1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 2004-2007 Cavium Networks
7 * Copyright (C) 2008, 2009 Wind River Systems
8 * written by Ralf Baechle <ralf@linux-mips.org>
9 */
10 #include <linux/compiler.h>
11 #include <linux/vmalloc.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/console.h>
15 #include <linux/delay.h>
16 #include <linux/export.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/serial.h>
20 #include <linux/smp.h>
21 #include <linux/types.h>
22 #include <linux/string.h> /* for memset */
23 #include <linux/tty.h>
24 #include <linux/time.h>
25 #include <linux/platform_device.h>
26 #include <linux/serial_core.h>
27 #include <linux/serial_8250.h>
28 #include <linux/of_fdt.h>
29 #include <linux/libfdt.h>
30 #include <linux/kexec.h>
31
32 #include <asm/processor.h>
33 #include <asm/reboot.h>
34 #include <asm/smp-ops.h>
35 #include <asm/irq_cpu.h>
36 #include <asm/mipsregs.h>
37 #include <asm/bootinfo.h>
38 #include <asm/sections.h>
39 #include <asm/fw/fw.h>
40 #include <asm/setup.h>
41 #include <asm/prom.h>
42 #include <asm/time.h>
43
44 #include <asm/octeon/octeon.h>
45 #include <asm/octeon/pci-octeon.h>
46 #include <asm/octeon/cvmx-rst-defs.h>
47
48 /*
49 * TRUE for devices having registers with little-endian byte
50 * order, FALSE for registers with native-endian byte order.
51 * PCI mandates little-endian, USB and SATA are configuraable,
52 * but we chose little-endian for these.
53 */
54 const bool octeon_should_swizzle_table[256] = {
55 [0x00] = true, /* bootbus/CF */
56 [0x1b] = true, /* PCI mmio window */
57 [0x1c] = true, /* PCI mmio window */
58 [0x1d] = true, /* PCI mmio window */
59 [0x1e] = true, /* PCI mmio window */
60 [0x68] = true, /* OCTEON III USB */
61 [0x69] = true, /* OCTEON III USB */
62 [0x6c] = true, /* OCTEON III SATA */
63 [0x6f] = true, /* OCTEON II USB */
64 };
65 EXPORT_SYMBOL(octeon_should_swizzle_table);
66
67 #ifdef CONFIG_PCI
68 extern void pci_console_init(const char *arg);
69 #endif
70
71 static unsigned long long max_memory = ULLONG_MAX;
72 static unsigned long long reserve_low_mem;
73
74 DEFINE_SEMAPHORE(octeon_bootbus_sem);
75 EXPORT_SYMBOL(octeon_bootbus_sem);
76
77 static struct octeon_boot_descriptor *octeon_boot_desc_ptr;
78
79 struct cvmx_bootinfo *octeon_bootinfo;
80 EXPORT_SYMBOL(octeon_bootinfo);
81
82 #ifdef CONFIG_KEXEC
83 #ifdef CONFIG_SMP
84 /*
85 * Wait for relocation code is prepared and send
86 * secondary CPUs to spin until kernel is relocated.
87 */
octeon_kexec_smp_down(void * ignored)88 static void octeon_kexec_smp_down(void *ignored)
89 {
90 int cpu = smp_processor_id();
91
92 local_irq_disable();
93 set_cpu_online(cpu, false);
94 while (!atomic_read(&kexec_ready_to_reboot))
95 cpu_relax();
96
97 asm volatile (
98 " sync \n"
99 " synci ($0) \n");
100
101 kexec_reboot();
102 }
103 #endif
104
105 #define OCTEON_DDR0_BASE (0x0ULL)
106 #define OCTEON_DDR0_SIZE (0x010000000ULL)
107 #define OCTEON_DDR1_BASE (0x410000000ULL)
108 #define OCTEON_DDR1_SIZE (0x010000000ULL)
109 #define OCTEON_DDR2_BASE (0x020000000ULL)
110 #define OCTEON_DDR2_SIZE (0x3e0000000ULL)
111 #define OCTEON_MAX_PHY_MEM_SIZE (16*1024*1024*1024ULL)
112
113 static struct kimage *kimage_ptr;
114
kexec_bootmem_init(uint64_t mem_size,uint32_t low_reserved_bytes)115 static void kexec_bootmem_init(uint64_t mem_size, uint32_t low_reserved_bytes)
116 {
117 int64_t addr;
118 struct cvmx_bootmem_desc *bootmem_desc;
119
120 bootmem_desc = cvmx_bootmem_get_desc();
121
122 if (mem_size > OCTEON_MAX_PHY_MEM_SIZE) {
123 mem_size = OCTEON_MAX_PHY_MEM_SIZE;
124 pr_err("Error: requested memory too large,"
125 "truncating to maximum size\n");
126 }
127
128 bootmem_desc->major_version = CVMX_BOOTMEM_DESC_MAJ_VER;
129 bootmem_desc->minor_version = CVMX_BOOTMEM_DESC_MIN_VER;
130
131 addr = (OCTEON_DDR0_BASE + reserve_low_mem + low_reserved_bytes);
132 bootmem_desc->head_addr = 0;
133
134 if (mem_size <= OCTEON_DDR0_SIZE) {
135 __cvmx_bootmem_phy_free(addr,
136 mem_size - reserve_low_mem -
137 low_reserved_bytes, 0);
138 return;
139 }
140
141 __cvmx_bootmem_phy_free(addr,
142 OCTEON_DDR0_SIZE - reserve_low_mem -
143 low_reserved_bytes, 0);
144
145 mem_size -= OCTEON_DDR0_SIZE;
146
147 if (mem_size > OCTEON_DDR1_SIZE) {
148 __cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, OCTEON_DDR1_SIZE, 0);
149 __cvmx_bootmem_phy_free(OCTEON_DDR2_BASE,
150 mem_size - OCTEON_DDR1_SIZE, 0);
151 } else
152 __cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, mem_size, 0);
153 }
154
octeon_kexec_prepare(struct kimage * image)155 static int octeon_kexec_prepare(struct kimage *image)
156 {
157 int i;
158 char *bootloader = "kexec";
159
160 octeon_boot_desc_ptr->argc = 0;
161 for (i = 0; i < image->nr_segments; i++) {
162 if (!strncmp(bootloader, (char *)image->segment[i].buf,
163 strlen(bootloader))) {
164 /*
165 * convert command line string to array
166 * of parameters (as bootloader does).
