• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * SMP initialisation and IPI support
4  * Based on arch/arm/kernel/smp.c
5  *
6  * Copyright (C) 2012 ARM Ltd.
7  */
8 
9 #include <linux/acpi.h>
10 #include <linux/arm_sdei.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/hotplug.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/interrupt.h>
18 #include <linux/cache.h>
19 #include <linux/profile.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/err.h>
23 #include <linux/cpu.h>
24 #include <linux/smp.h>
25 #include <linux/seq_file.h>
26 #include <linux/irq.h>
27 #include <linux/irqchip/arm-gic-v3.h>
28 #include <linux/percpu.h>
29 #include <linux/clockchips.h>
30 #include <linux/completion.h>
31 #include <linux/of.h>
32 #include <linux/irq_work.h>
33 #include <linux/kexec.h>
34 
35 #include <asm/alternative.h>
36 #include <asm/atomic.h>
37 #include <asm/cacheflush.h>
38 #include <asm/cpu.h>
39 #include <asm/cputype.h>
40 #include <asm/cpu_ops.h>
41 #include <asm/daifflags.h>
42 #include <asm/mmu_context.h>
43 #include <asm/numa.h>
44 #include <asm/pgtable.h>
45 #include <asm/pgalloc.h>
46 #include <asm/processor.h>
47 #include <asm/scs.h>
48 #include <asm/smp_plat.h>
49 #include <asm/sections.h>
50 #include <asm/tlbflush.h>
51 #include <asm/ptrace.h>
52 #include <asm/virt.h>
53 
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/ipi.h>
56 
57 DEFINE_PER_CPU_READ_MOSTLY(int, cpu_number);
58 EXPORT_PER_CPU_SYMBOL(cpu_number);
59 
60 /*
61  * as from 2.5, kernels no longer have an init_tasks structure
62  * so we need some other way of telling a new secondary core
63  * where to place its SVC stack
64  */
65 struct secondary_data secondary_data;
66 /* Number of CPUs which aren't online, but looping in kernel text. */
67 int cpus_stuck_in_kernel;
68 
69 enum ipi_msg_type {
70 	IPI_RESCHEDULE,
71 	IPI_CALL_FUNC,
72 	IPI_CPU_STOP,
73 	IPI_CPU_CRASH_STOP,
74 	IPI_TIMER,
75 	IPI_IRQ_WORK,
76 	IPI_WAKEUP
77 };
78 
79 #ifdef CONFIG_HOTPLUG_CPU
80 static int op_cpu_kill(unsigned int cpu);
81 #else
op_cpu_kill(unsigned int cpu)82 static inline int op_cpu_kill(unsigned int cpu)
83 {
84 	return -ENOSYS;
85 }
86 #endif
87 
88 
89 /*
90  * Boot a secondary CPU, and assign it the specified idle task.
91  * This also gives us the initial stack to use for this CPU.
92  */
boot_secondary(unsigned int cpu,struct task_struct * idle)93 static int boot_secondary(unsigned int cpu, struct task_struct *idle)
94 {
95 	if (cpu_ops[cpu]->cpu_boot)
96 		return cpu_ops[cpu]->cpu_boot(cpu);
97 
98 	return -EOPNOTSUPP;
99 }
100 
101 static DECLARE_COMPLETION(cpu_running);
102 
__cpu_up(unsigned int cpu,struct task_struct * idle)103 int __cpu_up(unsigned int cpu, struct task_struct *idle)
104 {
105 	int ret;
106 	long status;
107 
108 	/*
109 	 * We need to tell the secondary core where to find its stack and the
110 	 * page tables.
111 	 */
112 	secondary_data.task = idle;
113 	secondary_data.stack = task_stack_page(idle) + THREAD_SIZE;
114 	update_cpu_boot_status(CPU_MMU_OFF);
115 	__flush_dcache_area(&secondary_data, sizeof(secondary_data));
116 
117 	/*
118 	 * Now bring the CPU into our world.
119 	 */
120 	ret = boot_secondary(cpu, idle);
121 	if (ret == 0) {
122 		/*
123 		 * CPU was successfully started, wait for it to come online or
124 		 * time out.
