1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
6
7 #include <linux/kernel.h>
8 #include <linux/device.h>
9 #include <linux/init.h>
10 #include <linux/cache.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/mutex.h>
14 #include <linux/of_device.h>
15 #include <linux/of_irq.h>
16 #include <linux/clk/clk-conf.h>
17 #include <linux/slab.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-mem.h>
21 #include <linux/of_gpio.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/pm_domain.h>
25 #include <linux/property.h>
26 #include <linux/export.h>
27 #include <linux/sched/rt.h>
28 #include <uapi/linux/sched/types.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/ioport.h>
32 #include <linux/acpi.h>
33 #include <linux/highmem.h>
34 #include <linux/idr.h>
35 #include <linux/platform_data/x86/apple.h>
36
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/spi.h>
39 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
41
42 #include "internals.h"
43
44 static DEFINE_IDR(spi_master_idr);
45
spidev_release(struct device * dev)46 static void spidev_release(struct device *dev)
47 {
48 struct spi_device *spi = to_spi_device(dev);
49
50 /* spi controllers may cleanup for released devices */
51 if (spi->controller->cleanup)
52 spi->controller->cleanup(spi);
53
54 spi_controller_put(spi->controller);
55 kfree(spi->driver_override);
56 kfree(spi);
57 }
58
59 static ssize_t
modalias_show(struct device * dev,struct device_attribute * a,char * buf)60 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
61 {
62 const struct spi_device *spi = to_spi_device(dev);
63 int len;
64
65 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
66 if (len != -ENODEV)
67 return len;
68
69 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
70 }
71 static DEVICE_ATTR_RO(modalias);
72
driver_override_store(struct device * dev,struct device_attribute * a,const char * buf,size_t count)73 static ssize_t driver_override_store(struct device *dev,
74 struct device_attribute *a,
75 const char *buf, size_t count)
76 {
77 struct spi_device *spi = to_spi_device(dev);
78 const char *end = memchr(buf, '\n', count);
79 const size_t len = end ? end - buf : count;
80 const char *driver_override, *old;
81
82 /* We need to keep extra room for a newline when displaying value */
83 if (len >= (PAGE_SIZE - 1))
84 return -EINVAL;
85
86 driver_override = kstrndup(buf, len, GFP_KERNEL);
87 if (!driver_override)
88 return -ENOMEM;
89
90 device_lock(dev);
91 old = spi->driver_override;
92 if (len) {
93 spi->driver_override = driver_override;
94 } else {
95 /* Emptry string, disable driver override */
96 spi->driver_override = NULL;
97 kfree(driver_override);
98 }
99 device_unlock(dev);
100 kfree(old);
101
102 return count;
103 }
104
driver_override_show(struct device * dev,struct device_attribute * a,char * buf)105 static ssize_t driver_override_show(struct device *dev,
106 struct device_attribute *a, char *buf)
107 {
108 const struct spi_device *spi = to_spi_device(dev);
109 ssize_t len;
110
111 device_lock(dev);
112 len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
113 device_unlock(dev);
114 return len;
115 }
116 static DEVICE_ATTR_RW(driver_override);
117
118 #define SPI_STATISTICS_ATTRS(field, file) \
119 static ssize_t spi_controller_##field##_show(struct device *dev, \
120 struct device_attribute *attr, \
121 char *buf) \
122 { \
123 struct spi_controller *ctlr = container_of(dev, \
124 struct spi_controller, dev); \
125 return spi_statistics_##field##_show(&ctlr->statistics, buf); \
126 } \
127 static struct device_attribute dev_attr_spi_controller_##field = { \
128 .attr = { .name = file, .mode = 0444 }, \
129 .show = spi_controller_##field##_show, \
130 }; \
131 static ssize_t spi_device_##field##_show(struct device *dev, \
132 struct device_attribute *attr, \
133 char *buf) \
134 { \
135 struct spi_device *spi = to_spi_device(dev); \
136 return spi_statistics_##field##_show(&spi->statistics, buf); \
137 } \
138 static struct device_attribute dev_attr_spi_device_##field = { \
139 .attr = { .name = file, .mode = 0444 }, \
140 .show = spi_device_##field##_show, \
141 }
142
143 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \
144 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
145 char *buf) \
146 { \
147 unsigned long flags; \
148 ssize_t len; \
149 spin_lock_irqsave(&stat->lock, flags); \
150 len = sprintf(buf, format_string, stat->field); \
151 spin_unlock_irqrestore(&stat->lock, flags); \
152 return len; \
153 } \
154 SPI_STATISTICS_ATTRS(name, file)
155
156 #define SPI_STATISTICS_SHOW(field, format_string) \
157 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \
158 field, format_string)
159
160 SPI_STATISTICS_SHOW(messages, "%lu");
161 SPI_STATISTICS_SHOW(transfers, "%lu");
162 SPI_STATISTICS_SHOW(errors, "%lu");
163 SPI_STATISTICS_SHOW(timedout, "%lu");
164
165 SPI_STATISTICS_SHOW(spi_sync, "%lu");
166 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
167 SPI_STATISTICS_SHOW(spi_async, "%lu");
168
169 SPI_STATISTICS_SHOW(bytes, "%llu");
170 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
171 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
172
173 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \
174 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \
175 "transfer_bytes_histo_" number, \
176 transfer_bytes_histo[index], "%lu")
177 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1");
178 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3");
179 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7");
180 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15");
181 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31");
182 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63");
183 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127");
184 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255");
185 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511");
186 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023");
187 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
188 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
189 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
190 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
191 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
192 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
193 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
194
195 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
196
197 static struct attribute *spi_dev_attrs[] = {
198 &dev_attr_modalias.attr,
199 &dev_attr_driver_override.attr,
200 NULL,
201 };
202
203 static const struct attribute_group spi_dev_group = {
204 .attrs = spi_dev_attrs,
205 };
206
207 static struct attribute *spi_device_statistics_attrs[] = {
208 &dev_attr_spi_device_messages.attr,
209 &dev_attr_spi_device_transfers.attr,
210 &dev_attr_spi_device_errors.attr,
211 &dev_attr_spi_device_timedout.attr,
212 &dev_attr_spi_device_spi_sync.attr,
213 &dev_attr_spi_device_spi_sync_immediate.attr,
214 &dev_attr_spi_device_spi_async.attr,
215 &dev_attr_spi_device_bytes.attr,
216 &dev_attr_spi_device_bytes_rx.attr,
217 &dev_attr_spi_device_bytes_tx.attr,
218 &dev_attr_spi_device_transfer_bytes_histo0.attr,
219 &dev_attr_spi_device_transfer_bytes_histo1.attr,
220 &dev_attr_spi_device_transfer_bytes_histo2.attr,
221 &dev_attr_spi_device_transfer_bytes_histo3.attr,
222 &dev_attr_spi_device_transfer_bytes_histo4.attr,
223 &dev_attr_spi_device_transfer_bytes_histo5.attr,
224 &dev_attr_spi_device_transfer_bytes_histo6.attr,
225 &dev_attr_spi_device_transfer_bytes_histo7.attr,
226 &dev_attr_spi_device_transfer_bytes_histo8.attr,
227 &dev_attr_spi_device_transfer_bytes_histo9.attr,
228 &dev_attr_spi_device_transfer_bytes_histo10.attr,
229 &dev_attr_spi_device_transfer_bytes_histo11.attr,
230 &dev_attr_spi_device_transfer_bytes_histo12.attr,
231 &dev_attr_spi_device_transfer_bytes_histo13.attr,
232 &dev_attr_spi_device_transfer_bytes_histo14.attr,
233 &dev_attr_spi_device_transfer_bytes_histo15.attr,
234 &dev_attr_spi_device_transfer_bytes_histo16.attr,
235 &dev_attr_spi_device_transfers_split_maxsize.attr,
236 NULL,
237 };
238
239 static const struct attribute_group spi_device_statistics_group = {
240 .name = "statistics",
241 .attrs = spi_device_statistics_attrs,
242 };
243
244 static const struct attribute_group *spi_dev_groups[] = {
245 &spi_dev_group,
246 &spi_device_statistics_group,
247 NULL,
248 };
249
250 static struct attribute *spi_controller_statistics_attrs[] = {
251 &dev_attr_spi_controller_messages.attr,
252 &dev_attr_spi_controller_transfers.attr,
253 &dev_attr_spi_controller_errors.attr,
254 &dev_attr_spi_controller_timedout.attr,
255 &dev_attr_spi_controller_spi_sync.attr,
256 &dev_attr_spi_controller_spi_sync_immediate.attr,
257 &dev_attr_spi_controller_spi_async.attr,
258 &dev_attr_spi_controller_bytes.attr,
259 &dev_attr_spi_controller_bytes_rx.attr,
260 &dev_attr_spi_controller_bytes_tx.attr,
261 &dev_attr_spi_controller_transfer_bytes_histo0.attr,
262 &dev_attr_spi_controller_transfer_bytes_histo1.attr,
263 &dev_attr_spi_controller_transfer_bytes_histo2.attr,
264 &dev_attr_spi_controller_transfer_bytes_histo3.attr,
265 &dev_attr_spi_controller_transfer_bytes_histo4.attr,
266 &dev_attr_spi_controller_transfer_bytes_histo5.attr,
267 &dev_attr_spi_controller_transfer_bytes_histo6.attr,
268 &dev_attr_spi_controller_transfer_bytes_histo7.attr,
269 &dev_attr_spi_controller_transfer_bytes_histo8.attr,
270 &dev_attr_spi_controller_transfer_bytes_histo9.attr,
271 &dev_attr_spi_controller_transfer_bytes_histo10.attr,
272 &dev_attr_spi_controller_transfer_bytes_histo11.attr,
273 &dev_attr_spi_controller_transfer_bytes_histo12.attr,
274 &dev_attr_spi_controller_transfer_bytes_histo13.attr,
275 &dev_attr_spi_controller_transfer_bytes_histo14.attr,
276 &dev_attr_spi_controller_transfer_bytes_histo15.attr,
277 &dev_attr_spi_controller_transfer_bytes_histo16.attr,
278 &dev_attr_spi_controller_transfers_split_maxsize.attr,
279 NULL,
280 };
281
282 static const struct attribute_group spi_controller_statistics_group = {
283 .name = "statistics",
284 .attrs = spi_controller_statistics_attrs,
285 };
286
287 static const struct attribute_group *spi_master_groups[] = {
288 &spi_controller_statistics_group,
289 NULL,
290 };
291
spi_statistics_add_transfer_stats(struct spi_statistics * stats,struct spi_transfer * xfer,struct spi_controller * ctlr)292 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
293 struct spi_transfer *xfer,
294 struct spi_controller *ctlr)
295 {
296 unsigned long flags;
297 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
298
299 if (l2len < 0)
300 l2len = 0;
301
302 spin_lock_irqsave(&stats->lock, flags);
303
304 stats->transfers++;
305 stats->transfer_bytes_histo[l2len]++;
306
307 stats->bytes += xfer->len;
308 if ((xfer->tx_buf) &&
309 (xfer->tx_buf != ctlr->dummy_tx))
310 stats->bytes_tx += xfer->len;
311 if ((xfer->rx_buf) &&
312 (xfer->rx_buf != ctlr->dummy_rx))
313 stats->bytes_rx += xfer->len;
314
315 spin_unlock_irqrestore(&stats->lock, flags);
316 }
317 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
318
319 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
320 * and the sysfs version makes coldplug work too.
321 */
322
spi_match_id(const struct spi_device_id * id,const struct spi_device * sdev)323 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
324 const struct spi_device *sdev)
325 {
326 while (id->name[0]) {
327 if (!strcmp(sdev->modalias, id->name))
328 return id;
329 id++;
330 }
331 return NULL;
332 }
333
spi_get_device_id(const struct spi_device * sdev)334 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
335 {
336 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
337
338 return spi_match_id(sdrv->id_table, sdev);
339 }
340 EXPORT_SYMBOL_GPL(spi_get_device_id);
341
spi_match_device(struct device * dev,struct device_driver * drv)342 static int spi_match_device(struct device *dev, struct device_driver *drv)
343 {
344 const struct spi_device *spi = to_spi_device(dev);
345 const struct spi_driver *sdrv = to_spi_driver(drv);
346
347 /* Check override first, and if set, only use the named driver */
348 if (spi->driver_override)
349 return strcmp(spi->driver_override, drv->name) == 0;
350
351 /* Attempt an OF style match */
352 if (of_driver_match_device(dev, drv))
353 return 1;
354
355 /* Then try ACPI */
356 if (acpi_driver_match_device(dev, drv))
357 return 1;
358
359 if (sdrv->id_table)
360 return !!spi_match_id(sdrv->id_table, spi);
361
362 return strcmp(spi->modalias, drv->name) == 0;
363 }
364
spi_uevent(struct device * dev,struct kobj_uevent_env * env)365 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
366 {
367 const struct spi_device *spi = to_spi_device(dev);
368 int rc;
369
370 rc = acpi_device_uevent_modalias(dev, env);
371 if (rc != -ENODEV)
372 return rc;
373
374 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
375 }
376
377 struct bus_type spi_bus_type = {
378 .name = "spi",
379 .dev_groups = spi_dev_groups,
380 .match = spi_match_device,
381 .uevent = spi_uevent,
382 };
383 EXPORT_SYMBOL_GPL(spi_bus_type);
384
385
spi_drv_probe(struct device * dev)386 static int spi_drv_probe(struct device *dev)
387 {
388 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
389 struct spi_device *spi = to_spi_device(dev);
390 int ret;
391
392 ret = of_clk_set_defaults(dev->of_node, false);
393 if (ret)
394 return ret;
395
396 if (dev->of_node) {
397 spi->irq = of_irq_get(dev->of_node, 0);
398 if (spi->irq == -EPROBE_DEFER)
399 return -EPROBE_DEFER;
400 if (spi->irq < 0)
401 spi->irq = 0;
402 }
403
404 ret = dev_pm_domain_attach(dev, true);
405 if (ret)
406 return ret;
407
408 ret = sdrv->probe(spi);
409 if (ret)
410 dev_pm_domain_detach(dev, true);
411
412 return ret;
413 }
414
spi_drv_remove(struct device * dev)415 static int spi_drv_remove(struct device *dev)
416 {
417 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
418 int ret;
419
420 ret = sdrv->remove(to_spi_device(dev));
421 dev_pm_domain_detach(dev, true);
422
423 return ret;
424 }
425
spi_drv_shutdown(struct device * dev)426 static void spi_drv_shutdown(struct device *dev)
427 {
428 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
429
430 sdrv->shutdown(to_spi_device(dev));
431 }
432
433 /**
434 * __spi_register_driver - register a SPI driver
435 * @owner: owner module of the driver to register
436 * @sdrv: the driver to register
437 * Context: can sleep
438 *
439 * Return: zero on success, else a negative error code.
440 */
__spi_register_driver(struct module * owner,struct spi_driver * sdrv)441 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
442 {
443 sdrv->driver.owner = owner;
444 sdrv->driver.bus = &spi_bus_type;
445 if (sdrv->probe)
446 sdrv->driver.probe = spi_drv_probe;
447 if (sdrv->remove)
448 sdrv->driver.remove = spi_drv_remove;
449 if (sdrv->shutdown)
450 sdrv->driver.shutdown = spi_drv_shutdown;
451 return driver_register(&sdrv->driver);
452 }
453 EXPORT_SYMBOL_GPL(__spi_register_driver);
454
455 /*-------------------------------------------------------------------------*/
456
457 /* SPI devices should normally not be created by SPI device drivers; that
458 * would make them board-specific. Similarly with SPI controller drivers.
459 * Device registration normally goes into like arch/.../mach.../board-YYY.c
460 * with other readonly (flashable) information about mainboard devices.