167 */
168 int argc = 0, offt;
169 char *str = (char *)image->segment[i].buf;
170 char *ptr = strchr(str, ' ');
171 while (ptr && (OCTEON_ARGV_MAX_ARGS > argc)) {
172 *ptr = '\0';
173 if (ptr[1] != ' ') {
174 offt = (int)(ptr - str + 1);
175 octeon_boot_desc_ptr->argv[argc] =
176 image->segment[i].mem + offt;
177 argc++;
178 }
179 ptr = strchr(ptr + 1, ' ');
180 }
181 octeon_boot_desc_ptr->argc = argc;
182 break;
183 }
184 }
185
186 /*
187 * Information about segments will be needed during pre-boot memory
188 * initialization.
189 */
190 kimage_ptr = image;
191 return 0;
192 }
193
octeon_generic_shutdown(void)194 static void octeon_generic_shutdown(void)
195 {
196 int i;
197 #ifdef CONFIG_SMP
198 int cpu;
199 #endif
200 struct cvmx_bootmem_desc *bootmem_desc;
201 void *named_block_array_ptr;
202
203 bootmem_desc = cvmx_bootmem_get_desc();
204 named_block_array_ptr =
205 cvmx_phys_to_ptr(bootmem_desc->named_block_array_addr);
206
207 #ifdef CONFIG_SMP
208 /* disable watchdogs */
209 for_each_online_cpu(cpu)
210 cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0);
211 #else
212 cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
213 #endif
214 if (kimage_ptr != kexec_crash_image) {
215 memset(named_block_array_ptr,
216 0x0,
217 CVMX_BOOTMEM_NUM_NAMED_BLOCKS *
218 sizeof(struct cvmx_bootmem_named_block_desc));
219 /*
220 * Mark all memory (except low 0x100000 bytes) as free.
221 * It is the same thing that bootloader does.
222 */
223 kexec_bootmem_init(octeon_bootinfo->dram_size*1024ULL*1024ULL,
224 0x100000);
225 /*
226 * Allocate all segments to avoid their corruption during boot.
227 */
228 for (i = 0; i < kimage_ptr->nr_segments; i++)
229 cvmx_bootmem_alloc_address(
230 kimage_ptr->segment[i].memsz + 2*PAGE_SIZE,
231 kimage_ptr->segment[i].mem - PAGE_SIZE,
232 PAGE_SIZE);
233 } else {
234 /*
235 * Do not mark all memory as free. Free only named sections
236 * leaving the rest of memory unchanged.
237 */
238 struct cvmx_bootmem_named_block_desc *ptr =
239 (struct cvmx_bootmem_named_block_desc *)
240 named_block_array_ptr;
241
242 for (i = 0; i < bootmem_desc->named_block_num_blocks; i++)
243 if (ptr[i].size)
244 cvmx_bootmem_free_named(ptr[i].name);
245 }
246 kexec_args[2] = 1UL; /* running on octeon_main_processor */
247 kexec_args[3] = (unsigned long)octeon_boot_desc_ptr;
248 #ifdef CONFIG_SMP
249 secondary_kexec_args[2] = 0UL; /* running on secondary cpu */
250 secondary_kexec_args[3] = (unsigned long)octeon_boot_desc_ptr;
251 #endif
252 }
253
octeon_shutdown(void)254 static void octeon_shutdown(void)
255 {
256 octeon_generic_shutdown();
257 #ifdef CONFIG_SMP
258 smp_call_function(octeon_kexec_smp_down, NULL, 0);
259 smp_wmb();
260 while (num_online_cpus() > 1) {
261 cpu_relax();
262 mdelay(1);
263 }
264 #endif
265 }
266
octeon_crash_shutdown(struct pt_regs * regs)267 static void octeon_crash_shutdown(struct pt_regs *regs)
268 {
269 octeon_generic_shutdown();
270 default_machine_crash_shutdown(regs);
271 }
272
273 #ifdef CONFIG_SMP
octeon_crash_smp_send_stop(void)274 void octeon_crash_smp_send_stop(void)
275 {
276 int cpu;
277
278 /* disable watchdogs */
279 for_each_online_cpu(cpu)
280 cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0);
281 }
282 #endif
283
284 #endif /* CONFIG_KEXEC */
285
286 #ifdef CONFIG_CAVIUM_RESERVE32
287 uint64_t octeon_reserve32_memory;
288 EXPORT_SYMBOL(octeon_reserve32_memory);
289 #endif
290
291 #ifdef CONFIG_KEXEC
292 /* crashkernel cmdline parameter is parsed _after_ memory setup
293 * we also parse it here (workaround for EHB5200) */
294 static uint64_t crashk_size, crashk_base;
295 #endif
296
297 static int octeon_uart;
298
299 extern asmlinkage void handle_int(void);
300
301 /**
302 * Return non zero if we are currently running in the Octeon simulator
303 *
304 * Returns
305 */
octeon_is_simulation(void)306 int octeon_is_simulation(void)
307 {
308 return octeon_bootinfo->board_type == CVMX_BOARD_TYPE_SIM;
309 }
310 EXPORT_SYMBOL(octeon_is_simulation);
311
312 /**
313 * Return true if Octeon is in PCI Host mode. This means
314 * Linux can control the PCI bus.
315 *
316 * Returns Non zero if Octeon in host mode.
317 */
octeon_is_pci_host(void)318 int octeon_is_pci_host(void)
319 {
320 #ifdef CONFIG_PCI
321 return octeon_bootinfo->config_flags & CVMX_BOOTINFO_CFG_FLAG_PCI_HOST;
322 #else
323 return 0;
324 #endif
325 }
326
327 /**
328 * Get the clock rate of Octeon
329 *
330 * Returns Clock rate in HZ
331 */
octeon_get_clock_rate(void)332 uint64_t octeon_get_clock_rate(void)
333 {
334 struct cvmx_sysinfo *sysinfo = cvmx_sysinfo_get();
335
336 return sysinfo->cpu_clock_hz;
337 }
338 EXPORT_SYMBOL(octeon_get_clock_rate);
339
340 static u64 octeon_io_clock_rate;
341
octeon_get_io_clock_rate(void)342 u64 octeon_get_io_clock_rate(void)
343 {
344 return octeon_io_clock_rate;
345 }
346 EXPORT_SYMBOL(octeon_get_io_clock_rate);
347
348
349 /**
350 * Write to the LCD display connected to the bootbus. This display
351 * exists on most Cavium evaluation boards. If it doesn't exist, then
352 * this function doesn't do anything.
