1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * SMP initialisation and IPI support
4 * Based on arch/arm/kernel/smp.c
5 *
6 * Copyright (C) 2012 ARM Ltd.
7 */
8
9 #include <linux/acpi.h>
10 #include <linux/arm_sdei.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/hotplug.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/interrupt.h>
18 #include <linux/cache.h>
19 #include <linux/profile.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/err.h>
23 #include <linux/cpu.h>
24 #include <linux/smp.h>
25 #include <linux/seq_file.h>
26 #include <linux/irq.h>
27 #include <linux/irqchip/arm-gic-v3.h>
28 #include <linux/percpu.h>
29 #include <linux/clockchips.h>
30 #include <linux/completion.h>
31 #include <linux/of.h>
32 #include <linux/irq_work.h>
33 #include <linux/kexec.h>
34
35 #include <asm/alternative.h>
36 #include <asm/atomic.h>
37 #include <asm/cacheflush.h>
38 #include <asm/cpu.h>
39 #include <asm/cputype.h>
40 #include <asm/cpu_ops.h>
41 #include <asm/daifflags.h>
42 #include <asm/mmu_context.h>
43 #include <asm/numa.h>
44 #include <asm/pgtable.h>
45 #include <asm/pgalloc.h>
46 #include <asm/processor.h>
47 #include <asm/scs.h>
48 #include <asm/smp_plat.h>
49 #include <asm/sections.h>
50 #include <asm/tlbflush.h>
51 #include <asm/ptrace.h>
52 #include <asm/virt.h>
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/ipi.h>
56
57 DEFINE_PER_CPU_READ_MOSTLY(int, cpu_number);
58 EXPORT_PER_CPU_SYMBOL(cpu_number);
59
60 /*
61 * as from 2.5, kernels no longer have an init_tasks structure
62 * so we need some other way of telling a new secondary core
63 * where to place its SVC stack
64 */
65 struct secondary_data secondary_data;
66 /* Number of CPUs which aren't online, but looping in kernel text. */
67 int cpus_stuck_in_kernel;
68
69 enum ipi_msg_type {
70 IPI_RESCHEDULE,
71 IPI_CALL_FUNC,
72 IPI_CPU_STOP,
73 IPI_CPU_CRASH_STOP,
74 IPI_TIMER,
75 IPI_IRQ_WORK,
76 IPI_WAKEUP
77 };
78
79 #ifdef CONFIG_HOTPLUG_CPU
80 static int op_cpu_kill(unsigned int cpu);
81 #else
op_cpu_kill(unsigned int cpu)82 static inline int op_cpu_kill(unsigned int cpu)
83 {
84 return -ENOSYS;
85 }
86 #endif
87
88
89 /*
90 * Boot a secondary CPU, and assign it the specified idle task.
91 * This also gives us the initial stack to use for this CPU.
92 */
boot_secondary(unsigned int cpu,struct task_struct * idle)93 static int boot_secondary(unsigned int cpu, struct task_struct *idle)
94 {
95 if (cpu_ops[cpu]->cpu_boot)
96 return cpu_ops[cpu]->cpu_boot(cpu);
97
98 return -EOPNOTSUPP;
99 }
100
101 static DECLARE_COMPLETION(cpu_running);
102
__cpu_up(unsigned int cpu,struct task_struct * idle)103 int __cpu_up(unsigned int cpu, struct task_struct *idle)
104 {
105 int ret;
106 long status;
107
108 /*
109 * We need to tell the secondary core where to find its stack and the
110 * page tables.
111 */
112 secondary_data.task = idle;
113 secondary_data.stack = task_stack_page(idle) + THREAD_SIZE;
114 update_cpu_boot_status(CPU_MMU_OFF);
115 __flush_dcache_area(&secondary_data, sizeof(secondary_data));
116
117 /*
118 * Now bring the CPU into our world.
119 */
120 ret = boot_secondary(cpu, idle);
121 if (ret == 0) {
122 /*
123 * CPU was successfully started, wait for it to come online or
124 * time out.