461 */
462
463 struct boardinfo {
464 struct list_head list;
465 struct spi_board_info board_info;
466 };
467
468 static LIST_HEAD(board_list);
469 static LIST_HEAD(spi_controller_list);
470
471 /*
472 * Used to protect add/del opertion for board_info list and
473 * spi_controller list, and their matching process
474 * also used to protect object of type struct idr
475 */
476 static DEFINE_MUTEX(board_lock);
477
478 /**
479 * spi_alloc_device - Allocate a new SPI device
480 * @ctlr: Controller to which device is connected
481 * Context: can sleep
482 *
483 * Allows a driver to allocate and initialize a spi_device without
484 * registering it immediately. This allows a driver to directly
485 * fill the spi_device with device parameters before calling
486 * spi_add_device() on it.
487 *
488 * Caller is responsible to call spi_add_device() on the returned
489 * spi_device structure to add it to the SPI controller. If the caller
490 * needs to discard the spi_device without adding it, then it should
491 * call spi_dev_put() on it.
492 *
493 * Return: a pointer to the new device, or NULL.
494 */
spi_alloc_device(struct spi_controller * ctlr)495 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
496 {
497 struct spi_device *spi;
498
499 if (!spi_controller_get(ctlr))
500 return NULL;
501
502 spi = kzalloc(sizeof(*spi), GFP_KERNEL);
503 if (!spi) {
504 spi_controller_put(ctlr);
505 return NULL;
506 }
507
508 spi->master = spi->controller = ctlr;
509 spi->dev.parent = &ctlr->dev;
510 spi->dev.bus = &spi_bus_type;
511 spi->dev.release = spidev_release;
512 spi->cs_gpio = -ENOENT;
513
514 spin_lock_init(&spi->statistics.lock);
515
516 device_initialize(&spi->dev);
517 return spi;
518 }
519 EXPORT_SYMBOL_GPL(spi_alloc_device);
520
spi_dev_set_name(struct spi_device * spi)521 static void spi_dev_set_name(struct spi_device *spi)
522 {
523 struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
524
525 if (adev) {
526 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
527 return;
528 }
529
530 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
531 spi->chip_select);
532 }
533
spi_dev_check(struct device * dev,void * data)534 static int spi_dev_check(struct device *dev, void *data)
535 {
536 struct spi_device *spi = to_spi_device(dev);
537 struct spi_device *new_spi = data;
538
539 if (spi->controller == new_spi->controller &&
540 spi->chip_select == new_spi->chip_select)
541 return -EBUSY;
542 return 0;
543 }
544
545 /**
546 * spi_add_device - Add spi_device allocated with spi_alloc_device
547 * @spi: spi_device to register
548 *
549 * Companion function to spi_alloc_device. Devices allocated with
550 * spi_alloc_device can be added onto the spi bus with this function.
551 *
552 * Return: 0 on success; negative errno on failure
553 */
spi_add_device(struct spi_device * spi)554 int spi_add_device(struct spi_device *spi)
555 {
556 static DEFINE_MUTEX(spi_add_lock);
557 struct spi_controller *ctlr = spi->controller;
558 struct device *dev = ctlr->dev.parent;
559 int status;
560
561 /* Chipselects are numbered 0..max; validate. */
562 if (spi->chip_select >= ctlr->num_chipselect) {
563 dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
564 ctlr->num_chipselect);
565 return -EINVAL;
566 }
567
568 /* Set the bus ID string */
569 spi_dev_set_name(spi);
570
571 /* We need to make sure there's no other device with this
572 * chipselect **BEFORE** we call setup(), else we'll trash
573 * its configuration. Lock against concurrent add() calls.
574 */
575 mutex_lock(&spi_add_lock);
576
577 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
578 if (status) {
579 dev_err(dev, "chipselect %d already in use\n",
580 spi->chip_select);
581 goto done;
582 }
583
584 /* Descriptors take precedence */
585 if (ctlr->cs_gpiods)
586 spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select];
587 else if (ctlr->cs_gpios)
588 spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
589
590 /* Drivers may modify this initial i/o setup, but will
591 * normally rely on the device being setup. Devices
592 * using SPI_CS_HIGH can't coexist well otherwise...
593 */
594 status = spi_setup(spi);
595 if (status < 0) {
596 dev_err(dev, "can't setup %s, status %d\n",
597 dev_name(&spi->dev), status);
598 goto done;
599 }
600
601 /* Device may be bound to an active driver when this returns */
602 status = device_add(&spi->dev);
603 if (status < 0)
604 dev_err(dev, "can't add %s, status %d\n",
605 dev_name(&spi->dev), status);
606 else
607 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
608
609 done:
610 mutex_unlock(&spi_add_lock);
611 return status;
612 }
613 EXPORT_SYMBOL_GPL(spi_add_device);
614
615 /**
616 * spi_new_device - instantiate one new SPI device
617 * @ctlr: Controller to which device is connected
618 * @chip: Describes the SPI device
619 * Context: can sleep
620 *
621 * On typical mainboards, this is purely internal; and it's not needed
622 * after board init creates the hard-wired devices. Some development
623 * platforms may not be able to use spi_register_board_info though, and
624 * this is exported so that for example a USB or parport based adapter
625 * driver could add devices (which it would learn about out-of-band).
626 *
627 * Return: the new device, or NULL.
628 */
spi_new_device(struct spi_controller * ctlr,struct spi_board_info * chip)629 struct spi_device *spi_new_device(struct spi_controller *ctlr,
630 struct spi_board_info *chip)
631 {
632 struct spi_device *proxy;
633 int status;
634
635 /* NOTE: caller did any chip->bus_num checks necessary.
636 *
637 * Also, unless we change the return value convention to use
638 * error-or-pointer (not NULL-or-pointer), troubleshootability
639 * suggests syslogged diagnostics are best here (ugh).
640 */
641
642 proxy = spi_alloc_device(ctlr);
643 if (!proxy)
644 return NULL;
645
646 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
647
648 proxy->chip_select = chip->chip_select;
649 proxy->max_speed_hz = chip->max_speed_hz;
650 proxy->mode = chip->mode;
651 proxy->irq = chip->irq;
652 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
653 proxy->dev.platform_data = (void *) chip->platform_data;
654 proxy->controller_data = chip->controller_data;
655 proxy->controller_state = NULL;
656
657 if (chip->properties) {
658 status = device_add_properties(&proxy->dev, chip->properties);
659 if (status) {
660 dev_err(&ctlr->dev,
661 "failed to add properties to '%s': %d\n",
662 chip->modalias, status);
663 goto err_dev_put;
664 }
665 }
666
667 status = spi_add_device(proxy);
668 if (status < 0)
669 goto err_remove_props;
670
671 return proxy;
672
673 err_remove_props:
674 if (chip->properties)
675 device_remove_properties(&proxy->dev);
676 err_dev_put:
677 spi_dev_put(proxy);
678 return NULL;
679 }
680 EXPORT_SYMBOL_GPL(spi_new_device);
681
682 /**
683 * spi_unregister_device - unregister a single SPI device
684 * @spi: spi_device to unregister
685 *
686 * Start making the passed SPI device vanish. Normally this would be handled
687 * by spi_unregister_controller().
688 */
spi_unregister_device(struct spi_device * spi)689 void spi_unregister_device(struct spi_device *spi)
690 {
691 if (!spi)
692 return;
693
694 if (spi->dev.of_node) {
695 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
696 of_node_put(spi->dev.of_node);
697 }
698 if (ACPI_COMPANION(&spi->dev))
699 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
700 device_unregister(&spi->dev);
701 }
702 EXPORT_SYMBOL_GPL(spi_unregister_device);
703
spi_match_controller_to_boardinfo(struct spi_controller * ctlr,struct spi_board_info * bi)704 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
705 struct spi_board_info *bi)
706 {
707 struct spi_device *dev;
708
709 if (ctlr->bus_num != bi->bus_num)
710 return;
711
712 dev = spi_new_device(ctlr, bi);
713 if (!dev)
714 dev_err(ctlr->dev.parent, "can't create new device for %s\n",
715 bi->modalias);
716 }
717
718 /**
719 * spi_register_board_info - register SPI devices for a given board
720 * @info: array of chip descriptors
721 * @n: how many descriptors are provided
722 * Context: can sleep
723 *
724 * Board-specific early init code calls this (probably during arch_initcall)
725 * with segments of the SPI device table. Any device nodes are created later,
726 * after the relevant parent SPI controller (bus_num) is defined. We keep
727 * this table of devices forever, so that reloading a controller driver will
728 * not make Linux forget about these hard-wired devices.
729 *
730 * Other code can also call this, e.g. a particular add-on board might provide
731 * SPI devices through its expansion connector, so code initializing that board
732 * would naturally declare its SPI devices.
733 *
734 * The board info passed can safely be __initdata ... but be careful of
735 * any embedded pointers (platform_data, etc), they're copied as-is.
736 * Device properties are deep-copied though.
737 *
738 * Return: zero on success, else a negative error code.
739 */
spi_register_board_info(struct spi_board_info const * info,unsigned n)740 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
741 {
742 struct boardinfo *bi;
743 int i;
744
745 if (!n)
746 return 0;
747
748 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
749 if (!bi)
750 return -ENOMEM;
751
752 for (i = 0; i < n; i++, bi++, info++) {
753 struct spi_controller *ctlr;
754
755 memcpy(&bi->board_info, info, sizeof(*info));
756 if (info->properties) {
757 bi->board_info.properties =
758 property_entries_dup(info->properties);
759 if (IS_ERR(bi->board_info.properties))
760 return PTR_ERR(bi->board_info.properties);
761 }
762
763 mutex_lock(&board_lock);
764 list_add_tail(&bi->list, &board_list);
765 list_for_each_entry(ctlr, &spi_controller_list, list)
766 spi_match_controller_to_boardinfo(ctlr,
767 &bi->board_info);
768 mutex_unlock(&board_lock);
769 }
770
771 return 0;
772 }
773
774 /*-------------------------------------------------------------------------*/
775
spi_set_cs(struct spi_device * spi,bool enable)776 static void spi_set_cs(struct spi_device *spi, bool enable)
777 {
778 if (spi->mode & SPI_CS_HIGH)
779 enable = !enable;
780
781 if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) {
782 /*
783 * Honour the SPI_NO_CS flag and invert the enable line, as
784 * active low is default for SPI. Execution paths that handle
785 * polarity inversion in gpiolib (such as device tree) will
786 * enforce active high using the SPI_CS_HIGH resulting in a
787 * double inversion through the code above.
788 */
789 if (!(spi->mode & SPI_NO_CS)) {
790 if (spi->cs_gpiod)
791 gpiod_set_value_cansleep(spi->cs_gpiod,
792 !enable);
793 else
794 gpio_set_value_cansleep(spi->cs_gpio, !enable);
795 }
796 /* Some SPI masters need both GPIO CS & slave_select */
797 if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
798 spi->controller->set_cs)
799 spi->controller->set_cs(spi, !enable);
800 } else if (spi->controller->set_cs) {
801 spi->controller->set_cs(spi, !enable);
802 }
803 }
804
805 #ifdef CONFIG_HAS_DMA
spi_map_buf(struct spi_controller * ctlr,struct device * dev,struct sg_table * sgt,void * buf,size_t len,enum dma_data_direction dir)806 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
807 struct sg_table *sgt, void *buf, size_t len,
808 enum dma_data_direction dir)
809 {
810 const bool vmalloced_buf = is_vmalloc_addr(buf);
811 unsigned int max_seg_size = dma_get_max_seg_size(dev);
812 #ifdef CONFIG_HIGHMEM
813 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
814 (unsigned long)buf < (PKMAP_BASE +
815 (LAST_PKMAP * PAGE_SIZE)));
816 #else
817 const bool kmap_buf = false;
818 #endif
819 int desc_len;
820 int sgs;
821 struct page *vm_page;
822 struct scatterlist *sg;
823 void *sg_buf;
824 size_t min;
825 int i, ret;
826
827 if (vmalloced_buf || kmap_buf) {
828 desc_len = min_t(int, max_seg_size, PAGE_SIZE);
829 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
830 } else if (virt_addr_valid(buf)) {
831 desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
832 sgs = DIV_ROUND_UP(len, desc_len);
833 } else {
834 return -EINVAL;
835 }
836
837 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
838 if (ret != 0)
839 return ret;
840
841 sg = &sgt->sgl[0];
842 for (i = 0; i < sgs; i++) {
843
844 if (vmalloced_buf || kmap_buf) {
845 /*
846 * Next scatterlist entry size is the minimum between
847 * the desc_len and the remaining buffer length that
848 * fits in a page.
849 */
850 min = min_t(size_t, desc_len,
851 min_t(size_t, len,
852 PAGE_SIZE - offset_in_page(buf)));
853 if (vmalloced_buf)
854 vm_page = vmalloc_to_page(buf);
855 else
856 vm_page = kmap_to_page(buf);
857 if (!vm_page) {
858 sg_free_table(sgt);
859 return -ENOMEM;
860 }
861 sg_set_page(sg, vm_page,
862 min, offset_in_page(buf));
863 } else {
864 min = min_t(size_t, len, desc_len);
865 sg_buf = buf;
866 sg_set_buf(sg, sg_buf, min);
867 }
868
869 buf += min;
870 len -= min;
871 sg = sg_next(sg);
872 }
873
874 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
875 if (!ret)
876 ret = -ENOMEM;
877 if (ret < 0) {
878 sg_free_table(sgt);
879 return ret;
880 }
881
882 sgt->nents = ret;
883
884 return 0;
885 }
886
spi_unmap_buf(struct spi_controller * ctlr,struct device * dev,struct sg_table * sgt,enum dma_data_direction dir)887 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
888 struct sg_table *sgt, enum dma_data_direction dir)
889 {
890 if (sgt->orig_nents) {
891 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
892 sg_free_table(sgt);
893 }
894 }
895
__spi_map_msg(struct spi_controller * ctlr,struct spi_message * msg)896 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
897 {
898 struct device *tx_dev, *rx_dev;
899 struct spi_transfer *xfer;
900 int ret;
901
902 if (!ctlr->can_dma)
903 return 0;
904
905 if (ctlr->dma_tx)
906 tx_dev = ctlr->dma_tx->device->dev;
907 else
908 tx_dev = ctlr->dev.parent;
909
910 if (ctlr->dma_rx)
911 rx_dev = ctlr->dma_rx->device->dev;
912 else
913 rx_dev = ctlr->dev.parent;
914
915 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
916 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
917 continue;
918
919 if (xfer->tx_buf != NULL) {
920 ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
921 (void *)xfer->tx_buf, xfer->len,
922 DMA_TO_DEVICE);
923 if (ret != 0)
924 return ret;
925 }
926
927 if (xfer->rx_buf != NULL) {
928 ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
929 xfer->rx_buf, xfer->len,
930 DMA_FROM_DEVICE);
931 if (ret != 0) {
932 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
933 DMA_TO_DEVICE);
934 return ret;
935 }
936 }
937 }
938
939 ctlr->cur_msg_mapped = true;
940
941 return 0;
942 }
943
__spi_unmap_msg(struct spi_controller * ctlr,struct spi_message * msg)944 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
945 {
946 struct spi_transfer *xfer;
947 struct device *tx_dev, *rx_dev;
948
949 if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
950 return 0;
951
952 if (ctlr->dma_tx)
953 tx_dev = ctlr->dma_tx->device->dev;
954 else
955 tx_dev = ctlr->dev.parent;
956
957 if (ctlr->dma_rx)
958 rx_dev = ctlr->dma_rx->device->dev;
959 else
960 rx_dev = ctlr->dev.parent;
961
962 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
963 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
964 continue;
965
966 spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
967 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
968 }
969
970 return 0;
971 }
972 #else /* !CONFIG_HAS_DMA */
__spi_map_msg(struct spi_controller * ctlr,struct spi_message * msg)973 static inline int __spi_map_msg(struct spi_controller *ctlr,
974 struct spi_message *msg)
975 {
976 return 0;
977 }
978
__spi_unmap_msg(struct spi_controller * ctlr,struct spi_message * msg)979 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
980 struct spi_message *msg)
981 {
982 return 0;
983 }
984 #endif /* !CONFIG_HAS_DMA */
985
spi_unmap_msg(struct spi_controller * ctlr,struct spi_message * msg)986 static inline int spi_unmap_msg(struct spi_controller *ctlr,
987 struct spi_message *msg)
988 {
989 struct spi_transfer *xfer;
990
991 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
992 /*
993 * Restore the original value of tx_buf or rx_buf if they are
994 * NULL.