353 *
354 * @s: String to write
355 */
octeon_write_lcd(const char * s)356 static void octeon_write_lcd(const char *s)
357 {
358 if (octeon_bootinfo->led_display_base_addr) {
359 void __iomem *lcd_address =
360 ioremap_nocache(octeon_bootinfo->led_display_base_addr,
361 8);
362 int i;
363 for (i = 0; i < 8; i++, s++) {
364 if (*s)
365 iowrite8(*s, lcd_address + i);
366 else
367 iowrite8(' ', lcd_address + i);
368 }
369 iounmap(lcd_address);
370 }
371 }
372
373 /**
374 * Return the console uart passed by the bootloader
375 *
376 * Returns uart (0 or 1)
377 */
octeon_get_boot_uart(void)378 static int octeon_get_boot_uart(void)
379 {
380 return (octeon_boot_desc_ptr->flags & OCTEON_BL_FLAG_CONSOLE_UART1) ?
381 1 : 0;
382 }
383
384 /**
385 * Get the coremask Linux was booted on.
386 *
387 * Returns Core mask
388 */
octeon_get_boot_coremask(void)389 int octeon_get_boot_coremask(void)
390 {
391 return octeon_boot_desc_ptr->core_mask;
392 }
393
394 /**
395 * Check the hardware BIST results for a CPU
396 */
octeon_check_cpu_bist(void)397 void octeon_check_cpu_bist(void)
398 {
399 const int coreid = cvmx_get_core_num();
400 unsigned long long mask;
401 unsigned long long bist_val;
402
403 /* Check BIST results for COP0 registers */
404 mask = 0x1f00000000ull;
405 bist_val = read_octeon_c0_icacheerr();
406 if (bist_val & mask)
407 pr_err("Core%d BIST Failure: CacheErr(icache) = 0x%llx\n",
408 coreid, bist_val);
409
410 bist_val = read_octeon_c0_dcacheerr();
411 if (bist_val & 1)
412 pr_err("Core%d L1 Dcache parity error: "
413 "CacheErr(dcache) = 0x%llx\n",
414 coreid, bist_val);
415
416 mask = 0xfc00000000000000ull;
417 bist_val = read_c0_cvmmemctl();
418 if (bist_val & mask)
419 pr_err("Core%d BIST Failure: COP0_CVM_MEM_CTL = 0x%llx\n",
420 coreid, bist_val);
421
422 write_octeon_c0_dcacheerr(0);
423 }
424
425 /**
426 * Reboot Octeon
427 *
428 * @command: Command to pass to the bootloader. Currently ignored.
429 */
octeon_restart(char * command)430 static void octeon_restart(char *command)
431 {
432 /* Disable all watchdogs before soft reset. They don't get cleared */
433 #ifdef CONFIG_SMP
434 int cpu;
435 for_each_online_cpu(cpu)
436 cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0);
437 #else
438 cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
439 #endif
440
441 mb();
442 while (1)
443 if (OCTEON_IS_OCTEON3())
444 cvmx_write_csr(CVMX_RST_SOFT_RST, 1);
445 else
446 cvmx_write_csr(CVMX_CIU_SOFT_RST, 1);
447 }
448
449
450 /**
451 * Permanently stop a core.
452 *
453 * @arg: Ignored.
454 */
octeon_kill_core(void * arg)455 static void octeon_kill_core(void *arg)
456 {
457 if (octeon_is_simulation())
458 /* A break instruction causes the simulator stop a core */
459 asm volatile ("break" ::: "memory");
460
461 local_irq_disable();
462 /* Disable watchdog on this core. */
463 cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
464 /* Spin in a low power mode. */
465 while (true)
466 asm volatile ("wait" ::: "memory");
467 }
468
469
470 /**
471 * Halt the system
472 */
octeon_halt(void)473 static void octeon_halt(void)
474 {
475 smp_call_function(octeon_kill_core, NULL, 0);
476
477 switch (octeon_bootinfo->board_type) {
478 case CVMX_BOARD_TYPE_NAO38:
479 /* Driving a 1 to GPIO 12 shuts off this board */
480 cvmx_write_csr(CVMX_GPIO_BIT_CFGX(12), 1);
481 cvmx_write_csr(CVMX_GPIO_TX_SET, 0x1000);
482 break;
483 default:
484 octeon_write_lcd("PowerOff");
485 break;
486 }
487
488 octeon_kill_core(NULL);
489 }
490
491 static char __read_mostly octeon_system_type[80];
492
init_octeon_system_type(void)493 static void __init init_octeon_system_type(void)
494 {
495 char const *board_type;
496
497 board_type = cvmx_board_type_to_string(octeon_bootinfo->board_type);
498 if (board_type == NULL) {
499 struct device_node *root;
500 int ret;
501
502 root = of_find_node_by_path("/");
503 ret = of_property_read_string(root, "model", &board_type);
504 of_node_put(root);
505 if (ret)
506 board_type = "Unsupported Board";
507 }
508
509 snprintf(octeon_system_type, sizeof(octeon_system_type), "%s (%s)",
510 board_type, octeon_model_get_string(read_c0_prid()));
511 }
512
513 /**
514 * Return a string representing the system type
515 *
516 * Returns
517 */
octeon_board_type_string(void)518 const char *octeon_board_type_string(void)
519 {
520 return octeon_system_type;
521 }
522
523 const char *get_system_type(void)
524 __attribute__ ((alias("octeon_board_type_string")));
525
octeon_user_io_init(void)526 void octeon_user_io_init(void)
527 {
528 union octeon_cvmemctl cvmmemctl;
529
530 /* Get the current settings for CP0_CVMMEMCTL_REG */
531 cvmmemctl.u64 = read_c0_cvmmemctl();
532 /* R/W If set, marked write-buffer entries time out the same
533 * as as other entries; if clear, marked write-buffer entries
534 * use the maximum timeout. */
535 cvmmemctl.s.dismarkwblongto = 1;
