• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
6 
7 #include <linux/kernel.h>
8 #include <linux/device.h>
9 #include <linux/init.h>
10 #include <linux/cache.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/mutex.h>
14 #include <linux/of_device.h>
15 #include <linux/of_irq.h>
16 #include <linux/clk/clk-conf.h>
17 #include <linux/slab.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-mem.h>
21 #include <linux/of_gpio.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/pm_domain.h>
25 #include <linux/property.h>
26 #include <linux/export.h>
27 #include <linux/sched/rt.h>
28 #include <uapi/linux/sched/types.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/ioport.h>
32 #include <linux/acpi.h>
33 #include <linux/highmem.h>
34 #include <linux/idr.h>
35 #include <linux/platform_data/x86/apple.h>
36 
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/spi.h>
39 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
41 
42 #include "internals.h"
43 
44 static DEFINE_IDR(spi_master_idr);
45 
spidev_release(struct device * dev)46 static void spidev_release(struct device *dev)
47 {
48 	struct spi_device	*spi = to_spi_device(dev);
49 
50 	/* spi controllers may cleanup for released devices */
51 	if (spi->controller->cleanup)
52 		spi->controller->cleanup(spi);
53 
54 	spi_controller_put(spi->controller);
55 	kfree(spi->driver_override);
56 	kfree(spi);
57 }
58 
59 static ssize_t
modalias_show(struct device * dev,struct device_attribute * a,char * buf)60 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
61 {
62 	const struct spi_device	*spi = to_spi_device(dev);
63 	int len;
64 
65 	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
66 	if (len != -ENODEV)
67 		return len;
68 
69 	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
70 }
71 static DEVICE_ATTR_RO(modalias);
72 
driver_override_store(struct device * dev,struct device_attribute * a,const char * buf,size_t count)73 static ssize_t driver_override_store(struct device *dev,
74 				     struct device_attribute *a,
75 				     const char *buf, size_t count)
76 {
77 	struct spi_device *spi = to_spi_device(dev);
78 	const char *end = memchr(buf, '\n', count);
79 	const size_t len = end ? end - buf : count;
80 	const char *driver_override, *old;
81 
82 	/* We need to keep extra room for a newline when displaying value */
83 	if (len >= (PAGE_SIZE - 1))
84 		return -EINVAL;
85 
86 	driver_override = kstrndup(buf, len, GFP_KERNEL);
87 	if (!driver_override)
88 		return -ENOMEM;
89 
90 	device_lock(dev);
91 	old = spi->driver_override;
92 	if (len) {
93 		spi->driver_override = driver_override;
94 	} else {
95 		/* Emptry string, disable driver override */
96 		spi->driver_override = NULL;
97 		kfree(driver_override);
98 	}
99 	device_unlock(dev);
100 	kfree(old);
101 
102 	return count;
103 }
104 
driver_override_show(struct device * dev,struct device_attribute * a,char * buf)105 static ssize_t driver_override_show(struct device *dev,
106 				    struct device_attribute *a, char *buf)
107 {
108 	const struct spi_device *spi = to_spi_device(dev);
109 	ssize_t len;
110 
111 	device_lock(dev);
112 	len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
113 	device_unlock(dev);
114 	return len;
115 }
116 static DEVICE_ATTR_RW(driver_override);
117 
118 #define SPI_STATISTICS_ATTRS(field, file)				\
119 static ssize_t spi_controller_##field##_show(struct device *dev,	\
120 					     struct device_attribute *attr, \
121 					     char *buf)			\
122 {									\
123 	struct spi_controller *ctlr = container_of(dev,			\
124 					 struct spi_controller, dev);	\
125 	return spi_statistics_##field##_show(&ctlr->statistics, buf);	\
126 }									\
127 static struct device_attribute dev_attr_spi_controller_##field = {	\
128 	.attr = { .name = file, .mode = 0444 },				\
129 	.show = spi_controller_##field##_show,				\
130 };									\
131 static ssize_t spi_device_##field##_show(struct device *dev,		\
132 					 struct device_attribute *attr,	\
133 					char *buf)			\
134 {									\
135 	struct spi_device *spi = to_spi_device(dev);			\
136 	return spi_statistics_##field##_show(&spi->statistics, buf);	\
137 }									\
138 static struct device_attribute dev_attr_spi_device_##field = {		\
139 	.attr = { .name = file, .mode = 0444 },				\
140 	.show = spi_device_##field##_show,				\
141 }
142 
143 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)	\
144 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
145 					    char *buf)			\
146 {									\
147 	unsigned long flags;						\
148 	ssize_t len;							\
149 	spin_lock_irqsave(&stat->lock, flags);				\
150 	len = sprintf(buf, format_string, stat->field);			\
151 	spin_unlock_irqrestore(&stat->lock, flags);			\
152 	return len;							\
153 }									\
154 SPI_STATISTICS_ATTRS(name, file)
155 
156 #define SPI_STATISTICS_SHOW(field, format_string)			\
157 	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
158 				 field, format_string)
159 
160 SPI_STATISTICS_SHOW(messages, "%lu");
161 SPI_STATISTICS_SHOW(transfers, "%lu");
162 SPI_STATISTICS_SHOW(errors, "%lu");
163 SPI_STATISTICS_SHOW(timedout, "%lu");
164 
165 SPI_STATISTICS_SHOW(spi_sync, "%lu");
166 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
167 SPI_STATISTICS_SHOW(spi_async, "%lu");
168 
169 SPI_STATISTICS_SHOW(bytes, "%llu");
170 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
171 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
172 
173 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
174 	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
175 				 "transfer_bytes_histo_" number,	\
176 				 transfer_bytes_histo[index],  "%lu")
177 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
178 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
179 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
180 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
181 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
182 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
183 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
184 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
185 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
186 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
187 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
188 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
189 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
190 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
191 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
192 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
193 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
194 
195 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
196 
197 static struct attribute *spi_dev_attrs[] = {
198 	&dev_attr_modalias.attr,
199 	&dev_attr_driver_override.attr,
200 	NULL,
201 };
202 
203 static const struct attribute_group spi_dev_group = {
204 	.attrs  = spi_dev_attrs,
205 };
206 
207 static struct attribute *spi_device_statistics_attrs[] = {
208 	&dev_attr_spi_device_messages.attr,
209 	&dev_attr_spi_device_transfers.attr,
210 	&dev_attr_spi_device_errors.attr,
211 	&dev_attr_spi_device_timedout.attr,
212 	&dev_attr_spi_device_spi_sync.attr,
213 	&dev_attr_spi_device_spi_sync_immediate.attr,
214 	&dev_attr_spi_device_spi_async.attr,
215 	&dev_attr_spi_device_bytes.attr,
216 	&dev_attr_spi_device_bytes_rx.attr,
217 	&dev_attr_spi_device_bytes_tx.attr,
218 	&dev_attr_spi_device_transfer_bytes_histo0.attr,
219 	&dev_attr_spi_device_transfer_bytes_histo1.attr,
220 	&dev_attr_spi_device_transfer_bytes_histo2.attr,
221 	&dev_attr_spi_device_transfer_bytes_histo3.attr,
222 	&dev_attr_spi_device_transfer_bytes_histo4.attr,
223 	&dev_attr_spi_device_transfer_bytes_histo5.attr,
224 	&dev_attr_spi_device_transfer_bytes_histo6.attr,
225 	&dev_attr_spi_device_transfer_bytes_histo7.attr,
226 	&dev_attr_spi_device_transfer_bytes_histo8.attr,
227 	&dev_attr_spi_device_transfer_bytes_histo9.attr,
228 	&dev_attr_spi_device_transfer_bytes_histo10.attr,
229 	&dev_attr_spi_device_transfer_bytes_histo11.attr,
230 	&dev_attr_spi_device_transfer_bytes_histo12.attr,
231 	&dev_attr_spi_device_transfer_bytes_histo13.attr,
232 	&dev_attr_spi_device_transfer_bytes_histo14.attr,
233 	&dev_attr_spi_device_transfer_bytes_histo15.attr,
234 	&dev_attr_spi_device_transfer_bytes_histo16.attr,
235 	&dev_attr_spi_device_transfers_split_maxsize.attr,
236 	NULL,
237 };
238 
239 static const struct attribute_group spi_device_statistics_group = {
240 	.name  = "statistics",
241 	.attrs  = spi_device_statistics_attrs,
242 };
243 
244 static const struct attribute_group *spi_dev_groups[] = {
245 	&spi_dev_group,
246 	&spi_device_statistics_group,
247 	NULL,
248 };
249 
250 static struct attribute *spi_controller_statistics_attrs[] = {
251 	&dev_attr_spi_controller_messages.attr,
252 	&dev_attr_spi_controller_transfers.attr,
253 	&dev_attr_spi_controller_errors.attr,
254 	&dev_attr_spi_controller_timedout.attr,
255 	&dev_attr_spi_controller_spi_sync.attr,
256 	&dev_attr_spi_controller_spi_sync_immediate.attr,
257 	&dev_attr_spi_controller_spi_async.attr,
258 	&dev_attr_spi_controller_bytes.attr,
259 	&dev_attr_spi_controller_bytes_rx.attr,
260 	&dev_attr_spi_controller_bytes_tx.attr,
261 	&dev_attr_spi_controller_transfer_bytes_histo0.attr,
262 	&dev_attr_spi_controller_transfer_bytes_histo1.attr,
263 	&dev_attr_spi_controller_transfer_bytes_histo2.attr,
264 	&dev_attr_spi_controller_transfer_bytes_histo3.attr,
265 	&dev_attr_spi_controller_transfer_bytes_histo4.attr,
266 	&dev_attr_spi_controller_transfer_bytes_histo5.attr,
267 	&dev_attr_spi_controller_transfer_bytes_histo6.attr,
268 	&dev_attr_spi_controller_transfer_bytes_histo7.attr,
269 	&dev_attr_spi_controller_transfer_bytes_histo8.attr,
270 	&dev_attr_spi_controller_transfer_bytes_histo9.attr,
271 	&dev_attr_spi_controller_transfer_bytes_histo10.attr,
272 	&dev_attr_spi_controller_transfer_bytes_histo11.attr,
273 	&dev_attr_spi_controller_transfer_bytes_histo12.attr,
274 	&dev_attr_spi_controller_transfer_bytes_histo13.attr,
275 	&dev_attr_spi_controller_transfer_bytes_histo14.attr,
276 	&dev_attr_spi_controller_transfer_bytes_histo15.attr,
277 	&dev_attr_spi_controller_transfer_bytes_histo16.attr,
278 	&dev_attr_spi_controller_transfers_split_maxsize.attr,
279 	NULL,
280 };
281 
282 static const struct attribute_group spi_controller_statistics_group = {
283 	.name  = "statistics",
284 	.attrs  = spi_controller_statistics_attrs,
285 };
286 
287 static const struct attribute_group *spi_master_groups[] = {
288 	&spi_controller_statistics_group,
289 	NULL,
290 };
291 
spi_statistics_add_transfer_stats(struct spi_statistics * stats,struct spi_transfer * xfer,struct spi_controller * ctlr)292 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
293 				       struct spi_transfer *xfer,
294 				       struct spi_controller *ctlr)
295 {
296 	unsigned long flags;
297 	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
298 
299 	if (l2len < 0)
300 		l2len = 0;
301 
302 	spin_lock_irqsave(&stats->lock, flags);
303 
304 	stats->transfers++;
305 	stats->transfer_bytes_histo[l2len]++;
306 
307 	stats->bytes += xfer->len;
308 	if ((xfer->tx_buf) &&
309 	    (xfer->tx_buf != ctlr->dummy_tx))
310 		stats->bytes_tx += xfer->len;
311 	if ((xfer->rx_buf) &&
312 	    (xfer->rx_buf != ctlr->dummy_rx))
313 		stats->bytes_rx += xfer->len;
314 
315 	spin_unlock_irqrestore(&stats->lock, flags);
316 }
317 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
318 
319 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
320  * and the sysfs version makes coldplug work too.
321  */
322 
spi_match_id(const struct spi_device_id * id,const struct spi_device * sdev)323 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
324 						const struct spi_device *sdev)
325 {
326 	while (id->name[0]) {
327 		if (!strcmp(sdev->modalias, id->name))
328 			return id;
329 		id++;
330 	}
331 	return NULL;
332 }
333 
spi_get_device_id(const struct spi_device * sdev)334 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
335 {
336 	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
337 
338 	return spi_match_id(sdrv->id_table, sdev);
339 }
340 EXPORT_SYMBOL_GPL(spi_get_device_id);
341 
spi_match_device(struct device * dev,struct device_driver * drv)342 static int spi_match_device(struct device *dev, struct device_driver *drv)
343 {
344 	const struct spi_device	*spi = to_spi_device(dev);
345 	const struct spi_driver	*sdrv = to_spi_driver(drv);
346 
347 	/* Check override first, and if set, only use the named driver */
348 	if (spi->driver_override)
349 		return strcmp(spi->driver_override, drv->name) == 0;
350 
351 	/* Attempt an OF style match */
352 	if (of_driver_match_device(dev, drv))
353 		return 1;
354 
355 	/* Then try ACPI */
356 	if (acpi_driver_match_device(dev, drv))
357 		return 1;
358 
359 	if (sdrv->id_table)
360 		return !!spi_match_id(sdrv->id_table, spi);
361 
362 	return strcmp(spi->modalias, drv->name) == 0;
363 }
364 
spi_uevent(struct device * dev,struct kobj_uevent_env * env)365 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
366 {
367 	const struct spi_device		*spi = to_spi_device(dev);
368 	int rc;
369 
370 	rc = acpi_device_uevent_modalias(dev, env);
371 	if (rc != -ENODEV)
372 		return rc;
373 
374 	return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
375 }
376 
377 struct bus_type spi_bus_type = {
378 	.name		= "spi",
379 	.dev_groups	= spi_dev_groups,
380 	.match		= spi_match_device,
381 	.uevent		= spi_uevent,
382 };
383 EXPORT_SYMBOL_GPL(spi_bus_type);
384 
385 
spi_drv_probe(struct device * dev)386 static int spi_drv_probe(struct device *dev)
387 {
388 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
389 	struct spi_device		*spi = to_spi_device(dev);
390 	int ret;
391 
392 	ret = of_clk_set_defaults(dev->of_node, false);
393 	if (ret)
394 		return ret;
395 
396 	if (dev->of_node) {
397 		spi->irq = of_irq_get(dev->of_node, 0);
398 		if (spi->irq == -EPROBE_DEFER)
399 			return -EPROBE_DEFER;
400 		if (spi->irq < 0)
401 			spi->irq = 0;
402 	}
403 
404 	ret = dev_pm_domain_attach(dev, true);
405 	if (ret)
406 		return ret;
407 
408 	ret = sdrv->probe(spi);
409 	if (ret)
410 		dev_pm_domain_detach(dev, true);
411 
412 	return ret;
413 }
414 
spi_drv_remove(struct device * dev)415 static int spi_drv_remove(struct device *dev)
416 {
417 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
418 	int ret;
419 
420 	ret = sdrv->remove(to_spi_device(dev));
421 	dev_pm_domain_detach(dev, true);
422 
423 	return ret;
424 }
425 
spi_drv_shutdown(struct device * dev)426 static void spi_drv_shutdown(struct device *dev)
427 {
428 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
429 
430 	sdrv->shutdown(to_spi_device(dev));
431 }
432 
433 /**
434  * __spi_register_driver - register a SPI driver
435  * @owner: owner module of the driver to register
436  * @sdrv: the driver to register
437  * Context: can sleep
438  *
439  * Return: zero on success, else a negative error code.
440  */
__spi_register_driver(struct module * owner,struct spi_driver * sdrv)441 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
442 {
443 	sdrv->driver.owner = owner;
444 	sdrv->driver.bus = &spi_bus_type;
445 	if (sdrv->probe)
446 		sdrv->driver.probe = spi_drv_probe;
447 	if (sdrv->remove)
448 		sdrv->driver.remove = spi_drv_remove;
449 	if (sdrv->shutdown)
450 		sdrv->driver.shutdown = spi_drv_shutdown;
451 	return driver_register(&sdrv->driver);
452 }
453 EXPORT_SYMBOL_GPL(__spi_register_driver);
454 
455 /*-------------------------------------------------------------------------*/
456 
457 /* SPI devices should normally not be created by SPI device drivers; that
458  * would make them board-specific.  Similarly with SPI controller drivers.
459  * Device registration normally goes into like arch/.../mach.../board-YYY.c
460  * with other readonly (flashable) information about mainboard devices.
461  */
462 
463 struct boardinfo {
464 	struct list_head	list;
465 	struct spi_board_info	board_info;
466 };
467 
468 static LIST_HEAD(board_list);
469 static LIST_HEAD(spi_controller_list);
470 
471 /*
472  * Used to protect add/del opertion for board_info list and
473  * spi_controller list, and their matching process
474  * also used to protect object of type struct idr
475  */
476 static DEFINE_MUTEX(board_lock);
477 
478 /**
479  * spi_alloc_device - Allocate a new SPI device
480  * @ctlr: Controller to which device is connected
481  * Context: can sleep
482  *
483  * Allows a driver to allocate and initialize a spi_device without
484  * registering it immediately.  This allows a driver to directly
485  * fill the spi_device with device parameters before calling
486  * spi_add_device() on it.
