1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * TLB support routines.
4 *
5 * Copyright (C) 1998-2001, 2003 Hewlett-Packard Co
6 * David Mosberger-Tang <davidm@hpl.hp.com>
7 *
8 * 08/02/00 A. Mallick <asit.k.mallick@intel.com>
9 * Modified RID allocation for SMP
10 * Goutham Rao <goutham.rao@intel.com>
11 * IPI based ptc implementation and A-step IPI implementation.
12 * Rohit Seth <rohit.seth@intel.com>
13 * Ken Chen <kenneth.w.chen@intel.com>
14 * Christophe de Dinechin <ddd@hp.com>: Avoid ptc.e on memory allocation
15 * Copyright (C) 2007 Intel Corp
16 * Fenghua Yu <fenghua.yu@intel.com>
17 * Add multiple ptc.g/ptc.ga instruction support in global tlb purge.
18 */
19 #include <linux/module.h>
20 #include <linux/init.h>
21 #include <linux/kernel.h>
22 #include <linux/sched.h>
23 #include <linux/smp.h>
24 #include <linux/mm.h>
25 #include <linux/memblock.h>
26 #include <linux/slab.h>
27
28 #include <asm/delay.h>
29 #include <asm/mmu_context.h>
30 #include <asm/pgalloc.h>
31 #include <asm/pal.h>
32 #include <asm/tlbflush.h>
33 #include <asm/dma.h>
34 #include <asm/processor.h>
35 #include <asm/sal.h>
36 #include <asm/tlb.h>
37
38 static struct {
39 u64 mask; /* mask of supported purge page-sizes */
40 unsigned long max_bits; /* log2 of largest supported purge page-size */
41 } purge;
42
43 struct ia64_ctx ia64_ctx = {
44 .lock = __SPIN_LOCK_UNLOCKED(ia64_ctx.lock),
45 .next = 1,
46 .max_ctx = ~0U
47 };
48
49 DEFINE_PER_CPU(u8, ia64_need_tlb_flush);
50 DEFINE_PER_CPU(u8, ia64_tr_num); /*Number of TR slots in current processor*/
51 DEFINE_PER_CPU(u8, ia64_tr_used); /*Max Slot number used by kernel*/
52
53 struct ia64_tr_entry *ia64_idtrs[NR_CPUS];
54
55 /*
56 * Initializes the ia64_ctx.bitmap array based on max_ctx+1.
57 * Called after cpu_init() has setup ia64_ctx.max_ctx based on
58 * maximum RID that is supported by boot CPU.
59 */
60 void __init
mmu_context_init(void)61 mmu_context_init (void)
62 {
63 ia64_ctx.bitmap = memblock_alloc((ia64_ctx.max_ctx + 1) >> 3,
64 SMP_CACHE_BYTES);
65 if (!ia64_ctx.bitmap)
66 panic("%s: Failed to allocate %u bytes\n", __func__,
67 (ia64_ctx.max_ctx + 1) >> 3);
68 ia64_ctx.flushmap = memblock_alloc((ia64_ctx.max_ctx + 1) >> 3,
69 SMP_CACHE_BYTES);
70 if (!ia64_ctx.flushmap)
71 panic("%s: Failed to allocate %u bytes\n", __func__,
72 (ia64_ctx.max_ctx + 1) >> 3);
73 }
74
75 /*
76 * Acquire the ia64_ctx.lock before calling this function!
77 */
78 void
wrap_mmu_context(struct mm_struct * mm)79 wrap_mmu_context (struct mm_struct *mm)
80 {
81 int i, cpu;
82 unsigned long flush_bit;
83
84 for (i=0; i <= ia64_ctx.max_ctx / BITS_PER_LONG; i++) {
85 flush_bit = xchg(&ia64_ctx.flushmap[i], 0);
86 ia64_ctx.bitmap[i] ^= flush_bit;
87 }
88
89 /* use offset at 300 to skip daemons */
90 ia64_ctx.next = find_next_zero_bit(ia64_ctx.bitmap,
91 ia64_ctx.max_ctx, 300);
92 ia64_ctx.limit = find_next_bit(ia64_ctx.bitmap,
93 ia64_ctx.max_ctx, ia64_ctx.next);
94
95 /*
96 * can't call flush_tlb_all() here because of race condition
97 * with O(1) scheduler [EF]
98 */
99 cpu = get_cpu(); /* prevent preemption/migration */
100 for_each_online_cpu(i)
101 if (i != cpu)
102 per_cpu(ia64_need_tlb_flush, i) = 1;
103 put_cpu();
104 local_flush_tlb_all();
105 }
106
107 /*
108 * Implement "spinaphores" ... like counting semaphores, but they
109 * spin instead of sleeping. If there are ever any other users for
110 * this primitive it can be moved up to a spinaphore.h header.