125 */
126 wait_for_completion_timeout(&cpu_running,
127 msecs_to_jiffies(5000));
128
129 if (!cpu_online(cpu)) {
130 pr_crit("CPU%u: failed to come online\n", cpu);
131 ret = -EIO;
132 }
133 } else {
134 pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
135 return ret;
136 }
137
138 secondary_data.task = NULL;
139 secondary_data.stack = NULL;
140 __flush_dcache_area(&secondary_data, sizeof(secondary_data));
141 status = READ_ONCE(secondary_data.status);
142 if (ret && status) {
143
144 if (status == CPU_MMU_OFF)
145 status = READ_ONCE(__early_cpu_boot_status);
146
147 switch (status & CPU_BOOT_STATUS_MASK) {
148 default:
149 pr_err("CPU%u: failed in unknown state : 0x%lx\n",
150 cpu, status);
151 cpus_stuck_in_kernel++;
152 break;
153 case CPU_KILL_ME:
154 if (!op_cpu_kill(cpu)) {
155 pr_crit("CPU%u: died during early boot\n", cpu);
156 break;
157 }
158 pr_crit("CPU%u: may not have shut down cleanly\n", cpu);
159 /* Fall through */
160 case CPU_STUCK_IN_KERNEL:
161 pr_crit("CPU%u: is stuck in kernel\n", cpu);
162 if (status & CPU_STUCK_REASON_52_BIT_VA)
163 pr_crit("CPU%u: does not support 52-bit VAs\n", cpu);
164 if (status & CPU_STUCK_REASON_NO_GRAN)
165 pr_crit("CPU%u: does not support %luK granule \n", cpu, PAGE_SIZE / SZ_1K);
166 cpus_stuck_in_kernel++;
167 break;
168 case CPU_PANIC_KERNEL:
169 panic("CPU%u detected unsupported configuration\n", cpu);
170 }
171 }
172
173 return ret;
174 }
175
init_gic_priority_masking(void)176 static void init_gic_priority_masking(void)
177 {
178 u32 cpuflags;
179
180 if (WARN_ON(!gic_enable_sre()))
181 return;
182
183 cpuflags = read_sysreg(daif);
184
185 WARN_ON(!(cpuflags & PSR_I_BIT));
186
187 gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
188 }
189
190 /*
191 * This is the secondary CPU boot entry. We're using this CPUs
192 * idle thread stack, but a set of temporary page tables.
193 */
secondary_start_kernel(void)194 asmlinkage notrace void secondary_start_kernel(void)
195 {
196 u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
197 struct mm_struct *mm = &init_mm;
198 unsigned int cpu;
199
200 cpu = task_cpu(current);
201 set_my_cpu_offset(per_cpu_offset(cpu));
202
203 /*
204 * All kernel threads share the same mm context; grab a
205 * reference and switch to it.
206 */
207 mmgrab(mm);
208 current->active_mm = mm;
209
210 /*
211 * TTBR0 is only used for the identity mapping at this stage. Make it
212 * point to zero page to avoid speculatively fetching new entries.
213 */
214 cpu_uninstall_idmap();
215
216 if (system_uses_irq_prio_masking())
217 init_gic_priority_masking();
218
219 preempt_disable();
220 trace_hardirqs_off();
221
222 /*
223 * If the system has established the capabilities, make sure
224 * this CPU ticks all of those. If it doesn't, the CPU will
225 * fail to come online.
226 */
227 check_local_cpu_capabilities();
228
229 if (cpu_ops[cpu]->cpu_postboot)
230 cpu_ops[cpu]->cpu_postboot();
231
232 /*
233 * Log the CPU info before it is marked online and might get read.
234 */
235 cpuinfo_store_cpu();
236
237 /*
238 * Enable GIC and timers.
239 */
240 notify_cpu_starting(cpu);
241
242 store_cpu_topology(cpu);
243 numa_add_cpu(cpu);
244
245 /*
246 * OK, now it's safe to let the boot CPU continue. Wait for
247 * the CPU migration code to notice that the CPU is online
248 * before we continue.
249 */
250 pr_info("CPU%u: Booted secondary processor 0x%010lx [0x%08x]\n",
251 cpu, (unsigned long)mpidr,
252 read_cpuid_id());
253 update_cpu_boot_status(CPU_BOOT_SUCCESS);
254 set_cpu_online(cpu, true);
255 complete(&cpu_running);
256
257 local_daif_restore(DAIF_PROCCTX);
258
259 /*
260 * OK, it's off to the idle thread for us
261 */
262 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
263 }
264
265 #ifdef CONFIG_HOTPLUG_CPU
op_cpu_disable(unsigned int cpu)266 static int op_cpu_disable(unsigned int cpu)
267 {
268 /*
269 * If we don't have a cpu_die method, abort before we reach the point
270 * of no return. CPU0 may not have an cpu_ops, so test for it.