487  *
488  * Caller is responsible to call spi_add_device() on the returned
489  * spi_device structure to add it to the SPI controller.  If the caller
490  * needs to discard the spi_device without adding it, then it should
491  * call spi_dev_put() on it.
492  *
493  * Return: a pointer to the new device, or NULL.
494  */
spi_alloc_device(struct spi_controller * ctlr)495 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
496 {
497 	struct spi_device	*spi;
498 
499 	if (!spi_controller_get(ctlr))
500 		return NULL;
501 
502 	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
503 	if (!spi) {
504 		spi_controller_put(ctlr);
505 		return NULL;
506 	}
507 
508 	spi->master = spi->controller = ctlr;
509 	spi->dev.parent = &ctlr->dev;
510 	spi->dev.bus = &spi_bus_type;
511 	spi->dev.release = spidev_release;
512 	spi->cs_gpio = -ENOENT;
513 
514 	spin_lock_init(&spi->statistics.lock);
515 
516 	device_initialize(&spi->dev);
517 	return spi;
518 }
519 EXPORT_SYMBOL_GPL(spi_alloc_device);
520 
spi_dev_set_name(struct spi_device * spi)521 static void spi_dev_set_name(struct spi_device *spi)
522 {
523 	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
524 
525 	if (adev) {
526 		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
527 		return;
528 	}
529 
530 	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
531 		     spi->chip_select);
532 }
533 
spi_dev_check(struct device * dev,void * data)534 static int spi_dev_check(struct device *dev, void *data)
535 {
536 	struct spi_device *spi = to_spi_device(dev);
537 	struct spi_device *new_spi = data;
538 
539 	if (spi->controller == new_spi->controller &&
540 	    spi->chip_select == new_spi->chip_select)
541 		return -EBUSY;
542 	return 0;
543 }
544 
545 /**
546  * spi_add_device - Add spi_device allocated with spi_alloc_device
547  * @spi: spi_device to register
548  *
549  * Companion function to spi_alloc_device.  Devices allocated with
550  * spi_alloc_device can be added onto the spi bus with this function.
551  *
552  * Return: 0 on success; negative errno on failure
553  */
spi_add_device(struct spi_device * spi)554 int spi_add_device(struct spi_device *spi)
555 {
556 	static DEFINE_MUTEX(spi_add_lock);
557 	struct spi_controller *ctlr = spi->controller;
558 	struct device *dev = ctlr->dev.parent;
559 	int status;
560 
561 	/* Chipselects are numbered 0..max; validate. */
562 	if (spi->chip_select >= ctlr->num_chipselect) {
563 		dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
564 			ctlr->num_chipselect);
565 		return -EINVAL;
566 	}
567 
568 	/* Set the bus ID string */
569 	spi_dev_set_name(spi);
570 
571 	/* We need to make sure there's no other device with this
572 	 * chipselect **BEFORE** we call setup(), else we'll trash
573 	 * its configuration.  Lock against concurrent add() calls.
574 	 */
575 	mutex_lock(&spi_add_lock);
576 
577 	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
578 	if (status) {
579 		dev_err(dev, "chipselect %d already in use\n",
580 				spi->chip_select);
581 		goto done;
582 	}
583 
584 	/* Descriptors take precedence */
585 	if (ctlr->cs_gpiods)
586 		spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select];
587 	else if (ctlr->cs_gpios)
588 		spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
589 
590 	/* Drivers may modify this initial i/o setup, but will
591 	 * normally rely on the device being setup.  Devices
592 	 * using SPI_CS_HIGH can't coexist well otherwise...
593 	 */
594 	status = spi_setup(spi);
595 	if (status < 0) {
596 		dev_err(dev, "can't setup %s, status %d\n",
597 				dev_name(&spi->dev), status);
598 		goto done;
599 	}
600 
601 	/* Device may be bound to an active driver when this returns */
602 	status = device_add(&spi->dev);
603 	if (status < 0)
604 		dev_err(dev, "can't add %s, status %d\n",
605 				dev_name(&spi->dev), status);
606 	else
607 		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
608 
609 done:
610 	mutex_unlock(&spi_add_lock);
611 	return status;
612 }
613 EXPORT_SYMBOL_GPL(spi_add_device);
614 
615 /**
616  * spi_new_device - instantiate one new SPI device
617  * @ctlr: Controller to which device is connected
618  * @chip: Describes the SPI device
619  * Context: can sleep
620  *
621  * On typical mainboards, this is purely internal; and it's not needed
622  * after board init creates the hard-wired devices.  Some development
623  * platforms may not be able to use spi_register_board_info though, and
624  * this is exported so that for example a USB or parport based adapter
625  * driver could add devices (which it would learn about out-of-band).
626  *
627  * Return: the new device, or NULL.
628  */
spi_new_device(struct spi_controller * ctlr,struct spi_board_info * chip)629 struct spi_device *spi_new_device(struct spi_controller *ctlr,
630 				  struct spi_board_info *chip)
631 {
632 	struct spi_device	*proxy;
633 	int			status;
634 
635 	/* NOTE:  caller did any chip->bus_num checks necessary.
636 	 *
637 	 * Also, unless we change the return value convention to use
638 	 * error-or-pointer (not NULL-or-pointer), troubleshootability
639 	 * suggests syslogged diagnostics are best here (ugh).
640 	 */
641 
642 	proxy = spi_alloc_device(ctlr);
643 	if (!proxy)
644 		return NULL;
645 
646 	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
647 
648 	proxy->chip_select = chip->chip_select;
649 	proxy->max_speed_hz = chip->max_speed_hz;
650 	proxy->mode = chip->mode;
651 	proxy->irq = chip->irq;
652 	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
653 	proxy->dev.platform_data = (void *) chip->platform_data;
654 	proxy->controller_data = chip->controller_data;
655 	proxy->controller_state = NULL;
656 
657 	if (chip->properties) {
658 		status = device_add_properties(&proxy->dev, chip->properties);
659 		if (status) {
660 			dev_err(&ctlr->dev,
661 				"failed to add properties to '%s': %d\n",
662 				chip->modalias, status);
663 			goto err_dev_put;
664 		}
665 	}
666 
667 	status = spi_add_device(proxy);
668 	if (status < 0)
669 		goto err_remove_props;
670 
671 	return proxy;
672 
673 err_remove_props:
674 	if (chip->properties)
675 		device_remove_properties(&proxy->dev);
676 err_dev_put:
677 	spi_dev_put(proxy);
678 	return NULL;
679 }
680 EXPORT_SYMBOL_GPL(spi_new_device);
681 
682 /**
683  * spi_unregister_device - unregister a single SPI device
684  * @spi: spi_device to unregister
685  *
686  * Start making the passed SPI device vanish. Normally this would be handled
687  * by spi_unregister_controller().
688  */
spi_unregister_device(struct spi_device * spi)689 void spi_unregister_device(struct spi_device *spi)
690 {
691 	if (!spi)
692 		return;
693 
694 	if (spi->dev.of_node) {
695 		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
696 		of_node_put(spi->dev.of_node);
697 	}
698 	if (ACPI_COMPANION(&spi->dev))
699 		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
700 	device_unregister(&spi->dev);
701 }
702 EXPORT_SYMBOL_GPL(spi_unregister_device);
703 
spi_match_controller_to_boardinfo(struct spi_controller * ctlr,struct spi_board_info * bi)704 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
705 					      struct spi_board_info *bi)
706 {
707 	struct spi_device *dev;
708 
709 	if (ctlr->bus_num != bi->bus_num)
710 		return;
711 
712 	dev = spi_new_device(ctlr, bi);
713 	if (!dev)
714 		dev_err(ctlr->dev.parent, "can't create new device for %s\n",
715 			bi->modalias);
716 }
717 
718 /**
719  * spi_register_board_info - register SPI devices for a given board
720  * @info: array of chip descriptors
721  * @n: how many descriptors are provided
722  * Context: can sleep
723  *
724  * Board-specific early init code calls this (probably during arch_initcall)
725  * with segments of the SPI device table.  Any device nodes are created later,
726  * after the relevant parent SPI controller (bus_num) is defined.  We keep
727  * this table of devices forever, so that reloading a controller driver will
728  * not make Linux forget about these hard-wired devices.
729  *
730  * Other code can also call this, e.g. a particular add-on board might provide
731  * SPI devices through its expansion connector, so code initializing that board
732  * would naturally declare its SPI devices.
733  *
734  * The board info passed can safely be __initdata ... but be careful of
735  * any embedded pointers (platform_data, etc), they're copied as-is.
736  * Device properties are deep-copied though.
737  *
738  * Return: zero on success, else a negative error code.
739  */
spi_register_board_info(struct spi_board_info const * info,unsigned n)740 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
741 {
742 	struct boardinfo *bi;
743 	int i;
744 
745 	if (!n)
746 		return 0;
747 
748 	bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
749 	if (!bi)
750 		return -ENOMEM;
751 
752 	for (i = 0; i < n; i++, bi++, info++) {
753 		struct spi_controller *ctlr;
754 
755 		memcpy(&bi->board_info, info, sizeof(*info));
756 		if (info->properties) {
757 			bi->board_info.properties =
758 					property_entries_dup(info->properties);
759 			if (IS_ERR(bi->board_info.properties))
760 				return PTR_ERR(bi->board_info.properties);
761 		}
762 
763 		mutex_lock(&board_lock);
764 		list_add_tail(&bi->list, &board_list);
765 		list_for_each_entry(ctlr, &spi_controller_list, list)
766 			spi_match_controller_to_boardinfo(ctlr,
767 							  &bi->board_info);
768 		mutex_unlock(&board_lock);
769 	}
770 
771 	return 0;
772 }
773 
774 /*-------------------------------------------------------------------------*/
775 
spi_set_cs(struct spi_device * spi,bool enable)776 static void spi_set_cs(struct spi_device *spi, bool enable)
777 {
778 	if (spi->mode & SPI_CS_HIGH)
779 		enable = !enable;
780 
781 	if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) {
782 		/*
783 		 * Honour the SPI_NO_CS flag and invert the enable line, as
784 		 * active low is default for SPI. Execution paths that handle
785 		 * polarity inversion in gpiolib (such as device tree) will
786 		 * enforce active high using the SPI_CS_HIGH resulting in a
787 		 * double inversion through the code above.
788 		 */
789 		if (!(spi->mode & SPI_NO_CS)) {
790 			if (spi->cs_gpiod)
791 				gpiod_set_value_cansleep(spi->cs_gpiod,
792 							 !enable);
793 			else
794 				gpio_set_value_cansleep(spi->cs_gpio, !enable);
795 		}
796 		/* Some SPI masters need both GPIO CS & slave_select */
797 		if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
798 		    spi->controller->set_cs)
799 			spi->controller->set_cs(spi, !enable);
800 	} else if (spi->controller->set_cs) {
801 		spi->controller->set_cs(spi, !enable);
802 	}
803 }
804 
805 #ifdef CONFIG_HAS_DMA
spi_map_buf(struct spi_controller * ctlr,struct device * dev,struct sg_table * sgt,void * buf,size_t len,enum dma_data_direction dir)806 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
807 		struct sg_table *sgt, void *buf, size_t len,
808 		enum dma_data_direction dir)
809 {
810 	const bool vmalloced_buf = is_vmalloc_addr(buf);
811 	unsigned int max_seg_size = dma_get_max_seg_size(dev);
812 #ifdef CONFIG_HIGHMEM
813 	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
814 				(unsigned long)buf < (PKMAP_BASE +
815 					(LAST_PKMAP * PAGE_SIZE)));
816 #else
817 	const bool kmap_buf = false;
818 #endif
819 	int desc_len;
820 	int sgs;
821 	struct page *vm_page;
822 	struct scatterlist *sg;
823 	void *sg_buf;
824 	size_t min;
825 	int i, ret;
826 
827 	if (vmalloced_buf || kmap_buf) {
828 		desc_len = min_t(int, max_seg_size, PAGE_SIZE);
829 		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
830 	} else if (virt_addr_valid(buf)) {
831 		desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
832 		sgs = DIV_ROUND_UP(len, desc_len);
833 	} else {
834 		return -EINVAL;
835 	}
836 
837 	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
838 	if (ret != 0)
839 		return ret;
840 
841 	sg = &sgt->sgl[0];
842 	for (i = 0; i < sgs; i++) {
843 
844 		if (vmalloced_buf || kmap_buf) {
845 			/*
846 			 * Next scatterlist entry size is the minimum between
847 			 * the desc_len and the remaining buffer length that
848 			 * fits in a page.
849 			 */
850 			min = min_t(size_t, desc_len,
851 				    min_t(size_t, len,
852 					  PAGE_SIZE - offset_in_page(buf)));
853 			if (vmalloced_buf)
854 				vm_page = vmalloc_to_page(buf);
855 			else
856 				vm_page = kmap_to_page(buf);
857 			if (!vm_page) {
858 				sg_free_table(sgt);
859 				return -ENOMEM;
860 			}
861 			sg_set_page(sg, vm_page,
862 				    min, offset_in_page(buf));
863 		} else {
864 			min = min_t(size_t, len, desc_len);
865 			sg_buf = buf;
866 			sg_set_buf(sg, sg_buf, min);
867 		}
868 
869 		buf += min;
870 		len -= min;
871 		sg = sg_next(sg);
872 	}
873 
874 	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
875 	if (!ret)
876 		ret = -ENOMEM;
877 	if (ret < 0) {
878 		sg_free_table(sgt);
879 		return ret;
880 	}
881 
882 	sgt->nents = ret;
883 
884 	return 0;
885 }
886 
spi_unmap_buf(struct spi_controller * ctlr,struct device * dev,struct sg_table * sgt,enum dma_data_direction dir)887 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
888 		   struct sg_table *sgt, enum dma_data_direction dir)
889 {
890 	if (sgt->orig_nents) {
891 		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
892 		sg_free_table(sgt);
893 	}
894 }
895 
__spi_map_msg(struct spi_controller * ctlr,struct spi_message * msg)896 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
897 {
898 	struct device *tx_dev, *rx_dev;
899 	struct spi_transfer *xfer;
900 	int ret;
901 
902 	if (!ctlr->can_dma)
903 		return 0;
904 
905 	if (ctlr->dma_tx)
906 		tx_dev = ctlr->dma_tx->device->dev;
907 	else
908 		tx_dev = ctlr->dev.parent;
909 
910 	if (ctlr->dma_rx)
911 		rx_dev = ctlr->dma_rx->device->dev;
912 	else
913 		rx_dev = ctlr->dev.parent;
914 
915 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
916 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
917 			continue;
918 
919 		if (xfer->tx_buf != NULL) {
920 			ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
921 					  (void *)xfer->tx_buf, xfer->len,
922 					  DMA_TO_DEVICE);
923 			if (ret != 0)
924 				return ret;
925 		}
926 
927 		if (xfer->rx_buf != NULL) {
928 			ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
929 					  xfer->rx_buf, xfer->len,
930 					  DMA_FROM_DEVICE);
931 			if (ret != 0) {
932 				spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
933 					      DMA_TO_DEVICE);
934 				return ret;
935 			}
936 		}
937 	}
938 
939 	ctlr->cur_msg_mapped = true;
940 
941 	return 0;
942 }
943 
__spi_unmap_msg(struct spi_controller * ctlr,struct spi_message * msg)944 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
945 {
946 	struct spi_transfer *xfer;
947 	struct device *tx_dev, *rx_dev;
948 
949 	if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
950 		return 0;
951 
952 	if (ctlr->dma_tx)
953 		tx_dev = ctlr->dma_tx->device->dev;
954 	else
955 		tx_dev = ctlr->dev.parent;
956 
957 	if (ctlr->dma_rx)
958 		rx_dev = ctlr->dma_rx->device->dev;
959 	else
960 		rx_dev = ctlr->dev.parent;
961 
962 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
963 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
964 			continue;
965 
966 		spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
967 		spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
968 	}
969 
970 	return 0;
971 }
972 #else /* !CONFIG_HAS_DMA */
__spi_map_msg(struct spi_controller * ctlr,struct spi_message * msg)973 static inline int __spi_map_msg(struct spi_controller *ctlr,
974 				struct spi_message *msg)
975 {
976 	return 0;
977 }
978 
__spi_unmap_msg(struct spi_controller * ctlr,struct spi_message * msg)979 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
980 				  struct spi_message *msg)
981 {
982 	return 0;
983 }
984 #endif /* !CONFIG_HAS_DMA */
985 
spi_unmap_msg(struct spi_controller * ctlr,struct spi_message * msg)986 static inline int spi_unmap_msg(struct spi_controller *ctlr,
987 				struct spi_message *msg)
988 {
989 	struct spi_transfer *xfer;
990 
991 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
992 		/*
993 		 * Restore the original value of tx_buf or rx_buf if they are
994 		 * NULL.