111 */
112 struct spinaphore {
113 unsigned long ticket;
114 unsigned long serve;
115 };
116
spinaphore_init(struct spinaphore * ss,int val)117 static inline void spinaphore_init(struct spinaphore *ss, int val)
118 {
119 ss->ticket = 0;
120 ss->serve = val;
121 }
122
down_spin(struct spinaphore * ss)123 static inline void down_spin(struct spinaphore *ss)
124 {
125 unsigned long t = ia64_fetchadd(1, &ss->ticket, acq), serve;
126
127 if (time_before(t, ss->serve))
128 return;
129
130 ia64_invala();
131
132 for (;;) {
133 asm volatile ("ld8.c.nc %0=[%1]" : "=r"(serve) : "r"(&ss->serve) : "memory");
134 if (time_before(t, serve))
135 return;
136 cpu_relax();
137 }
138 }
139
up_spin(struct spinaphore * ss)140 static inline void up_spin(struct spinaphore *ss)
141 {
142 ia64_fetchadd(1, &ss->serve, rel);
143 }
144
145 static struct spinaphore ptcg_sem;
146 static u16 nptcg = 1;
147 static int need_ptcg_sem = 1;
148 static int toolatetochangeptcgsem = 0;
149
150 /*
151 * Kernel parameter "nptcg=" overrides max number of concurrent global TLB
152 * purges which is reported from either PAL or SAL PALO.
153 *
154 * We don't have sanity checking for nptcg value. It's the user's responsibility
155 * for valid nptcg value on the platform. Otherwise, kernel may hang in some
156 * cases.
157 */
158 static int __init
set_nptcg(char * str)159 set_nptcg(char *str)
160 {
161 int value = 0;
162
163 get_option(&str, &value);
164 setup_ptcg_sem(value, NPTCG_FROM_KERNEL_PARAMETER);
165
166 return 1;
167 }
168
169 __setup("nptcg=", set_nptcg);
170
171 /*
172 * Maximum number of simultaneous ptc.g purges in the system can
173 * be defined by PAL_VM_SUMMARY (in which case we should take
174 * the smallest value for any cpu in the system) or by the PAL
175 * override table (in which case we should ignore the value from
176 * PAL_VM_SUMMARY).
177 *
178 * Kernel parameter "nptcg=" overrides maximum number of simultanesous ptc.g
179 * purges defined in either PAL_VM_SUMMARY or PAL override table. In this case,
180 * we should ignore the value from either PAL_VM_SUMMARY or PAL override table.
181 *
182 * Complicating the logic here is the fact that num_possible_cpus()
183 * isn't fully setup until we start bringing cpus online.
184 */
185 void
setup_ptcg_sem(int max_purges,int nptcg_from)186 setup_ptcg_sem(int max_purges, int nptcg_from)
187 {
188 static int kp_override;
189 static int palo_override;
190 static int firstcpu = 1;
191
192 if (toolatetochangeptcgsem) {
193 if (nptcg_from == NPTCG_FROM_PAL && max_purges == 0)
194 BUG_ON(1 < nptcg);
195 else
196 BUG_ON(max_purges < nptcg);
197 return;
198 }
199
200 if (nptcg_from == NPTCG_FROM_KERNEL_PARAMETER) {
201 kp_override = 1;
202 nptcg = max_purges;
203 goto resetsema;
204 }
205 if (kp_override) {
206 need_ptcg_sem = num_possible_cpus() > nptcg;
207 return;
208 }
209
210 if (nptcg_from == NPTCG_FROM_PALO) {
211 palo_override = 1;
212
213 /* In PALO max_purges == 0 really means it! */
214 if (max_purges == 0)
215 panic("Whoa! Platform does not support global TLB purges.\n");
216 nptcg = max_purges;
217 if (nptcg == PALO_MAX_TLB_PURGES) {
218 need_ptcg_sem = 0;
219 return;
220 }
221 goto resetsema;
222 }
223 if (palo_override) {
224 if (nptcg != PALO_MAX_TLB_PURGES)
225 need_ptcg_sem = (num_possible_cpus() > nptcg);
226 return;
227 }
228
229 /* In PAL_VM_SUMMARY max_purges == 0 actually means 1 */
230 if (max_purges == 0) max_purges = 1;
231
232 if (firstcpu) {
233 nptcg = max_purges;
234 firstcpu = 0;
235 }
236 if (max_purges < nptcg)
237 nptcg = max_purges;
238 if (nptcg == PAL_MAX_PURGES) {
239 need_ptcg_sem = 0;
240 return;
241 } else
242 need_ptcg_sem = (num_possible_cpus() > nptcg);
243
244 resetsema:
245 spinaphore_init(&ptcg_sem, max_purges);
246 }
247
248 #ifdef CONFIG_SMP
249 static void
ia64_global_tlb_purge(struct mm_struct * mm,unsigned long start,unsigned long end,unsigned long nbits)250 ia64_global_tlb_purge (struct mm_struct *mm, unsigned long start,
251 unsigned long end, unsigned long nbits)
252 {
253 struct mm_struct *active_mm = current->active_mm;
254
255 toolatetochangeptcgsem = 1;
256
257 if (mm != active_mm) {
258 /* Restore region IDs for mm */
259 if (mm && active_mm) {
260 activate_context(mm);
261 } else {
262 flush_tlb_all();
263 return;
264 }
265 }
266
267 if (need_ptcg_sem)
268 down_spin(&ptcg_sem);
269
270 do {
271 /*
272 * Flush ALAT entries also.
