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW);
1322  		break;
1323  
1324  	case SO_TIMESTAMP_NEW:
1325  		v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW);
1326  		break;
1327  
1328  	case SO_TIMESTAMPNS_NEW:
1329  		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW);
1330  		break;
1331  
1332  	case SO_TIMESTAMPING_OLD:
1333  		v.val = sk->sk_tsflags;
1334  		break;
1335  
1336  	case SO_RCVTIMEO_OLD:
1337  	case SO_RCVTIMEO_NEW:
1338  		lv = sock_get_timeout(sk->sk_rcvtimeo, &v, SO_RCVTIMEO_OLD == optname);
1339  		break;
1340  
1341  	case SO_SNDTIMEO_OLD:
1342  	case SO_SNDTIMEO_NEW:
1343  		lv = sock_get_timeout(sk->sk_sndtimeo, &v, SO_SNDTIMEO_OLD == optname);
1344  		break;
1345  
1346  	case SO_RCVLOWAT:
1347  		v.val = sk->sk_rcvlowat;
1348  		break;
1349  
1350  	case SO_SNDLOWAT:
1351  		v.val = 1;
1352  		break;
1353  
1354  	case SO_PASSCRED:
1355  		v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1356  		break;
1357  
1358  	case SO_PEERCRED:
1359  	{
1360  		struct ucred peercred;
1361  		if (len > sizeof(peercred))
1362  			len = sizeof(peercred);
1363  		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1364  		if (copy_to_user(optval, &peercred, len))
1365  			return -EFAULT;
1366  		goto lenout;
1367  	}
1368  
1369  	case SO_PEERGROUPS:
1370  	{
1371  		int ret, n;
1372  
1373  		if (!sk->sk_peer_cred)
1374  			return -ENODATA;
1375  
1376  		n = sk->sk_peer_cred->group_info->ngroups;
1377  		if (len < n * sizeof(gid_t)) {
1378  			len = n * sizeof(gid_t);
1379  			return put_user(len, optlen) ? -EFAULT : -ERANGE;
1380  		}
1381  		len = n * sizeof(gid_t);
1382  
1383  		ret = groups_to_user((gid_t __user *)optval,
1384  				     sk->sk_peer_cred->group_info);
1385  		if (ret)
1386  			return ret;
1387  		goto lenout;
1388  	}
1389  
1390  	case SO_PEERNAME:
1391  	{
1392  		char address[128];
1393  
1394  		lv = sock->ops->getname(sock, (struct sockaddr *)address, 2);
1395  		if (lv < 0)
1396  			return -ENOTCONN;
1397  		if (lv < len)
1398  			return -EINVAL;
1399  		if (copy_to_user(optval, address, len))
1400  			return -EFAULT;
1401  		goto lenout;
1402  	}
1403  
1404  	/* Dubious BSD thing... Probably nobody even uses it, but
1405  	 * the UNIX standard wants it for whatever reason... -DaveM
1406  	 */
1407  	case SO_ACCEPTCONN:
1408  		v.val = sk->sk_state == TCP_LISTEN;
1409  		break;
1410  
1411  	case SO_PASSSEC:
1412  		v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1413  		break;
1414  
1415  	case SO_PEERSEC:
1416  		return security_socket_getpeersec_stream(sock, optval, optlen, len);
1417  
1418  	case SO_MARK:
1419  		v.val = sk->sk_mark;
1420  		break;
1421  
1422  	case SO_RXQ_OVFL:
1423  		v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1424  		break;
1425  
1426  	case SO_WIFI_STATUS:
1427  		v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1428  		break;
1429  
1430  	case SO_PEEK_OFF:
1431  		if (!sock->ops->set_peek_off)
1432  			return -EOPNOTSUPP;
1433  
1434  		v.val = sk->sk_peek_off;
1435  		break;
1436  	case SO_NOFCS:
1437  		v.val = sock_flag(sk, SOCK_NOFCS);
1438  		break;
1439  
1440  	case SO_BINDTODEVICE:
1441  		return sock_getbindtodevice(sk, optval, optlen, len);
1442  
1443  	case SO_GET_FILTER:
1444  		len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1445  		if (len < 0)
1446  			return len;
1447  
1448  		goto lenout;
1449  
1450  	case SO_LOCK_FILTER:
1451  		v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1452  		break;
1453  
1454  	case SO_BPF_EXTENSIONS:
1455  		v.val = bpf_tell_extensions();
1456  		break;
1457  
1458  	case SO_SELECT_ERR_QUEUE:
1459  		v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1460  		break;
1461  
1462  #ifdef CONFIG_NET_RX_BUSY_POLL
1463  	case SO_BUSY_POLL:
1464  		v.val = sk->sk_ll_usec;
1465  		break;
1466  #endif
1467  
1468  	case SO_MAX_PACING_RATE:
1469  		if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) {
1470  			lv = sizeof(v.ulval);
1471  			v.ulval = sk->sk_max_pacing_rate;
1472  		} else {
1473  			/* 32bit version */
1474  			v.val = min_t(unsigned long, sk->sk_max_pacing_rate, ~0U);
1475  		}
1476  		break;
1477  
1478  	case SO_INCOMING_CPU:
1479  		v.val = READ_ONCE(sk->sk_incoming_cpu);
1480  		break;
1481  
1482  	case SO_MEMINFO:
1483  	{
1484  		u32 meminfo[SK_MEMINFO_VARS];
1485  
1486  		sk_get_meminfo(sk, meminfo);
1487  
1488  		len = min_t(unsigned int, len, sizeof(meminfo));
1489  		if (copy_to_user(optval, &meminfo, len))
1490  			return -EFAULT;
1491  
1492  		goto lenout;
1493  	}
1494  
1495  #ifdef CONFIG_NET_RX_BUSY_POLL
1496  	case SO_INCOMING_NAPI_ID:
1497  		v.val = READ_ONCE(sk->sk_napi_id);
1498  
1499  		/* aggregate non-NAPI IDs down to 0 */
1500  		if (v.val < MIN_NAPI_ID)
1501  			v.val = 0;
1502  
1503  		break;
1504  #endif
1505  
1506  	case SO_COOKIE:
1507  		lv = sizeof(u64);
1508  		if (len < lv)
1509  			return -EINVAL;
1510  		v.val64 = sock_gen_cookie(sk);
1511  		break;
1512  
1513  	case SO_ZEROCOPY:
1514  		v.val = sock_flag(sk, SOCK_ZEROCOPY);
1515  		break;
1516  
1517  	case SO_TXTIME:
1518  		lv = sizeof(v.txtime);
1519  		v.txtime.clockid = sk->sk_clockid;
1520  		v.txtime.flags |= sk->sk_txtime_deadline_mode ?
1521  				  SOF_TXTIME_DEADLINE_MODE : 0;
1522  		v.txtime.flags |= sk->sk_txtime_report_errors ?
1523  				  SOF_TXTIME_REPORT_ERRORS : 0;
1524  		break;
1525  
1526  	case SO_BINDTOIFINDEX:
1527  		v.val = sk->sk_bound_dev_if;
1528  		break;
1529  
1530  	default:
1531  		/* We implement the SO_SNDLOWAT etc to not be settable
1532  		 * (1003.1g 7).
1533  		 */
1534  		return -ENOPROTOOPT;
1535  	}
1536  
1537  	if (len > lv)
1538  		len = lv;
1539  	if (copy_to_user(optval, &v, len))
1540  		return -EFAULT;
1541  lenout:
1542  	if (put_user(len, optlen))
1543  		return -EFAULT;
1544  	return 0;
1545  }
1546  
1547  /*
1548   * Initialize an sk_lock.
1549   *
1550   * (We also register the sk_lock with the lock validator.)
1551   */
sock_lock_init(struct sock * sk)1552  static inline void sock_lock_init(struct sock *sk)
1553  {
1554  	if (sk->sk_kern_sock)
1555  		sock_lock_init_class_and_name(
1556  			sk,
1557  			af_family_kern_slock_key_strings[sk->sk_family],
1558  			af_family_kern_slock_keys + sk->sk_family,
1559  			af_family_kern_key_strings[sk->sk_family],
1560  			af_family_kern_keys + sk->sk_family);
1561  	else
1562  		sock_lock_init_class_and_name(
1563  			sk,
1564  			af_family_slock_key_strings[sk->sk_family],
1565  			af_family_slock_keys + sk->sk_family,
1566  			af_family_key_strings[sk->sk_family],
1567  			af_family_keys + sk->sk_family);
1568  }
1569  
1570  /*
1571   * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1572   * even temporarly, because of RCU lookups. sk_node should also be left as is.
1573   * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1574   */
sock_copy(struct sock * nsk,const struct sock * osk)1575  static void sock_copy(struct sock *nsk, const struct sock *osk)
1576  {
1577  #ifdef CONFIG_SECURITY_NETWORK
1578  	void *sptr = nsk->sk_security;
1579  #endif
1580  	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1581  
1582  	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1583  	       osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1584  
1585  #ifdef CONFIG_SECURITY_NETWORK
1586  	nsk->sk_security = sptr;
1587  	security_sk_clone(osk, nsk);
1588  #endif
1589  }
1590  
sk_prot_alloc(struct proto * prot,gfp_t priority,int family)1591  static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1592  		int family)
1593  {
1594  	struct sock *sk;
1595  	struct kmem_cache *slab;
1596  
1597  	slab = prot->slab;
1598  	if (slab != NULL) {
1599  		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1600  		if (!sk)
1601  			return sk;
1602  		if (want_init_on_alloc(priority))
1603  			sk_prot_clear_nulls(sk, prot->obj_size);
1604  	} else
1605  		sk = kmalloc(prot->obj_size, priority);
1606  
1607  	if (sk != NULL) {
1608  		if (security_sk_alloc(sk, family, priority))
1609  			goto out_free;
1610  
1611  		if (!try_module_get(prot->owner))
1612  			goto out_free_sec;
1613  		sk_tx_queue_clear(sk);
1614  	}
1615  
1616  	return sk;
1617  
1618  out_free_sec:
1619  	security_sk_free(sk);
1620  out_free:
1621  	if (slab != NULL)
1622  		kmem_cache_free(slab, sk);
1623  	else
1624  		kfree(sk);
1625  	return NULL;
1626  }
1627  
sk_prot_free(struct proto * prot,struct sock * sk)1628  static void sk_prot_free(struct proto *prot, struct sock *sk)
1629  {
1630  	struct kmem_cache *slab;
1631  	struct module *owner;
1632  
1633  	owner = prot->owner;
1634  	slab = prot->slab;
1635  
1636  	cgroup_sk_free(&sk->sk_cgrp_data);
1637  	mem_cgroup_sk_free(sk);
1638  	security_sk_free(sk);
1639  	if (slab != NULL)
1640  		kmem_cache_free(slab, sk);
1641  	else
1642  		kfree(sk);
1643  	module_put(owner);
1644  }
1645  
1646  /**
1647   *	sk_alloc - All socket objects are allocated here
1648   *	@net: the applicable net namespace
1649   *	@family: protocol family
1650   *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1651   *	@prot: struct proto associated with this new sock instance
1652   *	@kern: is this to be a kernel socket?