995 		 */
996 		if (xfer->tx_buf == ctlr->dummy_tx)
997 			xfer->tx_buf = NULL;
998 		if (xfer->rx_buf == ctlr->dummy_rx)
999 			xfer->rx_buf = NULL;
1000 	}
1001 
1002 	return __spi_unmap_msg(ctlr, msg);
1003 }
1004 
spi_map_msg(struct spi_controller * ctlr,struct spi_message * msg)1005 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1006 {
1007 	struct spi_transfer *xfer;
1008 	void *tmp;
1009 	unsigned int max_tx, max_rx;
1010 
1011 	if (ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) {
1012 		max_tx = 0;
1013 		max_rx = 0;
1014 
1015 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1016 			if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1017 			    !xfer->tx_buf)
1018 				max_tx = max(xfer->len, max_tx);
1019 			if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1020 			    !xfer->rx_buf)
1021 				max_rx = max(xfer->len, max_rx);
1022 		}
1023 
1024 		if (max_tx) {
1025 			tmp = krealloc(ctlr->dummy_tx, max_tx,
1026 				       GFP_KERNEL | GFP_DMA);
1027 			if (!tmp)
1028 				return -ENOMEM;
1029 			ctlr->dummy_tx = tmp;
1030 			memset(tmp, 0, max_tx);
1031 		}
1032 
1033 		if (max_rx) {
1034 			tmp = krealloc(ctlr->dummy_rx, max_rx,
1035 				       GFP_KERNEL | GFP_DMA);
1036 			if (!tmp)
1037 				return -ENOMEM;
1038 			ctlr->dummy_rx = tmp;
1039 		}
1040 
1041 		if (max_tx || max_rx) {
1042 			list_for_each_entry(xfer, &msg->transfers,
1043 					    transfer_list) {
1044 				if (!xfer->len)
1045 					continue;
1046 				if (!xfer->tx_buf)
1047 					xfer->tx_buf = ctlr->dummy_tx;
1048 				if (!xfer->rx_buf)
1049 					xfer->rx_buf = ctlr->dummy_rx;
1050 			}
1051 		}
1052 	}
1053 
1054 	return __spi_map_msg(ctlr, msg);
1055 }
1056 
spi_transfer_wait(struct spi_controller * ctlr,struct spi_message * msg,struct spi_transfer * xfer)1057 static int spi_transfer_wait(struct spi_controller *ctlr,
1058 			     struct spi_message *msg,
1059 			     struct spi_transfer *xfer)
1060 {
1061 	struct spi_statistics *statm = &ctlr->statistics;
1062 	struct spi_statistics *stats = &msg->spi->statistics;
1063 	unsigned long long ms = 1;
1064 
1065 	if (spi_controller_is_slave(ctlr)) {
1066 		if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1067 			dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1068 			return -EINTR;
1069 		}
1070 	} else {
1071 		ms = 8LL * 1000LL * xfer->len;
1072 		do_div(ms, xfer->speed_hz);
1073 		ms += ms + 200; /* some tolerance */
1074 
1075 		if (ms > UINT_MAX)
1076 			ms = UINT_MAX;
1077 
1078 		ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1079 						 msecs_to_jiffies(ms));
1080 
1081 		if (ms == 0) {
1082 			SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1083 			SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1084 			dev_err(&msg->spi->dev,
1085 				"SPI transfer timed out\n");
1086 			return -ETIMEDOUT;
1087 		}
1088 	}
1089 
1090 	return 0;
1091 }
1092 
_spi_transfer_delay_ns(u32 ns)1093 static void _spi_transfer_delay_ns(u32 ns)
1094 {
1095 	if (!ns)
1096 		return;
1097 	if (ns <= 1000) {
1098 		ndelay(ns);
1099 	} else {
1100 		u32 us = DIV_ROUND_UP(ns, 1000);
1101 
1102 		if (us <= 10)
1103 			udelay(us);
1104 		else
1105 			usleep_range(us, us + DIV_ROUND_UP(us, 10));
1106 	}
1107 }
1108 
_spi_transfer_cs_change_delay(struct spi_message * msg,struct spi_transfer * xfer)1109 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1110 					  struct spi_transfer *xfer)
1111 {
1112 	u32 delay = xfer->cs_change_delay;
1113 	u32 unit = xfer->cs_change_delay_unit;
1114 	u32 hz;
1115 
1116 	/* return early on "fast" mode - for everything but USECS */
1117 	if (!delay && unit != SPI_DELAY_UNIT_USECS)
1118 		return;
1119 
1120 	switch (unit) {
1121 	case SPI_DELAY_UNIT_USECS:
1122 		/* for compatibility use default of 10us */
1123 		if (!delay)
1124 			delay = 10000;
1125 		else
1126 			delay *= 1000;
1127 		break;
1128 	case SPI_DELAY_UNIT_NSECS: /* nothing to do here */
1129 		break;
1130 	case SPI_DELAY_UNIT_SCK:
1131 		/* if there is no effective speed know, then approximate
1132 		 * by underestimating with half the requested hz
1133 		 */
1134 		hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1135 		delay *= DIV_ROUND_UP(1000000000, hz);
1136 		break;
1137 	default:
1138 		dev_err_once(&msg->spi->dev,
1139 			     "Use of unsupported delay unit %i, using default of 10us\n",
1140 			     xfer->cs_change_delay_unit);
1141 		delay = 10000;
1142 	}
1143 	/* now sleep for the requested amount of time */
1144 	_spi_transfer_delay_ns(delay);
1145 }
1146 
1147 /*
1148  * spi_transfer_one_message - Default implementation of transfer_one_message()
1149  *
1150  * This is a standard implementation of transfer_one_message() for
1151  * drivers which implement a transfer_one() operation.  It provides
1152  * standard handling of delays and chip select management.
1153  */
spi_transfer_one_message(struct spi_controller * ctlr,struct spi_message * msg)1154 static int spi_transfer_one_message(struct spi_controller *ctlr,
1155 				    struct spi_message *msg)
1156 {
1157 	struct spi_transfer *xfer;
1158 	bool keep_cs = false;
1159 	int ret = 0;
1160 	struct spi_statistics *statm = &ctlr->statistics;
1161 	struct spi_statistics *stats = &msg->spi->statistics;
1162 
1163 	spi_set_cs(msg->spi, true);
1164 
1165 	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1166 	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1167 
1168 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1169 		trace_spi_transfer_start(msg, xfer);
1170 
1171 		spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1172 		spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1173 
1174 		if (xfer->tx_buf || xfer->rx_buf) {
1175 			reinit_completion(&ctlr->xfer_completion);
1176 
1177 			ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1178 			if (ret < 0) {
1179 				SPI_STATISTICS_INCREMENT_FIELD(statm,
1180 							       errors);
1181 				SPI_STATISTICS_INCREMENT_FIELD(stats,
1182 							       errors);
1183 				dev_err(&msg->spi->dev,
1184 					"SPI transfer failed: %d\n", ret);
1185 				goto out;
1186 			}
1187 
1188 			if (ret > 0) {
1189 				ret = spi_transfer_wait(ctlr, msg, xfer);
1190 				if (ret < 0)
1191 					msg->status = ret;
1192 			}
1193 		} else {
1194 			if (xfer->len)
1195 				dev_err(&msg->spi->dev,
1196 					"Bufferless transfer has length %u\n",
1197 					xfer->len);
1198 		}
1199 
1200 		trace_spi_transfer_stop(msg, xfer);
1201 
1202 		if (msg->status != -EINPROGRESS)
1203 			goto out;
1204 
1205 		if (xfer->delay_usecs)
1206 			_spi_transfer_delay_ns(xfer->delay_usecs * 1000);
1207 
1208 		if (xfer->cs_change) {
1209 			if (list_is_last(&xfer->transfer_list,
1210 					 &msg->transfers)) {
1211 				keep_cs = true;
1212 			} else {
1213 				spi_set_cs(msg->spi, false);
1214 				_spi_transfer_cs_change_delay(msg, xfer);
1215 				spi_set_cs(msg->spi, true);
1216 			}
1217 		}
1218 
1219 		msg->actual_length += xfer->len;
1220 	}
1221 
1222 out:
1223 	if (ret != 0 || !keep_cs)
1224 		spi_set_cs(msg->spi, false);
1225 
1226 	if (msg->status == -EINPROGRESS)
1227 		msg->status = ret;
1228 
1229 	if (msg->status && ctlr->handle_err)
1230 		ctlr->handle_err(ctlr, msg);
1231 
1232 	spi_res_release(ctlr, msg);
1233 
1234 	spi_finalize_current_message(ctlr);
1235 
1236 	return ret;
1237 }
1238 
1239 /**
1240  * spi_finalize_current_transfer - report completion of a transfer
1241  * @ctlr: the controller reporting completion
1242  *
1243  * Called by SPI drivers using the core transfer_one_message()
1244  * implementation to notify it that the current interrupt driven
1245  * transfer has finished and the next one may be scheduled.
1246  */
spi_finalize_current_transfer(struct spi_controller * ctlr)1247 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1248 {
1249 	complete(&ctlr->xfer_completion);
1250 }
1251 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1252 
1253 /**
1254  * __spi_pump_messages - function which processes spi message queue
1255  * @ctlr: controller to process queue for
1256  * @in_kthread: true if we are in the context of the message pump thread
1257  *
1258  * This function checks if there is any spi message in the queue that
1259  * needs processing and if so call out to the driver to initialize hardware
1260  * and transfer each message.
1261  *
1262  * Note that it is called both from the kthread itself and also from
1263  * inside spi_sync(); the queue extraction handling at the top of the
1264  * function should deal with this safely.
1265  */
__spi_pump_messages(struct spi_controller * ctlr,bool in_kthread)1266 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1267 {
1268 	struct spi_message *msg;
1269 	bool was_busy = false;
1270 	unsigned long flags;
1271 	int ret;
1272 
1273 	/* Lock queue */
1274 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1275 
1276 	/* Make sure we are not already running a message */
1277 	if (ctlr->cur_msg) {
1278 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1279 		return;
1280 	}
1281 
1282 	/* If another context is idling the device then defer */
1283 	if (ctlr->idling) {
1284 		kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1285 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1286 		return;
1287 	}
1288 
1289 	/* Check if the queue is idle */
1290 	if (list_empty(&ctlr->queue) || !ctlr->running) {
1291 		if (!ctlr->busy) {
1292 			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1293 			return;
1294 		}
1295 
1296 		/* Only do teardown in the thread */
1297 		if (!in_kthread) {
1298 			kthread_queue_work(&ctlr->kworker,
1299 					   &ctlr->pump_messages);
1300 			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1301 			return;
1302 		}
1303 
1304 		ctlr->busy = false;
1305 		ctlr->idling = true;
1306 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1307 
1308 		kfree(ctlr->dummy_rx);
1309 		ctlr->dummy_rx = NULL;
1310 		kfree(ctlr->dummy_tx);
1311 		ctlr->dummy_tx = NULL;
1312 		if (ctlr->unprepare_transfer_hardware &&
1313 		    ctlr->unprepare_transfer_hardware(ctlr))
1314 			dev_err(&ctlr->dev,
1315 				"failed to unprepare transfer hardware\n");
1316 		if (ctlr->auto_runtime_pm) {
1317 			pm_runtime_mark_last_busy(ctlr->dev.parent);
1318 			pm_runtime_put_autosuspend(ctlr->dev.parent);
1319 		}
1320 		trace_spi_controller_idle(ctlr);
1321 
1322 		spin_lock_irqsave(&ctlr->queue_lock, flags);
1323 		ctlr->idling = false;
1324 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1325 		return;
1326 	}
1327 
1328 	/* Extract head of queue */
1329 	msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1330 	ctlr->cur_msg = msg;
1331 
1332 	list_del_init(&msg->queue);
1333 	if (ctlr->busy)
1334 		was_busy = true;
1335 	else
1336 		ctlr->busy = true;
1337 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1338 
1339 	mutex_lock(&ctlr->io_mutex);
1340 
1341 	if (!was_busy && ctlr->auto_runtime_pm) {
1342 		ret = pm_runtime_get_sync(ctlr->dev.parent);
1343 		if (ret < 0) {
1344 			pm_runtime_put_noidle(ctlr->dev.parent);
1345 			dev_err(&ctlr->dev, "Failed to power device: %d\n",
1346 				ret);
1347 			mutex_unlock(&ctlr->io_mutex);
1348 			return;
1349 		}
1350 	}
1351 
1352 	if (!was_busy)
1353 		trace_spi_controller_busy(ctlr);
1354 
1355 	if (!was_busy && ctlr->prepare_transfer_hardware) {
1356 		ret = ctlr->prepare_transfer_hardware(ctlr);
1357 		if (ret) {
1358 			dev_err(&ctlr->dev,
1359 				"failed to prepare transfer hardware: %d\n",
1360 				ret);
1361 
1362 			if (ctlr->auto_runtime_pm)
1363 				pm_runtime_put(ctlr->dev.parent);
1364 
1365 			msg->status = ret;
1366 			spi_finalize_current_message(ctlr);
1367 
1368 			mutex_unlock(&ctlr->io_mutex);
1369 			return;
1370 		}
1371 	}
1372 
1373 	trace_spi_message_start(msg);
1374 
1375 	if (ctlr->prepare_message) {
1376 		ret = ctlr->prepare_message(ctlr, msg);
1377 		if (ret) {
1378 			dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1379 				ret);
1380 			msg->status = ret;
1381 			spi_finalize_current_message(ctlr);
1382 			goto out;
1383 		}
1384 		ctlr->cur_msg_prepared = true;
1385 	}
1386 
1387 	ret = spi_map_msg(ctlr, msg);
1388 	if (ret) {
1389 		msg->status = ret;
1390 		spi_finalize_current_message(ctlr);
1391 		goto out;
1392 	}
1393 
1394 	ret = ctlr->transfer_one_message(ctlr, msg);
1395 	if (ret) {
1396 		dev_err(&ctlr->dev,
1397 			"failed to transfer one message from queue\n");
1398 		goto out;
1399 	}
1400 
1401 out:
1402 	mutex_unlock(&ctlr->io_mutex);
1403 
1404 	/* Prod the scheduler in case transfer_one() was busy waiting */
1405 	if (!ret)
1406 		cond_resched();
1407 }
1408 
1409 /**
1410  * spi_pump_messages - kthread work function which processes spi message queue
1411  * @work: pointer to kthread work struct contained in the controller struct
1412  */
spi_pump_messages(struct kthread_work * work)1413 static void spi_pump_messages(struct kthread_work *work)
1414 {
1415 	struct spi_controller *ctlr =
1416 		container_of(work, struct spi_controller, pump_messages);
1417 
1418 	__spi_pump_messages(ctlr, true);
1419 }
1420 
1421 /**
1422  * spi_set_thread_rt - set the controller to pump at realtime priority
1423  * @ctlr: controller to boost priority of
1424  *
1425  * This can be called because the controller requested realtime priority
1426  * (by setting the ->rt value before calling spi_register_controller()) or
1427  * because a device on the bus said that its transfers needed realtime
1428  * priority.
1429  *
1430  * NOTE: at the moment if any device on a bus says it needs realtime then
1431  * the thread will be at realtime priority for all transfers on that
1432  * controller.  If this eventually becomes a problem we may see if we can
1433  * find a way to boost the priority only temporarily during relevant
1434  * transfers.
1435  */
spi_set_thread_rt(struct spi_controller * ctlr)1436 static void spi_set_thread_rt(struct spi_controller *ctlr)
1437 {
1438 	struct sched_param param = { .sched_priority = MAX_RT_PRIO / 2 };
1439 
1440 	dev_info(&ctlr->dev,
1441 		"will run message pump with realtime priority\n");
1442 	sched_setscheduler(ctlr->kworker_task, SCHED_FIFO, &param);
1443 }
1444 
spi_init_queue(struct spi_controller * ctlr)1445 static int spi_init_queue(struct spi_controller *ctlr)
1446 {
1447 	ctlr->running = false;
1448 	ctlr->busy = false;
1449 
1450 	kthread_init_worker(&ctlr->kworker);
1451 	ctlr->kworker_task = kthread_run(kthread_worker_fn, &ctlr->kworker,
1452 					 "%s", dev_name(&ctlr->dev));
1453 	if (IS_ERR(ctlr->kworker_task)) {
1454 		dev_err(&ctlr->dev, "failed to create message pump task\n");
1455 		return PTR_ERR(ctlr->kworker_task);
1456 	}
1457 	kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1458 
1459 	/*
1460 	 * Controller config will indicate if this controller should run the
1461 	 * message pump with high (realtime) priority to reduce the transfer
1462 	 * latency on the bus by minimising the delay between a transfer
1463 	 * request and the scheduling of the message pump thread. Without this
1464 	 * setting the message pump thread will remain at default priority.