536 /* R/W If set, a merged store does not clear the write-buffer
537 * entry timeout state. */
538 cvmmemctl.s.dismrgclrwbto = 0;
539 /* R/W Two bits that are the MSBs of the resultant CVMSEG LM
540 * word location for an IOBDMA. The other 8 bits come from the
541 * SCRADDR field of the IOBDMA. */
542 cvmmemctl.s.iobdmascrmsb = 0;
543 /* R/W If set, SYNCWS and SYNCS only order marked stores; if
544 * clear, SYNCWS and SYNCS only order unmarked
545 * stores. SYNCWSMARKED has no effect when DISSYNCWS is
546 * set. */
547 cvmmemctl.s.syncwsmarked = 0;
548 /* R/W If set, SYNCWS acts as SYNCW and SYNCS acts as SYNC. */
549 cvmmemctl.s.dissyncws = 0;
550 /* R/W If set, no stall happens on write buffer full. */
551 if (OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2))
552 cvmmemctl.s.diswbfst = 1;
553 else
554 cvmmemctl.s.diswbfst = 0;
555 /* R/W If set (and SX set), supervisor-level loads/stores can
556 * use XKPHYS addresses with <48>==0 */
557 cvmmemctl.s.xkmemenas = 0;
558
559 /* R/W If set (and UX set), user-level loads/stores can use
560 * XKPHYS addresses with VA<48>==0 */
561 cvmmemctl.s.xkmemenau = 0;
562
563 /* R/W If set (and SX set), supervisor-level loads/stores can
564 * use XKPHYS addresses with VA<48>==1 */
565 cvmmemctl.s.xkioenas = 0;
566
567 /* R/W If set (and UX set), user-level loads/stores can use
568 * XKPHYS addresses with VA<48>==1 */
569 cvmmemctl.s.xkioenau = 0;
570
571 /* R/W If set, all stores act as SYNCW (NOMERGE must be set
572 * when this is set) RW, reset to 0. */
573 cvmmemctl.s.allsyncw = 0;
574
575 /* R/W If set, no stores merge, and all stores reach the
576 * coherent bus in order. */
577 cvmmemctl.s.nomerge = 0;
578 /* R/W Selects the bit in the counter used for DID time-outs 0
579 * = 231, 1 = 230, 2 = 229, 3 = 214. Actual time-out is
580 * between 1x and 2x this interval. For example, with
581 * DIDTTO=3, expiration interval is between 16K and 32K. */
582 cvmmemctl.s.didtto = 0;
583 /* R/W If set, the (mem) CSR clock never turns off. */
584 cvmmemctl.s.csrckalwys = 0;
585 /* R/W If set, mclk never turns off. */
586 cvmmemctl.s.mclkalwys = 0;
587 /* R/W Selects the bit in the counter used for write buffer
588 * flush time-outs (WBFLT+11) is the bit position in an
589 * internal counter used to determine expiration. The write
590 * buffer expires between 1x and 2x this interval. For
591 * example, with WBFLT = 0, a write buffer expires between 2K
592 * and 4K cycles after the write buffer entry is allocated. */
593 cvmmemctl.s.wbfltime = 0;
594 /* R/W If set, do not put Istream in the L2 cache. */
595 cvmmemctl.s.istrnol2 = 0;
596
597 /*
598 * R/W The write buffer threshold. As per erratum Core-14752
599 * for CN63XX, a sc/scd might fail if the write buffer is
600 * full. Lowering WBTHRESH greatly lowers the chances of the
601 * write buffer ever being full and triggering the erratum.
602 */
603 if (OCTEON_IS_MODEL(OCTEON_CN63XX_PASS1_X))
604 cvmmemctl.s.wbthresh = 4;
605 else
606 cvmmemctl.s.wbthresh = 10;
607
608 /* R/W If set, CVMSEG is available for loads/stores in
609 * kernel/debug mode. */
610 #if CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
611 cvmmemctl.s.cvmsegenak = 1;
612 #else
613 cvmmemctl.s.cvmsegenak = 0;
614 #endif
615 /* R/W If set, CVMSEG is available for loads/stores in
616 * supervisor mode. */
617 cvmmemctl.s.cvmsegenas = 0;
618 /* R/W If set, CVMSEG is available for loads/stores in user
619 * mode. */
620 cvmmemctl.s.cvmsegenau = 0;
621
622 write_c0_cvmmemctl(cvmmemctl.u64);
623
624 /* Setup of CVMSEG is done in kernel-entry-init.h */
625 if (smp_processor_id() == 0)
626 pr_notice("CVMSEG size: %d cache lines (%d bytes)\n",
627 CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE,
628 CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128);
629
630 if (octeon_has_feature(OCTEON_FEATURE_FAU)) {
631 union cvmx_iob_fau_timeout fau_timeout;
632
633 /* Set a default for the hardware timeouts */
634 fau_timeout.u64 = 0;
635 fau_timeout.s.tout_val = 0xfff;
636 /* Disable tagwait FAU timeout */
637 fau_timeout.s.tout_enb = 0;
638 cvmx_write_csr(CVMX_IOB_FAU_TIMEOUT, fau_timeout.u64);
639 }
640
641 if ((!OCTEON_IS_MODEL(OCTEON_CN68XX) &&
642 !OCTEON_IS_MODEL(OCTEON_CN7XXX)) ||
643 OCTEON_IS_MODEL(OCTEON_CN70XX)) {
644 union cvmx_pow_nw_tim nm_tim;
645
646 nm_tim.u64 = 0;
647 /* 4096 cycles */
648 nm_tim.s.nw_tim = 3;
649 cvmx_write_csr(CVMX_POW_NW_TIM, nm_tim.u64);
650 }
651
652 write_octeon_c0_icacheerr(0);
653 write_c0_derraddr1(0);
654 }
655
656 /**
657 * Early entry point for arch setup
658 */
prom_init(void)659 void __init prom_init(void)
660 {
661 struct cvmx_sysinfo *sysinfo;
662 const char *arg;
663 char *p;
664 int i;
665 u64 t;
666 int argc;
667 #ifdef CONFIG_CAVIUM_RESERVE32
668 int64_t addr = -1;
669 #endif
670 /*
671 * The bootloader passes a pointer to the boot descriptor in
672 * $a3, this is available as fw_arg3.