125 		 */
126 		wait_for_completion_timeout(&cpu_running,
127 					    msecs_to_jiffies(5000));
128 
129 		if (!cpu_online(cpu)) {
130 			pr_crit("CPU%u: failed to come online\n", cpu);
131 			ret = -EIO;
132 		}
133 	} else {
134 		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
135 		return ret;
136 	}
137 
138 	secondary_data.task = NULL;
139 	secondary_data.stack = NULL;
140 	__flush_dcache_area(&secondary_data, sizeof(secondary_data));
141 	status = READ_ONCE(secondary_data.status);
142 	if (ret && status) {
143 
144 		if (status == CPU_MMU_OFF)
145 			status = READ_ONCE(__early_cpu_boot_status);
146 
147 		switch (status & CPU_BOOT_STATUS_MASK) {
148 		default:
149 			pr_err("CPU%u: failed in unknown state : 0x%lx\n",
150 					cpu, status);
151 			cpus_stuck_in_kernel++;
152 			break;
153 		case CPU_KILL_ME:
154 			if (!op_cpu_kill(cpu)) {
155 				pr_crit("CPU%u: died during early boot\n", cpu);
156 				break;
157 			}
158 			pr_crit("CPU%u: may not have shut down cleanly\n", cpu);
159 			/* Fall through */
160 		case CPU_STUCK_IN_KERNEL:
161 			pr_crit("CPU%u: is stuck in kernel\n", cpu);
162 			if (status & CPU_STUCK_REASON_52_BIT_VA)
163 				pr_crit("CPU%u: does not support 52-bit VAs\n", cpu);
164 			if (status & CPU_STUCK_REASON_NO_GRAN)
165 				pr_crit("CPU%u: does not support %luK granule \n", cpu, PAGE_SIZE / SZ_1K);
166 			cpus_stuck_in_kernel++;
167 			break;
168 		case CPU_PANIC_KERNEL:
169 			panic("CPU%u detected unsupported configuration\n", cpu);
170 		}
171 	}
172 
173 	return ret;
174 }
175 
init_gic_priority_masking(void)176 static void init_gic_priority_masking(void)
177 {
178 	u32 cpuflags;
179 
180 	if (WARN_ON(!gic_enable_sre()))
181 		return;
182 
183 	cpuflags = read_sysreg(daif);
184 
185 	WARN_ON(!(cpuflags & PSR_I_BIT));
186 
187 	gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
188 }
189 
190 /*
191  * This is the secondary CPU boot entry.  We're using this CPUs
192  * idle thread stack, but a set of temporary page tables.
193  */
secondary_start_kernel(void)194 asmlinkage notrace void secondary_start_kernel(void)
195 {
196 	u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
197 	struct mm_struct *mm = &init_mm;
198 	unsigned int cpu;
199 
200 	cpu = task_cpu(current);
201 	set_my_cpu_offset(per_cpu_offset(cpu));
202 
203 	/*
204 	 * All kernel threads share the same mm context; grab a
205 	 * reference and switch to it.
206 	 */
207 	mmgrab(mm);
208 	current->active_mm = mm;
209 
210 	/*
211 	 * TTBR0 is only used for the identity mapping at this stage. Make it
212 	 * point to zero page to avoid speculatively fetching new entries.
213 	 */
214 	cpu_uninstall_idmap();
215 
216 	if (system_uses_irq_prio_masking())
217 		init_gic_priority_masking();
218 
219 	preempt_disable();
220 	trace_hardirqs_off();
221 
222 	/*
223 	 * If the system has established the capabilities, make sure
224 	 * this CPU ticks all of those. If it doesn't, the CPU will
225 	 * fail to come online.
226 	 */
227 	check_local_cpu_capabilities();
228 
229 	if (cpu_ops[cpu]->cpu_postboot)
230 		cpu_ops[cpu]->cpu_postboot();
231 
232 	/*
233 	 * Log the CPU info before it is marked online and might get read.
234 	 */
235 	cpuinfo_store_cpu();
236 
237 	/*
238 	 * Enable GIC and timers.
239 	 */
240 	notify_cpu_starting(cpu);
241 
242 	store_cpu_topology(cpu);
243 	numa_add_cpu(cpu);
244 
245 	/*
246 	 * OK, now it's safe to let the boot CPU continue.  Wait for
247 	 * the CPU migration code to notice that the CPU is online
248 	 * before we continue.
249 	 */
250 	pr_info("CPU%u: Booted secondary processor 0x%010lx [0x%08x]\n",
251 					 cpu, (unsigned long)mpidr,
252 					 read_cpuid_id());
253 	update_cpu_boot_status(CPU_BOOT_SUCCESS);
254 	set_cpu_online(cpu, true);
255 	complete(&cpu_running);
256 
257 	local_daif_restore(DAIF_PROCCTX);
258 
259 	/*
260 	 * OK, it's off to the idle thread for us
261 	 */
262 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
263 }
264 
265 #ifdef CONFIG_HOTPLUG_CPU
op_cpu_disable(unsigned int cpu)266 static int op_cpu_disable(unsigned int cpu)
267 {
268 	/*
269 	 * If we don't have a cpu_die method, abort before we reach the point
270 	 * of no return. CPU0 may not have an cpu_ops, so test for it.