1465 	 */
1466 	if (ctlr->rt)
1467 		spi_set_thread_rt(ctlr);
1468 
1469 	return 0;
1470 }
1471 
1472 /**
1473  * spi_get_next_queued_message() - called by driver to check for queued
1474  * messages
1475  * @ctlr: the controller to check for queued messages
1476  *
1477  * If there are more messages in the queue, the next message is returned from
1478  * this call.
1479  *
1480  * Return: the next message in the queue, else NULL if the queue is empty.
1481  */
spi_get_next_queued_message(struct spi_controller * ctlr)1482 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1483 {
1484 	struct spi_message *next;
1485 	unsigned long flags;
1486 
1487 	/* get a pointer to the next message, if any */
1488 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1489 	next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1490 					queue);
1491 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1492 
1493 	return next;
1494 }
1495 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1496 
1497 /**
1498  * spi_finalize_current_message() - the current message is complete
1499  * @ctlr: the controller to return the message to
1500  *
1501  * Called by the driver to notify the core that the message in the front of the
1502  * queue is complete and can be removed from the queue.
1503  */
spi_finalize_current_message(struct spi_controller * ctlr)1504 void spi_finalize_current_message(struct spi_controller *ctlr)
1505 {
1506 	struct spi_message *mesg;
1507 	unsigned long flags;
1508 	int ret;
1509 
1510 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1511 	mesg = ctlr->cur_msg;
1512 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1513 
1514 	spi_unmap_msg(ctlr, mesg);
1515 
1516 	if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1517 		ret = ctlr->unprepare_message(ctlr, mesg);
1518 		if (ret) {
1519 			dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1520 				ret);
1521 		}
1522 	}
1523 
1524 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1525 	ctlr->cur_msg = NULL;
1526 	ctlr->cur_msg_prepared = false;
1527 	kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1528 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1529 
1530 	trace_spi_message_done(mesg);
1531 
1532 	mesg->state = NULL;
1533 	if (mesg->complete)
1534 		mesg->complete(mesg->context);
1535 }
1536 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1537 
spi_start_queue(struct spi_controller * ctlr)1538 static int spi_start_queue(struct spi_controller *ctlr)
1539 {
1540 	unsigned long flags;
1541 
1542 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1543 
1544 	if (ctlr->running || ctlr->busy) {
1545 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1546 		return -EBUSY;
1547 	}
1548 
1549 	ctlr->running = true;
1550 	ctlr->cur_msg = NULL;
1551 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1552 
1553 	kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1554 
1555 	return 0;
1556 }
1557 
spi_stop_queue(struct spi_controller * ctlr)1558 static int spi_stop_queue(struct spi_controller *ctlr)
1559 {
1560 	unsigned long flags;
1561 	unsigned limit = 500;
1562 	int ret = 0;
1563 
1564 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1565 
1566 	/*
1567 	 * This is a bit lame, but is optimized for the common execution path.
1568 	 * A wait_queue on the ctlr->busy could be used, but then the common
1569 	 * execution path (pump_messages) would be required to call wake_up or
1570 	 * friends on every SPI message. Do this instead.
1571 	 */
1572 	while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1573 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1574 		usleep_range(10000, 11000);
1575 		spin_lock_irqsave(&ctlr->queue_lock, flags);
1576 	}
1577 
1578 	if (!list_empty(&ctlr->queue) || ctlr->busy)
1579 		ret = -EBUSY;
1580 	else
1581 		ctlr->running = false;
1582 
1583 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1584 
1585 	if (ret) {
1586 		dev_warn(&ctlr->dev, "could not stop message queue\n");
1587 		return ret;
1588 	}
1589 	return ret;
1590 }
1591 
spi_destroy_queue(struct spi_controller * ctlr)1592 static int spi_destroy_queue(struct spi_controller *ctlr)
1593 {
1594 	int ret;
1595 
1596 	ret = spi_stop_queue(ctlr);
1597 
1598 	/*
1599 	 * kthread_flush_worker will block until all work is done.
1600 	 * If the reason that stop_queue timed out is that the work will never
1601 	 * finish, then it does no good to call flush/stop thread, so
1602 	 * return anyway.
1603 	 */
1604 	if (ret) {
1605 		dev_err(&ctlr->dev, "problem destroying queue\n");
1606 		return ret;
1607 	}
1608 
1609 	kthread_flush_worker(&ctlr->kworker);
1610 	kthread_stop(ctlr->kworker_task);
1611 
1612 	return 0;
1613 }
1614 
__spi_queued_transfer(struct spi_device * spi,struct spi_message * msg,bool need_pump)1615 static int __spi_queued_transfer(struct spi_device *spi,
1616 				 struct spi_message *msg,
1617 				 bool need_pump)
1618 {
1619 	struct spi_controller *ctlr = spi->controller;
1620 	unsigned long flags;
1621 
1622 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1623 
1624 	if (!ctlr->running) {
1625 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1626 		return -ESHUTDOWN;
1627 	}
1628 	msg->actual_length = 0;
1629 	msg->status = -EINPROGRESS;
1630 
1631 	list_add_tail(&msg->queue, &ctlr->queue);
1632 	if (!ctlr->busy && need_pump)
1633 		kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1634 
1635 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1636 	return 0;
1637 }
1638 
1639 /**
1640  * spi_queued_transfer - transfer function for queued transfers
1641  * @spi: spi device which is requesting transfer
1642  * @msg: spi message which is to handled is queued to driver queue
1643  *
1644  * Return: zero on success, else a negative error code.
1645  */
spi_queued_transfer(struct spi_device * spi,struct spi_message * msg)1646 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1647 {
1648 	return __spi_queued_transfer(spi, msg, true);
1649 }
1650 
spi_controller_initialize_queue(struct spi_controller * ctlr)1651 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
1652 {
1653 	int ret;
1654 
1655 	ctlr->transfer = spi_queued_transfer;
1656 	if (!ctlr->transfer_one_message)
1657 		ctlr->transfer_one_message = spi_transfer_one_message;
1658 
1659 	/* Initialize and start queue */
1660 	ret = spi_init_queue(ctlr);
1661 	if (ret) {
1662 		dev_err(&ctlr->dev, "problem initializing queue\n");
1663 		goto err_init_queue;
1664 	}
1665 	ctlr->queued = true;
1666 	ret = spi_start_queue(ctlr);
1667 	if (ret) {
1668 		dev_err(&ctlr->dev, "problem starting queue\n");
1669 		goto err_start_queue;
1670 	}
1671 
1672 	return 0;
1673 
1674 err_start_queue:
1675 	spi_destroy_queue(ctlr);
1676 err_init_queue:
1677 	return ret;
1678 }
1679 
1680 /**
1681  * spi_flush_queue - Send all pending messages in the queue from the callers'
1682  *		     context
1683  * @ctlr: controller to process queue for
1684  *
1685  * This should be used when one wants to ensure all pending messages have been
1686  * sent before doing something. Is used by the spi-mem code to make sure SPI
1687  * memory operations do not preempt regular SPI transfers that have been queued
1688  * before the spi-mem operation.
1689  */
spi_flush_queue(struct spi_controller * ctlr)1690 void spi_flush_queue(struct spi_controller *ctlr)
1691 {
1692 	if (ctlr->transfer == spi_queued_transfer)
1693 		__spi_pump_messages(ctlr, false);
1694 }
1695 
1696 /*-------------------------------------------------------------------------*/
1697 
1698 #if defined(CONFIG_OF)
of_spi_parse_dt(struct spi_controller * ctlr,struct spi_device * spi,struct device_node * nc)1699 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
1700 			   struct device_node *nc)
1701 {
1702 	u32 value;
1703 	int rc;
1704 
1705 	/* Mode (clock phase/polarity/etc.) */
1706 	if (of_property_read_bool(nc, "spi-cpha"))
1707 		spi->mode |= SPI_CPHA;
1708 	if (of_property_read_bool(nc, "spi-cpol"))
1709 		spi->mode |= SPI_CPOL;
1710 	if (of_property_read_bool(nc, "spi-3wire"))
1711 		spi->mode |= SPI_3WIRE;
1712 	if (of_property_read_bool(nc, "spi-lsb-first"))
1713 		spi->mode |= SPI_LSB_FIRST;
1714 	if (of_property_read_bool(nc, "spi-cs-high"))
1715 		spi->mode |= SPI_CS_HIGH;
1716 
1717 	/* Device DUAL/QUAD mode */
1718 	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1719 		switch (value) {
1720 		case 1:
1721 			break;
1722 		case 2:
1723 			spi->mode |= SPI_TX_DUAL;
1724 			break;
1725 		case 4:
1726 			spi->mode |= SPI_TX_QUAD;
1727 			break;
1728 		case 8:
1729 			spi->mode |= SPI_TX_OCTAL;
1730 			break;
1731 		default:
1732 			dev_warn(&ctlr->dev,
1733 				"spi-tx-bus-width %d not supported\n",
1734 				value);
1735 			break;
1736 		}
1737 	}
1738 
1739 	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1740 		switch (value) {
1741 		case 1:
1742 			break;
1743 		case 2:
1744 			spi->mode |= SPI_RX_DUAL;
1745 			break;
1746 		case 4:
1747 			spi->mode |= SPI_RX_QUAD;
1748 			break;
1749 		case 8:
1750 			spi->mode |= SPI_RX_OCTAL;
1751 			break;
1752 		default:
1753 			dev_warn(&ctlr->dev,
1754 				"spi-rx-bus-width %d not supported\n",
1755 				value);
1756 			break;
1757 		}
1758 	}
1759 
1760 	if (spi_controller_is_slave(ctlr)) {
1761 		if (!of_node_name_eq(nc, "slave")) {
1762 			dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
1763 				nc);
1764 			return -EINVAL;
1765 		}
1766 		return 0;
1767 	}
1768 
1769 	/* Device address */
1770 	rc = of_property_read_u32(nc, "reg", &value);
1771 	if (rc) {
1772 		dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
1773 			nc, rc);
1774 		return rc;
1775 	}
1776 	spi->chip_select = value;
1777 
1778 	/*
1779 	 * For descriptors associated with the device, polarity inversion is
1780 	 * handled in the gpiolib, so all gpio chip selects are "active high"
1781 	 * in the logical sense, the gpiolib will invert the line if need be.
1782 	 */
1783 	if ((ctlr->use_gpio_descriptors) && ctlr->cs_gpiods &&
1784 	    ctlr->cs_gpiods[spi->chip_select])
1785 		spi->mode |= SPI_CS_HIGH;
1786 
1787 	/* Device speed */
1788 	rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1789 	if (rc) {
1790 		dev_err(&ctlr->dev,
1791 			"%pOF has no valid 'spi-max-frequency' property (%d)\n", nc, rc);
1792 		return rc;
1793 	}
1794 	spi->max_speed_hz = value;
1795 
1796 	return 0;
1797 }
1798 
1799 static struct spi_device *
of_register_spi_device(struct spi_controller * ctlr,struct device_node * nc)1800 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
1801 {
1802 	struct spi_device *spi;
1803 	int rc;
1804 
1805 	/* Alloc an spi_device */
1806 	spi = spi_alloc_device(ctlr);
1807 	if (!spi) {
1808 		dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
1809 		rc = -ENOMEM;
1810 		goto err_out;
1811 	}
1812 
1813 	/* Select device driver */
1814 	rc = of_modalias_node(nc, spi->modalias,
1815 				sizeof(spi->modalias));
1816 	if (rc < 0) {
1817 		dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
1818 		goto err_out;
1819 	}
1820 
1821 	rc = of_spi_parse_dt(ctlr, spi, nc);
1822 	if (rc)
1823 		goto err_out;
1824 
1825 	/* Store a pointer to the node in the device structure */
1826 	of_node_get(nc);
1827 	spi->dev.of_node = nc;
1828 
1829 	/* Register the new device */
1830 	rc = spi_add_device(spi);
1831 	if (rc) {
1832 		dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
1833 		goto err_of_node_put;
1834 	}
1835 
1836 	return spi;
1837 
1838 err_of_node_put:
1839 	of_node_put(nc);
1840 err_out:
1841 	spi_dev_put(spi);
1842 	return ERR_PTR(rc);
1843 }
1844 
1845 /**
1846  * of_register_spi_devices() - Register child devices onto the SPI bus
1847  * @ctlr:	Pointer to spi_controller device
1848  *
1849  * Registers an spi_device for each child node of controller node which
1850  * represents a valid SPI slave.
1851  */
of_register_spi_devices(struct spi_controller * ctlr)1852 static void of_register_spi_devices(struct spi_controller *ctlr)
1853 {
1854 	struct spi_device *spi;
1855 	struct device_node *nc;
1856 
1857 	if (!ctlr->dev.of_node)
1858 		return;
1859 
1860 	for_each_available_child_of_node(ctlr->dev.of_node, nc) {
1861 		if (of_node_test_and_set_flag(nc, OF_POPULATED))
1862 			continue;
1863 		spi = of_register_spi_device(ctlr, nc);
1864 		if (IS_ERR(spi)) {
1865 			dev_warn(&ctlr->dev,
1866 				 "Failed to create SPI device for %pOF\n", nc);
1867 			of_node_clear_flag(nc, OF_POPULATED);
1868 		}
1869 	}
1870 }
1871 #else
of_register_spi_devices(struct spi_controller * ctlr)1872 static void of_register_spi_devices(struct spi_controller *ctlr) { }
1873 #endif
1874 
1875 #ifdef CONFIG_ACPI
1876 struct acpi_spi_lookup {
1877 	struct spi_controller 	*ctlr;
1878 	u32			max_speed_hz;
1879 	u32			mode;
1880 	int			irq;
1881 	u8			bits_per_word;
1882 	u8			chip_select;
1883 };
1884 
acpi_spi_parse_apple_properties(struct acpi_device * dev,struct acpi_spi_lookup * lookup)1885 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
1886 					    struct acpi_spi_lookup *lookup)
1887 {
1888 	const union acpi_object *obj;
1889 
1890 	if (!x86_apple_machine)
1891 		return;
1892 
1893 	if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
1894 	    && obj->buffer.length >= 4)
1895 		lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
1896 
1897 	if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
1898 	    && obj->buffer.length == 8)
1899 		lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
1900 
1901 	if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
1902 	    && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
1903 		lookup->mode |= SPI_LSB_FIRST;
1904 
1905 	if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
1906 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
1907 		lookup->mode |= SPI_CPOL;
1908 
1909 	if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
1910 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
1911 		lookup->mode |= SPI_CPHA;
1912 }
1913 
acpi_spi_add_resource(struct acpi_resource * ares,void * data)1914 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1915 {
1916 	struct acpi_spi_lookup *lookup = data;
1917 	struct spi_controller *ctlr = lookup->ctlr;
1918 
1919 	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1920 		struct acpi_resource_spi_serialbus *sb;
1921 		acpi_handle parent_handle;
1922 		acpi_status status;
1923 
1924 		sb = &ares->data.spi_serial_bus;
1925 		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1926 
1927 			status = acpi_get_handle(NULL,
1928 						 sb->resource_source.string_ptr,
1929 						 &parent_handle);
1930 
1931 			if (ACPI_FAILURE(status) ||
1932 			    ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
1933 				return -ENODEV;
1934 
1935 			/*
1936 			 * ACPI DeviceSelection numbering is handled by the
1937 			 * host controller driver in Windows and can vary
1938 			 * from driver to driver. In Linux we always expect
1939 			 * 0 .. max - 1 so we need to ask the driver to
1940 			 * translate between the two schemes.