673 */
674 octeon_boot_desc_ptr = (struct octeon_boot_descriptor *)fw_arg3;
675 octeon_bootinfo =
676 cvmx_phys_to_ptr(octeon_boot_desc_ptr->cvmx_desc_vaddr);
677 cvmx_bootmem_init(cvmx_phys_to_ptr(octeon_bootinfo->phy_mem_desc_addr));
678
679 sysinfo = cvmx_sysinfo_get();
680 memset(sysinfo, 0, sizeof(*sysinfo));
681 sysinfo->system_dram_size = octeon_bootinfo->dram_size << 20;
682 sysinfo->phy_mem_desc_addr = (u64)phys_to_virt(octeon_bootinfo->phy_mem_desc_addr);
683
684 if ((octeon_bootinfo->major_version > 1) ||
685 (octeon_bootinfo->major_version == 1 &&
686 octeon_bootinfo->minor_version >= 4))
687 cvmx_coremask_copy(&sysinfo->core_mask,
688 &octeon_bootinfo->ext_core_mask);
689 else
690 cvmx_coremask_set64(&sysinfo->core_mask,
691 octeon_bootinfo->core_mask);
692
693 /* Some broken u-boot pass garbage in upper bits, clear them out */
694 if (!OCTEON_IS_MODEL(OCTEON_CN78XX))
695 for (i = 512; i < 1024; i++)
696 cvmx_coremask_clear_core(&sysinfo->core_mask, i);
697
698 sysinfo->exception_base_addr = octeon_bootinfo->exception_base_addr;
699 sysinfo->cpu_clock_hz = octeon_bootinfo->eclock_hz;
700 sysinfo->dram_data_rate_hz = octeon_bootinfo->dclock_hz * 2;
701 sysinfo->board_type = octeon_bootinfo->board_type;
702 sysinfo->board_rev_major = octeon_bootinfo->board_rev_major;
703 sysinfo->board_rev_minor = octeon_bootinfo->board_rev_minor;
704 memcpy(sysinfo->mac_addr_base, octeon_bootinfo->mac_addr_base,
705 sizeof(sysinfo->mac_addr_base));
706 sysinfo->mac_addr_count = octeon_bootinfo->mac_addr_count;
707 memcpy(sysinfo->board_serial_number,
708 octeon_bootinfo->board_serial_number,
709 sizeof(sysinfo->board_serial_number));
710 sysinfo->compact_flash_common_base_addr =
711 octeon_bootinfo->compact_flash_common_base_addr;
712 sysinfo->compact_flash_attribute_base_addr =
713 octeon_bootinfo->compact_flash_attribute_base_addr;
714 sysinfo->led_display_base_addr = octeon_bootinfo->led_display_base_addr;
715 sysinfo->dfa_ref_clock_hz = octeon_bootinfo->dfa_ref_clock_hz;
716 sysinfo->bootloader_config_flags = octeon_bootinfo->config_flags;
717
718 if (OCTEON_IS_OCTEON2()) {
719 /* I/O clock runs at a different rate than the CPU. */
720 union cvmx_mio_rst_boot rst_boot;
721 rst_boot.u64 = cvmx_read_csr(CVMX_MIO_RST_BOOT);
722 octeon_io_clock_rate = 50000000 * rst_boot.s.pnr_mul;
723 } else if (OCTEON_IS_OCTEON3()) {
724 /* I/O clock runs at a different rate than the CPU. */
725 union cvmx_rst_boot rst_boot;
726 rst_boot.u64 = cvmx_read_csr(CVMX_RST_BOOT);
727 octeon_io_clock_rate = 50000000 * rst_boot.s.pnr_mul;
728 } else {
729 octeon_io_clock_rate = sysinfo->cpu_clock_hz;
730 }
731
732 t = read_c0_cvmctl();
733 if ((t & (1ull << 27)) == 0) {
734 /*
735 * Setup the multiplier save/restore code if
736 * CvmCtl[NOMUL] clear.
737 */
738 void *save;
739 void *save_end;
740 void *restore;
741 void *restore_end;
742 int save_len;
743 int restore_len;
744 int save_max = (char *)octeon_mult_save_end -
745 (char *)octeon_mult_save;
746 int restore_max = (char *)octeon_mult_restore_end -
747 (char *)octeon_mult_restore;
748 if (current_cpu_data.cputype == CPU_CAVIUM_OCTEON3) {
749 save = octeon_mult_save3;
750 save_end = octeon_mult_save3_end;
751 restore = octeon_mult_restore3;
752 restore_end = octeon_mult_restore3_end;
753 } else {
754 save = octeon_mult_save2;
755 save_end = octeon_mult_save2_end;
756 restore = octeon_mult_restore2;
757 restore_end = octeon_mult_restore2_end;
758 }
759 save_len = (char *)save_end - (char *)save;
760 restore_len = (char *)restore_end - (char *)restore;
761 if (!WARN_ON(save_len > save_max ||
762 restore_len > restore_max)) {
763 memcpy(octeon_mult_save, save, save_len);
764 memcpy(octeon_mult_restore, restore, restore_len);
765 }
766 }
767
768 /*
769 * Only enable the LED controller if we're running on a CN38XX, CN58XX,
770 * or CN56XX. The CN30XX and CN31XX don't have an LED controller.
771 */
772 if (!octeon_is_simulation() &&
773 octeon_has_feature(OCTEON_FEATURE_LED_CONTROLLER)) {
774 cvmx_write_csr(CVMX_LED_EN, 0);
775 cvmx_write_csr(CVMX_LED_PRT, 0);
776 cvmx_write_csr(CVMX_LED_DBG, 0);
777 cvmx_write_csr(CVMX_LED_PRT_FMT, 0);
778 cvmx_write_csr(CVMX_LED_UDD_CNTX(0), 32);
779 cvmx_write_csr(CVMX_LED_UDD_CNTX(1), 32);
780 cvmx_write_csr(CVMX_LED_UDD_DATX(0), 0);
781 cvmx_write_csr(CVMX_LED_UDD_DATX(1), 0);
782 cvmx_write_csr(CVMX_LED_EN, 1);
783 }
784 #ifdef CONFIG_CAVIUM_RESERVE32
785 /*
786 * We need to temporarily allocate all memory in the reserve32
787 * region. This makes sure the kernel doesn't allocate this
788 * memory when it is getting memory from the
789 * bootloader. Later, after the memory allocations are
790 * complete, the reserve32 will be freed.