995 */
996 if (xfer->tx_buf == ctlr->dummy_tx)
997 xfer->tx_buf = NULL;
998 if (xfer->rx_buf == ctlr->dummy_rx)
999 xfer->rx_buf = NULL;
1000 }
1001
1002 return __spi_unmap_msg(ctlr, msg);
1003 }
1004
spi_map_msg(struct spi_controller * ctlr,struct spi_message * msg)1005 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1006 {
1007 struct spi_transfer *xfer;
1008 void *tmp;
1009 unsigned int max_tx, max_rx;
1010
1011 if (ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) {
1012 max_tx = 0;
1013 max_rx = 0;
1014
1015 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1016 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1017 !xfer->tx_buf)
1018 max_tx = max(xfer->len, max_tx);
1019 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1020 !xfer->rx_buf)
1021 max_rx = max(xfer->len, max_rx);
1022 }
1023
1024 if (max_tx) {
1025 tmp = krealloc(ctlr->dummy_tx, max_tx,
1026 GFP_KERNEL | GFP_DMA);
1027 if (!tmp)
1028 return -ENOMEM;
1029 ctlr->dummy_tx = tmp;
1030 memset(tmp, 0, max_tx);
1031 }
1032
1033 if (max_rx) {
1034 tmp = krealloc(ctlr->dummy_rx, max_rx,
1035 GFP_KERNEL | GFP_DMA);
1036 if (!tmp)
1037 return -ENOMEM;
1038 ctlr->dummy_rx = tmp;
1039 }
1040
1041 if (max_tx || max_rx) {
1042 list_for_each_entry(xfer, &msg->transfers,
1043 transfer_list) {
1044 if (!xfer->len)
1045 continue;
1046 if (!xfer->tx_buf)
1047 xfer->tx_buf = ctlr->dummy_tx;
1048 if (!xfer->rx_buf)
1049 xfer->rx_buf = ctlr->dummy_rx;
1050 }
1051 }
1052 }
1053
1054 return __spi_map_msg(ctlr, msg);
1055 }
1056
spi_transfer_wait(struct spi_controller * ctlr,struct spi_message * msg,struct spi_transfer * xfer)1057 static int spi_transfer_wait(struct spi_controller *ctlr,
1058 struct spi_message *msg,
1059 struct spi_transfer *xfer)
1060 {
1061 struct spi_statistics *statm = &ctlr->statistics;
1062 struct spi_statistics *stats = &msg->spi->statistics;
1063 unsigned long long ms = 1;
1064
1065 if (spi_controller_is_slave(ctlr)) {
1066 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1067 dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1068 return -EINTR;
1069 }
1070 } else {
1071 ms = 8LL * 1000LL * xfer->len;
1072 do_div(ms, xfer->speed_hz);
1073 ms += ms + 200; /* some tolerance */
1074
1075 if (ms > UINT_MAX)
1076 ms = UINT_MAX;
1077
1078 ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1079 msecs_to_jiffies(ms));
1080
1081 if (ms == 0) {
1082 SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1083 SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1084 dev_err(&msg->spi->dev,
1085 "SPI transfer timed out\n");
1086 return -ETIMEDOUT;
1087 }
1088 }
1089
1090 return 0;
1091 }
1092
_spi_transfer_delay_ns(u32 ns)1093 static void _spi_transfer_delay_ns(u32 ns)
1094 {
1095 if (!ns)
1096 return;
1097 if (ns <= 1000) {
1098 ndelay(ns);
1099 } else {
1100 u32 us = DIV_ROUND_UP(ns, 1000);
1101
1102 if (us <= 10)
1103 udelay(us);
1104 else
1105 usleep_range(us, us + DIV_ROUND_UP(us, 10));
1106 }
1107 }
1108
_spi_transfer_cs_change_delay(struct spi_message * msg,struct spi_transfer * xfer)1109 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1110 struct spi_transfer *xfer)
1111 {
1112 u32 delay = xfer->cs_change_delay;
1113 u32 unit = xfer->cs_change_delay_unit;
1114 u32 hz;
1115
1116 /* return early on "fast" mode - for everything but USECS */
1117 if (!delay && unit != SPI_DELAY_UNIT_USECS)
1118 return;
1119
1120 switch (unit) {
1121 case SPI_DELAY_UNIT_USECS:
1122 /* for compatibility use default of 10us */
1123 if (!delay)
1124 delay = 10000;
1125 else
1126 delay *= 1000;
1127 break;
1128 case SPI_DELAY_UNIT_NSECS: /* nothing to do here */
1129 break;
1130 case SPI_DELAY_UNIT_SCK:
1131 /* if there is no effective speed know, then approximate
1132 * by underestimating with half the requested hz
1133 */
1134 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1135 delay *= DIV_ROUND_UP(1000000000, hz);
1136 break;
1137 default:
1138 dev_err_once(&msg->spi->dev,
1139 "Use of unsupported delay unit %i, using default of 10us\n",
1140 xfer->cs_change_delay_unit);
1141 delay = 10000;
1142 }
1143 /* now sleep for the requested amount of time */
1144 _spi_transfer_delay_ns(delay);
1145 }
1146
1147 /*
1148 * spi_transfer_one_message - Default implementation of transfer_one_message()
1149 *
1150 * This is a standard implementation of transfer_one_message() for
1151 * drivers which implement a transfer_one() operation. It provides
1152 * standard handling of delays and chip select management.
1153 */
spi_transfer_one_message(struct spi_controller * ctlr,struct spi_message * msg)1154 static int spi_transfer_one_message(struct spi_controller *ctlr,
1155 struct spi_message *msg)
1156 {
1157 struct spi_transfer *xfer;
1158 bool keep_cs = false;
1159 int ret = 0;
1160 struct spi_statistics *statm = &ctlr->statistics;
1161 struct spi_statistics *stats = &msg->spi->statistics;
1162
1163 spi_set_cs(msg->spi, true);
1164
1165 SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1166 SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1167
1168 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1169 trace_spi_transfer_start(msg, xfer);
1170
1171 spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1172 spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1173
1174 if (xfer->tx_buf || xfer->rx_buf) {
1175 reinit_completion(&ctlr->xfer_completion);
1176
1177 ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1178 if (ret < 0) {
1179 SPI_STATISTICS_INCREMENT_FIELD(statm,
1180 errors);
1181 SPI_STATISTICS_INCREMENT_FIELD(stats,
1182 errors);
1183 dev_err(&msg->spi->dev,
1184 "SPI transfer failed: %d\n", ret);
1185 goto out;
1186 }
1187
1188 if (ret > 0) {
1189 ret = spi_transfer_wait(ctlr, msg, xfer);
1190 if (ret < 0)
1191 msg->status = ret;
1192 }
1193 } else {
1194 if (xfer->len)
1195 dev_err(&msg->spi->dev,
1196 "Bufferless transfer has length %u\n",
1197 xfer->len);
1198 }
1199
1200 trace_spi_transfer_stop(msg, xfer);
1201
1202 if (msg->status != -EINPROGRESS)
1203 goto out;
1204
1205 if (xfer->delay_usecs)
1206 _spi_transfer_delay_ns(xfer->delay_usecs * 1000);
1207
1208 if (xfer->cs_change) {
1209 if (list_is_last(&xfer->transfer_list,
1210 &msg->transfers)) {
1211 keep_cs = true;
1212 } else {
1213 spi_set_cs(msg->spi, false);
1214 _spi_transfer_cs_change_delay(msg, xfer);
1215 spi_set_cs(msg->spi, true);
1216 }
1217 }
1218
1219 msg->actual_length += xfer->len;
1220 }
1221
1222 out:
1223 if (ret != 0 || !keep_cs)
1224 spi_set_cs(msg->spi, false);
1225
1226 if (msg->status == -EINPROGRESS)
1227 msg->status = ret;
1228
1229 if (msg->status && ctlr->handle_err)
1230 ctlr->handle_err(ctlr, msg);
1231
1232 spi_res_release(ctlr, msg);
1233
1234 spi_finalize_current_message(ctlr);
1235
1236 return ret;
1237 }
1238
1239 /**
1240 * spi_finalize_current_transfer - report completion of a transfer
1241 * @ctlr: the controller reporting completion
1242 *
1243 * Called by SPI drivers using the core transfer_one_message()
1244 * implementation to notify it that the current interrupt driven
1245 * transfer has finished and the next one may be scheduled.
1246 */
spi_finalize_current_transfer(struct spi_controller * ctlr)1247 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1248 {
1249 complete(&ctlr->xfer_completion);
1250 }
1251 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1252
1253 /**
1254 * __spi_pump_messages - function which processes spi message queue
1255 * @ctlr: controller to process queue for
1256 * @in_kthread: true if we are in the context of the message pump thread
1257 *
1258 * This function checks if there is any spi message in the queue that
1259 * needs processing and if so call out to the driver to initialize hardware
1260 * and transfer each message.
1261 *
1262 * Note that it is called both from the kthread itself and also from
1263 * inside spi_sync(); the queue extraction handling at the top of the
1264 * function should deal with this safely.
1265 */
__spi_pump_messages(struct spi_controller * ctlr,bool in_kthread)1266 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1267 {
1268 struct spi_message *msg;
1269 bool was_busy = false;
1270 unsigned long flags;
1271 int ret;
1272
1273 /* Lock queue */
1274 spin_lock_irqsave(&ctlr->queue_lock, flags);
1275
1276 /* Make sure we are not already running a message */
1277 if (ctlr->cur_msg) {
1278 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1279 return;
1280 }
1281
1282 /* If another context is idling the device then defer */
1283 if (ctlr->idling) {
1284 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1285 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1286 return;
1287 }
1288
1289 /* Check if the queue is idle */
1290 if (list_empty(&ctlr->queue) || !ctlr->running) {
1291 if (!ctlr->busy) {
1292 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1293 return;
1294 }
1295
1296 /* Only do teardown in the thread */
1297 if (!in_kthread) {
1298 kthread_queue_work(&ctlr->kworker,
1299 &ctlr->pump_messages);
1300 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1301 return;
1302 }
1303
1304 ctlr->busy = false;
1305 ctlr->idling = true;
1306 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1307
1308 kfree(ctlr->dummy_rx);
1309 ctlr->dummy_rx = NULL;
1310 kfree(ctlr->dummy_tx);
1311 ctlr->dummy_tx = NULL;
1312 if (ctlr->unprepare_transfer_hardware &&
1313 ctlr->unprepare_transfer_hardware(ctlr))
1314 dev_err(&ctlr->dev,
1315 "failed to unprepare transfer hardware\n");
1316 if (ctlr->auto_runtime_pm) {
1317 pm_runtime_mark_last_busy(ctlr->dev.parent);
1318 pm_runtime_put_autosuspend(ctlr->dev.parent);
1319 }
1320 trace_spi_controller_idle(ctlr);
1321
1322 spin_lock_irqsave(&ctlr->queue_lock, flags);
1323 ctlr->idling = false;
1324 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1325 return;
1326 }
1327
1328 /* Extract head of queue */
1329 msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1330 ctlr->cur_msg = msg;
1331
1332 list_del_init(&msg->queue);
1333 if (ctlr->busy)
1334 was_busy = true;
1335 else
1336 ctlr->busy = true;
1337 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1338
1339 mutex_lock(&ctlr->io_mutex);
1340
1341 if (!was_busy && ctlr->auto_runtime_pm) {
1342 ret = pm_runtime_get_sync(ctlr->dev.parent);
1343 if (ret < 0) {
1344 pm_runtime_put_noidle(ctlr->dev.parent);
1345 dev_err(&ctlr->dev, "Failed to power device: %d\n",
1346 ret);
1347 mutex_unlock(&ctlr->io_mutex);
1348 return;
1349 }
1350 }
1351
1352 if (!was_busy)
1353 trace_spi_controller_busy(ctlr);
1354
1355 if (!was_busy && ctlr->prepare_transfer_hardware) {
1356 ret = ctlr->prepare_transfer_hardware(ctlr);
1357 if (ret) {
1358 dev_err(&ctlr->dev,
1359 "failed to prepare transfer hardware: %d\n",
1360 ret);
1361
1362 if (ctlr->auto_runtime_pm)
1363 pm_runtime_put(ctlr->dev.parent);
1364
1365 msg->status = ret;
1366 spi_finalize_current_message(ctlr);
1367
1368 mutex_unlock(&ctlr->io_mutex);
1369 return;
1370 }
1371 }
1372
1373 trace_spi_message_start(msg);
1374
1375 if (ctlr->prepare_message) {
1376 ret = ctlr->prepare_message(ctlr, msg);
1377 if (ret) {
1378 dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1379 ret);
1380 msg->status = ret;
1381 spi_finalize_current_message(ctlr);
1382 goto out;
1383 }
1384 ctlr->cur_msg_prepared = true;
1385 }
1386
1387 ret = spi_map_msg(ctlr, msg);
1388 if (ret) {
1389 msg->status = ret;
1390 spi_finalize_current_message(ctlr);
1391 goto out;
1392 }
1393
1394 ret = ctlr->transfer_one_message(ctlr, msg);
1395 if (ret) {
1396 dev_err(&ctlr->dev,
1397 "failed to transfer one message from queue\n");
1398 goto out;
1399 }
1400
1401 out:
1402 mutex_unlock(&ctlr->io_mutex);
1403
1404 /* Prod the scheduler in case transfer_one() was busy waiting */
1405 if (!ret)
1406 cond_resched();
1407 }
1408
1409 /**
1410 * spi_pump_messages - kthread work function which processes spi message queue
1411 * @work: pointer to kthread work struct contained in the controller struct
1412 */
spi_pump_messages(struct kthread_work * work)1413 static void spi_pump_messages(struct kthread_work *work)
1414 {
1415 struct spi_controller *ctlr =
1416 container_of(work, struct spi_controller, pump_messages);
1417
1418 __spi_pump_messages(ctlr, true);
1419 }
1420
1421 /**
1422 * spi_set_thread_rt - set the controller to pump at realtime priority
1423 * @ctlr: controller to boost priority of
1424 *
1425 * This can be called because the controller requested realtime priority
1426 * (by setting the ->rt value before calling spi_register_controller()) or
1427 * because a device on the bus said that its transfers needed realtime
1428 * priority.
1429 *
1430 * NOTE: at the moment if any device on a bus says it needs realtime then
1431 * the thread will be at realtime priority for all transfers on that
1432 * controller. If this eventually becomes a problem we may see if we can
1433 * find a way to boost the priority only temporarily during relevant
1434 * transfers.
1435 */
spi_set_thread_rt(struct spi_controller * ctlr)1436 static void spi_set_thread_rt(struct spi_controller *ctlr)
1437 {
1438 struct sched_param param = { .sched_priority = MAX_RT_PRIO / 2 };
1439
1440 dev_info(&ctlr->dev,
1441 "will run message pump with realtime priority\n");
1442 sched_setscheduler(ctlr->kworker_task, SCHED_FIFO, ¶m);
1443 }
1444
spi_init_queue(struct spi_controller * ctlr)1445 static int spi_init_queue(struct spi_controller *ctlr)
1446 {
1447 ctlr->running = false;
1448 ctlr->busy = false;
1449
1450 kthread_init_worker(&ctlr->kworker);
1451 ctlr->kworker_task = kthread_run(kthread_worker_fn, &ctlr->kworker,
1452 "%s", dev_name(&ctlr->dev));
1453 if (IS_ERR(ctlr->kworker_task)) {
1454 dev_err(&ctlr->dev, "failed to create message pump task\n");
1455 return PTR_ERR(ctlr->kworker_task);
1456 }
1457 kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1458
1459 /*
1460 * Controller config will indicate if this controller should run the
1461 * message pump with high (realtime) priority to reduce the transfer
1462 * latency on the bus by minimising the delay between a transfer
1463 * request and the scheduling of the message pump thread. Without this
1464 * setting the message pump thread will remain at default priority.