273 */
274 ia64_ptcga(start, (nbits << 2));
275 ia64_srlz_i();
276 start += (1UL << nbits);
277 } while (start < end);
278
279 if (need_ptcg_sem)
280 up_spin(&ptcg_sem);
281
282 if (mm != active_mm) {
283 activate_context(active_mm);
284 }
285 }
286 #endif /* CONFIG_SMP */
287
288 void
local_flush_tlb_all(void)289 local_flush_tlb_all (void)
290 {
291 unsigned long i, j, flags, count0, count1, stride0, stride1, addr;
292
293 addr = local_cpu_data->ptce_base;
294 count0 = local_cpu_data->ptce_count[0];
295 count1 = local_cpu_data->ptce_count[1];
296 stride0 = local_cpu_data->ptce_stride[0];
297 stride1 = local_cpu_data->ptce_stride[1];
298
299 local_irq_save(flags);
300 for (i = 0; i < count0; ++i) {
301 for (j = 0; j < count1; ++j) {
302 ia64_ptce(addr);
303 addr += stride1;
304 }
305 addr += stride0;
306 }
307 local_irq_restore(flags);
308 ia64_srlz_i(); /* srlz.i implies srlz.d */
309 }
310
311 static void
__flush_tlb_range(struct vm_area_struct * vma,unsigned long start,unsigned long end)312 __flush_tlb_range (struct vm_area_struct *vma, unsigned long start,
313 unsigned long end)
314 {
315 struct mm_struct *mm = vma->vm_mm;
316 unsigned long size = end - start;
317 unsigned long nbits;
318
319 #ifndef CONFIG_SMP
320 if (mm != current->active_mm) {
321 mm->context = 0;
322 return;
323 }
324 #endif
325
326 nbits = ia64_fls(size + 0xfff);
327 while (unlikely (((1UL << nbits) & purge.mask) == 0) &&
328 (nbits < purge.max_bits))
329 ++nbits;
330 if (nbits > purge.max_bits)
331 nbits = purge.max_bits;
332 start &= ~((1UL << nbits) - 1);
333
334 preempt_disable();
335 #ifdef CONFIG_SMP
336 if (mm != current->active_mm || cpumask_weight(mm_cpumask(mm)) != 1) {
337 ia64_global_tlb_purge(mm, start, end, nbits);
338 preempt_enable();
339 return;
340 }
341 #endif
342 do {
343 ia64_ptcl(start, (nbits<<2));
344 start += (1UL << nbits);
345 } while (start < end);
346 preempt_enable();
347 ia64_srlz_i(); /* srlz.i implies srlz.d */
348 }
349
flush_tlb_range(struct vm_area_struct * vma,unsigned long start,unsigned long end)350 void flush_tlb_range(struct vm_area_struct *vma,
351 unsigned long start, unsigned long end)
352 {
353 if (unlikely(end - start >= 1024*1024*1024*1024UL
354 || REGION_NUMBER(start) != REGION_NUMBER(end - 1))) {
355 /*
356 * If we flush more than a tera-byte or across regions, we're
357 * probably better off just flushing the entire TLB(s). This
358 * should be very rare and is not worth optimizing for.
