1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * Copyright (C) 2012,2013 - ARM Ltd
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 */
6
7 #ifndef __ARM64_KVM_MMU_H__
8 #define __ARM64_KVM_MMU_H__
9
10 #include <asm/page.h>
11 #include <asm/memory.h>
12 #include <asm/cpufeature.h>
13
14 /*
15 * As ARMv8.0 only has the TTBR0_EL2 register, we cannot express
16 * "negative" addresses. This makes it impossible to directly share
17 * mappings with the kernel.
18 *
19 * Instead, give the HYP mode its own VA region at a fixed offset from
20 * the kernel by just masking the top bits (which are all ones for a
21 * kernel address). We need to find out how many bits to mask.
22 *
23 * We want to build a set of page tables that cover both parts of the
24 * idmap (the trampoline page used to initialize EL2), and our normal
25 * runtime VA space, at the same time.
26 *
27 * Given that the kernel uses VA_BITS for its entire address space,
28 * and that half of that space (VA_BITS - 1) is used for the linear
29 * mapping, we can also limit the EL2 space to (VA_BITS - 1).
30 *
31 * The main question is "Within the VA_BITS space, does EL2 use the
32 * top or the bottom half of that space to shadow the kernel's linear
33 * mapping?". As we need to idmap the trampoline page, this is
34 * determined by the range in which this page lives.
35 *
36 * If the page is in the bottom half, we have to use the top half. If
37 * the page is in the top half, we have to use the bottom half:
38 *
39 * T = __pa_symbol(__hyp_idmap_text_start)
40 * if (T & BIT(VA_BITS - 1))
41 * HYP_VA_MIN = 0 //idmap in upper half
42 * else
43 * HYP_VA_MIN = 1 << (VA_BITS - 1)
44 * HYP_VA_MAX = HYP_VA_MIN + (1 << (VA_BITS - 1)) - 1
45 *
46 * This of course assumes that the trampoline page exists within the
47 * VA_BITS range. If it doesn't, then it means we're in the odd case
48 * where the kernel idmap (as well as HYP) uses more levels than the
49 * kernel runtime page tables (as seen when the kernel is configured
50 * for 4k pages, 39bits VA, and yet memory lives just above that
51 * limit, forcing the idmap to use 4 levels of page tables while the
52 * kernel itself only uses 3). In this particular case, it doesn't
53 * matter which side of VA_BITS we use, as we're guaranteed not to
54 * conflict with anything.
55 *
56 * When using VHE, there are no separate hyp mappings and all KVM
57 * functionality is already mapped as part of the main kernel
58 * mappings, and none of this applies in that case.
59 */
60
61 #ifdef __ASSEMBLY__
62
63 #include <asm/alternative.h>
64
65 /*
66 * Convert a kernel VA into a HYP VA.
67 * reg: VA to be converted.
68 *
69 * The actual code generation takes place in kvm_update_va_mask, and
70 * the instructions below are only there to reserve the space and
71 * perform the register allocation (kvm_update_va_mask uses the
72 * specific registers encoded in the instructions).
73 */
74 .macro kern_hyp_va reg
75 alternative_cb kvm_update_va_mask
76 and \reg, \reg, #1 /* mask with va_mask */
77 ror \reg, \reg, #1 /* rotate to the first tag bit */
78 add \reg, \reg, #0 /* insert the low 12 bits of the tag */
79 add \reg, \reg, #0, lsl 12 /* insert the top 12 bits of the tag */
80 ror \reg, \reg, #63 /* rotate back */
81 alternative_cb_end
82 .endm
83
84 #else
85
86 #include <asm/pgalloc.h>
87 #include <asm/cache.h>
88 #include <asm/cacheflush.h>
89 #include <asm/mmu_context.h>
90 #include <asm/pgtable.h>
91
92 void kvm_update_va_mask(struct alt_instr *alt,
93 __le32 *origptr, __le32 *updptr, int nr_inst);
94
__kern_hyp_va(unsigned long v)95 static inline unsigned long __kern_hyp_va(unsigned long v)
96 {
97 asm volatile(ALTERNATIVE_CB("and %0, %0, #1\n"
98 "ror %0, %0, #1\n"
99 "add %0, %0, #0\n"
100 "add %0, %0, #0, lsl 12\n"
101 "ror %0, %0, #63\n",
102 kvm_update_va_mask)
103 : "+r" (v));
104 return v;
105 }
106
107 #define kern_hyp_va(v) ((typeof(v))(__kern_hyp_va((unsigned long)(v))))
108
109 /*
110 * Obtain the PC-relative address of a kernel symbol
111 * s: symbol
112 *
113 * The goal of this macro is to return a symbol's address based on a
114 * PC-relative computation, as opposed to a loading the VA from a
115 * constant pool or something similar. This works well for HYP, as an
116 * absolute VA is guaranteed to be wrong. Only use this if trying to
117 * obtain the address of a symbol (i.e. not something you obtained by
118 * following a pointer).