1941 			 */
1942 			if (ctlr->fw_translate_cs) {
1943 				int cs = ctlr->fw_translate_cs(ctlr,
1944 						sb->device_selection);
1945 				if (cs < 0)
1946 					return cs;
1947 				lookup->chip_select = cs;
1948 			} else {
1949 				lookup->chip_select = sb->device_selection;
1950 			}
1951 
1952 			lookup->max_speed_hz = sb->connection_speed;
1953 
1954 			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1955 				lookup->mode |= SPI_CPHA;
1956 			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1957 				lookup->mode |= SPI_CPOL;
1958 			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1959 				lookup->mode |= SPI_CS_HIGH;
1960 		}
1961 	} else if (lookup->irq < 0) {
1962 		struct resource r;
1963 
1964 		if (acpi_dev_resource_interrupt(ares, 0, &r))
1965 			lookup->irq = r.start;
1966 	}
1967 
1968 	/* Always tell the ACPI core to skip this resource */
1969 	return 1;
1970 }
1971 
acpi_register_spi_device(struct spi_controller * ctlr,struct acpi_device * adev)1972 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
1973 					    struct acpi_device *adev)
1974 {
1975 	acpi_handle parent_handle = NULL;
1976 	struct list_head resource_list;
1977 	struct acpi_spi_lookup lookup = {};
1978 	struct spi_device *spi;
1979 	int ret;
1980 
1981 	if (acpi_bus_get_status(adev) || !adev->status.present ||
1982 	    acpi_device_enumerated(adev))
1983 		return AE_OK;
1984 
1985 	lookup.ctlr		= ctlr;
1986 	lookup.irq		= -1;
1987 
1988 	INIT_LIST_HEAD(&resource_list);
1989 	ret = acpi_dev_get_resources(adev, &resource_list,
1990 				     acpi_spi_add_resource, &lookup);
1991 	acpi_dev_free_resource_list(&resource_list);
1992 
1993 	if (ret < 0)
1994 		/* found SPI in _CRS but it points to another controller */
1995 		return AE_OK;
1996 
1997 	if (!lookup.max_speed_hz &&
1998 	    !ACPI_FAILURE(acpi_get_parent(adev->handle, &parent_handle)) &&
1999 	    ACPI_HANDLE(ctlr->dev.parent) == parent_handle) {
2000 		/* Apple does not use _CRS but nested devices for SPI slaves */
2001 		acpi_spi_parse_apple_properties(adev, &lookup);
2002 	}
2003 
2004 	if (!lookup.max_speed_hz)
2005 		return AE_OK;
2006 
2007 	spi = spi_alloc_device(ctlr);
2008 	if (!spi) {
2009 		dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
2010 			dev_name(&adev->dev));
2011 		return AE_NO_MEMORY;
2012 	}
2013 
2014 	ACPI_COMPANION_SET(&spi->dev, adev);
2015 	spi->max_speed_hz	= lookup.max_speed_hz;
2016 	spi->mode		= lookup.mode;
2017 	spi->irq		= lookup.irq;
2018 	spi->bits_per_word	= lookup.bits_per_word;
2019 	spi->chip_select	= lookup.chip_select;
2020 
2021 	acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2022 			  sizeof(spi->modalias));
2023 
2024 	if (spi->irq < 0)
2025 		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2026 
2027 	acpi_device_set_enumerated(adev);
2028 
2029 	adev->power.flags.ignore_parent = true;
2030 	if (spi_add_device(spi)) {
2031 		adev->power.flags.ignore_parent = false;
2032 		dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2033 			dev_name(&adev->dev));
2034 		spi_dev_put(spi);
2035 	}
2036 
2037 	return AE_OK;
2038 }
2039 
acpi_spi_add_device(acpi_handle handle,u32 level,void * data,void ** return_value)2040 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2041 				       void *data, void **return_value)
2042 {
2043 	struct spi_controller *ctlr = data;
2044 	struct acpi_device *adev;
2045 
2046 	if (acpi_bus_get_device(handle, &adev))
2047 		return AE_OK;
2048 
2049 	return acpi_register_spi_device(ctlr, adev);
2050 }
2051 
2052 #define SPI_ACPI_ENUMERATE_MAX_DEPTH		32
2053 
acpi_register_spi_devices(struct spi_controller * ctlr)2054 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2055 {
2056 	acpi_status status;
2057 	acpi_handle handle;
2058 
2059 	handle = ACPI_HANDLE(ctlr->dev.parent);
2060 	if (!handle)
2061 		return;
2062 
2063 	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2064 				     SPI_ACPI_ENUMERATE_MAX_DEPTH,
2065 				     acpi_spi_add_device, NULL, ctlr, NULL);
2066 	if (ACPI_FAILURE(status))
2067 		dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2068 }
2069 #else
acpi_register_spi_devices(struct spi_controller * ctlr)2070 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2071 #endif /* CONFIG_ACPI */
2072 
spi_controller_release(struct device * dev)2073 static void spi_controller_release(struct device *dev)
2074 {
2075 	struct spi_controller *ctlr;
2076 
2077 	ctlr = container_of(dev, struct spi_controller, dev);
2078 	kfree(ctlr);
2079 }
2080 
2081 static struct class spi_master_class = {
2082 	.name		= "spi_master",
2083 	.owner		= THIS_MODULE,
2084 	.dev_release	= spi_controller_release,
2085 	.dev_groups	= spi_master_groups,
2086 };
2087 
2088 #ifdef CONFIG_SPI_SLAVE
2089 /**
2090  * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2091  *		     controller
2092  * @spi: device used for the current transfer
2093  */
spi_slave_abort(struct spi_device * spi)2094 int spi_slave_abort(struct spi_device *spi)
2095 {
2096 	struct spi_controller *ctlr = spi->controller;
2097 
2098 	if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2099 		return ctlr->slave_abort(ctlr);
2100 
2101 	return -ENOTSUPP;
2102 }
2103 EXPORT_SYMBOL_GPL(spi_slave_abort);
2104 
match_true(struct device * dev,void * data)2105 static int match_true(struct device *dev, void *data)
2106 {
2107 	return 1;
2108 }
2109 
slave_show(struct device * dev,struct device_attribute * attr,char * buf)2110 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2111 			  char *buf)
2112 {
2113 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2114 						   dev);
2115 	struct device *child;
2116 
2117 	child = device_find_child(&ctlr->dev, NULL, match_true);
2118 	return sprintf(buf, "%s\n",
2119 		       child ? to_spi_device(child)->modalias : NULL);
2120 }
2121 
slave_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2122 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2123 			   const char *buf, size_t count)
2124 {
2125 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2126 						   dev);
2127 	struct spi_device *spi;
2128 	struct device *child;
2129 	char name[32];
2130 	int rc;
2131 
2132 	rc = sscanf(buf, "%31s", name);
2133 	if (rc != 1 || !name[0])
2134 		return -EINVAL;
2135 
2136 	child = device_find_child(&ctlr->dev, NULL, match_true);
2137 	if (child) {
2138 		/* Remove registered slave */
2139 		device_unregister(child);
2140 		put_device(child);
2141 	}
2142 
2143 	if (strcmp(name, "(null)")) {
2144 		/* Register new slave */
2145 		spi = spi_alloc_device(ctlr);
2146 		if (!spi)
2147 			return -ENOMEM;
2148 
2149 		strlcpy(spi->modalias, name, sizeof(spi->modalias));
2150 
2151 		rc = spi_add_device(spi);
2152 		if (rc) {
2153 			spi_dev_put(spi);
2154 			return rc;
2155 		}
2156 	}
2157 
2158 	return count;
2159 }
2160 
2161 static DEVICE_ATTR_RW(slave);
2162 
2163 static struct attribute *spi_slave_attrs[] = {
2164 	&dev_attr_slave.attr,
2165 	NULL,
2166 };
2167 
2168 static const struct attribute_group spi_slave_group = {
2169 	.attrs = spi_slave_attrs,
2170 };
2171 
2172 static const struct attribute_group *spi_slave_groups[] = {
2173 	&spi_controller_statistics_group,
2174 	&spi_slave_group,
2175 	NULL,
2176 };
2177 
2178 static struct class spi_slave_class = {
2179 	.name		= "spi_slave",
2180 	.owner		= THIS_MODULE,
2181 	.dev_release	= spi_controller_release,
2182 	.dev_groups	= spi_slave_groups,
2183 };
2184 #else
2185 extern struct class spi_slave_class;	/* dummy */
2186 #endif
2187 
2188 /**
2189  * __spi_alloc_controller - allocate an SPI master or slave controller
2190  * @dev: the controller, possibly using the platform_bus
2191  * @size: how much zeroed driver-private data to allocate; the pointer to this
2192  *	memory is in the driver_data field of the returned device, accessible
2193  *	with spi_controller_get_devdata(); the memory is cacheline aligned;
2194  *	drivers granting DMA access to portions of their private data need to
2195  *	round up @size using ALIGN(size, dma_get_cache_alignment()).
2196  * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2197  *	slave (true) controller
2198  * Context: can sleep
2199  *
2200  * This call is used only by SPI controller drivers, which are the
2201  * only ones directly touching chip registers.  It's how they allocate
2202  * an spi_controller structure, prior to calling spi_register_controller().
2203  *
2204  * This must be called from context that can sleep.
2205  *
2206  * The caller is responsible for assigning the bus number and initializing the
2207  * controller's methods before calling spi_register_controller(); and (after
2208  * errors adding the device) calling spi_controller_put() to prevent a memory
2209  * leak.
2210  *
2211  * Return: the SPI controller structure on success, else NULL.
2212  */
__spi_alloc_controller(struct device * dev,unsigned int size,bool slave)2213 struct spi_controller *__spi_alloc_controller(struct device *dev,
2214 					      unsigned int size, bool slave)
2215 {
2216 	struct spi_controller	*ctlr;
2217 	size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
2218 
2219 	if (!dev)
2220 		return NULL;
2221 
2222 	ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
2223 	if (!ctlr)
2224 		return NULL;
2225 
2226 	device_initialize(&ctlr->dev);
2227 	ctlr->bus_num = -1;
2228 	ctlr->num_chipselect = 1;
2229 	ctlr->slave = slave;
2230 	if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2231 		ctlr->dev.class = &spi_slave_class;
2232 	else
2233 		ctlr->dev.class = &spi_master_class;
2234 	ctlr->dev.parent = dev;
2235 	pm_suspend_ignore_children(&ctlr->dev, true);
2236 	spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
2237 
2238 	return ctlr;
2239 }
2240 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2241 
2242 #ifdef CONFIG_OF
of_spi_get_gpio_numbers(struct spi_controller * ctlr)2243 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2244 {
2245 	int nb, i, *cs;
2246 	struct device_node *np = ctlr->dev.of_node;
2247 
2248 	if (!np)
2249 		return 0;
2250 
2251 	nb = of_gpio_named_count(np, "cs-gpios");
2252 	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2253 
2254 	/* Return error only for an incorrectly formed cs-gpios property */
2255 	if (nb == 0 || nb == -ENOENT)
2256 		return 0;
2257 	else if (nb < 0)
2258 		return nb;
2259 
2260 	cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int),
2261 			  GFP_KERNEL);
2262 	ctlr->cs_gpios = cs;
2263 
2264 	if (!ctlr->cs_gpios)
2265 		return -ENOMEM;
2266 
2267 	for (i = 0; i < ctlr->num_chipselect; i++)
2268 		cs[i] = -ENOENT;
2269 
2270 	for (i = 0; i < nb; i++)
2271 		cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2272 
2273 	return 0;
2274 }
2275 #else
of_spi_get_gpio_numbers(struct spi_controller * ctlr)2276 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2277 {
2278 	return 0;
2279 }
2280 #endif
2281 
2282 /**
2283  * spi_get_gpio_descs() - grab chip select GPIOs for the master
2284  * @ctlr: The SPI master to grab GPIO descriptors for
2285  */
spi_get_gpio_descs(struct spi_controller * ctlr)2286 static int spi_get_gpio_descs(struct spi_controller *ctlr)
2287 {
2288 	int nb, i;
2289 	struct gpio_desc **cs;
2290 	struct device *dev = &ctlr->dev;
2291 
2292 	nb = gpiod_count(dev, "cs");
2293 	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2294 
2295 	/* No GPIOs at all is fine, else return the error */
2296 	if (nb == 0 || nb == -ENOENT)
2297 		return 0;
2298 	else if (nb < 0)
2299 		return nb;
2300 
2301 	cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
2302 			  GFP_KERNEL);
2303 	if (!cs)
2304 		return -ENOMEM;
2305 	ctlr->cs_gpiods = cs;
2306 
2307 	for (i = 0; i < nb; i++) {
2308 		/*
2309 		 * Most chipselects are active low, the inverted
2310 		 * semantics are handled by special quirks in gpiolib,
2311 		 * so initializing them GPIOD_OUT_LOW here means
2312 		 * "unasserted", in most cases this will drive the physical
2313 		 * line high.
2314 		 */
2315 		cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
2316 						      GPIOD_OUT_LOW);
2317 		if (IS_ERR(cs[i]))
2318 			return PTR_ERR(cs[i]);
2319 
2320 		if (cs[i]) {
2321 			/*
2322 			 * If we find a CS GPIO, name it after the device and
2323 			 * chip select line.
2324 			 */
2325 			char *gpioname;
2326 
2327 			gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
2328 						  dev_name(dev), i);
2329 			if (!gpioname)
2330 				return -ENOMEM;
2331 			gpiod_set_consumer_name(cs[i], gpioname);
2332 		}
2333 	}
2334 
2335 	return 0;
2336 }
2337 
spi_controller_check_ops(struct spi_controller * ctlr)2338 static int spi_controller_check_ops(struct spi_controller *ctlr)
2339 {
2340 	/*
2341 	 * The controller may implement only the high-level SPI-memory like
2342 	 * operations if it does not support regular SPI transfers, and this is
2343 	 * valid use case.
2344 	 * If ->mem_ops is NULL, we request that at least one of the
2345 	 * ->transfer_xxx() method be implemented.
2346 	 */
2347 	if (ctlr->mem_ops) {
2348 		if (!ctlr->mem_ops->exec_op)
2349 			return -EINVAL;
2350 	} else if (!ctlr->transfer && !ctlr->transfer_one &&
2351 		   !ctlr->transfer_one_message) {
2352 		return -EINVAL;
2353 	}
2354 
2355 	return 0;
2356 }
2357 
2358 /**
2359  * spi_register_controller - register SPI master or slave controller
2360  * @ctlr: initialized master, originally from spi_alloc_master() or
2361  *	spi_alloc_slave()
2362  * Context: can sleep
2363  *
2364  * SPI controllers connect to their drivers using some non-SPI bus,
2365  * such as the platform bus.  The final stage of probe() in that code
2366  * includes calling spi_register_controller() to hook up to this SPI bus glue.
2367  *
2368  * SPI controllers use board specific (often SOC specific) bus numbers,
2369  * and board-specific addressing for SPI devices combines those numbers
2370  * with chip select numbers.  Since SPI does not directly support dynamic
2371  * device identification, boards need configuration tables telling which
2372  * chip is at which address.
2373  *
2374  * This must be called from context that can sleep.  It returns zero on
2375  * success, else a negative error code (dropping the controller's refcount).
2376  * After a successful return, the caller is responsible for calling
2377  * spi_unregister_controller().
2378  *
2379  * Return: zero on success, else a negative error code.
2380  */
spi_register_controller(struct spi_controller * ctlr)2381 int spi_register_controller(struct spi_controller *ctlr)
2382 {
2383 	struct device		*dev = ctlr->dev.parent;
2384 	struct boardinfo	*bi;
2385 	int			status;
2386 	int			id, first_dynamic;
2387 
2388 	if (!dev)
2389 		return -ENODEV;
2390 
2391 	/*
2392 	 * Make sure all necessary hooks are implemented before registering
2393 	 * the SPI controller.
2394 	 */
2395 	status = spi_controller_check_ops(ctlr);
2396 	if (status)
2397 		return status;
2398 
2399 	if (ctlr->bus_num >= 0) {
2400 		/* devices with a fixed bus num must check-in with the num */
2401 		mutex_lock(&board_lock);
2402 		id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2403 			ctlr->bus_num + 1, GFP_KERNEL);
2404 		mutex_unlock(&board_lock);
2405 		if (WARN(id < 0, "couldn't get idr"))
2406 			return id == -ENOSPC ? -EBUSY : id;
2407 		ctlr->bus_num = id;
2408 	} else if (ctlr->dev.of_node) {
2409 		/* allocate dynamic bus number using Linux idr */
2410 		id = of_alias_get_id(ctlr->dev.of_node, "spi");
2411 		if (id >= 0) {
2412 			ctlr->bus_num = id;
2413 			mutex_lock(&board_lock);
2414 			id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2415 				       ctlr->bus_num + 1, GFP_KERNEL);
2416 			mutex_unlock(&board_lock);
2417 			if (WARN(id < 0, "couldn't get idr"))
2418 				return id == -ENOSPC ? -EBUSY : id;
2419 		}
2420 	}
2421 	if (ctlr->bus_num < 0) {
2422 		first_dynamic = of_alias_get_highest_id("spi");
2423 		if (first_dynamic < 0)
2424 			first_dynamic = 0;
2425 		else
2426 			first_dynamic++;
2427 
2428 		mutex_lock(&board_lock);
2429 		id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2430 			       0, GFP_KERNEL);
2431 		mutex_unlock(&board_lock);
2432 		if (WARN(id < 0, "couldn't get idr"))
2433 			return id;
2434 		ctlr->bus_num = id;
2435 	}
2436 	INIT_LIST_HEAD(&ctlr->queue);
2437 	spin_lock_init(&ctlr->queue_lock);
2438 	spin_lock_init(&ctlr->bus_lock_spinlock);
2439 	mutex_init(&ctlr->bus_lock_mutex);
2440 	mutex_init(&ctlr->io_mutex);
2441 	ctlr->bus_lock_flag = 0;
2442 	init_completion(&ctlr->xfer_completion);
2443 	if (!ctlr->max_dma_len)
2444 		ctlr->max_dma_len = INT_MAX;
2445 
2446 	/* register the device, then userspace will see it.
2447 	 * registration fails if the bus ID is in use.