271 	 */
272 	if (!cpu_ops[cpu] || !cpu_ops[cpu]->cpu_die)
273 		return -EOPNOTSUPP;
274 
275 	/*
276 	 * We may need to abort a hot unplug for some other mechanism-specific
277 	 * reason.
278 	 */
279 	if (cpu_ops[cpu]->cpu_disable)
280 		return cpu_ops[cpu]->cpu_disable(cpu);
281 
282 	return 0;
283 }
284 
285 /*
286  * __cpu_disable runs on the processor to be shutdown.
287  */
__cpu_disable(void)288 int __cpu_disable(void)
289 {
290 	unsigned int cpu = smp_processor_id();
291 	int ret;
292 
293 	ret = op_cpu_disable(cpu);
294 	if (ret)
295 		return ret;
296 
297 	remove_cpu_topology(cpu);
298 	numa_remove_cpu(cpu);
299 
300 	/*
301 	 * Take this CPU offline.  Once we clear this, we can't return,
302 	 * and we must not schedule until we're ready to give up the cpu.
303 	 */
304 	set_cpu_online(cpu, false);
305 
306 	/*
307 	 * OK - migrate IRQs away from this CPU
308 	 */
309 	irq_migrate_all_off_this_cpu();
310 
311 	return 0;
312 }
313 
op_cpu_kill(unsigned int cpu)314 static int op_cpu_kill(unsigned int cpu)
315 {
316 	/*
317 	 * If we have no means of synchronising with the dying CPU, then assume
318 	 * that it is really dead. We can only wait for an arbitrary length of
319 	 * time and hope that it's dead, so let's skip the wait and just hope.
320 	 */
321 	if (!cpu_ops[cpu]->cpu_kill)
322 		return 0;
323 
324 	return cpu_ops[cpu]->cpu_kill(cpu);
325 }
326 
327 /*
328  * called on the thread which is asking for a CPU to be shutdown -
329  * waits until shutdown has completed, or it is timed out.
330  */
__cpu_die(unsigned int cpu)331 void __cpu_die(unsigned int cpu)
332 {
333 	int err;
334 
335 	if (!cpu_wait_death(cpu, 5)) {
336 		pr_crit("CPU%u: cpu didn't die\n", cpu);
337 		return;
338 	}
339 	pr_notice("CPU%u: shutdown\n", cpu);
340 
341 	/*
342 	 * Now that the dying CPU is beyond the point of no return w.r.t.
343 	 * in-kernel synchronisation, try to get the firwmare to help us to
344 	 * verify that it has really left the kernel before we consider
345 	 * clobbering anything it might still be using.
346 	 */
347 	err = op_cpu_kill(cpu);
348 	if (err)
349 		pr_warn("CPU%d may not have shut down cleanly: %d\n",
350 			cpu, err);
351 }
352 
353 /*
354  * Called from the idle thread for the CPU which has been shutdown.
355  *
356  */
cpu_die(void)357 void cpu_die(void)
358 {
359 	unsigned int cpu = smp_processor_id();
360 
361 	/* Save the shadow stack pointer before exiting the idle task */
362 	scs_save(current);
363 
364 	idle_task_exit();
365 
366 	local_daif_mask();
367 
368 	/* Tell __cpu_die() that this CPU is now safe to dispose of */
369 	(void)cpu_report_death();
370 
371 	/*
372 	 * Actually shutdown the CPU. This must never fail. The specific hotplug
373 	 * mechanism must perform all required cache maintenance to ensure that
374 	 * no dirty lines are lost in the process of shutting down the CPU.
375 	 */
376 	cpu_ops[cpu]->cpu_die(cpu);
377 
378 	BUG();
379 }
380 #endif
381 
382 /*
383  * Kill the calling secondary CPU, early in bringup before it is turned
384  * online.