119 */
120 #define hyp_symbol_addr(s) \
121 ({ \
122 typeof(s) *addr; \
123 asm("adrp %0, %1\n" \
124 "add %0, %0, :lo12:%1\n" \
125 : "=r" (addr) : "S" (&s)); \
126 addr; \
127 })
128
129 /*
130 * We currently support using a VM-specified IPA size. For backward
131 * compatibility, the default IPA size is fixed to 40bits.
132 */
133 #define KVM_PHYS_SHIFT (40)
134
135 #define kvm_phys_shift(kvm) VTCR_EL2_IPA(kvm->arch.vtcr)
136 #define kvm_phys_size(kvm) (_AC(1, ULL) << kvm_phys_shift(kvm))
137 #define kvm_phys_mask(kvm) (kvm_phys_size(kvm) - _AC(1, ULL))
138
kvm_page_empty(void * ptr)139 static inline bool kvm_page_empty(void *ptr)
140 {
141 struct page *ptr_page = virt_to_page(ptr);
142 return page_count(ptr_page) == 1;
143 }
144
145 #include <asm/stage2_pgtable.h>
146
147 int create_hyp_mappings(void *from, void *to, pgprot_t prot);
148 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
149 void __iomem **kaddr,
150 void __iomem **haddr);
151 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
152 void **haddr);
153 void free_hyp_pgds(void);
154
155 void stage2_unmap_vm(struct kvm *kvm);
156 int kvm_alloc_stage2_pgd(struct kvm *kvm);
157 void kvm_free_stage2_pgd(struct kvm *kvm);
158 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
159 phys_addr_t pa, unsigned long size, bool writable);
160
161 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run);
162
163 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu);
164
165 phys_addr_t kvm_mmu_get_httbr(void);
166 phys_addr_t kvm_get_idmap_vector(void);
167 int kvm_mmu_init(void);
168 void kvm_clear_hyp_idmap(void);
169
170 #define kvm_mk_pmd(ptep) \
171 __pmd(__phys_to_pmd_val(__pa(ptep)) | PMD_TYPE_TABLE)
172 #define kvm_mk_pud(pmdp) \
173 __pud(__phys_to_pud_val(__pa(pmdp)) | PMD_TYPE_TABLE)
174 #define kvm_mk_pgd(pudp) \
175 __pgd(__phys_to_pgd_val(__pa(pudp)) | PUD_TYPE_TABLE)
176
177 #define kvm_set_pud(pudp, pud) set_pud(pudp, pud)
178
179 #define kvm_pfn_pte(pfn, prot) pfn_pte(pfn, prot)
180 #define kvm_pfn_pmd(pfn, prot) pfn_pmd(pfn, prot)
181 #define kvm_pfn_pud(pfn, prot) pfn_pud(pfn, prot)
182
183 #define kvm_pud_pfn(pud) pud_pfn(pud)
184
185 #define kvm_pmd_mkhuge(pmd) pmd_mkhuge(pmd)
186 #define kvm_pud_mkhuge(pud) pud_mkhuge(pud)
187
kvm_s2pte_mkwrite(pte_t pte)188 static inline pte_t kvm_s2pte_mkwrite(pte_t pte)
189 {
190 pte_val(pte) |= PTE_S2_RDWR;
191 return pte;
192 }
193
kvm_s2pmd_mkwrite(pmd_t pmd)194 static inline pmd_t kvm_s2pmd_mkwrite(pmd_t pmd)
195 {
196 pmd_val(pmd) |= PMD_S2_RDWR;
197 return pmd;
198 }
199
kvm_s2pud_mkwrite(pud_t pud)200 static inline pud_t kvm_s2pud_mkwrite(pud_t pud)
201 {
202 pud_val(pud) |= PUD_S2_RDWR;
203 return pud;
204 }
205
kvm_s2pte_mkexec(pte_t pte)206 static inline pte_t kvm_s2pte_mkexec(pte_t pte)
207 {
208 pte_val(pte) &= ~PTE_S2_XN;
209 return pte;
210 }
211
kvm_s2pmd_mkexec(pmd_t pmd)212 static inline pmd_t kvm_s2pmd_mkexec(pmd_t pmd)
213 {
214 pmd_val(pmd) &= ~PMD_S2_XN;
215 return pmd;
216 }
217
kvm_s2pud_mkexec(pud_t pud)218 static inline pud_t kvm_s2pud_mkexec(pud_t pud)