2448 	 */
2449 	dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2450 
2451 	if (!spi_controller_is_slave(ctlr)) {
2452 		if (ctlr->use_gpio_descriptors) {
2453 			status = spi_get_gpio_descs(ctlr);
2454 			if (status)
2455 				return status;
2456 			/*
2457 			 * A controller using GPIO descriptors always
2458 			 * supports SPI_CS_HIGH if need be.
2459 			 */
2460 			ctlr->mode_bits |= SPI_CS_HIGH;
2461 		} else {
2462 			/* Legacy code path for GPIOs from DT */
2463 			status = of_spi_get_gpio_numbers(ctlr);
2464 			if (status)
2465 				return status;
2466 		}
2467 	}
2468 
2469 	/*
2470 	 * Even if it's just one always-selected device, there must
2471 	 * be at least one chipselect.
2472 	 */
2473 	if (!ctlr->num_chipselect)
2474 		return -EINVAL;
2475 
2476 	status = device_add(&ctlr->dev);
2477 	if (status < 0) {
2478 		/* free bus id */
2479 		mutex_lock(&board_lock);
2480 		idr_remove(&spi_master_idr, ctlr->bus_num);
2481 		mutex_unlock(&board_lock);
2482 		goto done;
2483 	}
2484 	dev_dbg(dev, "registered %s %s\n",
2485 			spi_controller_is_slave(ctlr) ? "slave" : "master",
2486 			dev_name(&ctlr->dev));
2487 
2488 	/*
2489 	 * If we're using a queued driver, start the queue. Note that we don't
2490 	 * need the queueing logic if the driver is only supporting high-level
2491 	 * memory operations.
2492 	 */
2493 	if (ctlr->transfer) {
2494 		dev_info(dev, "controller is unqueued, this is deprecated\n");
2495 	} else if (ctlr->transfer_one || ctlr->transfer_one_message) {
2496 		status = spi_controller_initialize_queue(ctlr);
2497 		if (status) {
2498 			device_del(&ctlr->dev);
2499 			/* free bus id */
2500 			mutex_lock(&board_lock);
2501 			idr_remove(&spi_master_idr, ctlr->bus_num);
2502 			mutex_unlock(&board_lock);
2503 			goto done;
2504 		}
2505 	}
2506 	/* add statistics */
2507 	spin_lock_init(&ctlr->statistics.lock);
2508 
2509 	mutex_lock(&board_lock);
2510 	list_add_tail(&ctlr->list, &spi_controller_list);
2511 	list_for_each_entry(bi, &board_list, list)
2512 		spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2513 	mutex_unlock(&board_lock);
2514 
2515 	/* Register devices from the device tree and ACPI */
2516 	of_register_spi_devices(ctlr);
2517 	acpi_register_spi_devices(ctlr);
2518 done:
2519 	return status;
2520 }
2521 EXPORT_SYMBOL_GPL(spi_register_controller);
2522 
devm_spi_unregister(struct device * dev,void * res)2523 static void devm_spi_unregister(struct device *dev, void *res)
2524 {
2525 	spi_unregister_controller(*(struct spi_controller **)res);
2526 }
2527 
2528 /**
2529  * devm_spi_register_controller - register managed SPI master or slave
2530  *	controller
2531  * @dev:    device managing SPI controller
2532  * @ctlr: initialized controller, originally from spi_alloc_master() or
2533  *	spi_alloc_slave()
2534  * Context: can sleep
2535  *
2536  * Register a SPI device as with spi_register_controller() which will
2537  * automatically be unregistered and freed.
2538  *
2539  * Return: zero on success, else a negative error code.
2540  */
devm_spi_register_controller(struct device * dev,struct spi_controller * ctlr)2541 int devm_spi_register_controller(struct device *dev,
2542 				 struct spi_controller *ctlr)
2543 {
2544 	struct spi_controller **ptr;
2545 	int ret;
2546 
2547 	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
2548 	if (!ptr)
2549 		return -ENOMEM;
2550 
2551 	ret = spi_register_controller(ctlr);
2552 	if (!ret) {
2553 		*ptr = ctlr;
2554 		devres_add(dev, ptr);
2555 	} else {
2556 		devres_free(ptr);
2557 	}
2558 
2559 	return ret;
2560 }
2561 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
2562 
__unregister(struct device * dev,void * null)2563 static int __unregister(struct device *dev, void *null)
2564 {
2565 	spi_unregister_device(to_spi_device(dev));
2566 	return 0;
2567 }
2568 
2569 /**
2570  * spi_unregister_controller - unregister SPI master or slave controller
2571  * @ctlr: the controller being unregistered
2572  * Context: can sleep
2573  *
2574  * This call is used only by SPI controller drivers, which are the
2575  * only ones directly touching chip registers.
2576  *
2577  * This must be called from context that can sleep.
2578  *
2579  * Note that this function also drops a reference to the controller.
2580  */
spi_unregister_controller(struct spi_controller * ctlr)2581 void spi_unregister_controller(struct spi_controller *ctlr)
2582 {
2583 	struct spi_controller *found;
2584 	int id = ctlr->bus_num;
2585 
2586 	/* First make sure that this controller was ever added */
2587 	mutex_lock(&board_lock);
2588 	found = idr_find(&spi_master_idr, id);
2589 	mutex_unlock(&board_lock);
2590 	if (ctlr->queued) {
2591 		if (spi_destroy_queue(ctlr))
2592 			dev_err(&ctlr->dev, "queue remove failed\n");
2593 	}
2594 	mutex_lock(&board_lock);
2595 	list_del(&ctlr->list);
2596 	mutex_unlock(&board_lock);
2597 
2598 	device_for_each_child(&ctlr->dev, NULL, __unregister);
2599 	device_unregister(&ctlr->dev);
2600 	/* free bus id */
2601 	mutex_lock(&board_lock);
2602 	if (found == ctlr)
2603 		idr_remove(&spi_master_idr, id);
2604 	mutex_unlock(&board_lock);
2605 }
2606 EXPORT_SYMBOL_GPL(spi_unregister_controller);
2607 
spi_controller_suspend(struct spi_controller * ctlr)2608 int spi_controller_suspend(struct spi_controller *ctlr)
2609 {
2610 	int ret;
2611 
2612 	/* Basically no-ops for non-queued controllers */
2613 	if (!ctlr->queued)
2614 		return 0;
2615 
2616 	ret = spi_stop_queue(ctlr);
2617 	if (ret)
2618 		dev_err(&ctlr->dev, "queue stop failed\n");
2619 
2620 	return ret;
2621 }
2622 EXPORT_SYMBOL_GPL(spi_controller_suspend);
2623 
spi_controller_resume(struct spi_controller * ctlr)2624 int spi_controller_resume(struct spi_controller *ctlr)
2625 {
2626 	int ret;
2627 
2628 	if (!ctlr->queued)
2629 		return 0;
2630 
2631 	ret = spi_start_queue(ctlr);
2632 	if (ret)
2633 		dev_err(&ctlr->dev, "queue restart failed\n");
2634 
2635 	return ret;
2636 }
2637 EXPORT_SYMBOL_GPL(spi_controller_resume);
2638 
__spi_controller_match(struct device * dev,const void * data)2639 static int __spi_controller_match(struct device *dev, const void *data)
2640 {
2641 	struct spi_controller *ctlr;
2642 	const u16 *bus_num = data;
2643 
2644 	ctlr = container_of(dev, struct spi_controller, dev);
2645 	return ctlr->bus_num == *bus_num;
2646 }
2647 
2648 /**
2649  * spi_busnum_to_master - look up master associated with bus_num
2650  * @bus_num: the master's bus number
2651  * Context: can sleep
2652  *
2653  * This call may be used with devices that are registered after
2654  * arch init time.  It returns a refcounted pointer to the relevant
2655  * spi_controller (which the caller must release), or NULL if there is
2656  * no such master registered.
2657  *
2658  * Return: the SPI master structure on success, else NULL.
2659  */
spi_busnum_to_master(u16 bus_num)2660 struct spi_controller *spi_busnum_to_master(u16 bus_num)
2661 {
2662 	struct device		*dev;
2663 	struct spi_controller	*ctlr = NULL;
2664 
2665 	dev = class_find_device(&spi_master_class, NULL, &bus_num,
2666 				__spi_controller_match);
2667 	if (dev)
2668 		ctlr = container_of(dev, struct spi_controller, dev);
2669 	/* reference got in class_find_device */
2670 	return ctlr;
2671 }
2672 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2673 
2674 /*-------------------------------------------------------------------------*/
2675 
2676 /* Core methods for SPI resource management */
2677 
2678 /**
2679  * spi_res_alloc - allocate a spi resource that is life-cycle managed
2680  *                 during the processing of a spi_message while using
2681  *                 spi_transfer_one
2682  * @spi:     the spi device for which we allocate memory
2683  * @release: the release code to execute for this resource
2684  * @size:    size to alloc and return
2685  * @gfp:     GFP allocation flags
2686  *
2687  * Return: the pointer to the allocated data
2688  *
2689  * This may get enhanced in the future to allocate from a memory pool
2690  * of the @spi_device or @spi_controller to avoid repeated allocations.
2691  */
spi_res_alloc(struct spi_device * spi,spi_res_release_t release,size_t size,gfp_t gfp)2692 void *spi_res_alloc(struct spi_device *spi,
2693 		    spi_res_release_t release,
2694 		    size_t size, gfp_t gfp)
2695 {
2696 	struct spi_res *sres;
2697 
2698 	sres = kzalloc(sizeof(*sres) + size, gfp);
2699 	if (!sres)
2700 		return NULL;
2701 
2702 	INIT_LIST_HEAD(&sres->entry);
2703 	sres->release = release;
2704 
2705 	return sres->data;
2706 }
2707 EXPORT_SYMBOL_GPL(spi_res_alloc);
2708 
2709 /**
2710  * spi_res_free - free an spi resource
2711  * @res: pointer to the custom data of a resource
2712  *
2713  */
spi_res_free(void * res)2714 void spi_res_free(void *res)
2715 {
2716 	struct spi_res *sres = container_of(res, struct spi_res, data);
2717 
2718 	if (!res)
2719 		return;
2720 
2721 	WARN_ON(!list_empty(&sres->entry));
2722 	kfree(sres);
2723 }
2724 EXPORT_SYMBOL_GPL(spi_res_free);
2725 
2726 /**
2727  * spi_res_add - add a spi_res to the spi_message
2728  * @message: the spi message
2729  * @res:     the spi_resource
2730  */
spi_res_add(struct spi_message * message,void * res)2731 void spi_res_add(struct spi_message *message, void *res)
2732 {
2733 	struct spi_res *sres = container_of(res, struct spi_res, data);
2734 
2735 	WARN_ON(!list_empty(&sres->entry));
2736 	list_add_tail(&sres->entry, &message->resources);
2737 }
2738 EXPORT_SYMBOL_GPL(spi_res_add);
2739 
2740 /**
2741  * spi_res_release - release all spi resources for this message
2742  * @ctlr:  the @spi_controller
2743  * @message: the @spi_message
2744  */
spi_res_release(struct spi_controller * ctlr,struct spi_message * message)2745 void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
2746 {
2747 	struct spi_res *res, *tmp;
2748 
2749 	list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
2750 		if (res->release)
2751 			res->release(ctlr, message, res->data);
2752 
2753 		list_del(&res->entry);
2754 
2755 		kfree(res);
2756 	}
2757 }
2758 EXPORT_SYMBOL_GPL(spi_res_release);
2759 
2760 /*-------------------------------------------------------------------------*/
2761 
2762 /* Core methods for spi_message alterations */
2763 
__spi_replace_transfers_release(struct spi_controller * ctlr,struct spi_message * msg,void * res)2764 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
2765 					    struct spi_message *msg,
2766 					    void *res)
2767 {
2768 	struct spi_replaced_transfers *rxfer = res;
2769 	size_t i;
2770 
2771 	/* call extra callback if requested */
2772 	if (rxfer->release)
2773 		rxfer->release(ctlr, msg, res);
2774 
2775 	/* insert replaced transfers back into the message */
2776 	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2777 
2778 	/* remove the formerly inserted entries */
2779 	for (i = 0; i < rxfer->inserted; i++)
2780 		list_del(&rxfer->inserted_transfers[i].transfer_list);
2781 }
2782 
2783 /**
2784  * spi_replace_transfers - replace transfers with several transfers
2785  *                         and register change with spi_message.resources
2786  * @msg:           the spi_message we work upon
2787  * @xfer_first:    the first spi_transfer we want to replace
2788  * @remove:        number of transfers to remove
2789  * @insert:        the number of transfers we want to insert instead
2790  * @release:       extra release code necessary in some circumstances
2791  * @extradatasize: extra data to allocate (with alignment guarantees
2792  *                 of struct @spi_transfer)
2793  * @gfp:           gfp flags
2794  *
2795  * Returns: pointer to @spi_replaced_transfers,
2796  *          PTR_ERR(...) in case of errors.
2797  */
spi_replace_transfers(struct spi_message * msg,struct spi_transfer * xfer_first,size_t remove,size_t insert,spi_replaced_release_t release,size_t extradatasize,gfp_t gfp)2798 struct spi_replaced_transfers *spi_replace_transfers(
2799 	struct spi_message *msg,
2800 	struct spi_transfer *xfer_first,
2801 	size_t remove,
2802 	size_t insert,
2803 	spi_replaced_release_t release,
2804 	size_t extradatasize,
2805 	gfp_t gfp)
2806 {
2807 	struct spi_replaced_transfers *rxfer;
2808 	struct spi_transfer *xfer;
2809 	size_t i;
2810 
2811 	/* allocate the structure using spi_res */
2812 	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
2813 			      struct_size(rxfer, inserted_transfers, insert)
2814 			      + extradatasize,
2815 			      gfp);
2816 	if (!rxfer)
2817 		return ERR_PTR(-ENOMEM);
2818 
2819 	/* the release code to invoke before running the generic release */
2820 	rxfer->release = release;
2821 
2822 	/* assign extradata */
2823 	if (extradatasize)
2824 		rxfer->extradata =
2825 			&rxfer->inserted_transfers[insert];
2826 
2827 	/* init the replaced_transfers list */
2828 	INIT_LIST_HEAD(&rxfer->replaced_transfers);
2829 
2830 	/* assign the list_entry after which we should reinsert
2831 	 * the @replaced_transfers - it may be spi_message.messages!
2832 	 */
2833 	rxfer->replaced_after = xfer_first->transfer_list.prev;
2834 
2835 	/* remove the requested number of transfers */
2836 	for (i = 0; i < remove; i++) {
2837 		/* if the entry after replaced_after it is msg->transfers
2838 		 * then we have been requested to remove more transfers
2839 		 * than are in the list
2840 		 */
2841 		if (rxfer->replaced_after->next == &msg->transfers) {
2842 			dev_err(&msg->spi->dev,
2843 				"requested to remove more spi_transfers than are available\n");
2844 			/* insert replaced transfers back into the message */
2845 			list_splice(&rxfer->replaced_transfers,
2846 				    rxfer->replaced_after);
2847 
2848 			/* free the spi_replace_transfer structure */
2849 			spi_res_free(rxfer);
2850 
2851 			/* and return with an error */
2852 			return ERR_PTR(-EINVAL);
2853 		}
2854 
2855 		/* remove the entry after replaced_after from list of
2856 		 * transfers and add it to list of replaced_transfers
2857 		 */
2858 		list_move_tail(rxfer->replaced_after->next,
2859 			       &rxfer->replaced_transfers);
2860 	}
2861 
2862 	/* create copy of the given xfer with identical settings
2863 	 * based on the first transfer to get removed
2864 	 */
2865 	for (i = 0; i < insert; i++) {
2866 		/* we need to run in reverse order */
2867 		xfer = &rxfer->inserted_transfers[insert - 1 - i];
2868 
2869 		/* copy all spi_transfer data */
2870 		memcpy(xfer, xfer_first, sizeof(*xfer));
2871 
2872 		/* add to list */
2873 		list_add(&xfer->transfer_list, rxfer->replaced_after);
2874 
2875 		/* clear cs_change and delay_usecs for all but the last */
2876 		if (i) {
2877 			xfer->cs_change = false;
2878 			xfer->delay_usecs = 0;
2879 		}
2880 	}
2881 
2882 	/* set up inserted */
2883 	rxfer->inserted = insert;
2884 
2885 	/* and register it with spi_res/spi_message */
2886 	spi_res_add(msg, rxfer);
2887 
2888 	return rxfer;
2889 }
2890 EXPORT_SYMBOL_GPL(spi_replace_transfers);
2891 
__spi_split_transfer_maxsize(struct spi_controller * ctlr,struct spi_message * msg,struct spi_transfer ** xferp,size_t maxsize,gfp_t gfp)2892 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
2893 					struct spi_message *msg,
2894 					struct spi_transfer **xferp,
2895 					size_t maxsize,
2896 					gfp_t gfp)
2897 {
2898 	struct spi_transfer *xfer = *xferp, *xfers;
2899 	struct spi_replaced_transfers *srt;
2900 	size_t offset;
2901 	size_t count, i;
2902 
2903 	/* calculate how many we have to replace */
2904 	count = DIV_ROUND_UP(xfer->len, maxsize);
2905 
2906 	/* create replacement */
2907 	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
2908 	if (IS_ERR(srt))
2909 		return PTR_ERR(srt);
2910 	xfers = srt->inserted_transfers;
2911 
2912 	/* now handle each of those newly inserted spi_transfers
2913 	 * note that the replacements spi_transfers all are preset
2914 	 * to the same values as *xferp, so tx_buf, rx_buf and len
2915 	 * are all identical (as well as most others)
2916 	 * so we just have to fix up len and the pointers.