385  */
cpu_die_early(void)386 void cpu_die_early(void)
387 {
388 	int cpu = smp_processor_id();
389 
390 	pr_crit("CPU%d: will not boot\n", cpu);
391 
392 	/* Mark this CPU absent */
393 	set_cpu_present(cpu, 0);
394 
395 #ifdef CONFIG_HOTPLUG_CPU
396 	update_cpu_boot_status(CPU_KILL_ME);
397 	/* Check if we can park ourselves */
398 	if (cpu_ops[cpu] && cpu_ops[cpu]->cpu_die)
399 		cpu_ops[cpu]->cpu_die(cpu);
400 #endif
401 	update_cpu_boot_status(CPU_STUCK_IN_KERNEL);
402 
403 	cpu_park_loop();
404 }
405 
hyp_mode_check(void)406 static void __init hyp_mode_check(void)
407 {
408 	if (is_hyp_mode_available())
409 		pr_info("CPU: All CPU(s) started at EL2\n");
410 	else if (is_hyp_mode_mismatched())
411 		WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC,
412 			   "CPU: CPUs started in inconsistent modes");
413 	else
414 		pr_info("CPU: All CPU(s) started at EL1\n");
415 }
416 
smp_cpus_done(unsigned int max_cpus)417 void __init smp_cpus_done(unsigned int max_cpus)
418 {
419 	pr_info("SMP: Total of %d processors activated.\n", num_online_cpus());
420 	setup_cpu_features();
421 	hyp_mode_check();
422 	apply_alternatives_all();
423 	mark_linear_text_alias_ro();
424 }
425 
smp_prepare_boot_cpu(void)426 void __init smp_prepare_boot_cpu(void)
427 {
428 	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
429 	cpuinfo_store_boot_cpu();
430 
431 	/*
432 	 * We now know enough about the boot CPU to apply the
433 	 * alternatives that cannot wait until interrupt handling
434 	 * and/or scheduling is enabled.
435 	 */
436 	apply_boot_alternatives();
437 
438 	/* Conditionally switch to GIC PMR for interrupt masking */
439 	if (system_uses_irq_prio_masking())
440 		init_gic_priority_masking();
441 }
442 
of_get_cpu_mpidr(struct device_node * dn)443 static u64 __init of_get_cpu_mpidr(struct device_node *dn)
444 {
445 	const __be32 *cell;
446 	u64 hwid;
447 
448 	/*
449 	 * A cpu node with missing "reg" property is
450 	 * considered invalid to build a cpu_logical_map
451 	 * entry.
452 	 */
453 	cell = of_get_property(dn, "reg", NULL);
454 	if (!cell) {
455 		pr_err("%pOF: missing reg property\n", dn);
456 		return INVALID_HWID;
457 	}
458 
459 	hwid = of_read_number(cell, of_n_addr_cells(dn));
460 	/*
461 	 * Non affinity bits must be set to 0 in the DT
462 	 */
463 	if (hwid & ~MPIDR_HWID_BITMASK) {
464 		pr_err("%pOF: invalid reg property\n", dn);
465 		return INVALID_HWID;
466 	}
467 	return hwid;
468 }
469 
470 /*
471  * Duplicate MPIDRs are a recipe for disaster. Scan all initialized
472  * entries and check for duplicates. If any is found just ignore the
473  * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid
474  * matching valid MPIDR values.
475  */
is_mpidr_duplicate(unsigned int cpu,u64 hwid)476 static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid)
477 {
478 	unsigned int i;
479 
480 	for (i = 1; (i < cpu) && (i < NR_CPUS); i++)
481 		if (cpu_logical_map(i) == hwid)
482 			return true;
483 	return false;
484 }
485 
486 /*
487  * Initialize cpu operations for a logical cpu and
488  * set it in the possible mask on success
489  */
smp_cpu_setup(int cpu)490 static int __init smp_cpu_setup(int cpu)
491 {
492 	if (cpu_read_ops(cpu))
493 		return -ENODEV;
494 
495 	if (cpu_ops[cpu]->cpu_init(cpu))
496 		return -ENODEV;
497 
498 	set_cpu_possible(cpu, true);
499 
500 	return 0;
501 }
502 
503 static bool bootcpu_valid __initdata;
504 static unsigned int cpu_count = 1;
505 
506 #ifdef CONFIG_ACPI
507 static struct acpi_madt_generic_interrupt cpu_madt_gicc[NR_CPUS];
508 
acpi_cpu_get_madt_gicc(int cpu)509 struct acpi_madt_generic_interrupt *acpi_cpu_get_madt_gicc(int cpu)
510 {
511 	return &cpu_madt_gicc[cpu];
512 }
513 
514 /*
515  * acpi_map_gic_cpu_interface - parse processor MADT entry
516  *
517  * Carry out sanity checks on MADT processor entry and initialize
518  * cpu_logical_map on success
519  */
520 static void __init
acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt * processor)521 acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor)
522 {
523 	u64 hwid = processor->arm_mpidr;
524 
525 	if (!(processor->flags & ACPI_MADT_ENABLED)) {
526 		pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid);
527 		return;
528 	}
529 
530 	if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) {
531 		pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid);
532 		return;
533 	}
534 
535 	if (is_mpidr_duplicate(cpu_count, hwid)) {
536 		pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid);
537 		return;
538 	}
539 
540 	/* Check if GICC structure of boot CPU is available in the MADT */
541 	if (cpu_logical_map(0) == hwid) {
542 		if (bootcpu_valid) {
543 			pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n",
544 			       hwid);
545 			return;
546 		}
547 		bootcpu_valid = true;
548 		cpu_madt_gicc[0] = *processor;
549 		return;
550 	}
551 
552 	if (cpu_count >= NR_CPUS)
553 		return;
554 
555 	/* map the logical cpu id to cpu MPIDR */
556 	cpu_logical_map(cpu_count) = hwid;
557 
558 	cpu_madt_gicc[cpu_count] = *processor;
559 
560 	/*
561 	 * Set-up the ACPI parking protocol cpu entries
562 	 * while initializing the cpu_logical_map to
563 	 * avoid parsing MADT entries multiple times for
564 	 * nothing (ie a valid cpu_logical_map entry should
565 	 * contain a valid parking protocol data set to
566 	 * initialize the cpu if the parking protocol is
567 	 * the only available enable method).