219 {
220 pud_val(pud) &= ~PUD_S2_XN;
221 return pud;
222 }
223
kvm_set_s2pte_readonly(pte_t * ptep)224 static inline void kvm_set_s2pte_readonly(pte_t *ptep)
225 {
226 pteval_t old_pteval, pteval;
227
228 pteval = READ_ONCE(pte_val(*ptep));
229 do {
230 old_pteval = pteval;
231 pteval &= ~PTE_S2_RDWR;
232 pteval |= PTE_S2_RDONLY;
233 pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
234 } while (pteval != old_pteval);
235 }
236
kvm_s2pte_readonly(pte_t * ptep)237 static inline bool kvm_s2pte_readonly(pte_t *ptep)
238 {
239 return (READ_ONCE(pte_val(*ptep)) & PTE_S2_RDWR) == PTE_S2_RDONLY;
240 }
241
kvm_s2pte_exec(pte_t * ptep)242 static inline bool kvm_s2pte_exec(pte_t *ptep)
243 {
244 return !(READ_ONCE(pte_val(*ptep)) & PTE_S2_XN);
245 }
246
kvm_set_s2pmd_readonly(pmd_t * pmdp)247 static inline void kvm_set_s2pmd_readonly(pmd_t *pmdp)
248 {
249 kvm_set_s2pte_readonly((pte_t *)pmdp);
250 }
251
kvm_s2pmd_readonly(pmd_t * pmdp)252 static inline bool kvm_s2pmd_readonly(pmd_t *pmdp)
253 {
254 return kvm_s2pte_readonly((pte_t *)pmdp);
255 }
256
kvm_s2pmd_exec(pmd_t * pmdp)257 static inline bool kvm_s2pmd_exec(pmd_t *pmdp)
258 {
259 return !(READ_ONCE(pmd_val(*pmdp)) & PMD_S2_XN);
260 }
261
kvm_set_s2pud_readonly(pud_t * pudp)262 static inline void kvm_set_s2pud_readonly(pud_t *pudp)
263 {
264 kvm_set_s2pte_readonly((pte_t *)pudp);
265 }
266
kvm_s2pud_readonly(pud_t * pudp)267 static inline bool kvm_s2pud_readonly(pud_t *pudp)
268 {
269 return kvm_s2pte_readonly((pte_t *)pudp);
270 }
271
kvm_s2pud_exec(pud_t * pudp)272 static inline bool kvm_s2pud_exec(pud_t *pudp)
273 {
274 return !(READ_ONCE(pud_val(*pudp)) & PUD_S2_XN);
275 }
276
kvm_s2pud_mkyoung(pud_t pud)277 static inline pud_t kvm_s2pud_mkyoung(pud_t pud)
278 {
279 return pud_mkyoung(pud);
280 }
281
kvm_s2pud_young(pud_t pud)282 static inline bool kvm_s2pud_young(pud_t pud)
283 {
284 return pud_young(pud);
285 }
286
287 #define hyp_pte_table_empty(ptep) kvm_page_empty(ptep)
288
289 #ifdef __PAGETABLE_PMD_FOLDED
290 #define hyp_pmd_table_empty(pmdp) (0)
291 #else
292 #define hyp_pmd_table_empty(pmdp) kvm_page_empty(pmdp)
293 #endif
294
295 #ifdef __PAGETABLE_PUD_FOLDED
296 #define hyp_pud_table_empty(pudp) (0)
297 #else
298 #define hyp_pud_table_empty(pudp) kvm_page_empty(pudp)
299 #endif
300
301 struct kvm;
302
303 #define kvm_flush_dcache_to_poc(a,l) __flush_dcache_area((a), (l))
304
vcpu_has_cache_enabled(struct kvm_vcpu * vcpu)305 static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu)
306 {
307 return (vcpu_read_sys_reg(vcpu, SCTLR_EL1) & 0b101) == 0b101;
308 }
309
__clean_dcache_guest_page(kvm_pfn_t pfn,unsigned long size)310 static inline void __clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size)
311 {
312 void *va = page_address(pfn_to_page(pfn));
313
314 /*
315 * With FWB, we ensure that the guest always accesses memory using
316 * cacheable attributes, and we don't have to clean to PoC when
317 * faulting in pages. Furthermore, FWB implies IDC, so cleaning to
318 * PoU is not required either in this case.