791 *
792 * Allocate memory for RESERVED32 aligned on 2MB boundary. This
793 * is in case we later use hugetlb entries with it.
794 */
795 addr = cvmx_bootmem_phy_named_block_alloc(CONFIG_CAVIUM_RESERVE32 << 20,
796 0, 0, 2 << 20,
797 "CAVIUM_RESERVE32", 0);
798 if (addr < 0)
799 pr_err("Failed to allocate CAVIUM_RESERVE32 memory area\n");
800 else
801 octeon_reserve32_memory = addr;
802 #endif
803
804 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2
805 if (cvmx_read_csr(CVMX_L2D_FUS3) & (3ull << 34)) {
806 pr_info("Skipping L2 locking due to reduced L2 cache size\n");
807 } else {
808 uint32_t __maybe_unused ebase = read_c0_ebase() & 0x3ffff000;
809 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_TLB
810 /* TLB refill */
811 cvmx_l2c_lock_mem_region(ebase, 0x100);
812 #endif
813 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_EXCEPTION
814 /* General exception */
815 cvmx_l2c_lock_mem_region(ebase + 0x180, 0x80);
816 #endif
817 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_LOW_LEVEL_INTERRUPT
818 /* Interrupt handler */
819 cvmx_l2c_lock_mem_region(ebase + 0x200, 0x80);
820 #endif
821 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_INTERRUPT
822 cvmx_l2c_lock_mem_region(__pa_symbol(handle_int), 0x100);
823 cvmx_l2c_lock_mem_region(__pa_symbol(plat_irq_dispatch), 0x80);
824 #endif
825 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_MEMCPY
826 cvmx_l2c_lock_mem_region(__pa_symbol(memcpy), 0x480);
827 #endif
828 }
829 #endif
830
831 octeon_check_cpu_bist();
832
833 octeon_uart = octeon_get_boot_uart();
834
835 #ifdef CONFIG_SMP
836 octeon_write_lcd("LinuxSMP");
837 #else
838 octeon_write_lcd("Linux");
839 #endif
840
841 octeon_setup_delays();
842
843 /*
844 * BIST should always be enabled when doing a soft reset. L2
845 * Cache locking for instance is not cleared unless BIST is
846 * enabled. Unfortunately due to a chip errata G-200 for
847 * Cn38XX and CN31XX, BIST msut be disabled on these parts.
848 */
849 if (OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2) ||
850 OCTEON_IS_MODEL(OCTEON_CN31XX))
851 cvmx_write_csr(CVMX_CIU_SOFT_BIST, 0);
852 else
853 cvmx_write_csr(CVMX_CIU_SOFT_BIST, 1);
854
855 /* Default to 64MB in the simulator to speed things up */
856 if (octeon_is_simulation())
857 max_memory = 64ull << 20;
858
859 arg = strstr(arcs_cmdline, "mem=");
860 if (arg) {
861 max_memory = memparse(arg + 4, &p);
862 if (max_memory == 0)
863 max_memory = 32ull << 30;
864 if (*p == '@')
865 reserve_low_mem = memparse(p + 1, &p);
866 }
867
868 arcs_cmdline[0] = 0;
869 argc = octeon_boot_desc_ptr->argc;
870 for (i = 0; i < argc; i++) {
871 const char *arg =
872 cvmx_phys_to_ptr(octeon_boot_desc_ptr->argv[i]);
873 if ((strncmp(arg, "MEM=", 4) == 0) ||
874 (strncmp(arg, "mem=", 4) == 0)) {
875 max_memory = memparse(arg + 4, &p);
876 if (max_memory == 0)
877 max_memory = 32ull << 30;
878 if (*p == '@')
879 reserve_low_mem = memparse(p + 1, &p);
880 #ifdef CONFIG_KEXEC
881 } else if (strncmp(arg, "crashkernel=", 12) == 0) {
882 crashk_size = memparse(arg+12, &p);
883 if (*p == '@')
884 crashk_base = memparse(p+1, &p);
885 strcat(arcs_cmdline, " ");
886 strcat(arcs_cmdline, arg);
887 /*
888 * To do: switch parsing to new style, something like:
889 * parse_crashkernel(arg, sysinfo->system_dram_size,
890 * &crashk_size, &crashk_base);
891 */
892 #endif
893 } else if (strlen(arcs_cmdline) + strlen(arg) + 1 <
894 sizeof(arcs_cmdline) - 1) {
895 strcat(arcs_cmdline, " ");
896 strcat(arcs_cmdline, arg);
897 }
898 }
899
900 if (strstr(arcs_cmdline, "console=") == NULL) {
901 if (octeon_uart == 1)
902 strcat(arcs_cmdline, " console=ttyS1,115200");
903 else
904 strcat(arcs_cmdline, " console=ttyS0,115200");
905 }
906
907 mips_hpt_frequency = octeon_get_clock_rate();
908
909 octeon_init_cvmcount();
910
911 _machine_restart = octeon_restart;
912 _machine_halt = octeon_halt;
913
914 #ifdef CONFIG_KEXEC
915 _machine_kexec_shutdown = octeon_shutdown;
916 _machine_crash_shutdown = octeon_crash_shutdown;
917 _machine_kexec_prepare = octeon_kexec_prepare;
918 #ifdef CONFIG_SMP
919 _crash_smp_send_stop = octeon_crash_smp_send_stop;
920 #endif
921 #endif
922
923 octeon_user_io_init();
924 octeon_setup_smp();
925 }
926
927 /* Exclude a single page from the regions obtained in plat_mem_setup. */
928 #ifndef CONFIG_CRASH_DUMP
memory_exclude_page(u64 addr,u64 * mem,u64 * size)929 static __init void memory_exclude_page(u64 addr, u64 *mem, u64 *size)
930 {
931 if (addr > *mem && addr < *mem + *size) {
932 u64 inc = addr - *mem;
933 add_memory_region(*mem, inc, BOOT_MEM_RAM);
934 *mem += inc;
935 *size -= inc;
936 }
937
938 if (addr == *mem && *size > PAGE_SIZE) {
939 *mem += PAGE_SIZE;
940 *size -= PAGE_SIZE;
941 }
942 }
943 #endif /* CONFIG_CRASH_DUMP */
944
fw_init_cmdline(void)945 void __init fw_init_cmdline(void)
946 {
947 int i;
948
949 octeon_boot_desc_ptr = (struct octeon_boot_descriptor *)fw_arg3;
950 for (i = 0; i < octeon_boot_desc_ptr->argc; i++) {
951 const char *arg =
952 cvmx_phys_to_ptr(octeon_boot_desc_ptr->argv[i]);
953 if (strlen(arcs_cmdline) + strlen(arg) + 1 <
954 sizeof(arcs_cmdline) - 1) {
955 strcat(arcs_cmdline, " ");
956 strcat(arcs_cmdline, arg);
957 }
958 }
959 }
960
plat_get_fdt(void)961 void __init *plat_get_fdt(void)
962 {
963 octeon_bootinfo =
964 cvmx_phys_to_ptr(octeon_boot_desc_ptr->cvmx_desc_vaddr);
965 return phys_to_virt(octeon_bootinfo->fdt_addr);
966 }
967
plat_mem_setup(void)968 void __init plat_mem_setup(void)
969 {
970 uint64_t mem_alloc_size;
971 uint64_t total;
972 uint64_t crashk_end;
973 #ifndef CONFIG_CRASH_DUMP
974 int64_t memory;
975 uint64_t kernel_start;
976 uint64_t kernel_size;
977 #endif
978
979 total = 0;
980 crashk_end = 0;
981
982 /*
983 * The Mips memory init uses the first memory location for
984 * some memory vectors. When SPARSEMEM is in use, it doesn't
985 * verify that the size is big enough for the final
986 * vectors. Making the smallest chuck 4MB seems to be enough
987 * to consistently work.