1653   */
sk_alloc(struct net * net,int family,gfp_t priority,struct proto * prot,int kern)1654  struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1655  		      struct proto *prot, int kern)
1656  {
1657  	struct sock *sk;
1658  
1659  	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1660  	if (sk) {
1661  		sk->sk_family = family;
1662  		/*
1663  		 * See comment in struct sock definition to understand
1664  		 * why we need sk_prot_creator -acme
1665  		 */
1666  		sk->sk_prot = sk->sk_prot_creator = prot;
1667  		sk->sk_kern_sock = kern;
1668  		sock_lock_init(sk);
1669  		sk->sk_net_refcnt = kern ? 0 : 1;
1670  		if (likely(sk->sk_net_refcnt)) {
1671  			get_net(net);
1672  			sock_inuse_add(net, 1);
1673  		}
1674  
1675  		sock_net_set(sk, net);
1676  		refcount_set(&sk->sk_wmem_alloc, 1);
1677  
1678  		mem_cgroup_sk_alloc(sk);
1679  		cgroup_sk_alloc(&sk->sk_cgrp_data);
1680  		sock_update_classid(&sk->sk_cgrp_data);
1681  		sock_update_netprioidx(&sk->sk_cgrp_data);
1682  	}
1683  
1684  	return sk;
1685  }
1686  EXPORT_SYMBOL(sk_alloc);
1687  
1688  /* Sockets having SOCK_RCU_FREE will call this function after one RCU
1689   * grace period. This is the case for UDP sockets and TCP listeners.
1690   */
__sk_destruct(struct rcu_head * head)1691  static void __sk_destruct(struct rcu_head *head)
1692  {
1693  	struct sock *sk = container_of(head, struct sock, sk_rcu);
1694  	struct sk_filter *filter;
1695  
1696  	if (sk->sk_destruct)
1697  		sk->sk_destruct(sk);
1698  
1699  	filter = rcu_dereference_check(sk->sk_filter,
1700  				       refcount_read(&sk->sk_wmem_alloc) == 0);
1701  	if (filter) {
1702  		sk_filter_uncharge(sk, filter);
1703  		RCU_INIT_POINTER(sk->sk_filter, NULL);
1704  	}
1705  
1706  	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1707  
1708  #ifdef CONFIG_BPF_SYSCALL
1709  	bpf_sk_storage_free(sk);
1710  #endif
1711  
1712  	if (atomic_read(&sk->sk_omem_alloc))
1713  		pr_debug("%s: optmem leakage (%d bytes) detected\n",
1714  			 __func__, atomic_read(&sk->sk_omem_alloc));
1715  
1716  	if (sk->sk_frag.page) {
1717  		put_page(sk->sk_frag.page);
1718  		sk->sk_frag.page = NULL;
1719  	}
1720  
1721  	if (sk->sk_peer_cred)
1722  		put_cred(sk->sk_peer_cred);
1723  	put_pid(sk->sk_peer_pid);
1724  	if (likely(sk->sk_net_refcnt))
1725  		put_net(sock_net(sk));
1726  	sk_prot_free(sk->sk_prot_creator, sk);
1727  }
1728  
sk_destruct(struct sock * sk)1729  void sk_destruct(struct sock *sk)
1730  {
1731  	bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE);
1732  
1733  	if (rcu_access_pointer(sk->sk_reuseport_cb)) {
1734  		reuseport_detach_sock(sk);
1735  		use_call_rcu = true;
1736  	}
1737  
1738  	if (use_call_rcu)
1739  		call_rcu(&sk->sk_rcu, __sk_destruct);
1740  	else
1741  		__sk_destruct(&sk->sk_rcu);
1742  }
1743  
__sk_free(struct sock * sk)1744  static void __sk_free(struct sock *sk)
1745  {
1746  	if (likely(sk->sk_net_refcnt))
1747  		sock_inuse_add(sock_net(sk), -1);
1748  
1749  	if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
1750  		sock_diag_broadcast_destroy(sk);
1751  	else
1752  		sk_destruct(sk);
1753  }
1754  
sk_free(struct sock * sk)1755  void sk_free(struct sock *sk)
1756  {
1757  	/*
1758  	 * We subtract one from sk_wmem_alloc and can know if
1759  	 * some packets are still in some tx queue.
1760  	 * If not null, sock_wfree() will call __sk_free(sk) later
1761  	 */
1762  	if (refcount_dec_and_test(&sk->sk_wmem_alloc))
1763  		__sk_free(sk);
1764  }
1765  EXPORT_SYMBOL(sk_free);
1766  
sk_init_common(struct sock * sk)1767  static void sk_init_common(struct sock *sk)
1768  {
1769  	skb_queue_head_init(&sk->sk_receive_queue);
1770  	skb_queue_head_init(&sk->sk_write_queue);
1771  	skb_queue_head_init(&sk->sk_error_queue);
1772  
1773  	rwlock_init(&sk->sk_callback_lock);
1774  	lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
1775  			af_rlock_keys + sk->sk_family,
1776  			af_family_rlock_key_strings[sk->sk_family]);
1777  	lockdep_set_class_and_name(&sk->sk_write_queue.lock,
1778  			af_wlock_keys + sk->sk_family,
1779  			af_family_wlock_key_strings[sk->sk_family]);
1780  	lockdep_set_class_and_name(&sk->sk_error_queue.lock,
1781  			af_elock_keys + sk->sk_family,
1782  			af_family_elock_key_strings[sk->sk_family]);
1783  	lockdep_set_class_and_name(&sk->sk_callback_lock,
1784  			af_callback_keys + sk->sk_family,
1785  			af_family_clock_key_strings[sk->sk_family]);
1786  }
1787  
1788  /**
1789   *	sk_clone_lock - clone a socket, and lock its clone
1790   *	@sk: the socket to clone
1791   *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1792   *
1793   *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1794   */
sk_clone_lock(const struct sock * sk,const gfp_t priority)1795  struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1796  {
1797  	struct sock *newsk;
1798  	bool is_charged = true;
1799  
1800  	newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1801  	if (newsk != NULL) {
1802  		struct sk_filter *filter;
1803  
1804  		sock_copy(newsk, sk);
1805  
1806  		newsk->sk_prot_creator = sk->sk_prot;
1807  
1808  		/* SANITY */
1809  		if (likely(newsk->sk_net_refcnt))
1810  			get_net(sock_net(newsk));
1811  		sk_node_init(&newsk->sk_node);
1812  		sock_lock_init(newsk);
1813  		bh_lock_sock(newsk);
1814  		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1815  		newsk->sk_backlog.len = 0;
1816  
1817  		atomic_set(&newsk->sk_rmem_alloc, 0);
1818  		/*
1819  		 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1820  		 */
1821  		refcount_set(&newsk->sk_wmem_alloc, 1);
1822  		atomic_set(&newsk->sk_omem_alloc, 0);
1823  		sk_init_common(newsk);
1824  
1825  		newsk->sk_dst_cache	= NULL;
1826  		newsk->sk_dst_pending_confirm = 0;
1827  		newsk->sk_wmem_queued	= 0;
1828  		newsk->sk_forward_alloc = 0;
1829  		atomic_set(&newsk->sk_drops, 0);
1830  		newsk->sk_send_head	= NULL;
1831  		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1832  		atomic_set(&newsk->sk_zckey, 0);
1833  
1834  		sock_reset_flag(newsk, SOCK_DONE);
1835  		mem_cgroup_sk_alloc(newsk);
1836  		cgroup_sk_alloc(&newsk->sk_cgrp_data);
1837  
1838  		rcu_read_lock();
1839  		filter = rcu_dereference(sk->sk_filter);
1840  		if (filter != NULL)
1841  			/* though it's an empty new sock, the charging may fail
1842  			 * if sysctl_optmem_max was changed between creation of
1843  			 * original socket and cloning
1844  			 */
1845  			is_charged = sk_filter_charge(newsk, filter);
1846  		RCU_INIT_POINTER(newsk->sk_filter, filter);
1847  		rcu_read_unlock();
1848  
1849  		if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
1850  			/* We need to make sure that we don't uncharge the new
1851  			 * socket if we couldn't charge it in the first place
1852  			 * as otherwise we uncharge the parent's filter.
1853  			 */
1854  			if (!is_charged)
1855  				RCU_INIT_POINTER(newsk->sk_filter, NULL);
1856  			sk_free_unlock_clone(newsk);
1857  			newsk = NULL;
1858  			goto out;
1859  		}
1860  		RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
1861  
1862  		if (bpf_sk_storage_clone(sk, newsk)) {
1863  			sk_free_unlock_clone(newsk);
1864  			newsk = NULL;
1865  			goto out;
1866  		}
1867  
1868  		newsk->sk_err	   = 0;
1869  		newsk->sk_err_soft = 0;
1870  		newsk->sk_priority = 0;
1871  		newsk->sk_incoming_cpu = raw_smp_processor_id();
1872  		if (likely(newsk->sk_net_refcnt))
1873  			sock_inuse_add(sock_net(newsk), 1);
1874  
1875  		/*
1876  		 * Before updating sk_refcnt, we must commit prior changes to memory
1877  		 * (Documentation/RCU/rculist_nulls.txt for details)
1878  		 */
1879  		smp_wmb();
1880  		refcount_set(&newsk->sk_refcnt, 2);
1881  
1882  		/*
1883  		 * Increment the counter in the same struct proto as the master
1884  		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1885  		 * is the same as sk->sk_prot->socks, as this field was copied
1886  		 * with memcpy).