1465 */
1466 if (ctlr->rt)
1467 spi_set_thread_rt(ctlr);
1468
1469 return 0;
1470 }
1471
1472 /**
1473 * spi_get_next_queued_message() - called by driver to check for queued
1474 * messages
1475 * @ctlr: the controller to check for queued messages
1476 *
1477 * If there are more messages in the queue, the next message is returned from
1478 * this call.
1479 *
1480 * Return: the next message in the queue, else NULL if the queue is empty.
1481 */
spi_get_next_queued_message(struct spi_controller * ctlr)1482 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1483 {
1484 struct spi_message *next;
1485 unsigned long flags;
1486
1487 /* get a pointer to the next message, if any */
1488 spin_lock_irqsave(&ctlr->queue_lock, flags);
1489 next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1490 queue);
1491 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1492
1493 return next;
1494 }
1495 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1496
1497 /**
1498 * spi_finalize_current_message() - the current message is complete
1499 * @ctlr: the controller to return the message to
1500 *
1501 * Called by the driver to notify the core that the message in the front of the
1502 * queue is complete and can be removed from the queue.
1503 */
spi_finalize_current_message(struct spi_controller * ctlr)1504 void spi_finalize_current_message(struct spi_controller *ctlr)
1505 {
1506 struct spi_message *mesg;
1507 unsigned long flags;
1508 int ret;
1509
1510 spin_lock_irqsave(&ctlr->queue_lock, flags);
1511 mesg = ctlr->cur_msg;
1512 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1513
1514 spi_unmap_msg(ctlr, mesg);
1515
1516 if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1517 ret = ctlr->unprepare_message(ctlr, mesg);
1518 if (ret) {
1519 dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1520 ret);
1521 }
1522 }
1523
1524 spin_lock_irqsave(&ctlr->queue_lock, flags);
1525 ctlr->cur_msg = NULL;
1526 ctlr->cur_msg_prepared = false;
1527 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1528 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1529
1530 trace_spi_message_done(mesg);
1531
1532 mesg->state = NULL;
1533 if (mesg->complete)
1534 mesg->complete(mesg->context);
1535 }
1536 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1537
spi_start_queue(struct spi_controller * ctlr)1538 static int spi_start_queue(struct spi_controller *ctlr)
1539 {
1540 unsigned long flags;
1541
1542 spin_lock_irqsave(&ctlr->queue_lock, flags);
1543
1544 if (ctlr->running || ctlr->busy) {
1545 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1546 return -EBUSY;
1547 }
1548
1549 ctlr->running = true;
1550 ctlr->cur_msg = NULL;
1551 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1552
1553 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1554
1555 return 0;
1556 }
1557
spi_stop_queue(struct spi_controller * ctlr)1558 static int spi_stop_queue(struct spi_controller *ctlr)
1559 {
1560 unsigned long flags;
1561 unsigned limit = 500;
1562 int ret = 0;
1563
1564 spin_lock_irqsave(&ctlr->queue_lock, flags);
1565
1566 /*
1567 * This is a bit lame, but is optimized for the common execution path.
1568 * A wait_queue on the ctlr->busy could be used, but then the common
1569 * execution path (pump_messages) would be required to call wake_up or
1570 * friends on every SPI message. Do this instead.
1571 */
1572 while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1573 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1574 usleep_range(10000, 11000);
1575 spin_lock_irqsave(&ctlr->queue_lock, flags);
1576 }
1577
1578 if (!list_empty(&ctlr->queue) || ctlr->busy)
1579 ret = -EBUSY;
1580 else
1581 ctlr->running = false;
1582
1583 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1584
1585 if (ret) {
1586 dev_warn(&ctlr->dev, "could not stop message queue\n");
1587 return ret;
1588 }
1589 return ret;
1590 }
1591
spi_destroy_queue(struct spi_controller * ctlr)1592 static int spi_destroy_queue(struct spi_controller *ctlr)
1593 {
1594 int ret;
1595
1596 ret = spi_stop_queue(ctlr);
1597
1598 /*
1599 * kthread_flush_worker will block until all work is done.
1600 * If the reason that stop_queue timed out is that the work will never
1601 * finish, then it does no good to call flush/stop thread, so
1602 * return anyway.
1603 */
1604 if (ret) {
1605 dev_err(&ctlr->dev, "problem destroying queue\n");
1606 return ret;
1607 }
1608
1609 kthread_flush_worker(&ctlr->kworker);
1610 kthread_stop(ctlr->kworker_task);
1611
1612 return 0;
1613 }
1614
__spi_queued_transfer(struct spi_device * spi,struct spi_message * msg,bool need_pump)1615 static int __spi_queued_transfer(struct spi_device *spi,
1616 struct spi_message *msg,
1617 bool need_pump)
1618 {
1619 struct spi_controller *ctlr = spi->controller;
1620 unsigned long flags;
1621
1622 spin_lock_irqsave(&ctlr->queue_lock, flags);
1623
1624 if (!ctlr->running) {
1625 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1626 return -ESHUTDOWN;
1627 }
1628 msg->actual_length = 0;
1629 msg->status = -EINPROGRESS;
1630
1631 list_add_tail(&msg->queue, &ctlr->queue);
1632 if (!ctlr->busy && need_pump)
1633 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1634
1635 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1636 return 0;
1637 }
1638
1639 /**
1640 * spi_queued_transfer - transfer function for queued transfers
1641 * @spi: spi device which is requesting transfer
1642 * @msg: spi message which is to handled is queued to driver queue
1643 *
1644 * Return: zero on success, else a negative error code.
1645 */
spi_queued_transfer(struct spi_device * spi,struct spi_message * msg)1646 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1647 {
1648 return __spi_queued_transfer(spi, msg, true);
1649 }
1650
spi_controller_initialize_queue(struct spi_controller * ctlr)1651 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
1652 {
1653 int ret;
1654
1655 ctlr->transfer = spi_queued_transfer;
1656 if (!ctlr->transfer_one_message)
1657 ctlr->transfer_one_message = spi_transfer_one_message;
1658
1659 /* Initialize and start queue */
1660 ret = spi_init_queue(ctlr);
1661 if (ret) {
1662 dev_err(&ctlr->dev, "problem initializing queue\n");
1663 goto err_init_queue;
1664 }
1665 ctlr->queued = true;
1666 ret = spi_start_queue(ctlr);
1667 if (ret) {
1668 dev_err(&ctlr->dev, "problem starting queue\n");
1669 goto err_start_queue;
1670 }
1671
1672 return 0;
1673
1674 err_start_queue:
1675 spi_destroy_queue(ctlr);
1676 err_init_queue:
1677 return ret;
1678 }
1679
1680 /**
1681 * spi_flush_queue - Send all pending messages in the queue from the callers'
1682 * context
1683 * @ctlr: controller to process queue for
1684 *
1685 * This should be used when one wants to ensure all pending messages have been
1686 * sent before doing something. Is used by the spi-mem code to make sure SPI
1687 * memory operations do not preempt regular SPI transfers that have been queued
1688 * before the spi-mem operation.
1689 */
spi_flush_queue(struct spi_controller * ctlr)1690 void spi_flush_queue(struct spi_controller *ctlr)
1691 {
1692 if (ctlr->transfer == spi_queued_transfer)
1693 __spi_pump_messages(ctlr, false);
1694 }
1695
1696 /*-------------------------------------------------------------------------*/
1697
1698 #if defined(CONFIG_OF)
of_spi_parse_dt(struct spi_controller * ctlr,struct spi_device * spi,struct device_node * nc)1699 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
1700 struct device_node *nc)
1701 {
1702 u32 value;
1703 int rc;
1704
1705 /* Mode (clock phase/polarity/etc.) */
1706 if (of_property_read_bool(nc, "spi-cpha"))
1707 spi->mode |= SPI_CPHA;
1708 if (of_property_read_bool(nc, "spi-cpol"))
1709 spi->mode |= SPI_CPOL;
1710 if (of_property_read_bool(nc, "spi-3wire"))
1711 spi->mode |= SPI_3WIRE;
1712 if (of_property_read_bool(nc, "spi-lsb-first"))
1713 spi->mode |= SPI_LSB_FIRST;
1714 if (of_property_read_bool(nc, "spi-cs-high"))
1715 spi->mode |= SPI_CS_HIGH;
1716
1717 /* Device DUAL/QUAD mode */
1718 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1719 switch (value) {
1720 case 1:
1721 break;
1722 case 2:
1723 spi->mode |= SPI_TX_DUAL;
1724 break;
1725 case 4:
1726 spi->mode |= SPI_TX_QUAD;
1727 break;
1728 case 8:
1729 spi->mode |= SPI_TX_OCTAL;
1730 break;
1731 default:
1732 dev_warn(&ctlr->dev,
1733 "spi-tx-bus-width %d not supported\n",
1734 value);
1735 break;
1736 }
1737 }
1738
1739 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1740 switch (value) {
1741 case 1:
1742 break;
1743 case 2:
1744 spi->mode |= SPI_RX_DUAL;
1745 break;
1746 case 4:
1747 spi->mode |= SPI_RX_QUAD;
1748 break;
1749 case 8:
1750 spi->mode |= SPI_RX_OCTAL;
1751 break;
1752 default:
1753 dev_warn(&ctlr->dev,
1754 "spi-rx-bus-width %d not supported\n",
1755 value);
1756 break;
1757 }
1758 }
1759
1760 if (spi_controller_is_slave(ctlr)) {
1761 if (!of_node_name_eq(nc, "slave")) {
1762 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
1763 nc);
1764 return -EINVAL;
1765 }
1766 return 0;
1767 }
1768
1769 /* Device address */
1770 rc = of_property_read_u32(nc, "reg", &value);
1771 if (rc) {
1772 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
1773 nc, rc);
1774 return rc;
1775 }
1776 spi->chip_select = value;
1777
1778 /*
1779 * For descriptors associated with the device, polarity inversion is
1780 * handled in the gpiolib, so all gpio chip selects are "active high"
1781 * in the logical sense, the gpiolib will invert the line if need be.
1782 */
1783 if ((ctlr->use_gpio_descriptors) && ctlr->cs_gpiods &&
1784 ctlr->cs_gpiods[spi->chip_select])
1785 spi->mode |= SPI_CS_HIGH;
1786
1787 /* Device speed */
1788 rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1789 if (rc) {
1790 dev_err(&ctlr->dev,
1791 "%pOF has no valid 'spi-max-frequency' property (%d)\n", nc, rc);
1792 return rc;
1793 }
1794 spi->max_speed_hz = value;
1795
1796 return 0;
1797 }
1798
1799 static struct spi_device *
of_register_spi_device(struct spi_controller * ctlr,struct device_node * nc)1800 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
1801 {
1802 struct spi_device *spi;
1803 int rc;
1804
1805 /* Alloc an spi_device */
1806 spi = spi_alloc_device(ctlr);
1807 if (!spi) {
1808 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
1809 rc = -ENOMEM;
1810 goto err_out;
1811 }
1812
1813 /* Select device driver */
1814 rc = of_modalias_node(nc, spi->modalias,
1815 sizeof(spi->modalias));
1816 if (rc < 0) {
1817 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
1818 goto err_out;
1819 }
1820
1821 rc = of_spi_parse_dt(ctlr, spi, nc);
1822 if (rc)
1823 goto err_out;
1824
1825 /* Store a pointer to the node in the device structure */
1826 of_node_get(nc);
1827 spi->dev.of_node = nc;
1828
1829 /* Register the new device */
1830 rc = spi_add_device(spi);
1831 if (rc) {
1832 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
1833 goto err_of_node_put;
1834 }
1835
1836 return spi;
1837
1838 err_of_node_put:
1839 of_node_put(nc);
1840 err_out:
1841 spi_dev_put(spi);
1842 return ERR_PTR(rc);
1843 }
1844
1845 /**
1846 * of_register_spi_devices() - Register child devices onto the SPI bus
1847 * @ctlr: Pointer to spi_controller device
1848 *
1849 * Registers an spi_device for each child node of controller node which
1850 * represents a valid SPI slave.
1851 */
of_register_spi_devices(struct spi_controller * ctlr)1852 static void of_register_spi_devices(struct spi_controller *ctlr)
1853 {
1854 struct spi_device *spi;
1855 struct device_node *nc;
1856
1857 if (!ctlr->dev.of_node)
1858 return;
1859
1860 for_each_available_child_of_node(ctlr->dev.of_node, nc) {
1861 if (of_node_test_and_set_flag(nc, OF_POPULATED))
1862 continue;
1863 spi = of_register_spi_device(ctlr, nc);
1864 if (IS_ERR(spi)) {
1865 dev_warn(&ctlr->dev,
1866 "Failed to create SPI device for %pOF\n", nc);
1867 of_node_clear_flag(nc, OF_POPULATED);
1868 }
1869 }
1870 }
1871 #else
of_register_spi_devices(struct spi_controller * ctlr)1872 static void of_register_spi_devices(struct spi_controller *ctlr) { }
1873 #endif
1874
1875 #ifdef CONFIG_ACPI
1876 struct acpi_spi_lookup {
1877 struct spi_controller *ctlr;
1878 u32 max_speed_hz;
1879 u32 mode;
1880 int irq;
1881 u8 bits_per_word;
1882 u8 chip_select;
1883 };
1884
acpi_spi_parse_apple_properties(struct acpi_device * dev,struct acpi_spi_lookup * lookup)1885 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
1886 struct acpi_spi_lookup *lookup)
1887 {
1888 const union acpi_object *obj;
1889
1890 if (!x86_apple_machine)
1891 return;
1892
1893 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
1894 && obj->buffer.length >= 4)
1895 lookup->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
1896
1897 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
1898 && obj->buffer.length == 8)
1899 lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
1900
1901 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
1902 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
1903 lookup->mode |= SPI_LSB_FIRST;
1904
1905 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
1906 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer)
1907 lookup->mode |= SPI_CPOL;
1908
1909 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
1910 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer)
1911 lookup->mode |= SPI_CPHA;
1912 }
1913
acpi_spi_add_resource(struct acpi_resource * ares,void * data)1914 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1915 {
1916 struct acpi_spi_lookup *lookup = data;
1917 struct spi_controller *ctlr = lookup->ctlr;
1918
1919 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1920 struct acpi_resource_spi_serialbus *sb;
1921 acpi_handle parent_handle;
1922 acpi_status status;
1923
1924 sb = &ares->data.spi_serial_bus;
1925 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1926
1927 status = acpi_get_handle(NULL,
1928 sb->resource_source.string_ptr,
1929 &parent_handle);
1930
1931 if (ACPI_FAILURE(status) ||
1932 ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
1933 return -ENODEV;
1934
1935 /*
1936 * ACPI DeviceSelection numbering is handled by the
1937 * host controller driver in Windows and can vary
1938 * from driver to driver. In Linux we always expect
1939 * 0 .. max - 1 so we need to ask the driver to
1940 * translate between the two schemes.