359 */
360 flush_tlb_all();
361 } else {
362 /* flush the address range from the tlb */
363 __flush_tlb_range(vma, start, end);
364 /* flush the virt. page-table area mapping the addr range */
365 __flush_tlb_range(vma, ia64_thash(start), ia64_thash(end));
366 }
367 }
368 EXPORT_SYMBOL(flush_tlb_range);
369
ia64_tlb_init(void)370 void ia64_tlb_init(void)
371 {
372 ia64_ptce_info_t uninitialized_var(ptce_info); /* GCC be quiet */
373 u64 tr_pgbits;
374 long status;
375 pal_vm_info_1_u_t vm_info_1;
376 pal_vm_info_2_u_t vm_info_2;
377 int cpu = smp_processor_id();
378
379 if ((status = ia64_pal_vm_page_size(&tr_pgbits, &purge.mask)) != 0) {
380 printk(KERN_ERR "PAL_VM_PAGE_SIZE failed with status=%ld; "
381 "defaulting to architected purge page-sizes.\n", status);
382 purge.mask = 0x115557000UL;
383 }
384 purge.max_bits = ia64_fls(purge.mask);
385
386 ia64_get_ptce(&ptce_info);
387 local_cpu_data->ptce_base = ptce_info.base;
388 local_cpu_data->ptce_count[0] = ptce_info.count[0];
389 local_cpu_data->ptce_count[1] = ptce_info.count[1];
390 local_cpu_data->ptce_stride[0] = ptce_info.stride[0];
391 local_cpu_data->ptce_stride[1] = ptce_info.stride[1];
392
393 local_flush_tlb_all(); /* nuke left overs from bootstrapping... */
394 status = ia64_pal_vm_summary(&vm_info_1, &vm_info_2);
395
396 if (status) {
397 printk(KERN_ERR "ia64_pal_vm_summary=%ld\n", status);
398 per_cpu(ia64_tr_num, cpu) = 8;
399 return;
400 }
401 per_cpu(ia64_tr_num, cpu) = vm_info_1.pal_vm_info_1_s.max_itr_entry+1;
402 if (per_cpu(ia64_tr_num, cpu) >
403 (vm_info_1.pal_vm_info_1_s.max_dtr_entry+1))
404 per_cpu(ia64_tr_num, cpu) =
405 vm_info_1.pal_vm_info_1_s.max_dtr_entry+1;
406 if (per_cpu(ia64_tr_num, cpu) > IA64_TR_ALLOC_MAX) {
407 static int justonce = 1;
408 per_cpu(ia64_tr_num, cpu) = IA64_TR_ALLOC_MAX;
409 if (justonce) {
410 justonce = 0;
411 printk(KERN_DEBUG "TR register number exceeds "
412 "IA64_TR_ALLOC_MAX!\n");
413 }
414 }
415 }
416
417 /*
418 * is_tr_overlap
419 *
420 * Check overlap with inserted TRs.
421 */
is_tr_overlap(struct ia64_tr_entry * p,u64 va,u64 log_size)422 static int is_tr_overlap(struct ia64_tr_entry *p, u64 va, u64 log_size)
423 {
424 u64 tr_log_size;
425 u64 tr_end;
426 u64 va_rr = ia64_get_rr(va);
427 u64 va_rid = RR_TO_RID(va_rr);
428 u64 va_end = va + (1<<log_size) - 1;
429
430 if (va_rid != RR_TO_RID(p->rr))
431 return 0;
432 tr_log_size = (p->itir & 0xff) >> 2;
433 tr_end = p->ifa + (1<<tr_log_size) - 1;
434
435 if (va > tr_end || p->ifa > va_end)
436 return 0;
437 return 1;
438
439 }
440
441 /*
442 * ia64_insert_tr in virtual mode. Allocate a TR slot
443 *
444 * target_mask : 0x1 : itr, 0x2 : dtr, 0x3 : idtr
445 *
446 * va : virtual address.
447 * pte : pte entries inserted.
448 * log_size: range to be covered.
449 *
450 * Return value: <0 : error No.
451 *
452 * >=0 : slot number allocated for TR.
453 * Must be called with preemption disabled.