1887  		 *
1888  		 * This _changes_ the previous behaviour, where
1889  		 * tcp_create_openreq_child always was incrementing the
1890  		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1891  		 * to be taken into account in all callers. -acme
1892  		 */
1893  		sk_refcnt_debug_inc(newsk);
1894  		sk_set_socket(newsk, NULL);
1895  		RCU_INIT_POINTER(newsk->sk_wq, NULL);
1896  
1897  		if (newsk->sk_prot->sockets_allocated)
1898  			sk_sockets_allocated_inc(newsk);
1899  
1900  		if (sock_needs_netstamp(sk) &&
1901  		    newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1902  			net_enable_timestamp();
1903  	}
1904  out:
1905  	return newsk;
1906  }
1907  EXPORT_SYMBOL_GPL(sk_clone_lock);
1908  
sk_free_unlock_clone(struct sock * sk)1909  void sk_free_unlock_clone(struct sock *sk)
1910  {
1911  	/* It is still raw copy of parent, so invalidate
1912  	 * destructor and make plain sk_free() */
1913  	sk->sk_destruct = NULL;
1914  	bh_unlock_sock(sk);
1915  	sk_free(sk);
1916  }
1917  EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
1918  
sk_setup_caps(struct sock * sk,struct dst_entry * dst)1919  void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1920  {
1921  	u32 max_segs = 1;
1922  
1923  	sk_dst_set(sk, dst);
1924  	sk->sk_route_caps = dst->dev->features | sk->sk_route_forced_caps;
1925  	if (sk->sk_route_caps & NETIF_F_GSO)
1926  		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1927  	sk->sk_route_caps &= ~sk->sk_route_nocaps;
1928  	if (sk_can_gso(sk)) {
1929  		if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
1930  			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1931  		} else {
1932  			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1933  			sk->sk_gso_max_size = dst->dev->gso_max_size;
1934  			max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
1935  		}
1936  	}
1937  	sk->sk_gso_max_segs = max_segs;
1938  }
1939  EXPORT_SYMBOL_GPL(sk_setup_caps);
1940  
1941  /*
1942   *	Simple resource managers for sockets.
1943   */
1944  
1945  
1946  /*
1947   * Write buffer destructor automatically called from kfree_skb.
1948   */
sock_wfree(struct sk_buff * skb)1949  void sock_wfree(struct sk_buff *skb)
1950  {
1951  	struct sock *sk = skb->sk;
1952  	unsigned int len = skb->truesize;
1953  
1954  	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1955  		/*
1956  		 * Keep a reference on sk_wmem_alloc, this will be released
1957  		 * after sk_write_space() call
1958  		 */
1959  		WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
1960  		sk->sk_write_space(sk);
1961  		len = 1;
1962  	}
1963  	/*
1964  	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1965  	 * could not do because of in-flight packets
1966  	 */
1967  	if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
1968  		__sk_free(sk);
1969  }
1970  EXPORT_SYMBOL(sock_wfree);
1971  
1972  /* This variant of sock_wfree() is used by TCP,
1973   * since it sets SOCK_USE_WRITE_QUEUE.
1974   */
__sock_wfree(struct sk_buff * skb)1975  void __sock_wfree(struct sk_buff *skb)
1976  {
1977  	struct sock *sk = skb->sk;
1978  
1979  	if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
1980  		__sk_free(sk);
1981  }
1982  
skb_set_owner_w(struct sk_buff * skb,struct sock * sk)1983  void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1984  {
1985  	skb_orphan(skb);
1986  	skb->sk = sk;
1987  #ifdef CONFIG_INET
1988  	if (unlikely(!sk_fullsock(sk))) {
1989  		skb->destructor = sock_edemux;
1990  		sock_hold(sk);
1991  		return;
1992  	}
1993  #endif
1994  	skb->destructor = sock_wfree;
1995  	skb_set_hash_from_sk(skb, sk);
1996  	/*
1997  	 * We used to take a refcount on sk, but following operation
1998  	 * is enough to guarantee sk_free() wont free this sock until
1999  	 * all in-flight packets are completed
2000  	 */
2001  	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
2002  }
2003  EXPORT_SYMBOL(skb_set_owner_w);
2004  
can_skb_orphan_partial(const struct sk_buff * skb)2005  static bool can_skb_orphan_partial(const struct sk_buff *skb)
2006  {
2007  #ifdef CONFIG_TLS_DEVICE
2008  	/* Drivers depend on in-order delivery for crypto offload,
2009  	 * partial orphan breaks out-of-order-OK logic.
2010  	 */
2011  	if (skb->decrypted)
2012  		return false;
2013  #endif
2014  	return (skb->destructor == sock_wfree ||
2015  		(IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree));
2016  }
2017  
2018  /* This helper is used by netem, as it can hold packets in its
2019   * delay queue. We want to allow the owner socket to send more
2020   * packets, as if they were already TX completed by a typical driver.
2021   * But we also want to keep skb->sk set because some packet schedulers
2022   * rely on it (sch_fq for example).
2023   */
skb_orphan_partial(struct sk_buff * skb)2024  void skb_orphan_partial(struct sk_buff *skb)
2025  {
2026  	if (skb_is_tcp_pure_ack(skb))
2027  		return;
2028  
2029  	if (can_skb_orphan_partial(skb)) {
2030  		struct sock *sk = skb->sk;
2031  
2032  		if (refcount_inc_not_zero(&sk->sk_refcnt)) {
2033  			WARN_ON(refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc));
2034  			skb->destructor = sock_efree;
2035  		}
2036  	} else {
2037  		skb_orphan(skb);
2038  	}
2039  }
2040  EXPORT_SYMBOL(skb_orphan_partial);
2041  
2042  /*
2043   * Read buffer destructor automatically called from kfree_skb.
2044   */
sock_rfree(struct sk_buff * skb)2045  void sock_rfree(struct sk_buff *skb)
2046  {
2047  	struct sock *sk = skb->sk;
2048  	unsigned int len = skb->truesize;
2049  
2050  	atomic_sub(len, &sk->sk_rmem_alloc);
2051  	sk_mem_uncharge(sk, len);
2052  }
2053  EXPORT_SYMBOL(sock_rfree);
2054  
2055  /*
2056   * Buffer destructor for skbs that are not used directly in read or write
2057   * path, e.g. for error handler skbs. Automatically called from kfree_skb.
2058   */
sock_efree(struct sk_buff * skb)2059  void sock_efree(struct sk_buff *skb)
2060  {
2061  	sock_put(skb->sk);
2062  }
2063  EXPORT_SYMBOL(sock_efree);
2064  
sock_i_uid(struct sock * sk)2065  kuid_t sock_i_uid(struct sock *sk)
2066  {
2067  	kuid_t uid;
2068  
2069  	read_lock_bh(&sk->sk_callback_lock);
2070  	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
2071  	read_unlock_bh(&sk->sk_callback_lock);
2072  	return uid;
2073  }
2074  EXPORT_SYMBOL(sock_i_uid);
2075  
sock_i_ino(struct sock * sk)2076  unsigned long sock_i_ino(struct sock *sk)
2077  {
2078  	unsigned long ino;
2079  
2080  	read_lock_bh(&sk->sk_callback_lock);
2081  	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
2082  	read_unlock_bh(&sk->sk_callback_lock);
2083  	return ino;
2084  }
2085  EXPORT_SYMBOL(sock_i_ino);
2086  
2087  /*
2088   * Allocate a skb from the socket's send buffer.
2089   */
sock_wmalloc(struct sock * sk,unsigned long size,int force,gfp_t priority)2090  struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
2091  			     gfp_t priority)
2092  {
2093  	if (force ||
2094  	    refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) {
2095  		struct sk_buff *skb = alloc_skb(size, priority);
2096  
2097  		if (skb) {
2098  			skb_set_owner_w(skb, sk);
2099  			return skb;
2100  		}
2101  	}
2102  	return NULL;
2103  }
2104  EXPORT_SYMBOL(sock_wmalloc);
2105  
sock_ofree(struct sk_buff * skb)2106  static void sock_ofree(struct sk_buff *skb)
2107  {
2108  	struct sock *sk = skb->sk;
2109  
2110  	atomic_sub(skb->truesize, &sk->sk_omem_alloc);
2111  }
2112  
sock_omalloc(struct sock * sk,unsigned long size,gfp_t priority)2113  struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
2114  			     gfp_t priority)
2115  {
2116  	struct sk_buff *skb;
2117  
2118  	/* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
2119  	if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
2120  	    sysctl_optmem_max)
2121  		return NULL;
2122  
2123  	skb = alloc_skb(size, priority);
2124  	if (!skb)
2125  		return NULL;
2126  
2127  	atomic_add(skb->truesize, &sk->sk_omem_alloc);
2128  	skb->sk = sk;
2129  	skb->destructor = sock_ofree;
2130  	return skb;
2131  }
2132  
2133  /*
2134   * Allocate a memory block from the socket's option memory buffer.
2135   */
sock_kmalloc(struct sock * sk,int size,gfp_t priority)2136  void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
2137  {
2138  	if ((unsigned int)size <= sysctl_optmem_max &&
2139  	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
2140  		void *mem;
2141  		/* First do the add, to avoid the race if kmalloc
2142  		 * might sleep.
2143  		 */
2144  		atomic_add(size, &sk->sk_omem_alloc);
2145  		mem = kmalloc(size, priority);
2146  		if (mem)
2147  			return mem;
2148  		atomic_sub(size, &sk->sk_omem_alloc);
2149  	}
2150  	return NULL;
2151  }
2152  EXPORT_SYMBOL(sock_kmalloc);
2153  
2154  /* Free an option memory block. Note, we actually want the inline
2155   * here as this allows gcc to detect the nullify and fold away the
2156   * condition entirely.
2157   */
__sock_kfree_s(struct sock * sk,void * mem,int size,const bool nullify)2158  static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
2159  				  const bool nullify)
2160  {
2161  	if (WARN_ON_ONCE(!mem))
2162  		return;
2163  	if (nullify)
2164  		kzfree(mem);
2165  	else
2166  		kfree(mem);
2167  	atomic_sub(size, &sk->sk_omem_alloc);
2168  }
2169  
sock_kfree_s(struct sock * sk,void * mem,int size)2170  void sock_kfree_s(struct sock *sk, void *mem, int size)
2171  {
2172  	__sock_kfree_s(sk, mem, size, false);
2173  }
2174  EXPORT_SYMBOL(sock_kfree_s);
2175  
sock_kzfree_s(struct sock * sk,void * mem,int size)2176  void sock_kzfree_s(struct sock *sk, void *mem, int size)
2177  {
2178  	__sock_kfree_s(sk, mem, size, true);
2179  }
2180  EXPORT_SYMBOL(sock_kzfree_s);
2181  
2182  /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2183     I think, these locks should be removed for datagram sockets.