568 	 */
569 	acpi_set_mailbox_entry(cpu_count, processor);
570 
571 	cpu_count++;
572 }
573 
574 static int __init
acpi_parse_gic_cpu_interface(union acpi_subtable_headers * header,const unsigned long end)575 acpi_parse_gic_cpu_interface(union acpi_subtable_headers *header,
576 			     const unsigned long end)
577 {
578 	struct acpi_madt_generic_interrupt *processor;
579 
580 	processor = (struct acpi_madt_generic_interrupt *)header;
581 	if (BAD_MADT_GICC_ENTRY(processor, end))
582 		return -EINVAL;
583 
584 	acpi_table_print_madt_entry(&header->common);
585 
586 	acpi_map_gic_cpu_interface(processor);
587 
588 	return 0;
589 }
590 
acpi_parse_and_init_cpus(void)591 static void __init acpi_parse_and_init_cpus(void)
592 {
593 	int i;
594 
595 	/*
596 	 * do a walk of MADT to determine how many CPUs
597 	 * we have including disabled CPUs, and get information
598 	 * we need for SMP init.
599 	 */
600 	acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
601 				      acpi_parse_gic_cpu_interface, 0);
602 
603 	/*
604 	 * In ACPI, SMP and CPU NUMA information is provided in separate
605 	 * static tables, namely the MADT and the SRAT.
606 	 *
607 	 * Thus, it is simpler to first create the cpu logical map through
608 	 * an MADT walk and then map the logical cpus to their node ids
609 	 * as separate steps.
610 	 */
611 	acpi_map_cpus_to_nodes();
612 
613 	for (i = 0; i < nr_cpu_ids; i++)
614 		early_map_cpu_to_node(i, acpi_numa_get_nid(i));
615 }
616 #else
617 #define acpi_parse_and_init_cpus(...)	do { } while (0)
618 #endif
619 
620 /*
621  * Enumerate the possible CPU set from the device tree and build the
622  * cpu logical map array containing MPIDR values related to logical
623  * cpus. Assumes that cpu_logical_map(0) has already been initialized.
624  */
of_parse_and_init_cpus(void)625 static void __init of_parse_and_init_cpus(void)
626 {
627 	struct device_node *dn;
628 
629 	for_each_of_cpu_node(dn) {
630 		u64 hwid = of_get_cpu_mpidr(dn);
631 
632 		if (hwid == INVALID_HWID)
633 			goto next;
634 
635 		if (is_mpidr_duplicate(cpu_count, hwid)) {
636 			pr_err("%pOF: duplicate cpu reg properties in the DT\n",
637 				dn);
638 			goto next;
639 		}
640 
641 		/*
642 		 * The numbering scheme requires that the boot CPU
643 		 * must be assigned logical id 0. Record it so that
644 		 * the logical map built from DT is validated and can
645 		 * be used.
646 		 */
647 		if (hwid == cpu_logical_map(0)) {
648 			if (bootcpu_valid) {
649 				pr_err("%pOF: duplicate boot cpu reg property in DT\n",
650 					dn);
651 				goto next;
652 			}
653 
654 			bootcpu_valid = true;
655 			early_map_cpu_to_node(0, of_node_to_nid(dn));
656 
657 			/*
658 			 * cpu_logical_map has already been
659 			 * initialized and the boot cpu doesn't need
660 			 * the enable-method so continue without
661 			 * incrementing cpu.