1941 */
1942 if (ctlr->fw_translate_cs) {
1943 int cs = ctlr->fw_translate_cs(ctlr,
1944 sb->device_selection);
1945 if (cs < 0)
1946 return cs;
1947 lookup->chip_select = cs;
1948 } else {
1949 lookup->chip_select = sb->device_selection;
1950 }
1951
1952 lookup->max_speed_hz = sb->connection_speed;
1953
1954 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1955 lookup->mode |= SPI_CPHA;
1956 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1957 lookup->mode |= SPI_CPOL;
1958 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1959 lookup->mode |= SPI_CS_HIGH;
1960 }
1961 } else if (lookup->irq < 0) {
1962 struct resource r;
1963
1964 if (acpi_dev_resource_interrupt(ares, 0, &r))
1965 lookup->irq = r.start;
1966 }
1967
1968 /* Always tell the ACPI core to skip this resource */
1969 return 1;
1970 }
1971
acpi_register_spi_device(struct spi_controller * ctlr,struct acpi_device * adev)1972 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
1973 struct acpi_device *adev)
1974 {
1975 acpi_handle parent_handle = NULL;
1976 struct list_head resource_list;
1977 struct acpi_spi_lookup lookup = {};
1978 struct spi_device *spi;
1979 int ret;
1980
1981 if (acpi_bus_get_status(adev) || !adev->status.present ||
1982 acpi_device_enumerated(adev))
1983 return AE_OK;
1984
1985 lookup.ctlr = ctlr;
1986 lookup.irq = -1;
1987
1988 INIT_LIST_HEAD(&resource_list);
1989 ret = acpi_dev_get_resources(adev, &resource_list,
1990 acpi_spi_add_resource, &lookup);
1991 acpi_dev_free_resource_list(&resource_list);
1992
1993 if (ret < 0)
1994 /* found SPI in _CRS but it points to another controller */
1995 return AE_OK;
1996
1997 if (!lookup.max_speed_hz &&
1998 !ACPI_FAILURE(acpi_get_parent(adev->handle, &parent_handle)) &&
1999 ACPI_HANDLE(ctlr->dev.parent) == parent_handle) {
2000 /* Apple does not use _CRS but nested devices for SPI slaves */
2001 acpi_spi_parse_apple_properties(adev, &lookup);
2002 }
2003
2004 if (!lookup.max_speed_hz)
2005 return AE_OK;
2006
2007 spi = spi_alloc_device(ctlr);
2008 if (!spi) {
2009 dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
2010 dev_name(&adev->dev));
2011 return AE_NO_MEMORY;
2012 }
2013
2014 ACPI_COMPANION_SET(&spi->dev, adev);
2015 spi->max_speed_hz = lookup.max_speed_hz;
2016 spi->mode = lookup.mode;
2017 spi->irq = lookup.irq;
2018 spi->bits_per_word = lookup.bits_per_word;
2019 spi->chip_select = lookup.chip_select;
2020
2021 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2022 sizeof(spi->modalias));
2023
2024 if (spi->irq < 0)
2025 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2026
2027 acpi_device_set_enumerated(adev);
2028
2029 adev->power.flags.ignore_parent = true;
2030 if (spi_add_device(spi)) {
2031 adev->power.flags.ignore_parent = false;
2032 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2033 dev_name(&adev->dev));
2034 spi_dev_put(spi);
2035 }
2036
2037 return AE_OK;
2038 }
2039
acpi_spi_add_device(acpi_handle handle,u32 level,void * data,void ** return_value)2040 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2041 void *data, void **return_value)
2042 {
2043 struct spi_controller *ctlr = data;
2044 struct acpi_device *adev;
2045
2046 if (acpi_bus_get_device(handle, &adev))
2047 return AE_OK;
2048
2049 return acpi_register_spi_device(ctlr, adev);
2050 }
2051
2052 #define SPI_ACPI_ENUMERATE_MAX_DEPTH 32
2053
acpi_register_spi_devices(struct spi_controller * ctlr)2054 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2055 {
2056 acpi_status status;
2057 acpi_handle handle;
2058
2059 handle = ACPI_HANDLE(ctlr->dev.parent);
2060 if (!handle)
2061 return;
2062
2063 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2064 SPI_ACPI_ENUMERATE_MAX_DEPTH,
2065 acpi_spi_add_device, NULL, ctlr, NULL);
2066 if (ACPI_FAILURE(status))
2067 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2068 }
2069 #else
acpi_register_spi_devices(struct spi_controller * ctlr)2070 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2071 #endif /* CONFIG_ACPI */
2072
spi_controller_release(struct device * dev)2073 static void spi_controller_release(struct device *dev)
2074 {
2075 struct spi_controller *ctlr;
2076
2077 ctlr = container_of(dev, struct spi_controller, dev);
2078 kfree(ctlr);
2079 }
2080
2081 static struct class spi_master_class = {
2082 .name = "spi_master",
2083 .owner = THIS_MODULE,
2084 .dev_release = spi_controller_release,
2085 .dev_groups = spi_master_groups,
2086 };
2087
2088 #ifdef CONFIG_SPI_SLAVE
2089 /**
2090 * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2091 * controller
2092 * @spi: device used for the current transfer
2093 */
spi_slave_abort(struct spi_device * spi)2094 int spi_slave_abort(struct spi_device *spi)
2095 {
2096 struct spi_controller *ctlr = spi->controller;
2097
2098 if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2099 return ctlr->slave_abort(ctlr);
2100
2101 return -ENOTSUPP;
2102 }
2103 EXPORT_SYMBOL_GPL(spi_slave_abort);
2104
match_true(struct device * dev,void * data)2105 static int match_true(struct device *dev, void *data)
2106 {
2107 return 1;
2108 }
2109
slave_show(struct device * dev,struct device_attribute * attr,char * buf)2110 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2111 char *buf)
2112 {
2113 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2114 dev);
2115 struct device *child;
2116
2117 child = device_find_child(&ctlr->dev, NULL, match_true);
2118 return sprintf(buf, "%s\n",
2119 child ? to_spi_device(child)->modalias : NULL);
2120 }
2121
slave_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2122 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2123 const char *buf, size_t count)
2124 {
2125 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2126 dev);
2127 struct spi_device *spi;
2128 struct device *child;
2129 char name[32];
2130 int rc;
2131
2132 rc = sscanf(buf, "%31s", name);
2133 if (rc != 1 || !name[0])
2134 return -EINVAL;
2135
2136 child = device_find_child(&ctlr->dev, NULL, match_true);
2137 if (child) {
2138 /* Remove registered slave */
2139 device_unregister(child);
2140 put_device(child);
2141 }
2142
2143 if (strcmp(name, "(null)")) {
2144 /* Register new slave */
2145 spi = spi_alloc_device(ctlr);
2146 if (!spi)
2147 return -ENOMEM;
2148
2149 strlcpy(spi->modalias, name, sizeof(spi->modalias));
2150
2151 rc = spi_add_device(spi);
2152 if (rc) {
2153 spi_dev_put(spi);
2154 return rc;
2155 }
2156 }
2157
2158 return count;
2159 }
2160
2161 static DEVICE_ATTR_RW(slave);
2162
2163 static struct attribute *spi_slave_attrs[] = {
2164 &dev_attr_slave.attr,
2165 NULL,
2166 };
2167
2168 static const struct attribute_group spi_slave_group = {
2169 .attrs = spi_slave_attrs,
2170 };
2171
2172 static const struct attribute_group *spi_slave_groups[] = {
2173 &spi_controller_statistics_group,
2174 &spi_slave_group,
2175 NULL,
2176 };
2177
2178 static struct class spi_slave_class = {
2179 .name = "spi_slave",
2180 .owner = THIS_MODULE,
2181 .dev_release = spi_controller_release,
2182 .dev_groups = spi_slave_groups,
2183 };
2184 #else
2185 extern struct class spi_slave_class; /* dummy */
2186 #endif
2187
2188 /**
2189 * __spi_alloc_controller - allocate an SPI master or slave controller
2190 * @dev: the controller, possibly using the platform_bus
2191 * @size: how much zeroed driver-private data to allocate; the pointer to this
2192 * memory is in the driver_data field of the returned device, accessible
2193 * with spi_controller_get_devdata(); the memory is cacheline aligned;
2194 * drivers granting DMA access to portions of their private data need to
2195 * round up @size using ALIGN(size, dma_get_cache_alignment()).
2196 * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2197 * slave (true) controller
2198 * Context: can sleep
2199 *
2200 * This call is used only by SPI controller drivers, which are the
2201 * only ones directly touching chip registers. It's how they allocate
2202 * an spi_controller structure, prior to calling spi_register_controller().
2203 *
2204 * This must be called from context that can sleep.
2205 *
2206 * The caller is responsible for assigning the bus number and initializing the
2207 * controller's methods before calling spi_register_controller(); and (after
2208 * errors adding the device) calling spi_controller_put() to prevent a memory
2209 * leak.
2210 *
2211 * Return: the SPI controller structure on success, else NULL.
2212 */
__spi_alloc_controller(struct device * dev,unsigned int size,bool slave)2213 struct spi_controller *__spi_alloc_controller(struct device *dev,
2214 unsigned int size, bool slave)
2215 {
2216 struct spi_controller *ctlr;
2217 size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
2218
2219 if (!dev)
2220 return NULL;
2221
2222 ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
2223 if (!ctlr)
2224 return NULL;
2225
2226 device_initialize(&ctlr->dev);
2227 ctlr->bus_num = -1;
2228 ctlr->num_chipselect = 1;
2229 ctlr->slave = slave;
2230 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2231 ctlr->dev.class = &spi_slave_class;
2232 else
2233 ctlr->dev.class = &spi_master_class;
2234 ctlr->dev.parent = dev;
2235 pm_suspend_ignore_children(&ctlr->dev, true);
2236 spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
2237
2238 return ctlr;
2239 }
2240 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2241
2242 #ifdef CONFIG_OF
of_spi_get_gpio_numbers(struct spi_controller * ctlr)2243 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2244 {
2245 int nb, i, *cs;
2246 struct device_node *np = ctlr->dev.of_node;
2247
2248 if (!np)
2249 return 0;
2250
2251 nb = of_gpio_named_count(np, "cs-gpios");
2252 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2253
2254 /* Return error only for an incorrectly formed cs-gpios property */
2255 if (nb == 0 || nb == -ENOENT)
2256 return 0;
2257 else if (nb < 0)
2258 return nb;
2259
2260 cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int),
2261 GFP_KERNEL);
2262 ctlr->cs_gpios = cs;
2263
2264 if (!ctlr->cs_gpios)
2265 return -ENOMEM;
2266
2267 for (i = 0; i < ctlr->num_chipselect; i++)
2268 cs[i] = -ENOENT;
2269
2270 for (i = 0; i < nb; i++)
2271 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2272
2273 return 0;
2274 }
2275 #else
of_spi_get_gpio_numbers(struct spi_controller * ctlr)2276 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2277 {
2278 return 0;
2279 }
2280 #endif
2281
2282 /**
2283 * spi_get_gpio_descs() - grab chip select GPIOs for the master
2284 * @ctlr: The SPI master to grab GPIO descriptors for
2285 */
spi_get_gpio_descs(struct spi_controller * ctlr)2286 static int spi_get_gpio_descs(struct spi_controller *ctlr)
2287 {
2288 int nb, i;
2289 struct gpio_desc **cs;
2290 struct device *dev = &ctlr->dev;
2291
2292 nb = gpiod_count(dev, "cs");
2293 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2294
2295 /* No GPIOs at all is fine, else return the error */
2296 if (nb == 0 || nb == -ENOENT)
2297 return 0;
2298 else if (nb < 0)
2299 return nb;
2300
2301 cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
2302 GFP_KERNEL);
2303 if (!cs)
2304 return -ENOMEM;
2305 ctlr->cs_gpiods = cs;
2306
2307 for (i = 0; i < nb; i++) {
2308 /*
2309 * Most chipselects are active low, the inverted
2310 * semantics are handled by special quirks in gpiolib,
2311 * so initializing them GPIOD_OUT_LOW here means
2312 * "unasserted", in most cases this will drive the physical
2313 * line high.
2314 */
2315 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
2316 GPIOD_OUT_LOW);
2317 if (IS_ERR(cs[i]))
2318 return PTR_ERR(cs[i]);
2319
2320 if (cs[i]) {
2321 /*
2322 * If we find a CS GPIO, name it after the device and
2323 * chip select line.
2324 */
2325 char *gpioname;
2326
2327 gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
2328 dev_name(dev), i);
2329 if (!gpioname)
2330 return -ENOMEM;
2331 gpiod_set_consumer_name(cs[i], gpioname);
2332 }
2333 }
2334
2335 return 0;
2336 }
2337
spi_controller_check_ops(struct spi_controller * ctlr)2338 static int spi_controller_check_ops(struct spi_controller *ctlr)
2339 {
2340 /*
2341 * The controller may implement only the high-level SPI-memory like
2342 * operations if it does not support regular SPI transfers, and this is
2343 * valid use case.
2344 * If ->mem_ops is NULL, we request that at least one of the
2345 * ->transfer_xxx() method be implemented.
2346 */
2347 if (ctlr->mem_ops) {
2348 if (!ctlr->mem_ops->exec_op)
2349 return -EINVAL;
2350 } else if (!ctlr->transfer && !ctlr->transfer_one &&
2351 !ctlr->transfer_one_message) {
2352 return -EINVAL;
2353 }
2354
2355 return 0;
2356 }
2357
2358 /**
2359 * spi_register_controller - register SPI master or slave controller
2360 * @ctlr: initialized master, originally from spi_alloc_master() or
2361 * spi_alloc_slave()
2362 * Context: can sleep
2363 *
2364 * SPI controllers connect to their drivers using some non-SPI bus,
2365 * such as the platform bus. The final stage of probe() in that code
2366 * includes calling spi_register_controller() to hook up to this SPI bus glue.
2367 *
2368 * SPI controllers use board specific (often SOC specific) bus numbers,
2369 * and board-specific addressing for SPI devices combines those numbers
2370 * with chip select numbers. Since SPI does not directly support dynamic
2371 * device identification, boards need configuration tables telling which
2372 * chip is at which address.
2373 *
2374 * This must be called from context that can sleep. It returns zero on
2375 * success, else a negative error code (dropping the controller's refcount).
2376 * After a successful return, the caller is responsible for calling
2377 * spi_unregister_controller().
2378 *
2379 * Return: zero on success, else a negative error code.
2380 */
spi_register_controller(struct spi_controller * ctlr)2381 int spi_register_controller(struct spi_controller *ctlr)
2382 {
2383 struct device *dev = ctlr->dev.parent;
2384 struct boardinfo *bi;
2385 int status;
2386 int id, first_dynamic;
2387
2388 if (!dev)
2389 return -ENODEV;
2390
2391 /*
2392 * Make sure all necessary hooks are implemented before registering
2393 * the SPI controller.
2394 */
2395 status = spi_controller_check_ops(ctlr);
2396 if (status)
2397 return status;
2398
2399 if (ctlr->bus_num >= 0) {
2400 /* devices with a fixed bus num must check-in with the num */
2401 mutex_lock(&board_lock);
2402 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2403 ctlr->bus_num + 1, GFP_KERNEL);
2404 mutex_unlock(&board_lock);
2405 if (WARN(id < 0, "couldn't get idr"))
2406 return id == -ENOSPC ? -EBUSY : id;
2407 ctlr->bus_num = id;
2408 } else if (ctlr->dev.of_node) {
2409 /* allocate dynamic bus number using Linux idr */
2410 id = of_alias_get_id(ctlr->dev.of_node, "spi");
2411 if (id >= 0) {
2412 ctlr->bus_num = id;
2413 mutex_lock(&board_lock);
2414 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2415 ctlr->bus_num + 1, GFP_KERNEL);
2416 mutex_unlock(&board_lock);
2417 if (WARN(id < 0, "couldn't get idr"))
2418 return id == -ENOSPC ? -EBUSY : id;
2419 }
2420 }
2421 if (ctlr->bus_num < 0) {
2422 first_dynamic = of_alias_get_highest_id("spi");
2423 if (first_dynamic < 0)
2424 first_dynamic = 0;
2425 else
2426 first_dynamic++;
2427
2428 mutex_lock(&board_lock);
2429 id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2430 0, GFP_KERNEL);
2431 mutex_unlock(&board_lock);
2432 if (WARN(id < 0, "couldn't get idr"))
2433 return id;
2434 ctlr->bus_num = id;
2435 }
2436 INIT_LIST_HEAD(&ctlr->queue);
2437 spin_lock_init(&ctlr->queue_lock);
2438 spin_lock_init(&ctlr->bus_lock_spinlock);
2439 mutex_init(&ctlr->bus_lock_mutex);
2440 mutex_init(&ctlr->io_mutex);
2441 ctlr->bus_lock_flag = 0;
2442 init_completion(&ctlr->xfer_completion);
2443 if (!ctlr->max_dma_len)
2444 ctlr->max_dma_len = INT_MAX;
2445
2446 /* register the device, then userspace will see it.
2447 * registration fails if the bus ID is in use.