2184   */
sock_wait_for_wmem(struct sock * sk,long timeo)2185  static long sock_wait_for_wmem(struct sock *sk, long timeo)
2186  {
2187  	DEFINE_WAIT(wait);
2188  
2189  	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2190  	for (;;) {
2191  		if (!timeo)
2192  			break;
2193  		if (signal_pending(current))
2194  			break;
2195  		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2196  		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2197  		if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf))
2198  			break;
2199  		if (sk->sk_shutdown & SEND_SHUTDOWN)
2200  			break;
2201  		if (sk->sk_err)
2202  			break;
2203  		timeo = schedule_timeout(timeo);
2204  	}
2205  	finish_wait(sk_sleep(sk), &wait);
2206  	return timeo;
2207  }
2208  
2209  
2210  /*
2211   *	Generic send/receive buffer handlers
2212   */
2213  
sock_alloc_send_pskb(struct sock * sk,unsigned long header_len,unsigned long data_len,int noblock,int * errcode,int max_page_order)2214  struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2215  				     unsigned long data_len, int noblock,
2216  				     int *errcode, int max_page_order)
2217  {
2218  	struct sk_buff *skb;
2219  	long timeo;
2220  	int err;
2221  
2222  	timeo = sock_sndtimeo(sk, noblock);
2223  	for (;;) {
2224  		err = sock_error(sk);
2225  		if (err != 0)
2226  			goto failure;
2227  
2228  		err = -EPIPE;
2229  		if (sk->sk_shutdown & SEND_SHUTDOWN)
2230  			goto failure;
2231  
2232  		if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf))
2233  			break;
2234  
2235  		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2236  		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2237  		err = -EAGAIN;
2238  		if (!timeo)
2239  			goto failure;
2240  		if (signal_pending(current))
2241  			goto interrupted;
2242  		timeo = sock_wait_for_wmem(sk, timeo);
2243  	}
2244  	skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2245  				   errcode, sk->sk_allocation);
2246  	if (skb)
2247  		skb_set_owner_w(skb, sk);
2248  	return skb;
2249  
2250  interrupted:
2251  	err = sock_intr_errno(timeo);
2252  failure:
2253  	*errcode = err;
2254  	return NULL;
2255  }
2256  EXPORT_SYMBOL(sock_alloc_send_pskb);
2257  
sock_alloc_send_skb(struct sock * sk,unsigned long size,int noblock,int * errcode)2258  struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
2259  				    int noblock, int *errcode)
2260  {
2261  	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
2262  }
2263  EXPORT_SYMBOL(sock_alloc_send_skb);
2264  
__sock_cmsg_send(struct sock * sk,struct msghdr * msg,struct cmsghdr * cmsg,struct sockcm_cookie * sockc)2265  int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
2266  		     struct sockcm_cookie *sockc)
2267  {
2268  	u32 tsflags;
2269  
2270  	switch (cmsg->cmsg_type) {
2271  	case SO_MARK:
2272  		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2273  			return -EPERM;
2274  		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2275  			return -EINVAL;
2276  		sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2277  		break;
2278  	case SO_TIMESTAMPING_OLD:
2279  		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2280  			return -EINVAL;
2281  
2282  		tsflags = *(u32 *)CMSG_DATA(cmsg);
2283  		if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2284  			return -EINVAL;
2285  
2286  		sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2287  		sockc->tsflags |= tsflags;
2288  		break;
2289  	case SCM_TXTIME:
2290  		if (!sock_flag(sk, SOCK_TXTIME))
2291  			return -EINVAL;
2292  		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64)))
2293  			return -EINVAL;
2294  		sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg));
2295  		break;
2296  	/* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2297  	case SCM_RIGHTS:
2298  	case SCM_CREDENTIALS:
2299  		break;
2300  	default:
2301  		return -EINVAL;
2302  	}
2303  	return 0;
2304  }
2305  EXPORT_SYMBOL(__sock_cmsg_send);
2306  
sock_cmsg_send(struct sock * sk,struct msghdr * msg,struct sockcm_cookie * sockc)2307  int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2308  		   struct sockcm_cookie *sockc)
2309  {
2310  	struct cmsghdr *cmsg;
2311  	int ret;
2312  
2313  	for_each_cmsghdr(cmsg, msg) {
2314  		if (!CMSG_OK(msg, cmsg))
2315  			return -EINVAL;
2316  		if (cmsg->cmsg_level != SOL_SOCKET)
2317  			continue;
2318  		ret = __sock_cmsg_send(sk, msg, cmsg, sockc);
2319  		if (ret)
2320  			return ret;
2321  	}
2322  	return 0;
2323  }
2324  EXPORT_SYMBOL(sock_cmsg_send);
2325  
sk_enter_memory_pressure(struct sock * sk)2326  static void sk_enter_memory_pressure(struct sock *sk)
2327  {
2328  	if (!sk->sk_prot->enter_memory_pressure)
2329  		return;
2330  
2331  	sk->sk_prot->enter_memory_pressure(sk);
2332  }
2333  
sk_leave_memory_pressure(struct sock * sk)2334  static void sk_leave_memory_pressure(struct sock *sk)
2335  {
2336  	if (sk->sk_prot->leave_memory_pressure) {
2337  		sk->sk_prot->leave_memory_pressure(sk);
2338  	} else {
2339  		unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
2340  
2341  		if (memory_pressure && READ_ONCE(*memory_pressure))
2342  			WRITE_ONCE(*memory_pressure, 0);
2343  	}
2344  }
2345  
2346  /* On 32bit arches, an skb frag is limited to 2^15 */
2347  #define SKB_FRAG_PAGE_ORDER	get_order(32768)
2348  DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2349  
2350  /**
2351   * skb_page_frag_refill - check that a page_frag contains enough room
2352   * @sz: minimum size of the fragment we want to get
2353   * @pfrag: pointer to page_frag
2354   * @gfp: priority for memory allocation
2355   *
2356   * Note: While this allocator tries to use high order pages, there is
2357   * no guarantee that allocations succeed. Therefore, @sz MUST be
2358   * less or equal than PAGE_SIZE.
2359   */
skb_page_frag_refill(unsigned int sz,struct page_frag * pfrag,gfp_t gfp)2360  bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
2361  {
2362  	if (pfrag->page) {
2363  		if (page_ref_count(pfrag->page) == 1) {
2364  			pfrag->offset = 0;
2365  			return true;
2366  		}
2367  		if (pfrag->offset + sz <= pfrag->size)
2368  			return true;
2369  		put_page(pfrag->page);
2370  	}
2371  
2372  	pfrag->offset = 0;
2373  	if (SKB_FRAG_PAGE_ORDER &&
2374  	    !static_branch_unlikely(&net_high_order_alloc_disable_key)) {
2375  		/* Avoid direct reclaim but allow kswapd to wake */
2376  		pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2377  					  __GFP_COMP | __GFP_NOWARN |
2378  					  __GFP_NORETRY,
2379  					  SKB_FRAG_PAGE_ORDER);
2380  		if (likely(pfrag->page)) {
2381  			pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2382  			return true;
2383  		}
2384  	}
2385  	pfrag->page = alloc_page(gfp);
2386  	if (likely(pfrag->page)) {
2387  		pfrag->size = PAGE_SIZE;
2388  		return true;
2389  	}
2390  	return false;
2391  }
2392  EXPORT_SYMBOL(skb_page_frag_refill);
2393  
sk_page_frag_refill(struct sock * sk,struct page_frag * pfrag)2394  bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2395  {
2396  	if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2397  		return true;
2398  
2399  	sk_enter_memory_pressure(sk);
2400  	sk_stream_moderate_sndbuf(sk);
2401  	return false;
2402  }
2403  EXPORT_SYMBOL(sk_page_frag_refill);
2404  
__lock_sock(struct sock * sk)2405  static void __lock_sock(struct sock *sk)
2406  	__releases(&sk->sk_lock.slock)
2407  	__acquires(&sk->sk_lock.slock)
2408  {
2409  	DEFINE_WAIT(wait);
2410  
2411  	for (;;) {
2412  		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2413  					TASK_UNINTERRUPTIBLE);
2414  		spin_unlock_bh(&sk->sk_lock.slock);
2415  		schedule();
2416  		spin_lock_bh(&sk->sk_lock.slock);
2417  		if (!sock_owned_by_user(sk))
2418  			break;
2419  	}
2420  	finish_wait(&sk->sk_lock.wq, &wait);
2421  }
2422  
__release_sock(struct sock * sk)2423  void __release_sock(struct sock *sk)
2424  	__releases(&sk->sk_lock.slock)
2425  	__acquires(&sk->sk_lock.slock)
2426  {
2427  	struct sk_buff *skb, *next;
2428  
2429  	while ((skb = sk->sk_backlog.head) != NULL) {
2430  		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2431  
2432  		spin_unlock_bh(&sk->sk_lock.slock);
2433  
2434  		do {
2435  			next = skb->next;
2436  			prefetch(next);
2437  			WARN_ON_ONCE(skb_dst_is_noref(skb));
2438  			skb_mark_not_on_list(skb);
2439  			sk_backlog_rcv(sk, skb);
2440  
2441  			cond_resched();
2442  
2443  			skb = next;
2444  		} while (skb != NULL);
2445  
2446  		spin_lock_bh(&sk->sk_lock.slock);
2447  	}
2448  
2449  	/*
2450  	 * Doing the zeroing here guarantee we can not loop forever
2451  	 * while a wild producer attempts to flood us.
2452  	 */
2453  	sk->sk_backlog.len = 0;
2454  }
2455  
__sk_flush_backlog(struct sock * sk)2456  void __sk_flush_backlog(struct sock *sk)
2457  {
2458  	spin_lock_bh(&sk->sk_lock.slock);
2459  	__release_sock(sk);
2460  	spin_unlock_bh(&sk->sk_lock.slock);
2461  }
2462  
2463  /**
2464   * sk_wait_data - wait for data to arrive at sk_receive_queue
2465   * @sk:    sock to wait on
2466   * @timeo: for how long
2467   * @skb:   last skb seen on sk_receive_queue
2468   *
2469   * Now socket state including sk->sk_err is changed only under lock,
2470   * hence we may omit checks after joining wait queue.
2471   * We check receive queue before schedule() only as optimization;
2472   * it is very likely that release_sock() added new data.