2917 	 *
2918 	 * this also includes support for the depreciated
2919 	 * spi_message.is_dma_mapped interface
2920 	 */
2921 
2922 	/* the first transfer just needs the length modified, so we
2923 	 * run it outside the loop
2924 	 */
2925 	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
2926 
2927 	/* all the others need rx_buf/tx_buf also set */
2928 	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
2929 		/* update rx_buf, tx_buf and dma */
2930 		if (xfers[i].rx_buf)
2931 			xfers[i].rx_buf += offset;
2932 		if (xfers[i].rx_dma)
2933 			xfers[i].rx_dma += offset;
2934 		if (xfers[i].tx_buf)
2935 			xfers[i].tx_buf += offset;
2936 		if (xfers[i].tx_dma)
2937 			xfers[i].tx_dma += offset;
2938 
2939 		/* update length */
2940 		xfers[i].len = min(maxsize, xfers[i].len - offset);
2941 	}
2942 
2943 	/* we set up xferp to the last entry we have inserted,
2944 	 * so that we skip those already split transfers
2945 	 */
2946 	*xferp = &xfers[count - 1];
2947 
2948 	/* increment statistics counters */
2949 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
2950 				       transfers_split_maxsize);
2951 	SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
2952 				       transfers_split_maxsize);
2953 
2954 	return 0;
2955 }
2956 
2957 /**
2958  * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
2959  *                              when an individual transfer exceeds a
2960  *                              certain size
2961  * @ctlr:    the @spi_controller for this transfer
2962  * @msg:   the @spi_message to transform
2963  * @maxsize:  the maximum when to apply this
2964  * @gfp: GFP allocation flags
2965  *
2966  * Return: status of transformation
2967  */
spi_split_transfers_maxsize(struct spi_controller * ctlr,struct spi_message * msg,size_t maxsize,gfp_t gfp)2968 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
2969 				struct spi_message *msg,
2970 				size_t maxsize,
2971 				gfp_t gfp)
2972 {
2973 	struct spi_transfer *xfer;
2974 	int ret;
2975 
2976 	/* iterate over the transfer_list,
2977 	 * but note that xfer is advanced to the last transfer inserted
2978 	 * to avoid checking sizes again unnecessarily (also xfer does
2979 	 * potentiall belong to a different list by the time the
2980 	 * replacement has happened
2981 	 */
2982 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
2983 		if (xfer->len > maxsize) {
2984 			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
2985 							   maxsize, gfp);
2986 			if (ret)
2987 				return ret;
2988 		}
2989 	}
2990 
2991 	return 0;
2992 }
2993 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
2994 
2995 /*-------------------------------------------------------------------------*/
2996 
2997 /* Core methods for SPI controller protocol drivers.  Some of the
2998  * other core methods are currently defined as inline functions.
2999  */
3000 
__spi_validate_bits_per_word(struct spi_controller * ctlr,u8 bits_per_word)3001 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3002 					u8 bits_per_word)
3003 {
3004 	if (ctlr->bits_per_word_mask) {
3005 		/* Only 32 bits fit in the mask */
3006 		if (bits_per_word > 32)
3007 			return -EINVAL;
3008 		if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3009 			return -EINVAL;
3010 	}
3011 
3012 	return 0;
3013 }
3014 
3015 /**
3016  * spi_setup - setup SPI mode and clock rate
3017  * @spi: the device whose settings are being modified
3018  * Context: can sleep, and no requests are queued to the device
3019  *
3020  * SPI protocol drivers may need to update the transfer mode if the
3021  * device doesn't work with its default.  They may likewise need
3022  * to update clock rates or word sizes from initial values.  This function
3023  * changes those settings, and must be called from a context that can sleep.
3024  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3025  * effect the next time the device is selected and data is transferred to
3026  * or from it.  When this function returns, the spi device is deselected.
3027  *
3028  * Note that this call will fail if the protocol driver specifies an option
3029  * that the underlying controller or its driver does not support.  For
3030  * example, not all hardware supports wire transfers using nine bit words,
3031  * LSB-first wire encoding, or active-high chipselects.
3032  *
3033  * Return: zero on success, else a negative error code.
3034  */
spi_setup(struct spi_device * spi)3035 int spi_setup(struct spi_device *spi)
3036 {
3037 	unsigned	bad_bits, ugly_bits;
3038 	int		status;
3039 
3040 	/* check mode to prevent that DUAL and QUAD set at the same time
3041 	 */
3042 	if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
3043 		((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
3044 		dev_err(&spi->dev,
3045 		"setup: can not select dual and quad at the same time\n");
3046 		return -EINVAL;
3047 	}
3048 	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
3049 	 */
3050 	if ((spi->mode & SPI_3WIRE) && (spi->mode &
3051 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3052 		 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3053 		return -EINVAL;
3054 	/* help drivers fail *cleanly* when they need options
3055 	 * that aren't supported with their current controller
3056 	 * SPI_CS_WORD has a fallback software implementation,
3057 	 * so it is ignored here.
3058 	 */
3059 	bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD);
3060 	/* nothing prevents from working with active-high CS in case if it
3061 	 * is driven by GPIO.
3062 	 */
3063 	if (gpio_is_valid(spi->cs_gpio))
3064 		bad_bits &= ~SPI_CS_HIGH;
3065 	ugly_bits = bad_bits &
3066 		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3067 		     SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3068 	if (ugly_bits) {
3069 		dev_warn(&spi->dev,
3070 			 "setup: ignoring unsupported mode bits %x\n",
3071 			 ugly_bits);
3072 		spi->mode &= ~ugly_bits;
3073 		bad_bits &= ~ugly_bits;
3074 	}
3075 	if (bad_bits) {
3076 		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3077 			bad_bits);
3078 		return -EINVAL;
3079 	}
3080 
3081 	if (!spi->bits_per_word)
3082 		spi->bits_per_word = 8;
3083 
3084 	status = __spi_validate_bits_per_word(spi->controller,
3085 					      spi->bits_per_word);
3086 	if (status)
3087 		return status;
3088 
3089 	if (!spi->max_speed_hz)
3090 		spi->max_speed_hz = spi->controller->max_speed_hz;
3091 
3092 	if (spi->controller->setup)
3093 		status = spi->controller->setup(spi);
3094 
3095 	spi_set_cs(spi, false);
3096 
3097 	if (spi->rt && !spi->controller->rt) {
3098 		spi->controller->rt = true;
3099 		spi_set_thread_rt(spi->controller);
3100 	}
3101 
3102 	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3103 			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
3104 			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3105 			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3106 			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
3107 			(spi->mode & SPI_LOOP) ? "loopback, " : "",
3108 			spi->bits_per_word, spi->max_speed_hz,
3109 			status);
3110 
3111 	return status;
3112 }
3113 EXPORT_SYMBOL_GPL(spi_setup);
3114 
3115 /**
3116  * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3117  * @spi: the device that requires specific CS timing configuration
3118  * @setup: CS setup time in terms of clock count
3119  * @hold: CS hold time in terms of clock count
3120  * @inactive_dly: CS inactive delay between transfers in terms of clock count
3121  */
spi_set_cs_timing(struct spi_device * spi,u8 setup,u8 hold,u8 inactive_dly)3122 void spi_set_cs_timing(struct spi_device *spi, u8 setup, u8 hold,
3123 		       u8 inactive_dly)
3124 {
3125 	if (spi->controller->set_cs_timing)
3126 		spi->controller->set_cs_timing(spi, setup, hold, inactive_dly);
3127 }
3128 EXPORT_SYMBOL_GPL(spi_set_cs_timing);
3129 
__spi_validate(struct spi_device * spi,struct spi_message * message)3130 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3131 {
3132 	struct spi_controller *ctlr = spi->controller;
3133 	struct spi_transfer *xfer;
3134 	int w_size;
3135 
3136 	if (list_empty(&message->transfers))
3137 		return -EINVAL;
3138 
3139 	/* If an SPI controller does not support toggling the CS line on each
3140 	 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3141 	 * for the CS line, we can emulate the CS-per-word hardware function by
3142 	 * splitting transfers into one-word transfers and ensuring that
3143 	 * cs_change is set for each transfer.
3144 	 */
3145 	if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3146 					  spi->cs_gpiod ||
3147 					  gpio_is_valid(spi->cs_gpio))) {
3148 		size_t maxsize;
3149 		int ret;
3150 
3151 		maxsize = (spi->bits_per_word + 7) / 8;
3152 
3153 		/* spi_split_transfers_maxsize() requires message->spi */
3154 		message->spi = spi;
3155 
3156 		ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3157 						  GFP_KERNEL);
3158 		if (ret)
3159 			return ret;
3160 
3161 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3162 			/* don't change cs_change on the last entry in the list */
3163 			if (list_is_last(&xfer->transfer_list, &message->transfers))
3164 				break;
3165 			xfer->cs_change = 1;
3166 		}
3167 	}
3168 
3169 	/* Half-duplex links include original MicroWire, and ones with
3170 	 * only one data pin like SPI_3WIRE (switches direction) or where
3171 	 * either MOSI or MISO is missing.  They can also be caused by
3172 	 * software limitations.
3173 	 */
3174 	if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3175 	    (spi->mode & SPI_3WIRE)) {
3176 		unsigned flags = ctlr->flags;
3177 
3178 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3179 			if (xfer->rx_buf && xfer->tx_buf)
3180 				return -EINVAL;
3181 			if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3182 				return -EINVAL;
3183 			if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3184 				return -EINVAL;
3185 		}
3186 	}
3187 
3188 	/**
3189 	 * Set transfer bits_per_word and max speed as spi device default if
3190 	 * it is not set for this transfer.
3191 	 * Set transfer tx_nbits and rx_nbits as single transfer default
3192 	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3193 	 * Ensure transfer word_delay is at least as long as that required by
3194 	 * device itself.
3195 	 */
3196 	message->frame_length = 0;
3197 	list_for_each_entry(xfer, &message->transfers, transfer_list) {
3198 		xfer->effective_speed_hz = 0;
3199 		message->frame_length += xfer->len;
3200 		if (!xfer->bits_per_word)
3201 			xfer->bits_per_word = spi->bits_per_word;
3202 
3203 		if (!xfer->speed_hz)
3204 			xfer->speed_hz = spi->max_speed_hz;
3205 
3206 		if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3207 			xfer->speed_hz = ctlr->max_speed_hz;
3208 
3209 		if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3210 			return -EINVAL;
3211 
3212 		/*
3213 		 * SPI transfer length should be multiple of SPI word size
3214 		 * where SPI word size should be power-of-two multiple
3215 		 */
3216 		if (xfer->bits_per_word <= 8)
3217 			w_size = 1;
3218 		else if (xfer->bits_per_word <= 16)
3219 			w_size = 2;
3220 		else
3221 			w_size = 4;
3222 
3223 		/* No partial transfers accepted */
3224 		if (xfer->len % w_size)
3225 			return -EINVAL;
3226 
3227 		if (xfer->speed_hz && ctlr->min_speed_hz &&
3228 		    xfer->speed_hz < ctlr->min_speed_hz)
3229 			return -EINVAL;
3230 
3231 		if (xfer->tx_buf && !xfer->tx_nbits)
3232 			xfer->tx_nbits = SPI_NBITS_SINGLE;
3233 		if (xfer->rx_buf && !xfer->rx_nbits)
3234 			xfer->rx_nbits = SPI_NBITS_SINGLE;
3235 		/* check transfer tx/rx_nbits:
3236 		 * 1. check the value matches one of single, dual and quad
3237 		 * 2. check tx/rx_nbits match the mode in spi_device
3238 		 */
3239 		if (xfer->tx_buf) {
3240 			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3241 				xfer->tx_nbits != SPI_NBITS_DUAL &&
3242 				xfer->tx_nbits != SPI_NBITS_QUAD)
3243 				return -EINVAL;
3244 			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3245 				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3246 				return -EINVAL;
3247 			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3248 				!(spi->mode & SPI_TX_QUAD))
3249 				return -EINVAL;
3250 		}
3251 		/* check transfer rx_nbits */
3252 		if (xfer->rx_buf) {
3253 			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3254 				xfer->rx_nbits != SPI_NBITS_DUAL &&
3255 				xfer->rx_nbits != SPI_NBITS_QUAD)
3256 				return -EINVAL;
3257 			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3258 				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3259 				return -EINVAL;
3260 			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3261 				!(spi->mode & SPI_RX_QUAD))
3262 				return -EINVAL;
3263 		}
3264 
3265 		if (xfer->word_delay_usecs < spi->word_delay_usecs)
3266 			xfer->word_delay_usecs = spi->word_delay_usecs;
3267 	}
3268 
3269 	message->status = -EINPROGRESS;
3270 
3271 	return 0;
3272 }
3273 
__spi_async(struct spi_device * spi,struct spi_message * message)3274 static int __spi_async(struct spi_device *spi, struct spi_message *message)
3275 {
3276 	struct spi_controller *ctlr = spi->controller;
3277 
3278 	/*
3279 	 * Some controllers do not support doing regular SPI transfers. Return
3280 	 * ENOTSUPP when this is the case.
3281 	 */
3282 	if (!ctlr->transfer)
3283 		return -ENOTSUPP;
3284 
3285 	message->spi = spi;
3286 
3287 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
3288 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
3289 
3290 	trace_spi_message_submit(message);
3291 
3292 	return ctlr->transfer(spi, message);
3293 }
3294 
3295 /**
3296  * spi_async - asynchronous SPI transfer
3297  * @spi: device with which data will be exchanged
3298  * @message: describes the data transfers, including completion callback
3299  * Context: any (irqs may be blocked, etc)
3300  *
3301  * This call may be used in_irq and other contexts which can't sleep,
3302  * as well as from task contexts which can sleep.
3303  *
3304  * The completion callback is invoked in a context which can't sleep.
3305  * Before that invocation, the value of message->status is undefined.
3306  * When the callback is issued, message->status holds either zero (to
3307  * indicate complete success) or a negative error code.  After that
3308  * callback returns, the driver which issued the transfer request may
3309  * deallocate the associated memory; it's no longer in use by any SPI
3310  * core or controller driver code.
3311  *
3312  * Note that although all messages to a spi_device are handled in
3313  * FIFO order, messages may go to different devices in other orders.
3314  * Some device might be higher priority, or have various "hard" access
3315  * time requirements, for example.
3316  *
3317  * On detection of any fault during the transfer, processing of
3318  * the entire message is aborted, and the device is deselected.
3319  * Until returning from the associated message completion callback,
3320  * no other spi_message queued to that device will be processed.
3321  * (This rule applies equally to all the synchronous transfer calls,
3322  * which are wrappers around this core asynchronous primitive.)
3323  *
3324  * Return: zero on success, else a negative error code.
3325  */
spi_async(struct spi_device * spi,struct spi_message * message)3326 int spi_async(struct spi_device *spi, struct spi_message *message)
3327 {
3328 	struct spi_controller *ctlr = spi->controller;
3329 	int ret;
3330 	unsigned long flags;
3331 
3332 	ret = __spi_validate(spi, message);
3333 	if (ret != 0)
3334 		return ret;
3335 
3336 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3337 
3338 	if (ctlr->bus_lock_flag)
3339 		ret = -EBUSY;
3340 	else
3341 		ret = __spi_async(spi, message);
3342 
3343 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3344 
3345 	return ret;
3346 }
3347 EXPORT_SYMBOL_GPL(spi_async);
3348 
3349 /**
3350  * spi_async_locked - version of spi_async with exclusive bus usage
3351  * @spi: device with which data will be exchanged
3352  * @message: describes the data transfers, including completion callback
3353  * Context: any (irqs may be blocked, etc)
3354  *
3355  * This call may be used in_irq and other contexts which can't sleep,
3356  * as well as from task contexts which can sleep.
3357  *
3358  * The completion callback is invoked in a context which can't sleep.
3359  * Before that invocation, the value of message->status is undefined.
3360  * When the callback is issued, message->status holds either zero (to
3361  * indicate complete success) or a negative error code.  After that
3362  * callback returns, the driver which issued the transfer request may
3363  * deallocate the associated memory; it's no longer in use by any SPI
3364  * core or controller driver code.
3365  *
3366  * Note that although all messages to a spi_device are handled in
3367  * FIFO order, messages may go to different devices in other orders.
3368  * Some device might be higher priority, or have various "hard" access
3369  * time requirements, for example.