988 */
989 mem_alloc_size = 4 << 20;
990 if (mem_alloc_size > max_memory)
991 mem_alloc_size = max_memory;
992
993 /* Crashkernel ignores bootmem list. It relies on mem=X@Y option */
994 #ifdef CONFIG_CRASH_DUMP
995 add_memory_region(reserve_low_mem, max_memory, BOOT_MEM_RAM);
996 total += max_memory;
997 #else
998 #ifdef CONFIG_KEXEC
999 if (crashk_size > 0) {
1000 add_memory_region(crashk_base, crashk_size, BOOT_MEM_RAM);
1001 crashk_end = crashk_base + crashk_size;
1002 }
1003 #endif
1004 /*
1005 * When allocating memory, we want incrementing addresses from
1006 * bootmem_alloc so the code in add_memory_region can merge
1007 * regions next to each other.
1008 */
1009 cvmx_bootmem_lock();
1010 while (total < max_memory) {
1011 memory = cvmx_bootmem_phy_alloc(mem_alloc_size,
1012 __pa_symbol(&_end), -1,
1013 0x100000,
1014 CVMX_BOOTMEM_FLAG_NO_LOCKING);
1015 if (memory >= 0) {
1016 u64 size = mem_alloc_size;
1017 #ifdef CONFIG_KEXEC
1018 uint64_t end;
1019 #endif
1020
1021 /*
1022 * exclude a page at the beginning and end of
1023 * the 256MB PCIe 'hole' so the kernel will not
1024 * try to allocate multi-page buffers that
1025 * span the discontinuity.
1026 */
1027 memory_exclude_page(CVMX_PCIE_BAR1_PHYS_BASE,
1028 &memory, &size);
1029 memory_exclude_page(CVMX_PCIE_BAR1_PHYS_BASE +
1030 CVMX_PCIE_BAR1_PHYS_SIZE,
1031 &memory, &size);
1032 #ifdef CONFIG_KEXEC
1033 end = memory + mem_alloc_size;
1034
1035 /*
1036 * This function automatically merges address regions
1037 * next to each other if they are received in
1038 * incrementing order
1039 */
1040 if (memory < crashk_base && end > crashk_end) {
1041 /* region is fully in */
1042 add_memory_region(memory,
1043 crashk_base - memory,
1044 BOOT_MEM_RAM);
1045 total += crashk_base - memory;
1046 add_memory_region(crashk_end,
1047 end - crashk_end,
1048 BOOT_MEM_RAM);
1049 total += end - crashk_end;
1050 continue;
1051 }
1052
1053 if (memory >= crashk_base && end <= crashk_end)
1054 /*
1055 * Entire memory region is within the new
1056 * kernel's memory, ignore it.
1057 */
1058 continue;
1059
1060 if (memory > crashk_base && memory < crashk_end &&
1061 end > crashk_end) {
1062 /*
1063 * Overlap with the beginning of the region,
1064 * reserve the beginning.
1065 */
1066 mem_alloc_size -= crashk_end - memory;
1067 memory = crashk_end;
1068 } else if (memory < crashk_base && end > crashk_base &&
1069 end < crashk_end)
1070 /*
1071 * Overlap with the beginning of the region,
1072 * chop of end.
1073 */
1074 mem_alloc_size -= end - crashk_base;
1075 #endif
1076 add_memory_region(memory, mem_alloc_size, BOOT_MEM_RAM);
1077 total += mem_alloc_size;
1078 /* Recovering mem_alloc_size */
1079 mem_alloc_size = 4 << 20;
1080 } else {
1081 break;
1082 }
1083 }
1084 cvmx_bootmem_unlock();
1085 /* Add the memory region for the kernel. */
1086 kernel_start = (unsigned long) _text;
1087 kernel_size = _end - _text;
1088
1089 /* Adjust for physical offset. */
1090 kernel_start &= ~0xffffffff80000000ULL;
1091 add_memory_region(kernel_start, kernel_size, BOOT_MEM_RAM);
1092 #endif /* CONFIG_CRASH_DUMP */
1093
1094 #ifdef CONFIG_CAVIUM_RESERVE32
1095 /*
1096 * Now that we've allocated the kernel memory it is safe to
1097 * free the reserved region. We free it here so that builtin
1098 * drivers can use the memory.
1099 */
1100 if (octeon_reserve32_memory)
1101 cvmx_bootmem_free_named("CAVIUM_RESERVE32");
1102 #endif /* CONFIG_CAVIUM_RESERVE32 */
1103
1104 if (total == 0)
1105 panic("Unable to allocate memory from "
1106 "cvmx_bootmem_phy_alloc");
1107 }
1108
1109 /*
1110 * Emit one character to the boot UART. Exported for use by the
1111 * watchdog timer.