2473   */
sk_wait_data(struct sock * sk,long * timeo,const struct sk_buff * skb)2474  int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2475  {
2476  	DEFINE_WAIT_FUNC(wait, woken_wake_function);
2477  	int rc;
2478  
2479  	add_wait_queue(sk_sleep(sk), &wait);
2480  	sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2481  	rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
2482  	sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2483  	remove_wait_queue(sk_sleep(sk), &wait);
2484  	return rc;
2485  }
2486  EXPORT_SYMBOL(sk_wait_data);
2487  
2488  /**
2489   *	__sk_mem_raise_allocated - increase memory_allocated
2490   *	@sk: socket
2491   *	@size: memory size to allocate
2492   *	@amt: pages to allocate
2493   *	@kind: allocation type
2494   *
2495   *	Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
2496   */
__sk_mem_raise_allocated(struct sock * sk,int size,int amt,int kind)2497  int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
2498  {
2499  	struct proto *prot = sk->sk_prot;
2500  	long allocated = sk_memory_allocated_add(sk, amt);
2501  	bool charged = true;
2502  
2503  	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
2504  	    !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt)))
2505  		goto suppress_allocation;
2506  
2507  	/* Under limit. */
2508  	if (allocated <= sk_prot_mem_limits(sk, 0)) {
2509  		sk_leave_memory_pressure(sk);
2510  		return 1;
2511  	}
2512  
2513  	/* Under pressure. */
2514  	if (allocated > sk_prot_mem_limits(sk, 1))
2515  		sk_enter_memory_pressure(sk);
2516  
2517  	/* Over hard limit. */
2518  	if (allocated > sk_prot_mem_limits(sk, 2))
2519  		goto suppress_allocation;
2520  
2521  	/* guarantee minimum buffer size under pressure */
2522  	if (kind == SK_MEM_RECV) {
2523  		if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
2524  			return 1;
2525  
2526  	} else { /* SK_MEM_SEND */
2527  		int wmem0 = sk_get_wmem0(sk, prot);
2528  
2529  		if (sk->sk_type == SOCK_STREAM) {
2530  			if (sk->sk_wmem_queued < wmem0)
2531  				return 1;
2532  		} else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
2533  				return 1;
2534  		}
2535  	}
2536  
2537  	if (sk_has_memory_pressure(sk)) {
2538  		u64 alloc;
2539  
2540  		if (!sk_under_memory_pressure(sk))
2541  			return 1;
2542  		alloc = sk_sockets_allocated_read_positive(sk);
2543  		if (sk_prot_mem_limits(sk, 2) > alloc *
2544  		    sk_mem_pages(sk->sk_wmem_queued +
2545  				 atomic_read(&sk->sk_rmem_alloc) +
2546  				 sk->sk_forward_alloc))
2547  			return 1;
2548  	}
2549  
2550  suppress_allocation:
2551  
2552  	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2553  		sk_stream_moderate_sndbuf(sk);
2554  
2555  		/* Fail only if socket is _under_ its sndbuf.
2556  		 * In this case we cannot block, so that we have to fail.
2557  		 */
2558  		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2559  			return 1;
2560  	}
2561  
2562  	if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged))
2563  		trace_sock_exceed_buf_limit(sk, prot, allocated, kind);
2564  
2565  	sk_memory_allocated_sub(sk, amt);
2566  
2567  	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2568  		mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
2569  
2570  	return 0;
2571  }
2572  EXPORT_SYMBOL(__sk_mem_raise_allocated);
2573  
2574  /**
2575   *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2576   *	@sk: socket
2577   *	@size: memory size to allocate
2578   *	@kind: allocation type
2579   *
2580   *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2581   *	rmem allocation. This function assumes that protocols which have
2582   *	memory_pressure use sk_wmem_queued as write buffer accounting.
2583   */
__sk_mem_schedule(struct sock * sk,int size,int kind)2584  int __sk_mem_schedule(struct sock *sk, int size, int kind)
2585  {
2586  	int ret, amt = sk_mem_pages(size);
2587  
2588  	sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT;
2589  	ret = __sk_mem_raise_allocated(sk, size, amt, kind);
2590  	if (!ret)
2591  		sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT;
2592  	return ret;
2593  }
2594  EXPORT_SYMBOL(__sk_mem_schedule);
2595  
2596  /**
2597   *	__sk_mem_reduce_allocated - reclaim memory_allocated
2598   *	@sk: socket
2599   *	@amount: number of quanta
2600   *
2601   *	Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
2602   */
__sk_mem_reduce_allocated(struct sock * sk,int amount)2603  void __sk_mem_reduce_allocated(struct sock *sk, int amount)
2604  {
2605  	sk_memory_allocated_sub(sk, amount);
2606  
2607  	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2608  		mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
2609  
2610  	if (sk_under_memory_pressure(sk) &&
2611  	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2612  		sk_leave_memory_pressure(sk);
2613  }
2614  EXPORT_SYMBOL(__sk_mem_reduce_allocated);
2615  
2616  /**
2617   *	__sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
2618   *	@sk: socket
2619   *	@amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2620   */
__sk_mem_reclaim(struct sock * sk,int amount)2621  void __sk_mem_reclaim(struct sock *sk, int amount)
2622  {
2623  	amount >>= SK_MEM_QUANTUM_SHIFT;
2624  	sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2625  	__sk_mem_reduce_allocated(sk, amount);
2626  }
2627  EXPORT_SYMBOL(__sk_mem_reclaim);
2628  
sk_set_peek_off(struct sock * sk,int val)2629  int sk_set_peek_off(struct sock *sk, int val)
2630  {
2631  	sk->sk_peek_off = val;
2632  	return 0;
2633  }
2634  EXPORT_SYMBOL_GPL(sk_set_peek_off);
2635  
2636  /*
2637   * Set of default routines for initialising struct proto_ops when
2638   * the protocol does not support a particular function. In certain
2639   * cases where it makes no sense for a protocol to have a "do nothing"
2640   * function, some default processing is provided.
2641   */
2642  
sock_no_bind(struct socket * sock,struct sockaddr * saddr,int len)2643  int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2644  {
2645  	return -EOPNOTSUPP;
2646  }
2647  EXPORT_SYMBOL(sock_no_bind);
2648  
sock_no_connect(struct socket * sock,struct sockaddr * saddr,int len,int flags)2649  int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2650  		    int len, int flags)
2651  {
2652  	return -EOPNOTSUPP;
2653  }
2654  EXPORT_SYMBOL(sock_no_connect);
2655  
sock_no_socketpair(struct socket * sock1,struct socket * sock2)2656  int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2657  {
2658  	return -EOPNOTSUPP;
2659  }
2660  EXPORT_SYMBOL(sock_no_socketpair);
2661  
sock_no_accept(struct socket * sock,struct socket * newsock,int flags,bool kern)2662  int sock_no_accept(struct socket *sock, struct socket *newsock, int flags,
2663  		   bool kern)
2664  {
2665  	return -EOPNOTSUPP;
2666  }
2667  EXPORT_SYMBOL(sock_no_accept);
2668  
sock_no_getname(struct socket * sock,struct sockaddr * saddr,int peer)2669  int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2670  		    int peer)
2671  {
2672  	return -EOPNOTSUPP;
2673  }
2674  EXPORT_SYMBOL(sock_no_getname);
2675  
sock_no_ioctl(struct socket * sock,unsigned int cmd,unsigned long arg)2676  int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2677  {
2678  	return -EOPNOTSUPP;
2679  }
2680  EXPORT_SYMBOL(sock_no_ioctl);
2681  
sock_no_listen(struct socket * sock,int backlog)2682  int sock_no_listen(struct socket *sock, int backlog)
2683  {
2684  	return -EOPNOTSUPP;
2685  }
2686  EXPORT_SYMBOL(sock_no_listen);
2687  
sock_no_shutdown(struct socket * sock,int how)2688  int sock_no_shutdown(struct socket *sock, int how)
2689  {
2690  	return -EOPNOTSUPP;
2691  }
2692  EXPORT_SYMBOL(sock_no_shutdown);
2693  
sock_no_setsockopt(struct socket * sock,int level,int optname,char __user * optval,unsigned int optlen)2694  int sock_no_setsockopt(struct socket *sock, int level, int optname,
2695  		    char __user *optval, unsigned int optlen)
2696  {
2697  	return -EOPNOTSUPP;
2698  }
2699  EXPORT_SYMBOL(sock_no_setsockopt);
2700  
sock_no_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)2701  int sock_no_getsockopt(struct socket *sock, int level, int optname,
2702  		    char __user *optval, int __user *optlen)
2703  {
2704  	return -EOPNOTSUPP;
2705  }
2706  EXPORT_SYMBOL(sock_no_getsockopt);
2707  
sock_no_sendmsg(struct socket * sock,struct msghdr * m,size_t len)2708  int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
2709  {
2710  	return -EOPNOTSUPP;
2711  }
2712  EXPORT_SYMBOL(sock_no_sendmsg);
2713  
sock_no_sendmsg_locked(struct sock * sk,struct msghdr * m,size_t len)2714  int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
2715  {
2716  	return -EOPNOTSUPP;
2717  }
2718  EXPORT_SYMBOL(sock_no_sendmsg_locked);
2719  
sock_no_recvmsg(struct socket * sock,struct msghdr * m,size_t len,int flags)2720  int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2721  		    int flags)
2722  {
2723  	return -EOPNOTSUPP;
2724  }
2725  EXPORT_SYMBOL(sock_no_recvmsg);
2726  
sock_no_mmap(struct file * file,struct socket * sock,struct vm_area_struct * vma)2727  int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2728  {
2729  	/* Mirror missing mmap method error code */
2730  	return -ENODEV;
2731  }
2732  EXPORT_SYMBOL(sock_no_mmap);
2733  
sock_no_sendpage(struct socket * sock,struct page * page,int offset,size_t size,int flags)2734  ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2735  {
2736  	ssize_t res;
2737  	struct msghdr msg = {.msg_flags = flags};
2738  	struct kvec iov;
2739  	char *kaddr = kmap(page);
2740  	iov.iov_base = kaddr + offset;
2741  	iov.iov_len = size;
2742  	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2743  	kunmap(page);
2744  	return res;
2745  }
2746  EXPORT_SYMBOL(sock_no_sendpage);
2747  
sock_no_sendpage_locked(struct sock * sk,struct page * page,int offset,size_t size,int flags)2748  ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
2749  				int offset, size_t size, int flags)
2750  {
2751  	ssize_t res;
2752  	struct msghdr msg = {.msg_flags = flags};
2753  	struct kvec iov;
2754  	char *kaddr = kmap(page);
2755  
2756  	iov.iov_base = kaddr + offset;
2757  	iov.iov_len = size;
2758  	res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size);
2759  	kunmap(page);
2760  	return res;
2761  }
2762  EXPORT_SYMBOL(sock_no_sendpage_locked);
2763  
2764  /*
2765   *	Default Socket Callbacks
2766   */
2767  