3370  *
3371  * On detection of any fault during the transfer, processing of
3372  * the entire message is aborted, and the device is deselected.
3373  * Until returning from the associated message completion callback,
3374  * no other spi_message queued to that device will be processed.
3375  * (This rule applies equally to all the synchronous transfer calls,
3376  * which are wrappers around this core asynchronous primitive.)
3377  *
3378  * Return: zero on success, else a negative error code.
3379  */
spi_async_locked(struct spi_device * spi,struct spi_message * message)3380 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
3381 {
3382 	struct spi_controller *ctlr = spi->controller;
3383 	int ret;
3384 	unsigned long flags;
3385 
3386 	ret = __spi_validate(spi, message);
3387 	if (ret != 0)
3388 		return ret;
3389 
3390 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3391 
3392 	ret = __spi_async(spi, message);
3393 
3394 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3395 
3396 	return ret;
3397 
3398 }
3399 EXPORT_SYMBOL_GPL(spi_async_locked);
3400 
3401 /*-------------------------------------------------------------------------*/
3402 
3403 /* Utility methods for SPI protocol drivers, layered on
3404  * top of the core.  Some other utility methods are defined as
3405  * inline functions.
3406  */
3407 
spi_complete(void * arg)3408 static void spi_complete(void *arg)
3409 {
3410 	complete(arg);
3411 }
3412 
__spi_sync(struct spi_device * spi,struct spi_message * message)3413 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3414 {
3415 	DECLARE_COMPLETION_ONSTACK(done);
3416 	int status;
3417 	struct spi_controller *ctlr = spi->controller;
3418 	unsigned long flags;
3419 
3420 	status = __spi_validate(spi, message);
3421 	if (status != 0)
3422 		return status;
3423 
3424 	message->complete = spi_complete;
3425 	message->context = &done;
3426 	message->spi = spi;
3427 
3428 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3429 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3430 
3431 	/* If we're not using the legacy transfer method then we will
3432 	 * try to transfer in the calling context so special case.
3433 	 * This code would be less tricky if we could remove the
3434 	 * support for driver implemented message queues.
3435 	 */
3436 	if (ctlr->transfer == spi_queued_transfer) {
3437 		spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3438 
3439 		trace_spi_message_submit(message);
3440 
3441 		status = __spi_queued_transfer(spi, message, false);
3442 
3443 		spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3444 	} else {
3445 		status = spi_async_locked(spi, message);
3446 	}
3447 
3448 	if (status == 0) {
3449 		/* Push out the messages in the calling context if we
3450 		 * can.
3451 		 */
3452 		if (ctlr->transfer == spi_queued_transfer) {
3453 			SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3454 						       spi_sync_immediate);
3455 			SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3456 						       spi_sync_immediate);
3457 			__spi_pump_messages(ctlr, false);
3458 		}
3459 
3460 		wait_for_completion(&done);
3461 		status = message->status;
3462 	}
3463 	message->context = NULL;
3464 	return status;
3465 }
3466 
3467 /**
3468  * spi_sync - blocking/synchronous SPI data transfers
3469  * @spi: device with which data will be exchanged
3470  * @message: describes the data transfers
3471  * Context: can sleep
3472  *
3473  * This call may only be used from a context that may sleep.  The sleep
3474  * is non-interruptible, and has no timeout.  Low-overhead controller
3475  * drivers may DMA directly into and out of the message buffers.
3476  *
3477  * Note that the SPI device's chip select is active during the message,
3478  * and then is normally disabled between messages.  Drivers for some
3479  * frequently-used devices may want to minimize costs of selecting a chip,
3480  * by leaving it selected in anticipation that the next message will go
3481  * to the same chip.  (That may increase power usage.)
3482  *
3483  * Also, the caller is guaranteeing that the memory associated with the
3484  * message will not be freed before this call returns.
3485  *
3486  * Return: zero on success, else a negative error code.
3487  */
spi_sync(struct spi_device * spi,struct spi_message * message)3488 int spi_sync(struct spi_device *spi, struct spi_message *message)
3489 {
3490 	int ret;
3491 
3492 	mutex_lock(&spi->controller->bus_lock_mutex);
3493 	ret = __spi_sync(spi, message);
3494 	mutex_unlock(&spi->controller->bus_lock_mutex);
3495 
3496 	return ret;
3497 }
3498 EXPORT_SYMBOL_GPL(spi_sync);
3499 
3500 /**
3501  * spi_sync_locked - version of spi_sync with exclusive bus usage
3502  * @spi: device with which data will be exchanged
3503  * @message: describes the data transfers
3504  * Context: can sleep
3505  *
3506  * This call may only be used from a context that may sleep.  The sleep
3507  * is non-interruptible, and has no timeout.  Low-overhead controller
3508  * drivers may DMA directly into and out of the message buffers.
3509  *
3510  * This call should be used by drivers that require exclusive access to the
3511  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3512  * be released by a spi_bus_unlock call when the exclusive access is over.
3513  *
3514  * Return: zero on success, else a negative error code.
3515  */
spi_sync_locked(struct spi_device * spi,struct spi_message * message)3516 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3517 {
3518 	return __spi_sync(spi, message);
3519 }
3520 EXPORT_SYMBOL_GPL(spi_sync_locked);
3521 
3522 /**
3523  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3524  * @ctlr: SPI bus master that should be locked for exclusive bus access
3525  * Context: can sleep
3526  *
3527  * This call may only be used from a context that may sleep.  The sleep
3528  * is non-interruptible, and has no timeout.
3529  *
3530  * This call should be used by drivers that require exclusive access to the
3531  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3532  * exclusive access is over. Data transfer must be done by spi_sync_locked
3533  * and spi_async_locked calls when the SPI bus lock is held.
3534  *
3535  * Return: always zero.
3536  */
spi_bus_lock(struct spi_controller * ctlr)3537 int spi_bus_lock(struct spi_controller *ctlr)
3538 {
3539 	unsigned long flags;
3540 
3541 	mutex_lock(&ctlr->bus_lock_mutex);
3542 
3543 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3544 	ctlr->bus_lock_flag = 1;
3545 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3546 
3547 	/* mutex remains locked until spi_bus_unlock is called */
3548 
3549 	return 0;
3550 }
3551 EXPORT_SYMBOL_GPL(spi_bus_lock);
3552 
3553 /**
3554  * spi_bus_unlock - release the lock for exclusive SPI bus usage
3555  * @ctlr: SPI bus master that was locked for exclusive bus access
3556  * Context: can sleep
3557  *
3558  * This call may only be used from a context that may sleep.  The sleep
3559  * is non-interruptible, and has no timeout.
3560  *
3561  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3562  * call.
3563  *
3564  * Return: always zero.
3565  */
spi_bus_unlock(struct spi_controller * ctlr)3566 int spi_bus_unlock(struct spi_controller *ctlr)
3567 {
3568 	ctlr->bus_lock_flag = 0;
3569 
3570 	mutex_unlock(&ctlr->bus_lock_mutex);
3571 
3572 	return 0;
3573 }
3574 EXPORT_SYMBOL_GPL(spi_bus_unlock);
3575 
3576 /* portable code must never pass more than 32 bytes */
3577 #define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
3578 
3579 static u8	*buf;
3580 
3581 /**
3582  * spi_write_then_read - SPI synchronous write followed by read
3583  * @spi: device with which data will be exchanged
3584  * @txbuf: data to be written (need not be dma-safe)
3585  * @n_tx: size of txbuf, in bytes
3586  * @rxbuf: buffer into which data will be read (need not be dma-safe)
3587  * @n_rx: size of rxbuf, in bytes
3588  * Context: can sleep
3589  *
3590  * This performs a half duplex MicroWire style transaction with the
3591  * device, sending txbuf and then reading rxbuf.  The return value
3592  * is zero for success, else a negative errno status code.
3593  * This call may only be used from a context that may sleep.
3594  *
3595  * Parameters to this routine are always copied using a small buffer;
3596  * portable code should never use this for more than 32 bytes.
3597  * Performance-sensitive or bulk transfer code should instead use
3598  * spi_{async,sync}() calls with dma-safe buffers.
3599  *
3600  * Return: zero on success, else a negative error code.
3601  */
spi_write_then_read(struct spi_device * spi,const void * txbuf,unsigned n_tx,void * rxbuf,unsigned n_rx)3602 int spi_write_then_read(struct spi_device *spi,
3603 		const void *txbuf, unsigned n_tx,
3604 		void *rxbuf, unsigned n_rx)
3605 {
3606 	static DEFINE_MUTEX(lock);
3607 
3608 	int			status;
3609 	struct spi_message	message;
3610 	struct spi_transfer	x[2];
3611 	u8			*local_buf;
3612 
3613 	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
3614 	 * copying here, (as a pure convenience thing), but we can
3615 	 * keep heap costs out of the hot path unless someone else is
3616 	 * using the pre-allocated buffer or the transfer is too large.
3617 	 */
3618 	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
3619 		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3620 				    GFP_KERNEL | GFP_DMA);
3621 		if (!local_buf)
3622 			return -ENOMEM;
3623 	} else {
3624 		local_buf = buf;
3625 	}
3626 
3627 	spi_message_init(&message);
3628 	memset(x, 0, sizeof(x));
3629 	if (n_tx) {
3630 		x[0].len = n_tx;
3631 		spi_message_add_tail(&x[0], &message);
3632 	}
3633 	if (n_rx) {
3634 		x[1].len = n_rx;
3635 		spi_message_add_tail(&x[1], &message);
3636 	}
3637 
3638 	memcpy(local_buf, txbuf, n_tx);
3639 	x[0].tx_buf = local_buf;
3640 	x[1].rx_buf = local_buf + n_tx;
3641 
3642 	/* do the i/o */
3643 	status = spi_sync(spi, &message);
3644 	if (status == 0)
3645 		memcpy(rxbuf, x[1].rx_buf, n_rx);
3646 
3647 	if (x[0].tx_buf == buf)
3648 		mutex_unlock(&lock);
3649 	else
3650 		kfree(local_buf);
3651 
3652 	return status;
3653 }
3654 EXPORT_SYMBOL_GPL(spi_write_then_read);
3655 
3656 /*-------------------------------------------------------------------------*/
3657 
3658 #if IS_ENABLED(CONFIG_OF)
3659 /* must call put_device() when done with returned spi_device device */
of_find_spi_device_by_node(struct device_node * node)3660 struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3661 {
3662 	struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
3663 
3664 	return dev ? to_spi_device(dev) : NULL;
3665 }
3666 EXPORT_SYMBOL_GPL(of_find_spi_device_by_node);
3667 #endif /* IS_ENABLED(CONFIG_OF) */
3668 
3669 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
3670 /* the spi controllers are not using spi_bus, so we find it with another way */
of_find_spi_controller_by_node(struct device_node * node)3671 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
3672 {
3673 	struct device *dev;
3674 
3675 	dev = class_find_device_by_of_node(&spi_master_class, node);
3676 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3677 		dev = class_find_device_by_of_node(&spi_slave_class, node);
3678 	if (!dev)
3679 		return NULL;
3680 
3681 	/* reference got in class_find_device */
3682 	return container_of(dev, struct spi_controller, dev);
3683 }
3684 
of_spi_notify(struct notifier_block * nb,unsigned long action,void * arg)3685 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3686 			 void *arg)
3687 {
3688 	struct of_reconfig_data *rd = arg;
3689 	struct spi_controller *ctlr;
3690 	struct spi_device *spi;
3691 
3692 	switch (of_reconfig_get_state_change(action, arg)) {
3693 	case OF_RECONFIG_CHANGE_ADD:
3694 		ctlr = of_find_spi_controller_by_node(rd->dn->parent);
3695 		if (ctlr == NULL)
3696 			return NOTIFY_OK;	/* not for us */
3697 
3698 		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
3699 			put_device(&ctlr->dev);
3700 			return NOTIFY_OK;
3701 		}
3702 
3703 		spi = of_register_spi_device(ctlr, rd->dn);
3704 		put_device(&ctlr->dev);
3705 
3706 		if (IS_ERR(spi)) {
3707 			pr_err("%s: failed to create for '%pOF'\n",
3708 					__func__, rd->dn);
3709 			of_node_clear_flag(rd->dn, OF_POPULATED);
3710 			return notifier_from_errno(PTR_ERR(spi));
3711 		}
3712 		break;
3713 
3714 	case OF_RECONFIG_CHANGE_REMOVE:
3715 		/* already depopulated? */
3716 		if (!of_node_check_flag(rd->dn, OF_POPULATED))
3717 			return NOTIFY_OK;
3718 
3719 		/* find our device by node */
3720 		spi = of_find_spi_device_by_node(rd->dn);
3721 		if (spi == NULL)
3722 			return NOTIFY_OK;	/* no? not meant for us */
3723 
3724 		/* unregister takes one ref away */
3725 		spi_unregister_device(spi);
3726 
3727 		/* and put the reference of the find */
3728 		put_device(&spi->dev);
3729 		break;
3730 	}
3731 
3732 	return NOTIFY_OK;
3733 }
3734 
3735 static struct notifier_block spi_of_notifier = {
3736 	.notifier_call = of_spi_notify,
3737 };
3738 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3739 extern struct notifier_block spi_of_notifier;
3740 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3741 
3742 #if IS_ENABLED(CONFIG_ACPI)
spi_acpi_controller_match(struct device * dev,const void * data)3743 static int spi_acpi_controller_match(struct device *dev, const void *data)
3744 {
3745 	return ACPI_COMPANION(dev->parent) == data;
3746 }
3747 
acpi_spi_find_controller_by_adev(struct acpi_device * adev)3748 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
3749 {
3750 	struct device *dev;
3751 
3752 	dev = class_find_device(&spi_master_class, NULL, adev,
3753 				spi_acpi_controller_match);
3754 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3755 		dev = class_find_device(&spi_slave_class, NULL, adev,
3756 					spi_acpi_controller_match);
3757 	if (!dev)
3758 		return NULL;
3759 
3760 	return container_of(dev, struct spi_controller, dev);
3761 }
3762 
acpi_spi_find_device_by_adev(struct acpi_device * adev)3763 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
3764 {
3765 	struct device *dev;
3766 
3767 	dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
3768 	return dev ? to_spi_device(dev) : NULL;
3769 }
3770 
acpi_spi_notify(struct notifier_block * nb,unsigned long value,void * arg)3771 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
3772 			   void *arg)
3773 {
3774 	struct acpi_device *adev = arg;
3775 	struct spi_controller *ctlr;
3776 	struct spi_device *spi;
3777 
3778 	switch (value) {
3779 	case ACPI_RECONFIG_DEVICE_ADD:
3780 		ctlr = acpi_spi_find_controller_by_adev(adev->parent);
3781 		if (!ctlr)
3782 			break;
3783 
3784 		acpi_register_spi_device(ctlr, adev);
3785 		put_device(&ctlr->dev);
3786 		break;
3787 	case ACPI_RECONFIG_DEVICE_REMOVE:
3788 		if (!acpi_device_enumerated(adev))
3789 			break;
3790 
3791 		spi = acpi_spi_find_device_by_adev(adev);
3792 		if (!spi)
3793 			break;
3794 
3795 		spi_unregister_device(spi);
3796 		put_device(&spi->dev);
3797 		break;
3798 	}
3799 
3800 	return NOTIFY_OK;
3801 }
3802 
3803 static struct notifier_block spi_acpi_notifier = {
3804 	.notifier_call = acpi_spi_notify,
3805 };
3806 #else
3807 extern struct notifier_block spi_acpi_notifier;
3808 #endif
3809 
spi_init(void)3810 static int __init spi_init(void)
3811 {
3812 	int	status;
3813 
3814 	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
3815 	if (!buf) {
3816 		status = -ENOMEM;
3817 		goto err0;
3818 	}
3819 
3820 	status = bus_register(&spi_bus_type);
3821 	if (status < 0)
3822 		goto err1;
3823 
3824 	status = class_register(&spi_master_class);
3825 	if (status < 0)
3826 		goto err2;
3827 
3828 	if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
3829 		status = class_register(&spi_slave_class);
3830 		if (status < 0)
3831 			goto err3;
3832 	}
3833 
3834 	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
3835 		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
3836 	if (IS_ENABLED(CONFIG_ACPI))
3837 		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
3838 
3839 	return 0;
3840 
3841 err3:
3842 	class_unregister(&spi_master_class);
3843 err2:
3844 	bus_unregister(&spi_bus_type);
3845 err1:
3846 	kfree(buf);
3847 	buf = NULL;
3848 err0:
3849 	return status;
3850 }
3851 
3852 /* board_info is normally registered in arch_initcall(),
3853  * but even essential drivers wait till later
3854  *
3855  * REVISIT only boardinfo really needs static linking. the rest (device and
3856  * driver registration) _could_ be dynamically linked (modular) ... costs
3857  * include needing to have boardinfo data structures be much more public.
3858  */
3859 postcore_initcall(spi_init);
3860