662 			 */
663 			continue;
664 		}
665 
666 		if (cpu_count >= NR_CPUS)
667 			goto next;
668 
669 		pr_debug("cpu logical map 0x%llx\n", hwid);
670 		cpu_logical_map(cpu_count) = hwid;
671 
672 		early_map_cpu_to_node(cpu_count, of_node_to_nid(dn));
673 next:
674 		cpu_count++;
675 	}
676 }
677 
678 /*
679  * Enumerate the possible CPU set from the device tree or ACPI and build the
680  * cpu logical map array containing MPIDR values related to logical
681  * cpus. Assumes that cpu_logical_map(0) has already been initialized.
682  */
smp_init_cpus(void)683 void __init smp_init_cpus(void)
684 {
685 	int i;
686 
687 	if (acpi_disabled)
688 		of_parse_and_init_cpus();
689 	else
690 		acpi_parse_and_init_cpus();
691 
692 	if (cpu_count > nr_cpu_ids)
693 		pr_warn("Number of cores (%d) exceeds configured maximum of %u - clipping\n",
694 			cpu_count, nr_cpu_ids);
695 
696 	if (!bootcpu_valid) {
697 		pr_err("missing boot CPU MPIDR, not enabling secondaries\n");
698 		return;
699 	}
700 
701 	/*
702 	 * We need to set the cpu_logical_map entries before enabling
703 	 * the cpus so that cpu processor description entries (DT cpu nodes
704 	 * and ACPI MADT entries) can be retrieved by matching the cpu hwid
705 	 * with entries in cpu_logical_map while initializing the cpus.
706 	 * If the cpu set-up fails, invalidate the cpu_logical_map entry.
707 	 */
708 	for (i = 1; i < nr_cpu_ids; i++) {
709 		if (cpu_logical_map(i) != INVALID_HWID) {
710 			if (smp_cpu_setup(i))
711 				cpu_logical_map(i) = INVALID_HWID;
712 		}
713 	}
714 }
715 
smp_prepare_cpus(unsigned int max_cpus)716 void __init smp_prepare_cpus(unsigned int max_cpus)
717 {
718 	int err;
719 	unsigned int cpu;
720 	unsigned int this_cpu;
721 
722 	init_cpu_topology();
723 
724 	this_cpu = smp_processor_id();
725 	store_cpu_topology(this_cpu);
726 	numa_store_cpu_info(this_cpu);
727 	numa_add_cpu(this_cpu);
728 
729 	/*
730 	 * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set
731 	 * secondary CPUs present.
732 	 */
733 	if (max_cpus == 0)
734 		return;
735 
736 	/*
737 	 * Initialise the present map (which describes the set of CPUs
738 	 * actually populated at the present time) and release the
739 	 * secondaries from the bootloader.
740 	 */
741 	for_each_possible_cpu(cpu) {
742 
743 		per_cpu(cpu_number, cpu) = cpu;
744 
745 		if (cpu == smp_processor_id())
746 			continue;
747 
748 		if (!cpu_ops[cpu])
749 			continue;
750 
751 		err = cpu_ops[cpu]->cpu_prepare(cpu);
752 		if (err)
753 			continue;
754 
755 		set_cpu_present(cpu, true);
756 		numa_store_cpu_info(cpu);
757 	}
758 }
759 
760 void (*__smp_cross_call)(const struct cpumask *, unsigned int);
761 
set_smp_cross_call(void (* fn)(const struct cpumask *,unsigned int))762 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
763 {
764 	__smp_cross_call = fn;
765 }
766 
767 static const char *ipi_types[NR_IPI] __tracepoint_string = {
768 #define S(x,s)	[x] = s
769 	S(IPI_RESCHEDULE, "Rescheduling interrupts"),
770 	S(IPI_CALL_FUNC, "Function call interrupts"),
771 	S(IPI_CPU_STOP, "CPU stop interrupts"),
772 	S(IPI_CPU_CRASH_STOP, "CPU stop (for crash dump) interrupts"),
773 	S(IPI_TIMER, "Timer broadcast interrupts"),
774 	S(IPI_IRQ_WORK, "IRQ work interrupts"),
775 	S(IPI_WAKEUP, "CPU wake-up interrupts"),
776 };
777 
smp_cross_call(const struct cpumask * target,unsigned int ipinr)778 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
779 {
780 	trace_ipi_raise(target, ipi_types[ipinr]);
781 	__smp_cross_call(target, ipinr);
782 }
783 
show_ipi_list(struct seq_file * p,int prec)784 void show_ipi_list(struct seq_file *p, int prec)