319 */
320 if (cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
321 return;
322
323 kvm_flush_dcache_to_poc(va, size);
324 }
325
__invalidate_icache_guest_page(kvm_pfn_t pfn,unsigned long size)326 static inline void __invalidate_icache_guest_page(kvm_pfn_t pfn,
327 unsigned long size)
328 {
329 if (icache_is_aliasing()) {
330 /* any kind of VIPT cache */
331 __flush_icache_all();
332 } else if (is_kernel_in_hyp_mode() || !icache_is_vpipt()) {
333 /* PIPT or VPIPT at EL2 (see comment in __kvm_tlb_flush_vmid_ipa) */
334 void *va = page_address(pfn_to_page(pfn));
335
336 invalidate_icache_range((unsigned long)va,
337 (unsigned long)va + size);
338 }
339 }
340
__kvm_flush_dcache_pte(pte_t pte)341 static inline void __kvm_flush_dcache_pte(pte_t pte)
342 {
343 if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) {
344 struct page *page = pte_page(pte);
345 kvm_flush_dcache_to_poc(page_address(page), PAGE_SIZE);
346 }
347 }
348
__kvm_flush_dcache_pmd(pmd_t pmd)349 static inline void __kvm_flush_dcache_pmd(pmd_t pmd)
350 {
351 if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) {
352 struct page *page = pmd_page(pmd);
353 kvm_flush_dcache_to_poc(page_address(page), PMD_SIZE);
354 }
355 }
356
__kvm_flush_dcache_pud(pud_t pud)357 static inline void __kvm_flush_dcache_pud(pud_t pud)
358 {
359 if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) {
360 struct page *page = pud_page(pud);
361 kvm_flush_dcache_to_poc(page_address(page), PUD_SIZE);
362 }
363 }
364
365 #define kvm_virt_to_phys(x) __pa_symbol(x)
366
367 void kvm_set_way_flush(struct kvm_vcpu *vcpu);
368 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled);
369
__kvm_cpu_uses_extended_idmap(void)370 static inline bool __kvm_cpu_uses_extended_idmap(void)
371 {
372 return __cpu_uses_extended_idmap_level();
373 }
374
__kvm_idmap_ptrs_per_pgd(void)375 static inline unsigned long __kvm_idmap_ptrs_per_pgd(void)
376 {
377 return idmap_ptrs_per_pgd;
378 }
379
380 /*
381 * Can't use pgd_populate here, because the extended idmap adds an extra level
382 * above CONFIG_PGTABLE_LEVELS (which is 2 or 3 if we're using the extended
383 * idmap), and pgd_populate is only available if CONFIG_PGTABLE_LEVELS = 4.
384 */
__kvm_extend_hypmap(pgd_t * boot_hyp_pgd,pgd_t * hyp_pgd,pgd_t * merged_hyp_pgd,unsigned long hyp_idmap_start)385 static inline void __kvm_extend_hypmap(pgd_t *boot_hyp_pgd,
386 pgd_t *hyp_pgd,
387 pgd_t *merged_hyp_pgd,
388 unsigned long hyp_idmap_start)
389 {
390 int idmap_idx;
391 u64 pgd_addr;
392
393 /*
394 * Use the first entry to access the HYP mappings. It is
395 * guaranteed to be free, otherwise we wouldn't use an
396 * extended idmap.
397 */
398 VM_BUG_ON(pgd_val(merged_hyp_pgd[0]));
399 pgd_addr = __phys_to_pgd_val(__pa(hyp_pgd));
400 merged_hyp_pgd[0] = __pgd(pgd_addr | PMD_TYPE_TABLE);
401
402 /*
403 * Create another extended level entry that points to the boot HYP map,
404 * which contains an ID mapping of the HYP init code. We essentially
405 * merge the boot and runtime HYP maps by doing so, but they don't
406 * overlap anyway, so this is fine.