454 */
ia64_itr_entry(u64 target_mask,u64 va,u64 pte,u64 log_size)455 int ia64_itr_entry(u64 target_mask, u64 va, u64 pte, u64 log_size)
456 {
457 int i, r;
458 unsigned long psr;
459 struct ia64_tr_entry *p;
460 int cpu = smp_processor_id();
461
462 if (!ia64_idtrs[cpu]) {
463 ia64_idtrs[cpu] = kmalloc_array(2 * IA64_TR_ALLOC_MAX,
464 sizeof(struct ia64_tr_entry),
465 GFP_KERNEL);
466 if (!ia64_idtrs[cpu])
467 return -ENOMEM;
468 }
469 r = -EINVAL;
470 /*Check overlap with existing TR entries*/
471 if (target_mask & 0x1) {
472 p = ia64_idtrs[cpu];
473 for (i = IA64_TR_ALLOC_BASE; i <= per_cpu(ia64_tr_used, cpu);
474 i++, p++) {
475 if (p->pte & 0x1)
476 if (is_tr_overlap(p, va, log_size)) {
477 printk(KERN_DEBUG "Overlapped Entry"
478 "Inserted for TR Register!!\n");
479 goto out;
480 }
481 }
482 }
483 if (target_mask & 0x2) {
484 p = ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX;
485 for (i = IA64_TR_ALLOC_BASE; i <= per_cpu(ia64_tr_used, cpu);
486 i++, p++) {
487 if (p->pte & 0x1)
488 if (is_tr_overlap(p, va, log_size)) {
489 printk(KERN_DEBUG "Overlapped Entry"
490 "Inserted for TR Register!!\n");
491 goto out;
492 }
493 }
494 }
495
496 for (i = IA64_TR_ALLOC_BASE; i < per_cpu(ia64_tr_num, cpu); i++) {
497 switch (target_mask & 0x3) {
498 case 1:
499 if (!((ia64_idtrs[cpu] + i)->pte & 0x1))
500 goto found;
501 continue;
502 case 2:
503 if (!((ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX + i)->pte & 0x1))
504 goto found;
505 continue;
506 case 3:
507 if (!((ia64_idtrs[cpu] + i)->pte & 0x1) &&
508 !((ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX + i)->pte & 0x1))
509 goto found;
510 continue;
511 default:
512 r = -EINVAL;
513 goto out;
514 }
515 }
516 found:
517 if (i >= per_cpu(ia64_tr_num, cpu))
518 return -EBUSY;
519
520 /*Record tr info for mca hander use!*/
521 if (i > per_cpu(ia64_tr_used, cpu))
522 per_cpu(ia64_tr_used, cpu) = i;
523
524 psr = ia64_clear_ic();
525 if (target_mask & 0x1) {
526 ia64_itr(0x1, i, va, pte, log_size);
527 ia64_srlz_i();
528 p = ia64_idtrs[cpu] + i;
529 p->ifa = va;
530 p->pte = pte;
531 p->itir = log_size << 2;
532 p->rr = ia64_get_rr(va);
533 }
534 if (target_mask & 0x2) {
535 ia64_itr(0x2, i, va, pte, log_size);
536 ia64_srlz_i();
537 p = ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX + i;
538 p->ifa = va;
539 p->pte = pte;
540 p->itir = log_size << 2;
541 p->rr = ia64_get_rr(va);
542 }
543 ia64_set_psr(psr);
544 r = i;
545 out:
546 return r;
547 }
548 EXPORT_SYMBOL_GPL(ia64_itr_entry);
549
550 /*
551 * ia64_purge_tr
552 *
553 * target_mask: 0x1: purge itr, 0x2 : purge dtr, 0x3 purge idtr.
554 * slot: slot number to be freed.
555 *
556 * Must be called with preemption disabled.
557 */
ia64_ptr_entry(u64 target_mask,int slot)558 void ia64_ptr_entry(u64 target_mask, int slot)
559 {
560 int cpu = smp_processor_id();
561 int i;
562 struct ia64_tr_entry *p;
563
564 if (slot < IA64_TR_ALLOC_BASE || slot >= per_cpu(ia64_tr_num, cpu))
565 return;
566
567 if (target_mask & 0x1) {
568 p = ia64_idtrs[cpu] + slot;
569 if ((p->pte&0x1) && is_tr_overlap(p, p->ifa, p->itir>>2)) {
570 p->pte = 0;
571 ia64_ptr(0x1, p->ifa, p->itir>>2);
572 ia64_srlz_i();
573 }
574 }
575
576 if (target_mask & 0x2) {
577 p = ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX + slot;
578 if ((p->pte & 0x1) && is_tr_overlap(p, p->ifa, p->itir>>2)) {
579 p->pte = 0;
580 ia64_ptr(0x2, p->ifa, p->itir>>2);
581 ia64_srlz_i();
582 }
583 }
584
585 for (i = per_cpu(ia64_tr_used, cpu); i >= IA64_TR_ALLOC_BASE; i--) {
586 if (((ia64_idtrs[cpu] + i)->pte & 0x1) ||
587 ((ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX + i)->pte & 0x1))
588 break;
589 }
590 per_cpu(ia64_tr_used, cpu) = i;
591 }
592 EXPORT_SYMBOL_GPL(ia64_ptr_entry);
593