785 {
786 	unsigned int cpu, i;
787 
788 	for (i = 0; i < NR_IPI; i++) {
789 		seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i,
790 			   prec >= 4 ? " " : "");
791 		for_each_online_cpu(cpu)
792 			seq_printf(p, "%10u ",
793 				   __get_irq_stat(cpu, ipi_irqs[i]));
794 		seq_printf(p, "      %s\n", ipi_types[i]);
795 	}
796 }
797 
smp_irq_stat_cpu(unsigned int cpu)798 u64 smp_irq_stat_cpu(unsigned int cpu)
799 {
800 	u64 sum = 0;
801 	int i;
802 
803 	for (i = 0; i < NR_IPI; i++)
804 		sum += __get_irq_stat(cpu, ipi_irqs[i]);
805 
806 	return sum;
807 }
808 
arch_send_call_function_ipi_mask(const struct cpumask * mask)809 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
810 {
811 	smp_cross_call(mask, IPI_CALL_FUNC);
812 }
813 
arch_send_call_function_single_ipi(int cpu)814 void arch_send_call_function_single_ipi(int cpu)
815 {
816 	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
817 }
818 
819 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
arch_send_wakeup_ipi_mask(const struct cpumask * mask)820 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
821 {
822 	smp_cross_call(mask, IPI_WAKEUP);
823 }
824 #endif
825 
826 #ifdef CONFIG_IRQ_WORK
arch_irq_work_raise(void)827 void arch_irq_work_raise(void)
828 {
829 	if (__smp_cross_call)
830 		smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
831 }
832 #endif
833 
local_cpu_stop(void)834 static void local_cpu_stop(void)
835 {
836 	set_cpu_online(smp_processor_id(), false);
837 
838 	local_daif_mask();
839 	sdei_mask_local_cpu();
840 	cpu_park_loop();
841 }
842 
843 /*
844  * We need to implement panic_smp_self_stop() for parallel panic() calls, so
845  * that cpu_online_mask gets correctly updated and smp_send_stop() can skip
846  * CPUs that have already stopped themselves.
847  */
panic_smp_self_stop(void)848 void panic_smp_self_stop(void)
849 {
850 	local_cpu_stop();
851 }
852 
853 #ifdef CONFIG_KEXEC_CORE
854 static atomic_t waiting_for_crash_ipi = ATOMIC_INIT(0);
855 #endif
856 
ipi_cpu_crash_stop(unsigned int cpu,struct pt_regs * regs)857 static void ipi_cpu_crash_stop(unsigned int cpu, struct pt_regs *regs)
858 {
859 #ifdef CONFIG_KEXEC_CORE
860 	crash_save_cpu(regs, cpu);
861 
862 	atomic_dec(&waiting_for_crash_ipi);
863 
864 	local_irq_disable();
865 	sdei_mask_local_cpu();
866 
867 #ifdef CONFIG_HOTPLUG_CPU
868 	if (cpu_ops[cpu]->cpu_die)
869 		cpu_ops[cpu]->cpu_die(cpu);
870 #endif
871 
872 	/* just in case */
873 	cpu_park_loop();
874 #endif
875 }
876 
877 /*
878  * Main handler for inter-processor interrupts
879  */
handle_IPI(int ipinr,struct pt_regs * regs)880 void handle_IPI(int ipinr, struct pt_regs *regs)
881 {
882 	unsigned int cpu = smp_processor_id();
883 	struct pt_regs *old_regs = set_irq_regs(regs);
884 
885 	if ((unsigned)ipinr < NR_IPI) {
886 		trace_ipi_entry_rcuidle(ipi_types[ipinr]);
887 		__inc_irq_stat(cpu, ipi_irqs[ipinr]);
888 	}
889 
890 	switch (ipinr) {
891 	case IPI_RESCHEDULE:
892 		scheduler_ipi();
893 		break;
894 
895 	case IPI_CALL_FUNC:
896 		irq_enter();
897 		generic_smp_call_function_interrupt();
898 		irq_exit();
899 		break;
900 
901 	case IPI_CPU_STOP:
902 		irq_enter();
903 		local_cpu_stop();
904 		irq_exit();
905 		break;
906 
907 	case IPI_CPU_CRASH_STOP:
908 		if (IS_ENABLED(CONFIG_KEXEC_CORE)) {
909 			irq_enter();
910 			ipi_cpu_crash_stop(cpu, regs);
911 
912 			unreachable();
913 		}
914 		break;
915 
916 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
917 	case IPI_TIMER:
918 		irq_enter();
919 		tick_receive_broadcast();
920 		irq_exit();
921 		break;
922 #endif
923 
924 #ifdef CONFIG_IRQ_WORK