2448 */
2449 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2450
2451 if (!spi_controller_is_slave(ctlr)) {
2452 if (ctlr->use_gpio_descriptors) {
2453 status = spi_get_gpio_descs(ctlr);
2454 if (status)
2455 return status;
2456 /*
2457 * A controller using GPIO descriptors always
2458 * supports SPI_CS_HIGH if need be.
2459 */
2460 ctlr->mode_bits |= SPI_CS_HIGH;
2461 } else {
2462 /* Legacy code path for GPIOs from DT */
2463 status = of_spi_get_gpio_numbers(ctlr);
2464 if (status)
2465 return status;
2466 }
2467 }
2468
2469 /*
2470 * Even if it's just one always-selected device, there must
2471 * be at least one chipselect.
2472 */
2473 if (!ctlr->num_chipselect)
2474 return -EINVAL;
2475
2476 status = device_add(&ctlr->dev);
2477 if (status < 0) {
2478 /* free bus id */
2479 mutex_lock(&board_lock);
2480 idr_remove(&spi_master_idr, ctlr->bus_num);
2481 mutex_unlock(&board_lock);
2482 goto done;
2483 }
2484 dev_dbg(dev, "registered %s %s\n",
2485 spi_controller_is_slave(ctlr) ? "slave" : "master",
2486 dev_name(&ctlr->dev));
2487
2488 /*
2489 * If we're using a queued driver, start the queue. Note that we don't
2490 * need the queueing logic if the driver is only supporting high-level
2491 * memory operations.
2492 */
2493 if (ctlr->transfer) {
2494 dev_info(dev, "controller is unqueued, this is deprecated\n");
2495 } else if (ctlr->transfer_one || ctlr->transfer_one_message) {
2496 status = spi_controller_initialize_queue(ctlr);
2497 if (status) {
2498 device_del(&ctlr->dev);
2499 /* free bus id */
2500 mutex_lock(&board_lock);
2501 idr_remove(&spi_master_idr, ctlr->bus_num);
2502 mutex_unlock(&board_lock);
2503 goto done;
2504 }
2505 }
2506 /* add statistics */
2507 spin_lock_init(&ctlr->statistics.lock);
2508
2509 mutex_lock(&board_lock);
2510 list_add_tail(&ctlr->list, &spi_controller_list);
2511 list_for_each_entry(bi, &board_list, list)
2512 spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2513 mutex_unlock(&board_lock);
2514
2515 /* Register devices from the device tree and ACPI */
2516 of_register_spi_devices(ctlr);
2517 acpi_register_spi_devices(ctlr);
2518 done:
2519 return status;
2520 }
2521 EXPORT_SYMBOL_GPL(spi_register_controller);
2522
devm_spi_unregister(struct device * dev,void * res)2523 static void devm_spi_unregister(struct device *dev, void *res)
2524 {
2525 spi_unregister_controller(*(struct spi_controller **)res);
2526 }
2527
2528 /**
2529 * devm_spi_register_controller - register managed SPI master or slave
2530 * controller
2531 * @dev: device managing SPI controller
2532 * @ctlr: initialized controller, originally from spi_alloc_master() or
2533 * spi_alloc_slave()
2534 * Context: can sleep
2535 *
2536 * Register a SPI device as with spi_register_controller() which will
2537 * automatically be unregistered and freed.
2538 *
2539 * Return: zero on success, else a negative error code.
2540 */
devm_spi_register_controller(struct device * dev,struct spi_controller * ctlr)2541 int devm_spi_register_controller(struct device *dev,
2542 struct spi_controller *ctlr)
2543 {
2544 struct spi_controller **ptr;
2545 int ret;
2546
2547 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
2548 if (!ptr)
2549 return -ENOMEM;
2550
2551 ret = spi_register_controller(ctlr);
2552 if (!ret) {
2553 *ptr = ctlr;
2554 devres_add(dev, ptr);
2555 } else {
2556 devres_free(ptr);
2557 }
2558
2559 return ret;
2560 }
2561 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
2562
__unregister(struct device * dev,void * null)2563 static int __unregister(struct device *dev, void *null)
2564 {
2565 spi_unregister_device(to_spi_device(dev));
2566 return 0;
2567 }
2568
2569 /**
2570 * spi_unregister_controller - unregister SPI master or slave controller
2571 * @ctlr: the controller being unregistered
2572 * Context: can sleep
2573 *
2574 * This call is used only by SPI controller drivers, which are the
2575 * only ones directly touching chip registers.
2576 *
2577 * This must be called from context that can sleep.
2578 *
2579 * Note that this function also drops a reference to the controller.
2580 */
spi_unregister_controller(struct spi_controller * ctlr)2581 void spi_unregister_controller(struct spi_controller *ctlr)
2582 {
2583 struct spi_controller *found;
2584 int id = ctlr->bus_num;
2585
2586 /* First make sure that this controller was ever added */
2587 mutex_lock(&board_lock);
2588 found = idr_find(&spi_master_idr, id);
2589 mutex_unlock(&board_lock);
2590 if (ctlr->queued) {
2591 if (spi_destroy_queue(ctlr))
2592 dev_err(&ctlr->dev, "queue remove failed\n");
2593 }
2594 mutex_lock(&board_lock);
2595 list_del(&ctlr->list);
2596 mutex_unlock(&board_lock);
2597
2598 device_for_each_child(&ctlr->dev, NULL, __unregister);
2599 device_unregister(&ctlr->dev);
2600 /* free bus id */
2601 mutex_lock(&board_lock);
2602 if (found == ctlr)
2603 idr_remove(&spi_master_idr, id);
2604 mutex_unlock(&board_lock);
2605 }
2606 EXPORT_SYMBOL_GPL(spi_unregister_controller);
2607
spi_controller_suspend(struct spi_controller * ctlr)2608 int spi_controller_suspend(struct spi_controller *ctlr)
2609 {
2610 int ret;
2611
2612 /* Basically no-ops for non-queued controllers */
2613 if (!ctlr->queued)
2614 return 0;
2615
2616 ret = spi_stop_queue(ctlr);
2617 if (ret)
2618 dev_err(&ctlr->dev, "queue stop failed\n");
2619
2620 return ret;
2621 }
2622 EXPORT_SYMBOL_GPL(spi_controller_suspend);
2623
spi_controller_resume(struct spi_controller * ctlr)2624 int spi_controller_resume(struct spi_controller *ctlr)
2625 {
2626 int ret;
2627
2628 if (!ctlr->queued)
2629 return 0;
2630
2631 ret = spi_start_queue(ctlr);
2632 if (ret)
2633 dev_err(&ctlr->dev, "queue restart failed\n");
2634
2635 return ret;
2636 }
2637 EXPORT_SYMBOL_GPL(spi_controller_resume);
2638
__spi_controller_match(struct device * dev,const void * data)2639 static int __spi_controller_match(struct device *dev, const void *data)
2640 {
2641 struct spi_controller *ctlr;
2642 const u16 *bus_num = data;
2643
2644 ctlr = container_of(dev, struct spi_controller, dev);
2645 return ctlr->bus_num == *bus_num;
2646 }
2647
2648 /**
2649 * spi_busnum_to_master - look up master associated with bus_num
2650 * @bus_num: the master's bus number
2651 * Context: can sleep
2652 *
2653 * This call may be used with devices that are registered after
2654 * arch init time. It returns a refcounted pointer to the relevant
2655 * spi_controller (which the caller must release), or NULL if there is
2656 * no such master registered.
2657 *
2658 * Return: the SPI master structure on success, else NULL.
2659 */
spi_busnum_to_master(u16 bus_num)2660 struct spi_controller *spi_busnum_to_master(u16 bus_num)
2661 {
2662 struct device *dev;
2663 struct spi_controller *ctlr = NULL;
2664
2665 dev = class_find_device(&spi_master_class, NULL, &bus_num,
2666 __spi_controller_match);
2667 if (dev)
2668 ctlr = container_of(dev, struct spi_controller, dev);
2669 /* reference got in class_find_device */
2670 return ctlr;
2671 }
2672 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2673
2674 /*-------------------------------------------------------------------------*/
2675
2676 /* Core methods for SPI resource management */
2677
2678 /**
2679 * spi_res_alloc - allocate a spi resource that is life-cycle managed
2680 * during the processing of a spi_message while using
2681 * spi_transfer_one
2682 * @spi: the spi device for which we allocate memory
2683 * @release: the release code to execute for this resource
2684 * @size: size to alloc and return
2685 * @gfp: GFP allocation flags
2686 *
2687 * Return: the pointer to the allocated data
2688 *
2689 * This may get enhanced in the future to allocate from a memory pool
2690 * of the @spi_device or @spi_controller to avoid repeated allocations.
2691 */
spi_res_alloc(struct spi_device * spi,spi_res_release_t release,size_t size,gfp_t gfp)2692 void *spi_res_alloc(struct spi_device *spi,
2693 spi_res_release_t release,
2694 size_t size, gfp_t gfp)
2695 {
2696 struct spi_res *sres;
2697
2698 sres = kzalloc(sizeof(*sres) + size, gfp);
2699 if (!sres)
2700 return NULL;
2701
2702 INIT_LIST_HEAD(&sres->entry);
2703 sres->release = release;
2704
2705 return sres->data;
2706 }
2707 EXPORT_SYMBOL_GPL(spi_res_alloc);
2708
2709 /**
2710 * spi_res_free - free an spi resource
2711 * @res: pointer to the custom data of a resource
2712 *
2713 */
spi_res_free(void * res)2714 void spi_res_free(void *res)
2715 {
2716 struct spi_res *sres = container_of(res, struct spi_res, data);
2717
2718 if (!res)
2719 return;
2720
2721 WARN_ON(!list_empty(&sres->entry));
2722 kfree(sres);
2723 }
2724 EXPORT_SYMBOL_GPL(spi_res_free);
2725
2726 /**
2727 * spi_res_add - add a spi_res to the spi_message
2728 * @message: the spi message
2729 * @res: the spi_resource
2730 */
spi_res_add(struct spi_message * message,void * res)2731 void spi_res_add(struct spi_message *message, void *res)
2732 {
2733 struct spi_res *sres = container_of(res, struct spi_res, data);
2734
2735 WARN_ON(!list_empty(&sres->entry));
2736 list_add_tail(&sres->entry, &message->resources);
2737 }
2738 EXPORT_SYMBOL_GPL(spi_res_add);
2739
2740 /**
2741 * spi_res_release - release all spi resources for this message
2742 * @ctlr: the @spi_controller
2743 * @message: the @spi_message
2744 */
spi_res_release(struct spi_controller * ctlr,struct spi_message * message)2745 void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
2746 {
2747 struct spi_res *res, *tmp;
2748
2749 list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
2750 if (res->release)
2751 res->release(ctlr, message, res->data);
2752
2753 list_del(&res->entry);
2754
2755 kfree(res);
2756 }
2757 }
2758 EXPORT_SYMBOL_GPL(spi_res_release);
2759
2760 /*-------------------------------------------------------------------------*/
2761
2762 /* Core methods for spi_message alterations */
2763
__spi_replace_transfers_release(struct spi_controller * ctlr,struct spi_message * msg,void * res)2764 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
2765 struct spi_message *msg,
2766 void *res)
2767 {
2768 struct spi_replaced_transfers *rxfer = res;
2769 size_t i;
2770
2771 /* call extra callback if requested */
2772 if (rxfer->release)
2773 rxfer->release(ctlr, msg, res);
2774
2775 /* insert replaced transfers back into the message */
2776 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2777
2778 /* remove the formerly inserted entries */
2779 for (i = 0; i < rxfer->inserted; i++)
2780 list_del(&rxfer->inserted_transfers[i].transfer_list);
2781 }
2782
2783 /**
2784 * spi_replace_transfers - replace transfers with several transfers
2785 * and register change with spi_message.resources
2786 * @msg: the spi_message we work upon
2787 * @xfer_first: the first spi_transfer we want to replace
2788 * @remove: number of transfers to remove
2789 * @insert: the number of transfers we want to insert instead
2790 * @release: extra release code necessary in some circumstances
2791 * @extradatasize: extra data to allocate (with alignment guarantees
2792 * of struct @spi_transfer)
2793 * @gfp: gfp flags
2794 *
2795 * Returns: pointer to @spi_replaced_transfers,
2796 * PTR_ERR(...) in case of errors.
2797 */
spi_replace_transfers(struct spi_message * msg,struct spi_transfer * xfer_first,size_t remove,size_t insert,spi_replaced_release_t release,size_t extradatasize,gfp_t gfp)2798 struct spi_replaced_transfers *spi_replace_transfers(
2799 struct spi_message *msg,
2800 struct spi_transfer *xfer_first,
2801 size_t remove,
2802 size_t insert,
2803 spi_replaced_release_t release,
2804 size_t extradatasize,
2805 gfp_t gfp)
2806 {
2807 struct spi_replaced_transfers *rxfer;
2808 struct spi_transfer *xfer;
2809 size_t i;
2810
2811 /* allocate the structure using spi_res */
2812 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
2813 struct_size(rxfer, inserted_transfers, insert)
2814 + extradatasize,
2815 gfp);
2816 if (!rxfer)
2817 return ERR_PTR(-ENOMEM);
2818
2819 /* the release code to invoke before running the generic release */
2820 rxfer->release = release;
2821
2822 /* assign extradata */
2823 if (extradatasize)
2824 rxfer->extradata =
2825 &rxfer->inserted_transfers[insert];
2826
2827 /* init the replaced_transfers list */
2828 INIT_LIST_HEAD(&rxfer->replaced_transfers);
2829
2830 /* assign the list_entry after which we should reinsert
2831 * the @replaced_transfers - it may be spi_message.messages!
2832 */
2833 rxfer->replaced_after = xfer_first->transfer_list.prev;
2834
2835 /* remove the requested number of transfers */
2836 for (i = 0; i < remove; i++) {
2837 /* if the entry after replaced_after it is msg->transfers
2838 * then we have been requested to remove more transfers
2839 * than are in the list
2840 */
2841 if (rxfer->replaced_after->next == &msg->transfers) {
2842 dev_err(&msg->spi->dev,
2843 "requested to remove more spi_transfers than are available\n");
2844 /* insert replaced transfers back into the message */
2845 list_splice(&rxfer->replaced_transfers,
2846 rxfer->replaced_after);
2847
2848 /* free the spi_replace_transfer structure */
2849 spi_res_free(rxfer);
2850
2851 /* and return with an error */
2852 return ERR_PTR(-EINVAL);
2853 }
2854
2855 /* remove the entry after replaced_after from list of
2856 * transfers and add it to list of replaced_transfers
2857 */
2858 list_move_tail(rxfer->replaced_after->next,
2859 &rxfer->replaced_transfers);
2860 }
2861
2862 /* create copy of the given xfer with identical settings
2863 * based on the first transfer to get removed
2864 */
2865 for (i = 0; i < insert; i++) {
2866 /* we need to run in reverse order */
2867 xfer = &rxfer->inserted_transfers[insert - 1 - i];
2868
2869 /* copy all spi_transfer data */
2870 memcpy(xfer, xfer_first, sizeof(*xfer));
2871
2872 /* add to list */
2873 list_add(&xfer->transfer_list, rxfer->replaced_after);
2874
2875 /* clear cs_change and delay_usecs for all but the last */
2876 if (i) {
2877 xfer->cs_change = false;
2878 xfer->delay_usecs = 0;
2879 }
2880 }
2881
2882 /* set up inserted */
2883 rxfer->inserted = insert;
2884
2885 /* and register it with spi_res/spi_message */
2886 spi_res_add(msg, rxfer);
2887
2888 return rxfer;
2889 }
2890 EXPORT_SYMBOL_GPL(spi_replace_transfers);
2891
__spi_split_transfer_maxsize(struct spi_controller * ctlr,struct spi_message * msg,struct spi_transfer ** xferp,size_t maxsize,gfp_t gfp)2892 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
2893 struct spi_message *msg,
2894 struct spi_transfer **xferp,
2895 size_t maxsize,
2896 gfp_t gfp)
2897 {
2898 struct spi_transfer *xfer = *xferp, *xfers;
2899 struct spi_replaced_transfers *srt;
2900 size_t offset;
2901 size_t count, i;
2902
2903 /* calculate how many we have to replace */
2904 count = DIV_ROUND_UP(xfer->len, maxsize);
2905
2906 /* create replacement */
2907 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
2908 if (IS_ERR(srt))
2909 return PTR_ERR(srt);
2910 xfers = srt->inserted_transfers;
2911
2912 /* now handle each of those newly inserted spi_transfers
2913 * note that the replacements spi_transfers all are preset
2914 * to the same values as *xferp, so tx_buf, rx_buf and len
2915 * are all identical (as well as most others)
2916 * so we just have to fix up len and the pointers.