407 */
408 idmap_idx = hyp_idmap_start >> VA_BITS;
409 VM_BUG_ON(pgd_val(merged_hyp_pgd[idmap_idx]));
410 pgd_addr = __phys_to_pgd_val(__pa(boot_hyp_pgd));
411 merged_hyp_pgd[idmap_idx] = __pgd(pgd_addr | PMD_TYPE_TABLE);
412 }
413
kvm_get_vmid_bits(void)414 static inline unsigned int kvm_get_vmid_bits(void)
415 {
416 int reg = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
417
418 return (cpuid_feature_extract_unsigned_field(reg, ID_AA64MMFR1_VMIDBITS_SHIFT) == 2) ? 16 : 8;
419 }
420
421 /*
422 * We are not in the kvm->srcu critical section most of the time, so we take
423 * the SRCU read lock here. Since we copy the data from the user page, we
424 * can immediately drop the lock again.
425 */
kvm_read_guest_lock(struct kvm * kvm,gpa_t gpa,void * data,unsigned long len)426 static inline int kvm_read_guest_lock(struct kvm *kvm,
427 gpa_t gpa, void *data, unsigned long len)
428 {
429 int srcu_idx = srcu_read_lock(&kvm->srcu);
430 int ret = kvm_read_guest(kvm, gpa, data, len);
431
432 srcu_read_unlock(&kvm->srcu, srcu_idx);
433
434 return ret;
435 }
436
kvm_write_guest_lock(struct kvm * kvm,gpa_t gpa,const void * data,unsigned long len)437 static inline int kvm_write_guest_lock(struct kvm *kvm, gpa_t gpa,
438 const void *data, unsigned long len)
439 {
440 int srcu_idx = srcu_read_lock(&kvm->srcu);
441 int ret = kvm_write_guest(kvm, gpa, data, len);
442
443 srcu_read_unlock(&kvm->srcu, srcu_idx);
444
445 return ret;
446 }
447
448 #ifdef CONFIG_KVM_INDIRECT_VECTORS
449 /*
450 * EL2 vectors can be mapped and rerouted in a number of ways,
451 * depending on the kernel configuration and CPU present:
452 *
453 * - If the CPU has the ARM64_HARDEN_BRANCH_PREDICTOR cap, the
454 * hardening sequence is placed in one of the vector slots, which is
455 * executed before jumping to the real vectors.
456 *
457 * - If the CPU has both the ARM64_HARDEN_EL2_VECTORS cap and the
458 * ARM64_HARDEN_BRANCH_PREDICTOR cap, the slot containing the
459 * hardening sequence is mapped next to the idmap page, and executed
460 * before jumping to the real vectors.
461 *
462 * - If the CPU only has the ARM64_HARDEN_EL2_VECTORS cap, then an
463 * empty slot is selected, mapped next to the idmap page, and
464 * executed before jumping to the real vectors.
465 *
466 * Note that ARM64_HARDEN_EL2_VECTORS is somewhat incompatible with
467 * VHE, as we don't have hypervisor-specific mappings. If the system
468 * is VHE and yet selects this capability, it will be ignored.
469 */
470 #include <asm/mmu.h>
471
472 extern void *__kvm_bp_vect_base;
473 extern int __kvm_harden_el2_vector_slot;
474
kvm_get_hyp_vector(void)475 static inline void *kvm_get_hyp_vector(void)
476 {
477 struct bp_hardening_data *data = arm64_get_bp_hardening_data();
478 void *vect = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
479 int slot = -1;
480
481 if (cpus_have_const_cap(ARM64_HARDEN_BRANCH_PREDICTOR) && data->fn) {
482 vect = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs_start));
483 slot = data->hyp_vectors_slot;
484 }
485
486 if (this_cpu_has_cap(ARM64_HARDEN_EL2_VECTORS) && !has_vhe()) {
487 vect = __kvm_bp_vect_base;
488 if (slot == -1)
489 slot = __kvm_harden_el2_vector_slot;
490 }
491
492 if (slot != -1)
493 vect += slot * SZ_2K;
494
495 return vect;
496 }
497
498 /* This is only called on a !VHE system */
kvm_map_vectors(void)499 static inline int kvm_map_vectors(void)
500 {
501 /*
502 * HBP = ARM64_HARDEN_BRANCH_PREDICTOR
503 * HEL2 = ARM64_HARDEN_EL2_VECTORS
504 *
505 * !HBP + !HEL2 -> use direct vectors
506 * HBP + !HEL2 -> use hardened vectors in place
507 * !HBP + HEL2 -> allocate one vector slot and use exec mapping
508 * HBP + HEL2 -> use hardened vertors and use exec mapping
509 */
510 if (cpus_have_const_cap(ARM64_HARDEN_BRANCH_PREDICTOR)) {
511 __kvm_bp_vect_base = kvm_ksym_ref(__bp_harden_hyp_vecs_start);
512 __kvm_bp_vect_base = kern_hyp_va(__kvm_bp_vect_base);
513 }
514
515 if (cpus_have_const_cap(ARM64_HARDEN_EL2_VECTORS)) {
516 phys_addr_t vect_pa = __pa_symbol(__bp_harden_hyp_vecs_start);
517 unsigned long size = (__bp_harden_hyp_vecs_end -
518 __bp_harden_hyp_vecs_start);
519
520 /*
521 * Always allocate a spare vector slot, as we don't
522 * know yet which CPUs have a BP hardening slot that
523 * we can reuse.