271 */
272 if (!cpu_ops[cpu] || !cpu_ops[cpu]->cpu_die)
273 return -EOPNOTSUPP;
274
275 /*
276 * We may need to abort a hot unplug for some other mechanism-specific
277 * reason.
278 */
279 if (cpu_ops[cpu]->cpu_disable)
280 return cpu_ops[cpu]->cpu_disable(cpu);
281
282 return 0;
283 }
284
285 /*
286 * __cpu_disable runs on the processor to be shutdown.
287 */
__cpu_disable(void)288 int __cpu_disable(void)
289 {
290 unsigned int cpu = smp_processor_id();
291 int ret;
292
293 ret = op_cpu_disable(cpu);
294 if (ret)
295 return ret;
296
297 remove_cpu_topology(cpu);
298 numa_remove_cpu(cpu);
299
300 /*
301 * Take this CPU offline. Once we clear this, we can't return,
302 * and we must not schedule until we're ready to give up the cpu.
303 */
304 set_cpu_online(cpu, false);
305
306 /*
307 * OK - migrate IRQs away from this CPU
308 */
309 irq_migrate_all_off_this_cpu();
310
311 return 0;
312 }
313
op_cpu_kill(unsigned int cpu)314 static int op_cpu_kill(unsigned int cpu)
315 {
316 /*
317 * If we have no means of synchronising with the dying CPU, then assume
318 * that it is really dead. We can only wait for an arbitrary length of
319 * time and hope that it's dead, so let's skip the wait and just hope.
320 */
321 if (!cpu_ops[cpu]->cpu_kill)
322 return 0;
323
324 return cpu_ops[cpu]->cpu_kill(cpu);
325 }
326
327 /*
328 * called on the thread which is asking for a CPU to be shutdown -
329 * waits until shutdown has completed, or it is timed out.
330 */
__cpu_die(unsigned int cpu)331 void __cpu_die(unsigned int cpu)
332 {
333 int err;
334
335 if (!cpu_wait_death(cpu, 5)) {
336 pr_crit("CPU%u: cpu didn't die\n", cpu);
337 return;
338 }
339 pr_notice("CPU%u: shutdown\n", cpu);
340
341 /*
342 * Now that the dying CPU is beyond the point of no return w.r.t.
343 * in-kernel synchronisation, try to get the firwmare to help us to
344 * verify that it has really left the kernel before we consider
345 * clobbering anything it might still be using.
346 */
347 err = op_cpu_kill(cpu);
348 if (err)
349 pr_warn("CPU%d may not have shut down cleanly: %d\n",
350 cpu, err);
351 }
352
353 /*
354 * Called from the idle thread for the CPU which has been shutdown.
355 *
356 */
cpu_die(void)357 void cpu_die(void)
358 {
359 unsigned int cpu = smp_processor_id();
360
361 /* Save the shadow stack pointer before exiting the idle task */
362 scs_save(current);
363
364 idle_task_exit();
365
366 local_daif_mask();
367
368 /* Tell __cpu_die() that this CPU is now safe to dispose of */
369 (void)cpu_report_death();
370
371 /*
372 * Actually shutdown the CPU. This must never fail. The specific hotplug
373 * mechanism must perform all required cache maintenance to ensure that
374 * no dirty lines are lost in the process of shutting down the CPU.
375 */
376 cpu_ops[cpu]->cpu_die(cpu);
377
378 BUG();
379 }
380 #endif
381
382 /*
383 * Kill the calling secondary CPU, early in bringup before it is turned
384 * online.