sock_def_wakeup(struct sock * sk)2768  static void sock_def_wakeup(struct sock *sk)
2769  {
2770  	struct socket_wq *wq;
2771  
2772  	rcu_read_lock();
2773  	wq = rcu_dereference(sk->sk_wq);
2774  	if (skwq_has_sleeper(wq))
2775  		wake_up_interruptible_all(&wq->wait);
2776  	rcu_read_unlock();
2777  }
2778  
sock_def_error_report(struct sock * sk)2779  static void sock_def_error_report(struct sock *sk)
2780  {
2781  	struct socket_wq *wq;
2782  
2783  	rcu_read_lock();
2784  	wq = rcu_dereference(sk->sk_wq);
2785  	if (skwq_has_sleeper(wq))
2786  		wake_up_interruptible_poll(&wq->wait, EPOLLERR);
2787  	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2788  	rcu_read_unlock();
2789  }
2790  
sock_def_readable(struct sock * sk)2791  static void sock_def_readable(struct sock *sk)
2792  {
2793  	struct socket_wq *wq;
2794  
2795  	rcu_read_lock();
2796  	wq = rcu_dereference(sk->sk_wq);
2797  	if (skwq_has_sleeper(wq))
2798  		wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
2799  						EPOLLRDNORM | EPOLLRDBAND);
2800  	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2801  	rcu_read_unlock();
2802  }
2803  
sock_def_write_space(struct sock * sk)2804  static void sock_def_write_space(struct sock *sk)
2805  {
2806  	struct socket_wq *wq;
2807  
2808  	rcu_read_lock();
2809  
2810  	/* Do not wake up a writer until he can make "significant"
2811  	 * progress.  --DaveM
2812  	 */
2813  	if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= READ_ONCE(sk->sk_sndbuf)) {
2814  		wq = rcu_dereference(sk->sk_wq);
2815  		if (skwq_has_sleeper(wq))
2816  			wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
2817  						EPOLLWRNORM | EPOLLWRBAND);
2818  
2819  		/* Should agree with poll, otherwise some programs break */
2820  		if (sock_writeable(sk))
2821  			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2822  	}
2823  
2824  	rcu_read_unlock();
2825  }
2826  
sock_def_destruct(struct sock * sk)2827  static void sock_def_destruct(struct sock *sk)
2828  {
2829  }
2830  
sk_send_sigurg(struct sock * sk)2831  void sk_send_sigurg(struct sock *sk)
2832  {
2833  	if (sk->sk_socket && sk->sk_socket->file)
2834  		if (send_sigurg(&sk->sk_socket->file->f_owner))
2835  			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2836  }
2837  EXPORT_SYMBOL(sk_send_sigurg);
2838  
sk_reset_timer(struct sock * sk,struct timer_list * timer,unsigned long expires)2839  void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2840  		    unsigned long expires)
2841  {
2842  	if (!mod_timer(timer, expires))
2843  		sock_hold(sk);
2844  }
2845  EXPORT_SYMBOL(sk_reset_timer);
2846  
sk_stop_timer(struct sock * sk,struct timer_list * timer)2847  void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2848  {
2849  	if (del_timer(timer))
2850  		__sock_put(sk);
2851  }
2852  EXPORT_SYMBOL(sk_stop_timer);
2853  
sock_init_data(struct socket * sock,struct sock * sk)2854  void sock_init_data(struct socket *sock, struct sock *sk)
2855  {
2856  	sk_init_common(sk);
2857  	sk->sk_send_head	=	NULL;
2858  
2859  	timer_setup(&sk->sk_timer, NULL, 0);
2860  
2861  	sk->sk_allocation	=	GFP_KERNEL;
2862  	sk->sk_rcvbuf		=	sysctl_rmem_default;
2863  	sk->sk_sndbuf		=	sysctl_wmem_default;
2864  	sk->sk_state		=	TCP_CLOSE;
2865  	sk_set_socket(sk, sock);
2866  
2867  	sock_set_flag(sk, SOCK_ZAPPED);
2868  
2869  	if (sock) {
2870  		sk->sk_type	=	sock->type;
2871  		RCU_INIT_POINTER(sk->sk_wq, &sock->wq);
2872  		sock->sk	=	sk;
2873  		sk->sk_uid	=	SOCK_INODE(sock)->i_uid;
2874  	} else {
2875  		RCU_INIT_POINTER(sk->sk_wq, NULL);
2876  		sk->sk_uid	=	make_kuid(sock_net(sk)->user_ns, 0);
2877  	}
2878  
2879  	rwlock_init(&sk->sk_callback_lock);
2880  	if (sk->sk_kern_sock)
2881  		lockdep_set_class_and_name(
2882  			&sk->sk_callback_lock,
2883  			af_kern_callback_keys + sk->sk_family,
2884  			af_family_kern_clock_key_strings[sk->sk_family]);
2885  	else
2886  		lockdep_set_class_and_name(
2887  			&sk->sk_callback_lock,
2888  			af_callback_keys + sk->sk_family,
2889  			af_family_clock_key_strings[sk->sk_family]);
2890  
2891  	sk->sk_state_change	=	sock_def_wakeup;
2892  	sk->sk_data_ready	=	sock_def_readable;
2893  	sk->sk_write_space	=	sock_def_write_space;
2894  	sk->sk_error_report	=	sock_def_error_report;
2895  	sk->sk_destruct		=	sock_def_destruct;
2896  
2897  	sk->sk_frag.page	=	NULL;
2898  	sk->sk_frag.offset	=	0;
2899  	sk->sk_peek_off		=	-1;
2900  
2901  	sk->sk_peer_pid 	=	NULL;
2902  	sk->sk_peer_cred	=	NULL;
2903  	sk->sk_write_pending	=	0;
2904  	sk->sk_rcvlowat		=	1;
2905  	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
2906  	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
2907  
2908  	sk->sk_stamp = SK_DEFAULT_STAMP;
2909  #if BITS_PER_LONG==32
2910  	seqlock_init(&sk->sk_stamp_seq);
2911  #endif
2912  	atomic_set(&sk->sk_zckey, 0);
2913  
2914  #ifdef CONFIG_NET_RX_BUSY_POLL
2915  	sk->sk_napi_id		=	0;
2916  	sk->sk_ll_usec		=	sysctl_net_busy_read;
2917  #endif
2918  
2919  	sk->sk_max_pacing_rate = ~0UL;
2920  	sk->sk_pacing_rate = ~0UL;
2921  	WRITE_ONCE(sk->sk_pacing_shift, 10);
2922  	sk->sk_incoming_cpu = -1;
2923  
2924  	sk_rx_queue_clear(sk);
2925  	/*
2926  	 * Before updating sk_refcnt, we must commit prior changes to memory
2927  	 * (Documentation/RCU/rculist_nulls.txt for details)
2928  	 */
2929  	smp_wmb();
2930  	refcount_set(&sk->sk_refcnt, 1);
2931  	atomic_set(&sk->sk_drops, 0);
2932  }
2933  EXPORT_SYMBOL(sock_init_data);
2934  
lock_sock_nested(struct sock * sk,int subclass)2935  void lock_sock_nested(struct sock *sk, int subclass)
2936  {
2937  	might_sleep();
2938  	spin_lock_bh(&sk->sk_lock.slock);
2939  	if (sk->sk_lock.owned)
2940  		__lock_sock(sk);
2941  	sk->sk_lock.owned = 1;
2942  	spin_unlock(&sk->sk_lock.slock);
2943  	/*
2944  	 * The sk_lock has mutex_lock() semantics here:
2945  	 */
2946  	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2947  	local_bh_enable();
2948  }
2949  EXPORT_SYMBOL(lock_sock_nested);
2950  
release_sock(struct sock * sk)2951  void release_sock(struct sock *sk)
2952  {
2953  	spin_lock_bh(&sk->sk_lock.slock);
2954  	if (sk->sk_backlog.tail)
2955  		__release_sock(sk);
2956  
2957  	/* Warning : release_cb() might need to release sk ownership,
2958  	 * ie call sock_release_ownership(sk) before us.
2959  	 */
2960  	if (sk->sk_prot->release_cb)
2961  		sk->sk_prot->release_cb(sk);
2962  
2963  	sock_release_ownership(sk);
2964  	if (waitqueue_active(&sk->sk_lock.wq))
2965  		wake_up(&sk->sk_lock.wq);
2966  	spin_unlock_bh(&sk->sk_lock.slock);
2967  }
2968  EXPORT_SYMBOL(release_sock);
2969  
2970  /**
2971   * lock_sock_fast - fast version of lock_sock
2972   * @sk: socket
2973   *
2974   * This version should be used for very small section, where process wont block
2975   * return false if fast path is taken:
2976   *
2977   *   sk_lock.slock locked, owned = 0, BH disabled
2978   *
2979   * return true if slow path is taken:
2980   *
2981   *   sk_lock.slock unlocked, owned = 1, BH enabled
2982   */
lock_sock_fast(struct sock * sk)2983  bool lock_sock_fast(struct sock *sk)
2984  {
2985  	might_sleep();
2986  	spin_lock_bh(&sk->sk_lock.slock);
2987  
2988  	if (!sk->sk_lock.owned)
2989  		/*
2990  		 * Note : We must disable BH
2991  		 */
2992  		return false;
2993  
2994  	__lock_sock(sk);
2995  	sk->sk_lock.owned = 1;
2996  	spin_unlock(&sk->sk_lock.slock);
2997  	/*
2998  	 * The sk_lock has mutex_lock() semantics here:
2999  	 */
3000  	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
3001  	local_bh_enable();
3002  	return true;
3003  }
3004  EXPORT_SYMBOL(lock_sock_fast);
3005  
sock_gettstamp(struct socket * sock,void __user * userstamp,bool timeval,bool time32)3006  int sock_gettstamp(struct socket *sock, void __user *userstamp,
3007  		   bool timeval, bool time32)
3008  {
3009  	struct sock *sk = sock->sk;
3010  	struct timespec64 ts;
3011  
3012  	sock_enable_timestamp(sk, SOCK_TIMESTAMP);
3013  	ts = ktime_to_timespec64(sock_read_timestamp(sk));
3014  	if (ts.tv_sec == -1)
3015  		return -ENOENT;
3016  	if (ts.tv_sec == 0) {
3017  		ktime_t kt = ktime_get_real();
3018  		sock_write_timestamp(sk, kt);;
3019  		ts = ktime_to_timespec64(kt);
3020  	}
3021  
3022  	if (timeval)
3023  		ts.tv_nsec /= 1000;
3024  
3025  #ifdef CONFIG_COMPAT_32BIT_TIME
3026  	if (time32)
3027  		return put_old_timespec32(&ts, userstamp);
3028  #endif
3029  #ifdef CONFIG_SPARC64
3030  	/* beware of padding in sparc64 timeval */
3031  	if (timeval && !in_compat_syscall()) {
3032  		struct __kernel_old_timeval __user tv = {
3033  			.tv_sec = ts.tv_sec,
3034  			.tv_usec = ts.tv_nsec,
3035  		};
3036  		if (copy_to_user(userstamp, &tv, sizeof(tv)))
3037  			return -EFAULT;
3038  		return 0;
3039  	}
3040  #endif
3041  	return put_timespec64(&ts, userstamp);
3042  }
3043  EXPORT_SYMBOL(sock_gettstamp);
3044  
sock_enable_timestamp(struct sock * sk,int flag)3045  void sock_enable_timestamp(struct sock *sk, int flag)
3046  {
3047  	if (!sock_flag(sk, flag)) {
3048  		unsigned long previous_flags = sk->sk_flags;
3049  
3050  		sock_set_flag(sk, flag);
3051  		/*
3052  		 * we just set one of the two flags which require net
3053  		 * time stamping, but time stamping might have been on
3054  		 * already because of the other one
3055  		 */
3056  		if (sock_needs_netstamp(sk) &&
3057  		    !(previous_flags & SK_FLAGS_TIMESTAMP))
3058  			net_enable_timestamp();
3059  	}
3060  }
3061  
sock_recv_errqueue(struct sock * sk,struct msghdr * msg,int len,int level,int type)3062  int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
3063  		       int level, int type)
3064  {
3065  	struct sock_exterr_skb *serr;
3066  	struct sk_buff *skb;
3067  	int copied, err;
3068  
3069  	err = -EAGAIN;
3070  	skb = sock_dequeue_err_skb(sk);
3071  	if (skb == NULL)
3072  		goto out;
3073  
3074  	copied = skb->len;
3075  	if (copied > len) {
3076  		msg->msg_flags |= MSG_TRUNC;
3077  		copied = len;
3078  	}
3079  	err = skb_copy_datagram_msg(skb, 0, msg, copied);
3080  	if (err)
3081  		goto out_free_skb;
3082  
3083  	sock_recv_timestamp(msg, sk, skb);
3084  
3085  	serr = SKB_EXT_ERR(skb);
3086  	put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
3087  
3088  	msg->msg_flags |= MSG_ERRQUEUE;
3089  	err = copied;
3090  
3091  out_free_skb:
3092  	kfree_skb(skb);
3093  out:
3094  	return err;
3095  }
3096  EXPORT_SYMBOL(sock_recv_errqueue);
3097  
3098  /*
3099   *	Get a socket option on an socket.