1112 */
prom_putchar(char c)1113 void prom_putchar(char c)
1114 {
1115 uint64_t lsrval;
1116
1117 /* Spin until there is room */
1118 do {
1119 lsrval = cvmx_read_csr(CVMX_MIO_UARTX_LSR(octeon_uart));
1120 } while ((lsrval & 0x20) == 0);
1121
1122 /* Write the byte */
1123 cvmx_write_csr(CVMX_MIO_UARTX_THR(octeon_uart), c & 0xffull);
1124 }
1125 EXPORT_SYMBOL(prom_putchar);
1126
prom_free_prom_memory(void)1127 void __init prom_free_prom_memory(void)
1128 {
1129 if (CAVIUM_OCTEON_DCACHE_PREFETCH_WAR) {
1130 /* Check for presence of Core-14449 fix. */
1131 u32 insn;
1132 u32 *foo;
1133
1134 foo = &insn;
1135
1136 asm volatile("# before" : : : "memory");
1137 prefetch(foo);
1138 asm volatile(
1139 ".set push\n\t"
1140 ".set noreorder\n\t"
1141 "bal 1f\n\t"
1142 "nop\n"
1143 "1:\tlw %0,-12($31)\n\t"
1144 ".set pop\n\t"
1145 : "=r" (insn) : : "$31", "memory");
1146
1147 if ((insn >> 26) != 0x33)
1148 panic("No PREF instruction at Core-14449 probe point.");
1149
1150 if (((insn >> 16) & 0x1f) != 28)
1151 panic("OCTEON II DCache prefetch workaround not in place (%04x).\n"
1152 "Please build kernel with proper options (CONFIG_CAVIUM_CN63XXP1).",
1153 insn);
1154 }
1155 }
1156
1157 void __init octeon_fill_mac_addresses(void);
1158
device_tree_init(void)1159 void __init device_tree_init(void)
1160 {
1161 const void *fdt;
1162 bool do_prune;
1163 bool fill_mac;
1164
1165 if (fw_passed_dtb) {
1166 fdt = (void *)fw_passed_dtb;
1167 do_prune = false;
1168 fill_mac = true;
1169 pr_info("Using appended Device Tree.\n");
1170 } else if (octeon_bootinfo->minor_version >= 3 && octeon_bootinfo->fdt_addr) {
1171 fdt = phys_to_virt(octeon_bootinfo->fdt_addr);
1172 if (fdt_check_header(fdt))
1173 panic("Corrupt Device Tree passed to kernel.");
1174 do_prune = false;
1175 fill_mac = false;
1176 pr_info("Using passed Device Tree.\n");
1177 } else if (OCTEON_IS_MODEL(OCTEON_CN68XX)) {
1178 fdt = &__dtb_octeon_68xx_begin;
1179 do_prune = true;
1180 fill_mac = true;
1181 } else {
1182 fdt = &__dtb_octeon_3xxx_begin;
1183 do_prune = true;
1184 fill_mac = true;
1185 }
1186
1187 initial_boot_params = (void *)fdt;
1188
1189 if (do_prune) {
1190 octeon_prune_device_tree();
1191 pr_info("Using internal Device Tree.\n");
1192 }
1193 if (fill_mac)
1194 octeon_fill_mac_addresses();
1195 unflatten_and_copy_device_tree();
1196 init_octeon_system_type();
1197 }
1198
1199 static int __initdata disable_octeon_edac_p;
1200
disable_octeon_edac(char * str)1201 static int __init disable_octeon_edac(char *str)
1202 {
1203 disable_octeon_edac_p = 1;
1204 return 0;
1205 }
1206 early_param("disable_octeon_edac", disable_octeon_edac);
1207
1208 static char *edac_device_names[] = {
1209 "octeon_l2c_edac",
1210 "octeon_pc_edac",
1211 };
1212
edac_devinit(void)1213 static int __init edac_devinit(void)
1214 {
1215 struct platform_device *dev;
1216 int i, err = 0;
1217 int num_lmc;
1218 char *name;
1219
1220 if (disable_octeon_edac_p)
1221 return 0;
1222
1223 for (i = 0; i < ARRAY_SIZE(edac_device_names); i++) {
1224 name = edac_device_names[i];
1225 dev = platform_device_register_simple(name, -1, NULL, 0);
1226 if (IS_ERR(dev)) {
1227 pr_err("Registration of %s failed!\n", name);
1228 err = PTR_ERR(dev);
1229 }
1230 }
1231
1232 num_lmc = OCTEON_IS_MODEL(OCTEON_CN68XX) ? 4 :
1233 (OCTEON_IS_MODEL(OCTEON_CN56XX) ? 2 : 1);
1234 for (i = 0; i < num_lmc; i++) {
1235 dev = platform_device_register_simple("octeon_lmc_edac",
1236 i, NULL, 0);
1237 if (IS_ERR(dev)) {
1238 pr_err("Registration of octeon_lmc_edac %d failed!\n", i);
1239 err = PTR_ERR(dev);
1240 }
1241 }
1242
1243 return err;
1244 }
1245 device_initcall(edac_devinit);
1246
1247 static void __initdata *octeon_dummy_iospace;
1248
octeon_no_pci_init(void)1249 static int __init octeon_no_pci_init(void)
1250 {
1251 /*
1252 * Initially assume there is no PCI. The PCI/PCIe platform code will
1253 * later re-initialize these to correct values if they are present.
1254 */
1255 octeon_dummy_iospace = vzalloc(IO_SPACE_LIMIT);
1256 set_io_port_base((unsigned long)octeon_dummy_iospace);
1257 ioport_resource.start = MAX_RESOURCE;
1258 ioport_resource.end = 0;
1259 return 0;
1260 }
1261 core_initcall(octeon_no_pci_init);
1262
octeon_no_pci_release(void)1263 static int __init octeon_no_pci_release(void)
1264 {
1265 /*
1266 * Release the allocated memory if a real IO space is there.
1267 */
1268 if ((unsigned long)octeon_dummy_iospace != mips_io_port_base)
1269 vfree(octeon_dummy_iospace);
1270 return 0;
1271 }
1272 late_initcall(octeon_no_pci_release);
1273