385 */
cpu_die_early(void)386 void cpu_die_early(void)
387 {
388 int cpu = smp_processor_id();
389
390 pr_crit("CPU%d: will not boot\n", cpu);
391
392 /* Mark this CPU absent */
393 set_cpu_present(cpu, 0);
394
395 #ifdef CONFIG_HOTPLUG_CPU
396 update_cpu_boot_status(CPU_KILL_ME);
397 /* Check if we can park ourselves */
398 if (cpu_ops[cpu] && cpu_ops[cpu]->cpu_die)
399 cpu_ops[cpu]->cpu_die(cpu);
400 #endif
401 update_cpu_boot_status(CPU_STUCK_IN_KERNEL);
402
403 cpu_park_loop();
404 }
405
hyp_mode_check(void)406 static void __init hyp_mode_check(void)
407 {
408 if (is_hyp_mode_available())
409 pr_info("CPU: All CPU(s) started at EL2\n");
410 else if (is_hyp_mode_mismatched())
411 WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC,
412 "CPU: CPUs started in inconsistent modes");
413 else
414 pr_info("CPU: All CPU(s) started at EL1\n");
415 }
416
smp_cpus_done(unsigned int max_cpus)417 void __init smp_cpus_done(unsigned int max_cpus)
418 {
419 pr_info("SMP: Total of %d processors activated.\n", num_online_cpus());
420 setup_cpu_features();
421 hyp_mode_check();
422 apply_alternatives_all();
423 mark_linear_text_alias_ro();
424 }
425
smp_prepare_boot_cpu(void)426 void __init smp_prepare_boot_cpu(void)
427 {
428 set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
429 cpuinfo_store_boot_cpu();
430
431 /*
432 * We now know enough about the boot CPU to apply the
433 * alternatives that cannot wait until interrupt handling
434 * and/or scheduling is enabled.
435 */
436 apply_boot_alternatives();
437
438 /* Conditionally switch to GIC PMR for interrupt masking */
439 if (system_uses_irq_prio_masking())
440 init_gic_priority_masking();
441 }
442
of_get_cpu_mpidr(struct device_node * dn)443 static u64 __init of_get_cpu_mpidr(struct device_node *dn)
444 {
445 const __be32 *cell;
446 u64 hwid;
447
448 /*
449 * A cpu node with missing "reg" property is
450 * considered invalid to build a cpu_logical_map
451 * entry.
452 */
453 cell = of_get_property(dn, "reg", NULL);
454 if (!cell) {
455 pr_err("%pOF: missing reg property\n", dn);
456 return INVALID_HWID;
457 }
458
459 hwid = of_read_number(cell, of_n_addr_cells(dn));
460 /*
461 * Non affinity bits must be set to 0 in the DT
462 */
463 if (hwid & ~MPIDR_HWID_BITMASK) {
464 pr_err("%pOF: invalid reg property\n", dn);
465 return INVALID_HWID;
466 }
467 return hwid;
468 }
469
470 /*
471 * Duplicate MPIDRs are a recipe for disaster. Scan all initialized
472 * entries and check for duplicates. If any is found just ignore the
473 * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid
474 * matching valid MPIDR values.
475 */
is_mpidr_duplicate(unsigned int cpu,u64 hwid)476 static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid)
477 {
478 unsigned int i;
479
480 for (i = 1; (i < cpu) && (i < NR_CPUS); i++)
481 if (cpu_logical_map(i) == hwid)
482 return true;
483 return false;
484 }
485
486 /*
487 * Initialize cpu operations for a logical cpu and
488 * set it in the possible mask on success
489 */
smp_cpu_setup(int cpu)490 static int __init smp_cpu_setup(int cpu)
491 {
492 if (cpu_read_ops(cpu))
493 return -ENODEV;
494
495 if (cpu_ops[cpu]->cpu_init(cpu))
496 return -ENODEV;
497
498 set_cpu_possible(cpu, true);
499
500 return 0;
501 }
502
503 static bool bootcpu_valid __initdata;
504 static unsigned int cpu_count = 1;
505
506 #ifdef CONFIG_ACPI
507 static struct acpi_madt_generic_interrupt cpu_madt_gicc[NR_CPUS];
508
acpi_cpu_get_madt_gicc(int cpu)509 struct acpi_madt_generic_interrupt *acpi_cpu_get_madt_gicc(int cpu)
510 {
511 return &cpu_madt_gicc[cpu];
512 }
513
514 /*
515 * acpi_map_gic_cpu_interface - parse processor MADT entry
516 *
517 * Carry out sanity checks on MADT processor entry and initialize
518 * cpu_logical_map on success
519 */
520 static void __init
acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt * processor)521 acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor)
522 {
523 u64 hwid = processor->arm_mpidr;
524
525 if (!(processor->flags & ACPI_MADT_ENABLED)) {
526 pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid);
527 return;
528 }
529
530 if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) {
531 pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid);
532 return;
533 }
534
535 if (is_mpidr_duplicate(cpu_count, hwid)) {
536 pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid);
537 return;
538 }
539
540 /* Check if GICC structure of boot CPU is available in the MADT */
541 if (cpu_logical_map(0) == hwid) {
542 if (bootcpu_valid) {
543 pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n",
544 hwid);
545 return;
546 }
547 bootcpu_valid = true;
548 cpu_madt_gicc[0] = *processor;
549 return;
550 }
551
552 if (cpu_count >= NR_CPUS)
553 return;
554
555 /* map the logical cpu id to cpu MPIDR */
556 cpu_logical_map(cpu_count) = hwid;
557
558 cpu_madt_gicc[cpu_count] = *processor;
559
560 /*
561 * Set-up the ACPI parking protocol cpu entries
562 * while initializing the cpu_logical_map to
563 * avoid parsing MADT entries multiple times for
564 * nothing (ie a valid cpu_logical_map entry should
565 * contain a valid parking protocol data set to
566 * initialize the cpu if the parking protocol is
567 * the only available enable method).