3100   *
3101   *	FIX: POSIX 1003.1g is very ambiguous here. It states that
3102   *	asynchronous errors should be reported by getsockopt. We assume
3103   *	this means if you specify SO_ERROR (otherwise whats the point of it).
3104   */
sock_common_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)3105  int sock_common_getsockopt(struct socket *sock, int level, int optname,
3106  			   char __user *optval, int __user *optlen)
3107  {
3108  	struct sock *sk = sock->sk;
3109  
3110  	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
3111  }
3112  EXPORT_SYMBOL(sock_common_getsockopt);
3113  
3114  #ifdef CONFIG_COMPAT
compat_sock_common_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)3115  int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
3116  				  char __user *optval, int __user *optlen)
3117  {
3118  	struct sock *sk = sock->sk;
3119  
3120  	if (sk->sk_prot->compat_getsockopt != NULL)
3121  		return sk->sk_prot->compat_getsockopt(sk, level, optname,
3122  						      optval, optlen);
3123  	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
3124  }
3125  EXPORT_SYMBOL(compat_sock_common_getsockopt);
3126  #endif
3127  
sock_common_recvmsg(struct socket * sock,struct msghdr * msg,size_t size,int flags)3128  int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
3129  			int flags)
3130  {
3131  	struct sock *sk = sock->sk;
3132  	int addr_len = 0;
3133  	int err;
3134  
3135  	err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
3136  				   flags & ~MSG_DONTWAIT, &addr_len);
3137  	if (err >= 0)
3138  		msg->msg_namelen = addr_len;
3139  	return err;
3140  }
3141  EXPORT_SYMBOL(sock_common_recvmsg);
3142  
3143  /*
3144   *	Set socket options on an inet socket.
3145   */
sock_common_setsockopt(struct socket * sock,int level,int optname,char __user * optval,unsigned int optlen)3146  int sock_common_setsockopt(struct socket *sock, int level, int optname,
3147  			   char __user *optval, unsigned int optlen)
3148  {
3149  	struct sock *sk = sock->sk;
3150  
3151  	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
3152  }
3153  EXPORT_SYMBOL(sock_common_setsockopt);
3154  
3155  #ifdef CONFIG_COMPAT
compat_sock_common_setsockopt(struct socket * sock,int level,int optname,char __user * optval,unsigned int optlen)3156  int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
3157  				  char __user *optval, unsigned int optlen)
3158  {
3159  	struct sock *sk = sock->sk;
3160  
3161  	if (sk->sk_prot->compat_setsockopt != NULL)
3162  		return sk->sk_prot->compat_setsockopt(sk, level, optname,
3163  						      optval, optlen);
3164  	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
3165  }
3166  EXPORT_SYMBOL(compat_sock_common_setsockopt);
3167  #endif
3168  
sk_common_release(struct sock * sk)3169  void sk_common_release(struct sock *sk)
3170  {
3171  	if (sk->sk_prot->destroy)
3172  		sk->sk_prot->destroy(sk);
3173  
3174  	/*
3175  	 * Observation: when sock_common_release is called, processes have
3176  	 * no access to socket. But net still has.
3177  	 * Step one, detach it from networking:
3178  	 *
3179  	 * A. Remove from hash tables.
3180  	 */
3181  
3182  	sk->sk_prot->unhash(sk);
3183  
3184  	/*
3185  	 * In this point socket cannot receive new packets, but it is possible
3186  	 * that some packets are in flight because some CPU runs receiver and
3187  	 * did hash table lookup before we unhashed socket. They will achieve
3188  	 * receive queue and will be purged by socket destructor.
3189  	 *
3190  	 * Also we still have packets pending on receive queue and probably,
3191  	 * our own packets waiting in device queues. sock_destroy will drain
3192  	 * receive queue, but transmitted packets will delay socket destruction
3193  	 * until the last reference will be released.
3194  	 */
3195  
3196  	sock_orphan(sk);
3197  
3198  	xfrm_sk_free_policy(sk);
3199  
3200  	sk_refcnt_debug_release(sk);
3201  
3202  	sock_put(sk);
3203  }
3204  EXPORT_SYMBOL(sk_common_release);
3205  
sk_get_meminfo(const struct sock * sk,u32 * mem)3206  void sk_get_meminfo(const struct sock *sk, u32 *mem)
3207  {
3208  	memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3209  
3210  	mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3211  	mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf);
3212  	mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3213  	mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf);
3214  	mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc;
3215  	mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued);
3216  	mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3217  	mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len);
3218  	mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3219  }
3220  
3221  #ifdef CONFIG_PROC_FS
3222  #define PROTO_INUSE_NR	64	/* should be enough for the first time */
3223  struct prot_inuse {
3224  	int val[PROTO_INUSE_NR];
3225  };
3226  
3227  static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3228  
sock_prot_inuse_add(struct net * net,struct proto * prot,int val)3229  void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
3230  {
3231  	__this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
3232  }
3233  EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
3234  
sock_prot_inuse_get(struct net * net,struct proto * prot)3235  int sock_prot_inuse_get(struct net *net, struct proto *prot)
3236  {
3237  	int cpu, idx = prot->inuse_idx;
3238  	int res = 0;
3239  
3240  	for_each_possible_cpu(cpu)
3241  		res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
3242  
3243  	return res >= 0 ? res : 0;
3244  }
3245  EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3246  
sock_inuse_add(struct net * net,int val)3247  static void sock_inuse_add(struct net *net, int val)
3248  {
3249  	this_cpu_add(*net->core.sock_inuse, val);
3250  }
3251  
sock_inuse_get(struct net * net)3252  int sock_inuse_get(struct net *net)
3253  {
3254  	int cpu, res = 0;
3255  
3256  	for_each_possible_cpu(cpu)
3257  		res += *per_cpu_ptr(net->core.sock_inuse, cpu);
3258  
3259  	return res;
3260  }
3261  
3262  EXPORT_SYMBOL_GPL(sock_inuse_get);
3263  
sock_inuse_init_net(struct net * net)3264  static int __net_init sock_inuse_init_net(struct net *net)
3265  {
3266  	net->core.prot_inuse = alloc_percpu(struct prot_inuse);
3267  	if (net->core.prot_inuse == NULL)
3268  		return -ENOMEM;
3269  
3270  	net->core.sock_inuse = alloc_percpu(int);
3271  	if (net->core.sock_inuse == NULL)
3272  		goto out;
3273  
3274  	return 0;
3275  
3276  out:
3277  	free_percpu(net->core.prot_inuse);
3278  	return -ENOMEM;
3279  }
3280  
sock_inuse_exit_net(struct net * net)3281  static void __net_exit sock_inuse_exit_net(struct net *net)
3282  {
3283  	free_percpu(net->core.prot_inuse);
3284  	free_percpu(net->core.sock_inuse);
3285  }
3286  
3287  static struct pernet_operations net_inuse_ops = {
3288  	.init = sock_inuse_init_net,
3289  	.exit = sock_inuse_exit_net,
3290  };
3291  
net_inuse_init(void)3292  static __init int net_inuse_init(void)
3293  {
3294  	if (register_pernet_subsys(&net_inuse_ops))
3295  		panic("Cannot initialize net inuse counters");
3296  
3297  	return 0;
3298  }
3299  
3300  core_initcall(net_inuse_init);
3301  
assign_proto_idx(struct proto * prot)3302  static int assign_proto_idx(struct proto *prot)
3303  {
3304  	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3305  
3306  	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3307  		pr_err("PROTO_INUSE_NR exhausted\n");
3308  		return -ENOSPC;
3309  	}
3310  
3311  	set_bit(prot->inuse_idx, proto_inuse_idx);
3312  	return 0;
3313  }
3314  
release_proto_idx(struct proto * prot)3315  static void release_proto_idx(struct proto *prot)
3316  {
3317  	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3318  		clear_bit(prot->inuse_idx, proto_inuse_idx);
3319  }
3320  #else
assign_proto_idx(struct proto * prot)3321  static inline int assign_proto_idx(struct proto *prot)
3322  {
3323  	return 0;
3324  }
3325  
release_proto_idx(struct proto * prot)3326  static inline void release_proto_idx(struct proto *prot)
3327  {
3328  }
3329  
sock_inuse_add(struct net * net,int val)3330  static void sock_inuse_add(struct net *net, int val)
3331  {
3332  }
3333  #endif
3334  
req_prot_cleanup(struct request_sock_ops * rsk_prot)3335  static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3336  {
3337  	if (!rsk_prot)
3338  		return;
3339  	kfree(rsk_prot->slab_name);
3340  	rsk_prot->slab_name = NULL;
3341  	kmem_cache_destroy(rsk_prot->slab);
3342  	rsk_prot->slab = NULL;
3343  }
3344  
req_prot_init(const struct proto * prot)3345  static int req_prot_init(const struct proto *prot)
3346  {
3347  	struct request_sock_ops *rsk_prot = prot->rsk_prot;