524 */
525 __kvm_harden_el2_vector_slot = atomic_inc_return(&arm64_el2_vector_last_slot);
526 BUG_ON(__kvm_harden_el2_vector_slot >= BP_HARDEN_EL2_SLOTS);
527 return create_hyp_exec_mappings(vect_pa, size,
528 &__kvm_bp_vect_base);
529 }
530
531 return 0;
532 }
533 #else
kvm_get_hyp_vector(void)534 static inline void *kvm_get_hyp_vector(void)
535 {
536 return kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
537 }
538
kvm_map_vectors(void)539 static inline int kvm_map_vectors(void)
540 {
541 return 0;
542 }
543 #endif
544
545 #ifdef CONFIG_ARM64_SSBD
546 DECLARE_PER_CPU_READ_MOSTLY(u64, arm64_ssbd_callback_required);
547
hyp_map_aux_data(void)548 static inline int hyp_map_aux_data(void)
549 {
550 int cpu, err;
551
552 for_each_possible_cpu(cpu) {
553 u64 *ptr;
554
555 ptr = per_cpu_ptr(&arm64_ssbd_callback_required, cpu);
556 err = create_hyp_mappings(ptr, ptr + 1, PAGE_HYP);
557 if (err)
558 return err;
559 }
560 return 0;
561 }
562 #else
hyp_map_aux_data(void)563 static inline int hyp_map_aux_data(void)
564 {
565 return 0;
566 }
567 #endif
568
569 #define kvm_phys_to_vttbr(addr) phys_to_ttbr(addr)
570
571 /*
572 * Get the magic number 'x' for VTTBR:BADDR of this KVM instance.
573 * With v8.2 LVA extensions, 'x' should be a minimum of 6 with
574 * 52bit IPS.
575 */
arm64_vttbr_x(u32 ipa_shift,u32 levels)576 static inline int arm64_vttbr_x(u32 ipa_shift, u32 levels)
577 {
578 int x = ARM64_VTTBR_X(ipa_shift, levels);
579
580 return (IS_ENABLED(CONFIG_ARM64_PA_BITS_52) && x < 6) ? 6 : x;
581 }
582
vttbr_baddr_mask(u32 ipa_shift,u32 levels)583 static inline u64 vttbr_baddr_mask(u32 ipa_shift, u32 levels)
584 {
585 unsigned int x = arm64_vttbr_x(ipa_shift, levels);
586
587 return GENMASK_ULL(PHYS_MASK_SHIFT - 1, x);
588 }
589
kvm_vttbr_baddr_mask(struct kvm * kvm)590 static inline u64 kvm_vttbr_baddr_mask(struct kvm *kvm)
591 {
592 return vttbr_baddr_mask(kvm_phys_shift(kvm), kvm_stage2_levels(kvm));
593 }
594
kvm_get_vttbr(struct kvm * kvm)595 static __always_inline u64 kvm_get_vttbr(struct kvm *kvm)
596 {
597 struct kvm_vmid *vmid = &kvm->arch.vmid;
598 u64 vmid_field, baddr;
599 u64 cnp = system_supports_cnp() ? VTTBR_CNP_BIT : 0;
600
601 baddr = kvm->arch.pgd_phys;
602 vmid_field = (u64)vmid->vmid << VTTBR_VMID_SHIFT;
603 return kvm_phys_to_vttbr(baddr) | vmid_field | cnp;
604 }
605
606 #endif /* __ASSEMBLY__ */
607 #endif /* __ARM64_KVM_MMU_H__ */
608