568 */
569 acpi_set_mailbox_entry(cpu_count, processor);
570
571 cpu_count++;
572 }
573
574 static int __init
acpi_parse_gic_cpu_interface(union acpi_subtable_headers * header,const unsigned long end)575 acpi_parse_gic_cpu_interface(union acpi_subtable_headers *header,
576 const unsigned long end)
577 {
578 struct acpi_madt_generic_interrupt *processor;
579
580 processor = (struct acpi_madt_generic_interrupt *)header;
581 if (BAD_MADT_GICC_ENTRY(processor, end))
582 return -EINVAL;
583
584 acpi_table_print_madt_entry(&header->common);
585
586 acpi_map_gic_cpu_interface(processor);
587
588 return 0;
589 }
590
acpi_parse_and_init_cpus(void)591 static void __init acpi_parse_and_init_cpus(void)
592 {
593 int i;
594
595 /*
596 * do a walk of MADT to determine how many CPUs
597 * we have including disabled CPUs, and get information
598 * we need for SMP init.
599 */
600 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
601 acpi_parse_gic_cpu_interface, 0);
602
603 /*
604 * In ACPI, SMP and CPU NUMA information is provided in separate
605 * static tables, namely the MADT and the SRAT.
606 *
607 * Thus, it is simpler to first create the cpu logical map through
608 * an MADT walk and then map the logical cpus to their node ids
609 * as separate steps.
610 */
611 acpi_map_cpus_to_nodes();
612
613 for (i = 0; i < nr_cpu_ids; i++)
614 early_map_cpu_to_node(i, acpi_numa_get_nid(i));
615 }
616 #else
617 #define acpi_parse_and_init_cpus(...) do { } while (0)
618 #endif
619
620 /*
621 * Enumerate the possible CPU set from the device tree and build the
622 * cpu logical map array containing MPIDR values related to logical
623 * cpus. Assumes that cpu_logical_map(0) has already been initialized.
624 */
of_parse_and_init_cpus(void)625 static void __init of_parse_and_init_cpus(void)
626 {
627 struct device_node *dn;
628
629 for_each_of_cpu_node(dn) {
630 u64 hwid = of_get_cpu_mpidr(dn);
631
632 if (hwid == INVALID_HWID)
633 goto next;
634
635 if (is_mpidr_duplicate(cpu_count, hwid)) {
636 pr_err("%pOF: duplicate cpu reg properties in the DT\n",
637 dn);
638 goto next;
639 }
640
641 /*
642 * The numbering scheme requires that the boot CPU
643 * must be assigned logical id 0. Record it so that
644 * the logical map built from DT is validated and can
645 * be used.
646 */
647 if (hwid == cpu_logical_map(0)) {
648 if (bootcpu_valid) {
649 pr_err("%pOF: duplicate boot cpu reg property in DT\n",
650 dn);
651 goto next;
652 }
653
654 bootcpu_valid = true;
655 early_map_cpu_to_node(0, of_node_to_nid(dn));
656
657 /*
658 * cpu_logical_map has already been
659 * initialized and the boot cpu doesn't need
660 * the enable-method so continue without
661 * incrementing cpu.