3348  
3349  	if (!rsk_prot)
3350  		return 0;
3351  
3352  	rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
3353  					prot->name);
3354  	if (!rsk_prot->slab_name)
3355  		return -ENOMEM;
3356  
3357  	rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
3358  					   rsk_prot->obj_size, 0,
3359  					   SLAB_ACCOUNT | prot->slab_flags,
3360  					   NULL);
3361  
3362  	if (!rsk_prot->slab) {
3363  		pr_crit("%s: Can't create request sock SLAB cache!\n",
3364  			prot->name);
3365  		return -ENOMEM;
3366  	}
3367  	return 0;
3368  }
3369  
proto_register(struct proto * prot,int alloc_slab)3370  int proto_register(struct proto *prot, int alloc_slab)
3371  {
3372  	int ret = -ENOBUFS;
3373  
3374  	if (alloc_slab) {
3375  		prot->slab = kmem_cache_create_usercopy(prot->name,
3376  					prot->obj_size, 0,
3377  					SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT |
3378  					prot->slab_flags,
3379  					prot->useroffset, prot->usersize,
3380  					NULL);
3381  
3382  		if (prot->slab == NULL) {
3383  			pr_crit("%s: Can't create sock SLAB cache!\n",
3384  				prot->name);
3385  			goto out;
3386  		}
3387  
3388  		if (req_prot_init(prot))
3389  			goto out_free_request_sock_slab;
3390  
3391  		if (prot->twsk_prot != NULL) {
3392  			prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
3393  
3394  			if (prot->twsk_prot->twsk_slab_name == NULL)
3395  				goto out_free_request_sock_slab;
3396  
3397  			prot->twsk_prot->twsk_slab =
3398  				kmem_cache_create(prot->twsk_prot->twsk_slab_name,
3399  						  prot->twsk_prot->twsk_obj_size,
3400  						  0,
3401  						  SLAB_ACCOUNT |
3402  						  prot->slab_flags,
3403  						  NULL);
3404  			if (prot->twsk_prot->twsk_slab == NULL)
3405  				goto out_free_timewait_sock_slab_name;
3406  		}
3407  	}
3408  
3409  	mutex_lock(&proto_list_mutex);
3410  	ret = assign_proto_idx(prot);
3411  	if (ret) {
3412  		mutex_unlock(&proto_list_mutex);
3413  		goto out_free_timewait_sock_slab_name;
3414  	}
3415  	list_add(&prot->node, &proto_list);
3416  	mutex_unlock(&proto_list_mutex);
3417  	return ret;
3418  
3419  out_free_timewait_sock_slab_name:
3420  	if (alloc_slab && prot->twsk_prot)
3421  		kfree(prot->twsk_prot->twsk_slab_name);
3422  out_free_request_sock_slab:
3423  	if (alloc_slab) {
3424  		req_prot_cleanup(prot->rsk_prot);
3425  
3426  		kmem_cache_destroy(prot->slab);
3427  		prot->slab = NULL;
3428  	}
3429  out:
3430  	return ret;
3431  }
3432  EXPORT_SYMBOL(proto_register);
3433  
proto_unregister(struct proto * prot)3434  void proto_unregister(struct proto *prot)
3435  {
3436  	mutex_lock(&proto_list_mutex);
3437  	release_proto_idx(prot);
3438  	list_del(&prot->node);
3439  	mutex_unlock(&proto_list_mutex);
3440  
3441  	kmem_cache_destroy(prot->slab);
3442  	prot->slab = NULL;
3443  
3444  	req_prot_cleanup(prot->rsk_prot);
3445  
3446  	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
3447  		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
3448  		kfree(prot->twsk_prot->twsk_slab_name);
3449  		prot->twsk_prot->twsk_slab = NULL;
3450  	}
3451  }
3452  EXPORT_SYMBOL(proto_unregister);
3453  
sock_load_diag_module(int family,int protocol)3454  int sock_load_diag_module(int family, int protocol)
3455  {
3456  	if (!protocol) {
3457  		if (!sock_is_registered(family))
3458  			return -ENOENT;
3459  
3460  		return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK,
3461  				      NETLINK_SOCK_DIAG, family);
3462  	}
3463  
3464  #ifdef CONFIG_INET
3465  	if (family == AF_INET &&
3466  	    protocol != IPPROTO_RAW &&
3467  	    !rcu_access_pointer(inet_protos[protocol]))
3468  		return -ENOENT;
3469  #endif
3470  
3471  	return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK,
3472  			      NETLINK_SOCK_DIAG, family, protocol);
3473  }
3474  EXPORT_SYMBOL(sock_load_diag_module);
3475  
3476  #ifdef CONFIG_PROC_FS
proto_seq_start(struct seq_file * seq,loff_t * pos)3477  static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
3478  	__acquires(proto_list_mutex)
3479  {
3480  	mutex_lock(&proto_list_mutex);
3481  	return seq_list_start_head(&proto_list, *pos);
3482  }
3483  
proto_seq_next(struct seq_file * seq,void * v,loff_t * pos)3484  static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3485  {
3486  	return seq_list_next(v, &proto_list, pos);
3487  }
3488  
proto_seq_stop(struct seq_file * seq,void * v)3489  static void proto_seq_stop(struct seq_file *seq, void *v)
3490  	__releases(proto_list_mutex)
3491  {
3492  	mutex_unlock(&proto_list_mutex);
3493  }
3494  
proto_method_implemented(const void * method)3495  static char proto_method_implemented(const void *method)
3496  {
3497  	return method == NULL ? 'n' : 'y';
3498  }
sock_prot_memory_allocated(struct proto * proto)3499  static long sock_prot_memory_allocated(struct proto *proto)
3500  {
3501  	return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
3502  }
3503  
sock_prot_memory_pressure(struct proto * proto)3504  static const char *sock_prot_memory_pressure(struct proto *proto)
3505  {
3506  	return proto->memory_pressure != NULL ?
3507  	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
3508  }
3509  
proto_seq_printf(struct seq_file * seq,struct proto * proto)3510  static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
3511  {
3512  
3513  	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
3514  			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
3515  		   proto->name,
3516  		   proto->obj_size,
3517  		   sock_prot_inuse_get(seq_file_net(seq), proto),
3518  		   sock_prot_memory_allocated(proto),
3519  		   sock_prot_memory_pressure(proto),
3520  		   proto->max_header,
3521  		   proto->slab == NULL ? "no" : "yes",
3522  		   module_name(proto->owner),
3523  		   proto_method_implemented(proto->close),
3524  		   proto_method_implemented(proto->connect),
3525  		   proto_method_implemented(proto->disconnect),
3526  		   proto_method_implemented(proto->accept),
3527  		   proto_method_implemented(proto->ioctl),
3528  		   proto_method_implemented(proto->init),
3529  		   proto_method_implemented(proto->destroy),
3530  		   proto_method_implemented(proto->shutdown),
3531  		   proto_method_implemented(proto->setsockopt),
3532  		   proto_method_implemented(proto->getsockopt),
3533  		   proto_method_implemented(proto->sendmsg),
3534  		   proto_method_implemented(proto->recvmsg),
3535  		   proto_method_implemented(proto->sendpage),
3536  		   proto_method_implemented(proto->bind),
3537  		   proto_method_implemented(proto->backlog_rcv),
3538  		   proto_method_implemented(proto->hash),
3539  		   proto_method_implemented(proto->unhash),
3540  		   proto_method_implemented(proto->get_port),
3541  		   proto_method_implemented(proto->enter_memory_pressure));
3542  }
3543  
proto_seq_show(struct seq_file * seq,void * v)3544  static int proto_seq_show(struct seq_file *seq, void *v)
3545  {
3546  	if (v == &proto_list)
3547  		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3548  			   "protocol",
3549  			   "size",
3550  			   "sockets",
3551  			   "memory",
3552  			   "press",
3553  			   "maxhdr",
3554  			   "slab",
3555  			   "module",
3556  			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3557  	else
3558  		proto_seq_printf(seq, list_entry(v, struct proto, node));
3559  	return 0;
3560  }
3561  
3562  static const struct seq_operations proto_seq_ops = {
3563  	.start  = proto_seq_start,
3564  	.next   = proto_seq_next,
3565  	.stop   = proto_seq_stop,
3566  	.show   = proto_seq_show,
3567  };
3568  
proto_init_net(struct net * net)3569  static __net_init int proto_init_net(struct net *net)
3570  {
3571  	if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops,
3572  			sizeof(struct seq_net_private)))
3573  		return -ENOMEM;
3574  
3575  	return 0;
3576  }
3577  
proto_exit_net(struct net * net)3578  static __net_exit void proto_exit_net(struct net *net)
3579  {
3580  	remove_proc_entry("protocols", net->proc_net);
3581  }
3582  
3583  
3584  static __net_initdata struct pernet_operations proto_net_ops = {
3585  	.init = proto_init_net,
3586  	.exit = proto_exit_net,
3587  };
3588  
proto_init(void)3589  static int __init proto_init(void)
3590  {
3591  	return register_pernet_subsys(&proto_net_ops);
3592  }
3593  
3594  subsys_initcall(proto_init);
3595  
3596  #endif /* PROC_FS */
3597  
3598  #ifdef CONFIG_NET_RX_BUSY_POLL
sk_busy_loop_end(void * p,unsigned long start_time)3599  bool sk_busy_loop_end(void *p, unsigned long start_time)
3600  {
3601  	struct sock *sk = p;
3602  
3603  	return !skb_queue_empty_lockless(&sk->sk_receive_queue) ||
3604  	       sk_busy_loop_timeout(sk, start_time);
3605  }
3606  EXPORT_SYMBOL(sk_busy_loop_end);
3607  #endif /* CONFIG_NET_RX_BUSY_POLL */
3608