2917 *
2918 * this also includes support for the depreciated
2919 * spi_message.is_dma_mapped interface
2920 */
2921
2922 /* the first transfer just needs the length modified, so we
2923 * run it outside the loop
2924 */
2925 xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
2926
2927 /* all the others need rx_buf/tx_buf also set */
2928 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
2929 /* update rx_buf, tx_buf and dma */
2930 if (xfers[i].rx_buf)
2931 xfers[i].rx_buf += offset;
2932 if (xfers[i].rx_dma)
2933 xfers[i].rx_dma += offset;
2934 if (xfers[i].tx_buf)
2935 xfers[i].tx_buf += offset;
2936 if (xfers[i].tx_dma)
2937 xfers[i].tx_dma += offset;
2938
2939 /* update length */
2940 xfers[i].len = min(maxsize, xfers[i].len - offset);
2941 }
2942
2943 /* we set up xferp to the last entry we have inserted,
2944 * so that we skip those already split transfers
2945 */
2946 *xferp = &xfers[count - 1];
2947
2948 /* increment statistics counters */
2949 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
2950 transfers_split_maxsize);
2951 SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
2952 transfers_split_maxsize);
2953
2954 return 0;
2955 }
2956
2957 /**
2958 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
2959 * when an individual transfer exceeds a
2960 * certain size
2961 * @ctlr: the @spi_controller for this transfer
2962 * @msg: the @spi_message to transform
2963 * @maxsize: the maximum when to apply this
2964 * @gfp: GFP allocation flags
2965 *
2966 * Return: status of transformation
2967 */
spi_split_transfers_maxsize(struct spi_controller * ctlr,struct spi_message * msg,size_t maxsize,gfp_t gfp)2968 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
2969 struct spi_message *msg,
2970 size_t maxsize,
2971 gfp_t gfp)
2972 {
2973 struct spi_transfer *xfer;
2974 int ret;
2975
2976 /* iterate over the transfer_list,
2977 * but note that xfer is advanced to the last transfer inserted
2978 * to avoid checking sizes again unnecessarily (also xfer does
2979 * potentiall belong to a different list by the time the
2980 * replacement has happened
2981 */
2982 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
2983 if (xfer->len > maxsize) {
2984 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
2985 maxsize, gfp);
2986 if (ret)
2987 return ret;
2988 }
2989 }
2990
2991 return 0;
2992 }
2993 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
2994
2995 /*-------------------------------------------------------------------------*/
2996
2997 /* Core methods for SPI controller protocol drivers. Some of the
2998 * other core methods are currently defined as inline functions.
2999 */
3000
__spi_validate_bits_per_word(struct spi_controller * ctlr,u8 bits_per_word)3001 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3002 u8 bits_per_word)
3003 {
3004 if (ctlr->bits_per_word_mask) {
3005 /* Only 32 bits fit in the mask */
3006 if (bits_per_word > 32)
3007 return -EINVAL;
3008 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3009 return -EINVAL;
3010 }
3011
3012 return 0;
3013 }
3014
3015 /**
3016 * spi_setup - setup SPI mode and clock rate
3017 * @spi: the device whose settings are being modified
3018 * Context: can sleep, and no requests are queued to the device
3019 *
3020 * SPI protocol drivers may need to update the transfer mode if the
3021 * device doesn't work with its default. They may likewise need
3022 * to update clock rates or word sizes from initial values. This function
3023 * changes those settings, and must be called from a context that can sleep.
3024 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3025 * effect the next time the device is selected and data is transferred to
3026 * or from it. When this function returns, the spi device is deselected.
3027 *
3028 * Note that this call will fail if the protocol driver specifies an option
3029 * that the underlying controller or its driver does not support. For
3030 * example, not all hardware supports wire transfers using nine bit words,
3031 * LSB-first wire encoding, or active-high chipselects.
3032 *
3033 * Return: zero on success, else a negative error code.
3034 */
spi_setup(struct spi_device * spi)3035 int spi_setup(struct spi_device *spi)
3036 {
3037 unsigned bad_bits, ugly_bits;
3038 int status;
3039
3040 /* check mode to prevent that DUAL and QUAD set at the same time
3041 */
3042 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
3043 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
3044 dev_err(&spi->dev,
3045 "setup: can not select dual and quad at the same time\n");
3046 return -EINVAL;
3047 }
3048 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
3049 */
3050 if ((spi->mode & SPI_3WIRE) && (spi->mode &
3051 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3052 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3053 return -EINVAL;
3054 /* help drivers fail *cleanly* when they need options
3055 * that aren't supported with their current controller
3056 * SPI_CS_WORD has a fallback software implementation,
3057 * so it is ignored here.
3058 */
3059 bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD);
3060 /* nothing prevents from working with active-high CS in case if it
3061 * is driven by GPIO.
3062 */
3063 if (gpio_is_valid(spi->cs_gpio))
3064 bad_bits &= ~SPI_CS_HIGH;
3065 ugly_bits = bad_bits &
3066 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3067 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3068 if (ugly_bits) {
3069 dev_warn(&spi->dev,
3070 "setup: ignoring unsupported mode bits %x\n",
3071 ugly_bits);
3072 spi->mode &= ~ugly_bits;
3073 bad_bits &= ~ugly_bits;
3074 }
3075 if (bad_bits) {
3076 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3077 bad_bits);
3078 return -EINVAL;
3079 }
3080
3081 if (!spi->bits_per_word)
3082 spi->bits_per_word = 8;
3083
3084 status = __spi_validate_bits_per_word(spi->controller,
3085 spi->bits_per_word);
3086 if (status)
3087 return status;
3088
3089 if (!spi->max_speed_hz)
3090 spi->max_speed_hz = spi->controller->max_speed_hz;
3091
3092 if (spi->controller->setup)
3093 status = spi->controller->setup(spi);
3094
3095 spi_set_cs(spi, false);
3096
3097 if (spi->rt && !spi->controller->rt) {
3098 spi->controller->rt = true;
3099 spi_set_thread_rt(spi->controller);
3100 }
3101
3102 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3103 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
3104 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3105 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3106 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
3107 (spi->mode & SPI_LOOP) ? "loopback, " : "",
3108 spi->bits_per_word, spi->max_speed_hz,
3109 status);
3110
3111 return status;
3112 }
3113 EXPORT_SYMBOL_GPL(spi_setup);
3114
3115 /**
3116 * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3117 * @spi: the device that requires specific CS timing configuration
3118 * @setup: CS setup time in terms of clock count
3119 * @hold: CS hold time in terms of clock count
3120 * @inactive_dly: CS inactive delay between transfers in terms of clock count
3121 */
spi_set_cs_timing(struct spi_device * spi,u8 setup,u8 hold,u8 inactive_dly)3122 void spi_set_cs_timing(struct spi_device *spi, u8 setup, u8 hold,
3123 u8 inactive_dly)
3124 {
3125 if (spi->controller->set_cs_timing)
3126 spi->controller->set_cs_timing(spi, setup, hold, inactive_dly);
3127 }
3128 EXPORT_SYMBOL_GPL(spi_set_cs_timing);
3129
__spi_validate(struct spi_device * spi,struct spi_message * message)3130 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3131 {
3132 struct spi_controller *ctlr = spi->controller;
3133 struct spi_transfer *xfer;
3134 int w_size;
3135
3136 if (list_empty(&message->transfers))
3137 return -EINVAL;
3138
3139 /* If an SPI controller does not support toggling the CS line on each
3140 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3141 * for the CS line, we can emulate the CS-per-word hardware function by
3142 * splitting transfers into one-word transfers and ensuring that
3143 * cs_change is set for each transfer.
3144 */
3145 if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3146 spi->cs_gpiod ||
3147 gpio_is_valid(spi->cs_gpio))) {
3148 size_t maxsize;
3149 int ret;
3150
3151 maxsize = (spi->bits_per_word + 7) / 8;
3152
3153 /* spi_split_transfers_maxsize() requires message->spi */
3154 message->spi = spi;
3155
3156 ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3157 GFP_KERNEL);
3158 if (ret)
3159 return ret;
3160
3161 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3162 /* don't change cs_change on the last entry in the list */
3163 if (list_is_last(&xfer->transfer_list, &message->transfers))
3164 break;
3165 xfer->cs_change = 1;
3166 }
3167 }
3168
3169 /* Half-duplex links include original MicroWire, and ones with
3170 * only one data pin like SPI_3WIRE (switches direction) or where
3171 * either MOSI or MISO is missing. They can also be caused by
3172 * software limitations.
3173 */
3174 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3175 (spi->mode & SPI_3WIRE)) {
3176 unsigned flags = ctlr->flags;
3177
3178 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3179 if (xfer->rx_buf && xfer->tx_buf)
3180 return -EINVAL;
3181 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3182 return -EINVAL;
3183 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3184 return -EINVAL;
3185 }
3186 }
3187
3188 /**
3189 * Set transfer bits_per_word and max speed as spi device default if
3190 * it is not set for this transfer.
3191 * Set transfer tx_nbits and rx_nbits as single transfer default
3192 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3193 * Ensure transfer word_delay is at least as long as that required by
3194 * device itself.
3195 */
3196 message->frame_length = 0;
3197 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3198 xfer->effective_speed_hz = 0;
3199 message->frame_length += xfer->len;
3200 if (!xfer->bits_per_word)
3201 xfer->bits_per_word = spi->bits_per_word;
3202
3203 if (!xfer->speed_hz)
3204 xfer->speed_hz = spi->max_speed_hz;
3205
3206 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3207 xfer->speed_hz = ctlr->max_speed_hz;
3208
3209 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3210 return -EINVAL;
3211
3212 /*
3213 * SPI transfer length should be multiple of SPI word size
3214 * where SPI word size should be power-of-two multiple
3215 */
3216 if (xfer->bits_per_word <= 8)
3217 w_size = 1;
3218 else if (xfer->bits_per_word <= 16)
3219 w_size = 2;
3220 else
3221 w_size = 4;
3222
3223 /* No partial transfers accepted */
3224 if (xfer->len % w_size)
3225 return -EINVAL;
3226
3227 if (xfer->speed_hz && ctlr->min_speed_hz &&
3228 xfer->speed_hz < ctlr->min_speed_hz)
3229 return -EINVAL;
3230
3231 if (xfer->tx_buf && !xfer->tx_nbits)
3232 xfer->tx_nbits = SPI_NBITS_SINGLE;
3233 if (xfer->rx_buf && !xfer->rx_nbits)
3234 xfer->rx_nbits = SPI_NBITS_SINGLE;
3235 /* check transfer tx/rx_nbits:
3236 * 1. check the value matches one of single, dual and quad
3237 * 2. check tx/rx_nbits match the mode in spi_device
3238 */
3239 if (xfer->tx_buf) {
3240 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3241 xfer->tx_nbits != SPI_NBITS_DUAL &&
3242 xfer->tx_nbits != SPI_NBITS_QUAD)
3243 return -EINVAL;
3244 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3245 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3246 return -EINVAL;
3247 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3248 !(spi->mode & SPI_TX_QUAD))
3249 return -EINVAL;
3250 }
3251 /* check transfer rx_nbits */
3252 if (xfer->rx_buf) {
3253 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3254 xfer->rx_nbits != SPI_NBITS_DUAL &&
3255 xfer->rx_nbits != SPI_NBITS_QUAD)
3256 return -EINVAL;
3257 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3258 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3259 return -EINVAL;
3260 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3261 !(spi->mode & SPI_RX_QUAD))
3262 return -EINVAL;
3263 }
3264
3265 if (xfer->word_delay_usecs < spi->word_delay_usecs)
3266 xfer->word_delay_usecs = spi->word_delay_usecs;
3267 }
3268
3269 message->status = -EINPROGRESS;
3270
3271 return 0;
3272 }
3273
__spi_async(struct spi_device * spi,struct spi_message * message)3274 static int __spi_async(struct spi_device *spi, struct spi_message *message)
3275 {
3276 struct spi_controller *ctlr = spi->controller;
3277
3278 /*
3279 * Some controllers do not support doing regular SPI transfers. Return
3280 * ENOTSUPP when this is the case.
3281 */
3282 if (!ctlr->transfer)
3283 return -ENOTSUPP;
3284
3285 message->spi = spi;
3286
3287 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
3288 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
3289
3290 trace_spi_message_submit(message);
3291
3292 return ctlr->transfer(spi, message);
3293 }
3294
3295 /**
3296 * spi_async - asynchronous SPI transfer
3297 * @spi: device with which data will be exchanged
3298 * @message: describes the data transfers, including completion callback
3299 * Context: any (irqs may be blocked, etc)
3300 *
3301 * This call may be used in_irq and other contexts which can't sleep,
3302 * as well as from task contexts which can sleep.
3303 *
3304 * The completion callback is invoked in a context which can't sleep.
3305 * Before that invocation, the value of message->status is undefined.
3306 * When the callback is issued, message->status holds either zero (to
3307 * indicate complete success) or a negative error code. After that
3308 * callback returns, the driver which issued the transfer request may
3309 * deallocate the associated memory; it's no longer in use by any SPI
3310 * core or controller driver code.
3311 *
3312 * Note that although all messages to a spi_device are handled in
3313 * FIFO order, messages may go to different devices in other orders.
3314 * Some device might be higher priority, or have various "hard" access
3315 * time requirements, for example.
3316 *
3317 * On detection of any fault during the transfer, processing of
3318 * the entire message is aborted, and the device is deselected.
3319 * Until returning from the associated message completion callback,
3320 * no other spi_message queued to that device will be processed.
3321 * (This rule applies equally to all the synchronous transfer calls,
3322 * which are wrappers around this core asynchronous primitive.)
3323 *
3324 * Return: zero on success, else a negative error code.
3325 */
spi_async(struct spi_device * spi,struct spi_message * message)3326 int spi_async(struct spi_device *spi, struct spi_message *message)
3327 {
3328 struct spi_controller *ctlr = spi->controller;
3329 int ret;
3330 unsigned long flags;
3331
3332 ret = __spi_validate(spi, message);
3333 if (ret != 0)
3334 return ret;
3335
3336 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3337
3338 if (ctlr->bus_lock_flag)
3339 ret = -EBUSY;
3340 else
3341 ret = __spi_async(spi, message);
3342
3343 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3344
3345 return ret;
3346 }
3347 EXPORT_SYMBOL_GPL(spi_async);
3348
3349 /**
3350 * spi_async_locked - version of spi_async with exclusive bus usage
3351 * @spi: device with which data will be exchanged
3352 * @message: describes the data transfers, including completion callback
3353 * Context: any (irqs may be blocked, etc)
3354 *
3355 * This call may be used in_irq and other contexts which can't sleep,
3356 * as well as from task contexts which can sleep.
3357 *
3358 * The completion callback is invoked in a context which can't sleep.
3359 * Before that invocation, the value of message->status is undefined.
3360 * When the callback is issued, message->status holds either zero (to
3361 * indicate complete success) or a negative error code. After that
3362 * callback returns, the driver which issued the transfer request may
3363 * deallocate the associated memory; it's no longer in use by any SPI
3364 * core or controller driver code.
3365 *
3366 * Note that although all messages to a spi_device are handled in
3367 * FIFO order, messages may go to different devices in other orders.
3368 * Some device might be higher priority, or have various "hard" access
3369 * time requirements, for example.
3370 *
3371 * On detection of any fault during the transfer, processing of
3372 * the entire message is aborted, and the device is deselected.
3373 * Until returning from the associated message completion callback,
3374 * no other spi_message queued to that device will be processed.