662 */
663 continue;
664 }
665
666 if (cpu_count >= NR_CPUS)
667 goto next;
668
669 pr_debug("cpu logical map 0x%llx\n", hwid);
670 cpu_logical_map(cpu_count) = hwid;
671
672 early_map_cpu_to_node(cpu_count, of_node_to_nid(dn));
673 next:
674 cpu_count++;
675 }
676 }
677
678 /*
679 * Enumerate the possible CPU set from the device tree or ACPI and build the
680 * cpu logical map array containing MPIDR values related to logical
681 * cpus. Assumes that cpu_logical_map(0) has already been initialized.
682 */
smp_init_cpus(void)683 void __init smp_init_cpus(void)
684 {
685 int i;
686
687 if (acpi_disabled)
688 of_parse_and_init_cpus();
689 else
690 acpi_parse_and_init_cpus();
691
692 if (cpu_count > nr_cpu_ids)
693 pr_warn("Number of cores (%d) exceeds configured maximum of %u - clipping\n",
694 cpu_count, nr_cpu_ids);
695
696 if (!bootcpu_valid) {
697 pr_err("missing boot CPU MPIDR, not enabling secondaries\n");
698 return;
699 }
700
701 /*
702 * We need to set the cpu_logical_map entries before enabling
703 * the cpus so that cpu processor description entries (DT cpu nodes
704 * and ACPI MADT entries) can be retrieved by matching the cpu hwid
705 * with entries in cpu_logical_map while initializing the cpus.
706 * If the cpu set-up fails, invalidate the cpu_logical_map entry.
707 */
708 for (i = 1; i < nr_cpu_ids; i++) {
709 if (cpu_logical_map(i) != INVALID_HWID) {
710 if (smp_cpu_setup(i))
711 cpu_logical_map(i) = INVALID_HWID;
712 }
713 }
714 }
715
smp_prepare_cpus(unsigned int max_cpus)716 void __init smp_prepare_cpus(unsigned int max_cpus)
717 {
718 int err;
719 unsigned int cpu;
720 unsigned int this_cpu;
721
722 init_cpu_topology();
723
724 this_cpu = smp_processor_id();
725 store_cpu_topology(this_cpu);
726 numa_store_cpu_info(this_cpu);
727 numa_add_cpu(this_cpu);
728
729 /*
730 * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set
731 * secondary CPUs present.
732 */
733 if (max_cpus == 0)
734 return;
735
736 /*
737 * Initialise the present map (which describes the set of CPUs
738 * actually populated at the present time) and release the
739 * secondaries from the bootloader.
740 */
741 for_each_possible_cpu(cpu) {
742
743 per_cpu(cpu_number, cpu) = cpu;
744
745 if (cpu == smp_processor_id())
746 continue;
747
748 if (!cpu_ops[cpu])
749 continue;
750
751 err = cpu_ops[cpu]->cpu_prepare(cpu);
752 if (err)
753 continue;
754
755 set_cpu_present(cpu, true);
756 numa_store_cpu_info(cpu);
757 }
758 }
759
760 void (*__smp_cross_call)(const struct cpumask *, unsigned int);
761
set_smp_cross_call(void (* fn)(const struct cpumask *,unsigned int))762 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
763 {
764 __smp_cross_call = fn;
765 }
766
767 static const char *ipi_types[NR_IPI] __tracepoint_string = {
768 #define S(x,s) [x] = s
769 S(IPI_RESCHEDULE, "Rescheduling interrupts"),
770 S(IPI_CALL_FUNC, "Function call interrupts"),
771 S(IPI_CPU_STOP, "CPU stop interrupts"),
772 S(IPI_CPU_CRASH_STOP, "CPU stop (for crash dump) interrupts"),
773 S(IPI_TIMER, "Timer broadcast interrupts"),
774 S(IPI_IRQ_WORK, "IRQ work interrupts"),
775 S(IPI_WAKEUP, "CPU wake-up interrupts"),
776 };
777
smp_cross_call(const struct cpumask * target,unsigned int ipinr)778 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
779 {
780 trace_ipi_raise(target, ipi_types[ipinr]);
781 __smp_cross_call(target, ipinr);
782 }
783
show_ipi_list(struct seq_file * p,int prec)784 void show_ipi_list(struct seq_file *p, int prec)
785 {