925 	case IPI_IRQ_WORK:
926 		irq_enter();
927 		irq_work_run();
928 		irq_exit();
929 		break;
930 #endif
931 
932 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
933 	case IPI_WAKEUP:
934 		WARN_ONCE(!acpi_parking_protocol_valid(cpu),
935 			  "CPU%u: Wake-up IPI outside the ACPI parking protocol\n",
936 			  cpu);
937 		break;
938 #endif
939 
940 	default:
941 		pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr);
942 		break;
943 	}
944 
945 	if ((unsigned)ipinr < NR_IPI)
946 		trace_ipi_exit_rcuidle(ipi_types[ipinr]);
947 	set_irq_regs(old_regs);
948 }
949 
smp_send_reschedule(int cpu)950 void smp_send_reschedule(int cpu)
951 {
952 	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
953 }
954 
955 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
tick_broadcast(const struct cpumask * mask)956 void tick_broadcast(const struct cpumask *mask)
957 {
958 	smp_cross_call(mask, IPI_TIMER);
959 }
960 #endif
961 
smp_send_stop(void)962 void smp_send_stop(void)
963 {
964 	unsigned long timeout;
965 
966 	if (num_online_cpus() > 1) {
967 		cpumask_t mask;
968 
969 		cpumask_copy(&mask, cpu_online_mask);
970 		cpumask_clear_cpu(smp_processor_id(), &mask);
971 
972 		if (system_state <= SYSTEM_RUNNING)
973 			pr_crit("SMP: stopping secondary CPUs\n");
974 		smp_cross_call(&mask, IPI_CPU_STOP);
975 	}
976 
977 	/* Wait up to one second for other CPUs to stop */
978 	timeout = USEC_PER_SEC;
979 	while (num_online_cpus() > 1 && timeout--)
980 		udelay(1);
981 
982 	if (num_online_cpus() > 1)
983 		pr_warning("SMP: failed to stop secondary CPUs %*pbl\n",
984 			   cpumask_pr_args(cpu_online_mask));
985 
986 	sdei_mask_local_cpu();
987 }
988 
989 #ifdef CONFIG_KEXEC_CORE
crash_smp_send_stop(void)990 void crash_smp_send_stop(void)
991 {
992 	static int cpus_stopped;
993 	cpumask_t mask;
994 	unsigned long timeout;
995 
996 	/*
997 	 * This function can be called twice in panic path, but obviously
998 	 * we execute this only once.
999 	 */
1000 	if (cpus_stopped)
1001 		return;
1002 
1003 	cpus_stopped = 1;
1004 
1005 	if (num_online_cpus() == 1) {
1006 		sdei_mask_local_cpu();
1007 		return;
1008 	}
1009 
1010 	cpumask_copy(&mask, cpu_online_mask);
1011 	cpumask_clear_cpu(smp_processor_id(), &mask);
1012 
1013 	atomic_set(&waiting_for_crash_ipi, num_online_cpus() - 1);
1014 
1015 	pr_crit("SMP: stopping secondary CPUs\n");
1016 	smp_cross_call(&mask, IPI_CPU_CRASH_STOP);
1017 
1018 	/* Wait up to one second for other CPUs to stop */
1019 	timeout = USEC_PER_SEC;
1020 	while ((atomic_read(&waiting_for_crash_ipi) > 0) && timeout--)
1021 		udelay(1);
1022 
1023 	if (atomic_read(&waiting_for_crash_ipi) > 0)
1024 		pr_warning("SMP: failed to stop secondary CPUs %*pbl\n",
1025 			   cpumask_pr_args(&mask));
1026 
1027 	sdei_mask_local_cpu();
1028 }
1029 
smp_crash_stop_failed(void)1030 bool smp_crash_stop_failed(void)
1031 {
1032 	return (atomic_read(&waiting_for_crash_ipi) > 0);
1033 }
1034 #endif
1035 
1036 /*
1037  * not supported here
1038  */
setup_profiling_timer(unsigned int multiplier)1039 int setup_profiling_timer(unsigned int multiplier)
1040 {
1041 	return -EINVAL;
1042 }
1043 
have_cpu_die(void)1044 static bool have_cpu_die(void)
1045 {
1046 #ifdef CONFIG_HOTPLUG_CPU
1047 	int any_cpu = raw_smp_processor_id();
1048 
1049 	if (cpu_ops[any_cpu] && cpu_ops[any_cpu]->cpu_die)
1050 		return true;
1051 #endif
1052 	return false;
1053 }
1054 
cpus_are_stuck_in_kernel(void)1055 bool cpus_are_stuck_in_kernel(void)
1056 {
1057 	bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die());
1058 
1059 	return !!cpus_stuck_in_kernel || smp_spin_tables;
1060 }
1061