3375 * (This rule applies equally to all the synchronous transfer calls,
3376 * which are wrappers around this core asynchronous primitive.)
3377 *
3378 * Return: zero on success, else a negative error code.
3379 */
spi_async_locked(struct spi_device * spi,struct spi_message * message)3380 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
3381 {
3382 struct spi_controller *ctlr = spi->controller;
3383 int ret;
3384 unsigned long flags;
3385
3386 ret = __spi_validate(spi, message);
3387 if (ret != 0)
3388 return ret;
3389
3390 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3391
3392 ret = __spi_async(spi, message);
3393
3394 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3395
3396 return ret;
3397
3398 }
3399 EXPORT_SYMBOL_GPL(spi_async_locked);
3400
3401 /*-------------------------------------------------------------------------*/
3402
3403 /* Utility methods for SPI protocol drivers, layered on
3404 * top of the core. Some other utility methods are defined as
3405 * inline functions.
3406 */
3407
spi_complete(void * arg)3408 static void spi_complete(void *arg)
3409 {
3410 complete(arg);
3411 }
3412
__spi_sync(struct spi_device * spi,struct spi_message * message)3413 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3414 {
3415 DECLARE_COMPLETION_ONSTACK(done);
3416 int status;
3417 struct spi_controller *ctlr = spi->controller;
3418 unsigned long flags;
3419
3420 status = __spi_validate(spi, message);
3421 if (status != 0)
3422 return status;
3423
3424 message->complete = spi_complete;
3425 message->context = &done;
3426 message->spi = spi;
3427
3428 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3429 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3430
3431 /* If we're not using the legacy transfer method then we will
3432 * try to transfer in the calling context so special case.
3433 * This code would be less tricky if we could remove the
3434 * support for driver implemented message queues.
3435 */
3436 if (ctlr->transfer == spi_queued_transfer) {
3437 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3438
3439 trace_spi_message_submit(message);
3440
3441 status = __spi_queued_transfer(spi, message, false);
3442
3443 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3444 } else {
3445 status = spi_async_locked(spi, message);
3446 }
3447
3448 if (status == 0) {
3449 /* Push out the messages in the calling context if we
3450 * can.
3451 */
3452 if (ctlr->transfer == spi_queued_transfer) {
3453 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3454 spi_sync_immediate);
3455 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3456 spi_sync_immediate);
3457 __spi_pump_messages(ctlr, false);
3458 }
3459
3460 wait_for_completion(&done);
3461 status = message->status;
3462 }
3463 message->context = NULL;
3464 return status;
3465 }
3466
3467 /**
3468 * spi_sync - blocking/synchronous SPI data transfers
3469 * @spi: device with which data will be exchanged
3470 * @message: describes the data transfers
3471 * Context: can sleep
3472 *
3473 * This call may only be used from a context that may sleep. The sleep
3474 * is non-interruptible, and has no timeout. Low-overhead controller
3475 * drivers may DMA directly into and out of the message buffers.
3476 *
3477 * Note that the SPI device's chip select is active during the message,
3478 * and then is normally disabled between messages. Drivers for some
3479 * frequently-used devices may want to minimize costs of selecting a chip,
3480 * by leaving it selected in anticipation that the next message will go
3481 * to the same chip. (That may increase power usage.)
3482 *
3483 * Also, the caller is guaranteeing that the memory associated with the
3484 * message will not be freed before this call returns.
3485 *
3486 * Return: zero on success, else a negative error code.
3487 */
spi_sync(struct spi_device * spi,struct spi_message * message)3488 int spi_sync(struct spi_device *spi, struct spi_message *message)
3489 {
3490 int ret;
3491
3492 mutex_lock(&spi->controller->bus_lock_mutex);
3493 ret = __spi_sync(spi, message);
3494 mutex_unlock(&spi->controller->bus_lock_mutex);
3495
3496 return ret;
3497 }
3498 EXPORT_SYMBOL_GPL(spi_sync);
3499
3500 /**
3501 * spi_sync_locked - version of spi_sync with exclusive bus usage
3502 * @spi: device with which data will be exchanged
3503 * @message: describes the data transfers
3504 * Context: can sleep
3505 *
3506 * This call may only be used from a context that may sleep. The sleep
3507 * is non-interruptible, and has no timeout. Low-overhead controller
3508 * drivers may DMA directly into and out of the message buffers.
3509 *
3510 * This call should be used by drivers that require exclusive access to the
3511 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3512 * be released by a spi_bus_unlock call when the exclusive access is over.
3513 *
3514 * Return: zero on success, else a negative error code.
3515 */
spi_sync_locked(struct spi_device * spi,struct spi_message * message)3516 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3517 {
3518 return __spi_sync(spi, message);
3519 }
3520 EXPORT_SYMBOL_GPL(spi_sync_locked);
3521
3522 /**
3523 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3524 * @ctlr: SPI bus master that should be locked for exclusive bus access
3525 * Context: can sleep
3526 *
3527 * This call may only be used from a context that may sleep. The sleep
3528 * is non-interruptible, and has no timeout.
3529 *
3530 * This call should be used by drivers that require exclusive access to the
3531 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3532 * exclusive access is over. Data transfer must be done by spi_sync_locked
3533 * and spi_async_locked calls when the SPI bus lock is held.
3534 *
3535 * Return: always zero.
3536 */
spi_bus_lock(struct spi_controller * ctlr)3537 int spi_bus_lock(struct spi_controller *ctlr)
3538 {
3539 unsigned long flags;
3540
3541 mutex_lock(&ctlr->bus_lock_mutex);
3542
3543 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3544 ctlr->bus_lock_flag = 1;
3545 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3546
3547 /* mutex remains locked until spi_bus_unlock is called */
3548
3549 return 0;
3550 }
3551 EXPORT_SYMBOL_GPL(spi_bus_lock);
3552
3553 /**
3554 * spi_bus_unlock - release the lock for exclusive SPI bus usage
3555 * @ctlr: SPI bus master that was locked for exclusive bus access
3556 * Context: can sleep
3557 *
3558 * This call may only be used from a context that may sleep. The sleep
3559 * is non-interruptible, and has no timeout.
3560 *
3561 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3562 * call.
3563 *
3564 * Return: always zero.
3565 */
spi_bus_unlock(struct spi_controller * ctlr)3566 int spi_bus_unlock(struct spi_controller *ctlr)
3567 {
3568 ctlr->bus_lock_flag = 0;
3569
3570 mutex_unlock(&ctlr->bus_lock_mutex);
3571
3572 return 0;
3573 }
3574 EXPORT_SYMBOL_GPL(spi_bus_unlock);
3575
3576 /* portable code must never pass more than 32 bytes */
3577 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
3578
3579 static u8 *buf;
3580
3581 /**
3582 * spi_write_then_read - SPI synchronous write followed by read
3583 * @spi: device with which data will be exchanged
3584 * @txbuf: data to be written (need not be dma-safe)
3585 * @n_tx: size of txbuf, in bytes
3586 * @rxbuf: buffer into which data will be read (need not be dma-safe)
3587 * @n_rx: size of rxbuf, in bytes
3588 * Context: can sleep
3589 *
3590 * This performs a half duplex MicroWire style transaction with the
3591 * device, sending txbuf and then reading rxbuf. The return value
3592 * is zero for success, else a negative errno status code.
3593 * This call may only be used from a context that may sleep.
3594 *
3595 * Parameters to this routine are always copied using a small buffer;
3596 * portable code should never use this for more than 32 bytes.
3597 * Performance-sensitive or bulk transfer code should instead use
3598 * spi_{async,sync}() calls with dma-safe buffers.
3599 *
3600 * Return: zero on success, else a negative error code.
3601 */
spi_write_then_read(struct spi_device * spi,const void * txbuf,unsigned n_tx,void * rxbuf,unsigned n_rx)3602 int spi_write_then_read(struct spi_device *spi,
3603 const void *txbuf, unsigned n_tx,
3604 void *rxbuf, unsigned n_rx)
3605 {
3606 static DEFINE_MUTEX(lock);
3607
3608 int status;
3609 struct spi_message message;
3610 struct spi_transfer x[2];
3611 u8 *local_buf;
3612
3613 /* Use preallocated DMA-safe buffer if we can. We can't avoid
3614 * copying here, (as a pure convenience thing), but we can
3615 * keep heap costs out of the hot path unless someone else is
3616 * using the pre-allocated buffer or the transfer is too large.
3617 */
3618 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
3619 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3620 GFP_KERNEL | GFP_DMA);
3621 if (!local_buf)
3622 return -ENOMEM;
3623 } else {
3624 local_buf = buf;
3625 }
3626
3627 spi_message_init(&message);
3628 memset(x, 0, sizeof(x));
3629 if (n_tx) {
3630 x[0].len = n_tx;
3631 spi_message_add_tail(&x[0], &message);
3632 }
3633 if (n_rx) {
3634 x[1].len = n_rx;
3635 spi_message_add_tail(&x[1], &message);
3636 }
3637
3638 memcpy(local_buf, txbuf, n_tx);
3639 x[0].tx_buf = local_buf;
3640 x[1].rx_buf = local_buf + n_tx;
3641
3642 /* do the i/o */
3643 status = spi_sync(spi, &message);
3644 if (status == 0)
3645 memcpy(rxbuf, x[1].rx_buf, n_rx);
3646
3647 if (x[0].tx_buf == buf)
3648 mutex_unlock(&lock);
3649 else
3650 kfree(local_buf);
3651
3652 return status;
3653 }
3654 EXPORT_SYMBOL_GPL(spi_write_then_read);
3655
3656 /*-------------------------------------------------------------------------*/
3657
3658 #if IS_ENABLED(CONFIG_OF)
3659 /* must call put_device() when done with returned spi_device device */
of_find_spi_device_by_node(struct device_node * node)3660 struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3661 {
3662 struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
3663
3664 return dev ? to_spi_device(dev) : NULL;
3665 }
3666 EXPORT_SYMBOL_GPL(of_find_spi_device_by_node);
3667 #endif /* IS_ENABLED(CONFIG_OF) */
3668
3669 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
3670 /* the spi controllers are not using spi_bus, so we find it with another way */
of_find_spi_controller_by_node(struct device_node * node)3671 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
3672 {
3673 struct device *dev;
3674
3675 dev = class_find_device_by_of_node(&spi_master_class, node);
3676 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3677 dev = class_find_device_by_of_node(&spi_slave_class, node);
3678 if (!dev)
3679 return NULL;
3680
3681 /* reference got in class_find_device */
3682 return container_of(dev, struct spi_controller, dev);
3683 }
3684
of_spi_notify(struct notifier_block * nb,unsigned long action,void * arg)3685 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3686 void *arg)
3687 {
3688 struct of_reconfig_data *rd = arg;
3689 struct spi_controller *ctlr;
3690 struct spi_device *spi;
3691
3692 switch (of_reconfig_get_state_change(action, arg)) {
3693 case OF_RECONFIG_CHANGE_ADD:
3694 ctlr = of_find_spi_controller_by_node(rd->dn->parent);
3695 if (ctlr == NULL)
3696 return NOTIFY_OK; /* not for us */
3697
3698 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
3699 put_device(&ctlr->dev);
3700 return NOTIFY_OK;
3701 }
3702
3703 spi = of_register_spi_device(ctlr, rd->dn);
3704 put_device(&ctlr->dev);
3705
3706 if (IS_ERR(spi)) {
3707 pr_err("%s: failed to create for '%pOF'\n",
3708 __func__, rd->dn);
3709 of_node_clear_flag(rd->dn, OF_POPULATED);
3710 return notifier_from_errno(PTR_ERR(spi));
3711 }
3712 break;
3713
3714 case OF_RECONFIG_CHANGE_REMOVE:
3715 /* already depopulated? */
3716 if (!of_node_check_flag(rd->dn, OF_POPULATED))
3717 return NOTIFY_OK;
3718
3719 /* find our device by node */
3720 spi = of_find_spi_device_by_node(rd->dn);
3721 if (spi == NULL)
3722 return NOTIFY_OK; /* no? not meant for us */
3723
3724 /* unregister takes one ref away */
3725 spi_unregister_device(spi);
3726
3727 /* and put the reference of the find */
3728 put_device(&spi->dev);
3729 break;
3730 }
3731
3732 return NOTIFY_OK;
3733 }
3734
3735 static struct notifier_block spi_of_notifier = {
3736 .notifier_call = of_spi_notify,
3737 };
3738 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3739 extern struct notifier_block spi_of_notifier;
3740 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3741
3742 #if IS_ENABLED(CONFIG_ACPI)
spi_acpi_controller_match(struct device * dev,const void * data)3743 static int spi_acpi_controller_match(struct device *dev, const void *data)
3744 {
3745 return ACPI_COMPANION(dev->parent) == data;
3746 }
3747
acpi_spi_find_controller_by_adev(struct acpi_device * adev)3748 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
3749 {
3750 struct device *dev;
3751
3752 dev = class_find_device(&spi_master_class, NULL, adev,
3753 spi_acpi_controller_match);
3754 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3755 dev = class_find_device(&spi_slave_class, NULL, adev,
3756 spi_acpi_controller_match);
3757 if (!dev)
3758 return NULL;
3759
3760 return container_of(dev, struct spi_controller, dev);
3761 }
3762
acpi_spi_find_device_by_adev(struct acpi_device * adev)3763 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
3764 {
3765 struct device *dev;
3766
3767 dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
3768 return dev ? to_spi_device(dev) : NULL;
3769 }
3770
acpi_spi_notify(struct notifier_block * nb,unsigned long value,void * arg)3771 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
3772 void *arg)
3773 {
3774 struct acpi_device *adev = arg;
3775 struct spi_controller *ctlr;
3776 struct spi_device *spi;
3777
3778 switch (value) {
3779 case ACPI_RECONFIG_DEVICE_ADD:
3780 ctlr = acpi_spi_find_controller_by_adev(adev->parent);
3781 if (!ctlr)
3782 break;
3783
3784 acpi_register_spi_device(ctlr, adev);
3785 put_device(&ctlr->dev);
3786 break;
3787 case ACPI_RECONFIG_DEVICE_REMOVE:
3788 if (!acpi_device_enumerated(adev))
3789 break;
3790
3791 spi = acpi_spi_find_device_by_adev(adev);
3792 if (!spi)
3793 break;
3794
3795 spi_unregister_device(spi);
3796 put_device(&spi->dev);
3797 break;
3798 }
3799
3800 return NOTIFY_OK;
3801 }
3802
3803 static struct notifier_block spi_acpi_notifier = {
3804 .notifier_call = acpi_spi_notify,
3805 };
3806 #else
3807 extern struct notifier_block spi_acpi_notifier;
3808 #endif
3809
spi_init(void)3810 static int __init spi_init(void)
3811 {
3812 int status;
3813
3814 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
3815 if (!buf) {
3816 status = -ENOMEM;
3817 goto err0;
3818 }
3819
3820 status = bus_register(&spi_bus_type);
3821 if (status < 0)
3822 goto err1;
3823
3824 status = class_register(&spi_master_class);
3825 if (status < 0)
3826 goto err2;
3827
3828 if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
3829 status = class_register(&spi_slave_class);
3830 if (status < 0)
3831 goto err3;
3832 }
3833
3834 if (IS_ENABLED(CONFIG_OF_DYNAMIC))
3835 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
3836 if (IS_ENABLED(CONFIG_ACPI))
3837 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
3838
3839 return 0;
3840
3841 err3:
3842 class_unregister(&spi_master_class);
3843 err2:
3844 bus_unregister(&spi_bus_type);
3845 err1:
3846 kfree(buf);
3847 buf = NULL;
3848 err0:
3849 return status;
3850 }
3851
3852 /* board_info is normally registered in arch_initcall(),
3853 * but even essential drivers wait till later
3854 *
3855 * REVISIT only boardinfo really needs static linking. the rest (device and
3856 * driver registration) _could_ be dynamically linked (modular) ... costs
3857 * include needing to have boardinfo data structures be much more public.
3858 */
3859 postcore_initcall(spi_init);
3860