786 unsigned int cpu, i;
787
788 for (i = 0; i < NR_IPI; i++) {
789 seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i,
790 prec >= 4 ? " " : "");
791 for_each_online_cpu(cpu)
792 seq_printf(p, "%10u ",
793 __get_irq_stat(cpu, ipi_irqs[i]));
794 seq_printf(p, " %s\n", ipi_types[i]);
795 }
796 }
797
smp_irq_stat_cpu(unsigned int cpu)798 u64 smp_irq_stat_cpu(unsigned int cpu)
799 {
800 u64 sum = 0;
801 int i;
802
803 for (i = 0; i < NR_IPI; i++)
804 sum += __get_irq_stat(cpu, ipi_irqs[i]);
805
806 return sum;
807 }
808
arch_send_call_function_ipi_mask(const struct cpumask * mask)809 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
810 {
811 smp_cross_call(mask, IPI_CALL_FUNC);
812 }
813
arch_send_call_function_single_ipi(int cpu)814 void arch_send_call_function_single_ipi(int cpu)
815 {
816 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
817 }
818
819 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
arch_send_wakeup_ipi_mask(const struct cpumask * mask)820 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
821 {
822 smp_cross_call(mask, IPI_WAKEUP);
823 }
824 #endif
825
826 #ifdef CONFIG_IRQ_WORK
arch_irq_work_raise(void)827 void arch_irq_work_raise(void)
828 {
829 if (__smp_cross_call)
830 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
831 }
832 #endif
833
local_cpu_stop(void)834 static void local_cpu_stop(void)
835 {
836 set_cpu_online(smp_processor_id(), false);
837
838 local_daif_mask();
839 sdei_mask_local_cpu();
840 cpu_park_loop();
841 }
842
843 /*
844 * We need to implement panic_smp_self_stop() for parallel panic() calls, so
845 * that cpu_online_mask gets correctly updated and smp_send_stop() can skip
846 * CPUs that have already stopped themselves.
847 */
panic_smp_self_stop(void)848 void panic_smp_self_stop(void)
849 {
850 local_cpu_stop();
851 }
852
853 #ifdef CONFIG_KEXEC_CORE
854 static atomic_t waiting_for_crash_ipi = ATOMIC_INIT(0);
855 #endif
856
ipi_cpu_crash_stop(unsigned int cpu,struct pt_regs * regs)857 static void ipi_cpu_crash_stop(unsigned int cpu, struct pt_regs *regs)
858 {
859 #ifdef CONFIG_KEXEC_CORE
860 crash_save_cpu(regs, cpu);
861
862 atomic_dec(&waiting_for_crash_ipi);
863
864 local_irq_disable();
865 sdei_mask_local_cpu();
866
867 #ifdef CONFIG_HOTPLUG_CPU
868 if (cpu_ops[cpu]->cpu_die)
869 cpu_ops[cpu]->cpu_die(cpu);
870 #endif
871
872 /* just in case */
873 cpu_park_loop();
874 #endif
875 }
876
877 /*
878 * Main handler for inter-processor interrupts
879 */
handle_IPI(int ipinr,struct pt_regs * regs)880 void handle_IPI(int ipinr, struct pt_regs *regs)
881 {
882 unsigned int cpu = smp_processor_id();
883 struct pt_regs *old_regs = set_irq_regs(regs);
884
885 if ((unsigned)ipinr < NR_IPI) {
886 trace_ipi_entry_rcuidle(ipi_types[ipinr]);
887 __inc_irq_stat(cpu, ipi_irqs[ipinr]);
888 }
889
890 switch (ipinr) {
891 case IPI_RESCHEDULE:
892 scheduler_ipi();
893 break;
894
895 case IPI_CALL_FUNC:
896 irq_enter();
897 generic_smp_call_function_interrupt();
898 irq_exit();
899 break;
900
901 case IPI_CPU_STOP:
902 irq_enter();
903 local_cpu_stop();
904 irq_exit();
905 break;
906
907 case IPI_CPU_CRASH_STOP:
908 if (IS_ENABLED(CONFIG_KEXEC_CORE)) {
909 irq_enter();
910 ipi_cpu_crash_stop(cpu, regs);
911
912 unreachable();
913 }
914 break;
915
916 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
917 case IPI_TIMER:
918 irq_enter();
919 tick_receive_broadcast();
920 irq_exit();
921 break;
922 #endif
923
924 #ifdef CONFIG_IRQ_WORK
925 case IPI_IRQ_WORK:
926 irq_enter();
927 irq_work_run();
928 irq_exit();
929 break;
930 #endif
931
932 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
933 case IPI_WAKEUP:
934 WARN_ONCE(!acpi_parking_protocol_valid(cpu),
935 "CPU%u: Wake-up IPI outside the ACPI parking protocol\n",
936 cpu);
937 break;
938 #endif
939
940 default:
941 pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr);
942 break;
943 }
944
945 if ((unsigned)ipinr < NR_IPI)
946 trace_ipi_exit_rcuidle(ipi_types[ipinr]);
947 set_irq_regs(old_regs);
948 }
949
smp_send_reschedule(int cpu)950 void smp_send_reschedule(int cpu)
951 {
952 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
953 }
954
955 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
tick_broadcast(const struct cpumask * mask)956 void tick_broadcast(const struct cpumask *mask)
957 {
958 smp_cross_call(mask, IPI_TIMER);
959 }
960 #endif
961
smp_send_stop(void)962 void smp_send_stop(void)
963 {
964 unsigned long timeout;
965
966 if (num_online_cpus() > 1) {
967 cpumask_t mask;
968
969 cpumask_copy(&mask, cpu_online_mask);
970 cpumask_clear_cpu(smp_processor_id(), &mask);
971
972 if (system_state <= SYSTEM_RUNNING)
973 pr_crit("SMP: stopping secondary CPUs\n");
974 smp_cross_call(&mask, IPI_CPU_STOP);
975 }
976
977 /* Wait up to one second for other CPUs to stop */
978 timeout = USEC_PER_SEC;
979 while (num_online_cpus() > 1 && timeout--)
980 udelay(1);
981
982 if (num_online_cpus() > 1)
983 pr_warning("SMP: failed to stop secondary CPUs %*pbl\n",
984 cpumask_pr_args(cpu_online_mask));
985
986 sdei_mask_local_cpu();
987 }
988
989 #ifdef CONFIG_KEXEC_CORE
crash_smp_send_stop(void)990 void crash_smp_send_stop(void)
991 {
992 static int cpus_stopped;
993 cpumask_t mask;
994 unsigned long timeout;
995
996 /*
997 * This function can be called twice in panic path, but obviously
998 * we execute this only once.
999 */
1000 if (cpus_stopped)
1001 return;
1002
1003 cpus_stopped = 1;
1004
1005 if (num_online_cpus() == 1) {
1006 sdei_mask_local_cpu();
1007 return;
1008 }
1009
1010 cpumask_copy(&mask, cpu_online_mask);
1011 cpumask_clear_cpu(smp_processor_id(), &mask);
1012
1013 atomic_set(&waiting_for_crash_ipi, num_online_cpus() - 1);
1014
1015 pr_crit("SMP: stopping secondary CPUs\n");
1016 smp_cross_call(&mask, IPI_CPU_CRASH_STOP);
1017
1018 /* Wait up to one second for other CPUs to stop */
1019 timeout = USEC_PER_SEC;
1020 while ((atomic_read(&waiting_for_crash_ipi) > 0) && timeout--)
1021 udelay(1);
1022
1023 if (atomic_read(&waiting_for_crash_ipi) > 0)
1024 pr_warning("SMP: failed to stop secondary CPUs %*pbl\n",
1025 cpumask_pr_args(&mask));
1026
1027 sdei_mask_local_cpu();
1028 }
1029
smp_crash_stop_failed(void)1030 bool smp_crash_stop_failed(void)
1031 {
1032 return (atomic_read(&waiting_for_crash_ipi) > 0);
1033 }
1034 #endif
1035
1036 /*
1037 * not supported here
1038 */
setup_profiling_timer(unsigned int multiplier)1039 int setup_profiling_timer(unsigned int multiplier)
1040 {
1041 return -EINVAL;
1042 }
1043
have_cpu_die(void)1044 static bool have_cpu_die(void)
1045 {
1046 #ifdef CONFIG_HOTPLUG_CPU
1047 int any_cpu = raw_smp_processor_id();
1048
1049 if (cpu_ops[any_cpu] && cpu_ops[any_cpu]->cpu_die)
1050 return true;
1051 #endif
1052 return false;
1053 }
1054
cpus_are_stuck_in_kernel(void)1055 bool cpus_are_stuck_in_kernel(void)
1056 {
1057 bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die());
1058
1059 return !!cpus_stuck_in_kernel || smp_spin_tables;
1060 }
1061